WO2012122874A1 - 一种基于igbt的h桥串联多电平电压跌落发生器 - Google Patents

一种基于igbt的h桥串联多电平电压跌落发生器 Download PDF

Info

Publication number
WO2012122874A1
WO2012122874A1 PCT/CN2012/071453 CN2012071453W WO2012122874A1 WO 2012122874 A1 WO2012122874 A1 WO 2012122874A1 CN 2012071453 W CN2012071453 W CN 2012071453W WO 2012122874 A1 WO2012122874 A1 WO 2012122874A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
igbt
bridge
input
phase
Prior art date
Application number
PCT/CN2012/071453
Other languages
English (en)
French (fr)
Inventor
王�锋
徐颖
王晗
何银萍
于淼
孙福祥
张盛开
Original Assignee
荣信电力电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣信电力电子股份有限公司 filed Critical 荣信电力电子股份有限公司
Publication of WO2012122874A1 publication Critical patent/WO2012122874A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1807Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators
    • H02J3/1814Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators wherein al least one reactive element is actively controlled by a bridge converter, e.g. unified power flow controllers [UPFC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Definitions

  • the invention relates to an IGBT-based H-bridge power unit series multi-level voltage drop generator in the power electronics industry
  • VSG voltage drop generator
  • an object of the present invention is to provide an IGBT-based H-bridge series multi-level voltage drop generator (VSG), which can not only meet the requirements of the "Technical Regulations for Wind Farm Access to Power Systems".
  • VSG multi-level voltage drop generator
  • the specified grid voltage drop waveform and can be arbitrarily set other drop depth and time, the device itself has small loss, can carry out research and analysis of tidal current and reactive power; and is a whole movable structure.
  • the device is an energy feedback type four-quadrant converter, which can realize bidirectional flow of energy; its input end is connected with the grid AC bus, and the output end is measured.
  • the system is connected; the input end of the device is powered by the power supply AC bus through the feed switch QF1, and the feed switch QF1 and the feed switch QF2 are interlocked and cannot be closed at the same time; the feed switch QF2 is connected to the grid AC bus and the output of the device.
  • the feed switch QF2 is connected to the grid AC bus and the output of the device.
  • the energy feedback type four-quadrant converter comprises a plurality of low-voltage H-bridge variable frequency power units connected in series to form a phase, and a three-phase Y connection.
  • the rectifier side of the H-bridge variable frequency power unit is a three-phase controllable full bridge of the IGBT controllable device, and the filter capacitor is charged after being rectified; the output side is composed of four IGBT controllable devices of the inverter.
  • the device further comprises an input reactor, an input circuit breaker, an input phase shifting transformer, an output transformer, an output circuit breaker, an output reactor, and an input reactor and an input are sequentially connected between the grid AC bus and the energy feedback type four quadrant converter.
  • Circuit breaker and input phase shifting transformer; an output transformer, an output circuit breaker and an output reactor are connected in sequence between the energy feedback type four-quadrant converter and the system under test.
  • the energy feedback type four-quadrant converter, the output reactor and the input reactor, the input phase shifting transformer, the output transformer and the output breaker are respectively installed in four containers, and are movable structures.
  • the output voltage of the device is determined by the modulation signal output by the controller.
  • the PWM waveform obtained by the intersection of the triangular carrier and the sinusoidal modulated signal wave directly controls each IGBT to obtain a pulse width and a sinusoidal variation of the duty ratio between the pulses.
  • the output pulse voltage can achieve the desired control effect:
  • the output current is approximately sinusoidal, and the waveforms output by each power unit are superimposed in series to generate the required voltage waveform.
  • the modulated wave signal is set according to the required voltage drop waveform to obtain a voltage drop curve that meets the detection requirements.
  • the drop depth, phase and time can be set. This is the function that the traditional impedance form and the transformer form VSG cannot be perfectly realized.
  • the voltage drop curve of the impedance form and the transformer form VSG is not smooth, and the voltage and current spikes are prone to occur.
  • the VSG generated by the invention has a smooth voltage drop curve without a turning point, and the voltage recovery is fast, and the minimum drop depth can reach 15%, which is better than the national requirement of 20%;
  • the frequency change can be set.
  • the deviation percentage (_5% ⁇ +5%) can be set to simulate the grid frequency flicker.
  • VSG capacity When the voltage drops to 20% of the rated voltage, the overcurrent generated by the wind power generation system is about 3 times of the rated current.
  • the traditional impedance form VSG is prone to damage the VSG due to improper capacity selection.
  • the capacity of the VSG of the present invention is selected to be four times that of the wind power generation system to be tested, providing a sufficient short circuit capacity.
  • the efficiency of the system is improved.
  • the energy loss of the traditional impedance form VSG is large, which is unfavorable for research and analysis of tidal current and reactive power.
