WO2018230071A1 - 新エネルギー源統合電力変換装置 - Google Patents
新エネルギー源統合電力変換装置 Download PDFInfo
- Publication number
- WO2018230071A1 WO2018230071A1 PCT/JP2018/011237 JP2018011237W WO2018230071A1 WO 2018230071 A1 WO2018230071 A1 WO 2018230071A1 JP 2018011237 W JP2018011237 W JP 2018011237W WO 2018230071 A1 WO2018230071 A1 WO 2018230071A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- command
- output
- input
- new energy
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
Definitions
- the present invention relates to a new energy source integrated power conversion device that converts power of a new energy source.
- synchronous machines In conventional power systems, most power plants use synchronous machines. These synchronous machines include a rotor and rotate at a frequency synchronized with a frequency at a connection point (grid point) with the power grid. These rotors have a large moment of inertia (moment of inertia). Therefore, when all the synchronous machines rotate together, they have a very large moment of inertia and stability, and stably rotate at 50 Hz or 60 Hz, which is the frequency of the connection point (grid point) with the power grid.
- the stability of the power grid decreases relatively. This is because the power conversion apparatus in the new energy source has no inertia as a synchronous machine, and acts as an individual power source with little cooperation at the connection point (grid point) of the power network.
- virtual synchronous inertia control of the power conversion device is considered as one solution for improving the stability of the power network of the new energy source.
- Virtual synchronous inertia control brings the characteristics of a synchronous machine to the power conversion control algorithm. Therefore, the virtual synchronous inertia control behaves like a synchronous generator having inertia that provides stability at grid points of the power grid.
- Virtual synchronous inertia control is known as a method of dynamically adjusting the moment of inertia that stabilizes the oscillation of output power.
- the power converter output must be immediately limited to maintain power balance. An operation for immediately limiting the output of the power conversion apparatus is performed.
- Patent Document 1 As such a power converter, there exists patent document 1, for example.
- the summary of Patent Document 1 states that “the present invention relates to a synchronous power controller based on a static power converter, said controller being referred to the following two main blocks: block 1 (electrical block) and block 2
- the electric block 1 (10) is formed of a virtual electric characteristic controller (11) and a virtual admittance controller (12), and the electric machine block 2 (10) is a virtual superpower. It is formed by a characteristic controller (21) and an inertia and damping coefficient controller (22) ", and the technology of the synchronous power controller is disclosed.
- Non-Patent Document 1 discloses a method for stabilizing oscillation of the output terminal by dynamically adjusting and controlling the moment of inertia value based on the state of the rotational frequency of the virtual synchronous rotor.
- Patent Document 1 and Non-Patent Document 1 have a problem that a very large energy divergence is still caused between the input power and the output power of the power converter.
- the present invention was devised in view of the above-described problems, and even if a sudden decrease in the generated power of a new energy source occurs, the divergence between the input power and the output power of the power converter is alleviated, and stable operation is achieved. It is an object of the present invention to provide a power conversion device that performs the above.
- the new energy source integrated power conversion device of the present invention includes an inverter that converts generated power of a new energy source into predetermined AC power and outputs it to a power transmission network, PWM control means for controlling the inverter, and the inverter First detection means for detecting the input voltage and current, second detection means for detecting the output voltage, current and frequency of the inverter, and input detected by the first and second detection means.
- a virtual inertia characteristic is calculated based on the power change determining means for calculating the command, the output voltage, current, frequency and the corrected output power command detected by the second detecting means, and the P Virtual synchronous inertia control means for outputting a reference command to the M control means, and the response time of the power change determining means to the change in the input power changes according to the total amount of the input power changed.
- the present invention it is possible to provide a power conversion device that can reduce the divergence between the input power and the output power of the power conversion device and can operate stably even if the power generated by the new energy source suddenly decreases.
- FIG. 1 shows an example of a configuration of a new energy source integrated power conversion apparatus 100 according to the first embodiment of the present invention, a connection with a new energy source (front end of a new energy source) 101, and a grid of a power transmission network. It is a figure which shows the relationship of a connection with a certain three-phase alternating current power supply.
- New energy sources such as solar power generation and wind power generation are not directly connected to the power transmission network. This is because the generated power generated by the new energy source is generally not always stably generated in frequency and voltage due to changes in weather. Therefore, power is converted by the power conversion device and then distributed to the power transmission network.
- the three-phase AC power supply 102 corresponds to one grid point of a mesh, in which a power transmission network configured in a mesh has a plurality of power supply sources. Therefore, the three-phase AC power source 102 that is one of the power supply sources is appropriately described as “three-phase AC power source that is a grid” or “three-phase AC power source grid”. Further, when the new energy source is viewed from the three-phase AC power source 102 that is the grid of the power transmission network, the original new energy source is the new energy source 101 that is the front end of the new energy source and the back of the new energy source. A new energy source integrated power conversion device 100 that is an end is provided. However, hereinafter, in order to simplify the notation, the front end is simply referred to as “new energy source 101” and the back end is referred to as “new energy source integrated power conversion device 100”.
- new energy sources such as solar power generation and wind power generation are unstable in power supply as described above compared to conventional main energy sources such as thermal power generation, hydroelectric power generation, and nuclear power generation. is there.
- thermal power generation, hydroelectric power generation, and nuclear power generation generator when viewed from a power transmission network that delivers power. Therefore, the new energy source integrated power conversion device 100 which is a buffer for converting the power of the new energy source 101 is regarded as a synchronous generator having inertial force used for thermal power generation, hydroelectric power generation, nuclear power generation, etc., and virtual synchronous power generation May be handled as a machine.
- a virtual synchronous generator virtual synchronous inertia (virtual synchronous inertia), moment of inertia, governor (regulator), rotor angular velocity (virtual rotor angle), machine input Concepts and terms such as are introduced as appropriate.
- a new energy source integrated power conversion device (power conversion device) 100 includes an inverter (DC-AC conversion) 104, a DC capacitor 105, detectors (voltage / current detectors) 106 and 107, a first virtual synchronous inertia. Control means 108 and PWM control means (pulse width control means) 109 are provided.
- the new energy source integrated power conversion apparatus 100 has an active power (mainly DC power) from the new energy source 101 which is an initial state in which a new energy source represented by solar power generation or wind power generation is generated. Effective input power) P dc power is input.
- the new energy source integrated power conversion apparatus 100 virtually controls the input power (active power P dc ) to control the inertia of the power, and outputs the output power P out as a three-phase AC power source that is a grid of the power transmission network.
- active power P dc active power
- output power P out output power P out as a three-phase AC power source that is a grid of the power transmission network.
- the three-phase alternating current power supply 102 which is a grid of the power transmission network has an impedance X S 103 as a grid when viewed from the new energy source integrated power conversion device 100 side.
- the voltage as the grid is set to Eg and the virtual rotor angle ⁇ is set to 0, so that the voltage and phase (virtual rotor angle) characteristics of the three-phase AC power source 102 in the grid are expressed as “ Eg ⁇ 0 ”.
- the new energy source integrated power conversion apparatus 100 converts the active power P dc mainly including the DC power of the new energy source 101 in the initial state where the power of the new energy source is generated into AC power, and Virtual synchronous inertia control (virtual synchronous inertia control) is performed on the power, and output power P out is output to the three-phase AC power source 102 which is a grid of the power transmission network as stable power.
- electric power (effective input electric power) P dc input from the new energy source 101 is input to an inverter 104 that performs DC-AC conversion via a DC capacitor 105.
- the inverter 104 outputs electric power (effective output power) Pout converted into three-phase alternating current.
- the DC capacitor 105 smoothes and stabilizes the voltage supplied from the new energy source 101.
- the detector (voltage / current detector, first detection means) 106 detects the voltage V dc and the current I dc of the power P dc input to the inverter 104.
- Detector (voltage-current detector, a second detector) 107 detects the output frequency omega g of voltage V and current I, and the voltage V of the power P out of the inverter 104 is output.
- the first virtual synchronous inertia control means 108 receives the voltage V dc , current I dc , voltage V, current I, output frequency ⁇ g , and output power command P * . Then, the first virtual synchronous inertia control unit 108 generates a reference command E * ⁇ * and inputs it to the PWM control unit 109. “E * E ⁇ * ” represents a reference command for the output voltage E of the virtual synchronous generator and the virtual rotor angle ⁇ .
- the PWM control means 109 generates a pulse necessary for controlling the inverter 104 according to the reference command E * * ⁇ * , and drives and controls the inverter 104. Details of the inverter 104 and the first virtual synchronous inertia control means 108 will be described later.
- FIG. 2 is a diagram illustrating a configuration example of the inverter (DC-AC conversion) 104 provided in the new energy source integrated power conversion device 100 according to the first embodiment of the present invention.
- the inverter 104 includes IGBTs (Insulated Gate Bipolar Transistors) 201 to 206 that are switching elements and a plurality of reactors 207.
- An antiparallel diode is connected to each of the IGBTs 201 to 206.
- the IGBTs 201 to 206 are controlled on and off (ON / OFF) and pulse width in an integrated manner by a control signal generated by the PWM control means 109.
- the DC voltage (V dc ) across the DC capacitor 105 (FIG. 1) is converted into a three-phase AC voltage (V ac ).
- These three-phase AC voltages V ac are output via a plurality of reactors 207.
- the plurality of reactors 207 reduces the influence of ripple (noise) caused by the switching of the IGBTs 201 to 206.
- FIG. 3 is a diagram illustrating a configuration example of the first virtual synchronous inertia control unit 108 provided in the new energy source integrated power conversion device 100 according to the first embodiment of the present invention.
- the first virtual synchronization inertia control means 108 includes a second virtual synchronization inertia control means 110 and a power change determination means 111.
- the power change determination means 111 includes the voltage V dc and current I dc on the input side of the inverter 104 detected by the detector (voltage / current detector) 106, and the output of the inverter 104 detected by the detector (voltage / current detector) 107. Side voltage V, current I, and output power command P * are input. Then, based on these input signals and commands (V dc , I dc , V, I, P * ), the power change determination unit 111 generates a corrected output power command P out * , and the second virtual synchronous inertia control unit. The corrected output power command P out * is input to 110.
- the second virtual synchronous inertia control means 110 is controlled by the output side voltage V, current I, output frequency ⁇ g of the inverter 104 and the corrected output power command P out *, and the reference command E * ⁇ *. Is output.
- the second virtual synchronization inertia control means 110 is a simple virtual synchronization inertia control means as a first comparative example.
- the first virtual synchronous inertia control unit 108 used in the new energy source integrated power conversion device 100 according to the first embodiment of the present invention further changes the power to the second virtual synchronous inertia control unit 110.
- the determination unit 111 By performing precise control using the determination unit 111, more excellent virtual synchronous inertia control is performed. Therefore, the detailed function and operation of the first virtual synchronous inertia control means 108 shown in FIG. 3 explained the configuration, function and operation of the second virtual synchronous inertia control means 110 shown as the first comparative example. It will be explained again later.
- the first virtual synchronous inertia control unit 108 shown in FIG. 3 has a virtual synchronous inertia control function by the second virtual synchronous inertia control unit 110, and an active power control (active power) by the power change determination unit 111. Control) function.
- active power active power
- FIG. 4 is a diagram illustrating a configuration of the second virtual synchronous inertia control unit 110 of the first comparative example.
- the second virtual synchronous inertia control means 110 includes a power calculation means 301, a VSG model (Virtual Synchronous Generator model) 302, an integration means (1 / s) 303, an adjustment means (speed control). Means) 304, voltage control means 305, mode corresponding inertia adjustment means 306, and synthesis means (multiplier) 309. Further, the mode corresponding inertia adjusting unit 306 includes a mode matching unit 307 and an inertia value adjusting unit 308.
- the second virtual synchronous inertia control means 110 includes a voltage V and a current I on the output side of the inverter 104 detected by the detector (voltage / current detector) 107, an output frequency ⁇ g , and the corrected output power command. P out * is input. Then, the second virtual synchronous inertia control means 110 outputs a reference command E * ⁇ * .
- the power calculation means 301 receives the output voltage V and current I of the inverter 104. And the electric power calculation means 301 calculates the effective power (effective output power) Pout and the reactive power (reactive output power) Qout of the output of the new energy source integrated power converter device 100.
- the inertia moment J output from the corresponding inertia adjusting means 306 is input.
- a virtual rotor angular velocity ⁇ PCS is calculated from the VSG model 302.
- the signal of the angular velocity ⁇ PCS of the rotor is supplied to the integrating means 303, the adjusting means 304, and the mode corresponding inertia adjusting means 306.
- the adjusting means 304 inputs the output power command P out * , the output frequency ⁇ g, and the angular velocity ⁇ PCS signal of the rotor. Then, adjusting means (adjusting device) 304, and outputs the power (mechanical input) P in, and supplies the VSG model 302.
- the mode corresponding inertia adjusting means 306 inputs the signal of the angular velocity ⁇ PCS of the rotor and the output frequency ⁇ g and calculates the moment of inertia J. Then, the inertia moment J signal is supplied to the VSG model 302.
- the integrating means (1 / s) 303 integrates the rotor angular velocity ⁇ PCS signal, which is the output of the VSG model 302, to calculate a virtual rotor angle (virtual rotor angle) ⁇ . Then, a signal of the virtual rotor angle ⁇ is output to the synthesizing unit 309. Voltage control means 305, and voltage V of the output side of the inverter 104, and enter the reactive power Q out that calculation of the power calculation means 301, and a reactive power command Q *, calculates the output voltage E. Then, the signal of the output voltage E is output to the synthesizing means 309.
- the synthesizing unit 309 synthesizes the output voltage E and the virtual rotor angle ⁇ to generate a PWM control signal E ⁇ .
- This PWM control signal E ⁇ becomes the PWM control command E * ⁇ * as it is.
- the second virtual synchronous inertia control means 110 outputs a PWM control command E * ⁇ * .
- VSG model 302 with the adjusting means (governor) 304, a rotor angular velocity (rotor speed) omega PCS signals and the power (mechanical input) by a signal P in, signal loops Yes. Further, the VSG model 302 loops with the mode corresponding inertia adjustment means 306 by the signal of the rotor angular velocity ⁇ PCS and the signal of the moment of inertia J. As these signals loop, the operation converges and a solution is obtained. Details of the VSG model (virtual synchronous generator model) 302 will be described later. Details of the model of the adjusting means (speed governor) 304 will be described later. Details of the voltage control means 305 and a voltage control model will be described later. Details of the mode corresponding inertia adjusting means 306 will be described later. Details of the adjustment principle of the moment of inertia J will be described later.
- VSG model 302 of the first comparative example is executed according to the following equation (1).
- Equation (1) is expressed by the characteristics of the rotor of the virtual synchronous machine.
- P in is the machine input (power)
- P out is the output effective power
- J is the moment of inertia
- ⁇ PCS is the angular velocity of the rotor
- ⁇ g is the output frequency
- D is the vibration suppression of rotation. It is a coefficient.
- the reason why it is represented by the above-mentioned elements is that the VSG model 302 does not include an actual machine (synchronous generator) in the system. The amount of change for each element is related to the virtual synchronous generator and its rotor.
- P in is the machine input (power)
- P out * is the corrected output power command
- ⁇ PCS is the angular velocity of the integrated rotor
- ⁇ g is the output frequency
- K gov is the adjusting means (governor) 304. This is a proportional constant.
- P * out and “ Pout * ” are synonymous for convenience of description.
- the voltage control means 305 controls the reactive power (reactive output power) Q out at the output end according to the reactive power command value Q * .
- the reactive power command value Q * adjusts the output voltage E at the output terminal of the voltage control means 305 using the detected output voltage V and the reactive power Qout at the output terminal.
- This control is performed by PI control (proportional and integral control) according to the following equation (3).
- E is the output voltage of the voltage control means 305
- V is the voltage on the output side of the power converter (new energy source integrated power converter) 100 detected by the detector 107
- Q * is the reactive power.
- the command value, Q out, is reactive power at the output end calculated by the power calculation means 301.
- K PQ is a proportional constant related to proportional control
- KIQ is a proportional constant related to integral control.
- the mode corresponding inertia adjustment unit 306 of the first comparative example in FIG. 4 includes a mode matching unit 307 and an inertia value adjustment unit 308.
- the mode checking means 307, the angular velocity omega PCS rotor, inputs the angular velocity omega g due to the frequency of the output voltage detected by the detector 107 (output voltage of the grid), and select the mode by the relationship to be described later, this
- the mode (Mode) is input to the inertia value adjusting means 308.
- the inertia value adjusting means 308 dynamically changes and selects the inertia moment J according to the selected mode, and transmits the inertia moment J to the VSG model 302 of the first comparative example.
- the second virtual synchronous inertia control unit 110 of the first comparative example optimizes the moment of inertia J, so that the first virtual synchronous inertia control unit 110 of the first comparative example uses the first virtual synchronous inertia control unit 110. Oscillation at the output terminal of the comparative new energy source integrated power converter is prevented and stabilized.
- FIG. 5A and 5B are diagrams illustrating the principle of adjusting the moment of inertia J of the first comparative example.
- FIG. 5A is a diagram showing the relationship between mode matching and the adjustment result for showing the principle of adjusting the moment of inertia J of the first comparative example.
- FIG. 5B is a diagram showing the relationship between the modes for illustrating the principle of adjusting the moment of inertia J of the first comparative example.
- each element of the mode collation of the mode collating unit 307 (FIG. 4), the mode determined by the mode collation, and the adjustment result (adjustment) of the inertia value adjusting unit 308 FIG. 5A, each element of the mode collation of the mode collating unit 307 (FIG. 4), the mode determined by the mode collation, and the adjustment result (adjustment) of the inertia value adjusting unit 308 (FIG.
- the angular velocity ⁇ PCS of the rotor is an output of the inverter 104 (FIG. 1), that is, a connection point (grid, grid point) with the power transmission network by mode matching (mode matching unit 307). It is compared with the frequency (angular velocity) ⁇ g of the three-phase AC power source 102 (FIG. 1).
- the mode comparison means 307 determines the comparison result depending on the comparison result and whether the rotor angular velocity ⁇ PCS is increasing or decreasing.
- the mode 1 is a case where ⁇ PCS > ⁇ g and ⁇ PCS are increased in the mode matching (mode matching means 307).
- the moment of inertia J is the J in the normal case. normal is selected.
- Mode (Mode 2) is a case where ⁇ PCS > ⁇ g and ⁇ PCS are decreased in the mode collation.
- J small is selected as the moment of inertia J, which is smaller than the normal case.
- the mode 3 is a case where ⁇ PCS ⁇ g and ⁇ PCS are decreased in the mode collation.
- the normal moment J normal is selected as the moment of inertia J.
- Mode 4 is a case where ⁇ PCS ⁇ g and ⁇ PCS are increased in the mode collation. At this time, a small value of J small is selected as the moment of inertia J than in the normal case.
- J normal in the normal case also means that the moment of inertia J used in the normal case is not changed.
- FIG. 5B illustrates the relationship among ⁇ PCS , ⁇ g, and modes (Mode 1 to Mode 4). Also, the right-pointing arrows attached near Mode 1 and Mode 4 indicate that ⁇ PCS is increasing, and the left-pointing arrows attached near Mode 2 and Mode 3 indicate that ⁇ PCS is decreasing. Yes.
- FIG. 8 second comparative example
- FIG. 1 comparative example
- FIG. 8 and FIG. 9 first comparative example
- Power Change Determination Unit 111 of the First Embodiment of the Present Invention >> Next, about the power change determination means 111 (FIG. 3, FIG. 6) in the 1st virtual synchronous inertia control means 108 with which the new energy source integrated power converter device 100 (FIG. 1) which concerns on 1st Embodiment of this invention is equipped. explain in detail.
- the power change determination unit 111 is a component that does not exist in the second virtual synchronous inertia control unit 110 of the first comparative example and the first comparative example itself.
- FIG. 6 is a diagram illustrating an example of the configuration of the power change determination unit 111 according to the first embodiment of the present invention.
- the first embodiment is characterized by using the first virtual synchronous inertia control unit 108 including the second virtual synchronous inertia control unit 110 and the power change determination unit 111.
- the change determination means 111 plays an important role.
- the power change determination means 111 includes power calculation means 401 and 402, a high pass filter (HPF) 403, an absolute value calculation means (ABS) 404, a threshold comparison determination means 405, a flag generation means 406, and an output power change command means. 407 is provided. Further, as described in FIG.
- the power change determination unit 111 detects the voltage V dc and current I dc on the input side of the inverter 104 detected by the detector (voltage / current detector) 106, and the detection by the detector 107.
- the voltage V and current I on the output side of the inverter 104 and the output power command P * are input. Then, based on these input signals and commands (V dc , I dc , V, I, P * ), the power change determination unit 111 generates a corrected output power command P out * , and the second virtual synchronous inertia control unit. This corrected output power command P out * is supplied to 110.
- the power calculation means (first power calculation means) 401 receives the output voltage V and current I of the inverter 104 (FIG. 1) detected by the detector 107. And the electric power calculation means 401 calculates the effective electric power (effective output electric power) Pout of the output of the new energy source integrated power converter device 100.
- FIG. The power calculation means (second power calculation means) 402 receives the input side voltage V dc and current I dc detected by the detector 106. And the electric power calculation means 402 calculates the effective power (effective input power) Pdc of the input of the new energy source integrated power converter device 100.
- the effective power P out output and the input active power P dc of the new energy source integrated power conversion apparatus 100 are respectively input to the difference means 409.
- the difference means 409 detects the difference between the output active power P out and the input active power P dc .
- the output of the difference means 409 is input to a high pass filter (HPF) 403.
- a high-pass filter (HPF) 403 removes high frequency (noise) components. By removing the high frequency component, the accuracy in the next step is improved.
- the output of the high pass filter (HPF) 403 is input to the absolute value calculation means (ABS) 404.
- the absolute value of the signal input to the absolute value calculating means (ABS) 404 is calculated by the absolute value calculating means 404. The absolute value is taken because there are two magnitude relationships between the output power Pout and the input power Pdc .
- the output signal of the absolute value calculation means 404 is input to one input terminal of the threshold comparison determination means 405.
- a predetermined threshold value is input to another input terminal of the threshold value comparison / determination means 405.
- the output signal of the absolute value calculation unit 404 is compared with the predetermined threshold value.
