WO2018232968A1 - 一种热塑性聚酯弹性体发泡用前体、发泡体及其制备方法 - Google Patents

一种热塑性聚酯弹性体发泡用前体、发泡体及其制备方法 Download PDF

Info

Publication number
WO2018232968A1
WO2018232968A1 PCT/CN2017/098589 CN2017098589W WO2018232968A1 WO 2018232968 A1 WO2018232968 A1 WO 2018232968A1 CN 2017098589 W CN2017098589 W CN 2017098589W WO 2018232968 A1 WO2018232968 A1 WO 2018232968A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic polyester
polyester elastomer
parts
melt
thermoplastic
Prior art date
Application number
PCT/CN2017/098589
Other languages
English (en)
French (fr)
Inventor
唐靖
胡晓华
李巡天
Original Assignee
唐靖
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 唐靖 filed Critical 唐靖
Publication of WO2018232968A1 publication Critical patent/WO2018232968A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/26Elastomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes

Definitions

  • the invention belongs to the technical field of thermoplastic elastomer foaming, and particularly relates to a thermoplastic polyester elastomer foaming precursor, a foam body and a preparation method thereof.
  • PS foam plastics are polystyrene (PS) foam, polyethylene (PE) foam, polypropylene (PP) foam and the like. Styrofoam products are difficult to degrade and are prone to "white pollution” problems.
  • the UN Environment Organization has decided to stop using PS foam products.
  • Polyethylene foam has poor heat resistance and is not suitable for high temperature applications. Such products should have high surface hardness, easy to be crushed under pressure, and low resilience, which is difficult to be used for protective applications such as long-term buffer damping.
  • Polyurethane (PU) soft and rigid foam materials are prone to residual isocyanate during foaming, which is harmful to human body, and thermosetting foaming materials cannot be recycled.
  • VA foaming material low temperature resistance, easy to melt above 70 degrees, and easy to decompose to produce acid gas, polluted air and surrounding environment, and has poor resilience after compression.
  • SEBS Thermoplastic polyolefin elastomer
  • TPU thermoplastic polyurethane elastomer
  • thermoplastic polyurethane Moldable foam beads of thermoplastic polyurethane have been disclosed in WO2007082838.
  • the reported foamed thermoplastic polyurethane beads have the disadvantage that the cell structure is relatively large in size, "wrinkles" appear on the surface of the particles, and the product yield is low.
  • An object of the present invention is to provide a thermoplastic polyester elastomer foaming precursor, a foam, and a method for producing the same, which solve one or more of the above problems of the prior art.
  • thermoplastic polyester elastomer foaming precursor comprising the following components:
  • the melt melt viscosity modifier includes a thermoplastic polyurethane.
  • the following components are included by weight: 100 parts of the thermoplastic polyester elastomer and 2 to 100 parts of the melt melt viscosity modifier.
  • thermoplastic polyester elastomer 100 parts of the thermoplastic polyester elastomer and 2 to 100 parts of the thermoplastic polyurethane.
  • thermoplastic polyester elastomer 100 parts of the thermoplastic polyester elastomer and 80 to 100 parts of the thermoplastic polyurethane.
  • thermoplastic polyester elastomer foaming precursor further comprises a cell size stabilizer, and the cell size stabilizer has a weight component of 0.2 to 1.2 parts.
  • thermoplastic polyester elastomer foaming precursor further comprises a cell size stabilizer, and the cell size stabilizer has a weight component of 2 to 15 parts.
  • the cell size stabilizer comprises dihydroxypropyl octadecanoate, sorbitan lauric acid monoester, sorbitan palmitic acid monoester, sorbitan stearic acid monoester and One or more of the fatty acid sucrose esters.
  • the melt melt viscosity modifier further comprises an ethylene-vinyl acetate copolymer, a polypropylene-butadiene-styrene resin, a polystyrene-polyethylene-polybutylene-polystyrene, an ethylene-acrylic acid One or more of ester-glycidyl methacrylate and polystyrene-polyethylene-polybutylene copolymer.
  • thermoplastic polyester elastomer foaming precursor further comprises a UV stabilizer, and the UV stabilizer has a weight component of 0.1 to 1.5 parts.
  • thermoplastic polyester elastomer foaming precursor is a granular structure having a smooth surface and a particle diameter of 0.2 to 8.0 mm.
  • thermoplastic polyester foam comprising the following components: a thermoplastic polyester elastomer, a melt melt viscosity modifier, and a volatile blowing agent, the melt melt viscosity modifier comprising a thermoplastic polyurethane.
  • the following components are included by weight: 100 parts of the thermoplastic polyester elastomer, 2 to 100 parts of the melt melt viscosity modifier, and 10 to 100 parts of the volatile foaming agent.
  • thermoplastic polyester elastomer 100 parts of the thermoplastic polyester elastomer, 2 to 100 parts of the thermoplastic polyurethane, and 10 to 100 parts of the volatile blowing agent.
  • thermoplastic polyester foam further comprises a cell size stabilizer, and the cell size stabilizer has a weight component of 0.2 to 1.2 parts.
  • thermoplastic polyester foam further comprises a cell size stabilizer, and the cell size stabilizer has a weight component of 2 to 15 parts.
  • the cell size stabilizer comprises dihydroxypropyl octadecanoate, sorbitan lauric acid monoester, sorbitan palmitic acid monoester, sorbitan stearic acid monoester and One or more of the fatty acid sucrose esters.
  • the melt melt viscosity modifier further comprises an ethylene-vinyl acetate copolymer, a polypropylene-butadiene-styrene resin, a polystyrene-polyethylene-polybutylene-polystyrene, an ethylene-acrylic acid One or more of ester-glycidyl methacrylate and polystyrene-polyethylene-polybutylene copolymer.
  • thermoplastic polyester elastomer foaming precursor further comprises a UV stabilizer, and the UV stabilizer has a weight component of 0.1 to 1.5 parts.
  • the volatile blowing agent comprises one or more of carbon dioxide, nitrogen, propane, n-butane and isobutane.
  • thermoplastic polyester foam has a density of 0.10 to 0.90 g/m 3 and a cell diameter of 10 to 800 ⁇ m.
  • thermoplastic polyester foam as described above, comprising the steps of:
  • Precursor preparation uniformly mixing a thermoplastic polyester elastomer, a melt melt viscosity modifier and a cell stabilizer, the melt melt viscosity modifier comprising thermoplastic polyurethane, which is melt-cooled to form a thermoplastic polyester elastomer for foaming
  • Foaming agent penetration a thermoplastic polyester elastomer foaming precursor is added to a high pressure reaction vessel, a volatile foaming agent is added, and the temperature is raised to the softening point of the thermoplastic polyester elastomer foaming precursor, and the pressure is increased.
  • the volatile foaming agent is in a supercritical state, and the heat preservation pressure is maintained;
  • Foaming After the penetration of the foaming agent is completed, the pressure is lowered, and the thermoplastic polyester elastomer foaming precursor is foamed to form a thermoplastic polyester foam.
  • the "precursor preparation" step comprises:
  • thermoplastic polyester elastomer 100 parts by weight of thermoplastic polyester elastomer, 2 to 100 parts of thermoplastic polyurethane, 0.2 to 1.2 parts of cell size stabilizer, 2 to 15 parts of melt viscosity modifier and 0.1 to 0.5 part of UV stabilizer are added in high by weight.
  • the mixture was uniformly mixed, melt-kneaded by a twin-screw extruder, cooled, and then cut into pellets by an extruder strand or underwater pelletizing to obtain a thermoplastic polyester elastomer foaming precursor.
  • the reaction temperature after the temperature rise is 100 to 175° C.
  • the holding time of the heat preservation is 2 to 3 hours.
  • the "foaming agent penetration” step comprises:
  • thermoplastic polyester elastomer foaming precursor and water are added to the high pressure reaction vessel, a volatile foaming agent is added, and the mixture is pressurized to form an aqueous suspension mixture, and the temperature is raised to the softening point of the thermoplastic polyester elastomer foaming precursor. Pressurizing the volatile blowing agent in a supercritical state, and maintaining the pressure.
  • the present invention has the following advantages and beneficial effects:
  • thermoplastic polyester modified material elastomer used in the present invention is used as the main body of the foaming material, and thermoplastic polyurethane is added as a melt melt viscosity modifier, and the high melt viscosity of the thermoplastic polyurethane in a molten state at a high temperature and the normal temperature of the thermoplastic polyurethane are utilized.
  • Low bending strength and low softening temperature characteristics, as a special melt melt viscosity modifier improve the foaming viscosity, softening point, strength, compression rebound and post-processing properties of thermoplastic polyester elastomer .
  • thermoplastic polyurethane Since the thermoplastic polyurethane has a high molecular weight and a certain strength, and has certain properties for the thermoplastic polyester elastomer, the addition ratio can be higher than other melt viscosity modifiers, and after adding the thermoplastic polyurethane, the low-hardness polyester elastomer It can improve the tensile strength and improve the shortcomings of polyester elastomer materials.
  • high-hardness polyester elastomers it can significantly increase the melt viscosity, widen the foamable window temperature, and reduce the post-processing temperature, while also reducing
  • the volume resistivity and surface resistance of the polyester elastomer substrate are favorable for the release of static electricity and increase the applicable use.
  • the dimensional stability of the foamed particles is ensured, and the elasticity and compression properties of the material are optimized, and the temperature application range is obviously expanded, and is applicable in the range of -65 ° C to 195 ° C;
  • the invention has reasonable design, simple process, strong practicability, stable size, uniform cell diameter, high surface gloss and high product yield; the obtained foam product has small deformation, wide use temperature and shrinks with respect to the size of the mold.