  • the overall efficiency of the VSG of the present invention is above 96%, which is beneficial to the research and analysis of tidal current and reactive power. .
  • the power factor of the system is increased. When the voltage drops to 20% of the rated voltage, the wind power system will lose its reactive power. Adjusting ability, at this time, the power factor of the whole power generation system is very low, which has a great influence on the power grid.
  • the VSG of the present invention can stabilize the power factor of the grid side at about 0.95, and does not generate power to the power grid when performing low voltage ride through detection. Shock.
  • the VSG equipment feeds the wind turbine generating energy back to the grid bus, realizing the micro energy consumption of the “back-to-back” towing test.
  • Figure 1 is an overall system diagram of the device of the present invention connected to the system under test;
  • Figure 2 is a detailed connection structure diagram of the device of the present invention and the system to be tested;
  • Figure 3 is a schematic diagram of waveform series superposition
  • Figure 4 is a schematic diagram of a series connection of a plurality of variable frequency power units
  • Figure 5 is a topological structural view of an energy feedback type four-quadrant converter
  • FIG. 6 is a block diagram of the H-bridge variable frequency power unit. detailed description
  • the wind power generation system is a doubly-fed wind power generation system and a photovoltaic power generation system.
  • the H-bridge series multi-level voltage drop generator VSG based on IGBT can also be used for permanent magnet direct-drive wind power generation system.
  • the VSG device is powered by the AC bus through the feed switch QF1.
  • QF1 and QF2 are interlocked and cannot be closed at the same time.
  • the VSG When detecting the low voltage ride-through capability of the system, the VSG returns the generated energy of the system under test to the AC bus, realizing the "back-to-back" pair. Drag the micro energy consumption of the test.
  • the device is composed of input reactor L1, input circuit breaker K1, input phase shifting transformer Tl, energy feedback type four quadrant converter 1, output transformer ⁇ 2, output circuit breaker ⁇ 2, and output reactor L2.
  • An input reactor L1, an input breaker K1, and an input phase shifting transformer T1 are sequentially connected between the busbar and the energy feedback type four-quadrant converter 1; the energy feedback type four-quadrant converter 1 and the system to be tested are sequentially connected Output transformer ⁇ 2, output breaker ⁇ 2, output reactor L2.
  • Tl, output transformer ⁇ 2 and output breaker ⁇ 2 are installed in four containers, which are movable structure. Easy to transport and install.
  • the energy feedback type four-quadrant converter is composed of a plurality of low-voltage bridge-frequency power units connected in series to form a phase, and a three-phase ⁇ connection.
  • the three-phase AC power sent by the power grid is supplied to each phase of the IGBT variable frequency power unit through the phase shifting transformer.
  • the ⁇ -shaped connection is used to form the line.
  • the high quality sine wave output is supplied to the wind power system or photovoltaic system under test. As shown in FIG.
  • the rectifier side of the H-bridge variable frequency power unit is a three-phase controllable full bridge of the IGBT controllable device, and the filter capacitor is charged after being rectified; the output side is composed of four IGBT controllable devices of the inverter.
  • the modulated signals of the different units of the same phase are the same, the carrier signals are different by one phase, and the PWM waveform obtained by the intersection of the triangular carrier and the sinusoidal modulated signal wave directly controls the IGBT to obtain the pulse width and the duty ratio between the pulses.
  • the sinusoidal output pulse voltage is changed, and the waveforms output by the respective power cells are superimposed in series to generate a desired voltage waveform.
  • the modulated wave signal is set to obtain a voltage drop curve that meets the detection requirements.
  • the input side of the H-bridge variable frequency power unit is equipped with a fuse, a rectifier side IGBT module, a capacitor and an output side reverse side IGBT module, and an inverter unit control and drive circuit.
  • the other two terminals are modulated outputs, ie u, V.
  • the rectification side of the power unit is a controlled rectification method that returns excess energy from the generator side to the grid.
  • the variable frequency power unit is a basic AC-DC-AC three-phase rectification/single-phase inverter circuit, and the rectification side is an IGBT three-phase full bridge. After rectification, the filter capacitor is charged; the output side is composed of inverter IGBTs connected in series. Connect to the system under test.
  • the secondary winding of the phase shifting transformer is divided into multiple groups, and the secondary coils have a phase difference with each other.
  • a multi-stage phase shift superimposed rectification method is generally composed of dozens of pulse series.
  • the controller is composed of a high-speed DSP, an industrial PC, and a PLC.
  • the fiber-optic communication technology is adopted between the controller and the variable-frequency power unit, and the low-voltage part and the high-voltage part are completely reliably isolated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Description

