CN102158101B - 一种基于igbt的h桥串联多电平电压跌落发生器 - Google Patents

一种基于igbt的h桥串联多电平电压跌落发生器 Download PDF

Info

Publication number
CN102158101B
CN102158101B CN2011100624209A CN201110062420A CN102158101B CN 102158101 B CN102158101 B CN 102158101B CN 2011100624209 A CN2011100624209 A CN 2011100624209A CN 201110062420 A CN201110062420 A CN 201110062420A CN 102158101 B CN102158101 B CN 102158101B
Authority
CN
China
Prior art keywords
generator
igbt
voltage
input
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2011100624209A
Other languages
English (en)
Other versions
CN102158101A (zh
Inventor
王�锋
徐颖
王晗
何银萍
于淼
孙福祥
张盛开
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rongxin Huike Electric Co.,Ltd.
Original Assignee
Rongxin Power Electronic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rongxin Power Electronic Co Ltd filed Critical Rongxin Power Electronic Co Ltd
Priority to CN2011100624209A priority Critical patent/CN102158101B/zh
Publication of CN102158101A publication Critical patent/CN102158101A/zh
Priority to PCT/CN2012/071453 priority patent/WO2012122874A1/zh
Application granted granted Critical
Publication of CN102158101B publication Critical patent/CN102158101B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1807Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators
    • H02J3/1814Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators wherein al least one reactive element is actively controlled by a bridge converter, e.g. unified power flow controllers [UPFC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明涉及一种基于IGBT的H桥串联多电平电压跌落发生器,该装置为能量回馈型四象限变流器,可实现能量的双向流动;其输入端与电网相连接,输出端与被测系统相连接;所述的能量回馈型四象限变流器由多个低压H桥变频功率单元串联叠加构成一相,三相Y连接,与被测的风力发电系统或光伏发电系统连接。所述的H桥变频功率单元整流侧为IGBT可控器件三相可控全桥,经整流后给滤波电容充电;输出侧由逆变的四个IGBT可控器件组成。本装置不仅可输出满足《风电场接入电力系统技术规定》中规定的电网电压跌落波形,并且可以任意设定其它的跌落深度与时间,装置自身损耗小,可以进行潮流与无功的研究分析。