  • the rate is low, the dimensional stability is excellent, and the surface is beautiful; in addition, since the molded foam article has a small deformation, the aging time can be shortened, and the lower pressure water vapor can be used for molding processing, which is suitable for economical industrial production;
  • the invention can be used for toys filling, cushion filling, cushions, pillows, solid tires, etc. Under the condition of high temperature gas heating, it can be directly die-casting, injection molding, used for shock absorbing packaging materials, anti-collision protection parts, shock absorption.
  • Mat subway track cushion
  • precision instrument packaging thermal insulation
  • sports protection products sports midsole, insoles, helmets
  • outdoor protective equipment floating equipment
  • baby stroller tires etc.
  • thermoplastic polyester elastomer foaming precursor comprising the following components:
  • the melt melt viscosity modifier includes a thermoplastic polyurethane.
  • thermoplastic polyester elastomer is a block type structural copolymer composed of two segments of soft and hard structure, and the soft segment is a segment formed of a non-crystalline polyether polyol or a polyester polyol.
  • the segment determines the flexibility and elasticity of the material, and the hard segment is a segment formed of a relatively high hardness, crystalline polyparaphenylene terephthalate which determines the mechanical strength and stability of the material.
  • thermoplastic polyester elastomer having a molecular weight of 10,000 or more is used.
  • thermoplastic polyester elastomer is obtained by polymerizing terephthalic acid and a polyether polyol or a polyester polyol.
  • a chain extender such as 1,4-butanediol may also be added. .
  • thermoplastic polyester elastomer Performance improvement in foam viscosity, softening point, strength, compression rebound, and post-processing properties is a special melt melt viscosity modifier.
  • the addition ratio can be higher than other melt viscosity modifiers, and after adding the thermoplastic polyurethane, the low-hardness polyester elastomer It can improve the tensile strength and improve the shortcomings of polyester elastomer materials.
  • the high-hardness polyester elastomers it can significantly increase the melt viscosity, widen the foamable window temperature, and reduce the post-processing temperature, while also reducing The volume resistivity and surface resistance of the polyester elastomer substrate are favorable for the release of static electricity and increase the applicable use.
  • thermoplastic polyester elastomer by weight, 100 parts by weight of the thermoplastic polyester elastomer and from 2 to 100 parts of the melt melt viscosity modifier are included.
  • the following components are included by weight: 100 parts of the thermoplastic polyester elastomer and 2 to 70 parts of the melt melt viscosity modifier.
  • melt viscosity adjustment effect is poor, which affects the foam molding of the foam;
  • the content of the melt melt viscosity modifier is too large, The melt viscosity of the obtained thermoplastic polyester elastomer foaming precursor is too large, which is also disadvantageous for foaming.
  • thermoplastic polyester elastomer by weight, 100 parts by weight of the thermoplastic polyester elastomer and from 2 to 100 parts of the thermoplastic polyurethane are included.
  • thermoplastic polyester elastomer by weight, 100 parts by weight of the thermoplastic polyester elastomer and 80 to 100 parts of the thermoplastic polyurethane are included.
  • thermoplastic polyester elastomers and heat are within a certain range of ratios.
  • Plastic polyurethanes exhibit a synergistic effect on tensile strength, and the strength of the composite product is higher than any single component.
  • the thermoplastic polyester elastomer foaming precursor further comprises a cell size stabilizer.
  • the cell size stabilizer is used to reduce the surface tension of the thermoplastic polyester elastomer and to improve the stability of the foam size.
  • the cell size stabilizer comprises dihydroxypropyl octadecanoate, sorbitan lauric acid monoester, sorbitan palmitic acid monoester, sorbitan hard One or more of a fatty acid monoester and a fatty acid sucrose ester.
  • the cell size stabilizer has a weight component of from 0.2 to 1.2 parts.
  • the melt viscosity modifier has a weight component of from 2 to 15 parts.
  • the melt melt viscosity modifier further comprises an ethylene-vinyl acetate copolymer, a polypropylene-butadiene-styrene resin, a polystyrene-polyethylene-polybutene-polyphenylene One or more of ethylene, ethylene-acrylate-glycidyl methacrylate and polystyrene-polyethylene-polybutylene copolymer.
  • the advantage is that a small addition increases the viscosity of the melt and the melt viscosity value remains stable over a range of ⁇ 15 °C.
  • the thermoplastic polyester elastomer foaming precursor further comprises a UV stabilizer.
  • the UV stabilizer is used to increase the stability of the thermoplastic polyester elastomer under ultraviolet irradiation.
  • the weight component of the UV stabilizer is from 0.1 to 1.5 parts by weight.
  • the UV stabilizer is poly(dimethyl 4-hydroxy-2,2,6,6-tetramethyl-1-azetaneethanol).
  • the thermoplastic polyester elastomer foaming precursor is a smooth, granular structure having a particle diameter of 0.2 to 8.0 mm, and more preferably a particle diameter of 2 to 5 mm.
  • thermoplastic polyester elastomer foaming precursor has a smooth surface-like granular structure.
  • the inventors have found through many experiments that when the thermoplastic polyester elastomer foaming precursor is foamed, The angular particles tend to cause uneven penetration of the foaming agent, resulting in uneven cell diameter and cell density, and it is easy to cause cell breakage at the angular position during foaming, affecting the expansion ratio of the particles and the appearance of the product.
  • the components of the thermoplastic polyester elastomer foaming precursor are further included
  • the auxiliary agent is a flame retardant, an antistatic agent, a pigment, an antihydrolysis agent, an inorganic filler or an organic filler.
  • the amount of the adjuvant added is determined according to actual use requirements. The advantage is that the thermoplastic polyester elastomer modified material foamed particles can be adapted for different applications.
  • an antistatic agent may be added to the component to lower the surface resistance of the product. Adding an antistatic agent can speed up the electrostatic discharge of the contact surface and avoid the risk of damage to the instrument or the formation of sparks due to static buildup.
  • thermoplastic polyester elastomer foaming precursor may be added to the component, which may be a toner or a color paste. Adding pigments to the components can obtain foamed particles of thermoplastic polyester elastomer modified materials with preset colors, and can be made into colorful products, which can help to mark different products and improve the aesthetics of the products.
  • thermoplastic polyester foam comprising the following components: a thermoplastic polyester elastomer, a melt melt viscosity modifier, and a volatile foaming agent, the melt melt viscosity modifier comprising a thermoplastic polyurethane.
  • thermoplastic polyester foam can be prepared by adding a volatile foaming agent to the thermoplastic polyester elastomer foaming precursor as described above.
  • thermoplastic polyester foam provided by the invention has excellent applicability in high temperature and low temperature environments, has a wide temperature range of foaming, high yield, and has a wide processing temperature range, and can be in a very wide temperature range. Used internally. It has excellent mechanical strength, water resistance, oil resistance and chemical resistance. It has high color retention under UV light, rich color, environmental friendliness and recyclability.
  • the thermoplastic foam comprises, by weight, 100 parts of a thermoplastic polyester elastomer, 2 to 100 parts of a melt melt viscosity modifier, and a volatile blowing agent 10 ⁇ 100 copies.
  • thermoplastic polyester elastomer 100 parts of thermoplastic polyester elastomer, 2 to 100 parts of thermoplastic polyurethane, and 10 to 100 parts of volatile blowing agent.
  • thermoplastic polyester elastomer 100 parts of thermoplastic polyester elastomer, 2 to 100 parts of thermoplastic polyurethane, and 10 to 50 parts of volatile blowing agent.
  • thermoplastic polyester foam further comprises a cell size stabilizer having a weight component of from 0.2 to 1.2 parts.
  • thermoplastic polyester foam further comprises a melt viscosity modifier, the melt viscosity modifier having a weight component of from 2 to 15 parts.
  • the cell size stabilizer comprises dihydroxypropyl octadecanoate, sorbitan lauric acid monoester, sorbitan palmitic acid monoester, sorbitan hard One or more of a fatty acid monoester and a fatty acid sucrose ester.
  • the melt melt viscosity modifier further includes an ethylene-vinyl acetate copolymer, a polypropylene-butadiene-styrene resin, a polystyrene-polyethylene-polybutene-polystyrene, an ethylene-acrylate-methyl group.
  • an ethylene-vinyl acetate copolymer a polypropylene-butadiene-styrene resin
  • a polystyrene-polyethylene-polybutene-polystyrene ethylene-acrylate-methyl group.
  • One or more of glycidyl acrylate and polystyrene-polyethylene-polybutylene copolymer One or more of glycidyl acrylate and polystyrene-polyethylene-polybutylene copolymer.
  • thermoplastic polyester elastomer foaming precursor further comprises a UV stabilizer having a weight component of from 0.1 to 1.5 parts.
  • the volatile blowing agent comprises one or more of carbon dioxide, nitrogen, ethane, propane, n-butane, and isobutane.
  • the thermoplastic polyester foam has a density of 0.10 to 0.90 g/m 3 , a cell diameter of 10 to 800 ⁇ m, and more preferably a cell diameter of 20 to 800 ⁇ m.
  • thermoplastic polyester elastomer granular material can be produced by the company produced by Jiangyin and Chuang Elastomer New Material Technology Co., Ltd., produced by Taiwan Changchun Chemical Co., Ltd., produced by SK Corporation of Korea, DuPont of the United States, and the like.
