WO2018235144A1 - 回転電機の回転子 - Google Patents

回転電機の回転子 Download PDF

Info

Publication number
WO2018235144A1
WO2018235144A1 PCT/JP2017/022578 JP2017022578W WO2018235144A1 WO 2018235144 A1 WO2018235144 A1 WO 2018235144A1 JP 2017022578 W JP2017022578 W JP 2017022578W WO 2018235144 A1 WO2018235144 A1 WO 2018235144A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor core
rotor
notch
axis
tangent
Prior art date
Application number
PCT/JP2017/022578
Other languages
English (en)
French (fr)
Inventor
松村 一弘
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2017/022578 priority Critical patent/WO2018235144A1/ja
Priority to JP2019524731A priority patent/JP6726361B2/ja
Publication of WO2018235144A1 publication Critical patent/WO2018235144A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a rotor of a rotating electrical machine.
  • the gap portion disclosed in JP2006-238678A has a structure (protrusion portion) which becomes gradually thinner as it is separated from the end portion of the magnet insertion hole while keeping a predetermined distance from the outer peripheral edge of the rotor core.
  • the radial thickness of the magnetic portion of the rotor core can be increased in the vicinity of the tip of the projecting portion, so that the magnetic resistance of the rotor core to the magnetic flux from the permanent magnet becomes smaller and torque ripple is reduced. can do.
  • An object of the present invention is to provide a rotor capable of suppressing a reduction in torque and reducing a torque ripple without reducing the durability of a mold even when actually producing a rotor core.
  • a rotor of a rotating electrical machine includes a rotor core configured by laminating electromagnetic steel sheets, at least one permanent magnet configuring one magnetic pole in the rotor core, and a magnet insertion hole for embedding the permanent magnet And a rotor of a rotating electrical machine.
  • the rotor core is formed along the axial direction of the rotor core, in the magnet insertion hole, at the gap provided at the end on the q axis side that is electrically orthogonal to the d axis configured by one magnetic pole, and at the outer periphery of the rotor core. And a notch.
  • the air gap has a protrusion which extends along the outer periphery of the rotor core from the portion closest to the outer periphery of the rotor core toward the d-axis.
  • FIG. 1 is a figure for demonstrating the rotor structure of one Embodiment.
  • FIG. 2 is a figure for demonstrating the space
  • FIG. 3 shows the change in torque between the rotor core (conventional example A) in which the void not considering productivity is formed and the rotor core (reference example B) in which the void considering productivity is formed in the void of the conventional shape. It is a figure which shows the analysis result which analyzed.
  • FIG. 4 is a figure for demonstrating the difference in the shape of the space
  • FIG. 5 is a diagram showing an analysis result in which a change in torque by the rotor structure of one embodiment, the conventional example A, and the reference example B is analyzed.
  • FIG. 6 is a diagram showing analysis results obtained by analyzing changes in torque ripple according to the rotor structure of the embodiment, the conventional example A, and the reference example B.
  • FIG. 7 is a diagram showing analysis results obtained by analyzing changes in rotor core loss according to the rotor structure of the embodiment, the conventional example A, and the reference example B.
  • FIG. 8 is a distribution diagram of rotor iron loss in a rotor core of Reference Example B.
  • FIG. 9 is a distribution diagram of rotor iron loss in the rotor core of an embodiment.
  • FIG. 10 is a partially enlarged view of FIG.
  • FIG. 11 is a diagram showing an analysis result obtained by analyzing a change in torque performance when the notch is formed at a position corresponding to ⁇ a in the rotor core of the embodiment.
  • FIG. 12 is a diagram showing an analysis result of analysis of a change in a reduction rate of stator core loss when the notch is formed at a position corresponding to ⁇ a in the rotor core of the embodiment.
  • FIG. 13 is a diagram showing an analysis result of analysis of a change in a reduction rate of the rotor core loss when the notch is formed at a position corresponding to ⁇ a in the rotor core according to the embodiment.
  • FIG. 11 is a diagram showing an analysis result obtained by analyzing a change in torque performance when the notch is formed at a position corresponding to ⁇ a in the rotor core of the embodiment.
  • FIG. 12 is a diagram showing an analysis result of analysis of a change in a reduction rate of stator core loss when the notch is formed at a position corresponding to ⁇ a
  • FIG. 14 is a view for explaining the position of the end portion on the d-axis side of the notch in the rotor core of the embodiment.
  • FIG. 15 is a diagram showing an analysis result of analysis of a change in a reduction rate of stator core loss when the notch is formed at a position corresponding to ⁇ in the rotor core of the embodiment.
  • FIG. 16 is a diagram showing an analysis result of analysis of a change in reduction rate of rotor core loss when the notch is formed at a position corresponding to ⁇ in the rotor core of the embodiment.
  • FIG. 17 is a diagram showing an analysis result obtained by analyzing a rate of decrease in torque when the notch is formed at a position corresponding to ⁇ in the rotor core of the embodiment.
  • FIG. 18 is a view for explaining the definition of the depth H of the notch in the rotor core of the embodiment.
  • FIG. 19 is a diagram for explaining the width h of the d-axis side tip of the protrusion in the rotor core according to the embodiment.
  • FIG. 20 is a diagram showing an analysis result of analysis of a relationship between a ratio (H / h) of a depth H of a notch to a width h of an end portion of a protrusion and a stator core loss reduction rate in a rotor core of an embodiment. It is.
  • FIG. 21 is a diagram showing an analysis result of an analysis of a relationship between torque and a ratio (H / h) of a depth H of a notch to a width h of a tip end portion of a rotor core according to an embodiment.
  • FIG. 22 is a diagram for explaining a rotor structure of the first embodiment.
  • FIG. 23 is a view for explaining a rotor structure of the second embodiment.
  • FIG. 24 is a diagram for explaining a rotor structure of the third embodiment.
  • FIG. 25 is a view showing a modification of the notch.
  • FIG. 26 is a diagram for explaining a conventional rotor structure.
  • FIG. 1 is a view for explaining a rotor of an embodiment to which the present invention is applied. Shown in the figure is a configuration view of a rotor (rotor) 6 included in a rotating electric machine constituting an electric motor or a generator, as viewed from a cross section perpendicular to the axial direction, which is a part of the entire configuration (one pole Minutes).
  • the rotating electric machine according to the present embodiment is a so-called IPM (Interior Permanent Magnet) type rotating electric machine in which permanent magnets are embedded inside the rotor 6, and two permanent magnets 3 per pole are provided on the outer peripheral side of the rotor 6. It has a rotor arranged in a substantially V-shape to be open.
  • IPM Interior Permanent Magnet
  • an 8-pole structure rotor is taken as an example here, the number of poles is not limited to this.
  • various analysis data to be described below are constituted by the rotor 6 having an eight-pole structure and a stator (not shown) in which the number of slots is 48 and the stator winding is wound by distributed winding. It is assumed that the present invention is applied and analyzed to the above-described rotating electrical machine.
  • the rotor core (rotor core) 1 is formed in a cylindrical shape by a so-called laminated electromagnetic steel sheet structure formed by axially laminating a plurality of electromagnetic steel sheets having a thickness of several hundreds of ⁇ m punched into an annular shape. Further, a magnet insertion hole 2 (hereinafter, also simply referred to as a magnet hole 2) for embedding the permanent magnet 3 is formed in the rotor core 1, and air gaps 4, 5 are formed at both end portions of the magnet hole 2 in the circumferential direction. Each is formed.
  • the magnet hole 2 is a hole portion formed by laminating in the axial direction an electromagnetic steel plate veneer in which a space for embedding two permanent magnets 3 per one pole is formed.
  • the magnet holes 2 are arranged in a substantially V-shape opening on the outer peripheral side of the rotor 6 and are formed at a constant mechanical angle. Since the rotor 6 of the present embodiment has an 8-pole structure, a pair of magnet holes 2 arranged in a substantially V-shape is formed at every mechanical angle of 45 degrees.
  • FIG. 1 shows that one pole.
  • the permanent magnet 3 is fixed in a state of being inserted into the magnet hole 2 of the rotor core 1.
  • the two permanent magnets 3 constitute one magnetic pole, and the magnetic poles formed by the two permanent magnets 3 are equally spaced from each other along the circumferential direction of the rotor 6, and the polarities of adjacent magnetic poles are different from each other. It is arranged to be polar.
  • the direction of the magnetic flux generated by the two permanent magnets 3 is the d-axis (magnetic pole center), and the direction electrically perpendicular to the d-axis is the q-axis.
  • the permanent magnet 3 is formed such that the width in the longitudinal direction is smaller than that of the magnet hole 2, and the air gaps 4 and 5 as space portions are formed at both circumferential end portions of the magnet hole 2.
  • This space portion has lower permeability than the electromagnetic steel sheet, that is, higher magnetic resistance. Accordingly, the air gaps 4 and 5 act as magnetic barriers to which the magnetic flux (flux) is difficult to pass in the magnetic circuit in which the permanent magnet 3 configures the rotor 6.
  • the air gap 5 closer to the outer periphery of the rotor core 1 is along the outer periphery of the rotor core 1 from the portion closest to the outer periphery of the rotor core 1 (the outermost periphery) It has the protrusion 7 formed extending.
  • the magnetic flux density of the bridge portion 8 formed between the air gap 5 and the outer periphery of the rotor core 1 is uniformly saturated. (Magnetic saturation) reduces the magnetic flux that tends to flow in the q-axis direction. As a result, the ratio of the magnetic flux flowing in the tip direction (d-axis direction) of the protrusion 7 to the magnetic flux density emitted from the permanent magnet 3 increases, and the rotor magnetic flux approaches a sine wave. Harmonic components can be reduced.
  • a notch 9 is formed on the outer periphery of the rotor core 1 of the present embodiment along the axial direction of the rotor core 1 toward the rotation center side of the rotor core 1.