Description

一种基于IGBT的H桥串联多电平电压跌落发生器
技术领域
本发明涉及电力电子行业中基于IGBT的H桥功率单元串联多电平电压跌落发生器(VSG)。
背景技术
通常情况下,当电网出现故障导致电压较大波动时,风力发电系统便会自动脱网,而随着风电装机容量的增加,这种应对电压波动的方法对电网的影响已经不能忽略。目前,风力发电占主导地位的一些国家,如丹麦、德国等国相继制定了新的电网运行准则,要求风电系统具有低电压穿越能力LVRT(Low Voltage Ride-Through),只有当电网电压跌落到一定程度后才允许风力机脱网。我国于2009年颁布的《风电场接入电力系统技术规定》中规定对于风电装机容量占其电源总容量比例大于5%的省(区域)级电网,该电网区域内运行的风力发电机组应具有低电压穿越能力。
为了测试风力发电机组的低电压穿越能力,风力发电机试验系统就需要能模拟电网电压跌落的装置,即电压跌落发生器(VSG)。国内外现有(VSG)主要有阻抗形式与变压器形式,但这两种形式电压跌落发生器(VSG)产生的电压跌落深度和频率波动不能灵活控制控制,并且能量损耗较大,不易进行潮流与无功的研究分析。因此理想的VSG应能设定故障类型与电压跌落深度、时间,不仅能检测被测系统的低电压穿越能力,并且可以进行潮流与无功的研究分析。
发明内容
为解决现有技术的问题,本发明的目的是提供一种基于IGBT的H桥串联多电平电压跌落发生器(VSG),该装置不仅可输出满足《风电场接入电力系统技术规定》中规定的电网电压跌落波形,并且可以任意设定其它的跌落深度与时间,装置自身损耗小,可以进行潮流与无功的研究分析;并且为整体可移动式结构。
为实现上述目的,本发明通过以下技术方案实现:
一种基于IGBT的H桥串联多电平电压跌落发生器,该装置为能量回馈型四象限变流器,可实现能量的双向流动;其输入端与电网交流母线相连接,输出端与被测系统相连接;该装置输入端由电网交流母线经过馈电开关QF1供电,馈电开关QF1与馈电开关QF2实现互锁,不能同时闭合;馈电开关QF2接于电网交流母线与装置输出端之间,在检测系统低电压穿越能力时,该装置将被测系统的发电能量回馈到交流母线。
所述的能量回馈型四象限变流器由多个低压H桥变频功率单元串联叠加构成一相,三相Y连接构成。
所述的H桥变频功率单元整流侧为IGBT可控器件三相可控全桥,经整流后给滤波电容充电;输出侧由逆变的四个IGBT可控器件组成。
该装置还包括输入电抗器、输入断路器、输入移相变压器、输出变压器、输出断路器、输出电抗器,电网交流母线与能量回馈型四象限变流器之间依次接有输入电抗器、输入断路器、输入移相变压器;能量回馈型四象限变流器与被测系统之间依次接有输出变压器、输出断路器、输出电抗器。
所述的能量回馈型四象限变流器、输出电抗器及输入电抗器、输入移相变压器、输出变压器及输出断路器分别装于四个集装箱中,为可移动式结构。
该装置的输出电压由控制器输出的调制信号决定,采用三角载波和正弦调制信号波相交获得的PWM波形直接控制各个IGBT可以得到脉冲宽度和各脉冲间的占空比可变的呈正弦变化的输出脉冲电压,能获得理想的控制效果:输出电流近似正弦,各个功率单元输出的波形串联叠加产生所需的电压波形。根据所需的电压跌落波形设定调制波信号,即可得到符合检测要求的电压跌落曲线。
与现有技术相比,本发明的新颖性和创造性体现在以下几个方面:
1、可以模拟各种电网故障,如单相对地故障、两相对地故障、相间故障、三相故障;
2、跌落深度、相位、时间可设定,这是传统的阻抗形式与变压器形式VSG无法完美实现的功能,阻抗形式与变压器形式VSG的电压跌落曲线不平滑,容易出现电压与电流的尖峰,本发明的VSG产生的电压跌落曲线平滑无拐点,电压恢复快,最低跌落深度可达15%,优于国家要求的20%;
3、频率变化可设定,可设定偏离百分比(-5%~+5%),模拟电网频率闪变。
4、提供了足够的VSG容量,电压跌落到额定电压的20%时,风力发电系统产生的过电流约为额定电流的3倍以上,传统的阻抗形式VSG容易出现因容量选择不当而损坏VSG的情况,本发明的VSG的容量选为被测风力发电系统的4倍,提供了足够的短路容量。
5、提高了系统的效率,传统的阻抗形式VSG的能量损耗较大,不利进行潮流与无功的研究分析,本发明的VSG的整体效率在96%以上,利于进行潮流与无功的研究分析。
6、提高了系统的功率因数,电压跌落到额定电压的20%时,风力发电系统将失去无功调节能力,此时整个发电系统的功率因数很低,对电网产生较大的影响,本发明的VSG可以使电网侧的功率因数稳定在0.95左右,在进行低电压穿越检测时不会对电网产生冲击。
7、VSG设备将风力发电机组发电能量回馈到电网母线,实现“背靠背”对拖试验的微能耗。
附图说明
图1是本发明装置与被测系统连接的整体系统图;
图2是本发明装置与被测系统的具体连接结构图;
图3是波形串联叠加原理图;
图4是多个变频功率单元串联叠加示意图;
图5是能量回馈型四象限变流器的拓扑结构图;
图6是H桥变频功率单元的结构图。
具体实施方式
见图1,被试的风力发电系统是双馈风力发电系统与光伏发电系统,本装置基于IGBT的H桥串联多电平电压跌落发生器VSG也可以用于永磁直驱风力发电系统。VSG装置由交流母线经过馈电开关QF1供电,QF1与QF2实现互锁,不能同时闭合;在检测系统低电压穿越能力时,VSG将被测系统的发电能量回馈到交流母线,实现“背靠背”对拖试验的微能耗。
见图2,该装置由输入电抗器L1、输入断路器K1、输入移相变压器T1、能量回馈型四象限变流器1、输出变压器T2、输出断路器K2、输出电抗器L2构成,电网交流母线与能量回馈型四象限变流器1之间依次接有输入电抗器L1、输入断路器K1、输入移相变压器T1;能量回馈型四象限变流器1与被测系统之间依次接有输出变压器T2、输出断路器K2、输出电抗器L2。
所述的能量回馈型四象限变流器1、输出电抗器L2及输入电抗器L1、输入移相变压器T1、输出变压器T2及输出断路器K2分别装于四个集装箱中,为可移动式结构。便于运输、安装。
见图4、图5,所述的能量回馈型四象限变流器由多个低压H桥变频功率单元串联叠加构成一相,三相Y连接构成。由电网送来的三相交流电经过移相变压器供给每相N个IGBT变频功率单元,每相上的N个功率单元输出的PWM波相叠后,采用Y形连接,将形成线电压为
Figure BDA0000050321440000041
的高质量的正弦波输出,供给被测的风力发电系统或光伏发电系统。
见图6,所述的H桥变频功率单元整流侧为IGBT可控器件三相可控全桥,经整流后给滤波电容充电;输出侧由逆变的四个IGBT可控器件组成。
见图3,同一相的不同单元的调制波信号相同,载波信号相差一个相位,三角载波和正弦调制信号波相交获得的PWM波形直接控制各个IGBT可以得到脉冲宽度和各脉冲间的占空比可变的呈正弦变化的输出脉冲电压,各个功率单元输出的波形串联叠加产生所需的电压波形。根据所需的电压跌落波形设定调制波信号,即可得到符合检测要求的电压跌落曲线。
见图5,H桥变频功率单元输入侧设有熔断器、整流侧IGBT模块、电容器和输出侧逆变侧IGBT模块,以及变频单元控制和驱动电路。每个单元主接线有5个端子:其中3个为输入,即R、S、T,与电抗器相连,接受变压器次级输出三相交流电。另2个端子为调制后的输出,即U、V。
功率单元的整流侧为可控整流方式,这种方式可使从发电机侧的过能量回送到电网。变频功率单元为基本的交-直-交三相整流/单相逆变电路,整流侧为IGBT三相全桥,经整流后给滤波电容充电;输出侧由逆变的IGBT相互串接组成,与被测系统连接。
移相变压器的副边绕组分为多组,二级线圈互相存在一个相位差,根据电压等级和变频功率单元级数,一般由几十个脉冲系列构成多级移相叠加的整流方式。
控制器由高速DSP、工控PC、和PLC共同组成,控制器与变频功率单元之间采用光纤通讯技术,低压部分和高压部分完全可靠隔离。