  • Plastic polyester elastomer foamed particle density reference index 0.10-0.90g/cm3.
  • the density of EVA resin products widely used in the market is about 0.27 g/cm3, and the expected value of the foaming material for the shoe material application industry is less than or equal to the density, and as a heavy-duty cushion or the like, the density can be Above From 0.3 g/cm3 to 0.9 g/cm3, foamed elastomers of different densities are selected for different applications.
  • Plastic polyester elastomer foamed cell cell diameter reference standard 10-800 ⁇ m, preferably 20-100 ⁇ m.
  • the uniformity of the cell diameter directly affects the performance of the product. If the diameter of the cell is too large, it may cause cooling or collapse during use, which may affect the function and appearance. If the cell diameter is too small, the degree of foaming is low or not foaming, and the density of foamed particles of plastic polyester elastomer cannot be effectively reduced. .
  • the invention proves that the foamed particles of the thermoplastic polyester elastomer modified material have excellent cell stability in the range of 20-100 ⁇ m, high surface glossiness, good foaming particle elasticity and good industrial application prospect.
  • MI test conditions ISO 1133 230 ° C / 8.7 kg, measured at 230 ° C constant temperature, load 8.7 kg conditions to determine the melt flow rate, the unit is g/10min, the time flowing out within 10 minutes The weight in grams of the polymer.
  • thermoplastic polyester elastomer particles A 100 kg of thermoplastic polyester elastomer particles A, 2 kg of ethylene-acrylate-glycidyl methacrylate, 25 kg of thermoplastic polyurethane, 2 kg of ethylene-vinyl acetate copolymer were added to the mixer. After mixing, the mixture was introduced into a twin-screw extruder through a hopper for melt-kneading, and the melt flow rate was measured under the conditions of a constant temperature of 230 ° C and a load of 8.7 kg.
  • the melt-kneaded material conforming to the melt flow rate index was extruded into a strip shape from a die hole having an extruder diameter of 1.5 mm, cooled and formed in a cooling water tank of about 5 m length, and cut into 2.5 mm by a pelletizer. Long particles, thereby obtaining a thermoplastic polyester elastomer foaming precursor.
  • thermoplastic polyester elastomer modified material pre-expansion precursor 100 kg is added to the high-pressure reaction kettle, while stirring, 50 kg of carbon dioxide volatile foaming agent is added to form a suspension mixture, and the high pressure reaction is carried out.
  • the kettle was warmed to 160 °C.
  • the melt flow rate obtained in this example was 65 g/10 min, the density of the thermoplastic polyester elastomer foamed beads was 0.32 g/cm3, and the foamed pores had an average diameter of about 50 ⁇ m.
  • Table 1 is an example of Example 1 and other examples of preparing thermoplastic polyester elastomer-modified material expanded particles by the same method as Example 1, thermoplastic polyester elastomer particles, melt melt viscosity modifier, thermoplastic polyurethane, The weight of the foamed pore size stabilizer, the UV stabilizer and the foaming agent, and the melt flow rate and the high pressure reactor temperature, the prepared thermoplastic polyester elastomer modified material foamed particles Density and average diameter of the foamed holes.
  • thermoplastic polyester elastomer modified material foaming granules prepared in Examples 1-18 have the required composition: the thermoplastic polyester elastomer content is 100 parts, and the melt melt viscosity modifier content ranges from 2 to 100 parts, the cell size stabilizer content ranges from 0.2 to 1.2 parts, the UV stabilizer content ranges from 0.1 to 1.5 parts, and the volatile blowing agent content ranges from 10 to 100 parts. Therefore, the melt flow rate values measured after melt-kneading were all in the range of 10 to 200 g/10 min.
  • the temperature of the high temperature reactor is controlled between 110 and 195 ° C.
  • the mixed suspension is stably adjusted in this temperature range to uniformly foam.
  • the density of the foamed particles of the plastic polyester elastomer modified material is 0.08-0.80 g. /cm 3 interval; the average diameter of the foamed holes is within 10 - 800 ⁇ m.
  • Examples 19-26 are comparative examples. Since the temperature of the high temperature reactor is too low or too high, the melt flow rate is too high or too low, so that the mixed suspension of particles and water cannot be stably heated to the particles. The softening temperature suitable for foaming cannot form uniform foamed particles of thermoplastic polyester elastomer-modified material.
  • the present invention requires that the thermoplastic polyester elastomer of the host material has a hardness between Shore H20D and H63D, and the thermoplastic polyester elastomer itself has a melting point of not higher than 225 ° C, and the melt flow is adjusted by using a melt melt conditioner.
  • the rate reaches the target range, which stabilizes the effective foaming, ensures the dimensional stability of the foamed particles, and optimizes the elastic and compressive properties of the material and the range of the post-processing temperature range, while significantly expanding the temperature range.
  • thermoplastic polyester elastomer particles A 100 kg of thermoplastic polyester elastomer particles A, 80 kg of thermoplastic polyurethane and 0.25 kg of UV stabilizer were added to the mixer. After mixing, the mixture was introduced into a twin-screw extruder through a hopper for melt-kneading, and the melt flow rate was measured under the conditions of a constant temperature of 230 ° C and a load of 8.7 kg.
  • the melt-kneaded material conforming to the melt flow rate index was extruded into a strip shape from a die hole having an extruder diameter of 1.5 mm, cooled and formed in a cooling water tank of about 5 m length, and cut into 2.5 mm by a pelletizer. Long particles, thereby obtaining a thermoplastic polyester elastomer foaming precursor.
  • thermoplastic polyester elastomer foaming precursor 100 kg was placed in a high pressure reactor, and while stirring, 50 kg of a carbon dioxide volatile foaming agent was added, and the autoclave was heated to 160 °C.
  • the melt flow rate obtained in this example was 55 g/10 min, the density of the thermoplastic polyester elastomer foamed beads was 0.32 g/cm3, and the average diameter of the foamed cells was about 80 ⁇ m.
  • thermoplastic polyester elastomer particles A and 0.25 kg of UV stabilizer were added to the mixer. After mixing, the mixture was introduced into a twin-screw extruder through a hopper for melt-kneading, and the melt flow rate was measured under the conditions of a constant temperature of 230 ° C and a load of 8.7 kg.
  • the melt-kneaded material conforming to the melt flow rate index was extruded into a strip shape from a die hole having an extruder diameter of 1.5 mm, cooled and formed in a cooling water tank of about 5 m length, and cut into 2.5 mm by a pelletizer. Long particles, thereby obtaining a thermoplastic polyester elastomer foaming precursor.
  • thermoplastic polyester elastomer foaming precursor 100 kg was placed in a high pressure reactor, and while stirring, 50 kg of a carbon dioxide volatile foaming agent was added, and the autoclave was heated to 190 °C.
  • the melt flow rate obtained in this embodiment is 160 g/10 min, the average diameter of the foamed pores is 350 ⁇ m, the cell size uniformity is poor, the proportion of the foamed particles is low, only about half, many are not foamed, and the foaming is selected. Part of the particles, the density of which is 0.35 g/cm 3 . If the density is calculated as a whole, the overall density is 0.7 g/cm 3 .
  • thermoplastic polyurethane a) Add 100 kg of thermoplastic polyurethane and 0.25 kg of UV stabilizer to the mixer and add to the mixer. After mixing, the mixture was introduced into a twin-screw extruder through a hopper for melt-kneading, and the melt flow rate was measured under the conditions of a constant temperature of 230 ° C and a load of 8.7 kg.
  • the melt-kneaded material conforming to the melt flow rate index was extruded into a strip shape from a die hole having an extruder diameter of 1.5 mm, cooled and formed in a cooling water tank of about 5 m length, and cut into 2.5 mm by a pelletizer. Long particles, thereby obtaining a thermoplastic polyurethane elastomer foaming precursor.
  • thermoplastic polyurethane elastomer foaming precursor 100 kg was placed in an autoclave, and while stirring, 50 kg of a carbon dioxide volatile foaming agent was added, and the autoclave was heated to 135 °C.
  • thermoplastic polyurethane elastomer Foamed particles.
  • the melt flow rate obtained in this example was 95 g/10 min, the density of the thermoplastic polyurethane elastomer foamed beads was 0.25 g/cm 3 , and the average diameter of the foamed cells was 180 ⁇ m.
  • Table 2 is the weight of the thermoplastic polyester elastomer, the thermoplastic polyurethane and the volatile blowing agent in Examples 27 to 36 and Comparative Example 1, Comparative Example 2, and the melt flow rate and the autoclave temperature, and the prepared thermoplastic The density of the polyester elastomer foamed granules or the thermoplastic polyurethane elastomer foamed granules and the average diameter of the foamed pores.
  • thermoplastic polyester foaming precursors obtained in Examples 27 to 36 or the thermoplastic polyester ester foaming precursors were subjected to tensile strength and hardness tests to obtain Table 3:
  • thermoplastic polyester elastomer and the thermoplastic polyurethane exhibit a synergistic effect on tensile strength, thereby facilitating The mechanical properties of the foamed thermoplastic polyester foam are improved.
  • thermoplastic polyester elastomer to which the thermoplastic polyurethane is added is foamed to obtain a foam having a cell diameter of 50 ⁇ m to 120 ⁇ m, compared to a single component thermoplastic polyurethane elastomer or a thermoplastic polyester elastomer.
  • the foamed material has improved cell fineness and uniformity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