  • the notch 9 is formed on the outer periphery of the rotor core 1 in a region from the tip of the protrusion 7 on the d-axis side to the d-axis. Referring to FIG. 1, when the tangent drawn from the rotation center of rotor core 1 to the outer periphery of rotor core 1 through the tip of protrusion 7 on the d-axis side is tangent A, notch 9 is more than tangent A It is formed on the d-axis side. Furthermore, even if the straight line B shown in FIG. 1 is used, a more specific position of the notch 9 can be defined. Details will be described later with reference to FIG.
  • JP2006-238678A as shown in FIG. 26, a rotor structure is proposed in which an air gap is provided at least on the outer peripheral side end of a rotor core of a magnet insertion hole.
  • the air gap is formed to be gradually narrowed toward the center of the magnetic pole while maintaining a predetermined distance from the outer periphery of the rotor core 1, thereby reducing torque ripple.
  • it is necessary to form a portion corresponding to the leading end of the void at an acute angle in a mold used for press working.
  • the acute-angled portion in the mold wears out quickly as it is repeatedly pressed, worn, chipped and damaged. That is, considering the consumption of the mold when actually producing the rotor core, the shape of the air gap as shown in FIG. 26 lowers the productivity due to the increase in the number of steps and the cost at the time of production of the rotor core. It contains a problem.
  • the shape of the air gap as shown in FIG. 26 is changed to a shape that allows the consumption of the mold at the time of production of the rotor core in consideration of productivity, the shape becomes as shown in FIG.
  • FIG. 2 is a view for explaining a void 20 of a conventional shape in which productivity is not taken into consideration and a void 30 in which the void 20 has been changed in shape in consideration of productivity.
  • gap 30 is an enlarged part in consideration of productivity.
  • the tip portion of the mold for press molding tends to be consumed in the shape of the air gap 20
  • it is necessary to change the acute-angled shape of the tip portion to a curved shape in order to suppress the consumption of the mold. is there.
  • the radial width of the air gap 20 becomes the shape of the air gap 30 expanded to the dotted line position shown in the figure as the tip end portion is curved.
  • the analysis result which analyzed the change of the torque performance accompanying this shape difference is shown in FIG.
  • FIG. 3 is a diagram showing the torque of the rotor core in which the air gap 20 is formed without considering the productivity and the rotor core in which the air gap 30 is formed in consideration of the productivity.
  • the torque is reduced by about 3 percent as compared with the rotor core in which the air gap 20 is formed. This is because as the radial width of the air gap 30 increases as compared with the air gap 20, the magnetic resistance to the interlinkage flux from the permanent magnet increases.
  • the structure of the rotor core 1 according to the present embodiment solves such a problem, and in consideration of productivity, torque ripple can be reduced without reduction in torque.
  • FIG. 4 is a view for explaining the difference in shape between the air gap 5 of the present embodiment and the air gap 20 of the related art.
  • the air gap 5 and the notch 9 formed in the rotor core 1 of the present embodiment are shown in black.
  • the illustrated air gap 20 (white portion) is a tip portion on the pole center side of the air gap 20 not considering the productivity shown in FIG. As shown, the area of the tip portion of the air gap 20 on the pole center side is substantially the same as the area of the notch 9.
  • the rotor core 1 according to the present embodiment is equivalent to the air gap 20 by separating the thin tip portion which is forced to be changed in consideration of the productivity in the air gap 20 of the conventional shape and using this portion as the notch 9. Space area is secured. According to such a structure of the rotor core 1, there is no risk of exhausting the mold used at the time of production excessively. Therefore, the void which does not take into consideration the productivity without requiring the shape change in consideration of the conventional productivity. A space area equivalent to 20 can be secured in the rotor core 1.
  • FIG. 5 shows a rotor core having a void 20 which does not take productivity into consideration in the conventional shape (hereinafter referred to as a conventional example A), and a rotor core having a void 30 taking into consideration the productivity (hereinafter referred to as a reference example B)
  • a reference example B a rotor core having a void 30 taking into consideration the productivity
  • FIG. 5 is a diagram comparing the torque performance of the rotor core 1 of the present embodiment.
  • the figure shows the magnitude of the torque when the magnitude of the torque of the conventional example A is 100% in%.
  • the torque performance is improved by about 5% as compared to the reference example B, and the torque performance equivalent to that of the conventional example A is obtained without reducing the productivity. It can be realized.
  • FIG. 6 is a diagram comparing torque ripples of the rotor 6 of the conventional example A, the reference example B, and the present embodiment.
  • the figure shows the amount of torque ripple generated in% when the amount of torque ripple generated in Conventional Example A is 100%.
  • the torque ripple is torque ripple (ripple) generated as the rotor rotates, and easily occurs in an order corresponding to the number of slots in the rotor core. Therefore, in the same figure, the analysis result which analyzed the generation amount of the 48th torque ripple corresponding to the number of slots of rotor core 1 is shown.
  • the torque ripple can be reduced by about 40% as compared to the reference example B, and the productivity of the torque ripple equivalent to that of the conventional example A can be reduced. It can be maintained without.
  • FIG. 7 is a diagram comparing rotor iron losses of the rotor 6 of the conventional example A, the reference example B, and the present embodiment.
  • the figure shows, in%, the magnitude of the rotor core loss when the magnitude of the rotor core loss of the conventional example A is 100%. From the figure, it can be seen that according to the structure of the rotor core 1 of the present embodiment, the rotor core loss can be reduced by about 8% as compared to the reference example B. Furthermore, according to the structure of the rotor core 1, the rotor iron loss reduction effect of about 5% can be realized as compared with the conventional example A. The reason why the rotor core 1 can reduce the rotor core loss will be described with reference to FIGS.
  • FIG. 8 is a distribution diagram of rotor iron loss in a rotor core of Reference Example B.
  • the density of black indicates the magnitude of the rotor core loss, and the darker black indicates that the rotor core loss is larger.
  • the rotor core loss is the portion where the magnetic flux path (magnetic path) concentrates when avoiding the air gap, that is, the magnetic portion on the d axis side (black portion darker than the tip portion on the d axis side of the protrusion). Concentrate on
  • FIG. 9 is a distribution diagram of rotor iron loss in the rotor core 1 of the present embodiment. As illustrated, in the rotor core 1, it is understood that the portion where the rotor iron loss is the largest conventionally is eliminated by the notch 9, and the rotor iron loss as a whole is reduced. In addition, it is possible that the magnetic flux was disperse
  • the notch 9 is formed on the tip of the projection 7 on the d axis side, that is, on the d axis side with respect to the tangent line A.
  • FIG. 10 is a configuration diagram for explaining in more detail the position where the notch 9 is formed.
  • the figure shows a partially enlarged view of a portion where the projecting portion 7 and the notch 9 are formed in the rotor core 1 shown in FIG.
  • the straight line B is a straight line passing the rotation center of the rotor core 1 and the deepest point of the notch 9 on the rotation center side of the rotor core 1.
  • the notch 9 is formed to satisfy 0 ° ⁇ ⁇ a ⁇ 10 ° when an electrical angle between the tangent A and the straight line B is ⁇ a. The reason for forming at such a position will be described with reference to FIGS.
  • FIG. 11 is a diagram showing a change in torque performance when the notch 9 is formed at a position corresponding to ⁇ a in the rotor core 1.
  • the horizontal axis represents ⁇ a [°]
  • the vertical axis represents the torque reduction rate [%]. It can be seen that the torque performance tends to decrease as the notch 9 gets closer to the protrusion 7, that is, as ⁇ a decreases. However, even if ⁇ a changes from about 1 ° to 20 °, the difference is within 2 to 3%, and it can be seen that the change in torque performance due to ⁇ a is a slight difference.
  • FIG. 12 is a diagram showing a change in stator iron loss when notch 9 is formed at a position corresponding to ⁇ a in rotor core 1.
  • the horizontal axis represents ⁇ a [°]
  • the vertical axis represents the stator iron loss reduction rate [%].
  • FIG. 13 is a diagram showing a change in rotor iron loss when notch 9 is formed at a position corresponding to ⁇ a in rotor core 1.
  • the horizontal axis represents ⁇ a [°]
  • the vertical axis represents the rotor iron loss reduction rate [%]. It is understood that the rotor iron loss is reduced as the notch 9 gets closer to the protrusion 7, that is, as ⁇ a becomes smaller. In particular, it can be seen that when ⁇ a is less than 10 °, the reduction rate becomes larger, and the rotor core loss is greatly reduced.
  • the notch 9 of the present embodiment is formed to satisfy 0 ° ⁇ ⁇ a ⁇ 10 °.
  • ⁇ a be smaller.
  • FIG. 14 is a view for explaining the position of the end on the d-axis side of the notch 9.
  • the notch 9 has ⁇ 15. It is formed to meet °°.
  • FIG. 15 is a diagram showing a change in stator iron loss when notch 9 is formed at a position corresponding to ⁇ in rotor core 1.
  • the horizontal axis represents ⁇ [°]
  • the vertical axis represents the stator iron loss reduction rate due to the notch 9.
  • FIG. 16 is a diagram showing a change in rotor core loss when notch 9 is formed at a position corresponding to ⁇ a.
  • the horizontal axis represents ⁇ a [°]
  • the vertical axis represents the reduction rate [%] of the rotor core loss.
  • the rotor iron loss As the rotor iron loss, as the d-axis end of the notch 9 gets closer to the d axis, that is, as ⁇ decreases, the rotor iron loss reduction ratio increases and the rotor iron loss is greatly reduced. I understand that.
  • FIG. 17 is a view showing a change in torque performance when the notch 9 is formed at a position corresponding to ⁇ in the rotor core 1.
  • the horizontal axis represents ⁇ [°]