- the intended power conversion operation is continuously executed as it is.
- the output signal of the absolute value calculation means (ABS) 404 is larger than the threshold value, the intended power conversion operation needs to be changed.
- the output signal of the absolute value calculation means 404 continues to be larger than the threshold value, and the DC voltage of the DC capacitor 105 (FIG. 1) continues to change. As a result, the conversion device stops operating. For this reason, when the output signal of the absolute value calculation means (ABS) 404 becomes larger than the threshold value in the threshold comparison determination means 405, the flag generation means 406 is activated and activated to set up a flag signal F for warning in that state. . Then, the flag signal F is sent to the output power change command means 407.
- the output power change command unit 407 receives the flag signal F, the effective input power P dc that is the output signal of the power calculation unit 402, and the output power command P * .
- the output power change command means 407 outputs a corrected output power command P out * with reference to the three signals. In addition, the setting of the corrected output power command P out * is initialized.
- FIG. 7A is a diagram illustrating a configuration example of the output power change command unit 407 according to the first embodiment of the present invention.
- FIG. 7B is a diagram showing an operation of the output power change command unit 407 according to the first embodiment of the present invention.
- the output power change command means 407 is provided in the power change determination means 111 of the first virtual synchronous inertia control means 108 provided in the new energy source integrated power conversion device 100 according to the first embodiment of the present invention. .
- FIG. 7A is a diagram illustrating a configuration example of the output power change command unit 407 according to the first embodiment of the present invention.
- FIG. 7B is a diagram showing an operation of the output power change command unit 407 according to the first embodiment of the present invention.
- the output power change command means 407 is provided in the power change determination means 111 of the first virtual synchronous inertia control means 108 provided in the new energy source integrated power conversion device 100 according to the first embodiment of the present invention. .
- the output power change command unit 407 includes a time series power command unit 408, a switching unit 410, and a gate unit 411.
- the output power change command unit 407, the output power command P * and the effective input power P dc from new energy source 101, a flag signal F from the flag generating means 406 is inputted.
- the corrected output power command P out * is output from the output power change command means 407.
- the gate means 411 is opened and closed by a flag signal F.
- a signal of effective input power P dc is input to the input side of the gate means 411, and the original output power command P original * is output to the output side.
- the original output power command P original * is input to the first terminal of the time-series power command unit 408, and the signal is converted in the time-series power command unit 408 as described later in FIG. 7B, and the corrected output power is output from the second terminal.
- Output as command P out * .
- the output power command P * is input to the first terminal of the switching unit 410, and the corrected output power command P out * of the output of the time series power command unit 408 is input to the second terminal.
- the switching means 410 is controlled by the flag signal F to switch signals between the first terminal and the second terminal.
- the switching means 410 when the flag signal F is not raised, the output power command P * of the first terminal is selected as the normal state. Then, the output power command P * is output as it is as the corrected output power command Pout * .
- the flag signal F is on, power change is required, and the effective input power P dc from the new energy source 101 passes through the gate means 411 and becomes the original output power command P original *.
- the time series power command means 408 is input. As described above, the time series power command unit 408 converts the original output power command P original * into the corrected output power command P out * .
- the switching means 410 since the flag signal F is raised, the corrected output power command P out * reflecting the time series power command (command of the time series power command means 408) of the second terminal is changed to the switching means 410. Is output as an output signal.
- the effective input power P dc from the new energy source 101 is set as the original output power command P original *.
- the use of the output power command P * in the normal state adjusts the difference in the effective power as compared with the method of preventing instability of the voltage of the DC capacitor 105 due to the active power imbalance.
- changing the output power command is a solution for stabilizing the active power imbalance.
- the transition period of the output power change command it is necessary to cope with a large deviation of the DC voltage of the DC capacitor 105. Therefore, in the time-series power command (time-series power command means 408), it is necessary to specifically take a method of mitigating a large deviation of the DC voltage of the DC capacitor 105 in the transition period.
- FIG. 7B shows a specific countermeasure in the transition period.
- FIG. 7B shows a case where the original output power command P original * is changed to the positive side and a case where it is changed to the negative side.
- the case of changing to the positive side is shown on the upper side of FIG. 7B, and the case of changing to the negative side is shown on the lower side of FIG. 7B.
- the change point of the original output power command P original * to the positive side To the corrected output power command P out * is increased by ⁇ P sch during the period of time ⁇ t sch .
- the time ⁇ t sch during which more or less is supplied at the change point is determined by the response time (dynamic response time) of the dynamic response of the new energy source integrated power conversion device 100 that is the power conversion device. .
- the active power ⁇ P sch that supplies more or less power is determined by the compensation energy ⁇ E sch at the time ⁇ t sch . That is, the response time for the input change of the power change determining means changes according to the total amount of change of the input power.
- the time for calculating the power and the amount of power in the first virtual synchronous inertia control means 108 needs to be considered in the time series power command (time series power command means 408).
- the fluctuation of the DC voltage in the DC capacitor 105 is alleviated by the corrected output power command P out * shown in FIGS. 7A and 7B.
- FIG. 8 is a diagram showing a characteristic example of the second virtual synchronous inertia control means in the case where the mode corresponding inertia adjustment means (306) is not provided in the second comparative example.
- command means 408 is not used.
- the vertical axis represents the input voltage V dc , the residual energy ⁇ E pcs , the moment of inertia J, the angular velocity ⁇ PCS of the rotor, the input power (mechanical input) P in , and the output power P out .
- pu pu
- the horizontal axis is time (time transition).
- FIG. 8 is a case where there is no mode-compatible inertia adjusting means of the second comparative example, so that the inertia moment J indicated by the characteristic line 2003 always maintains a constant value.
- the power conversion device new energy source integrated power conversion device
- the input voltage V dc the residual energy ⁇ E pcs , the angular velocity ⁇ PCS of the rotor, the input The power (mechanical input) P in and the output power P out change. Even if each of the above characteristics changes after 0.5 seconds, the corrected output power command P out * is constant and is not an appropriate control.
- the output power P out is Although it decreases, it becomes an oscillation waveform.
- the input voltage V dc in the DC capacitor 105 is changed (characteristic line 2001) by the residual energy ⁇ E pcs (characteristic line 2002) that changes and remains in the DC capacitor 105 of the power converter.
- the voltage of the DC capacitor 105 reaches a voltage value of 2.4 [pu], which is 2.4 times the normal value in the transitional period of fluctuation (peak value 2001P of the characteristic line 2001).
- the capacitance value of the DC capacitor 105 is increased, the peak value (2001 P) of the voltage of the DC capacitor 105 can be reduced. Further, by increasing the capacitance value of the DC capacitor 105, an excessive voltage is suppressed and stable operation is brought about. However, increasing the capacitance value of the DC capacitor 105 causes an increase in the cost of the power converter.
- FIG. 9 is a diagram showing a characteristic example of the second virtual synchronous inertia control means when the mode corresponding inertia adjustment means (306) of the first comparative example is provided.
- the time series power command means 408 FIG. 7A
- the mode corresponding inertia adjustment means (306) is provided.
- the vertical axis represents the input voltage V dc , the residual energy ⁇ E pcs , the moment of inertia J, the angular velocity ⁇ PCS of the rotor, the input power P in , and the output power P out .
- pu pu
- the horizontal axis is time (time transition).
- the moment of inertia J changes in the transition period and thereafter (characteristic line 3003).
- the characteristic shown in FIG. 9 of the first comparative example is different from the characteristic shown in FIG. 8 of the second comparative example. This difference is caused by a difference in control of the moment of inertia J in the transition period.
- the inertia moment J (characteristic line 2003) in FIG. 8 is a constant value without being controlled, but the inertia moment J (characteristic line 3003) in FIG. 9 is finely controlled and changes.
- the transient oscillation phenomenon of the output power P out (characteristic line 2006: FIG. 8) at the output terminal in the second comparative example is shown in the first comparative example.
- the characteristic line 3006 (FIG. 9)
- the transient phenomenon of the output power P out (characteristic line 3006) is quickly attenuated and converged.
- the peak value in the transient state of the input voltage V dc (characteristic line 3001) in FIG. 9 of the first comparative example is the peak value in the transient state of the input voltage V dc (characteristic line 2001) in FIG. 8 of the second comparative example.
- the voltage value reaches 2.4 [pu], which is almost the same as the above. Therefore, as a virtual synchronous power conversion device, in terms of control for suppressing an excessive voltage and bringing about stable operation, the first comparative example is similar to the second comparative example in the capacitance value of the DC capacitor 105. It is necessary to take measures such as further increasing.
- FIG. 10 is a diagram illustrating an example of characteristics when the first virtual synchronous inertia control unit 108 according to the first embodiment of the present invention is used.
- the vertical axis represents the input voltage V dc , the residual energy ⁇ E pcs , the moment of inertia J, the angular velocity ⁇ PCS of the rotor, the input power P in , and the output power P out .
- the corrected output power command P out * (characteristic line 1007) shown in FIG. 7B is also described in the term of output power P out .
- pu which is the unit method, for all items whose residual energy ⁇ E pcs is other than [MJ].
- the horizontal axis is time (time transition). Due to the effect of the output power command P out * (characteristic line 1007) in FIG. 10, the peak value (1001P) in the transient state of the input voltage V dc (characteristic line 1001) in the transient period is a voltage value of 2.1 [pu]. Thus, the input voltage V dc of the first comparative example and the second comparative example is decreased with respect to the peak value of 2.4 [pu] in the transient state. Thus, it is desirable for the power converter (new energy source integrated power converter 100) to reduce the peak value.
- the corrected output power command P out * (characteristic line 1007) in FIG. 10 shows the case where the upper original output power command P original * in FIG. 7B is changed to the positive side.
- FIG. 10 does not show a case where the lower original output power command P original * in FIG. 7B is changed to the negative side, but the transient state of the input voltage V dc even though there is a difference between the positive side and the negative side. Since the action of reducing the peak value at is substantially the same, a duplicate description is omitted.
- the first virtual synchronous inertia control unit 108 includes the second virtual synchronous inertia control unit 110 and the power change determination unit 111.
- the second virtual synchronous inertia control means 110 has a function of controlling the virtual synchronous inertia moment as described above.
- the power change determining unit 111 has a function (active power control) for adjusting and controlling the effective output power in combination with the second virtual synchronous inertia control unit 110.
- the power change determination unit 111 includes an output power change command unit 407 provided with a time series power command unit 408 that prescribes in detail a response to a power change.
- the new energy source integrated power conversion device 100 has an energy difference between the input and output of the power conversion device (100) when a power fluctuation mainly caused by the new energy source 101 occurs. (Power difference) is mitigated transiently. For this reason, the voltage of the DC capacitor 105 provided on the input side of the inverter 104 is maintained in a normal operation range (operation range). With this function, the power conversion device (100) based on the virtual synchronous inertia control is protected from a sudden environmental change of the new energy source 101 (FIG. 1), and the operation stop is avoided.
- the new energy source integrated power conversion device 100 of the first embodiment of the present invention even when there is a power fluctuation in the new energy source 101, the influence of the fluctuation is quickly reduced and converged. be able to. That is, there is an effect that a large moment of inertia can be applied equivalently to the new energy source (front end + back end) via the new energy source integrated power conversion device 100. Therefore, it is possible to provide a power conversion device (new energy source integrated power conversion device 100) that improves power quality for a transmission line network having a new energy source.
- the voltage transiently generated in the DC capacitor in the new energy source integrated power conversion device 100 can be reduced, the effect of contributing to the stable operation and reliability of the new energy source integrated power conversion device 100 is achieved. There is.
- the above effect can be realized without increasing the capacitance of the DC capacitor in the new energy source integrated power converter 100, the same effect can be achieved at a lower cost compared to the method of increasing the capacitance of the DC capacitor. There is an effect that it can be realized and provided.
- FIGS. 11A to 11B, FIGS. 12 to 14, and FIGS. 15A to 15C A new energy source integrated power converter 100B according to a second embodiment of the present invention will be described with reference to FIGS. 11A to 11B, FIGS. 12 to 14, and FIGS. 15A to 15C as appropriate.
- FIG. 11A is a diagram showing a configuration of a new energy source integrated power conversion device 100B according to the second embodiment of the present invention and a connection relationship between the new energy source 101 and the three-phase AC power source 102.
- FIG. 11B is a diagram showing an equivalent circuit of the third virtual synchronous inertia control means 508 of the new energy source integrated power conversion device 100B according to the second embodiment of the present invention.
- a new energy source integrated power converter (power converter) 100B includes an inverter 104, a DC capacitor 105, detectors (voltage / current detectors) 106 and 107, first virtual synchronous inertia control means 508, PWM control. Means 109 are provided. Further, the new energy source integrated power conversion device 100B receives power of effective input power P dc from a new energy source 101 that is a front end of a new energy source typified by solar power generation or wind power generation.
- FIG. 11B shows an equivalent circuit of the third virtual synchronous inertia control means 508 as described above.
- the third virtual synchronous inertia control means 508 indicates selection by the switching means 514 by a flag signal F which is a power change command to be described later.
- the third virtual synchronous inertia control means 508 will be described.
- FIG. 12 is a diagram illustrating an example of the configuration of the third virtual synchronous inertia control unit 508 in the new energy source integrated power conversion device 100B according to the second embodiment of the present invention.
- the third virtual synchronous inertia control means 508 includes a second virtual synchronous inertia control means 110, a power change determination means 511, a virtual impedance value determination means 512, a virtual impedance control means 513, and a switching means. 514 and a combining means (adder) 519.
- the third virtual synchronization inertia control means 508 the input side and the voltage V dc and the current I dc of the output side of the voltage V and the current I and the output frequency omega g and the inverter 104 of the inverter 104, the output power command P * , Have entered. Then, the third virtual synchronous inertia control means 508 outputs a reference command E * ⁇ * .
- Power change determining means 511 the input signal and the command (V dc, I dc, V , I, P *) by correcting the output power command P out *, and the signal [Delta] P out of the variation (difference) * Then, a flag signal F is transmitted to notify that the change of the power command is determined. Then, the power change determining unit 511 supplies the corrected output power command P out * to the second virtual synchronous inertia control unit 110 and the virtual impedance value determining unit 512 of the corrected output power command P out * . A change (difference) signal ⁇ P out * is supplied. Further, the power change determination unit 511 supplies the flag signal F to the virtual impedance value determination unit 512 and the switching unit 514.
- the second virtual synchronous inertia control means 110 performs control based on the output side voltage V, current I, output frequency ⁇ g of the inverter 104 (FIG. 11A), and the corrected output power command P out * .
- a provisional reference command signal E ⁇ which is a command, is output.
- Virtual impedance value determination unit 512 the signal [Delta] P out * and flag signal F of change in the corrected output power command (differential), and calculates a virtual impedance value X V.
- Virtual impedance control unit 513 by using the virtual impedance value X V and the output side of the current I, to derive a corrected reference command. Specifically, the phase of the current I -90 degrees (- [pi] / 2), with varying signal as a correction reference instruction the amplified refers to the virtual impedance value X V (buffer), a switching means 514 Sending to 2 input terminals.
- the switching means 514 selects the correction reference command for the second input terminal or 0 (no change) for the first input terminal by the flag signal F, and outputs the output signal to the second terminal of the synthesizing means (adder) 519. You are typing. When the flag signal F is raised, the correction reference command output from the virtual impedance control means 513 is selected.
- the provisional reference command E ⁇ which is the output of the second virtual synchronous inertia control means 110, is input to the first terminal of the synthesis means (adder) 519.
- the synthesizing unit (adder) 519 synthesizes (adds) the correction reference command related to the control of the virtual impedance value of the switching unit 514 and the provisional command signal E ⁇ that is the output of the second virtual synchronous inertia control unit 110. To output a reference command E * * ⁇ * .
- the adjustment of the virtual output impedance is further improved. That is, when the power conversion device (new energy source integrated power conversion device 100B) performs the operation (operation) of the power adjustment change, the direct current in the DC capacitor 105 (FIG. 11A) is temporarily inserted by inserting virtual impedance control. Large deviations in voltage can be avoided.
- the second virtual synchronous inertia control means 110 is as described above with reference to FIG. 3 (first embodiment) and FIG. 4 (first comparative example). Details of each of the power change determination unit 511 and the virtual impedance value determination unit 512 will be described later.
- FIG. 13 is a diagram illustrating an example of the configuration of the power change determination unit 511 in the new energy source integrated power conversion device 100B according to the second embodiment of the present invention.
- the power change determination means 511 includes power calculation means 401 and 402, a high pass filter (HPF) 403, an absolute value calculation means (ABS) 404, a threshold comparison determination means 405, a flag generation means 406, and an output power change command means. 609 is configured.
- HPF high pass filter
- ABS absolute value calculation means
- the output power change command unit 609 is different from the power change determination unit 111 shown in FIG. The detailed configuration and operation of the output power change command unit 609 will be described later. However, since the output power change command unit 609 is provided in the power change determination unit 511, the power change determination unit 511 receives the corrected output power command P out * signal ⁇ P of not only the corrected output power command P out * change of the (difference) out * is output.
- Other configurations in FIG. 13 are the same as the configurations having the same reference numerals in FIG.
- FIG. 14 is a diagram illustrating an example of the configuration of the output power change command unit 609 in the new energy source integrated power conversion device 100B according to the second embodiment of the present invention.
- the output power change command unit 609 includes an absolute value calculation unit (ABS) 610, a holding unit 611, a switching unit 612, and a difference unit (difference unit) 613.
- the output power change command means 609 receives the effective input power P dc from the new energy source 101, the output power command P *, and the flag signal F of the flag generation means 406.
- the output power change command means 609 outputs a corrected output power command P out * and a signal ⁇ P out * of a change (difference) in the corrected output power command.
- the output power command P * and the effective input power P dc are input to the differentiator 613, and the difference between the output power command P * and the effective input power P dc is output.
- (ABS) 610 The absolute value calculating means (ABS) 610 calculates the absolute value of the difference between the output power command P * and the effective input power P dc and inputs it to the holding means 611.
- the output power command P * is input to the first terminal of the switching unit 612, and the effective input power P dc is input to the second terminal. Switching of signals in the switching means 612 is controlled by a flag signal F. When the flag signal F, which is a power change command, is not raised, the output power command P * is output as the corrected output power command P out * of the switching unit 612.
- the switching means 612 when the flag signal F which is a power change command is raised, the effective input power P dc is output as the corrected output power command P out * of the switching means 612.
- the holding means 611 holds the signal of the absolute value calculating means (ABS) 610 by this flag signal F and changes the corrected output power command. Minute (difference) signal ⁇ P out * is output.
- the corrected output power command Pout * is not the normal output power command P * but the effective input power P It is adjusted to fit dc .
- the reason is to prevent the voltage of the DC capacitor 105 (FIG. 11) from becoming unstable due to the active power that is imbalanced between the input and the output.
- the situation of the active power that has become unbalanced from the stable state is solved by changing the corrected output power command P out * .
- the method using the virtual impedance adjusts so that the voltage of the transient DC capacitor 105 deviates from the stable state.
- the absolute value of the output power command P * and the effective input power P dc is read, so that the operation by the power change command has started.
- the total amount by which the signal ⁇ P out * of the change (difference) in the corrected output power command is changed is detected.
- FIGS. 12 and 15A are diagrams illustrating examples of characteristics and operations of the virtual impedance value determining unit 512 according to the second embodiment of the present invention.
- FIG. 15A is a diagram illustrating an input signal, an output signal, and a control signal of the virtual impedance value determining unit 512 according to the second embodiment of the present invention.
- FIG. 15A is a diagram illustrating an input signal, an output signal, and a control signal of the virtual impedance value determining unit 512 according to the second embodiment of the present invention.
- FIG. 15B is a conversion diagram (map) showing the relationship between the input signal and the output signal of the virtual impedance value determining means 512 in the second embodiment of the present invention.
- Figure 15C is a diagram showing a time change of the virtual impedance value X V virtual impedance value determination unit 512 in the second embodiment of the present invention.
- the power change command flag signal F which is a control signal
- the virtual impedance value determining means 512 starts operation
- a signal indicating a change (difference) in the corrected output power command which is an input signal.
- a virtual impedance value X V is the output signal [Delta] P out *, and outputs.
- FIG. 15B the variation of the corrected output power command shown on the horizontal axis and the signal [Delta] P out * of (differential), the relationship between the virtual impedance value X V shown on the vertical axis is represented by a characteristic line 1501. Further, the point represented by “ ⁇ X S ” on the vertical axis in FIG. 15B indicates the impedance value of the impedance X S 103 as the grid of the three-phase AC power source 102 in FIG. In FIG. 15C, the vertical axis represents the virtual impedance value XV , and the horizontal axis represents time (time transition).
- FIG 15C shows the time variation of the virtual impedance value X V at the time the flag signal F and a control signal which is an instruction of the power change has a change.
- the virtual impedance value XV is converted from the change ⁇ f out * of the corrected output power command (difference) according to the conversion diagram (map). Calculated.
- FIG. 12 Figure 15A, Figure 15B, the virtual impedance value X V described by Figure 15C is input as the correction reference command to the second input terminal of the switching unit 514 in FIG. 12. That is, when the flag signal F is erected, the correction reference command by the virtual impedance value X V, 12, provisional reference command E ⁇ is corrected to the reference command E * ⁇ *.
- FIG. 16 is a diagram illustrating an example of characteristics when the third virtual synchronous inertia control unit 508 according to the second embodiment of the present invention is used.
- the vertical axis represents the input voltage V dc , the residual energy ⁇ E pcs , the moment of inertia J, the angular velocity ⁇ PCS of the rotor, the input power P in , and the output power P out .
- it is denoted together corrected output power command P out * in terms of the output power P out.
- pu (pu) is the unit method, for all items whose residual energy ⁇ E pcs is other than [MJ].
- the horizontal axis is time (time transition).
- the power conversion device (new energy source integrated power conversion device 100B) starts a power conversion operation (operation) 0.5 seconds later by the flag signal F. Therefore, the corrected output power command P out * (characteristic line 1107) is immediately changed. At this time, the output power P out (characteristic line 1106) of the power converter causes an oscillation phenomenon. However, promptly, this oscillation phenomenon is attenuated. This is because the moment of inertia J (characteristic line 1103) is changed. Further, in addition, insert a virtual impedance X V of the output terminal, the residual energy Delta] E pcs (characteristic line 1102: Figure 16) of the DC capacitor 105 of the power converter (11) because is suppressed.