为克服现有热塑性聚酯弹性体难以发泡的问题,本发明提供了一种热塑性聚酯弹性体发泡用前体,包括以下组分:热塑性聚酯弹性体和熔体熔融粘度调节剂,所述熔体熔融粘度调节剂包括热塑性聚氨酯。同时,本发明还公开了一种热塑性聚酯发泡体及其制备方法。本发明提供的热塑性聚酯发泡体具有重量轻,外观优良,回弹性优异的优点,利于推广应用。

Description

一种热塑性聚酯弹性体发泡用前体、发泡体及其制备方法
本申请以2017年6月21日提交的申请号为201710472471.6,名称为“一种热塑性聚酯弹性体改性材料的发泡颗粒”的中国发明专利为基础,并要求其优先权。
技术领域
本发明属于热塑性弹性材料发泡技术领域,具体涉及一种热塑性聚酯弹性体发泡用前体、发泡体及其制备方法。
背景技术
目前常用的泡沫塑料品种聚苯乙烯(PS)泡沫塑料,聚乙烯(PE)泡沫塑料,聚丙烯(PP)泡沫塑料等。聚苯乙烯泡沫塑料产品降解困难,易产生“白色污染”问题,联合国环境组织已决定停止使用PS泡沫塑料产品。聚乙烯泡沫塑料耐高温性能较差,不适合在高温领域应用。此类产品的应为表面硬度高,受压易脆裂,回弹性很低,很难用于持续长期缓冲减震等保护性应用。聚氨酯(PU)软质和硬质泡沫材料,在发泡过程中容易残留异氰酸酯,对人体有害,并且热固性发泡材料无法回收利用。VA类发泡材料,耐温低,在70度以上易熔化,而且容易分解产生酸性气体、污染空气和周边环境,压缩后回弹性差。热塑性聚烯烃弹性体(SEBS)和热塑性聚氨酯弹性体(TPU)发泡材料,近年在市场上有部分应用,但耐高温和低温性能较差,产品易发黄变色,适用范围受限,压缩回弹性差,在表面受压或者压力释放后易褶皱,抗撕裂性能弱,易水解和降解造成产品综合性能差,部分着色性不好,紫外线下易变色,耐老化性能弱,生产效率低且成本高。热塑性聚氨酯的可模塑泡沫珠粒在W02007082838中已经被公开。但是该报道的发泡热塑性聚氨酯珠粒的缺点是泡孔结构尺寸较粗,颗粒表面出现“皱纹”,产品收率低。
发明内容
本发明的目的是提供一种热塑性聚酯弹性体发泡用前体、发泡体及其制备方法,解决上述现有技术问题中的一个或者多个。
本发明解决上述技术问题所采用的技术方案如下:
提供一种热塑性聚酯弹性体发泡用前体,其特征在于,包括以下组分:
热塑性聚酯弹性体和熔体熔融粘度调节剂;
所述熔体熔融粘度调节剂包括热塑性聚氨酯。
可选地,按重量份计,包括以下组分:热塑性聚酯弹性体100份和熔体熔融粘度调节剂2~100份。
可选地,按重量份计,包括以下组分:热塑性聚酯弹性体100份和热塑性聚氨酯2~100份。
可选地,按重量份计,包括以下组分:热塑性聚酯弹性体100份和热塑性聚氨酯80~100份。
可选地,所述热塑性聚酯弹性体发泡用前体还包括泡孔尺寸稳定剂,所述泡孔尺寸稳定剂的重量组分为:0.2~1.2份。
可选地,所述热塑性聚酯弹性体发泡用前体还包括泡孔尺寸稳定剂,所述泡孔尺寸稳定剂的重量组分为:2~15份。
可选地,所述泡孔尺寸稳定剂包括二羟基丙基十八烷酸酯、失水山梨醇月桂酸单酯、失水山梨醇棕榈酸单酯、失水山梨醇硬脂酸单酯和脂肪酸蔗糖酯中的一种或多种。
可选地,所述熔体熔融粘度调节剂还包括乙烯-醋酸乙烯共聚物、聚丙烯-丁二烯-苯乙烯树脂、聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯、乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯类和聚苯乙烯-聚乙烯-聚丁烯类共聚物中一种或多种。
可选地,所述热塑性聚酯弹性体发泡用前体还包括有UV稳定剂,所述UV稳定剂的重量组分为:0.1~1.5份。
可选地,所述热塑性聚酯弹性体发泡用前体为表面圆滑的颗粒状结构,其颗粒直径为0.2~8.0mm。
一种热塑性聚酯发泡体,包括以下组分:热塑性聚酯弹性体、熔体熔融粘度调节剂和挥发性发泡剂,所述熔体熔融粘度调节剂包括热塑性聚氨酯。
可选地,按重量份计,包括以下组分:热塑性聚酯弹性体100份、熔体熔融粘度调节剂2~100份和挥发性发泡剂10~100份。
可选地,按重量份计,包括以下组分:热塑性聚酯弹性体100份、热塑性聚氨酯2~100份和挥发性发泡剂10~100份。
可选地,所述热塑性聚酯发泡体还包括泡孔尺寸稳定剂,所述泡孔尺寸稳定剂的重量组分为:0.2~1.2份。
可选地,所述热塑性聚酯发泡体还包括泡孔尺寸稳定剂,所述泡孔尺寸稳定剂的重量组分为:2~15份。
可选地,所述泡孔尺寸稳定剂包括二羟基丙基十八烷酸酯、失水山梨醇月桂酸单酯、失水山梨醇棕榈酸单酯、失水山梨醇硬脂酸单酯和脂肪酸蔗糖酯中的一种或多种。
可选地,所述熔体熔融粘度调节剂还包括乙烯-醋酸乙烯共聚物、聚丙烯-丁二烯-苯乙烯树脂、聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯、乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯类和聚苯乙烯-聚乙烯-聚丁烯类共聚物中一种或多种。
可选地,所述热塑性聚酯弹性体发泡用前体还包括有UV稳定剂,所述UV稳定剂的重量组分为:0.1~1.5份。
可选地,所述挥发性发泡剂包括二氧化碳、氮气、丙烷、正丁烷和异丁烷中的一种或多种。
可选地,所述热塑性聚酯发泡体的密度为0.10~0.90g/m3,泡孔直径为10~800μm。
如上所述的一种热塑性聚酯发泡体的制备方法,包括以下步骤:
前体制备:将热塑性聚酯弹性体、熔体熔融粘度调节剂和泡孔稳定剂混合均匀,所述熔体熔融粘度调节剂包括热塑性聚氨酯,熔融冷却后制成热塑性聚酯弹性体发泡用前体;
发泡剂渗透:将热塑性聚酯弹性体发泡用前体加入高压反应釜中,加入挥发性发泡剂,升温至热塑性聚酯弹性体发泡用前体的软化点,加压使所述挥发性发泡剂处于超临界状态,保温保压;
发泡:发泡剂渗透完成后,降低压力,热塑性聚酯弹性体发泡用前体发泡,形成热塑性聚酯发泡体。
可选地,所述“前体制备”步骤包括:
按重量份计,将100份热塑性聚酯弹性体、2~100份热塑性聚氨酯、0.2~1.2份泡孔尺寸稳定剂,2-15份熔体粘度调节剂和0.1~0.5份UV稳定剂加入高混机中混合均匀,通过双螺杆挤出机进行熔融混炼,冷却后通过挤出机拉条或者水下切粒切成颗粒,得到热塑性聚酯弹性体发泡用前体。
可选地,所述“发泡剂渗透”步骤中,升温后的反应温度为100~175℃,保温保压的时间为2~3小时。
可选地,所述“发泡剂渗透”步骤包括:
将热塑性聚酯弹性体发泡用前体和水加入高压反应釜中,加入挥发性发泡剂,加压形成含水的悬浮混合液,升温至热塑性聚酯弹性体发泡用前体的软化点,加压使所述挥发性发泡剂处于超临界状态,保温保压。
同现有技术相比,本发明具有如下优点和有益效果:
1、本发明采用的热塑性聚酯改性材料弹性体作为发泡材料的主体,加入热塑性聚氨酯作为熔体熔融粘度调节剂,利用热塑性聚氨酯在高温熔融状态下的高熔体粘度、和热塑性聚氨酯常温下的低弯曲强度以及低软化温度的特点,作为一种特殊的熔体熔融粘度调节剂,对热塑性聚酯弹性体的发泡粘度、软化点、强度、压缩回弹、后加工性能进行性能改进。由于热塑性聚氨酯的分子量高,具有一定强度,对热塑性聚酯弹性体的某些性能有提升,所以添加比例可以比其他熔体粘度调节剂高,在添加热塑性聚氨酯后,对低硬度聚酯弹性体,可以提升拉伸强度,改善聚酯弹性体材料的缺点,而对高硬度聚酯弹性体,可以显著地提高熔体粘度,拓宽可发泡窗口温度,和降低后加工温度,同时也降低了聚酯弹性体基材的体积电阻率和表面电阻,有利于静电的释放,增加适用用途。保证了发泡颗粒的尺寸稳定性,并优化了该材料的弹性及压缩性能,同时明显扩大了温度适用范围,在-65℃到195℃的范围内都可以适用;
2、本发明设计合理,工艺简洁,实用性强,尺寸稳定,泡孔直径均匀,表面光泽度高,产品收率高;所得到的泡沫制品形变小,使用温度宽,相对于模具的尺寸收缩率低,尺寸稳定性优异,表面美观;此外,由于模塑泡沫制品形变小,因此还可以缩短陈化时间,同时可采用较低压力的水蒸气进行成型加工,适合经济型的工业生产;
3、本发明可用于玩具填充、缓冲垫填充、靠垫、枕头、实心轮胎等应用,在高温气体加热条件下,能够直接压铸、注塑成型,用于减震包装材料、防撞保护部件、减震垫(地铁轨道减震垫)、精密仪器包装、保温隔热、运动保护产品(运动鞋中底、鞋垫、头盔),户外防护用品、水上漂浮用品,童车轮胎等。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明公开了一种热塑性聚酯弹性体发泡用前体,包括以下组分:
热塑性聚酯弹性体和熔体熔融粘度调节剂;
所述熔体熔融粘度调节剂包括热塑性聚氨酯。
所述热塑性聚酯弹性体为嵌段型结构共聚物,由软硬两种结构不同的链段构成,软段为非结晶性的聚醚多元醇或聚酯多元醇形成的链段,该软段决定材料的柔韧性和弹性,硬段为硬度比较高、结晶性的聚对苯二甲丁二醇酯形成的链段,该硬段决定材料的力学强度和稳定性。
优选情况下,采用分子量1万以上的热塑性聚酯弹性体。
优选情况下,所述热塑性聚酯弹性体由对苯二甲酸和聚醚多元醇或聚酯多元醇聚合得到,在部分实施例中,还可加入扩链剂,如1,4-丁二醇。
利用热塑性聚氨酯在高温熔融状态下的高熔体粘度、和热塑性聚氨酯常温下的低弯曲强度以及低软化温度的特点,作为一种特殊的熔体熔融粘度调节剂,对热塑性聚酯弹性体的发泡粘度、软化点、强度、压缩回弹、后加工性能进行性能改进。由于热塑性聚氨酯的分子量高,具有一定强度,对热塑性聚酯弹性体的某些性能有提升,所以添加比例可以比其他熔体粘度调节剂高,在添加热塑性聚氨酯后,对低硬度聚酯弹性体,可以提升拉伸强度,改善聚酯弹性体材料的缺点,而对高硬度聚酯弹性体,可以显著地提高熔体粘度,拓宽可发泡窗口温度,和降低后加工温度,同时也降低了聚酯弹性体基材的体积电阻率和表面电阻,有利于静电的释放,增加适用用途。
在本发明的一些实施例中,按重量份计,包括以下组分:热塑性聚酯弹性体100份和熔体熔融粘度调节剂2~100份。
在本发明的一些实施例中,按重量份计,包括以下组分:热塑性聚酯弹性体100份和熔体熔融粘度调节剂2~70份。
当所述熔体熔融粘度调节剂的含量过小时,其起到的熔融粘度调节作用较差,影响发泡体的发泡成型;当所述熔体熔融粘度调节剂的含量过大时,则得到的热塑性聚酯弹性体发泡用前体的熔融粘度过大,同样不利于发泡。
在本发明的一些实施例中,按重量份计,包括以下组分:热塑性聚酯弹性体100份和热塑性聚氨酯2~100份。
在本发明的一些实施例中,按重量份计,包括以下组分:热塑性聚酯弹性体100份和热塑性聚氨酯80~100份。
发明人通过大量实验发现,在一定的比例范围内,热塑性聚酯弹性体和热 塑性聚氨酯在拉伸强度上体现出协同效应,复合产品的强度高于任何单一组分。
在本发明的一些实施例中,所述热塑性聚酯弹性体发泡用前体还包括泡孔尺寸稳定剂。所述泡孔尺寸稳定剂用于降低热塑性聚酯弹性体的表面张力,提高发泡尺寸的稳定性。
在本发明的一些实施例中,所述泡孔尺寸稳定剂包括二羟基丙基十八烷酸酯、失水山梨醇月桂酸单酯、失水山梨醇棕榈酸单酯、失水山梨醇硬脂酸单酯和脂肪酸蔗糖酯中的一种或多种。优点在于少量添加即可让发泡后的泡孔尺寸稳定在相对集中的范围,减少因泡孔尺寸过大而易破裂的问题。
在本发明的一些实施例中,所述泡孔尺寸稳定剂的重量组分为:0.2~1.2份
在本发明的一些实施例中,所述熔体粘度调节剂的重量组分为:2~15份。
在本发明的一些实施例中,所述熔体熔融粘度调节剂还包括乙烯-醋酸乙烯共聚物、聚丙烯-丁二烯-苯乙烯树脂、聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯、乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯类和聚苯乙烯-聚乙烯-聚丁烯类共聚物中一种或多种。优点在于少量的添加即可增加熔体的粘度,并且在±15℃范围内,熔体粘度值保持稳定。
在本发明的一些实施例中,所述热塑性聚酯弹性体发泡用前体还包括有UV稳定剂。所述UV稳定剂用于提高热塑性聚酯弹性体在紫外线照射下的稳定性。
按重量份计,所述UV稳定剂的重量组分为:0.1~1.5份。
在本发明的一些实施例中,所述UV稳定剂为聚丁二酸二甲基4-羟基-2,2,6,6-四甲基-1-氮杂环己烷乙醇酯。
在本发明的一些实施例中,所述热塑性聚酯弹性体发泡用前体为表面圆滑的颗粒状结构,其颗粒直径为0.2~8.0mm,进一步优选颗粒直径为2~5mm。
所述热塑性聚酯弹性体发泡用前体采用表面圆滑的颗粒状结构的目的在于:发明人通过多次实验发现,在进行热塑性聚酯弹性体发泡用前体发泡的时候,带有棱角的颗粒容易造成发泡剂的渗透不均,从而导致泡孔直径和泡孔密度的不均匀,在发泡时容易在棱角位置发生泡孔破裂漏气,影响颗粒的膨胀率和产品外观。同时还发现了,采用热塑性聚酯弹性体发泡用前体进行发泡时,表面圆滑的颗粒状结构有利于发泡剂的渗入,表面圆滑的颗粒状结构可以是椭球状、水滴状或是球形等结构,当颗粒直径太大时,会影响发泡剂的充分渗入,影响膨胀率。
在本发明的一些实施例中,所述热塑性聚酯弹性体发泡用前体的组分还包 括辅剂,所述辅剂为阻燃剂、抗静电剂、颜料、抗水解剂、无机填料或有机填料。所述辅剂的添加量根据实际使用要求来决定。优点在于能使热塑性聚酯弹性体改性材料发泡颗粒适用于不同的用途。
如果需要把所述热塑性聚酯弹性体发泡用前体应用于安全鞋类产品或应用于精密仪表的保证,可在组分中添加抗静电剂,以降低产品的表面电阻。添加抗静电剂可以加快接触表面的静电释放速度,避免因静电积累造成仪表损坏或者形成火花的危险。
如果需要把所述热塑性聚酯弹性体发泡用前体应用于需要使用颜色的方面,例如生产鞋底和运动器材,可在组分中添加颜料,所述颜料可以为色粉或色浆。在组分中添加颜料可得到预设色彩的热塑性聚酯弹性体改性材料发泡颗粒,并制成色彩丰富的制品,有助于不同产品的标示及提高产品的美观性。
本发明还公开了一种热塑性聚酯发泡体,包括如下组分:热塑性聚酯弹性体、熔体熔融粘度调节剂和挥发性发泡剂,所述熔体熔融粘度调节剂包括热塑性聚氨酯。
热塑性聚酯发泡体可采用如上所述的热塑性聚酯弹性体发泡用前体加入挥发性发泡剂制备得到。
本发明提供的热塑性聚酯发泡体在高温和低温环境中都有优异的适用性,发泡的温度范围宽,成品率高,成品有较宽的加工温度范围,可以在非常宽泛的温度范围内使用。机械强度高、耐水、耐油、耐化学性都非常优异,在紫外光下颜色保持性高,颜色丰富,对环境友好,可回收利用等优点。
在本发明的一些实施例中,按重量份计,所述热塑性发泡体包括以下组分:热塑性聚酯弹性体100份、熔体熔融粘度调节剂2~100份和挥发性发泡剂10~100份。
在本发明的一些实施例中,按重量份计,包括以下组分:热塑性聚酯弹性体100份、热塑性聚氨酯2~100份和挥发性发泡剂10~100份。
在本发明的一些实施例中,按重量份计,包括以下组分:热塑性聚酯弹性体100份、热塑性聚氨酯2~100份和挥发性发泡剂10~50份。
在本发明的一些实施例中,所述热塑性聚酯发泡体还包括泡孔尺寸稳定剂,所述泡孔尺寸稳定剂的重量组分为:0.2~1.2份。
在本发明的一些实施例中,所述热塑性聚酯发泡体还包括熔体粘度调节剂,所述熔体粘度调节剂的重量组分为:2~15份。
在本发明的一些实施例中,所述泡孔尺寸稳定剂包括二羟基丙基十八烷酸酯、失水山梨醇月桂酸单酯、失水山梨醇棕榈酸单酯、失水山梨醇硬脂酸单酯和脂肪酸蔗糖酯中的一种或多种。
所述熔体熔融粘度调节剂还包括乙烯-醋酸乙烯共聚物、聚丙烯-丁二烯-苯乙烯树脂、聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯、乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯类和聚苯乙烯-聚乙烯-聚丁烯类共聚物中一种或多种。
在本发明的一些实施例中,所述热塑性聚酯弹性体发泡用前体还包括有UV稳定剂,所述UV稳定剂的重量组分为:0.1~1.5份。
在本发明的一些实施例中,所述挥发性发泡剂包括二氧化碳、氮气、乙烷、丙烷、正丁烷和异丁烷中的一种或多种。
在本发明的一些实施例中,所述热塑性聚酯发泡体的密度为0.10~0.90g/m3,泡孔直径为10~800μm,更优选的,泡孔直径为20~800μm。
下面通过具体实施方式来进一步说明本发明,以下实施例为本发明较佳的实施方式,但本发明的实施方式并不受下述实施例的限制。
各性能指标的测试标准或方法:
基础热塑性聚酯弹性体颗粒材料物理指标:
表1
Figure PCTCN2017098589-appb-000001
以上热塑性聚酯弹性体颗粒材料可以采用购自江阴和创弹性体新材料科技有限公司生产的、台湾长春化工有限公司生产的、韩国SK公司生产的、美国杜邦公司生产的等等。