  • the vertical axis represents the torque reduction rate [%]. It can be seen that the torque increases and the torque performance improves as the end on the d-axis side of the notch 9 moves away from the d-axis, that is, as ⁇ increases.
  • the notch 9 is formed so as to satisfy ⁇ ° 15 °.
  • the notch 9 of the present embodiment has a value of ⁇ ⁇ 15 ° as a value that can greatly reduce the stator iron loss and the rotor iron loss as ⁇ is smaller for the purpose of achieving both iron loss reduction and torque performance. It is formed to satisfy
  • the upper limit value of ⁇ is the electrical angle from the tangent C and the tangent A to the d-axis when the tangent C and the tangent A passing through the rotation center and the d-axis side end of the protrusion 7 coincide with each other. .
  • the depth of the notch 9 formed in the rotor core 1 is defined in relation to the width of the tip end of the protrusion 7 on the d-axis side.
  • FIG. 18 is a diagram for explaining the definition of the depth of the notch 9.
  • the figure is the elements on larger scale which expanded projection 7 and notch 9 which were shown in Drawing 1 grade.
  • the dotted line drawn to the notch 9 in FIG. 18 is a virtual outer periphery of the rotor core 1.
  • the depth H shown in FIG. 18 indicates the depth H of the notch 9.
  • the depth H is the distance from the deepest point to the virtual outer periphery at the rotational center side in a line drawn from the rotational center of the rotor core 1 through the deepest point on the rotational center side of the notch 9 to the virtual outer periphery of the rotor core 1 It is defined as
  • H shown in FIG. 18 indicates the width of the d-axis side tip of the protrusion 7.
  • the definition of the width h will be described with reference to FIG.
  • FIG. 19 is a view for explaining the width h of the d-axis side tip portion of the protrusion 7.
  • the configuration of the tip portion of the protrusion 7 is defined as follows. That is, the outer edge on the tip end side of the protrusion 7 is formed by the two outer edge lines 70 and 71 on the inner diameter side and the outer diameter side formed along the substantially circumferential direction of the rotor core 1 and the tip on the d axis side of the protrusion 7 It is a portion, which is continuous with the outer edge lines 70 and 71 and is composed of a curve 72 connecting the outer edge line 70 and the outer edge line 71. Then, points at which the outer edge line 70 and the outer edge line 71 and the curve 72 are connected are defined as inflection points 73 and 74, respectively.
  • the width h is defined as the length of a straight line connecting the inflection point 73 on the outer side of the protrusion 7 and the inflection point 74 on the inner diameter side. Be done.
  • the protrusion 7 and the notch 9 satisfy 0 ⁇ H / h ⁇ 1. Is formed. The reason for defining in this manner will be described with reference to FIGS.
  • FIG. 20 is a view showing the relationship between the ratio (H / h) of the depth H of the notch 9 to the width h of the tip end portion of the protrusion and the stator core loss reduction rate.
  • the horizontal axis represents H / h
  • the vertical axis represents the stator iron loss reduction rate [%]. From the same figure, until H / h reaches approximately 1 (Hhh), the depth H of the notch 9 is larger with respect to the width h of the tip portion of the protrusion as the H / h increases. It is understood that the stator core loss is smaller. On the other hand, after H / h reaches approximately 1 (H h h), it can be seen that the reduction rate of stator core loss decreases again, and stator core loss tends to gradually increase.
  • FIG. 21 is a view showing the relationship between the ratio (H / h) of the depth H of the notch 9 to the width h of the tip end portion of the protrusion and the torque performance.
  • the horizontal axis represents H / h
  • the vertical axis represents torque performance [%]. From the same figure, it can be seen that the torque performance decreases as H / h increases, that is, as the depth H of the notch 9 increases with respect to the width h of the tip of the protrusion.
  • the protrusion 7 and the notch 9 of the present embodiment can reduce the stator core loss as the H / h increases, and the torque performance of 95% or more can be ensured as 0 ⁇ It is formed to satisfy H / h ⁇ 1.
  • H / h> 1 As the H / h increases, the stator core loss increases and the torque performance further decreases, so the protrusion 7 and the notch 9 are formed. There is no merit to be defined in the case.
  • the rotor 6 of the rotating electrical machine embeds the permanent magnet 3 and the rotor core 1 configured by laminating the electromagnetic steel plates, the at least one permanent magnet 3 that constitutes one magnetic pole in the rotor core 1, and the permanent magnet 3
  • the magnet insertion hole 2 of The rotor core 1 is provided along the axial direction of the rotor core 1 on the outer periphery of the rotor core 1 in the magnet insertion hole 2 and at the outer periphery of the rotor core 1 provided at the end on the q axis side electrically orthogonal to the d axis formed by one magnetic pole.
  • the notch 9 formed is provided along the axial direction of the rotor core 1 on the outer periphery of the rotor core 1 in the magnet insertion hole 2 and at the outer periphery of the rotor core 1 provided at the end on the q axis side electrically orthogonal to the d axis formed by one magnetic pole.
  • the notch 9 formed is provided along the axial direction
  • the air gap 5 has a protrusion 7 extending along the outer periphery of the rotor core 1 from the portion closest to the outer periphery of the rotor core 1 toward the d-axis.
  • the notch 9 is closer to the d axis than the tangent A It is formed.
  • a straight line passing through the rotation center of the rotor core 1 and the deepest point on the rotation center side in the notch 9 is defined as a straight line B, from the tangent line A to the straight line B
  • the notch 9 is formed to satisfy 0 ° ⁇ ⁇ a ⁇ 10 °.
  • a tangent passing through the rotation center of the rotor core 1 and the d-axis end of the notch 9 is a tangent C, and the electrical angle from the tangent C to the d-axis Where .theta..alpha.
  • the notch 9 is formed so as to satisfy .theta..alpha..gtoreq.15.
  • the width of the tip portion of the projecting portion 7 is h, and the rotor core 1 passes through the deepest point on the rotation center side of the notch 9 from the rotation center of the rotor core 1.
  • the protrusion 7 and the notch 9 are formed to satisfy H / h ⁇ 1.
  • Ru The width h of the tip portion of the protrusion is defined as follows.
  • the outer edge on the tip end side of the projecting portion 7 has two outer edge lines 70 and 71 on the inner diameter side and the outer diameter side formed along the substantially circumferential direction of the rotor core 1,
  • an inflection point 73, 74 is a point where the outer edge lines 70, 71 and the outer edge curve 72 are connected
  • the width h of the tip portion of the protrusion 7 is the length of a straight line connecting the inflection point 73 on the outer side of the protrusion 7 and the inflection point 74 on the inner diameter side.
  • FIG. 22 shows a rotor core 101 provided in the rotor 6 of the first embodiment.
  • the rotor core 101 includes one permanent magnet 3 for one magnetic pole.
  • the longitudinal direction is a direction orthogonal to the d axis, and a gap having a protrusion 7 extending along the outer periphery of the rotor core 1 toward the d axis at both ends thereof Each has five.
  • the notch 9 is formed on the outer periphery on the d-axis side of the tangent A passing through the rotation center and the tip of the protrusion 7 on the d-axis side.
  • FIG. 23 shows a rotor core 102 provided in the rotor 6 of the second embodiment.
  • the rotor core 102 comprises three permanent magnets 3 per magnetic pole, unlike the rotor core 1 of the embodiment. Then, one of the three sheets is disposed so that the longitudinal direction is orthogonal to the d-axis (radially outermost position), as in the first embodiment, and the other two permanent magnets 3 are arranged in the radial direction. It is disposed in a substantially V-shape such that it opens to the outer peripheral side of the rotor core 1 closer to the rotation center of the rotor core 1 than the permanent magnet 3 arranged at the outermost peripheral position.
  • the definition of the shape and the like of the projecting portion 7 described above in the rotor core 1 according to one embodiment is applied to the air gaps 5 formed at both ends of the permanent magnet 3 at the radially outermost position.
  • the tangent line A is a line passing through the rotation center and the d-axis side leading end portion of the projecting portion 7 formed on both end portions of the permanent magnet 3 at the radially outermost position.
  • the notch 9 in the rotor core 102 is also formed on the outer periphery on the d-axis side of the tangent line A.
  • FIG. 24 shows a rotor core 103 provided in the rotor 6 of the third embodiment.
  • the rotor core 103 is provided with four or more notches 9 per magnetic pole, unlike the rotor core 1 of one embodiment.
  • the definition of the shape of the notch 9 and the like described above in the rotor core 1 according to one embodiment is the region between the tip of the protrusion 7 on the d axis side and the d axis (the tangent line A and the d axis In the region between), it applies to the notch 9 closest to the d-axis.
  • FIG. 25 shows a modification of the notch 9.
  • the notches 9 do not necessarily have to be cut out in a ⁇ ⁇ ⁇ ⁇ shape, and may have a trapezoidal shape as shown in FIG. 25 (a).
  • the portion closest to the rotation center side of the rotor core 1 has a width in the circumferential direction.
  • the straight line B a straight line connecting the center of rotation and the deepest point of the notch 9
  • a position closest to the center of rotation of the rotor core 1 and closest to the projection 7 is , And a straight line passing through the rotation center may be straight line B.
  • the notch 9 may be formed in convex circular arc shape on the rotation center side.
  • the notch 9 is formed so that the slope on the q axis side is gentler than the slope on the d axis side at the boundary closest to the rotation center side of the rotor core 1 It may be done. As long as the position of the notch 9 satisfies 0 ° ⁇ ⁇ a ⁇ 10 °, the q-axis end of the notch 9 is q compared to the tip portion of the d-axis side of the protrusion 7 as illustrated. It may be in the area on the axis side.
  • the air gap 5 is described as a space portion, but it is not necessary to be a space, and may be filled with a nonmagnetic material such as a resin material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本発明の一態様に係る回転電機の回転子は、電磁鋼板を積層して構成されるロータコアと、ロータコアにおける一磁極を構成する少なくとも一つの永久磁石と、永久磁石を埋設するための磁石挿入孔と、を備える。ロータコアは、磁石挿入孔において、一磁極が構成するd軸と電気的に直交するq軸側の端部に設けられた空隙部と、ロータコアの外周に、ロータコアの軸方向に沿って形成された切欠きと、を有する。空隙部は、ロータコアの外周に最も近い部分からd軸へ向かって該ロータコアの外周に沿って延在する突出部を有している。そして、ロータコアの回転中心から前記突出部のd軸側の先端を通ってロータコアの外周まで引かれた接線を接線Aとした場合に、切欠きは、接線Aよりもd軸側に形成される。