一种基于 IGBT的 H桥串联多电平电压跌落发生器 技术领域
本发明涉及电力电子行业中基于 IGBT 的 H 桥功率单元串联多电平电压跌落发生器
背景技术
通常情况下, 当电网出现故障导致电压较大波动时, 风力发电系统便会自动脱网, 而随 着风电装机容量的增加, 这种应对电压波动的方法对电网的影响己经不能忽略。 目前, 风力 发电占主导地位的一些国家, 如丹麦、 德国等国相继制定了新的电网运行准则, 要求风电系 统具有低电压穿越能力 LVRT(Low Voltage Ride-Through), 只有当电网电压跌落到一定程度 后才允许风力机脱网。 我国于 2009年颁布的 《风电场接入电力系统技术规定》 中规定对于 风电装机容量占其电源总容量比例大于 5 %的省 (区域)级电网, 该电网区域内运行的风力 发电机组应具有低电压穿越能力。
为了测试风力发电机组的低电压穿越能力,风力发电机试验系统就需要能模拟电网电压 跌落的装置, 即电压跌落发生器(VSG)。 国内外现有 (VSG) 主要有阻抗形式与变压器形式, 但这两种形式电压跌落发生器 (VSG)产生的电压跌落深度和频率波动不能灵活控制控制, 并 且能量损耗较大, 不易进行潮流与无功的研究分析。 因此理想的 VSG应能设定故障类型与 电压跌落深度、 时间, 不仅能检测被测系统的低电压穿越能力, 并且可以进行潮流与无功的 研究分析。 发明内容
为解决现有技术的问题, 本发明的目的是提供一种基于 IGBT的 H桥串联多电平电压跌 落发生器 (VSG), 该装置不仅可输出满足 《风电场接入电力系统技术规定》 中规定的电网 电压跌落波形, 并且可以任意设定其它的跌落深度与时间, 装置自身损耗小, 可以进行潮流 与无功的研究分析; 并且为整体可移动式结构。
为实现上述目的, 本发明通过以下技术方案实现:
一种基于 IGBT的 H桥串联多电平电压跌落发生器,该装置为能量回馈型四象限变流器, 可实现能量的双向流动; 其输入端与电网交流母线相连接, 输出端与被测系统相连接; 该装 置输入端由电网交流母线经过馈电开关 QF1供电,馈电开关 QF1与馈电开关 QF2实现互锁, 不能同时闭合; 馈电开关 QF2接于电网交流母线与装置输出端之间, 在检测系统低电压穿 越能力时, 该装置将被测系统的发电能量回馈到交流母线。
所述的能量回馈型四象限变流器由多个低压 H桥变频功率单元串联叠加构成一相,三相 Y连接构成。
所述的 H桥变频功率单元整流侧为 IGBT可控器件三相可控全桥,经整流后给滤波电容 充电; 输出侧由逆变的四个 IGBT可控器件组成。
该装置还包括输入电抗器、 输入断路器、 输入移相变压器、 输出变压器、 输出断路器、 输出电抗器, 电网交流母线与能量回馈型四象限变流器之间依次接有输入电抗器、输入断路 器、 输入移相变压器; 能量回馈型四象限变流器与被测系统之间依次接有输出变压器、 输出 断路器、 输出电抗器。
所述的能量回馈型四象限变流器、 输出电抗器及输入电抗器、 输入移相变压器、 输出变 压器及输出断路器分别装于四个集装箱中, 为可移动式结构。
该装置的输出电压由控制器输出的调制信号决定,采用三角载波和正弦调制信号波相交 获得的 PWM波形直接控制各个 IGBT可以得到脉冲宽度和各脉冲间的占空比可变的呈正弦 变化的输出脉冲电压, 能获得理想的控制效果: 输出电流近似正弦, 各个功率单元输出的波 形串联叠加产生所需的电压波形。根据所需的电压跌落波形设定调制波信号, 即可得到符合 检测要求的电压跌落曲线。
与现有技术相比, 本发明的新颖性和创造性体现在以下几个方面:
1、 可以模拟各种电网故障, 如单相对地故障、 两相对地故障、 相间故障、 三相故障;
2、 跌落深度、 相位、 时间可设定, 这是传统的阻抗形式与变压器形式 VSG无法完美实 现的功能, 阻抗形式与变压器形式 VSG的电压跌落曲线不平滑, 容易出现电压与电流的尖 峰, 本发明的 VSG产生的电压跌落曲线平滑无拐点, 电压恢复快, 最低跌落深度可达 15%, 优于国家要求的 20%;
3、 频率变化可设定, 可设定偏离百分比 (_5%〜+5%), 模拟电网频率闪变。