- the residual energy ⁇ E pcs (characteristic line 1102: FIG. 16) is equal to the residual energy ⁇ E pcs (characteristic line 2002, second comparative example) in FIG. 8 and the residual energy ⁇ E pcs (characteristic line 3002, first line in FIG. 9). Smaller than Comparative Example).
- the peak value 1101P (about 2.1 pu) deviating from the input voltage V dc (characteristic line 1101: FIG. 16) of the DC capacitor 105 of the power converter (new energy source integrated power converter 100B) is as shown in FIG.
- the peak value 2001P (about 2.4 pu) deviating from the input voltage V dc (characteristic line 2001, second comparative example) of the DC capacitor 105 of the power converter, or the input voltage V of the DC capacitor 105 of the power converter of FIG. It is smaller than the peak value 3001P (about 2.4 pu) deviating from dc (characteristic line 3001, first comparative example). That is, the peak value shown in FIG. 16 of the second embodiment of the present invention is improved to 2.1 pu from the peak value of 2.4 pu in FIG. 8 of the second comparative example and FIG. 9 of the first comparative example. .
- the third virtual synchronous inertia control unit 508 includes the second virtual synchronous inertia control unit 110, the power change determination unit 511, the virtual impedance value determination unit 512, and the virtual impedance control unit 513.
- the second virtual synchronous inertia control means 110 has a function of controlling the virtual synchronous inertia moment as described above.
- the power change determination unit 511 has a function (active power control) for adjusting / controlling the effective power between the input power and the output power by combining with the second virtual synchronous inertia control unit 110. .
- the power change determination means 511 includes an effective input power P dc as an output power command P * for normal operation and a corrected output power command P out * when a flag signal F that is a power change command is raised, Output power change command means 609 for outputting a signal ⁇ P out * corresponding to a change in the corrected output power command is provided.
- Virtual impedance value determination means 512 calculates a virtual impedance value X V.
- Virtual impedance control unit 513 as described above, by using the virtual impedance value X V and the output side of the current I, to derive a corrected reference command.
- the switching means 514 selects the correction reference command for the second input terminal or 0 (no change) for the first input terminal by the flag signal F, and the output signal is combined with the combining means (adder) 519. To the second terminal.
- the synthesizing unit (adder) 519 includes the correction reference command related to the control of the virtual impedance value of the switching unit 514 and the provisional reference command signal E ⁇ that is the output of the second virtual synchronous inertia control unit 110. Are combined (added) to output a reference command E * ⁇ * .
- the temporary reference command signal E ⁇ is output as it is as the reference command E * ⁇ * .
- the new energy source integrated power conversion device 100B of the second embodiment is temporarily used when the power adjustment change operation (operation) is performed mainly when the power fluctuation caused by the new energy source 101 occurs.
- virtual impedance control By inserting virtual impedance control into the DC capacitor 105, a large deviation of the DC voltage in the DC capacitor 105 (FIG. 11A) can be avoided. For this reason, the voltage of the DC capacitor 105 provided on the input side of the inverter 104 is maintained in a normal operation range (operation range).
- the power converter (100B) based on the third virtual synchronous inertia control and the active power control is protected from a sudden environmental change of the new energy source 101 (FIG. 11A), and the operation stop is avoided. is there.
- the voltage transiently generated in the DC capacitor 105 in the new energy source integrated power conversion device 100B can be reduced, which contributes to the stable operation and reliability of the new energy source integrated power conversion device 100B. effective. Further, since the above effect can be realized without increasing the capacitance of the DC capacitor in the new energy source integrated power conversion device 100B, the same effect can be achieved at a lower cost compared to the method of increasing the capacitance of the DC capacitor. There is an effect that it can be realized and provided.
- ⁇ Switching means> In FIG. 2, the switching elements (201 to 206) have been described as IGBTs, but the present invention is not limited to this.
- a MOSFET Metal-Oxide-Semiconductor-Field-Effect-Transistor
- a super junction MOSFET may be used.
- First virtual synchronous inertia control means >> In FIG. 1, the first virtual synchronous inertia control unit 108 is represented as one functional block. However, as shown in FIG. 3, the second virtual synchronous inertia control unit 110 and the power change determining unit 111 are separated into separate functional blocks. You may comprise as.
- Detector, detection means >> 1 and 11A, a detector (first detection means) 106 that detects the voltage and current on the input side of the inverter 104 and a detector (second detection) that detects the voltage and current on the output side of the inverter 104. Means) 107 has been described and explained separately. However, since the voltage and current of the input side and output side of the inverter 104 may be detected, the configuration is not limited to the two detectors 106 and 107.
- the detectors 106 and 107 may be integrated, or the detectors 106 and 107 may be divided into a voltage detector and a current detector, respectively, and may be configured with four or more detectors.
- Output power change command means 7A shows an example in which the output power change command unit 407 includes the time series power command unit 408, the switching unit 410, and the gate unit 411.
- the flag signal F indicates that the time series power command unit 408 Since it is only necessary to switch between the time series power command and the output power command P * , the circuit is not limited to this circuit. For example, there is a circuit configuration in which the gate unit 411 is removed.
- Virtual impedance value determination means >>
- the virtual impedance value determination unit 512 the signal [Delta] P out * the virtual impedance value X by one conversion map by the relationship between the virtual impedance value X V of change in the corrected output power command shown in FIG. 15B (differential) and calculates the V.
- the conversion map is not limited to one.
- the characteristics (characteristic line 1501) of the conversion map may change due to various conditions. Therefore, there is a method of providing a plurality of conversion maps and switching them according to changes in various conditions.
- New energy source integrated power converter power converter 101 New energy source (front end of new energy source) 102 Three-phase AC power supply, three-phase AC power grid 103 Impedance (impedance as grid) 104 Inverter 105 DC capacitor, capacitor 106 Detector, voltage / current detector, detection means (first detection means) 107 detector, voltage / current detector, detection means (second detection means) 108 First virtual synchronous inertia control means 109 PWM control means 110 Second virtual synchronous inertia control means (virtual synchronous inertia control means) 111,511 Power change determining means 201-206 IGBT, switching element 207 reactor 301 power calculating means 302 VSG model, virtual synchronous generator model 303 integrating means (1 / s) 304 adjustment means, governor 305 voltage control means 306 mode corresponding inertia adjustment means 307 mode collation means S 308 Inertia value adjusting means 309 Composition means (multiplier) 401 Power calculation means (first power calculation means) 402
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
新エネルギー源の発電電力を所定の交流電力に変換して電力送電網に出力するインバータ104と、インバータを制御するPWM制御手段109と、インバータの入力の電圧と電流を検出する検出手段106と、インバータの出力の電圧と電流と周波数とを検出する検出手段107と、検出手段が検出した入力と出力のそれぞれの電圧と電流からインバータの入力電力と出力電力と、それらの電力の差異を算出するとともに、出力電力指令を参照して補正出力電力指令を算出する電力変更決定手段111と、第2の検出手段が検出した出力の電圧と電流と周波数と補正出力電力指令とを、基に仮想慣性特性を算出して、PWM制御手段へ参照指令を出力する仮想同期慣性制御手段110と、を備える。
Description
本発明は、新エネルギー源の電力を変換する新エネルギー源統合電力変換装置に関する。
COP21(国連気候変動枠組条約第21回締約国会議)の開催以降において、COP21の世界の参加各国は、風力発電や太陽光発電に代表される新エネルギー源を、従来の電力源に統合するための活動を、一層、促進している。
新エネルギー源の統合を図るためには、格子状の各拠点(グリッド)で連結された送電網における新エネルギー源の電力変換装置、およびその関連技術が不可欠である。その理由は、新エネルギー源は一般的に環境の急激な変化に影響を受けやすいので、前述の格子状の各拠点において新エネルギー源が生成した電力を調整、変換して送電網に連結する必要があるからである。
近い将来において、新エネルギー源の統合の中長期計画は現実化しつつあり、連結された送電網における電力の安定性の低下に関わる問題が予見されている。それは、新エネルギー源の電力変換装置が、電力変動を受けやすく、従来の主として同期発電機を用いた電力源のような同期機としての安定した慣性(イナーシャ)がないからである。
新エネルギー源の統合を図るためには、格子状の各拠点(グリッド)で連結された送電網における新エネルギー源の電力変換装置、およびその関連技術が不可欠である。その理由は、新エネルギー源は一般的に環境の急激な変化に影響を受けやすいので、前述の格子状の各拠点において新エネルギー源が生成した電力を調整、変換して送電網に連結する必要があるからである。
近い将来において、新エネルギー源の統合の中長期計画は現実化しつつあり、連結された送電網における電力の安定性の低下に関わる問題が予見されている。それは、新エネルギー源の電力変換装置が、電力変動を受けやすく、従来の主として同期発電機を用いた電力源のような同期機としての安定した慣性(イナーシャ)がないからである。
従来の電力システムでは、殆どの電力発電所では同期機が使用されている。これらの同期機は回転子を備えており、電力網との接続点(格子点)における周波数と同期した周波数で回転している。これらの回転子は、大きな慣性の回転モーメント(慣性モーメント)を有している。そのためすべての同期機が一緒に回転すると、非常に大きな慣性の回転モーメントと安定性を持って、電力網との接続点(格子点)の周波数である50Hzもしくは60Hzで安定して回転している。
しかしながら、電力網に格子点から接続される新エネルギー源が増加するにつれ、相対的に電力網の安定性が低減する。それは前記の新エネルギー源における電力変換装置が同期機としての慣性がなく、電力網の接続点(格子点)において連携性の少ない個別の電力源としてあたかも振る舞うからである。
しかしながら、電力網に格子点から接続される新エネルギー源が増加するにつれ、相対的に電力網の安定性が低減する。それは前記の新エネルギー源における電力変換装置が同期機としての慣性がなく、電力網の接続点(格子点)において連携性の少ない個別の電力源としてあたかも振る舞うからである。
この課題に対して、電力変換装置の仮想同期慣性(イナーシャ)制御が、新エネルギー源の電力網の安定性を向上させる一つの解決策として考えられる。
仮想同期慣性制御は、電力変換の制御アルゴリズムに同期機の特徴をもたらす。そのため、仮想同期慣性制御は、電力網の格子点における安定性をもたらす慣性を有する同期発電機のように振る舞う。
仮想同期慣性制御は、出力電力の発振を安定させる慣性モーメントを動的に調整する方法として知られている。しかしながら、新エネルギー源の電力生成の突然に喪失する状況においては、電力変換装置の出力は、電力バランスを維持するために、直ちに制限されなければならない。
この電力変換装置の出力を直ちに制限する操作がなされるが、その操作の期間において、実際の出力電力は、出力電力指令に従って動作する反応時間が必要である。
この状況(状態)は、電力変換装置の入力電力と出力電力との間に非常に大きなエネルギーの乖離をもたらす。それとともに、直流キャパシタ電圧が通常値の電圧から大きく逸脱する原因となる。
そのため、電力変換装置の操作と動作は不安定となることがある。
この理由によって、電力変換装置の出力電力を変更する間において、直流キャパシタ電圧の変動を緩和する方法が求められている。
仮想同期慣性制御は、電力変換の制御アルゴリズムに同期機の特徴をもたらす。そのため、仮想同期慣性制御は、電力網の格子点における安定性をもたらす慣性を有する同期発電機のように振る舞う。
仮想同期慣性制御は、出力電力の発振を安定させる慣性モーメントを動的に調整する方法として知られている。しかしながら、新エネルギー源の電力生成の突然に喪失する状況においては、電力変換装置の出力は、電力バランスを維持するために、直ちに制限されなければならない。
この電力変換装置の出力を直ちに制限する操作がなされるが、その操作の期間において、実際の出力電力は、出力電力指令に従って動作する反応時間が必要である。
この状況(状態)は、電力変換装置の入力電力と出力電力との間に非常に大きなエネルギーの乖離をもたらす。それとともに、直流キャパシタ電圧が通常値の電圧から大きく逸脱する原因となる。
そのため、電力変換装置の操作と動作は不安定となることがある。
この理由によって、電力変換装置の出力電力を変更する間において、直流キャパシタ電圧の変動を緩和する方法が求められている。
このような電力変換装置としては、例えば、特許文献1がある。
特許文献1の要約には、「本発明は、静止型電力コンバータに基く同期電力コントローラに関するものであり、前記コントローラは以下に参照される2つの主なブロック:ブロック1(電気ブロック)及びブロック2(電気機械ブロック)を備える。電気ブロック1(10)は仮想の電気特性制御コントローラ(11)と、仮想のアドミタンスコントローラ(12)とで形成されまた電気機械ブロック2(10)は仮想の超電力特性コントローラ(21)と、慣性及び減衰係数コントローラ(22)とで形成される。」と記載され、同期電力コントローラの技術が開示されている。
特許文献1の要約には、「本発明は、静止型電力コンバータに基く同期電力コントローラに関するものであり、前記コントローラは以下に参照される2つの主なブロック:ブロック1(電気ブロック)及びブロック2(電気機械ブロック)を備える。電気ブロック1(10)は仮想の電気特性制御コントローラ(11)と、仮想のアドミタンスコントローラ(12)とで形成されまた電気機械ブロック2(10)は仮想の超電力特性コントローラ(21)と、慣性及び減衰係数コントローラ(22)とで形成される。」と記載され、同期電力コントローラの技術が開示されている。
また、非特許文献1には、仮想同期回転子の回転周波数の状態に基づいて、慣性モーメント値を動的に調整制御することによって、出力端子の発振を安定化させる方法について開示されている。
J. Alipoor et al., "Power system stabilization using virtual synchronous generator with alternating moment of inertia," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 2, pp. 451-458, June 2015.