Description

回転電機の回転子
 本発明は、回転電機の回転子に関する。
 従来、周方向に複数配置された磁石挿入孔と、磁石挿入孔の両端において、磁極中心側に向かって突出して設けられた空隙部とが形成された回転子構造が知られている(JP2006-238678A参照)。
 ここで、JP2006-238678Aに開示された空隙部は、ロータコアの外周縁から所定距離を保ちながら、磁石挿入孔の端部から離れるにつれて徐々に細くなる構造(突出部)を有する。空隙部のこのような構造により、突出部の先端部付近においてロータコアの磁性体部分の径方向厚みを大きくすることができるので、永久磁石からの磁束に対するロータコアの磁気抵抗が小さくなり、トルクリプルを低減することができる。
 しかしながら、実際にロータコアを生産する際には、プレス加工するために用いる金型の耐久性を考慮して、空隙部の先端形状をJP2006-238678Aに開示された先端形状よりも湾曲させる必要がある。そうすると、先端が湾曲するのにつられて空隙部の径方向幅が拡大するので、それに応じてロータコアの磁性体部分の径方向幅が小さくなり、トルクが低下してしまうという問題がある。
 本発明は、実際にロータコアを生産する際でも、金型の耐久性を低下させることなく、トルクの低下を抑制し、トルクリプルを低減させることができる回転子を提供することを目的とする。
 本発明の一態様における回転電機の回転子は、電磁鋼板を積層して構成されるロータコアと、ロータコアにおける一磁極を構成する少なくとも一つの永久磁石と、永久磁石を埋設するための磁石挿入孔と、を備える回転電機の回転子である。ロータコアは、磁石挿入孔において、一磁極が構成するd軸と電気的に直交するq軸側の端部に設けられた空隙部と、ロータコアの外周に、ロータコアの軸方向に沿って形成された切欠きと、を有する。空隙部は、ロータコアの外周に最も近い部分からd軸へ向かって該ロータコアの外周に沿って延在する突出部を有している。そして、ロータコアの回転中心から前記突出部のd軸側の先端を通ってロータコアの外周まで引かれた接線を接線Aとした場合に、切欠きは、接線Aよりもd軸側に形成される。
 本発明の実施形態については、添付された図面とともに以下に詳細に説明する。
図1は、一実施形態の回転子構造を説明するための図である。 図2は、従来形状の空隙を説明するための図である。 図3は、従来形状の空隙において、生産性を考慮しない空隙が形成されたロータコア(従来例A)と、生産性を考慮した空隙が形成されたロータコア(参考例B)とでのトルクの変化を解析した解析結果を示す図である。 図4は、一実施形態の空隙と従来形状の空隙との形状の違いを説明するための図である。 図5は、一実施形態、従来例A、及び参考例Bの回転子構造によるトルクの変化を解析した解析結果を示す図である。 図6は、一実施形態、従来例A、及び参考例Bの回転子構造によるトルクリプルの変化を解析した解析結果を示す図である。 図7は、一実施形態、従来例A、及び参考例Bの回転子構造によるロータ鉄損の変化を解析した解析結果を示す図である。 図8は、参考例Bのロータコアにおけるロータ鉄損の分布図である。 図9は、一実施形態のロータコアにおけるロータ鉄損の分布図である。 図10は、図1の部分拡大図であって、一実施形態の切欠きの形状を説明するための図である。 図11は、一実施形態のロータコアにおいて、切欠きがθaに対応した位置に形成された場合のトルク性能の変化を解析した解析結果を示す図である。 図12は、一実施形態のロータコアにおいて、切欠きがθaに対応した位置に形成された場合のステータ鉄損の低減率の変化を解析した解析結果を示す図である。 図13は、一実施形態のロータコアにおいて、切欠きがθaに対応した位置に形成された場合のロータ鉄損の低減率の変化を解析した解析結果を示す図である。 図14は、一実施形態のロータコアにおいて、切欠きのd軸側の端部の位置を説明するための図である。 図15は、一実施形態のロータコアにおいて、切欠きがθαに対応した位置に形成された場合のステータ鉄損の低減率の変化を解析した解析結果を示す図である。 図16は、一実施形態のロータコアにおいて、切欠きがθαに対応した位置に形成された場合のロータ鉄損の低減率の変化を解析した解析結果を示す図である。 図17は、一実施形態のロータコアにおいて、切欠きがθαに対応した位置に形成された場合のトルクの低下率を解析した解析結果を示す図である。 図18は、一実施形態のロータコアにおいて、切欠きの深さHの規定を説明するための図である。 図19は、一実施形態のロータコアにおいて、突出部のd軸側先端部の幅hを説明するための図である。 図20は、一実施形態のロータコアにおいて、切欠きの深さHと突出部先端部分の幅hの比率(H/h)と、ステータ鉄損低減率との関係を解析した解析結果を示す図である。 図21は、一実施形態のロータコアにおいて、切欠きの深さHと突出部先端部分の幅hの比率(H/h)と、トルクとの関係を解析した解析結果を示す図である。 図22は、実施例1の回転子構造を説明するための図である。 図23は、実施例2の回転子構造を説明するための図である。 図24は、実施例3の回転子構造を説明するための図である。 図25は、切欠きの変形例を示す図である。 図26は、従来の回転子構造を説明するための図である。
 -実施形態-
 図1は、本発明が適用される一実施形態の回転子を説明するための図である。同図に表されるのは、電動機或いは発電機を構成する回転電機が備える回転子(ロータ)6を軸方向に垂直な断面から見た構成図であって、構成全体の一部(一極分)である。本実施形態の回転電機は、ロータ6の内部に永久磁石が埋設されたいわゆるIPM(Interior Permanent Magnet)型の回転電機であり、一極あたり2枚の永久磁石3が、ロータ6の外周側に開口するような略V字形状に配置された回転子を有する。
 なお、ここでは8極構造のロータを例に挙げるが、極数についてはこれに限定されるものではない。ただし、以下に説明する種々の解析データは、8極構造のロータ6と、スロット数が48であって、且つ、固定子巻線が分布巻きによって巻き回されたステータ(不図示)とで構成された回転電機に本発明を適用して解析されたことを前提とする。
 回転子コア(ロータコア)1は、厚さ数百μmの電磁鋼板を円環状に打ち抜き加工したものを軸方向に積層して形成された、いわゆる積層電磁鋼板構造によって円筒形に構成されている。また、ロータコア1には、永久磁石3を埋設するための磁石挿入孔2(以下、単に磁石孔2ともいう)が形成されるとともに、磁石孔2の周方向両端部には空隙4、5がそれぞれ形成されている。
 磁石孔2は、一極あたり二つの永久磁石3をそれぞれ埋設するための空間が形成された電磁鋼板単板が軸方向に積層されることで形成される孔部である。磁石孔2は、ロータ6の外周側に開口する略V字形状となるような配置で、一定の機械角毎に形成される。本実施形態のロータ6は8極構造である為、略V字形状に配置された一組の磁石孔2が、機械角45度毎に形成される。図1が示すのはその一極分である。
 永久磁石3は、ロータコア1の磁石孔2に挿入された状態で固定される。また、永久磁石3は、二枚で一磁極を構成し、ロータ6の周方向に沿って、二つの永久磁石3が構成する磁極が互いに等間隔で、且つ、隣接する磁極の極性が互いに異極性となるように配置される。この二枚の永久磁石3がつくる磁束の方向がd軸(磁極中心)であり、d軸に対して電気的磁気的に直交する方向がq軸である。
 永久磁石3は、長手方向の幅が磁石孔2よりも小さく形成されており、磁石孔2の周方向両端部分には、空間部分としての空隙4、5が形成される。この空間部分は、電磁鋼板よりも透磁率が低く、すなわち磁気抵抗が大きい。したがって、空隙4、5は、永久磁石3がロータ6に構成する磁気回路において、磁束(フラックス)が通りにくい磁気的障壁として作用する。