Claims (5)

1.一种基于IGBT的H桥串联多电平电压跌落发生器,其特征在于,所述的多电平电压跌落发生器包括能量回馈型四象限变流器,可实现能量的双向流动;该发生器输入端与电网交流母线相连接,输出端与被测系统相连接;所述的多电平电压跌落发生器的输入端由电网交流母线经过馈电开关QF1供电,馈电开关QF1与馈电开关QF2实现互锁,不能同时闭合;馈电开关QF2接于电网交流母线与输出端之间,在检测被测系统低电压穿越能力时,多电平电压跌落发生器将被测系统的发电能量回馈到电网交流母线。
2.根据权利要求1所述的一种基于IGBT的H桥串联多电平电压跌落发生器,其特征在于,所述的能量回馈型四象限变流器由多个低压H桥变频功率单元串联叠加构成一相,三相Y连接构成。
3.根据权利要求2所述的一种基于IGBT的H桥串联多电平电压跌落发生器,其特征在于,所述的H桥变频功率单元整流侧为IGBT可控器件三相可控全桥,经整流后给滤波电容充电;输出侧由逆变的四个IGBT可控器件组成。
4.根据权利要求1或2所述的一种基于IGBT的H桥串联多电平电压跌落发生器,其特征在于,所述的多电平电压跌落发生器还包括输入电抗器、输入断路器、输入移相变压器、输出变压器、输出断路器、输出电抗器,电网交流母线与能量回馈型四象限变流器之间依次接有输入电抗器、输入断路器、输入移相变压器;能量回馈型四象限变流器与被测系统之间依次接有输出变压器、输出断路器、输出电抗器。
5.根据权利要求4所述的一种基于IGBT的H桥串联多电平电压跌落发生器,其特征在于,所述的能量回馈型四象限变流器、输出电抗器及输入电抗器、输入移相变压器、输出变压器及输出断路器分别装于四个集装箱中,为可移动式结构。
CN2011100624209A 2011-03-15 2011-03-15 一种基于igbt的h桥串联多电平电压跌落发生器 Active CN102158101B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011100624209A CN102158101B (zh) 2011-03-15 2011-03-15 一种基于igbt的h桥串联多电平电压跌落发生器
PCT/CN2012/071453 WO2012122874A1 (zh) 2011-03-15 2012-02-22 一种基于igbt的h桥串联多电平电压跌落发生器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100624209A CN102158101B (zh) 2011-03-15 2011-03-15 一种基于igbt的h桥串联多电平电压跌落发生器