しかしながら、特許文献1、および非特許文献1に開示された技術では、電力変換装置の入力電力と出力電力との間に非常に大きなエネルギーの乖離を未だもたらしているという課題がある。特に、新エネルギー源の発生電力の突然の低下によって、電力指令値と差異が生じた状況においては、前記した電力変換装置の操作と動作が不安定となる課題がある。
本発明は、前記した課題に鑑みて創案されたものであって、新エネルギー源の発生電力の突然の低下が起きても電力変換装置の入力電力と出力電力の乖離を緩和し、安定した動作をする電力変換装置を提供することを課題とする。
前記の課題を解決するために、本発明を以下のように構成した。
すなわち、本発明の新エネルギー源統合電力変換装置は、新エネルギー源の発電電力を所定の交流電力に変換して電力送電網に出力するインバータと、該インバータを制御するPWM制御手段と、前記インバータの入力の電圧と電流を検出する第1の検出手段と、前記インバータの出力の電圧と電流と周波数とを検出する第2の検出手段と、前記第1,第2の検出手段が検出した入力と出力のそれぞれの電圧と電流から前記インバータの入力側の入力電力と出力側の出力電力と、前記入力電力と前記出力電力との差異を算出するとともに、出力電力指令を参照して補正出力電力指令を算出する電力変更決定手段と、前記第2の検出手段が検出した出力の電圧と電流と周波数と前記補正出力電力指令とを、基に仮想慣性特性を算出して、前記PWM制御手段へ参照指令を出力する仮想同期慣性制御手段と、を備え、前記電力変更決定手段の前記入力電力の変化に対する応答時間は、前記入力電力の変化した総量に応じて変化する、ことを特徴とする。
また、その他の手段は、発明を実施するための形態の中で説明する。
すなわち、本発明の新エネルギー源統合電力変換装置は、新エネルギー源の発電電力を所定の交流電力に変換して電力送電網に出力するインバータと、該インバータを制御するPWM制御手段と、前記インバータの入力の電圧と電流を検出する第1の検出手段と、前記インバータの出力の電圧と電流と周波数とを検出する第2の検出手段と、前記第1,第2の検出手段が検出した入力と出力のそれぞれの電圧と電流から前記インバータの入力側の入力電力と出力側の出力電力と、前記入力電力と前記出力電力との差異を算出するとともに、出力電力指令を参照して補正出力電力指令を算出する電力変更決定手段と、前記第2の検出手段が検出した出力の電圧と電流と周波数と前記補正出力電力指令とを、基に仮想慣性特性を算出して、前記PWM制御手段へ参照指令を出力する仮想同期慣性制御手段と、を備え、前記電力変更決定手段の前記入力電力の変化に対する応答時間は、前記入力電力の変化した総量に応じて変化する、ことを特徴とする。
また、その他の手段は、発明を実施するための形態の中で説明する。
本発明によれば、新エネルギー源の発生電力の突然の低下が起きても電力変換装置の入力電力と出力電力の乖離を緩和し、安定した動作をする電力変換装置を提供できる。
以下、本発明を実施するための形態(以下においては「実施形態」と表記する)を、適宜、図面を参照して説明する。
≪本発明の第1実施形態≫
本発明の第1実施形態に係る新エネルギー源統合電力変換装置(電力変換装置)100を、図を参照して説明する。なお、「新エネルギー源統合電力変換装置」を、適宜、「電力変換装置」と表記する。
図1は、本発明の第1実施形態に係る新エネルギー源統合電力変換装置100の構成の一例と、新エネルギー源(新エネルギー源のフロントエンド)101との接続、および電力送電網のグリッドである三相交流電源102との接続の関係を示す図である。
太陽光発電や風力発電などに代表される新エネルギー源は、そのまま直接、電力送電網に接続されるわけではない。その理由は、一般に新エネルギー源で生成する発電電力は、気象の変化などもあって、周波数や電圧が必ずしも安定して生成されないからである。そのため、電力変換装置で電力変換をしてから、電力送電網に配電される。
本発明の第1実施形態に係る新エネルギー源統合電力変換装置(電力変換装置)100を、図を参照して説明する。なお、「新エネルギー源統合電力変換装置」を、適宜、「電力変換装置」と表記する。
図1は、本発明の第1実施形態に係る新エネルギー源統合電力変換装置100の構成の一例と、新エネルギー源(新エネルギー源のフロントエンド)101との接続、および電力送電網のグリッドである三相交流電源102との接続の関係を示す図である。
太陽光発電や風力発電などに代表される新エネルギー源は、そのまま直接、電力送電網に接続されるわけではない。その理由は、一般に新エネルギー源で生成する発電電力は、気象の変化などもあって、周波数や電圧が必ずしも安定して生成されないからである。そのため、電力変換装置で電力変換をしてから、電力送電網に配電される。
なお、三相交流電源102は、網目状に構成された電力送電網が複数の電力の供給源を有して、その網目状の一つの格子点に相当している。そのため、前記の電力の供給源の一つである三相交流電源102を「グリッドである三相交流電源」、あるいは「三相交流電源グリッド」などと適宜、表記する。
また、電力送電網のグリッドである三相交流電源102から新エネルギー源を見た場合には、本来の新エネルギー源は、新エネルギー源のフロントエンドである新エネルギー源101と新エネルギー源のバックエンドである新エネルギー源統合電力変換装置100を備えて構成される。しかし、以降においては、表記の簡単化のために、単に、フロントエンドを「新エネルギー源101」、またバックエンドを「新エネルギー源統合電力変換装置100」と表記して扱う。
また、電力送電網のグリッドである三相交流電源102から新エネルギー源を見た場合には、本来の新エネルギー源は、新エネルギー源のフロントエンドである新エネルギー源101と新エネルギー源のバックエンドである新エネルギー源統合電力変換装置100を備えて構成される。しかし、以降においては、表記の簡単化のために、単に、フロントエンドを「新エネルギー源101」、またバックエンドを「新エネルギー源統合電力変換装置100」と表記して扱う。
また、太陽光発電や風力発電などに代表される新エネルギー源は、従来の主なエネルギー源である火力発電、水力発電、原子力発電などに比較すると、前記したように電力の供給が不安定である。しかしながら、電力を配送する送電網から見るときに、火力発電、水力発電、原子力発電の発電機と同様に扱えたら都合がよい。
したがって、新エネルギー源101の電力を変換するバッファである新エネルギー源統合電力変換装置100を、火力発電、水力発電、原子力発電などに用いられる慣性力のある同期発電機として見立て、仮想の同期発電機として取り扱うことがある。
そのため、新エネルギー源統合電力変換装置100において、仮想の同期発電機、仮想同期イナーシャ(仮想同期慣性)、慣性モーメント、調速機(調整機)、回転子角速度(仮想回転子角度)、機械入力などの概念や用語を、適宜、導入する。
したがって、新エネルギー源101の電力を変換するバッファである新エネルギー源統合電力変換装置100を、火力発電、水力発電、原子力発電などに用いられる慣性力のある同期発電機として見立て、仮想の同期発電機として取り扱うことがある。
そのため、新エネルギー源統合電力変換装置100において、仮想の同期発電機、仮想同期イナーシャ(仮想同期慣性)、慣性モーメント、調速機(調整機)、回転子角速度(仮想回転子角度)、機械入力などの概念や用語を、適宜、導入する。
《第1実施形態の新エネルギー源統合電力変換装置100の概要》
図1において、新エネルギー源統合電力変換装置(電力変換装置)100は、インバータ(直流-交流変換)104、直流コンデンサ105、検出器(電圧電流検出器)106,107、第1の仮想同期慣性制御手段108、PWM制御手段(パルス幅制御手段)109を備えている。
また、新エネルギー源統合電力変換装置100は、太陽光発電や風力発電などに代表される新エネルギー源の生成された当初の状態である新エネルギー源101から、直流電力を主とする有効電力(有効入力電力)Pdcの電力を入力している。
図1において、新エネルギー源統合電力変換装置(電力変換装置)100は、インバータ(直流-交流変換)104、直流コンデンサ105、検出器(電圧電流検出器)106,107、第1の仮想同期慣性制御手段108、PWM制御手段(パルス幅制御手段)109を備えている。
また、新エネルギー源統合電力変換装置100は、太陽光発電や風力発電などに代表される新エネルギー源の生成された当初の状態である新エネルギー源101から、直流電力を主とする有効電力(有効入力電力)Pdcの電力を入力している。
新エネルギー源統合電力変換装置100は、入力した電力(有効電力Pdc)を仮想的に電力のイナーシャ(慣性)を制御して、出力電力Poutとして電力送電網のグリッドである三相交流電源102に出力する。なお、電力送電網のグリッドである三相交流電源102は、新エネルギー源統合電力変換装置100側から見て、グリッドとしてのインピーダンスXS103を有している。また、三相交流電源102において、グリッドとしての電圧をEg、仮想回転子角度δを基準として0にとっているため、グリッドにおける三相交流電源102の電圧と位相(仮想回転子角度)の特性を「Eg∠0」と表記している。
新エネルギー源統合電力変換装置100は、新エネルギー源の電力が生成された初期状態の新エネルギー源101の直流電力を主とする有効電力Pdcを交流電力に変換するとともに、新エネルギー源101の電力に対して、仮想同期慣性制御(仮想同期イナーシャ制御)を行い、安定な電力として、電力送電網のグリッドである三相交流電源102に出力電力Poutを出力している。
新エネルギー源統合電力変換装置100は、新エネルギー源の電力が生成された初期状態の新エネルギー源101の直流電力を主とする有効電力Pdcを交流電力に変換するとともに、新エネルギー源101の電力に対して、仮想同期慣性制御(仮想同期イナーシャ制御)を行い、安定な電力として、電力送電網のグリッドである三相交流電源102に出力電力Poutを出力している。
《本発明の第1実施形態の新エネルギー源統合電力変換装置100の詳細》
図1において、新エネルギー源101から入力した電力(有効入力電力)Pdcを、直流コンデンサ105を介して、直流-交流変換するインバータ104に入力する。インバータ104は、三相交流に変換された電力(有効出力電力)Poutを出力する。なお、直流コンデンサ105は、新エネルギー源101から供給される電圧を平滑化、安定化させている。
また、検出器(電圧電流検出器、第1の検出手段)106は、インバータ104に入力する電力Pdcの電圧Vdcと電流Idcを検出する。検出器(電圧電流検出器、第2の検出手段)107は、インバータ104が出力した電力Poutの電圧Vと電流I、および電圧Vの出力周波数ωgを検出する。
図1において、新エネルギー源101から入力した電力(有効入力電力)Pdcを、直流コンデンサ105を介して、直流-交流変換するインバータ104に入力する。インバータ104は、三相交流に変換された電力(有効出力電力)Poutを出力する。なお、直流コンデンサ105は、新エネルギー源101から供給される電圧を平滑化、安定化させている。
また、検出器(電圧電流検出器、第1の検出手段)106は、インバータ104に入力する電力Pdcの電圧Vdcと電流Idcを検出する。検出器(電圧電流検出器、第2の検出手段)107は、インバータ104が出力した電力Poutの電圧Vと電流I、および電圧Vの出力周波数ωgを検出する。
第1の仮想同期慣性制御手段108は、前記の電圧Vdc、電流Idc、電圧V、電流I、出力周波数ωg、および出力電力指令P*を入力する。そして、第1の仮想同期慣性制御手段108は、参照指令E*∠δ*を生成し、PWM制御手段109に入力する。なお、「E*∠δ*」は、仮想の同期発電機の出力電圧Eと仮想回転子角度δの参照指令であることを表記している。
PWM制御手段109は、参照指令E*∠δ*に従い、インバータ104の制御に必要なパルスを生成して、インバータ104を駆動制御する。
なお、インバータ104と第1の仮想同期慣性制御手段108の詳細については後記する。
PWM制御手段109は、参照指令E*∠δ*に従い、インバータ104の制御に必要なパルスを生成して、インバータ104を駆動制御する。
なお、インバータ104と第1の仮想同期慣性制御手段108の詳細については後記する。
《本発明のインバータ104》
図2は、本発明の第1実施形態に係る新エネルギー源統合電力変換装置100に備えられるインバータ(直流-交流変換)104の構成例を示す図である。
図2において、インバータ104は、スイッチング素子であるIGBT(Insulated Gate Bipolar Transistor)201~206と複数のリアクトル207を備えている。なお、IGBT201~206のそれぞれに逆並列ダイオードが接続されている。
IGBT201~206は、PWM制御手段109で生成される制御信号によって、それぞれのオン・オフ(ON/OFF)とパルス幅が統合的に制御される。
この統合的な制御によって直流コンデンサ105(図1)の両端の直流電圧(Vdc)は、三相交流電圧(Vac)に変換される。
また、これらの三相交流電圧Vacは、複数のリアクトル207を介して出力される。複数のリアクトル207は、IGBT201~206のスイッチングによって生ずるリプル(ノイズ)の影響を低減する。
図2は、本発明の第1実施形態に係る新エネルギー源統合電力変換装置100に備えられるインバータ(直流-交流変換)104の構成例を示す図である。
図2において、インバータ104は、スイッチング素子であるIGBT(Insulated Gate Bipolar Transistor)201~206と複数のリアクトル207を備えている。なお、IGBT201~206のそれぞれに逆並列ダイオードが接続されている。
IGBT201~206は、PWM制御手段109で生成される制御信号によって、それぞれのオン・オフ(ON/OFF)とパルス幅が統合的に制御される。
この統合的な制御によって直流コンデンサ105(図1)の両端の直流電圧(Vdc)は、三相交流電圧(Vac)に変換される。
また、これらの三相交流電圧Vacは、複数のリアクトル207を介して出力される。複数のリアクトル207は、IGBT201~206のスイッチングによって生ずるリプル(ノイズ)の影響を低減する。
《本発明の第1実施形態の第1の仮想同期慣性制御手段108》
図3は、本発明の第1実施形態に係る新エネルギー源統合電力変換装置100に備えられる第1の仮想同期慣性制御手段108の構成例を示す図である。
図3において、第1の仮想同期慣性制御手段108は、第2の仮想同期慣性制御手段110と、電力変更決定手段111とを備えて構成される。
電力変更決定手段111は、検出器(電圧電流検出器)106の検出したインバータ104の入力側の電圧Vdcと電流Idcと、検出器(電圧電流検出器)107の検出したインバータ104の出力側の電圧Vと電流Iと、出力電力指令P*を入力している。
そして、これらの入力信号と指令(Vdc,Idc,V,I,P*)によって、電力変更決定手段111は、補正出力電力指令Pout *を生成し、第2の仮想同期慣性制御手段110に、この補正出力電力指令Pout *を入力している。
第2の仮想同期慣性制御手段110は、インバータ104の出力側の電圧Vと電流Iと出力周波数ωg、および前記の補正出力電力指令Pout *とによって制御し、参照指令E*∠δ*を出力する。
図3は、本発明の第1実施形態に係る新エネルギー源統合電力変換装置100に備えられる第1の仮想同期慣性制御手段108の構成例を示す図である。
図3において、第1の仮想同期慣性制御手段108は、第2の仮想同期慣性制御手段110と、電力変更決定手段111とを備えて構成される。
電力変更決定手段111は、検出器(電圧電流検出器)106の検出したインバータ104の入力側の電圧Vdcと電流Idcと、検出器(電圧電流検出器)107の検出したインバータ104の出力側の電圧Vと電流Iと、出力電力指令P*を入力している。
そして、これらの入力信号と指令(Vdc,Idc,V,I,P*)によって、電力変更決定手段111は、補正出力電力指令Pout *を生成し、第2の仮想同期慣性制御手段110に、この補正出力電力指令Pout *を入力している。
第2の仮想同期慣性制御手段110は、インバータ104の出力側の電圧Vと電流Iと出力周波数ωg、および前記の補正出力電力指令Pout *とによって制御し、参照指令E*∠δ*を出力する。
第2の仮想同期慣性制御手段110は、後記するように、第1比較例としての簡易的な仮想同期慣性制御手段である。
それに対して、本発明の第1実施形態の新エネルギー源統合電力変換装置100に用いられる第1の仮想同期慣性制御手段108は、前記の第2の仮想同期慣性制御手段110に、さらに電力変更決定手段111を用いて精緻に制御することによって、より優れた仮想同期慣性制御を実施するものである。
そのため、図3に示した第1の仮想同期慣性制御手段108の詳細な機能、動作の説明は、第1比較例として示す第2の仮想同期慣性制御手段110の構成、機能、動作を説明した後で、再度、説明する。
それに対して、本発明の第1実施形態の新エネルギー源統合電力変換装置100に用いられる第1の仮想同期慣性制御手段108は、前記の第2の仮想同期慣性制御手段110に、さらに電力変更決定手段111を用いて精緻に制御することによって、より優れた仮想同期慣性制御を実施するものである。
そのため、図3に示した第1の仮想同期慣性制御手段108の詳細な機能、動作の説明は、第1比較例として示す第2の仮想同期慣性制御手段110の構成、機能、動作を説明した後で、再度、説明する。
なお、図3に示した第1の仮想同期慣性制御手段108は、第2の仮想同期慣性制御手段110によって仮想同期慣性制御の機能を有し、電力変更決定手段111によってアクティブパワーコントロール(有効電力制御)の機能を有している。
ただし、有効電力制御の機能は、電力変更決定手段111のみならず、第2の仮想同期慣性制御手段110との組み合わせによって効果が鮮明となるので、図3に示すように、第2の仮想同期慣性制御手段110と電力変更決定手段111とを併せて表記している。
ただし、有効電力制御の機能は、電力変更決定手段111のみならず、第2の仮想同期慣性制御手段110との組み合わせによって効果が鮮明となるので、図3に示すように、第2の仮想同期慣性制御手段110と電力変更決定手段111とを併せて表記している。
<第1比較例>
第1比較例としての第2の仮想同期慣性制御手段110の構成、機能、動作ついて説明する。
第1比較例としての第2の仮想同期慣性制御手段110の構成、機能、動作ついて説明する。
《第1比較例の第2の仮想同期慣性制御手段110の構成》
図4は、第1比較例の第2の仮想同期慣性制御手段110の構成を示す図である。
図4において、第2の仮想同期慣性制御手段110は、電力計算手段301、VSGモデル(Virtual Synchronous Generator model、仮想同期発電機モデル)302、積分手段(1/s)303、調整手段(調速手段)304、電圧制御手段305、モード対応慣性調整手段306、合成手段(掛算器)309を備えて構成されている。
また、モード対応慣性調整手段306は、モード照合手段307と慣性値調整手段308とを具備している。
また、第2の仮想同期慣性制御手段110には、検出器(電圧電流検出器)107の検出したインバータ104の出力側の電圧Vと電流Iと出力周波数ωg、および前記の補正出力電力指令Pout *を入力している。そして、第2の仮想同期慣性制御手段110は、参照命令E*∠δ*を出力する。
図4は、第1比較例の第2の仮想同期慣性制御手段110の構成を示す図である。
図4において、第2の仮想同期慣性制御手段110は、電力計算手段301、VSGモデル(Virtual Synchronous Generator model、仮想同期発電機モデル)302、積分手段(1/s)303、調整手段(調速手段)304、電圧制御手段305、モード対応慣性調整手段306、合成手段(掛算器)309を備えて構成されている。
また、モード対応慣性調整手段306は、モード照合手段307と慣性値調整手段308とを具備している。
また、第2の仮想同期慣性制御手段110には、検出器(電圧電流検出器)107の検出したインバータ104の出力側の電圧Vと電流Iと出力周波数ωg、および前記の補正出力電力指令Pout *を入力している。そして、第2の仮想同期慣性制御手段110は、参照命令E*∠δ*を出力する。
電力計算手段301には、インバータ104の出力の電圧Vと電流Iが入力する。そして、電力計算手段301は、新エネルギー源統合電力変換装置100の出力の有効電力(有効出力電力)Poutと無効電力(無効出力電力)Qoutが算出される。
VSGモデル(仮想同期発電機モデル)302には、前記の出力の有効電力Poutと、出力周波数ωgと、調整手段(調速機)304の出力する電力(機械入力)Pinと、モード対応慣性調整手段306の出力する慣性モーメントJとを入力する。そして、VSGモデル302から仮想的な回転子の角速度ωPCSを算出する。そして、この回転子の角速度ωPCSの信号を、積分手段303と調整手段304とモード対応慣性調整手段306とに供給する。
調整手段304は、前記の出力電力指令Pout *と、出力周波数ωgと、回転子の角速度ωPCSの信号を入力する。そして、調整手段(調整機)304は、電力(機械入力)Pinを出力して、VSGモデル302に供給する。
モード対応慣性調整手段306は、前記の回転子の角速度ωPCSの信号と出力周波数ωgとを入力して、慣性モーメントJを算出する。そして、VSGモデル302に、前記の慣性モーメントJの信号を供給する。
調整手段304は、前記の出力電力指令Pout *と、出力周波数ωgと、回転子の角速度ωPCSの信号を入力する。そして、調整手段(調整機)304は、電力(機械入力)Pinを出力して、VSGモデル302に供給する。
モード対応慣性調整手段306は、前記の回転子の角速度ωPCSの信号と出力周波数ωgとを入力して、慣性モーメントJを算出する。そして、VSGモデル302に、前記の慣性モーメントJの信号を供給する。
また、積分手段(1/s)303は、VSGモデル302の出力である回転子の角速度ωPCSの信号を積分して、仮想的な回転子の角度(仮想回転子角度)δを算出する。そして、この仮想回転子角度δの信号を合成手段309に出力する。
電圧制御手段305は、インバータ104の出力側の電圧Vと、電力計算手段301の算出した無効電力Qoutと、無効電力指令Q*とを入力して、出力電圧Eを算出する。そして、この出力電圧Eの信号を合成手段309に出力する。
また、合成手段309において、出力電圧Eと仮想回転子角度δとを合成して、PWM制御信号E∠δを生成する。このPWM制御信号E∠δは、そのままPWM制御指令E*∠δ*となる。
第2の仮想同期慣性制御手段110は、PWM制御指令E*∠δ*を出力する。
電圧制御手段305は、インバータ104の出力側の電圧Vと、電力計算手段301の算出した無効電力Qoutと、無効電力指令Q*とを入力して、出力電圧Eを算出する。そして、この出力電圧Eの信号を合成手段309に出力する。
また、合成手段309において、出力電圧Eと仮想回転子角度δとを合成して、PWM制御信号E∠δを生成する。このPWM制御信号E∠δは、そのままPWM制御指令E*∠δ*となる。
第2の仮想同期慣性制御手段110は、PWM制御指令E*∠δ*を出力する。
なお、VSGモデル302は、調整手段(調速機)304との間で、回転子の角速度(回転子角速度)ωPCSの信号と電力(機械入力)Pinの信号によって、信号がループしている。
また、VSGモデル302は、モード対応慣性調整手段306との間で、回転子の角速度ωPCSの信号と慣性モーメントJの信号によって、信号がループしている。
これらの信号がループすることによって、演算が収束して解が得られる。
なお、VSGモデル(仮想同期発電機モデル)302の詳細については、後記する。
また、調整手段(調速機)304のモデルの詳細については、後記する。
また、電圧制御手段305の詳細と電圧制御モデルについては、後記する。
また、モード対応慣性調整手段306の詳細については、後記する。
また、慣性モーメントJの調整原理の詳細については、後記する。
また、VSGモデル302は、モード対応慣性調整手段306との間で、回転子の角速度ωPCSの信号と慣性モーメントJの信号によって、信号がループしている。
これらの信号がループすることによって、演算が収束して解が得られる。
なお、VSGモデル(仮想同期発電機モデル)302の詳細については、後記する。
また、調整手段(調速機)304のモデルの詳細については、後記する。
また、電圧制御手段305の詳細と電圧制御モデルについては、後記する。
また、モード対応慣性調整手段306の詳細については、後記する。
また、慣性モーメントJの調整原理の詳細については、後記する。
《第1比較例のVSGモデル302》
図4における第1比較例のVSGモデル302は、次の(1)式に従って、実行される。
図4における第1比較例のVSGモデル302は、次の(1)式に従って、実行される。
仮想的な同期機の回転子の特性によって、(1)式は、表記されている。
なお、(1)式において、Pinは機械入力(電力)、Poutは出力の有効電力、Jは慣性モーメント、ωPCSは回転子の角速度、ωgは出力周波数、Dは回転の振動抑制係数である。
以上の(1)式において、前記の各要素で表記されるのは、VSGモデル302が、システムの中に実際の機械(同期発電機)が備えられているわけではないからである。各要素の変化量は、仮想の同期発電機と、その回転子に関連している。
なお、(1)式において、Pinは機械入力(電力)、Poutは出力の有効電力、Jは慣性モーメント、ωPCSは回転子の角速度、ωgは出力周波数、Dは回転の振動抑制係数である。
以上の(1)式において、前記の各要素で表記されるのは、VSGモデル302が、システムの中に実際の機械(同期発電機)が備えられているわけではないからである。各要素の変化量は、仮想の同期発電機と、その回転子に関連している。
《第1比較例の調整手段(調速機)304のモデル》