 そして、空隙4、5のうち、よりロータコア1の外周側にある空隙5は、ロータコア1の外周に最も近い部分(最外周部)から、d軸側に向かって、ロータコア1の外周に沿って延在して形成される突出部7を有する。
 この突出部7を含む空隙5の最外周部がロータコア1の外周に沿って形成されるため、空隙5とロータコア1の外周との間に形成されるブリッジ部8の磁束密度が一様に飽和し(磁気飽和)、q軸方向に流れようとする磁束が低減する。これにより、永久磁石3から出る磁束密度のうち、突出部7の先端方向(d軸方向)へ流れる磁束の割合が増加し、ロータ磁束が正弦波に近づくため、ステータ鎖交磁束における磁束密度の高調波成分を低減させることができる。
 そして、本実施形態のロータコア1の外周には、ロータコア1の回転中心側に向かって、且つ、ロータコア1の軸方向に沿って切欠き9が形成される。切欠き9は、ロータコア1の外周において、突出部7のd軸側の先端からd軸までの領域に形成される。図1を参照すれば、ロータコア1の回転中心から突出部7のd軸側の先端を通ってロータコア1の外周まで引いた接線を接線Aとした場合に、切欠き9は、接線Aよりもd軸側に形成される。さらに、図1に示す直線Bを用いても切欠き9のより具体的な位置を規定することができる。詳細は図10を用いて後述する。
 ここで、本実施形態の切欠き9のより具体的な位置を説明する前に、本発明の比較となる従来の回転子構造と、その構造による特性および問題点について説明する。
 JP2006-238678Aでは、図26に示すように、磁石挿入孔の少なくともロータコアの外周側端部に空隙が設けられた回転子構造が提案されている。この空隙は、ロータコア1の外周から所定距離を保ちつつ、磁極中心側に向かって徐々に細くなるように形成されることにより、トルクリプルを低減する。ただし、このような形状の空隙をプレス加工により形成するためには、プレス加工に用いる金型において空隙の先端部分に相当する部分を鋭角に形成する必要がある。
 しかしながら、金型における鋭角部分は、プレス加工を繰り返すにつれ摩耗したり、欠けて損傷したりする等して消耗が早い。すなわち、実際にロータコアを生産する際の金型の消耗を考慮すると、図26に示すような空隙の形状は、ロータコアの生産時の工数及びコストの増大に起因して生産性を低下させてしまう問題を含んでいる。
 ここで、生産性を考慮し、図26に示すような空隙の形状を、ロータコアの生産時における金型の消耗を許容できる形状に変更すると、図2で示すような形状となる。
 図2は、生産性を考慮しない従来形状の空隙20と、当該空隙20に対して生産性を考慮した形状変更を施した空隙30とを説明するための図である。空隙30を示す点線部分が、生産性を考慮して拡大された部分である。
 上述したとおり、空隙20の形状ではプレス成型するための金型の先端部分が消耗しやすくなるので、金型の消耗を抑制するためには、先端部分の鋭角形状を湾曲形状に変更する必要がある。そうすると、空隙20の径方向幅は、先端部分が湾曲するのに伴い図示する点線位置まで拡張された空隙30の形状のとおりとなる。この形状差に伴うトルク性能の変化を解析した解析結果を図3に示す。
 図3は、従来形状の空隙において、生産性を考慮しない空隙20が形成されたロータコアと、生産性を考慮した空隙30が形成されたロータコアのトルクを示した図である。図示するとおり、生産性を考慮した空隙30が形成されたロータコアは、空隙20が形成されたロータコアに比べて、トルクが3パーセント程度低下する。これは、空隙20に比べて空隙30の径方向幅が増大するのに伴って、永久磁石からの鎖交磁束に対する磁気抵抗が増加したためである。
 すなわち、図26に示すような従来の空隙部形状は、生産性を考慮した場合にはその形状を径方向に拡張する必要があり、その形状変更の結果としてトルクの低下を招いてしまうという問題がある。本実施形態のロータコア1の構造はこのような問題を解決するものであり、生産性を考慮したうえで、トルクの低下を伴うことなくトルクリプルを低減することができる。
 図4は、本実施形態の空隙5と従来の空隙20との形状の違いを説明する図である。同図では、本実施形態のロータコア1に形成される空隙5と切欠き9が黒色で示されている。図示する空隙20(白抜き部分)は、図2で示す生産性を考慮しない空隙20の磁極中心側の先端部分である。図示するように、空隙20の磁極中心側の先端部分の面積は、切欠き9の面積とほぼ同一である。
 すなわち、本実施形態のロータコア1は、従来形状の空隙20において生産性を考慮した場合に変更を強いられる細い先端部分を分離し、該部分を切欠き9とすることで、空隙20と同等の空間面積を確保している。このようなロータコア1の構造によれば、生産時において用いる金型を過度に消耗させる虞がないので、従来のような生産性を考慮した形状変更を要さずに、生産性を考慮しない空隙20と同等の空間面積をロータコア1において確保することができる。
 ロータコア1の構造による特性について図5~7を用いて説明する。
 図5は、従来形状において生産性を考慮しない空隙20が形成されたロータコア(以下、従来例Aと呼ぶ)、生産性を考慮した空隙30が形成されたロータコア(以下、参考例Bと呼ぶ)、及び、本実実施形態のロータコア1のトルク性能を比較した図である。同図は、従来例Aのトルクの大きさを100%とした場合のトルクの大きさを%で示している。図示するとおり、本実施形態のロータコア1の構造によれば、参考例Bに比べてトルク性能が5%程度向上しており、従来例Aと同等のトルク性能を、生産性を低下させることなく実現することができている。
 図6は、従来例A、参考例B、及び、本実施形態のロータ6のトルクリプルを比較した図である。同図は、従来例Aのトルクリプルの発生量を100%とした場合のトルクリプルの発生量を%で示している。なお、トルクリプルはロータの回転に伴って生じるトルクの脈動(リプル)であり、ロータコアのスロット数に応じた次数で発生しやすい。したがって、同図では、ロータコア1のスロット数に対応した48次のトルクリプルの発生量を解析した解析結果を示している。
 図示するとおり、本実施形態のロータ6の構造によれば、参考例Bに比べてトルクリプルを40%程度低減できており、従来例Aと同等のトルクリプルの発生量を、生産性を低下させることなく維持することができている。
 図7は、従来例A、参考例B、及び、本実実施形態のロータ6のロータ鉄損を比較した図である。同図は、従来例Aのロータ鉄損の大きさを100%とした場合のロータ鉄損の大きさを%で示している。同図から、本実施形態のロータコア1の構造によれば、参考例Bに比べてロータ鉄損を約8%低減できていることが分かる。さらに、ロータコア1の構造によれば、従来例Aと比べても約5%のロータ鉄損低減効果を実現できている。ロータコア1がロータ鉄損を低減できる理由について、図8、9を用いて説明する。
 図8は、参考例Bのロータコアにおけるロータ鉄損の分布図である。黒の濃さがロータ鉄損の大きさを示しており、黒が濃いほどロータ鉄損が大きいことを示す。参考例Bのロータコアでは、永久磁石からでた磁束は、磁気抵抗の高い空隙を回避して、磁気抵抗の低い磁性体部分を通ってステータ側へ流れようとする。したがって、ロータ鉄損は、空隙を回避する際の磁束の経路(磁路)が集中する部分、すなわち、突出部のd軸側の先端部分よりもd軸側の磁性体部分(黒色が濃い部分)に集中する。
 図9は、本実施形態のロータコア1におけるロータ鉄損の分布図である。図示するとおり、ロータコア1では、従来においてロータ鉄損が最も大きかった部分が切欠き9により排除されており、全体としてロータ鉄損が低減されていることが分かる。なお、その原因としては、永久磁石3から出た磁束が空隙5を回避して通る磁路上に設けた切欠き9により、磁束が気中に分散されたこと等が考えられる。