Publications (2)

Publication Number Publication Date
CN102158101A CN102158101A (zh) 2011-08-17
CN102158101B true CN102158101B (zh) 2013-09-25

Family

ID=44439342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100624209A Active CN102158101B (zh) 2011-03-15 2011-03-15 一种基于igbt的h桥串联多电平电压跌落发生器

Country Status (2)

Country Link
CN (1) CN102158101B (zh)
WO (1) WO2012122874A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158101B (zh) * 2011-03-15 2013-09-25 荣信电力电子股份有限公司 一种基于igbt的h桥串联多电平电压跌落发生器
CN102426308B (zh) * 2011-09-25 2015-03-25 国网电力科学研究院 基于电网电压跌落复合模拟结构的低电压穿越测试方法
ES2410604B1 (es) * 2011-12-29 2014-06-24 Gamesa Innovation & Technology, S.L. Método y dispositivo de conversion para ensayar aerogeneradores en campo
CN103227476A (zh) * 2013-03-21 2013-07-31 南京南瑞继保电气有限公司 一种低电压穿越或低电压支撑综合试验系统
CN103178546B (zh) * 2013-03-27 2014-12-03 许继电气股份有限公司 用于低电压穿越测试的低电压发生装置及其电压控制方法
CN103543306B (zh) * 2013-10-29 2016-08-31 国家电网公司 用于低电压穿越测试的电压跌落发生器及其控制方法
CN105717399B (zh) * 2016-04-26 2018-12-25 华北电力科学研究院有限责任公司 电网适应性测试装置
CN107785924B (zh) * 2016-08-26 2020-11-24 中国电力科学研究院有限公司 一种虚拟同步发电机的参数量测方法
JP6796029B2 (ja) * 2017-06-13 2020-12-02 株式会社日立製作所 新エネルギー源統合電力変換装置
CN107153152A (zh) * 2017-07-19 2017-09-12 云南电网有限责任公司电力科学研究院 一种电网适应性测试装置
CN107968403B (zh) * 2017-12-15 2024-06-14 广州智光电气股份有限公司 级联式高压变频器的功率单元直流电压控制装置及方法
CN111200368A (zh) * 2018-11-19 2020-05-26 核工业西南物理研究院 一种级联24脉波变流器拓扑
CN110048457B (zh) * 2019-04-28 2023-05-26 中国石油大学(华东) 一种具备低电压穿越功能的双馈风机虚拟同步控制方法
CN111458639A (zh) * 2020-04-16 2020-07-28 广东福德电子有限公司 能馈式负载测试系统
CN114520599B (zh) * 2022-02-21 2024-08-27 北京智充科技有限公司 一种电力电子变压器
CN116317616B (zh) * 2023-02-07 2023-10-24 泰安市泰山智诚自动化软件有限公司 一种四象限三电平防爆变频器机芯装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741100A (zh) * 2010-01-11 2010-06-16 华锐风电科技(集团)股份有限公司 低电压穿越控制方案
CN101877488A (zh) * 2010-07-13 2010-11-03 东北电力大学 一种用于实现风电机组低电压穿越能力的装置
CN202034907U (zh) * 2011-03-15 2011-11-09 荣信电力电子股份有限公司 一种基于igbt的h桥串联多电平电压跌落发生器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1988353A (zh) * 2006-12-07 2007-06-27 上海交通大学 级联多重化间接矩阵变换器
CN201623639U (zh) * 2010-01-12 2010-11-03 哈尔滨九洲电气股份有限公司 多重同步四象限高电压变流装置
CN101924513B (zh) * 2010-08-20 2013-02-27 上海交通大学 泵站水泵反向发电运行功率调节系统
CN101931240A (zh) * 2010-08-26 2010-12-29 哈尔滨九洲电气股份有限公司 一种双pwm矢量控制双馈风电变流器
CN102158101B (zh) * 2011-03-15 2013-09-25 荣信电力电子股份有限公司 一种基于igbt的h桥串联多电平电压跌落发生器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741100A (zh) * 2010-01-11 2010-06-16 华锐风电科技(集团)股份有限公司 低电压穿越控制方案
CN101877488A (zh) * 2010-07-13 2010-11-03 东北电力大学 一种用于实现风电机组低电压穿越能力的装置
CN202034907U (zh) * 2011-03-15 2011-11-09 荣信电力电子股份有限公司 一种基于igbt的h桥串联多电平电压跌落发生器