同期発電機の制御においては、調整手段(調速機)304は、電力(パワー)を制御するために行われる。
第1比較例の仮想同期慣性制御においては、調整手段(調速機)304は、次の(2)式で表される線形の減衰の関係式によって実行される。
同期発電機の制御においては、調整手段(調速機)304は、電力(パワー)を制御するために行われる。
第1比較例の仮想同期慣性制御においては、調整手段(調速機)304は、次の(2)式で表される線形の減衰の関係式によって実行される。
ここで、Pinは機械入力(電力)、Pout
*は補正出力電力指令、ωPCSは積分された回転子の角速度、ωgは出力周波数、Kgovは調整手段(調速機)304に係る比例定数である。
なお、(2)式において、表記上の都合により、「P* out」と「Pout *」は同義語とする。
なお、(2)式において、表記上の都合により、「P* out」と「Pout *」は同義語とする。
《第1比較例の電圧制御手段305の電圧制御モデル》
図4において、電圧制御手段305は、出力端における無効電力(無効出力電力)Qoutを、無効電力指令値Q*に従って制御する。また、無効電力指令値Q*は、検出された出力電圧Vと出力端における無効電力Qoutを用いて、電圧制御手段305の出力端子における出力電圧Eを調整する。
この制御は、次の(3)式によるPI制御(proportional and integral control:比例積分制御)で行われる。
図4において、電圧制御手段305は、出力端における無効電力(無効出力電力)Qoutを、無効電力指令値Q*に従って制御する。また、無効電力指令値Q*は、検出された出力電圧Vと出力端における無効電力Qoutを用いて、電圧制御手段305の出力端子における出力電圧Eを調整する。
この制御は、次の(3)式によるPI制御(proportional and integral control:比例積分制御)で行われる。
ここで、前記したように、Eは電圧制御手段305の出力電圧、Vは検出器107が検出した電力変換装置(新エネルギー源統合電力変換装置)100の出力側の電圧、Q*は無効電力指令値、Qoutは電力計算手段301が算出した出力端における無効電力である。また、KPQは比例制御に関する比例定数であり、KIQは積分制御に関する比例定数である。
《第1比較例のモード対応慣性調整手段306》
図4における第1比較例のモード対応慣性調整手段306は、モード照合手段307と、慣性値調整手段308とを備えて構成されている。
モード照合手段307に、回転子の角速度ωPCSと、検出器107で検出した出力電圧(グリッドの出力電圧)の周波数による角速度ωgとを入力し、後記する関係によりモードを選択して、このモード(Mode)を慣性値調整手段308に入力する。
慣性値調整手段308は、選択されたモードによって、慣性モーメントJを動的に変更、選択して、第1比較例のVSGモデル302に、慣性モーメントJを伝達する。
このようにして、第1比較例の第2の仮想同期慣性制御手段110において、慣性モーメントJを最適化することで、第1比較例の第2の仮想同期慣性制御手段110を用いた第1比較例の新エネルギー源統合電力変換装置の出力端子における発振を防止し、安定化させている。
図4における第1比較例のモード対応慣性調整手段306は、モード照合手段307と、慣性値調整手段308とを備えて構成されている。
モード照合手段307に、回転子の角速度ωPCSと、検出器107で検出した出力電圧(グリッドの出力電圧)の周波数による角速度ωgとを入力し、後記する関係によりモードを選択して、このモード(Mode)を慣性値調整手段308に入力する。
慣性値調整手段308は、選択されたモードによって、慣性モーメントJを動的に変更、選択して、第1比較例のVSGモデル302に、慣性モーメントJを伝達する。
このようにして、第1比較例の第2の仮想同期慣性制御手段110において、慣性モーメントJを最適化することで、第1比較例の第2の仮想同期慣性制御手段110を用いた第1比較例の新エネルギー源統合電力変換装置の出力端子における発振を防止し、安定化させている。
《第1比較例の慣性モーメントJの調整原理》
図5Aと図5Bは、第1比較例の慣性モーメントJを調整する原理を示す図である。
図5Aは、第1比較例の慣性モーメントJを調整する原理を示すためのモード照合とその調整結果の関連を示す図である。図5Bは、第1比較例の慣性モーメントJを調整する原理を示すための各モードの関連を示す図である。
図5Aにおいて、モード照合手段307(図4)のモード照合と、モード照合によって定められるモードと、慣性値調整手段308(図4)の調整結果(調整)の各要素を示している。
図5Aに示すように、回転子の角速度ωPCSは、モード照合(モード照合手段307)によって、インバータ104(図1)の出力、すなわち電力送電網との接続点(グリッド、格子点)である三相交流電源102(図1)の周波数(角速度)ωgと比較される。
この比較した結果と、回転子の角速度ωPCSが増加しているか減少しているかによって、モード照合手段307で比較結果が判定される。
図5Aと図5Bは、第1比較例の慣性モーメントJを調整する原理を示す図である。
図5Aは、第1比較例の慣性モーメントJを調整する原理を示すためのモード照合とその調整結果の関連を示す図である。図5Bは、第1比較例の慣性モーメントJを調整する原理を示すための各モードの関連を示す図である。
図5Aにおいて、モード照合手段307(図4)のモード照合と、モード照合によって定められるモードと、慣性値調整手段308(図4)の調整結果(調整)の各要素を示している。
図5Aに示すように、回転子の角速度ωPCSは、モード照合(モード照合手段307)によって、インバータ104(図1)の出力、すなわち電力送電網との接続点(グリッド、格子点)である三相交流電源102(図1)の周波数(角速度)ωgと比較される。
この比較した結果と、回転子の角速度ωPCSが増加しているか減少しているかによって、モード照合手段307で比較結果が判定される。
図5Aにおいて、モード(Mode)1は、モード照合(モード照合手段307)において、ωPCS>ωgかつωPCSが増加している場合であり、このとき慣性モーメントJは、通常の場合におけるJnormalが選択される。
また、モード(Mode)2は、モード照合において、ωPCS>ωgかつωPCSが減少している場合であり、このとき慣性モーメントJは、通常の場合よりも小さい値のJsmallが選択される。
また、モード(Mode)3は、モード照合において、ωPCS<ωgかつωPCSが減少している場合であり、このとき慣性モーメントJは、通常の場合のJnormalが選択される。
また、モード(Mode)4は、モード照合において、ωPCS<ωgかつωPCSが増加している場合であり、このとき慣性モーメントJは、通常の場合よりも小さい値のJsmallが選択される。
なお、通常の場合におけるJnormalは、通常の場合に用いている慣性モーメントJを変化させないという意味でもある。
また、モード(Mode)2は、モード照合において、ωPCS>ωgかつωPCSが減少している場合であり、このとき慣性モーメントJは、通常の場合よりも小さい値のJsmallが選択される。
また、モード(Mode)3は、モード照合において、ωPCS<ωgかつωPCSが減少している場合であり、このとき慣性モーメントJは、通常の場合のJnormalが選択される。
また、モード(Mode)4は、モード照合において、ωPCS<ωgかつωPCSが増加している場合であり、このとき慣性モーメントJは、通常の場合よりも小さい値のJsmallが選択される。
なお、通常の場合におけるJnormalは、通常の場合に用いている慣性モーメントJを変化させないという意味でもある。
図5Bにおいて、ωPCSとωgとモード(Mode1~Mode4)との関係を図示している。また、Mode1およびMode4の近傍に付された右向きの矢印はωPCSが増加していることを示し、Mode2およびMode3の近傍に付された左向きの矢印はωPCSが減少していることを示している。
以上の図4および図5A、図5Bを参照して示した第1比較例の第2の仮想同期慣性制御手段110を用いた特性については、図8(第2比較例)と図9(第1比較例)とを参照して後記する。
しかしながら、図8(第2比較例)と図9(第1比較例)で説明する特性においては、後記するような改善点をまだ有している。
そのため、次に、さらに改良を加えた本発明(第1実施形態)を説明する。
しかしながら、図8(第2比較例)と図9(第1比較例)で説明する特性においては、後記するような改善点をまだ有している。
そのため、次に、さらに改良を加えた本発明(第1実施形態)を説明する。
《本発明の第1実施形態の電力変更決定手段111》
次に、本発明の第1実施形態に係る新エネルギー源統合電力変換装置100(図1)に備えられる第1の仮想同期慣性制御手段108における電力変更決定手段111(図3、図6)について詳しく説明する。なお、電力変更決定手段111は、前記した第1比較例の第2の仮想同期慣性制御手段110、および第1比較例そのものに存在しない構成要素である。
次に、本発明の第1実施形態に係る新エネルギー源統合電力変換装置100(図1)に備えられる第1の仮想同期慣性制御手段108における電力変更決定手段111(図3、図6)について詳しく説明する。なお、電力変更決定手段111は、前記した第1比較例の第2の仮想同期慣性制御手段110、および第1比較例そのものに存在しない構成要素である。
図6は、本発明の第1実施形態に係る電力変更決定手段111の構成の一例を示す図である。なお、前記したように第1実施形態は、第2の仮想同期慣性制御手段110と電力変更決定手段111とを備えた第1の仮想同期慣性制御手段108を用いることが特徴であるので、電力変更決定手段111が重要な役目をする。
図6において、電力変更決定手段111は、電力計算手段401,402、ハイパスフィルタ(HPF)403、絶対値算出手段(ABS)404、閾値比較判定手段405、フラッグ発生手段406、出力電力変更指令手段407を備えて構成されている。
また、電力変更決定手段111は、図3において説明したように、検出器(電圧電流検出器)106の検出したインバータ104の入力側の電圧Vdcと電流Idcと、検出器107の検出したインバータ104の出力側の電圧Vと電流Iと、出力電力指令P*とを入力している。
そして、これらの入力信号と指令(Vdc,Idc,V,I,P*)によって、電力変更決定手段111は、補正出力電力指令Pout *を生成し、第2の仮想同期慣性制御手段110に、この補正出力電力指令Pout *を供給している。
図6において、電力変更決定手段111は、電力計算手段401,402、ハイパスフィルタ(HPF)403、絶対値算出手段(ABS)404、閾値比較判定手段405、フラッグ発生手段406、出力電力変更指令手段407を備えて構成されている。
また、電力変更決定手段111は、図3において説明したように、検出器(電圧電流検出器)106の検出したインバータ104の入力側の電圧Vdcと電流Idcと、検出器107の検出したインバータ104の出力側の電圧Vと電流Iと、出力電力指令P*とを入力している。
そして、これらの入力信号と指令(Vdc,Idc,V,I,P*)によって、電力変更決定手段111は、補正出力電力指令Pout *を生成し、第2の仮想同期慣性制御手段110に、この補正出力電力指令Pout *を供給している。
電力計算手段(第1の電力計算手段)401には、検出器107で検出したインバータ104(図1)の出力の電圧Vと電流Iが入力する。そして、電力計算手段401は、新エネルギー源統合電力変換装置100の出力の有効電力(有効出力電力)Poutを算出する。
電力計算手段(第2の電力計算手段)402には、検出器106で検出したインバータ104の入力側の電圧Vdcと電流Idcが入力する。そして、電力計算手段402は、新エネルギー源統合電力変換装置100の入力の有効電力(有効入力電力)Pdcを算出する。
新エネルギー源統合電力変換装置100の出力の有効電力Poutと入力の有効電力Pdcは、差分手段409にそれぞれ入力する。
電力計算手段(第2の電力計算手段)402には、検出器106で検出したインバータ104の入力側の電圧Vdcと電流Idcが入力する。そして、電力計算手段402は、新エネルギー源統合電力変換装置100の入力の有効電力(有効入力電力)Pdcを算出する。
新エネルギー源統合電力変換装置100の出力の有効電力Poutと入力の有効電力Pdcは、差分手段409にそれぞれ入力する。
差分手段409において、出力の有効電力Poutと入力の有効電力Pdcの差が検出される。差分手段409の出力は、ハイパスフィルタ(HPF)403に入力する。
ハイパスフィルタ(HPF)403で高周波(ノイズ)成分が除去される。高周波成分を除去することによって、次の工程での精度が向上する。
ハイパスフィルタ(HPF)403の出力は、絶対値算出手段(ABS)404に入力する。絶対値算出手段(ABS)404に入力した信号は、絶対値算出手段404によって、その絶対値が算出される。絶対値をとるのは、出力電力Poutと入力電力Pdcの大小関係が二通りあるからである。
ハイパスフィルタ(HPF)403で高周波(ノイズ)成分が除去される。高周波成分を除去することによって、次の工程での精度が向上する。
ハイパスフィルタ(HPF)403の出力は、絶対値算出手段(ABS)404に入力する。絶対値算出手段(ABS)404に入力した信号は、絶対値算出手段404によって、その絶対値が算出される。絶対値をとるのは、出力電力Poutと入力電力Pdcの大小関係が二通りあるからである。
絶対値算出手段404の出力信号は、閾値比較判定手段405の一つの入力端子に入力する。閾値比較判定手段405のもう一つの入力端子には予め定められた閾値が入力している。閾値比較判定手段405において、前記の絶対値算出手段404の出力信号は、前記の予め定められた閾値と比較される。
絶対値算出手段(ABS)404の出力信号が、前記の閾値より小さいか等しい場合には、意図されていた電力変換操作は、引き続き、そのまま実行される。
しかしながら、絶対値算出手段(ABS)404の出力信号が、閾値より大きい場合には、意図されていた電力変換操作は変更する必要があることになる。
絶対値算出手段(ABS)404の出力信号が、前記の閾値より小さいか等しい場合には、意図されていた電力変換操作は、引き続き、そのまま実行される。
しかしながら、絶対値算出手段(ABS)404の出力信号が、閾値より大きい場合には、意図されていた電力変換操作は変更する必要があることになる。
もしこの電力変換操作を変更しない場合には、絶対値算出手段404の出力信号が、閾値より大きい状態が続いて、直流コンデンサ105(図1)の直流電圧が変化しつづける状態となって、電力変換装置が動作を停止する結果となる。
そのため、閾値比較判定手段405において、絶対値算出手段(ABS)404の出力信号が閾値より大きくなる場合には、フラッグ発生手段406が活性化して作動し、その状態の警告のフラッグ信号Fを立てる。そして、そのフラッグ信号Fを出力電力変更指令手段407に送る。
出力電力変更指令手段407は、前記のフラッグ信号Fと、電力計算手段402の出力信号である有効入力電力Pdcと、出力電力指令P*とを入力している。出力電力変更指令手段407は、前記の三つの信号を参照して、補正出力電力指令Pout *を出力する。また、補正出力電力指令Pout *の設定が初期化される。
そのため、閾値比較判定手段405において、絶対値算出手段(ABS)404の出力信号が閾値より大きくなる場合には、フラッグ発生手段406が活性化して作動し、その状態の警告のフラッグ信号Fを立てる。そして、そのフラッグ信号Fを出力電力変更指令手段407に送る。
出力電力変更指令手段407は、前記のフラッグ信号Fと、電力計算手段402の出力信号である有効入力電力Pdcと、出力電力指令P*とを入力している。出力電力変更指令手段407は、前記の三つの信号を参照して、補正出力電力指令Pout *を出力する。また、補正出力電力指令Pout *の設定が初期化される。
《本発明の第1実施形態の出力電力変更指令手段407》
次に、前記の出力電力変更指令手段407の詳細な構成と動作について説明する。
図7Aは、本発明の第1実施形態に係る出力電力変更指令手段407の構成例を示す図である。
図7Bは、本発明の第1実施形態に係る出力電力変更指令手段407の動作を示す図である。
なお、出力電力変更指令手段407は、本発明の第1実施形態に係る新エネルギー源統合電力変換装置100に備えられる第1の仮想同期慣性制御手段108の電力変更決定手段111に具備されている。
図7Aにおいて、出力電力変更指令手段407は、時系列電力指令手段408と切替手段410とゲート手段411とを有している。また、出力電力変更指令手段407には、出力電力指令P*と新エネルギー源101からの有効入力電力Pdcと、フラッグ発生手段406からのフラッグ信号Fとが入力されている。そして、出力電力変更指令手段407からは、補正出力電力指令Pout *が出力されている。
次に、前記の出力電力変更指令手段407の詳細な構成と動作について説明する。
図7Aは、本発明の第1実施形態に係る出力電力変更指令手段407の構成例を示す図である。
図7Bは、本発明の第1実施形態に係る出力電力変更指令手段407の動作を示す図である。
なお、出力電力変更指令手段407は、本発明の第1実施形態に係る新エネルギー源統合電力変換装置100に備えられる第1の仮想同期慣性制御手段108の電力変更決定手段111に具備されている。
図7Aにおいて、出力電力変更指令手段407は、時系列電力指令手段408と切替手段410とゲート手段411とを有している。また、出力電力変更指令手段407には、出力電力指令P*と新エネルギー源101からの有効入力電力Pdcと、フラッグ発生手段406からのフラッグ信号Fとが入力されている。そして、出力電力変更指令手段407からは、補正出力電力指令Pout *が出力されている。
ゲート手段411は、フラッグ信号Fによって開閉される。ゲート手段411の入力側は有効入力電力Pdcの信号が入力され、出力側は原出力電力指令Poriginal
*となる。
時系列電力指令手段408の第1端子には原出力電力指令Poriginal *が入力し、時系列電力指令手段408において、図7Bで後記するように信号が変換され、第2端子から補正出力電力指令Pout *となって出力される。
切替手段410の第1端子には、出力電力指令P*が入力し、第2端子には時系列電力指令手段408の出力の補正出力電力指令Pout *が入力している。また、切替手段410は、フラッグ信号Fによって第1端子と第2端子との信号の切り替えが制御される。
時系列電力指令手段408の第1端子には原出力電力指令Poriginal *が入力し、時系列電力指令手段408において、図7Bで後記するように信号が変換され、第2端子から補正出力電力指令Pout *となって出力される。
切替手段410の第1端子には、出力電力指令P*が入力し、第2端子には時系列電力指令手段408の出力の補正出力電力指令Pout *が入力している。また、切替手段410は、フラッグ信号Fによって第1端子と第2端子との信号の切り替えが制御される。
切替手段410において、フラッグ信号Fが立っていない場合には、通常状態として、第1端子の出力電力指令P*が選択される。そして、出力電力指令P*がそのまま補正出力電力指令Pout
*として、出力される。
また、フラッグ信号Fが立っている場合には、電力変更が必要とされて、新エネルギー源101からの有効入力電力Pdcがゲート手段411を通過し、原出力電力指令Poriginal *となって、時系列電力指令手段408に入力する。前記したように、時系列電力指令手段408は、原出力電力指令Poriginal *を補正出力電力指令Pout *に変換する。
そして、切替手段410においては、フラッグ信号Fが立っているので、第2端子の時系列電力指令(時系列電力指令手段408の指令)を反映した補正出力電力指令Pout *が、切替手段410の出力信号として出力される。
また、フラッグ信号Fが立っている場合には、電力変更が必要とされて、新エネルギー源101からの有効入力電力Pdcがゲート手段411を通過し、原出力電力指令Poriginal *となって、時系列電力指令手段408に入力する。前記したように、時系列電力指令手段408は、原出力電力指令Poriginal *を補正出力電力指令Pout *に変換する。
そして、切替手段410においては、フラッグ信号Fが立っているので、第2端子の時系列電力指令(時系列電力指令手段408の指令)を反映した補正出力電力指令Pout *が、切替手段410の出力信号として出力される。
すなわち、図6のフラッグ発生手段406でフラッグ信号Fが立って、有効電力の乖離が検出された場合には、原出力電力指令Poriginal
*として、新エネルギー源101からの有効入力電力Pdcを用いる方が、通常状態の出力電力指令P*で有効電力の不均衡による直流コンデンサ105の電圧の不安定を防止する方法よりも、前記の有効電力の乖離が調整される。
このように、出力電力指令を変更することが有効電力の不均衡を安定化させることの解決策となる。
しかし、出力電力変更指令の過渡期においては、直流コンデンサ105の直流電圧の大きな逸脱に対処する必要がある。
したがって、時系列電力指令(時系列電力指令手段408)においては、具体的に、前記の過渡期における直流コンデンサ105の直流電圧の大きな逸脱を緩和する方法をとる必要がある。
しかし、出力電力変更指令の過渡期においては、直流コンデンサ105の直流電圧の大きな逸脱に対処する必要がある。
したがって、時系列電力指令(時系列電力指令手段408)においては、具体的に、前記の過渡期における直流コンデンサ105の直流電圧の大きな逸脱を緩和する方法をとる必要がある。
図7Bは、前記の過渡期における具体的な対策を示すものである。
図7Bにおいて、原出力電力指令Poriginal *を正側に変化させる場合と、負側に変化される場合を表記している。正側に変化させる場合を図7Bの上側に、負側に変化される場合を図7Bの下側に示している。
図7Bの上側(正電力変更)に示すように、原出力電力指令Poriginal *を正側に変化させる場合(正電力変更)には、原出力電力指令Poriginal *の正側への変化点から時間Δtschの間において、補正出力電力指令Pout *をΔPschだけ多くなるように指令する。そして、時間Δtschの間にエネルギーとして、ΔEsch=ΔPsch・Δtschをより多く供給して、その後は、補正出力電力指令Pout *を、原出力電力指令Poriginal *と同じ電力量とする。
このように、変化点において、ΔEsch=ΔPsch・Δtschをより多く供給することにより、過渡期の直流コンデンサ105における電圧の大きな逸脱を緩和する。
図7Bにおいて、原出力電力指令Poriginal *を正側に変化させる場合と、負側に変化される場合を表記している。正側に変化させる場合を図7Bの上側に、負側に変化される場合を図7Bの下側に示している。
図7Bの上側(正電力変更)に示すように、原出力電力指令Poriginal *を正側に変化させる場合(正電力変更)には、原出力電力指令Poriginal *の正側への変化点から時間Δtschの間において、補正出力電力指令Pout *をΔPschだけ多くなるように指令する。そして、時間Δtschの間にエネルギーとして、ΔEsch=ΔPsch・Δtschをより多く供給して、その後は、補正出力電力指令Pout *を、原出力電力指令Poriginal *と同じ電力量とする。
このように、変化点において、ΔEsch=ΔPsch・Δtschをより多く供給することにより、過渡期の直流コンデンサ105における電圧の大きな逸脱を緩和する。
また、図7Bの下側(負電力変更)に示すように、原出力電力指令Poriginal
*を負側に変化させる場合(負電力変更)には、原出力電力指令Poriginal
*の負側への変化点から時間Δtschの間において、補正出力電力指令Pout
*をΔPschだけ少なくなるように指令する。そして、時間Δtschの間にエネルギーとして、ΔEsch=ΔPsch・Δtschをより少なく供給して、その後は、補正出力電力指令Pout
*を、原出力電力指令Poriginal
*と同じ電力量とする。
このように、変化点において、ΔEsch=ΔPsch・Δtschをより少なく供給することにより、過渡期の直流コンデンサ105における電圧の大きな逸脱を緩和する。
このように、変化点において、ΔEsch=ΔPsch・Δtschをより少なく供給することにより、過渡期の直流コンデンサ105における電圧の大きな逸脱を緩和する。
なお、変化点において、より多く、またはより少なく供給する期間の時間Δtschは、電力変換装置である新エネルギー源統合電力変換装置100のダイナミック応答の応答時間(動的応答時間)によって決定される。
また、電力量をより多く、または、より少なく供給する有効電力ΔPschは、時間Δtschにおける補償エネルギーΔEschによって決定される。すなわち、電力変更決定手段の入力変化に対する応答時間は、入力電力の変化した総量に応じて変化する。
また、第1の仮想同期慣性制御手段108において電力および電力量を計算する時間も時系列電力指令(時系列電力指令手段408)において考慮する必要がある。
この図7A、図7Bに示した補正出力電力指令Pout *によって、直流コンデンサ105における直流電圧の変動は緩和される。
また、電力量をより多く、または、より少なく供給する有効電力ΔPschは、時間Δtschにおける補償エネルギーΔEschによって決定される。すなわち、電力変更決定手段の入力変化に対する応答時間は、入力電力の変化した総量に応じて変化する。
また、第1の仮想同期慣性制御手段108において電力および電力量を計算する時間も時系列電力指令(時系列電力指令手段408)において考慮する必要がある。
この図7A、図7Bに示した補正出力電力指令Pout *によって、直流コンデンサ105における直流電圧の変動は緩和される。
<本発明(第1実施形態)と比較例の仮想同期慣性制御の特性比較>
次に、本発明(第1実施形態)と比較例の仮想同期慣性制御の特性を比較して説明する。