 次に、切欠き9のより詳細な位置について図10を用いて説明する。切欠き9が突出部7のd軸側の先端、すなわち接線Aよりもd軸側に形成されることは図1を用いて既に述べた。
 図10は、切欠き9が形成される位置をより詳細に説明するための構成図である。同図は、図1に示すロータコア1において突出部7と切欠き9とが形成される部分の部分拡大図を示している。直線Bは、ロータコア1の回転中心と、切欠き9においてロータコア1の回転中心側に最も深い点とを通る直線である。
 切欠き9は、接線Aと直線Bとの間の電気角をθaとした場合に、0°≦θa≦10°を満たすように形成される。このような位置に形成する理由を図11から13を用いて説明する。
 図11は、ロータコア1において、切欠き9がθaに対応した位置に形成された場合のトルク性能の変化を示す図である。横軸はθa[°]を、縦軸は、トルク低下率[%]を示している。切欠き9が突出部7に近づけば近づくほど、すなわち、θaが小さければ小さいほど、トルク性能は低下傾向を示すことが分かる。しかしながら、θaが約1°から20°に変化させても、その差は2、3%以内に納まっており、θaによるトルク性能の変化は微差であることが分かる。
 図12は、ロータコア1において、切欠き9がθaに対応した位置に形成された場合のステータ鉄損の変化を示す図である。横軸はθa[°]を、縦軸は、ステータ鉄損低減率[%]を示している。ステータ鉄損は、θa=約13°を境に、切欠き9が突出部7に近づけば近づくほど、すなわち、θaが小さければ小さいほど、ステータ鉄損が低減されることがわかる。特に、θaが10°を下回るとその低減率がより大きくなり、ステータ鉄損が大きく低減されることが分かる。なお、ステータ鉄損が低減される理由は、上記のロータ鉄損が低減される理由とは異なり、トルクリプルの高周波成分が低減されたこと等が考えられる。
 図13は、ロータコア1において、切欠き9がθaに対応した位置に形成された場合のロータ鉄損の変化を示す図である。横軸はθa[°]を、縦軸は、ロータ鉄損低減率[%]を示している。ロータ鉄損は、切欠き9が突出部7に近づけば近づくほど、すなわち、θaが小さければ小さいほど、ロータ鉄損が低減されることがわかる。特に、θaが10°を下回るとその低減率がより大きくなり、ロータ鉄損が大きく低減されることが分かる。
 以上より、本実施形態の切欠き9は、接線Aと直線Bとの間の電気角をθaとした場合に、0°≦θa≦10°を満たすように形成される。切欠き9がこのように形成されることにより、トルクの低下を抑制しつつ、ロータ鉄損及びステータ鉄損を低減することができる。なお、鉄損低減の観点からは、θaはより小さいほど好ましい。
 次に、ロータコア1に形成される切欠き9のd軸側の端部の位置について説明する。
 図14は、切欠き9のd軸側の端部の位置を説明するための図である。ロータコア1の回転中心と、切欠き9のd軸側の端部とを通る接線を接線Cとし、接線Cからd軸までの電気角をθαとした場合に、切欠き9は、θα≧15°を満たすように形成される。
 切欠き9をθα≧15°を満たすように形成する理由を図15から図17を用いて説明する。
 図15は、ロータコア1において、切欠き9がθαに対応した位置に形成された場合のステータ鉄損の変化を示す図である。横軸はθα[°]を、縦軸は切欠き9によるステータ鉄損低減率を示している。ステータ鉄損低減率は、切欠き9のd軸側端部がθα=約15°の場合に最も大きく、そこを境にθαがより大きくなっても、より小さくなっても鉄損低減率は小さくなることが分かる。
 図16は、切欠き9がθaに対応した位置に形成された場合のロータ鉄損の変化を示す図である。横軸はθa[°]を、縦軸はロータ鉄損の低減率[%]を示している。ロータ鉄損は、切欠き9のd軸側の端部がd軸に近づけば近づくほど、すなわち、θαが小さければ小さいほど、ロータ鉄損低減率は大きくなり、ロータ鉄損が大きく低減されることが分かる。
 図17は、ロータコア1において、切欠き9がθαに対応した位置に形成された場合のトルク性能の変化を示す図である。横軸はθα[°]を、縦軸は、トルク低下率[%]を示している。切欠き9のd軸側の端部がd軸から遠ざかるほど、すなわち、θαが大きければ大きいほど、トルクが大きくなり、トルク性能が向上することが分かる。
 以上の結果に基づいて、切欠き9はθα≧15°を満たすように形成される。その理由として、まず、図15で示すステータ鉄損の低減率をみると、上記のとおりθα=15°においてステータ鉄損低減率が最も大きいことが分かる。そして、θα=15°を境に、θαを大きくしても小さくしてもステータ鉄損低減率は小さくなる(鉄損が大きくなる)。
 一方で、トルク性能はθαが大きくなるほど大きくなる。仮に、切欠き9の位置をθα<15°とした場合は、θαを小さくするほどステータ鉄損が大きくなり、且つ、トルク性能が減少するのでメリットがない。したがって、本実施形態の切欠き9は、鉄損低減とトルク性能の両立を目的として、θαを小さくすればするほどステータ鉄損、及び、ロータ鉄損を大きく低減できる値として、θα≧15°を満たすように形成される。
 なお、θαの上限値は、接線Cと、回転中心と突出部7のd軸側端部とを通る接線Aとが一致した場合に、接線C及び接線Aからd軸までの電気角とする。 
 次に、ロータコア1に形成される切欠き9の深さの規定について説明する。切欠き9の深さは、突出部7のd軸側先端部の幅との関係で規定される。
 図18は、切欠き9の深さの規定を説明するための図である。同図は、図1等で示した突出部7と切欠き9とを拡大した部分拡大図である。図18の切欠き9に引かれた点線は、ロータコア1の仮想外周である。
 図18に示すHは、切欠き9の深さHを示す。深さHは、ロータコア1の回転中心から切欠き9の回転中心側に最も深い点を通ってロータコア1の仮想外周まで引かれた線において、回転中心側に最も深い点から仮想外周までの距離と定義される。
 図18に示すhは、突出部7のd軸側先端部の幅を示す。幅hの定義は、図19を用いて説明する。
 図19は、突出部7のd軸側先端部の幅hを説明するための図である。幅hを規定するため、突出部7の先端部分の構成を以下のように定義する。すなわち、突出部7の先端側の外縁は、ロータコア1の略周方向に沿うように形成された内径側及び外径側の二つの外縁線70、71と、突出部7のd軸側の先端部分であって、外縁線70、71と連続し、且つ、外縁線70と外縁線71とを繋ぐ曲線72とから構成される。そして、外縁線70及び外縁線71と、曲線72とが接続される点を、それぞれ、変曲点73、74と定義する。
 突出部7の先端側の外縁がこのように定義された場合に、幅hは、突出部7の外形側の変曲点73と、内径側の変曲点74とを結ぶ直線の長さと定義される。
 切欠き9の深さHと、突出部先端部分の幅hが上記のように定義されることを前提とすれば、突出部7及び切欠き9は、0<H/h≦1を満たすように形成される。このように規定する理由について、図20、21を用いて説明する。
 図20は、切欠き9の深さHと突出部先端部分の幅hの比率(H/h)と、ステータ鉄損低減率との関係を示す図である。横軸はH/hを、縦軸はステータ鉄損低減率[%]を示している。同図から、H/hが略1(H≒h)に達するまでにおいては、H/hが増加するほど、すなわち、突出部先端部分の幅hに対して切欠き9の深さHが大きくなるほど、ステータ鉄損はより小さくなることが分かる。一方で、H/hが略1(H≒h)に達して以降は、ステータ鉄損の低減率は再び小さくなり、ステータ鉄損が徐々に増加する傾向があることが分かる。