4、 提供了足够的 VSG容量, 电压跌落到额定电压的 20%时, 风力发电系统产生的过电 流约为额定电流的 3倍以上,传统的阻抗形式 VSG容易出现因容量选择不当而损坏 VSG的 情况, 本发明的 VSG的容量选为被测风力发电系统的 4倍, 提供了足够的短路容量。
5、 提高了系统的效率, 传统的阻抗形式 VSG的能量损耗较大, 不利进行潮流与无功的 研究分析, 本发明的 VSG的整体效率在 96%以上, 利于进行潮流与无功的研究分析。
6、 提高了系统的功率因数, 电压跌落到额定电压的 20%时, 风力发电系统将失去无功 调节能力, 此时整个发电系统的功率因数很低, 对电网产生较大的影响, 本发明的 VSG可 以使电网侧的功率因数稳定在 0.95左右, 在进行低电压穿越检测时不会对电网产生冲击。
7、 VSG 设备将风力发电机组发电能量回馈到电网母线, 实现"背靠背 "对拖试验的微能 耗。 附图说明
图 1 是本发明装置与被测系统连接的整体系统图;
图 2是本发明装置与被测系统的具体连接结构图;
图 3 是波形串联叠加原理图;
图 4 是多个变频功率单元串联叠加示意图;
图 5 是能量回馈型四象限变流器的拓扑结构图;
图 6 是 H桥变频功率单元的结构图。 具体实施方式
见图 1, 被试的风力发电系统是双馈风力发电系统与光伏发电系统, 本装置基于 IGBT 的 H桥串联多电平电压跌落发生器 VSG也可以用于永磁直驱风力发电系统。 VSG装置由交 流母线经过馈电开关 QF1供电, QF1与 QF2实现互锁, 不能同时闭合; 在检测系统低电压 穿越能力时, VSG将被测系统的发电能量回馈到交流母线, 实现 "背靠背"对拖试验的微 能耗。
见图 2, 该装置由输入电抗器 Ll、 输入断路器 Kl、 输入移相变压器 Tl、 能量回馈型四 象限变流器 1、输出变压器 Τ2、输出断路器 Κ2、输出电抗器 L2构成, 电网交流母线与能量 回馈型四象限变流器 1之间依次接有输入电抗器 Ll、 输入断路器 Kl、 输入移相变压器 T1 ; 能量回馈型四象限变流器 1与被测系统之间依次接有输出变压器 Τ2、 输出断路器 Κ2、 输出 电抗器 L2。
所述的能量回馈型四象限变流器 1、 输出电抗器 L2及输入电抗器 Ll、 输入移相变压器
Tl、 输出变压器 Τ2及输出断路器 Κ2分别装于四个集装箱中, 为可移动式结构。 便于运输、 安装。
见图 4、 图 5, 所述的能量回馈型四象限变流器由多个低压 Η桥变频功率单元串联叠加 构成一相, 三相 Υ连接构成。 由电网送来的三相交流电经过移相变压器供给每相 Ν个 IGBT 变频功率单元, 每相上的 Ν个功率单元输出的 PWM波相叠后, 采用 Υ形连接, 将形成线
Figure imgf000006_0001
的高质量的正弦波输出, 供给被测的风力发电系统或光伏发电系统。 见图 6, 所述的 H桥变频功率单元整流侧为 IGBT可控器件三相可控全桥, 经整流后给 滤波电容充电; 输出侧由逆变的四个 IGBT可控器件组成。
见图 3, 同一相的不同单元的调制波信号相同, 载波信号相差一个相位, 三角载波和正 弦调制信号波相交获得的 PWM波形直接控制各个 IGBT可以得到脉冲宽度和各脉冲间的占 空比可变的呈正弦变化的输出脉冲电压,各个功率单元输出的波形串联叠加产生所需的电压 波形。 根据所需的电压跌落波形设定调制波信号, 即可得到符合检测要求的电压跌落曲线。
见图 5, H桥变频功率单元输入侧设有熔断器、 整流侧 IGBT模块、 电容器和输出侧逆 变侧 IGBT模块, 以及变频单元控制和驱动电路。 每个单元主接线有 5个端子: 其中 3个为 输入, 即 R、 S、 T, 与电抗器相连, 接受变压器次级输出三相交流电。 另 2个端子为调制后 的输出, 即 u、 V。
功率单元的整流侧为可控整流方式, 这种方式可使从发电机侧的过能量回送到电网。变 频功率单元为基本的交-直 -交三相整流 /单相逆变电路, 整流侧为 IGBT三相全桥, 经整流后 给滤波电容充电; 输出侧由逆变的 IGBT相互串接组成, 与被测系统连接。
移相变压器的副边绕组分为多组, 二级线圈互相存在一个相位差, 根据电压等级和变频 功率单元级数, 一般由几十个脉冲系列构成多级移相叠加的整流方式。
控制器由高速 DSP、 工控 PC、 和 PLC共同组成, 控制器与变频功率单元之间采用光纤 通讯技术, 低压部分和高压部分完全可靠隔离。