なお、比較例として第1比較例と第2比較例がある。
第2比較例は、図4におけるモード対応慣性調整手段306を備えていない場合である。
第1比較例は、図4におけるモード対応慣性調整手段306を備えている場合である。
次に、比較例の第1比較例と第2比較例について、順に説明する。
次に、本発明(第1実施形態)と比較例の仮想同期慣性制御の特性を比較して説明する。
なお、比較例として第1比較例と第2比較例がある。
第2比較例は、図4におけるモード対応慣性調整手段306を備えていない場合である。
第1比較例は、図4におけるモード対応慣性調整手段306を備えている場合である。
次に、比較例の第1比較例と第2比較例について、順に説明する。
《第2比較例におけるモード対応慣性調整手段無しの場合の仮想同期慣性制御の特性》
図8は、第2比較例のモード対応慣性調整手段(306)無しの場合における第2の仮想同期慣性制御手段の特性例を示す図である。なお、モード対応慣性調整手段(306)無しの場合であるため、時系列電力指令手段408も用いていない。
図8において、縦軸には、入力電圧Vdc、残余エネルギーΔEpcs、慣性モーメントJ、回転子の角速度ωPCS、入力電力(機械入力)Pin、出力電力Poutが表記されている。
なお、縦軸におけるそれぞれの単位は、残余エネルギーΔEpcsが[MJ]以外の項目は、すべて単位法であるpu(p.u.)で示している。また横軸は、時間(時間の推移)である。
図8は、第2比較例のモード対応慣性調整手段(306)無しの場合における第2の仮想同期慣性制御手段の特性例を示す図である。なお、モード対応慣性調整手段(306)無しの場合であるため、時系列電力指令手段408も用いていない。
図8において、縦軸には、入力電圧Vdc、残余エネルギーΔEpcs、慣性モーメントJ、回転子の角速度ωPCS、入力電力(機械入力)Pin、出力電力Poutが表記されている。
なお、縦軸におけるそれぞれの単位は、残余エネルギーΔEpcsが[MJ]以外の項目は、すべて単位法であるpu(p.u.)で示している。また横軸は、時間(時間の推移)である。
図8は、前記したように、第2比較例のモード対応慣性調整手段無しの場合なので、特性線2003で示した慣性モーメントJは、常に一定の値を保っている。
また、符号Fで示した0.5秒後に電力変換装置(新エネルギー源統合電力変換装置)が電力変換制御を始動すると、入力電圧Vdc、残余エネルギーΔEpcs、回転子の角速度ωPCS、入力電力(機械入力)Pin、出力電力Poutは、変化する。
0.5秒後に前記の各特性が変化しても、補正出力電力指令Pout *は、一定であって、適切な制御ではないので、出力電力Poutは、特性線2006に示すように、減少はするものの発振波形となる。
そして、電力変換装置の直流コンデンサ105で変動して残余となっている残余エネルギーΔEpcs(特性線2002)によって、直流コンデンサ105における入力電圧Vdcを変動させる(特性線2001)。
このように、モード対応慣性調整手段無しの場合の操作においては、制御システムが出力端子における発振現象を抑制するために、1秒以上を必要とする。
さらに、直流コンデンサ105の電圧が、変動の過渡期において、平常値の2.4倍である2.4[pu]の電圧値にまで達する(特性線2001のピーク値2001P)。
また、符号Fで示した0.5秒後に電力変換装置(新エネルギー源統合電力変換装置)が電力変換制御を始動すると、入力電圧Vdc、残余エネルギーΔEpcs、回転子の角速度ωPCS、入力電力(機械入力)Pin、出力電力Poutは、変化する。
0.5秒後に前記の各特性が変化しても、補正出力電力指令Pout *は、一定であって、適切な制御ではないので、出力電力Poutは、特性線2006に示すように、減少はするものの発振波形となる。
そして、電力変換装置の直流コンデンサ105で変動して残余となっている残余エネルギーΔEpcs(特性線2002)によって、直流コンデンサ105における入力電圧Vdcを変動させる(特性線2001)。
このように、モード対応慣性調整手段無しの場合の操作においては、制御システムが出力端子における発振現象を抑制するために、1秒以上を必要とする。
さらに、直流コンデンサ105の電圧が、変動の過渡期において、平常値の2.4倍である2.4[pu]の電圧値にまで達する(特性線2001のピーク値2001P)。
なお、直流コンデンサ105の静電容量値を大きくすれば、直流コンデンサ105の電圧のピーク値(2001P)を低減できる。また、直流コンデンサ105の静電容量値を大きくすることによって、過大な電圧を抑制し、安定的な動作をもたらす。
しかし、直流コンデンサ105の静電容量値を大きくすることは、電力変換装置のコストの上昇を招くことになる。
しかし、直流コンデンサ105の静電容量値を大きくすることは、電力変換装置のコストの上昇を招くことになる。
《第1比較例におけるモード対応慣性調整手段有りの場合の仮想同期慣性制御の特性》
図9は、第1比較例のモード対応慣性調整手段(306)有り場合の第2の仮想同期慣性制御手段の特性例を示す図である。ただし、モード対応慣性調整手段(306)有りの場合であるが、時系列電力指令手段408(図7A)は用いていない。
図9において、縦軸には、入力電圧Vdc、残余エネルギーΔEpcs、慣性モーメントJ、回転子の角速度ωPCS、入力電力Pin、出力電力Poutが表記されている。
なお、縦軸におけるそれぞれの単位は、残余エネルギーΔEpcsが[MJ]以外の項目は、すべて単位法であるpu(p.u.)で示している。また横軸は、時間(時間の推移)である。
図9は、第1比較例のモード対応慣性調整手段(306)有り場合の第2の仮想同期慣性制御手段の特性例を示す図である。ただし、モード対応慣性調整手段(306)有りの場合であるが、時系列電力指令手段408(図7A)は用いていない。
図9において、縦軸には、入力電圧Vdc、残余エネルギーΔEpcs、慣性モーメントJ、回転子の角速度ωPCS、入力電力Pin、出力電力Poutが表記されている。
なお、縦軸におけるそれぞれの単位は、残余エネルギーΔEpcsが[MJ]以外の項目は、すべて単位法であるpu(p.u.)で示している。また横軸は、時間(時間の推移)である。
図9においては、前記したように、第1比較例のモード対応慣性調整手段(306)有りの場合であるので、過渡期およびそれ以降において、慣性モーメントJは変化している(特性線3003)。
第1比較例の図9に示す特性は、第2比較例の図8に示す特性と異なっている。この相違は、過渡期における慣性モーメントJの制御の相違に起因する。
図8における慣性モーメントJ(特性線2003)は、制御されずに一定値であったが、図9における慣性モーメントJ(特性線3003)は、細かく制御されて変化している。
この図9の慣性モーメントJ(特性線3003)の制御の結果、第2比較例における出力端子における出力電力Pout(特性線2006:図8)の過渡的な発振現象が、第1比較例では特性線3006(図9)に示すように、出力電力Pout(特性線3006)の過渡現象は素早く減衰し、収束している。
第1比較例の図9に示す特性は、第2比較例の図8に示す特性と異なっている。この相違は、過渡期における慣性モーメントJの制御の相違に起因する。
図8における慣性モーメントJ(特性線2003)は、制御されずに一定値であったが、図9における慣性モーメントJ(特性線3003)は、細かく制御されて変化している。
この図9の慣性モーメントJ(特性線3003)の制御の結果、第2比較例における出力端子における出力電力Pout(特性線2006:図8)の過渡的な発振現象が、第1比較例では特性線3006(図9)に示すように、出力電力Pout(特性線3006)の過渡現象は素早く減衰し、収束している。
しかしながら、第1比較例の図9における入力電圧Vdc(特性線3001)の過渡状態におけるピーク値は、第2比較例の図8における入力電圧Vdc(特性線2001)の過渡状態におけるピーク値とほぼ同一の2.4[pu]の電圧値にまで達している。
したがって、仮想同期電力変換装置として、過大な電圧を抑制し、安定的な動作をもたらすための制御という観点では、第1比較例も第2比較例と同様に、直流コンデンサ105の静電容量値をさらに大きくする等の対策をとる必要がある。
したがって、仮想同期電力変換装置として、過大な電圧を抑制し、安定的な動作をもたらすための制御という観点では、第1比較例も第2比較例と同様に、直流コンデンサ105の静電容量値をさらに大きくする等の対策をとる必要がある。
《本発明の第1実施形態における仮想同期慣性制御の特性、図10》
図10は、本発明の第1実施形態に係る第1の仮想同期慣性制御手段108を用いた場合の特性例を示す図である。
図10において、縦軸には、入力電圧Vdc、残余エネルギーΔEpcs、慣性モーメントJ、回転子の角速度ωPCS、入力電力Pin、出力電力Poutが表記されている。また、出力電力Poutの項に図7Bに示した補正出力電力指令Pout *(特性線1007)を併せて表記している。
なお、縦軸におけるそれぞれの単位は、残余エネルギーΔEpcsが[MJ]以外の項目は、すべて単位法であるpu(p.u.)で示している。また横軸は、時間(時間の推移)である。
図10における出力電力指令Pout *(特性線1007)の効果により、過渡期における入力電圧Vdc(特性線1001)の過渡状態におけるピーク値(1001P)は、2.1[pu]の電圧値となって、第1比較例と第2比較例の入力電圧Vdcの過渡状態におけるピーク値の2.4[pu]に対して減少している。このようにピーク値が低減することは、電力変換装置(新エネルギー源統合電力変換装置100)として望ましいことである。
図10は、本発明の第1実施形態に係る第1の仮想同期慣性制御手段108を用いた場合の特性例を示す図である。
図10において、縦軸には、入力電圧Vdc、残余エネルギーΔEpcs、慣性モーメントJ、回転子の角速度ωPCS、入力電力Pin、出力電力Poutが表記されている。また、出力電力Poutの項に図7Bに示した補正出力電力指令Pout *(特性線1007)を併せて表記している。
なお、縦軸におけるそれぞれの単位は、残余エネルギーΔEpcsが[MJ]以外の項目は、すべて単位法であるpu(p.u.)で示している。また横軸は、時間(時間の推移)である。
図10における出力電力指令Pout *(特性線1007)の効果により、過渡期における入力電圧Vdc(特性線1001)の過渡状態におけるピーク値(1001P)は、2.1[pu]の電圧値となって、第1比較例と第2比較例の入力電圧Vdcの過渡状態におけるピーク値の2.4[pu]に対して減少している。このようにピーク値が低減することは、電力変換装置(新エネルギー源統合電力変換装置100)として望ましいことである。
なお、図10における補正出力電力指令Pout
*(特性線1007)は、図7Bにおける上側の原出力電力指令Poriginal
*を正側に変化させる場合について示した。
図10において、図7Bにおける下側の原出力電力指令Poriginal *を負側に変化させる場合については示していないが、正側と負側の差はあっても、入力電圧Vdcの過渡状態におけるピーク値を低減する作用は、概ね同一であるので、重複する説明は省略する。
図10において、図7Bにおける下側の原出力電力指令Poriginal *を負側に変化させる場合については示していないが、正側と負側の差はあっても、入力電圧Vdcの過渡状態におけるピーク値を低減する作用は、概ね同一であるので、重複する説明は省略する。
<第1実施形態の新エネルギー源統合電力変換装置100の構成・機能・動作の総括>
以上、述べたように、第1の仮想同期慣性制御手段108は、第2の仮想同期慣性制御手段110と電力変更決定手段111とを備えている。そして、第2の仮想同期慣性制御手段110は、前記したように、仮想同期慣性モーメントを制御する機能を有している。
また、電力変更決定手段111は、第2の仮想同期慣性制御手段110との組み合わせによって、有効出力電力を調整・制御する機能(アクティブパワーコントロール)を有している。
また、電力変更決定手段111は、電力変化時の対応を詳細に規定した時系列電力指令手段408を具備した出力電力変更指令手段407を有している。
以上の構成によって、第1実施形態の新エネルギー源統合電力変換装置100は、主として新エネルギー源101に起因する電力変動が起きた際に、電力変換装置(100)の入力と出力とのエネルギー差(電力差)を過渡的に緩和する。
そのため、インバータ104の入力側に設けられた直流コンデンサ105の電圧を通常の操作範囲(動作範囲)に保たれる。この機能によって、仮想同期慣性制御に基づく電力変換装置(100)は、新エネルギー源101(図1)の急激な環境の変動から守られて、動作停止が避けられるのである。
以上、述べたように、第1の仮想同期慣性制御手段108は、第2の仮想同期慣性制御手段110と電力変更決定手段111とを備えている。そして、第2の仮想同期慣性制御手段110は、前記したように、仮想同期慣性モーメントを制御する機能を有している。
また、電力変更決定手段111は、第2の仮想同期慣性制御手段110との組み合わせによって、有効出力電力を調整・制御する機能(アクティブパワーコントロール)を有している。
また、電力変更決定手段111は、電力変化時の対応を詳細に規定した時系列電力指令手段408を具備した出力電力変更指令手段407を有している。
以上の構成によって、第1実施形態の新エネルギー源統合電力変換装置100は、主として新エネルギー源101に起因する電力変動が起きた際に、電力変換装置(100)の入力と出力とのエネルギー差(電力差)を過渡的に緩和する。
そのため、インバータ104の入力側に設けられた直流コンデンサ105の電圧を通常の操作範囲(動作範囲)に保たれる。この機能によって、仮想同期慣性制御に基づく電力変換装置(100)は、新エネルギー源101(図1)の急激な環境の変動から守られて、動作停止が避けられるのである。
<本発明の第1実施形態の効果>
以上、本発明の第1実施形態の新エネルギー源統合電力変換装置100によれば、新エネルギー源101において、電力の変動があった場合にも、その変動による影響を速やかに低減し、収束させることができる。すなわち、新エネルギー源統合電力変換装置100を介して新エネルギー源(フロントエンド+バックエンド)に等価的に、大きな慣性モーメントを付与することができるという効果がある。
したがって、新エネルギー源を有する送電線網に対して、電力品質を向上する電力変換装置(新エネルギー源統合電力変換装置100)を提供できる。
また、新エネルギー源統合電力変換装置100における直流コンデンサに過渡的に生成される電圧を軽減させることができるので、新エネルギー源統合電力変換装置100の安定動作、信頼性の向上に寄与するという効果がある。
また、以上の効果を新エネルギー源統合電力変換装置100における直流コンデンサの静電容量を増加させることなく実現できるので、同じ効果を直流コンデンサの静電容量を増加させる方法に比較して、低コストで実現して提供できるという効果がある。
以上、本発明の第1実施形態の新エネルギー源統合電力変換装置100によれば、新エネルギー源101において、電力の変動があった場合にも、その変動による影響を速やかに低減し、収束させることができる。すなわち、新エネルギー源統合電力変換装置100を介して新エネルギー源(フロントエンド+バックエンド)に等価的に、大きな慣性モーメントを付与することができるという効果がある。
したがって、新エネルギー源を有する送電線網に対して、電力品質を向上する電力変換装置(新エネルギー源統合電力変換装置100)を提供できる。
また、新エネルギー源統合電力変換装置100における直流コンデンサに過渡的に生成される電圧を軽減させることができるので、新エネルギー源統合電力変換装置100の安定動作、信頼性の向上に寄与するという効果がある。
また、以上の効果を新エネルギー源統合電力変換装置100における直流コンデンサの静電容量を増加させることなく実現できるので、同じ効果を直流コンデンサの静電容量を増加させる方法に比較して、低コストで実現して提供できるという効果がある。
≪本発明の第2実施形態≫
本発明の第2実施形態に係る新エネルギー源統合電力変換装置100Bを、図11A~図11B、図12~図14、図15A~図15Cを、適宜、参照して説明する。
本発明の第2実施形態に係る新エネルギー源統合電力変換装置100Bを、図11A~図11B、図12~図14、図15A~図15Cを、適宜、参照して説明する。
《本発明の第2実施形態の新エネルギー源統合電力変換装置100Bの概要》
図11A、図11Bは、本発明の第2実施形態に係る新エネルギー源統合電力変換装置(電力変換装置)100Bの構成の一例を示す図である。
図11Aは、本発明の第2実施形態に係る新エネルギー源統合電力変換装置100Bの構成および新エネルギー源101と三相交流電源102との接続関係を示す図である。
図11Bは、本発明の第2実施形態に係る新エネルギー源統合電力変換装置100Bの第3の仮想同期慣性制御手段508の等価回路を示す図である。
図11Aにおいて、新エネルギー源統合電力変換装置(電力変換装置)100Bは、インバータ104、直流コンデンサ105、検出器(電圧電流検出器)106,107、第1の仮想同期慣性制御手段508、PWM制御手段109を備えている。
また、新エネルギー源統合電力変換装置100Bは、太陽光発電や風力発電などに代表される新エネルギー源のフロントエンドである新エネルギー源101から、有効入力電力Pdcの電力を入力している。
図11A、図11Bは、本発明の第2実施形態に係る新エネルギー源統合電力変換装置(電力変換装置)100Bの構成の一例を示す図である。
図11Aは、本発明の第2実施形態に係る新エネルギー源統合電力変換装置100Bの構成および新エネルギー源101と三相交流電源102との接続関係を示す図である。
図11Bは、本発明の第2実施形態に係る新エネルギー源統合電力変換装置100Bの第3の仮想同期慣性制御手段508の等価回路を示す図である。
図11Aにおいて、新エネルギー源統合電力変換装置(電力変換装置)100Bは、インバータ104、直流コンデンサ105、検出器(電圧電流検出器)106,107、第1の仮想同期慣性制御手段508、PWM制御手段109を備えている。
また、新エネルギー源統合電力変換装置100Bは、太陽光発電や風力発電などに代表される新エネルギー源のフロントエンドである新エネルギー源101から、有効入力電力Pdcの電力を入力している。
以上において、図11Aに示した第2実施形態に係る新エネルギー源統合電力変換装置100Bと、図1に示した第1実施形態に係る新エネルギー源統合電力変換装置100との相違は、図11Aの第3の仮想同期慣性制御手段508と図1の第1の仮想同期慣性制御手段108との相違のみである。したがって、その他の重複する説明は、適宜、省略する。
図11Aにおける第3の仮想同期慣性制御手段508については、図11Bの説明の後で、詳細に説明する。
図11Aにおける第3の仮想同期慣性制御手段508については、図11Bの説明の後で、詳細に説明する。
図11Bは、前記したように、第3の仮想同期慣性制御手段508の等価回路を示している。
図11Bにおいて、後記するように、仮想インピーダンス値決定手段512(図12)と仮想インピーダンス制御手段513(図12)とによって生成された仮想インピーダンス値XVを用いるか、用いないか(0)を、第3の仮想同期慣性制御手段508が後記する電力変更の指令であるフラッグ信号Fによって、切替手段514で選択することを表している。
次に、第3の仮想同期慣性制御手段508について説明する。
図11Bにおいて、後記するように、仮想インピーダンス値決定手段512(図12)と仮想インピーダンス制御手段513(図12)とによって生成された仮想インピーダンス値XVを用いるか、用いないか(0)を、第3の仮想同期慣性制御手段508が後記する電力変更の指令であるフラッグ信号Fによって、切替手段514で選択することを表している。
次に、第3の仮想同期慣性制御手段508について説明する。
《本発明の第2実施形態における第3の仮想同期慣性制御手段508》
図12は、本発明の第2実施形態に係る新エネルギー源統合電力変換装置100Bにおける第3の仮想同期慣性制御手段508の構成の一例を示す図である。
図12において、第3の仮想同期慣性制御手段508は、第2の仮想同期慣性制御手段110と、電力変更決定手段511と、仮想インピーダンス値決定手段512と、仮想インピーダンス制御手段513と、切替手段514と、合成手段(加算器)519とを備えて構成されている。
第3の仮想同期慣性制御手段508には、インバータ104の出力側の電圧Vと電流Iと出力周波数ωgとインバータ104の入力側の電圧Vdcと電流Idcと、出力電力指令P*と、を入力している。そして、第3の仮想同期慣性制御手段508は、参照指令E*∠δ*を出力する。
図12は、本発明の第2実施形態に係る新エネルギー源統合電力変換装置100Bにおける第3の仮想同期慣性制御手段508の構成の一例を示す図である。
図12において、第3の仮想同期慣性制御手段508は、第2の仮想同期慣性制御手段110と、電力変更決定手段511と、仮想インピーダンス値決定手段512と、仮想インピーダンス制御手段513と、切替手段514と、合成手段(加算器)519とを備えて構成されている。
第3の仮想同期慣性制御手段508には、インバータ104の出力側の電圧Vと電流Iと出力周波数ωgとインバータ104の入力側の電圧Vdcと電流Idcと、出力電力指令P*と、を入力している。そして、第3の仮想同期慣性制御手段508は、参照指令E*∠δ*を出力する。
電力変更決定手段511は、前記の入力信号と指令(Vdc,Idc,V,I,P*)によって、補正出力電力指令Pout
*、および、その変化分(差分)の信号ΔPout
*と、電力指令の変更が決定されたことを伝達するフラッグ信号Fを生成している。
そして、電力変更決定手段511は、第2の仮想同期慣性制御手段110に、前記の補正出力電力指令Pout *を供給し、仮想インピーダンス値決定手段512に、前記補正出力電力指令Pout *の変化分(差分)の信号ΔPout *を供給している。
また、電力変更決定手段511は、フラッグ信号Fを仮想インピーダンス値決定手段512と、切替手段514に供給している。
第2の仮想同期慣性制御手段110は、インバータ104(図11A)の出力側の電圧Vと電流Iと出力周波数ωg、および前記の補正出力電力指令Pout *とによって制御し、暫定の参照指令である暫定参照指令信号E∠δを出力する。
そして、電力変更決定手段511は、第2の仮想同期慣性制御手段110に、前記の補正出力電力指令Pout *を供給し、仮想インピーダンス値決定手段512に、前記補正出力電力指令Pout *の変化分(差分)の信号ΔPout *を供給している。
また、電力変更決定手段511は、フラッグ信号Fを仮想インピーダンス値決定手段512と、切替手段514に供給している。
第2の仮想同期慣性制御手段110は、インバータ104(図11A)の出力側の電圧Vと電流Iと出力周波数ωg、および前記の補正出力電力指令Pout *とによって制御し、暫定の参照指令である暫定参照指令信号E∠δを出力する。
仮想インピーダンス値決定手段512は、補正出力電力指令の変化分(差分)の信号ΔPout
*とフラッグ信号Fとによって、仮想インピーダンス値XVを算出する。
仮想インピーダンス制御手段513は、出力側の電流Iと仮想インピーダンス値XVを用いて、補正参照指令を導出する。具体的には、電流Iの位相を-90度(-π/2)、変化させるとともに、仮想インピーダンス値XVを参照して増幅(バッファ)した信号を補正参照指令として、切替手段514の第2入力端子に送っている。
切替手段514は、第2入力端子の補正参照指令か、第1入力端子の0(変更なし)かをフラッグ信号Fによって選択し、その出力信号を合成手段(加算器)519の第2端子に入力している。なお、フラッグ信号Fが立った場合には、仮想インピーダンス制御手段513の出力する補正参照指令が選択される。
合成手段(加算器)519の第1端子には、第2の仮想同期慣性制御手段110の出力である暫定参照指令E∠δが入力している。
合成手段(加算器)519は、切替手段514の仮想インピーダンス値の制御に関する補正参照指令と、第2の仮想同期慣性制御手段110の出力である暫定指令信号E∠δと、を合成(加算)して参照指令E*∠δ*を出力する。
仮想インピーダンス制御手段513は、出力側の電流Iと仮想インピーダンス値XVを用いて、補正参照指令を導出する。具体的には、電流Iの位相を-90度(-π/2)、変化させるとともに、仮想インピーダンス値XVを参照して増幅(バッファ)した信号を補正参照指令として、切替手段514の第2入力端子に送っている。
切替手段514は、第2入力端子の補正参照指令か、第1入力端子の0(変更なし)かをフラッグ信号Fによって選択し、その出力信号を合成手段(加算器)519の第2端子に入力している。なお、フラッグ信号Fが立った場合には、仮想インピーダンス制御手段513の出力する補正参照指令が選択される。
合成手段(加算器)519の第1端子には、第2の仮想同期慣性制御手段110の出力である暫定参照指令E∠δが入力している。
合成手段(加算器)519は、切替手段514の仮想インピーダンス値の制御に関する補正参照指令と、第2の仮想同期慣性制御手段110の出力である暫定指令信号E∠δと、を合成(加算)して参照指令E*∠δ*を出力する。
以上の構成によって、仮想出力インピーダンスの調整は、より改善される。すなわち、電力変換装置(新エネルギー源統合電力変換装置100B)が電力調整変化の動作(操作)を行うときに、一時的に仮想インピーダンス制御を挿入することによって、直流コンデンサ105(図11A)における直流電圧の大きな逸脱を回避することができる。
なお、第2の仮想同期慣性制御手段110は、図3(第1実施形態)、図4(第1の比較例)において前記したとおりである。
また、電力変更決定手段511と、仮想インピーダンス値決定手段512のそれぞれの詳細については、後記する。
なお、第2の仮想同期慣性制御手段110は、図3(第1実施形態)、図4(第1の比較例)において前記したとおりである。
また、電力変更決定手段511と、仮想インピーダンス値決定手段512のそれぞれの詳細については、後記する。