 図21は、切欠き9の深さHと突出部先端部分の幅hの比率(H/h)と、トルク性能との関係を示す図である。横軸はH/hを、縦軸はトルク性能[%]を示している。同図から、H/hが増加するほど、すなわち、突出部先端部分の幅hに対して切欠き9の深さHが大きくなるほど、トルク性能が低下することがわかる。
 以上の結果より、本実施形態の突出部7及び切欠き9は、H/hが増加すればするほどステータ鉄損を低減でき、且つ、95%以上のトルク性能を確保できる値として、0<H/h≦1を満たすように形成される。なお、H/h>1の領域においては、H/hが増加すればするほどステータ鉄損が増加し、且つ、トルク性能はより低下していくので、突出部7及び切欠き9を形成する際の規定とするメリットはない。
 以上、一実施形態の回転電機の回転子6は、電磁鋼板を積層して構成されるロータコア1と、ロータコア1における一磁極を構成する少なくとも一つの永久磁石3と、永久磁石3を埋設するための磁石挿入孔2と、を備える。ロータコア1は、磁石挿入孔2において、一磁極が構成するd軸と電気的に直交するq軸側の端部に設けられた空隙5と、ロータコア1の外周に、ロータコア1の軸方向に沿って形成された切欠き9と、を有する。空隙5は、ロータコア1の外周に最も近い部分からd軸へ向かってロータコア1の外周に沿って延在する突出部7を有している。そして、ロータコア1の回転中心から突出部7のd軸側の先端を通ってロータコア1の外周まで引かれた接線を接線Aとした場合に、切欠き9は、接線Aよりもd軸側に形成される。
 このような回転子6によれば、実際にロータコア1を生産する際の生産性を低下させることなく、トルクの低下を抑制し、且つ、トルクリプルを低減させることができる。
 また、一実施形態の回転電機の回転子6によれば、ロータコア1の回転中心と、切欠き9において回転中心側に最も深い点とを通る直線を直線Bとし、接線Aから直線Bまでの電気角をθaとした場合に、切欠き9は、0°≦θa≦10°を満たすように形成される。このような回転子6によれば、実際にロータコア1を生産する際の生産性を低下させることなく、トルクの低下を抑制し、且つ、トルクリプルを低減させることができるのに加えて、ロータ鉄損及びステータ鉄損を大きく低減することができる。
 また、一実施形態の回転電機の回転子6によれば、ロータコア1の回転中心と、切欠き9のd軸側端部とを通る接線を接線Cとし、接線Cからd軸までの電気角をθαとした場合に、切欠き9は、θα≧15°を満たすように形成される。切欠き9を形成する位置をこのように規定することにより、ロータコア1の設計において、θα≧15°を満たす範囲においてθαを小さくすればするほど、トルクの低下を許容範囲に抑制しつつ、ステータ鉄損を大きく低減することができる。
 また、一実施形態の回転電機の回転子6によれば、突出部7の先端部分の幅をhとし、ロータコア1の回転中心から切欠き9の回転中心側に最も深い点を通ってロータコア1の仮想外周まで引かれた線において、回転中心側に最も深い点から仮想外周までの距離をHとした場合に、突出部7と切欠き9は、H/h≦1を満たすように形成される。なお、突出部の先端部分の幅hは、以下のように定義される。すなわち、突出部7の先端側の外縁は、ロータコア1の略周方向に沿うように形成された内径側及び外径側の二つの外縁線70、71と、d軸側の先端部分において内径側の外縁線71と外径側の外縁線70とを結ぶ外縁曲線72とから構成され、外縁線70、71と外縁曲線72とが接続される点を変曲点73、74とした場合に、突出部7の先端部分の幅hは、突出部7の外形側の変曲点73と、内径側の変曲点74とを結ぶ直線の長さである。切欠き9の形状をこのように規定することにより、ロータコア1の設計において、H/h≦1を満たす範囲においてH/hを増加すればするほど、トルクの低下を許容範囲に抑制しつつ、ステータ鉄損を大きく低減することができる。
 以下では、これまで説明した一実施形態の回転子6に係る特徴を備えた他の実施例、すなわち、ロータコア1の外周において突出部7のd軸側の先端部分よりもd軸側の領域に切欠き9を備える他の実施例について説明する。以下で説明するような回転子構造であっても、上記特徴を備えた突出部7と、切欠き9とを備える限り、一実施形態において説明したのと同様の技術的効果を得ることができる。
 (実施例1)
 図22は、実施例1のロータ6が備えるロータコア101を示す。ロータコア101は、一実施形態のロータコア1とは異なり、1磁極につき一枚の永久磁石3を備える。永久磁石3が挿入される磁石挿入孔2は、長手方向をd軸と直交する方向とし、その両端部においてd軸側に向かってロータコア1の外周に沿って延在する突出部7を有する空隙5をそれぞれ備えている。ロータコア101も、回転中心と、突出部7のd軸側の先端部とを通る接線Aよりもd軸側の外周に切欠き9が形成される。
 (実施例2)
 図23は、実施例2のロータ6が備えるロータコア102を示す。ロータコア102は、一実施形態のロータコア1とは異なり、1磁極につき3枚の永久磁石3を備える。そして、3枚の内の一枚は、実施例1と同様に、長手方向がd軸と直交するように配置され(径方向最外周位置)、他の2枚の永久磁石3は、径方向最外周位置に配置した永久磁石3よりもロータコア1の回転中心側に、ロータコア1の外周側に開口するような略V字形状に配置される。一実施形態のロータコア1において上述した突出部7の形状等の規定は、径方向最外周位置の永久磁石3の両端に形成された空隙5に適用される。また、図示する通り、接線Aは、回転中心と、径方向最外周位置の永久磁石3の両端部分に形成された突出部7のd軸側先端部を通る線である。ロータコア102における切欠き9も、接線Aよりもd軸側の外周に形成される。
 (実施例3)
 図24は、実施例3のロータ6が備えるロータコア103を示す。ロータコア103は、一実施形態のロータコア1とは異なり、一磁極につき4つ以上の切欠き9を備える。本実施例においては、一実施形態のロータコア1において上述した切欠き9の形状等の規定は、突出部7のd軸側の先端とd軸との間の領域(接線Aとd軸との間の領域)において、d軸に最も近い切欠き9に適用される。
 続いて、上述の一実施形態、及び実施例1~3で示した切欠き9の形状の変形例について説明する。本発明が適用される切欠き9は、以下の変形例を含むものとする。
 図25は、切欠き9の変形例を示す。例えば、切欠き9は必ずしも▽型に切り欠かれる必要はなく、図25(a)に示すように、台形形状であっても良い。なお、このような形状の切欠き9は、ロータコア1の回転中心側にもっとも近い部分が周方向に幅を持つ。この場合において上記の直線B(回転中心と切欠き9の最も深い点とを結ぶ直線)を引く場合は、ロータコア1の回転中心側にもっとも近い部分であって且つ突出部7に最も近い位置と、回転中心とを通る直線を直線Bとすればよい。
 また、図25(b)に示すように、切欠き9は、回転中心側に凸な円弧形状に形成されてもよい。
 また、図25(c)に示すように、切欠き9は、ロータコア1の回転中心側にもっとも近い部分を境に、q軸側の傾斜がd軸側の傾斜よりも緩やかになるように形成されてもよい。なお、切欠き9の位置が0°≦θa≦10°を満たす限りにおいては、図示するように、切欠き9のq軸側の端部が突出部7のd軸側の先端部分よりもq軸側の領域にあってもよい。
 以上、本発明の実施形態、及びその変形例について説明したが、上記実施形態及び変形例は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。例えば、上述の説明においては、空隙5は空間部分であると説明したが、必ずしも空間である必要な無く、例えば樹脂材料のような非磁性材料で充填されていてもよい。