塑性聚酯弹性体发泡颗粒密度参考指标:0.10-0.90g/cm3。目前市面上广泛使用的EVA树脂产品的密度在0.27g/cm3左右,针对于鞋材应用行业对发泡材料的期望值是小于或等于该密度,而作为重载减震垫等应用,则密度可以高于 0.3g/cm3至0.9g/cm3,应用不同选择不同密度的发泡弹性体。
塑性聚酯弹性体发泡颗粒泡孔直径参考标准:10-800μm,优选20-100μm。泡孔直径均匀程度,直接影响产品的使用性能。泡孔直径过大,易造成冷却或使用过程中塌陷,影响使用功能和外观;泡孔直径过小,则发泡程度低或不发泡,不能有效地降低塑性聚酯弹性体发泡颗粒密度。本发明经试验验证热塑性聚酯弹性体改性材料发泡颗粒泡孔直径在20~100μm区间的稳定性优异,表面光泽度高,发泡颗粒弹性好,有良好的工业应用前景。
熔体流动速率(MI)测试条件:ISO 1133 230℃/8.7kg,指在230℃恒温,负荷8.7kg条件下测定熔体流动速率,其单位为g/10min,计时10分钟内流出来的高聚物的重量克数。
ISO 1133:“塑料--热塑性塑料熔体质量流动速率(MFR)和熔体体积流动速率(MVR)的测定”标准方法。
实施例1:
a)将100kg热塑性聚酯弹性体颗粒A,2kg乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯,25kg热塑性聚氨酯,2kg乙烯-醋酸乙烯共聚物加入混合机里。混匀后,通过料斗导入双螺杆挤出机中进行熔融混炼,在230℃恒温,负荷8.7kg条件下测试熔体流动速率。将符合熔体流动速率指标的熔融混炼物从挤出机直径为1.5mm的模孔中挤出成长条形状,通过约5米长度冷却水槽中冷却成形,用切粒机进行切割成2.5mm长的颗粒,从而得到热塑性聚酯弹性体发泡用前体。
b)将得到的热塑性聚酯弹性体改性材料预发泡用前体100kg加入到高压反应釜中,在进行搅拌的同时,加入50kg二氧化碳挥发性发泡剂,形成悬浮混合液,将高压反应釜升温至160℃。
c)在充分混合和加热均匀的状态下,将悬浮混合液在此温度下恒温3小时,最后打开高压釜底端放料阀门,使高压釜内混合液排放到常压环境中,从而得到热塑性聚酯弹性体发泡颗粒。
本实施例所得到的熔体流动速率是65g/10min,热塑性聚酯弹性体发泡颗粒的密度是0.32g/cm3,发泡孔平均直径约50μm。
表1是实施例1以及其它采用与实施例1相同的方法制备热塑性聚酯弹性体改性材料发泡颗粒的实施例中,热塑性聚酯弹性体颗粒、熔体熔融粘度调节剂、热塑性聚氨酯、发泡孔尺寸稳定剂、UV稳定剂和发泡剂的重量,以及熔体流动速率和高压反应釜温度,制备出的热塑性聚酯弹性体改性材料发泡颗粒的 密度和发泡孔平均直径。
由表1可知,实施例1-18制备的热塑性聚酯弹性体改性材料发泡颗粒所需的组成成份:热塑性聚酯弹性体含量为100份,熔体熔融粘度调节剂含量范围为2~100份,泡孔尺寸稳定剂含量范围0.2~1.2份,UV稳定剂含量范围为0.1~1.5份,挥发性发泡剂含量范围为10~100份。因此熔融混炼后测定的熔体流动速率值均在10-200g/10min范围内。随之高温反应釜温度都控制在110~195℃之间,此温度区间内稳定地调节混合悬浮液,使其均匀发泡,塑性聚酯弹性体改性材料发泡颗粒密度在0.08-0.80g/cm3区间;发泡孔平均直径均在10-800μm内。
实施例19-26为对比案例,由于高温反应釜温度过低或过高,会导致熔体流动速率过高或过低,因此无法稳定地通过对颗粒和水的混合悬浮液加温到颗粒的适合发泡的软化温度,均无法形成均一的热塑性聚酯弹性体改性材料发泡颗粒。
因此本发明要求主体材料热塑性聚酯弹性体的硬度在邵氏H20D~H63D之间,改性后热塑性聚酯弹性体材料本身熔点不高于225℃,并且使用熔融熔体调节剂调整熔体流动速率到目标范围,从而稳定有效的发泡,保证了发泡颗粒的尺寸稳定性,并优化了该材料的弹性及压缩性能和后加工温度范围区间,同时明显扩大了温度适用范围。
实施例27:
a)将100kg热塑性聚酯弹性体颗粒A,80kg热塑性聚氨酯和0.25kgUV稳定剂加入混合机里。混匀后,通过料斗导入双螺杆挤出机中进行熔融混炼,在230℃恒温,负荷8.7kg条件下测试熔体流动速率。将符合熔体流动速率指标的熔融混炼物从挤出机直径为1.5mm的模孔中挤出成长条形状,通过约5米长度冷却水槽中冷却成形,用切粒机进行切割成2.5mm长的颗粒,从而得到热塑性聚酯弹性体发泡用前体。
b)将得到的热塑性聚酯弹性体发泡用前体100kg加入到高压反应釜中,在进行搅拌的同时,加入50kg二氧化碳挥发性发泡剂,将高压反应釜升温至160℃。
c)在充分混合和加热均匀的状态下,在此温度下保持恒温3小时,最后打开高压釜底端放料阀门,使高压釜内混合液排放到常压环境中,从而得到热塑性聚酯弹性体发泡颗粒。
本实施例所得到的熔体流动速率是55g/10min,热塑性聚酯弹性体发泡颗粒的密度是0.32g/cm3,发泡孔平均直径约80μm。
对比例1:
a)将100kg热塑性聚酯弹性体颗粒A和0.25kgUV稳定剂加入混合机里。混匀后,通过料斗导入双螺杆挤出机中进行熔融混炼,在230℃恒温,负荷8.7kg条件下测试熔体流动速率。将符合熔体流动速率指标的熔融混炼物从挤出机直径为1.5mm的模孔中挤出成长条形状,通过约5米长度冷却水槽中冷却成形,用切粒机进行切割成2.5mm长的颗粒,从而得到热塑性聚酯弹性体发泡用前体。
b)将得到的热塑性聚酯弹性体发泡用前体100kg加入到高压反应釜中,在进行搅拌的同时,加入50kg二氧化碳挥发性发泡剂,将高压反应釜升温至190℃。
c)在充分混合和加热均匀的状态下,在此温度下保持恒温3小时,最后打开高压釜底端放料阀门,使高压釜内混合液排放到常压环境中,从而得到热塑性聚酯弹性体发泡颗粒。
本实施例所得到的熔体流动速率是160g/10min,发泡孔平均直径是350μm,泡孔大小均匀性较差,发泡颗粒的比例低,只有一半左右,很多没有发泡,筛选出发泡部分的颗粒,此部分颗粒的密度是0.35g/cm3。如果整体来算密度,其整体密度为0.7g/cm3
对比例2
a)将100kg热塑性聚氨酯和0.25kgUV稳定剂加入混合机里加入混合机里。混匀后,通过料斗导入双螺杆挤出机中进行熔融混炼,在230℃恒温,负荷8.7kg条件下测试熔体流动速率。将符合熔体流动速率指标的熔融混炼物从挤出机直径为1.5mm的模孔中挤出成长条形状,通过约5米长度冷却水槽中冷却成形,用切粒机进行切割成2.5mm长的颗粒,从而得到热塑性聚氨酯弹性体发泡用前体。
b)将得到的热塑性聚氨酯弹性体发泡用前体100kg加入到高压反应釜中,在进行搅拌的同时,加入50kg二氧化碳挥发性发泡剂,将高压反应釜升温至135℃。
c)在充分混合和加热均匀的状态下,在此温度下保持恒温3小时,最后打开高压釜底端放料阀门,使高压釜内混合液排放到常压环境中,从而得到热塑性聚氨酯弹性体发泡颗粒。
本实施例所得到的熔体流动速率是95g/10min,热塑性聚氨酯弹性体发泡颗粒的密度是0.25g/cm3,发泡孔平均直径是180μm。
表2是实施例27~36以及对比例1、对比例2中,热塑性聚酯弹性体、热塑性聚氨酯和挥发性发泡剂的重量,以及熔体流动速率和高压反应釜温度,制备出的热塑性聚酯弹性体发泡颗粒或热塑性聚氨酯弹性体发泡颗粒的密度和发泡孔平均直径。
将实施例27~36得到的热塑性聚酯发泡用前体或热塑性聚按酯发泡用前体进行拉伸强度和硬度测试,得到表3:
表3
Figure PCTCN2017098589-appb-000002
由表3可知,以100重量份的热塑性聚酯弹性体为基础,加入80~100重量份的热塑性聚氨酯时,热塑性聚酯弹性体和热塑性聚氨酯在拉伸强度上体现出协同效应,从而有利于发泡后的热塑性聚酯发泡体的力学性能的提升。由表2可知,添加了热塑性聚氨酯的热塑性聚酯弹性体进行发泡后得到了泡孔直径在50μm~120μm的发泡体,相对于单一组分的热塑性聚氨酯弹性体或热塑性聚酯弹性体的发泡材料,其泡孔细腻度和均匀性得到改善。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Figure PCTCN2017098589-appb-000003
Figure PCTCN2017098589-appb-000004
Figure PCTCN2017098589-appb-000005