《本発明の第2実施形態における電力変更決定手段511》
次に本発明の第2実施形態の特徴的な構成要素である電力変更決定手段511について詳しく説明する。
図13は、本発明の第2実施形態に係る新エネルギー源統合電力変換装置100Bにおける電力変更決定手段511の構成の一例を示す図である。
図13において、電力変更決定手段511は、電力計算手段401,402、ハイパスフィルタ(HPF)403、絶対値算出手段(ABS)404、閾値比較判定手段405、フラッグ発生手段406、出力電力変更指令手段609を備えて構成されている。
以上の図13で示した電力変更決定手段511の構成において、図6で示した電力変更決定手段111と異なるのは、出力電力変更指令手段609である。出力電力変更指令手段609の詳細な構成と動作については後記するが、出力電力変更指令手段609が電力変更決定手段511に備えられたことで、電力変更決定手段511からは、補正出力電力指令Pout *のみならず補正出力電力指令Pout *の変化分(差分)の信号ΔPout *が出力される。
図13における他の構成は、図6の同じ符号を付したそれぞれの構成と同一であるので、重複する説明は、省略する。
次に本発明の第2実施形態の特徴的な構成要素である電力変更決定手段511について詳しく説明する。
図13は、本発明の第2実施形態に係る新エネルギー源統合電力変換装置100Bにおける電力変更決定手段511の構成の一例を示す図である。
図13において、電力変更決定手段511は、電力計算手段401,402、ハイパスフィルタ(HPF)403、絶対値算出手段(ABS)404、閾値比較判定手段405、フラッグ発生手段406、出力電力変更指令手段609を備えて構成されている。
以上の図13で示した電力変更決定手段511の構成において、図6で示した電力変更決定手段111と異なるのは、出力電力変更指令手段609である。出力電力変更指令手段609の詳細な構成と動作については後記するが、出力電力変更指令手段609が電力変更決定手段511に備えられたことで、電力変更決定手段511からは、補正出力電力指令Pout *のみならず補正出力電力指令Pout *の変化分(差分)の信号ΔPout *が出力される。
図13における他の構成は、図6の同じ符号を付したそれぞれの構成と同一であるので、重複する説明は、省略する。
《本発明の第2実施形態における出力電力変更指令手段609》
次に出力電力変更指令手段609について詳しく説明する。
図14は、本発明の第2実施形態に係る新エネルギー源統合電力変換装置100Bにおける出力電力変更指令手段609の構成の一例を示す図である。
図14において、出力電力変更指令手段609は、絶対値算出手段(ABS)610と、保持手段611と、切替手段612と、差分手段(差分器)613とを備えて構成されている。
出力電力変更指令手段609には、新エネルギー源101からの有効入力電力Pdcと、出力電力指令P*と、フラッグ発生手段406のフラッグ信号Fとを入力している。
また、出力電力変更指令手段609は、補正出力電力指令Pout *と、補正出力電力指令の変化分(差分)の信号ΔPout *を出力している。
次に出力電力変更指令手段609について詳しく説明する。
図14は、本発明の第2実施形態に係る新エネルギー源統合電力変換装置100Bにおける出力電力変更指令手段609の構成の一例を示す図である。
図14において、出力電力変更指令手段609は、絶対値算出手段(ABS)610と、保持手段611と、切替手段612と、差分手段(差分器)613とを備えて構成されている。
出力電力変更指令手段609には、新エネルギー源101からの有効入力電力Pdcと、出力電力指令P*と、フラッグ発生手段406のフラッグ信号Fとを入力している。
また、出力電力変更指令手段609は、補正出力電力指令Pout *と、補正出力電力指令の変化分(差分)の信号ΔPout *を出力している。
出力電力指令P*と有効入力電力Pdcは、それぞれ差分器613に入力し、出力電力指令P*と有効入力電力Pdcの差分が出力して、この差分の信号が、絶対値算出手段(ABS)610に入力する。
絶対値算出手段(ABS)610は、出力電力指令P*と有効入力電力Pdcの差分の絶対値を演算して、保持手段611に入力する。
切替手段612の第1端子には、出力電力指令P*が入力し、第2端子には、有効入力電力Pdcが入力している。
切替手段612における信号の切り替えは、フラッグ信号Fによって制御される。電力変更の指令であるフラッグ信号Fが立っていない場合には、切替手段612の補正出力電力指令Pout *として、出力電力指令P*が出力される。
絶対値算出手段(ABS)610は、出力電力指令P*と有効入力電力Pdcの差分の絶対値を演算して、保持手段611に入力する。
切替手段612の第1端子には、出力電力指令P*が入力し、第2端子には、有効入力電力Pdcが入力している。
切替手段612における信号の切り替えは、フラッグ信号Fによって制御される。電力変更の指令であるフラッグ信号Fが立っていない場合には、切替手段612の補正出力電力指令Pout *として、出力電力指令P*が出力される。
切替手段612において、電力変更の指令であるフラッグ信号Fが立った場合には、切替手段612の補正出力電力指令Pout
*として、有効入力電力Pdcが出力される。
また、電力変更の指令であるフラッグ信号Fが立った場合には、このフラッグ信号Fによって、保持手段611は、絶対値算出手段(ABS)610の信号を保持して、補正出力電力指令の変化分(差分)の信号ΔPout *として出力する。
また、電力変更の指令であるフラッグ信号Fが立った場合には、このフラッグ信号Fによって、保持手段611は、絶対値算出手段(ABS)610の信号を保持して、補正出力電力指令の変化分(差分)の信号ΔPout *として出力する。
以上の構成によって、電力変更の指令による操作が始まってフラッグ信号Fが立った場合には、補正出力電力指令Pout
*は、通常の操作である出力電力指令P*ではなく、有効入力電力Pdcに合うように調整される。その理由は、入力と出力との間で不均衡となった有効電力によって直流コンデンサ105(図11)の電圧が不安定となることを防止するためである。
このように、補正出力電力指令Pout *を変更することによって、安定状態から不均衡となった有効電力の状況を解決する。
しかしながら、電力指令を変更する操作の過程において、直流コンデンサ105(図1)の電圧が直流電圧の大きな乖離に耐えられるかどうかは保障されない。
第2実施形態における出力電力変更指令手段609の構成によって、仮想インピーダンスを用いる方法は、過渡的な直流コンデンサ105の電圧が安定状態から逸脱することを緩和するように、調整する。
電力指令を変更する操作の過程における仮想インピーダンス値を決定するために、出力電力指令P*と有効入力電力Pdcの電力の絶対値を読み取ることで、電力変更の指令による操作が始まってからの補正出力電力指令の変化分(差分)の信号ΔPout *を変化させた総量が検出される。
このように、補正出力電力指令Pout *を変更することによって、安定状態から不均衡となった有効電力の状況を解決する。
しかしながら、電力指令を変更する操作の過程において、直流コンデンサ105(図1)の電圧が直流電圧の大きな乖離に耐えられるかどうかは保障されない。
第2実施形態における出力電力変更指令手段609の構成によって、仮想インピーダンスを用いる方法は、過渡的な直流コンデンサ105の電圧が安定状態から逸脱することを緩和するように、調整する。
電力指令を変更する操作の過程における仮想インピーダンス値を決定するために、出力電力指令P*と有効入力電力Pdcの電力の絶対値を読み取ることで、電力変更の指令による操作が始まってからの補正出力電力指令の変化分(差分)の信号ΔPout *を変化させた総量が検出される。
《本発明の第2実施形態における仮想インピーダンス値決定手段512の特性、動作》
次に本発明の第2実施形態における仮想インピーダンス値決定手段512(図12、図15A)の特性、動作について詳しく説明する。
図15A、図15B、図15Cは、本発明の第2実施形態における仮想インピーダンス値決定手段512の特性、動作の一例を示す図である。
図15Aは、本発明の第2実施形態における仮想インピーダンス値決定手段512の入力信号、出力信号、制御信号を示す図である。
図15Bは、本発明の第2実施形態における仮想インピーダンス値決定手段512の入力信号と出力信号の関係を示す変換図(マップ)である。
図15Cは、本発明の第2実施形態における仮想インピーダンス値決定手段512の仮想インピーダンス値XVの時間変化を示す図である。
図15Aにおいて、制御信号である電力変更の指令のフラッグ信号Fが立つと、仮想インピーダンス値決定手段512は、動作を開始して、入力信号である補正出力電力指令の変化分(差分)の信号ΔPout *を出力信号である仮想インピーダンス値XVに変換して、出力する。
次に本発明の第2実施形態における仮想インピーダンス値決定手段512(図12、図15A)の特性、動作について詳しく説明する。
図15A、図15B、図15Cは、本発明の第2実施形態における仮想インピーダンス値決定手段512の特性、動作の一例を示す図である。
図15Aは、本発明の第2実施形態における仮想インピーダンス値決定手段512の入力信号、出力信号、制御信号を示す図である。
図15Bは、本発明の第2実施形態における仮想インピーダンス値決定手段512の入力信号と出力信号の関係を示す変換図(マップ)である。
図15Cは、本発明の第2実施形態における仮想インピーダンス値決定手段512の仮想インピーダンス値XVの時間変化を示す図である。
図15Aにおいて、制御信号である電力変更の指令のフラッグ信号Fが立つと、仮想インピーダンス値決定手段512は、動作を開始して、入力信号である補正出力電力指令の変化分(差分)の信号ΔPout *を出力信号である仮想インピーダンス値XVに変換して、出力する。
図15Bにおいて、横軸に示した補正出力電力指令の変化分(差分)の信号ΔPout
*と、縦軸に示した仮想インピーダンス値XVとの関係を、特性線1501で表している。また、図15Bにおいて縦軸上に「-XS」と表記した点は、図1における三相交流電源102のグリッドとしてのインピーダンスXS103のインピーダンス値を示している。
また、図15Cにおいて、縦軸は仮想インピーダンス値XVであり、横軸は時間(時間の推移)を示している。図15Cにおいては、制御信号であって電力変更の指令であるフラッグ信号Fが変化をした際における仮想インピーダンス値XVの時間変化を示している。
以上のように、電力変更の指令のフラッグ信号Fが有効な状態において、仮想インピーダンス値XVは、変換図(マップ)に従って、補正出力電力指令の変化分(差分)の信号ΔPout *から変換されて算出される。
また、図15Cにおいて、縦軸は仮想インピーダンス値XVであり、横軸は時間(時間の推移)を示している。図15Cにおいては、制御信号であって電力変更の指令であるフラッグ信号Fが変化をした際における仮想インピーダンス値XVの時間変化を示している。
以上のように、電力変更の指令のフラッグ信号Fが有効な状態において、仮想インピーダンス値XVは、変換図(マップ)に従って、補正出力電力指令の変化分(差分)の信号ΔPout *から変換されて算出される。
図15A、図15B、図15Cによって説明した仮想インピーダンス値XVは、図12における切替手段514の第2入力端子に補正参照指令として入力している。
すなわち、フラッグ信号Fが立った場合には、仮想インピーダンス値XVによる補正参照指令によって、図12において、暫定参照指令E∠δが参照指令E*∠δ*に補正される。
すなわち、フラッグ信号Fが立った場合には、仮想インピーダンス値XVによる補正参照指令によって、図12において、暫定参照指令E∠δが参照指令E*∠δ*に補正される。
《本発明の第2実施形態における第3の仮想同期慣性制御の特性、図16》
図16は、本発明の第2実施形態に係る第3の仮想同期慣性制御手段508を用いた場合の特性例を示す図である。
図16において、縦軸には、入力電圧Vdc、残余エネルギーΔEpcs、慣性モーメントJ、回転子の角速度ωPCS、入力電力Pin、出力電力Poutが表記されている。また、出力電力Poutの項に補正出力電力指令Pout *を併せて表記している。
なお、縦軸におけるそれぞれの単位は、残余エネルギーΔEpcsが[MJ]以外の項目は、すべて単位法であるpu(p.u.)で示している。また横軸は、時間(時間の推移)である。
図16は、本発明の第2実施形態に係る第3の仮想同期慣性制御手段508を用いた場合の特性例を示す図である。
図16において、縦軸には、入力電圧Vdc、残余エネルギーΔEpcs、慣性モーメントJ、回転子の角速度ωPCS、入力電力Pin、出力電力Poutが表記されている。また、出力電力Poutの項に補正出力電力指令Pout *を併せて表記している。
なお、縦軸におけるそれぞれの単位は、残余エネルギーΔEpcsが[MJ]以外の項目は、すべて単位法であるpu(p.u.)で示している。また横軸は、時間(時間の推移)である。
図16において、フラッグ信号Fによって、0.5秒後に電力変換装置(新エネルギー源統合電力変換装置100B)は、電力変換動作(操作)を開始している。そのため、補正出力電力指令Pout
*(特性線1107)が直ちに変化している。
このとき、電力変換装置の出力電力Pout(特性線1106)が発振現象を起こしている。しかし、速やかに、この発振現象は減衰している。その理由は、慣性モーメントJ(特性線1103)を変化させているからである。
さらに、それに加えて、出力端子の仮想インピーダンスXVを挿入し、電力変換装置の直流コンデンサ105(図11)の残余エネルギーΔEpcs(特性線1102:図16)を抑制しているからである。
このとき、電力変換装置の出力電力Pout(特性線1106)が発振現象を起こしている。しかし、速やかに、この発振現象は減衰している。その理由は、慣性モーメントJ(特性線1103)を変化させているからである。
さらに、それに加えて、出力端子の仮想インピーダンスXVを挿入し、電力変換装置の直流コンデンサ105(図11)の残余エネルギーΔEpcs(特性線1102:図16)を抑制しているからである。
そのため、この残余エネルギーΔEpcs(特性線1102:図16)は、図8の残余エネルギーΔEpcs(特性線2002、第2比較例)や、図9の残余エネルギーΔEpcs(特性線3002、第1比較例)に比較して小さい。
この結果、電力変換装置(新エネルギー源統合電力変換装置100B)の直流コンデンサ105の入力電圧Vdc(特性線1101:図16)の逸脱したピーク値1101P(約2.1pu)は、図8の電力変換装置の直流コンデンサ105の入力電圧Vdc(特性線2001、第2比較例)の逸脱したピーク値2001P(約2.4pu)や、図9の電力変換装置の直流コンデンサ105の入力電圧Vdc(特性線3001、第1比較例)の逸脱したピーク値3001P(約2.4pu)より小さい。
つまり、第2比較例の図8、および第1比較例の図9のピーク値の2.4puから、本発明の第2実施形態の図16に示すピーク値では2.1puに改善されている。
この結果、電力変換装置(新エネルギー源統合電力変換装置100B)の直流コンデンサ105の入力電圧Vdc(特性線1101:図16)の逸脱したピーク値1101P(約2.1pu)は、図8の電力変換装置の直流コンデンサ105の入力電圧Vdc(特性線2001、第2比較例)の逸脱したピーク値2001P(約2.4pu)や、図9の電力変換装置の直流コンデンサ105の入力電圧Vdc(特性線3001、第1比較例)の逸脱したピーク値3001P(約2.4pu)より小さい。
つまり、第2比較例の図8、および第1比較例の図9のピーク値の2.4puから、本発明の第2実施形態の図16に示すピーク値では2.1puに改善されている。
<第2実施形態の新エネルギー源統合電力変換装置100Bの構成・機能・動作の総括>
以上、述べたように、第3の仮想同期慣性制御手段508は、第2の仮想同期慣性制御手段110と電力変更決定手段511と仮想インピーダンス値決定手段512と仮想インピーダンス制御手段513とを備えている。そして、第2の仮想同期慣性制御手段110は、前記したように、仮想同期慣性モーメントを制御する機能を有している。
また、電力変更決定手段511は、第2の仮想同期慣性制御手段110との組み合わせによって、入力電力と出力電力との間の有効電力を調整・制御する機能(アクティブパワーコントロール)を有している。
また、電力変更決定手段511は、通常時の操作の出力電力指令P*と、電力変更の指令であるフラッグ信号Fが立った場合の補正出力電力指令Pout *として有効入力電力Pdcと、補正出力電力指令の変化分の信号ΔPout *とが出力される出力電力変更指令手段609を有している。
以上、述べたように、第3の仮想同期慣性制御手段508は、第2の仮想同期慣性制御手段110と電力変更決定手段511と仮想インピーダンス値決定手段512と仮想インピーダンス制御手段513とを備えている。そして、第2の仮想同期慣性制御手段110は、前記したように、仮想同期慣性モーメントを制御する機能を有している。
また、電力変更決定手段511は、第2の仮想同期慣性制御手段110との組み合わせによって、入力電力と出力電力との間の有効電力を調整・制御する機能(アクティブパワーコントロール)を有している。
また、電力変更決定手段511は、通常時の操作の出力電力指令P*と、電力変更の指令であるフラッグ信号Fが立った場合の補正出力電力指令Pout *として有効入力電力Pdcと、補正出力電力指令の変化分の信号ΔPout *とが出力される出力電力変更指令手段609を有している。
仮想インピーダンス値決定手段512は、前記したように、補正出力電力指令の変化分の信号ΔPout
*とフラッグ信号Fとによって、仮想インピーダンス値XVを算出する。
仮想インピーダンス制御手段513は、前記したように、出力側の電流Iと仮想インピーダンス値XVを用いて、補正参照指令を導出する。
切替手段514は、前記したように、第2入力端子の補正参照指令か、第1入力端子の0(変更なし)かをフラッグ信号Fによって選択し、その出力信号を合成手段(加算器)519の第2端子に入力している。
合成手段(加算器)519は、前記したように、切替手段514の仮想インピーダンス値の制御に関する補正参照指令と、第2の仮想同期慣性制御手段110の出力である暫定参照指令信号E∠δと、を合成(加算)して参照指令E*∠δ*を出力する。なお、切替手段514において、「補正なし」を意味する「0」が選択された場合には、暫定参照指令信号E∠δが、そのまま参照指令E*∠δ*として出力される。
仮想インピーダンス制御手段513は、前記したように、出力側の電流Iと仮想インピーダンス値XVを用いて、補正参照指令を導出する。
切替手段514は、前記したように、第2入力端子の補正参照指令か、第1入力端子の0(変更なし)かをフラッグ信号Fによって選択し、その出力信号を合成手段(加算器)519の第2端子に入力している。
合成手段(加算器)519は、前記したように、切替手段514の仮想インピーダンス値の制御に関する補正参照指令と、第2の仮想同期慣性制御手段110の出力である暫定参照指令信号E∠δと、を合成(加算)して参照指令E*∠δ*を出力する。なお、切替手段514において、「補正なし」を意味する「0」が選択された場合には、暫定参照指令信号E∠δが、そのまま参照指令E*∠δ*として出力される。
以上の構成によって、第2実施形態の新エネルギー源統合電力変換装置100Bは、主として新エネルギー源101に起因する電力変動が起きた場合、電力調整変化の動作(操作)を行うときに、一時的に仮想インピーダンス制御を挿入することによって、直流コンデンサ105(図11A)における直流電圧の大きな逸脱を回避することができる。
そのため、インバータ104の入力側に設けられた直流コンデンサ105の電圧を通常の操作範囲(動作範囲)に保たれる。この機能によって、第3の仮想同期慣性制御とアクティブパワーコントロールに基づく電力変換装置(100B)は、新エネルギー源101(図11A)の急激な環境の変動から守られて、動作停止が避けられるのである。
そのため、インバータ104の入力側に設けられた直流コンデンサ105の電圧を通常の操作範囲(動作範囲)に保たれる。この機能によって、第3の仮想同期慣性制御とアクティブパワーコントロールに基づく電力変換装置(100B)は、新エネルギー源101(図11A)の急激な環境の変動から守られて、動作停止が避けられるのである。
<本発明の第2実施形態の効果>
以上、本発明の第2実施形態の新エネルギー源統合電力変換装置100Bによれば、新エネルギー源101において、電力の変動があった場合にも、その変動による影響を速やかに低減し、収束させることができる。すなわち、新エネルギー源統合電力変換装置100Bを介して新エネルギー源(フロントエンド+バックエンド)に等価的に、大きな慣性モーメントを付与することができるという効果がある。
そのため、新エネルギー源を有する送電線網に対して電力品質を向上する新エネルギー源統合電力変換装置100Bを提供できる。
また、新エネルギー源統合電力変換装置100Bにおける直流コンデンサ105に過渡的に生成される電圧を軽減させることができるので、新エネルギー源統合電力変換装置100Bの安定動作、信頼性の向上に寄与するという効果がある。
また、以上の効果を新エネルギー源統合電力変換装置100Bにおける直流コンデンサの静電容量を増加させることなく実現できるので、同じ効果を直流コンデンサの静電容量を増加させる方法に比較して、低コストで実現して提供できるという効果がある。
以上、本発明の第2実施形態の新エネルギー源統合電力変換装置100Bによれば、新エネルギー源101において、電力の変動があった場合にも、その変動による影響を速やかに低減し、収束させることができる。すなわち、新エネルギー源統合電力変換装置100Bを介して新エネルギー源(フロントエンド+バックエンド)に等価的に、大きな慣性モーメントを付与することができるという効果がある。
そのため、新エネルギー源を有する送電線網に対して電力品質を向上する新エネルギー源統合電力変換装置100Bを提供できる。
また、新エネルギー源統合電力変換装置100Bにおける直流コンデンサ105に過渡的に生成される電圧を軽減させることができるので、新エネルギー源統合電力変換装置100Bの安定動作、信頼性の向上に寄与するという効果がある。
また、以上の効果を新エネルギー源統合電力変換装置100Bにおける直流コンデンサの静電容量を増加させることなく実現できるので、同じ効果を直流コンデンサの静電容量を増加させる方法に比較して、低コストで実現して提供できるという効果がある。
≪その他の実施形態≫
なお、本発明は、以上に説明した実施形態に限定されるものでなく、さらに様々な変形例が含まれる。例えば、前記の実施形態は、本発明を分かりやすく説明するために、詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成の一部で置き換えることが可能であり、さらに、ある実施形態の構成に他の実施形態の構成の一部または全部を追加・削除・置換をすることも可能である。
以下に、その他の実施形態や変形例について、さらに説明する。
なお、本発明は、以上に説明した実施形態に限定されるものでなく、さらに様々な変形例が含まれる。例えば、前記の実施形態は、本発明を分かりやすく説明するために、詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成の一部で置き換えることが可能であり、さらに、ある実施形態の構成に他の実施形態の構成の一部または全部を追加・削除・置換をすることも可能である。
以下に、その他の実施形態や変形例について、さらに説明する。
《三相以外の方法》
図1、図2で示した第1実施形態の例では、三相交流の場合であったが、単相交流に変換する場合にも適用できる。
図1、図2で示した第1実施形態の例では、三相交流の場合であったが、単相交流に変換する場合にも適用できる。
《スイッチング手段》
図2において、スイッチング素子(201~206)をIGBTで説明したが、これに限定されない。MOSFET(Metal-Oxide-Semiconductor-Field-Effect-Transistor)や、スーパージャンクションMOSFETなどでもよい。
図2において、スイッチング素子(201~206)をIGBTで説明したが、これに限定されない。MOSFET(Metal-Oxide-Semiconductor-Field-Effect-Transistor)や、スーパージャンクションMOSFETなどでもよい。
《インバータ》
図1において、インバータ104とPWM制御手段109を別々に表記したが、PWM制御手段109をインバータを構成する一部として、インバータの中に含めて構成してもよい。
図1において、インバータ104とPWM制御手段109を別々に表記したが、PWM制御手段109をインバータを構成する一部として、インバータの中に含めて構成してもよい。
《第1の仮想同期慣性制御手段》
図1において、第1の仮想同期慣性制御手段108を一つの機能ブロックとして表記したが、図3に示すように、第2の仮想同期慣性制御手段110と電力変更決定手段111を別々の機能ブロックとして備えて構成してもよい。
図1において、第1の仮想同期慣性制御手段108を一つの機能ブロックとして表記したが、図3に示すように、第2の仮想同期慣性制御手段110と電力変更決定手段111を別々の機能ブロックとして備えて構成してもよい。
《検出器、検出手段》
図1、および図11Aにおいて、インバータ104の入力側の電圧、電流を検出する検出器(第1の検出手段)106とインバータ104の出力側の電圧、電流を検出する検出器(第2の検出手段)107を別々に分けて記載し説明した。しかし、インバータ104の入力側と出力側のそれぞれの電圧、電流を検出すればよいので、2個の検出器106,107の構成に限定されない。
検出器106,107を一体化してもよいし、また、検出器106,107をそれぞれ電圧検出器と電流検出器に分けて、4個以上の検出器で構成してもよい。