Claims (5)

  1.  電磁鋼板を積層して構成されるロータコアと、前記ロータコアにおける一磁極を構成する少なくとも一つの永久磁石と、前記永久磁石を埋設するための磁石挿入孔と、を備える回転電機の回転子において、
     前記ロータコアは、
     前記磁石挿入孔において、前記一磁極が構成するd軸と電気的に直交するq軸側の端部に設けられた空隙部と、
     前記ロータコアの外周に、前記ロータコアの軸方向に沿って形成された切欠きと、を有し、
     前記空隙部は、前記q軸側の端部から前記d軸へ向かって該ロータコアの外周に沿って延在する突出部を有し、
     前記ロータコアの回転中心から前記突出部の前記d軸側の先端を通って前記ロータコアの外周まで引かれた接線を接線Aとした場合に、
     前記切欠きは、前記接線Aよりも前記d軸側に形成される、
    回転電機の回転子。
  2.  請求項1に記載の回転電機の回転子において、
     前記ロータコアの回転中心と、前記切欠きにおいて前記回転中心側に最も深い点とを通る直線を直線Bとし、前記接線Aから前記直線Bまでの電気角をθaとした場合に、
     前記切欠きは、0°≦θa≦10°を満たすように形成される、
    回転電機の回転子。
  3.  請求項1又は2に記載の回転電機の回転子において、
     前記ロータコアの回転中心と、前記切欠きの前記d軸側端部とを通る接線を接線Cとし、前記接線Cから前記d軸までの電気角をθαとした場合に、
     前記切欠きは、θα≧15°を満たすように形成される、
    回転電機の回転子。
  4.  請求項1から3のいずれか一項に記載の回転電機の回転子において、
     前記突出部の先端部分の幅をhとし、
     前記ロータコアの回転中心から前記切欠きの前記回転中心側に最も深い点を通って前記ロータコアの仮想外周まで引かれた線において、前記回転中心側に最も深い点から前記仮想外周までの距離をHとした場合に、
     前記突出部と前記切欠きは、0<sH/h≦1を満たすように形成される、
    回転電機の回転子。
  5.  請求項4に記載の回転電機の回転子において、
     前記突出部の先端側の外縁は、前記ロータコアの略周方向に沿うように形成された内径側及び外径側の二つの外縁線と、前記d軸側の先端部分において内径側の前記外縁線と外径側の前記外縁線とを結ぶ外縁曲線とから構成され、
     前記外縁線と前記外縁曲線とが接続される点を変曲点とした場合に、前記hは、前記突出部の外形側の前記変曲点と、内径側の前記変曲点とを結ぶ直線の長さである、
    回転電機の回転子。
PCT/JP2017/022578 2017-06-19 2017-06-19 回転電機の回転子 WO2018235144A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/022578 WO2018235144A1 (ja) 2017-06-19 2017-06-19 回転電機の回転子
JP2019524731A JP6726361B2 (ja) 2017-06-19 2017-06-19 回転電機の回転子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/022578 WO2018235144A1 (ja) 2017-06-19 2017-06-19 回転電機の回転子

Publications (1)

Publication Number Publication Date
WO2018235144A1 true WO2018235144A1 (ja) 2018-12-27

Family

ID=64735563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022578 WO2018235144A1 (ja) 2017-06-19 2017-06-19 回転電機の回転子

Country Status (2)

Country Link
JP (1) JP6726361B2 (ja)
WO (1) WO2018235144A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014054060A (ja) * 2012-09-06 2014-03-20 Mitsuba Corp ブラシレスモータ
JP2014226008A (ja) * 2013-05-17 2014-12-04 本田技研工業株式会社 回転電機のロータ
JP2017050965A (ja) * 2015-09-01 2017-03-09 日産自動車株式会社 回転電機の回転子構造
JP2017055560A (ja) * 2015-09-09 2017-03-16 日産自動車株式会社 永久磁石式回転電機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014054060A (ja) * 2012-09-06 2014-03-20 Mitsuba Corp ブラシレスモータ
JP2014226008A (ja) * 2013-05-17 2014-12-04 本田技研工業株式会社 回転電機のロータ
JP2017050965A (ja) * 2015-09-01 2017-03-09 日産自動車株式会社 回転電機の回転子構造
JP2017055560A (ja) * 2015-09-09 2017-03-16 日産自動車株式会社 永久磁石式回転電機

Also Published As

Publication number Publication date
JPWO2018235144A1 (ja) 2019-11-21
JP6726361B2 (ja) 2020-07-22

Similar Documents

Publication Publication Date Title
KR102097940B1 (ko) 회전 전기 기기, 회전자 철심의 제조 방법
JP5328821B2 (ja) 回転電機用回転子
JP5663936B2 (ja) 永久磁石式回転電機
US11038388B2 (en) Rotor of rotary electric machine
JP4900132B2 (ja) 回転子及び回転電機
JP2012161226A (ja) 回転電機用回転子
WO2019215853A1 (ja) 回転電機の回転子構造
JP2006238667A (ja) 電動機
CN111052546B (zh) 旋转电机的转子
JP2008167583A (ja) 永久磁石埋込型モータの回転子及び送風機用電動機及び圧縮機用電動機
CN110112847B (zh) 直接起动同步磁阻电机转子结构及具有其的电机
JP5594303B2 (ja) 回転電機
JP2017050965A (ja) 回転電機の回転子構造
JP2006238565A (ja) 永久磁石式回転電機、それに用いる永久磁石の製造方法およびその製造方法を用いた永久磁石式回転電機の製造方法
CN111181272A (zh) 用于同步驱动电机的转子
JP5594304B2 (ja) 回転電機
CN209805521U (zh) 直接起动同步磁阻电机转子结构、电机
JP6507956B2 (ja) 永久磁石式回転電機
RU2695078C1 (ru) Лист электротехнической стали с печатной перемычкой
JP5242720B2 (ja) 永久磁石埋込型モータの回転子
JP2018117488A (ja) ロータ及びそれを用いたモータ
US20150372549A1 (en) Motor
WO2018235144A1 (ja) 回転電機の回転子
JP2019009860A (ja) ロータおよび回転電機
KR20160119424A (ko) 고출력을 위한 돌극비 최대 구조를 갖는 전동기 및 이를 구성하는 회전자의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019524731

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17914940

Country of ref document: EP

Kind code of ref document: A1