Claims

^ ^
1、 一种基于 IGBT的 H桥串联多电平电压跌落发生器, 其特征在于, 该装置为能量回 馈型四象限变流器, 可实现能量的双向流动; 其输入端与电网交流母线相连接, 输出端与被 测系统相连接; 该装置输入端由电网交流母线经过馈电开关 QF1供电, 馈电开关 QF1与馈 电开关 QF2实现互锁, 不能同时闭合; 馈电开关 QF2接于电网交流母线与装置输出端之间, 在检测系统低电压穿越能力时, 该装置将被测系统的发电能量回馈到交流母线。
2、 根据权利要求 1所述的一种基于 IGBT的 H桥串联多电平电压跌落发生器, 其特征 在于,所述的能量回馈型四象限变流器由多个低压 H桥变频功率单元串联叠加构成一相,三 相 Y连接构成。
3、 根据权利要求 1或 2所述的一种基于 IGBT的 H桥串联多电平电压跌落发生器, 其 特征在于, 所述的 H桥变频功率单元整流侧为 IGBT可控器件三相可控全桥, 经整流后给滤 波电容充电; 输出侧由逆变的四个 IGBT可控器件组成。
4、 根据权利要求 1或 2所述的一种基于 IGBT的 H桥串联多电平电压跌落发生器, 其 特征在于, 该装置还包括输入电抗器、 输入断路器、 输入移相变压器、 输出变压器、 输出断 路器、 输出电抗器, 电网交流母线与能量回馈型四象限变流器之间依次接有输入电抗器、 输 入断路器、输入移相变压器;能量回馈型四象限变流器与被测系统之间依次接有输出变压器、 输出断路器、 输出电抗器。
5、 根据权利要求 4所述的一种基于 IGBT的 H桥串联多电平电压跌落发生器, 其特征 在于, 所述的能量回馈型四象限变流器、 输出电抗器及输入电抗器、 输入移相变压器、 输出 变压器及输出断路器分别装于四个集装箱中, 为可移动式结构。
PCT/CN2012/071453 2011-03-15 2012-02-22 一种基于igbt的h桥串联多电平电压跌落发生器 WO2012122874A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110062420.9 2011-03-15
CN2011100624209A CN102158101B (zh) 2011-03-15 2011-03-15 一种基于igbt的h桥串联多电平电压跌落发生器

Publications (1)

Publication Number Publication Date
WO2012122874A1 true WO2012122874A1 (zh) 2012-09-20

Family

ID=44439342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071453 WO2012122874A1 (zh) 2011-03-15 2012-02-22 一种基于igbt的h桥串联多电平电压跌落发生器