図1、および図11Aにおいて、インバータ104の入力側の電圧、電流を検出する検出器(第1の検出手段)106とインバータ104の出力側の電圧、電流を検出する検出器(第2の検出手段)107を別々に分けて記載し説明した。しかし、インバータ104の入力側と出力側のそれぞれの電圧、電流を検出すればよいので、2個の検出器106,107の構成に限定されない。
検出器106,107を一体化してもよいし、また、検出器106,107をそれぞれ電圧検出器と電流検出器に分けて、4個以上の検出器で構成してもよい。
《出力電力変更指令手段》
図7Aにおいて、出力電力変更指令手段407は、時系列電力指令手段408と切替手段410とゲート手段411とを備えて構成する例を示したが、フラッグ信号Fによって、時系列電力指令手段408の時系列電力指令と、出力電力指令P*とを切り替えればよいので、この回路に限定されない。
例えば、ゲート手段411を取り除いた回路構成もある。
図7Aにおいて、出力電力変更指令手段407は、時系列電力指令手段408と切替手段410とゲート手段411とを備えて構成する例を示したが、フラッグ信号Fによって、時系列電力指令手段408の時系列電力指令と、出力電力指令P*とを切り替えればよいので、この回路に限定されない。
例えば、ゲート手段411を取り除いた回路構成もある。
《仮想インピーダンス値決定手段》
図15Aにおいて、仮想インピーダンス値決定手段512は、図15Bに示す補正出力電力指令の変化分(差分)の信号ΔPout *と仮想インピーダンス値XVとの関係による一つの変換マップで仮想インピーダンス値XVを算出している。しかしながら、変換マップは一つに限定されない。様々な諸条件により、変換マップの特性(特性線1501)が変化する可能性がある。
そのため、変換マップを複数、備えて、諸条件の変化により、切り替える方法もある。
図15Aにおいて、仮想インピーダンス値決定手段512は、図15Bに示す補正出力電力指令の変化分(差分)の信号ΔPout *と仮想インピーダンス値XVとの関係による一つの変換マップで仮想インピーダンス値XVを算出している。しかしながら、変換マップは一つに限定されない。様々な諸条件により、変換マップの特性(特性線1501)が変化する可能性がある。
そのため、変換マップを複数、備えて、諸条件の変化により、切り替える方法もある。
100 新エネルギー源統合電力変換装置、電力変換装置
101 新エネルギー源(新エネルギー源のフロントエンド)
102 三相交流電源、三相交流電源グリッド
103 インピーダンス(グリッドとしてのインピーダンス)
104 インバータ
105 直流コンデンサ、コンデンサ
106 検出器、電圧電流検出器、検出手段(第1の検出手段)
107 検出器、電圧電流検出器、検出手段(第2の検出手段)
108 第1の仮想同期慣性制御手段
109 PWM制御手段
110 第2の仮想同期慣性制御手段(仮想同期慣性制御手段)
111,511 電力変更決定手段
201~206 IGBT、スイッチング素子
207 リアクトル
301 電力計算手段
302 VSGモデル、仮想同期発電機モデル
303 積分手段(1/s)
304 調整手段、調速機
305 電圧制御手段
306 モード対応慣性調整手段
307 モード照合手段S
308 慣性値調整手段
309 合成手段(掛算器)
401 電力計算手段(第1の電力計算手段)
402 電力計算手段(第2の電力計算手段)
403 ハイパスフィルタ(HPF)
404,610 絶対値算出手段(ABS)
405 閾値比較判定手段
406 フラッグ発生手段
407,609 出力電力変更指令手段
408 時系列電力指令手段
409,613 差分手段(差分器)
410,514,612 切替手段
411 ゲート手段
508 第3の仮想同期慣性制御手段
512 仮想インピーダンス値決定手段
513 仮想インピーダンス制御手段
519 合成手段(加算器)
611 保持手段
101 新エネルギー源(新エネルギー源のフロントエンド)
102 三相交流電源、三相交流電源グリッド
103 インピーダンス(グリッドとしてのインピーダンス)
104 インバータ
105 直流コンデンサ、コンデンサ
106 検出器、電圧電流検出器、検出手段(第1の検出手段)
107 検出器、電圧電流検出器、検出手段(第2の検出手段)
108 第1の仮想同期慣性制御手段
109 PWM制御手段
110 第2の仮想同期慣性制御手段(仮想同期慣性制御手段)
111,511 電力変更決定手段
201~206 IGBT、スイッチング素子
207 リアクトル
301 電力計算手段
302 VSGモデル、仮想同期発電機モデル
303 積分手段(1/s)
304 調整手段、調速機
305 電圧制御手段
306 モード対応慣性調整手段
307 モード照合手段S
308 慣性値調整手段
309 合成手段(掛算器)
401 電力計算手段(第1の電力計算手段)
402 電力計算手段(第2の電力計算手段)
403 ハイパスフィルタ(HPF)
404,610 絶対値算出手段(ABS)
405 閾値比較判定手段
406 フラッグ発生手段
407,609 出力電力変更指令手段
408 時系列電力指令手段
409,613 差分手段(差分器)
410,514,612 切替手段
411 ゲート手段
508 第3の仮想同期慣性制御手段
512 仮想インピーダンス値決定手段
513 仮想インピーダンス制御手段
519 合成手段(加算器)
611 保持手段
Claims (11)
- 新エネルギー源の発電電力を所定の交流電力に変換して電力送電網に出力するインバータと、
該インバータを制御するPWM制御手段と、
前記インバータの入力の電圧と電流を検出する第1の検出手段と、
前記インバータの出力の電圧と電流と周波数とを検出する第2の検出手段と、
前記第1,第2の検出手段が検出した入力と出力のそれぞれの電圧と電流から前記インバータの入力側の入力電力と出力側の出力電力と、前記入力電力と前記出力電力との差異を算出するとともに、出力電力指令を参照して補正出力電力指令を算出する電力変更決定手段と、
前記第2の検出手段が検出した出力の電圧と電流と周波数と前記補正出力電力指令とを、基に仮想慣性特性を算出して、前記PWM制御手段へ参照指令を出力する仮想同期慣性制御手段と、
を備え、
前記電力変更決定手段の前記入力電力の変化に対する応答時間は、前記入力電力の変化した総量に応じて変化する、
ことを特徴とする新エネルギー源統合電力変換装置。 - 請求項1において、
前記電力変更決定手段は、
前記インバータの出力の電圧と電流から出力電力を計算する第1の電力計算手段と、
前記インバータの入力の電圧と電流から入力電力を計算する第2の電力計算手段と、
前記第1の電力計算手段が計算した出力電力と第2の電力計算手段が計算した入力電力との差の絶対値が事前に定められていた閾値を超すか否かを判定する閾値比較判定手段と、
該閾値比較判定手段が前記出力電力と前記入力電力との差の絶対値が閾値を超したと判定した場合に、電力変更決定操作のフラッグ信号を出力するフラッグ発生手段と、
前記フラッグ信号が出力された場合に、前記入力電力と出力電力指令とに基づき補正出力電力指令を出力する出力電力変更指令手段と、
を備える、
ことを特徴とする新エネルギー源統合電力変換装置。 - 請求項2において、
前記出力電力変更指令手段は、
スケジュール化された電力指令を基に構成される時系列電力指令手段と、
第1端子に前記出力電力指令を入力し、第2端子に前記時系列電力指令手段の出力する指令が入力し、前記フラッグ信号によって前記第2端子もしくは第1端子の指令を選択して前記補正出力電力指令として出力する切替手段と、
を備える、
ことを特徴とする新エネルギー源統合電力変換装置。 - 請求項3において、
前記時系列電力指令手段のスケジュール化された電力指令は、新エネルギー源統合電力変換装置の動的応答時間と電力が計算される時間とに応じて決定される、
ことを特徴とする新エネルギー源統合電力変換装置。 - 請求項2において、
前記出力電力と前記入力電力との差の絶対値を算出する前段に、ハイパスフィルタを備える、
ことを特徴とする新エネルギー源統合電力変換装置。 - 新エネルギー源の発電電力を所定の交流電力に変換して電力送電網に出力するインバータと、
該インバータを制御するPWM制御手段と、
前記インバータの入力の電圧と電流を検出する第1の検出手段と、
前記インバータの出力の電圧と電流と周波数とを検出する第2の検出手段と、
前記第1,第2の検出手段が検出した入力と出力のそれぞれの電圧と電流と出力電力指令とを基に補正出力電力指令を算出して出力するとともに、前記補正出力電力指令の変化分の信号と、電力指令の変更が決定されることを伝達するフラッグ信号と、を出力する電力変更決定手段と、
前記第2の検出手段が検出した出力の電圧と電流と周波数と前記補正出力電力指令とを、基に仮想慣性特性を算出して、暫定参照指令を出力する仮想同期慣性制御手段と、
前記補正出力電力指令の変化分の信号と前記フラッグ信号とを基に仮想インピーダンス値を算出する仮想インピーダンス値決定手段と、
前記出力の電流と前記仮想インピーダンス値を基に補正参照指令を導出する仮想インピーダンス制御手段と、
を備え、
前記フラッグ信号によって、前記補正参照指令が選択された場合には、前記暫定参照指令と前記暫定参照指令を合成して参照指令を生成し、前記補正参照指令が選択さない場合には、前記暫定参照指令で参照指令を生成し、いずれかの場合の参照指令を前記PWM制御手段に供給する、
ことを特徴とする新エネルギー源統合電力変換装置。 - 請求項6において、
前記電力変更決定手段は、
前記インバータの出力の電圧と電流から出力電力を計算する第1の電力計算手段と、
前記インバータの入力の電圧と電流から入力電力を計算する第2の電力計算手段と、
前記第1の電力計算手段が計算した出力電力と前記第2の電力計算手段が計算した入力電力との差の絶対値が事前に定められていた閾値を超すか否かを判定する閾値比較判定手段と、
該閾値比較判定手段が前記出力電力と前記入力電力との差の絶対値が閾値を超したと判定した場合に、電力変更決定操作のフラッグ信号を出力するフラッグ発生手段と、
前記フラッグ信号が出力された場合に、前記入力電力と出力電力指令とに基づき前記補正出力電力指令と当該補正出力電力指令の変化分の信号とを出力する出力電力変更指令手段と、
を備える、
ことを特徴とする新エネルギー源統合電力変換装置。 - 請求項7において、
前記出力電力変更指令手段は、
前記出力電力指令と前記入力電力との差の絶対値を算出する絶対値算出手段と、
前記フラッグ信号の有無によって、前記入力電力と前記出力電力指令とを切り替えて、前記補正出力電力指令を出力する切替手段と、
前記絶対値算出手段の出力信号を前記フラッグ信号によって、記憶して保持する保持手段と、
を備える、
ことを特徴とする新エネルギー源統合電力変換装置。 - 請求項6において、
前記仮想インピーダンス値決定手段は、前記補正出力電力指令の変化分の信号を仮想インピーダンス値に変換して出力する、
ことを特徴とする新エネルギー源統合電力変換装置。 - 請求項1または請求項6において、
前記インバータは、直流電力を三相交流電力に変換する三相インバータである、
ことを特徴とする新エネルギー源統合電力変換装置。 - 請求項1または請求項6において、
前記第1の検出手段と前記第2の検出手段を一体化して一つの検出手段として構成する、
ことを特徴とする新エネルギー源統合電力変換装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/612,464 US10873273B2 (en) | 2017-06-13 | 2018-03-21 | Renewable energy resources integrating power conversion apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-116145 | 2017-06-13 | ||
JP2017116145A JP6796029B2 (ja) | 2017-06-13 | 2017-06-13 | 新エネルギー源統合電力変換装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018230071A1 true WO2018230071A1 (ja) | 2018-12-20 |
Family
ID=64660464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/011237 WO2018230071A1 (ja) | 2017-06-13 | 2018-03-21 | 新エネルギー源統合電力変換装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10873273B2 (ja) |
JP (1) | JP6796029B2 (ja) |
TW (1) | TWI692193B (ja) |
WO (1) | WO2018230071A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021029313A1 (ja) * | 2019-08-09 | 2021-02-18 | ||
TWI735062B (zh) * | 2019-10-30 | 2021-08-01 | 行政院原子能委員會核能研究所 | 用於微電網之電壓控制系統及方法 |
JPWO2021176746A1 (ja) * | 2020-03-05 | 2021-09-10 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017106213A1 (de) * | 2017-03-22 | 2018-09-27 | Wobben Properties Gmbh | Verfahren zum Einspeisen elektrischer Leistung in ein elektrisches Versorgungsnetz |
CN110649660B (zh) * | 2019-08-23 | 2023-05-16 | 中国电力科学研究院有限公司 | 一种虚拟同步发电机的逆变器输出电压控制方法及装置 |
CN110601257B (zh) * | 2019-09-05 | 2022-11-18 | 复旦大学 | 一种基于光伏超配的主动式光伏逆变器惯量补偿控制方法 |
WO2021181629A1 (ja) * | 2020-03-12 | 2021-09-16 | 東芝三菱電機産業システム株式会社 | 電力変換装置 |
TWI762922B (zh) * | 2020-05-06 | 2022-05-01 | 楊明坤 | 模組化智慧微電網可變相位電壓逆變器 |
CN112636341B (zh) * | 2020-12-22 | 2021-08-24 | 湖南大学 | 基于多新息辨识的电力系统惯量空间分布估计方法及装置 |
JP7561990B2 (ja) * | 2021-06-28 | 2024-10-04 | 三菱電機株式会社 | 電力変換装置 |
CN113612402A (zh) * | 2021-08-09 | 2021-11-05 | 山特电子(深圳)有限公司 | 一种三相逆变控制系统和控制方法 |
JP7183486B1 (ja) * | 2022-05-30 | 2022-12-05 | 三菱電機株式会社 | 電力変換装置、および制御装置 |
CN115549169B (zh) * | 2022-09-28 | 2024-05-24 | 南方电网科学研究院有限责任公司 | 一种异步互联的柔性直流虚拟惯量控制方法、装置及系统 |
US11901739B2 (en) | 2022-11-28 | 2024-02-13 | Zhejiang University | Backup voltage and frequency support method for 100%-renewable energy sending-end grid |
CN115764929B (zh) * | 2022-11-28 | 2023-06-23 | 浙江大学 | 一种100%新能源送端电网的后备电压频率支撑方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012122874A1 (zh) * | 2011-03-15 | 2012-09-20 | 荣信电力电子股份有限公司 | 一种基于igbt的h桥串联多电平电压跌落发生器 |
JP2016220396A (ja) * | 2015-05-20 | 2016-12-22 | パナソニックIpマネジメント株式会社 | 分散電源システム、および、分散電源システムの制御方法 |
JP2016226279A (ja) * | 2015-05-29 | 2016-12-28 | 国立大学法人 東京大学 | 電力変換器、電力ネットワークシステムおよびその制御方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3982232B2 (ja) * | 2001-10-25 | 2007-09-26 | 株式会社日立製作所 | 同期発電機のセンサレス制御装置と制御方法 |
JP4007268B2 (ja) * | 2003-07-22 | 2007-11-14 | 株式会社日立製作所 | 風力発電装置 |
JP3918837B2 (ja) * | 2004-08-06 | 2007-05-23 | 株式会社日立製作所 | 風力発電装置 |
JP4770538B2 (ja) * | 2006-03-24 | 2011-09-14 | 株式会社日立製作所 | 電気駆動車両、及び電気駆動車両の制御方法 |
ES2402467B1 (es) * | 2011-02-28 | 2014-01-27 | Abengoa Solar New Technologies S.A. | Controlador de potencia síncrona de un sistema de generación basado en convertidores estáticos de potencia. |
US10439507B2 (en) * | 2015-11-19 | 2019-10-08 | Ge Energy Power Conversion Technology Ltd. | Power modules with programmed virtual resistance |
GB2570151B (en) * | 2018-01-14 | 2020-07-15 | Zhong Qingchang | Reconfiguration of inertia, damping, and fault ride-through for a virtual synchronous machine |
CN108418214A (zh) * | 2018-03-28 | 2018-08-17 | 国网江苏省电力有限公司南京供电分公司 | 一种基于变频空调负荷的电网调节方法 |
US10749446B2 (en) * | 2019-01-02 | 2020-08-18 | General Electric Company | Virtual synchronous generator system and method with virtual inertia control |
-
2017
- 2017-06-13 JP JP2017116145A patent/JP6796029B2/ja active Active
-
2018
- 2018-03-21 US US16/612,464 patent/US10873273B2/en active Active
- 2018-03-21 WO PCT/JP2018/011237 patent/WO2018230071A1/ja active Application Filing
- 2018-06-12 TW TW107120123A patent/TWI692193B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012122874A1 (zh) * | 2011-03-15 | 2012-09-20 | 荣信电力电子股份有限公司 | 一种基于igbt的h桥串联多电平电压跌落发生器 |
JP2016220396A (ja) * | 2015-05-20 | 2016-12-22 | パナソニックIpマネジメント株式会社 | 分散電源システム、および、分散電源システムの制御方法 |
JP2016226279A (ja) * | 2015-05-29 | 2016-12-28 | 国立大学法人 東京大学 | 電力変換器、電力ネットワークシステムおよびその制御方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021029313A1 (ja) * | 2019-08-09 | 2021-02-18 | ||
JP7182009B2 (ja) | 2019-08-09 | 2022-12-01 | 東京電力ホールディングス株式会社 | 系統連系電力変換装置 |
TWI735062B (zh) * | 2019-10-30 | 2021-08-01 | 行政院原子能委員會核能研究所 | 用於微電網之電壓控制系統及方法 |
JPWO2021176746A1 (ja) * | 2020-03-05 | 2021-09-10 | ||
JP7403630B2 (ja) | 2020-03-05 | 2023-12-22 | 東京電力ホールディングス株式会社 | 電力変換装置の制御システム |
Also Published As
Publication number | Publication date |
---|---|
US20200099315A1 (en) | 2020-03-26 |
JP6796029B2 (ja) | 2020-12-02 |
US10873273B2 (en) | 2020-12-22 |
TW201904185A (zh) | 2019-01-16 |
JP2019004571A (ja) | 2019-01-10 |
TWI692193B (zh) | 2020-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018230071A1 (ja) | 新エネルギー源統合電力変換装置 | |
CN109217335B (zh) | 一种海上风电vsc-hvdc输出系统的交流电力系统低频振荡阻尼控制方法 | |
US9350261B2 (en) | Power converter apparatus applied to wind power generation system | |
JP5542609B2 (ja) | 無効電力補償装置 | |
JP6735039B1 (ja) | 系統連系インバータ及び系統周波数の変動抑制方法 | |
JP7374816B2 (ja) | 電力変換装置の制御システム | |
CN108429431B (zh) | 一种基于虚拟同步发电机的变流器及其控制方法 | |
EP2606548A2 (en) | Method of controlling a grid side converter of a wind turbine and system suitable therefore | |
CN110350551B (zh) | 一种电压源型并网变换装置电流直接幅频控制方法及系统 | |
CN110601572B (zh) | 一种补偿指令电流获取方法、装置及设备 | |
CN109617082A (zh) | 一种抑制微电网电压频率越限的暂态稳定控制方法 | |
CN113964858B (zh) | 一种基于对偶同步原理的三相逆变器并网控制系统 | |
Narula et al. | Tuning and evaluation of grid-forming converters for grid-support | |
JP5498100B2 (ja) | インバータ制御回路、このインバータ制御回路を備えた系統連系インバータシステム | |
Yang et al. | Synchronization instability mechanism and damping enhancement control for DFIG-based wind turbine during grid faults | |
Aghdam et al. | Adaptive virtual inertia synthesis via enhanced dispatchable virtual oscillator controlled grid-tied inverters | |
JP5392649B2 (ja) | 自励式無効電力補償装置 | |
JP6831565B2 (ja) | 単相擬似同期化力インバータおよびそのコントローラ | |
CN111756054B (zh) | 基于惯量和虚拟阻抗协同自适应的vsg控制方法 | |
Gao et al. | Seamless Transitions Between Grid-Following and Grid-Forming Control: A Novel Switching Method | |
Nazib et al. | Dynamic grid frequency support using a self-synchronising grid-following inverter | |
JP4034458B2 (ja) | 自励式交直変換器制御装置および遮断器回路制御装置 | |
JP2001136664A (ja) | 分散形発電システム | |
JP2022148986A (ja) | 系統連系電力変換装置および系統連系電力変換装置の制御方法 | |
WO2020003619A1 (ja) | 電力変換システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18818769 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18818769 Country of ref document: EP Kind code of ref document: A1 |