Claims (24)

  1. 一种热塑性聚酯弹性体发泡用前体,其特征在于,包括以下组分:
    热塑性聚酯弹性体和熔体熔融粘度调节剂;
    所述熔体熔融粘度调节剂包括热塑性聚氨酯。
  2. 根据权利要求1所述的热塑性聚酯弹性体发泡用前体,其特征在于,按重量份计,包括以下组分:热塑性聚酯弹性体100份和熔体熔融粘度调节剂2~100份。
  3. 根据权利要求1所述的热塑性聚酯弹性体发泡用前体,其特征在于,按重量份计,包括以下组分:热塑性聚酯弹性体100份和热塑性聚氨酯2~100份。
  4. 根据权利要求3所述的热塑性聚酯弹性体发泡用前体,其特征在于,按重量份计,包括以下组分:热塑性聚酯弹性体100份和热塑性聚氨酯80~100份。
  5. 根据权利要求2所述的热塑性聚酯弹性体发泡用前体,其特征在于,所述热塑性聚酯弹性体发泡用前体还包括泡孔尺寸稳定剂,所述泡孔尺寸稳定剂的重量组分为:0.2~1.2份。
  6. 根据权利要求2所述的热塑性聚酯弹性体发泡用前体,其特征在于,所述热塑性聚酯弹性体发泡用前体还包括泡孔尺寸稳定剂,所述泡孔尺寸稳定剂的重量组分为:2~15份。
  7. 根据权利要求5或6所述的热塑性聚酯弹性体发泡用前体,其特征在于,所述泡孔尺寸稳定剂包括二羟基丙基十八烷酸酯、失水山梨醇月桂酸单酯、失水山梨醇棕榈酸单酯、失水山梨醇硬脂酸单酯和脂肪酸蔗糖酯中的一种或多种。
  8. 根据权利要求1所述的热塑性聚酯弹性体发泡用前体,其特征在于,所述熔体熔融粘度调节剂还包括乙烯-醋酸乙烯共聚物、聚丙烯-丁二烯-苯乙烯树脂、聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯、乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯 类和聚苯乙烯-聚乙烯-聚丁烯类共聚物中一种或多种。
  9. 根据权利要求2所述的热塑性聚酯弹性体发泡用前体,其特征在于,所述热塑性聚酯弹性体发泡用前体还包括有UV稳定剂,所述UV稳定剂的重量组分为:0.1~1.5份。
  10. 根据权利要求1所述的热塑性聚酯弹性体发泡用前体,其特征在于,所述热塑性聚酯弹性体发泡用前体为表面圆滑的颗粒状结构,其颗粒直径为0.2~8.0mm。
  11. 一种热塑性聚酯发泡体,其特征在于,包括以下组分:热塑性聚酯弹性体、熔体熔融粘度调节剂和挥发性发泡剂,所述熔体熔融粘度调节剂包括热塑性聚氨酯。
  12. 根据权利要求11所述的热塑性聚酯发泡体,其特征在于,按重量份计,包括以下组分:热塑性聚酯弹性体100份、熔体熔融粘度调节剂2~100份和挥发性发泡剂10~100份。
  13. 根据权利要求11所述的热塑性聚酯发泡体,其特征在于,按重量份计,包括以下组分:热塑性聚酯弹性体100份、热塑性聚氨酯2~100份和挥发性发泡剂10~100份。
  14. 根据权利要求12所述的热塑性聚酯发泡体,其特征在于,所述热塑性聚酯发泡体还包括泡孔尺寸稳定剂,所述泡孔尺寸稳定剂的重量组分为:0.2~1.2份。
  15. 根据权利要求12所述的热塑性聚酯发泡体,其特征在于,所述热塑性聚酯发泡体还包括泡孔尺寸稳定剂,所述泡孔尺寸稳定剂的重量组分为:2~15份。
  16. 根据权利要求14所述的热塑性聚酯发泡体,其特征在于,所述泡孔尺寸稳定剂包括二羟基丙基十八烷酸酯、失水山梨醇月桂酸单酯、失水山梨醇棕 榈酸单酯、失水山梨醇硬脂酸单酯和脂肪酸蔗糖酯中的一种或多种。
  17. 根据权利要求11所述的热塑性聚酯发泡体,其特征在于,所述熔体熔融粘度调节剂还包括乙烯-醋酸乙烯共聚物、聚丙烯-丁二烯-苯乙烯树脂、聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯、乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯类和聚苯乙烯-聚乙烯-聚丁烯类共聚物中一种或多种。
  18. 根据权利要求12所述的热塑性聚酯发泡体,其特征在于,所述热塑性聚酯弹性体发泡用前体还包括有UV稳定剂,所述UV稳定剂的重量组分为:0.1~1.5份。
  19. 根据权利要求11所述的热塑性聚酯发泡体,其特征在于,所述挥发性发泡剂包括二氧化碳、氮气、乙烷、丙烷、正丁烷和异丁烷中的一种或多种。
  20. 根据权利要求11所述的热塑性聚酯发泡体,其特征在于,所述热塑性聚酯发泡体的密度为0.10~0.90g/m3,泡孔直径为10~800μm。
  21. 如权利要求11~20中任意一项所述的一种热塑性聚酯发泡体的制备方法,其特征在于,包括以下步骤:
    前体制备:将热塑性聚酯弹性体、熔体熔融粘度调节剂和泡孔稳定剂混合均匀,所述熔体熔融粘度调节剂包括热塑性聚氨酯,熔融冷却后制成热塑性聚酯弹性体发泡用前体;
    发泡剂渗透:将热塑性聚酯弹性体发泡用前体加入高压反应釜中,加入挥发性发泡剂,升温至热塑性聚酯弹性体发泡用前体的软化点,加压使所述挥发性发泡剂处于超临界状态,保温保压;
    发泡:发泡剂渗透完成后,降低压力,热塑性聚酯弹性体发泡用前体发泡,形成热塑性聚酯发泡体。
  22. 根据权利要求21所述的热塑性聚酯发泡体的制备方法,其特征在于,所述“前体制备”步骤包括:
    按重量份计,将100份热塑性聚酯弹性体、2~100份热塑性聚氨酯、0.2~1.2份泡孔尺寸稳定剂,2~15份熔体粘度调节剂和0.1~1.5份UV稳定剂加入高混机 中混合均匀,通过双螺杆挤出机进行熔融混炼,冷却后通过挤出机拉条或者水下切粒切成颗粒,得到热塑性聚酯弹性体发泡用前体。
  23. 根据权利要求21所述的热塑性聚酯发泡体的制备方法,其特征在于,所述“发泡剂渗透”步骤中,升温后的反应温度为100~175℃,保温保压的时间为2~3小时。
  24. 根据权利要求21所述的热塑性聚酯发泡体的制备方法,其特征在于,所述“发泡剂渗透”步骤包括:
    将热塑性聚酯弹性体发泡用前体和水加入高压反应釜中,加入挥发性发泡剂,加压形成含水的悬浮混合液,升温至热塑性聚酯弹性体发泡用前体的软化点,加压使所述挥发性发泡剂处于超临界状态,保温保压。
PCT/CN2017/098589 2017-06-20 2017-08-23 一种热塑性聚酯弹性体发泡用前体、发泡体及其制备方法 WO2018232968A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710472471 2017-06-20
CN201710472471.6 2017-06-20