Country Status (2)

Country Link
CN (1) CN102158101B (zh)
WO (1) WO2012122874A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717399A (zh) * 2016-04-26 2016-06-29 华北电力科学研究院有限责任公司 电网适应性测试装置
CN107785924A (zh) * 2016-08-26 2018-03-09 中国电力科学研究院 一种虚拟同步发电机的参数量测方法
CN107968403A (zh) * 2017-12-15 2018-04-27 广州智光电气股份有限公司 级联式高压变频器的功率单元直流电压控制装置及方法
WO2018230071A1 (ja) * 2017-06-13 2018-12-20 株式会社日立製作所 新エネルギー源統合電力変換装置
CN110048457A (zh) * 2019-04-28 2019-07-23 中国石油大学(华东) 一种具备低电压穿越功能的双馈风机虚拟同步控制方法
CN111200368A (zh) * 2018-11-19 2020-05-26 核工业西南物理研究院 一种级联24脉波变流器拓扑
CN111458639A (zh) * 2020-04-16 2020-07-28 广东福德电子有限公司 能馈式负载测试系统
CN114520599A (zh) * 2022-02-21 2022-05-20 北京智充科技有限公司 一种新型电力电子变压器
CN116317616A (zh) * 2023-02-07 2023-06-23 泰安市泰山智诚自动化软件有限公司 一种四象限三电平防爆变频器机芯装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158101B (zh) * 2011-03-15 2013-09-25 荣信电力电子股份有限公司 一种基于igbt的h桥串联多电平电压跌落发生器
CN102426308B (zh) * 2011-09-25 2015-03-25 国网电力科学研究院 基于电网电压跌落复合模拟结构的低电压穿越测试方法
ES2410604B1 (es) * 2011-12-29 2014-06-24 Gamesa Innovation & Technology, S.L. Método y dispositivo de conversion para ensayar aerogeneradores en campo
CN103227476A (zh) * 2013-03-21 2013-07-31 南京南瑞继保电气有限公司 一种低电压穿越或低电压支撑综合试验系统
CN103178546B (zh) * 2013-03-27 2014-12-03 许继电气股份有限公司 用于低电压穿越测试的低电压发生装置及其电压控制方法
CN103543306B (zh) * 2013-10-29 2016-08-31 国家电网公司 用于低电压穿越测试的电压跌落发生器及其控制方法
CN107153152A (zh) * 2017-07-19 2017-09-12 云南电网有限责任公司电力科学研究院 一种电网适应性测试装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1988353A (zh) * 2006-12-07 2007-06-27 上海交通大学 级联多重化间接矩阵变换器
CN201623639U (zh) * 2010-01-12 2010-11-03 哈尔滨九洲电气股份有限公司 多重同步四象限高电压变流装置
CN101924513A (zh) * 2010-08-20 2010-12-22 上海交通大学 泵站水泵反向发电运行功率调节系统
CN101931240A (zh) * 2010-08-26 2010-12-29 哈尔滨九洲电气股份有限公司 一种双pwm矢量控制双馈风电变流器
CN102158101A (zh) * 2011-03-15 2011-08-17 荣信电力电子股份有限公司 一种基于igbt的h桥串联多电平电压跌落发生器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741100A (zh) * 2010-01-11 2010-06-16 华锐风电科技(集团)股份有限公司 低电压穿越控制方案
CN101877488A (zh) * 2010-07-13 2010-11-03 东北电力大学 一种用于实现风电机组低电压穿越能力的装置
CN202034907U (zh) * 2011-03-15 2011-11-09 荣信电力电子股份有限公司 一种基于igbt的h桥串联多电平电压跌落发生器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1988353A (zh) * 2006-12-07 2007-06-27 上海交通大学 级联多重化间接矩阵变换器
CN201623639U (zh) * 2010-01-12 2010-11-03 哈尔滨九洲电气股份有限公司 多重同步四象限高电压变流装置
CN101924513A (zh) * 2010-08-20 2010-12-22 上海交通大学 泵站水泵反向发电运行功率调节系统
CN101931240A (zh) * 2010-08-26 2010-12-29 哈尔滨九洲电气股份有限公司 一种双pwm矢量控制双馈风电变流器
CN102158101A (zh) * 2011-03-15 2011-08-17 荣信电力电子股份有限公司 一种基于igbt的h桥串联多电平电压跌落发生器