Also Published As

Publication number Publication date
CN102158101A (zh) 2011-08-17
WO2012122874A1 (zh) 2012-09-20

Similar Documents

Publication Publication Date Title
CN102158101B (zh) 一种基于igbt的h桥串联多电平电压跌落发生器
CN103064023B (zh) 用于风电和光伏的并网测试装置及其测试方法
CN103454521B (zh) 一种风电场电网运行模拟装置
US9142964B2 (en) Electrical energy and distribution system
CN102353863B (zh) 一种可再生能源发电并网测试平台
CN102427243B (zh) 一种将风电场和常规电厂联合并网的多端直流输电系统
CN202093155U (zh) 大容量多适应性并网光伏逆变器检测平台
CN102435882B (zh) 无源电抗器结构并网光伏逆变器低电压穿越检测装置
CN102244466B (zh) 电压跌落发生装置
CN101539603A (zh) 一种微功耗的变流器全负载试验方法
CA2764020A1 (en) Control of the distribution of electric power generated by a wind farm between an ac power transmission link and a dc power transmission link
CN106199428B (zh) 高压大功率双馈型风力发电机试验系统及其测控系统
CN102148501B (zh) 一种风电场扰动发生装置
CN105958528B (zh) 一种风电机组零过渡动态并网方法及装置
CN101789604B (zh) 一种判断电网电压跌落严重程度的方法
CN202034907U (zh) 一种基于igbt的h桥串联多电平电压跌落发生器
CN202133730U (zh) 风电机组低电压穿越补偿系统的测试装置
CN204721000U (zh) 一种对电网友好且扩展灵活的新能源发电系统
CN207265677U (zh) 一种可变结构的交直流混合微电网系统
Bifaretti et al. Power flow control through a multi-level H-bridge based power converter for Universal and Flexible Power Management in future electrical grids
CN203479929U (zh) 一种风电场电网运行模拟装置
CN201444190U (zh) 一种微功耗的变流器全负载试验装置
CN204012752U (zh) 可任意组合式光伏模块电站及升压并网扩容变电系统
CN202102064U (zh) 用于试验风电机组低电压穿越补偿装置功能的测试装置
CN113098061A (zh) 一种基于模块化多电平变换器的海上岸电低频输电方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: 114051, Liaoning, Anshan MTR Eastern Science and technology road, No. 108

Patentee after: Monternet Rongxin Technology Group Limited by Share Ltd

Address before: 114051 Anshan high tech Zone, Liaoning province science and technology road, No. 108

Patentee before: Rongxin Power Electronic Co., Ltd.

TR01 Transfer of patent right

Effective date of registration: 20171013

Address after: Anshan Liaoning Province 114000 City Tiedong Mountain Road No. 212

Patentee after: Rongxin Huike Electric Technology Co., Ltd.

Address before: 114051, Liaoning, Anshan MTR Eastern Science and technology road, No. 108

Patentee before: Monternet Rongxin Technology Group Limited by Share Ltd

TR01 Transfer of patent right
CP01 Change in the name or title of a patent holder

Address after: 114000 212 Yue Ling Road, Anshan, Liaoning

Patentee after: Rongxin Huike Electric Co.,Ltd.

Address before: 114000 212 Yue Ling Road, Anshan, Liaoning

Patentee before: RONGXIN HUIKE ELECTRIC TECHNOLOGY Co.,Ltd.

CP01 Change in the name or title of a patent holder