Publications (1)

Publication Number Publication Date
WO2018232968A1 true WO2018232968A1 (zh) 2018-12-27

Family

ID=61110260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098589 WO2018232968A1 (zh) 2017-06-20 2017-08-23 一种热塑性聚酯弹性体发泡用前体、发泡体及其制备方法

Country Status (2)

Country Link
CN (1) CN107641293A (zh)
WO (1) WO2018232968A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11008439B2 (en) 2015-10-02 2021-05-18 The Chemours Company Fc, Llc Solid polymeric articles having hydrophobic compounds intermixed therein
WO2022162048A1 (de) 2021-01-28 2022-08-04 Basf Se Partikelschaum aus tpe mit einer shorehärte zwischen 20d und 90d

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019178154A1 (en) * 2018-03-12 2019-09-19 Nike Innovate C.V. A method for making a thermoplastic foam article
WO2019213945A1 (zh) * 2018-05-11 2019-11-14 Tang Jing 热塑性聚酯弹性体发泡用前体、发泡体及其制备方法
CN108676329B (zh) * 2018-05-11 2021-01-08 唐靖 一种热塑性聚酯弹性体发泡用前体、发泡体及其制备方法
CN110965402A (zh) * 2018-09-29 2020-04-07 洛阳双瑞橡塑科技有限公司 一种可控发泡聚氨酯颗粒减振垫
CN109535696A (zh) * 2018-12-12 2019-03-29 深圳麦德利宇航材料科技有限公司 一种航空座椅的泡沫生产工艺
CN109943079A (zh) * 2019-03-18 2019-06-28 军事科学院系统工程研究院军需工程技术研究所 一种聚酰胺弹性体发泡材料及其制备方法
CN110539440A (zh) * 2019-09-02 2019-12-06 厦门市锋特新材料科技有限公司 一种eva注塑件发泡工艺
US11447615B2 (en) 2019-09-12 2022-09-20 Nike, Inc. Foam compositions and uses thereof
EP3986960A1 (en) 2019-09-12 2022-04-27 Nike Innovate C.V. A cushioning element for an article of footwear
CN112622301A (zh) * 2019-10-08 2021-04-09 加久企业股份有限公司 中空弹性体制程
CN111925645A (zh) * 2020-08-12 2020-11-13 九焱新材料(深圳)有限公司 一种无卤阻燃热塑性聚氨酯弹性体复合材料及其制备方法
CN114410102B (zh) * 2022-01-29 2022-09-13 浙江环龙新材料科技有限公司 一种微孔热塑性聚氨酯纳米复合发泡卷材及其制备方法与在抛光垫中的应用
CN115340752B (zh) * 2022-08-23 2024-01-16 会通新材料(上海)有限公司 一种高熔点高熔体强度热塑性聚酯弹性体材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101618593A (zh) * 2009-07-24 2010-01-06 株洲时代新材料科技股份有限公司 一种热塑性弹性体发泡垫板的制备方法及制品
CN101857720A (zh) * 2010-03-10 2010-10-13 上海锦湖日丽塑料有限公司 一种高强耐热的热塑性聚氨酯组合物及其制备方法
WO2012102564A2 (en) * 2011-01-27 2012-08-02 Sk Innovation Co., Ltd. Polymer blend composition based on carbon dioxide and environment-friendly decorating materials produced therefrom
CN106189103A (zh) * 2016-08-24 2016-12-07 深圳市传佳新材料有限公司 一种热塑性聚酯弹性体发泡颗粒及制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550267B (zh) * 2009-05-19 2011-06-22 河北北田工程塑料有限公司 热塑性聚酯弹性体闭孔微发泡材料及其制备方法、减震用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101618593A (zh) * 2009-07-24 2010-01-06 株洲时代新材料科技股份有限公司 一种热塑性弹性体发泡垫板的制备方法及制品
CN101857720A (zh) * 2010-03-10 2010-10-13 上海锦湖日丽塑料有限公司 一种高强耐热的热塑性聚氨酯组合物及其制备方法
WO2012102564A2 (en) * 2011-01-27 2012-08-02 Sk Innovation Co., Ltd. Polymer blend composition based on carbon dioxide and environment-friendly decorating materials produced therefrom
CN106189103A (zh) * 2016-08-24 2016-12-07 深圳市传佳新材料有限公司 一种热塑性聚酯弹性体发泡颗粒及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11008439B2 (en) 2015-10-02 2021-05-18 The Chemours Company Fc, Llc Solid polymeric articles having hydrophobic compounds intermixed therein
WO2022162048A1 (de) 2021-01-28 2022-08-04 Basf Se Partikelschaum aus tpe mit einer shorehärte zwischen 20d und 90d

Also Published As

Publication number Publication date
CN107641293A (zh) 2018-01-30

Similar Documents

Publication Publication Date Title
WO2018232968A1 (zh) 一种热塑性聚酯弹性体发泡用前体、发泡体及其制备方法
CN107641294B (zh) 一种热塑性聚酯弹性体发泡用前体、发泡体及其制备方法
CN103642200B (zh) 一种发泡热塑性聚氨酯珠粒及其制备方法
ES2748163T3 (es) Partícula de poliuretano termoplástico espumado y uso de la misma
CN104877335B (zh) 一种热塑性聚氨酯弹性体发泡珠粒及其制备方法
CN107828205B (zh) 一种可硫化交联的发泡聚氨酯混炼胶粒子及其制备方法和成型工艺
WO2015123961A1 (zh) 一种挤出发泡热塑性聚氨酯弹性体粒子及其制备方法
WO2009075208A1 (ja) ポリオレフィン系樹脂発泡粒子の製造方法およびポリオレフィン系樹脂発泡粒子
Tang et al. Autoclave preparation of expanded polypropylene/poly (lactic acid) blend bead foams with a batch foaming process
US9850362B2 (en) Modified starch compositions, starch composite foam materials and method for preparing the starch composite foam material
CN110760168B (zh) 一种热塑性聚酯弹性体发泡颗粒及其制备方法
CN109401281A (zh) 一种高弹tpu薄膜及其制备方法
CN109971025B (zh) 一种化学发泡型聚酰胺弹性体发泡材料及其制备方法
TWI752029B (zh) 熱塑性聚氨酯發泡粒子成形體及其製造方法與熱塑性聚氨酯發泡粒子
JP2018044042A (ja) 熱可塑性ポリウレタン発泡粒子及び熱可塑性ポリウレタン発泡粒子成形体
CN107057303A (zh) 一种共混改性芳香族聚酯微孔发泡材料及其制备方法
JP5365940B2 (ja) 脂肪族ポリエステル系樹脂発泡体及び該発泡体からなるフラワーアレンジメント用台座及びそれらの製造方法
CN104877162B (zh) 原位微纤化聚丙烯系树脂复合发泡颗粒及其应用
CN108676329B (zh) 一种热塑性聚酯弹性体发泡用前体、发泡体及其制备方法
CN104385479A (zh) 一种连续挤出发泡制备tpu发泡珠粒的方法
CN109651695A (zh) 一种易熔结、高耐温性发泡聚乙烯珠粒及其制备方法
CN109679307A (zh) 一种可生物降解的珍珠棉及其制备方法
JP2000017079A (ja) 無架橋ポリエチレン系樹脂発泡粒子及びその成型体
KR101928925B1 (ko) 내충격성이 우수한 폴리올레핀계 발포입자
WO2019213945A1 (zh) 热塑性聚酯弹性体发泡用前体、发泡体及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915109

Country of ref document: EP

Kind code of ref document: A1