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717399A (zh) * 2016-04-26 2016-06-29 华北电力科学研究院有限责任公司 电网适应性测试装置
CN107785924A (zh) * 2016-08-26 2018-03-09 中国电力科学研究院 一种虚拟同步发电机的参数量测方法
TWI692193B (zh) * 2017-06-13 2020-04-21 日商日立製作所股份有限公司 替代能源整合電力轉換裝置
WO2018230071A1 (ja) * 2017-06-13 2018-12-20 株式会社日立製作所 新エネルギー源統合電力変換装置
JP2019004571A (ja) * 2017-06-13 2019-01-10 株式会社日立製作所 新エネルギー源統合電力変換装置
US10873273B2 (en) 2017-06-13 2020-12-22 Hitachi, Ltd. Renewable energy resources integrating power conversion apparatus
CN107968403A (zh) * 2017-12-15 2018-04-27 广州智光电气股份有限公司 级联式高压变频器的功率单元直流电压控制装置及方法
CN111200368A (zh) * 2018-11-19 2020-05-26 核工业西南物理研究院 一种级联24脉波变流器拓扑
CN110048457A (zh) * 2019-04-28 2019-07-23 中国石油大学(华东) 一种具备低电压穿越功能的双馈风机虚拟同步控制方法
CN110048457B (zh) * 2019-04-28 2023-05-26 中国石油大学(华东) 一种具备低电压穿越功能的双馈风机虚拟同步控制方法
CN111458639A (zh) * 2020-04-16 2020-07-28 广东福德电子有限公司 能馈式负载测试系统
CN114520599A (zh) * 2022-02-21 2022-05-20 北京智充科技有限公司 一种新型电力电子变压器
CN116317616A (zh) * 2023-02-07 2023-06-23 泰安市泰山智诚自动化软件有限公司 一种四象限三电平防爆变频器机芯装置
CN116317616B (zh) * 2023-02-07 2023-10-24 泰安市泰山智诚自动化软件有限公司 一种四象限三电平防爆变频器机芯装置

Also Published As

Publication number Publication date
CN102158101B (zh) 2013-09-25
CN102158101A (zh) 2011-08-17

Similar Documents

Publication Publication Date Title
WO2012122874A1 (zh) 一种基于igbt的h桥串联多电平电压跌落发生器
Essakiappan et al. Multilevel medium-frequency link inverter for utility scale photovoltaic integration
Deng et al. Operation and control of a DC-grid offshore wind farm under DC transmission system faults
CN103280838B (zh) 一种基于开绕组结构的风力发电高压直流并网系统及其控制方法
US9142964B2 (en) Electrical energy and distribution system
Mogstad et al. A power conversion system for offshore wind parks
CN103064023B (zh) 用于风电和光伏的并网测试装置及其测试方法
US20130119763A1 (en) Precharging and clamping system for an electric power system and method of operating the same
CN102435882B (zh) 无源电抗器结构并网光伏逆变器低电压穿越检测装置
CN102244466B (zh) 电压跌落发生装置
CN204228854U (zh) 一种电压暂降模拟装置
CN102148501B (zh) 一种风电场扰动发生装置
CN104242341A (zh) 基于mmc和双极式直流传输结构的直驱风电变流结构
US9859806B2 (en) Method and apparatus for obtaining electricity from offshore wind turbines
CN107895962A (zh) 一种电流源型高压直流输电系统及其运行方法
Mogstad et al. Power collection and integration on the electric grid from offshore wind parks
CN105634025A (zh) 直流微网中并网逆变装置
CN106356889A (zh) 永磁风力发电机组
CN201829955U (zh) 一种用于辅助风力发电机实现低压穿越的动态电压稳定器
CN202034907U (zh) 一种基于igbt的h桥串联多电平电压跌落发生器
CN105429472B (zh) 一种星角型整流式大功率直流升压变换器及其控制方法
CN112072704B (zh) 一种中压大容量风力发电变流器拓扑
CN202102064U (zh) 用于试验风电机组低电压穿越补偿装置功能的测试装置
CN202268705U (zh) 一种风电场电网电压扰动模拟发生装置
CN105553275A (zh) 一种六相逆变式大功率直流升压变换器及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 12758357

Country of ref document: EP

Kind code of ref document: A1