WO2018228142A1 - 基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法 - Google Patents

基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法 Download PDF

Info

Publication number
WO2018228142A1
WO2018228142A1 PCT/CN2018/087692 CN2018087692W WO2018228142A1 WO 2018228142 A1 WO2018228142 A1 WO 2018228142A1 CN 2018087692 W CN2018087692 W CN 2018087692W WO 2018228142 A1 WO2018228142 A1 WO 2018228142A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
aluminum
cao
powder
refining
Prior art date
Application number
PCT/CN2018/087692
Other languages
English (en)
French (fr)
Inventor
豆志河
张廷安
刘燕
吕国志
赵秋月
牛丽萍
傅大学
张伟光
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Priority to JP2019504910A priority Critical patent/JP6810243B2/ja
Priority to GB1903087.3A priority patent/GB2572485B/en
Priority to EP18816517.9A priority patent/EP3495513B1/en
Priority to US16/320,000 priority patent/US11060166B2/en
Priority to EA201990607A priority patent/EA201990607A1/ru
Publication of WO2018228142A1 publication Critical patent/WO2018228142A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1277Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using other metals, e.g. Al, Si, Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1295Refining, melting, remelting, working up of titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of titanium aluminum alloys, and particularly relates to a method for preparing titanium alloys based on aluminum thermal self-propagation gradient reduction and slag washing refining.
  • Titanium alloys are widely used in aerospace, marine, defense, military, biomedical and other fields due to their small specific gravity, high specific strength, high temperature performance, acid and alkali corrosion resistance, and good biocompatibility.
  • the future market is huge.
  • the annual output of titanium alloy processing materials in the world has reached more than 40,000 tons, and nearly 30 kinds of titanium alloy grades, among which Ti-6Al-4V (TC4) is one of the most widely used iron alloys, and the application rate accounts for 50% of total titanium alloy production. More than %, accounting for 95% of all titanium alloy parts, is the leading material in titanium alloy applications in countries around the world.
  • Ti-6Al-4V alloy is an equiaxed martensitic ⁇ + ⁇ two-phase titanium alloy developed by the Illinois Institute of Technology in 1954. It has good strength, toughness, plasticity, formability, lubricity and heat resistance. , candle resistance and biocompatibility; first applied to the aerospace industry, but with the advancement of science and technology, the alloy is used in military, biomedical, automotive, marine, safety and protection, sports and leisure products, And developed into the most widely used titanium alloy with the largest output. At the same time, due to the wide application of Ti-6Al-4V alloy, its preparation method, microstructure performance analysis and application research are also the most, which is a typical representative of titanium alloy.
  • the industrial production methods of Ti-6Al-4V alloy mainly include vacuum melting casting method and powder metallurgy method.
  • the vacuum melting method uses sponge titanium as a raw material, adds intermediate alloy elements according to the target alloy, mixes well, presses and welds them into electrodes, and then smelts them in an arc melting furnace, an electron beam melting furnace or a plasma melting furnace, and then casts them into ingots. And then heat treatment to make the finished product.
  • Powder metallurgy also known as Blending elements (BE) is a near-net forming technology for the production of complex-shaped parts with short process flow, high material utilization, fine and uniform microstructure, controllable composition and near net shape. The advantages are the ideal process for preparing high performance, low cost titanium alloys.
  • the titanium powder and the elemental powder are mixed according to the distribution ratio of the alloy, and then formed by molding or cold isostatic pressing, sintering under vacuum, and then heat-treating to prepare the finished product.
  • the above two methods are based on titanium sponge or titanium powder.
  • the Kroll method for preparing a large amount of sponge titanium in the industry is a complicated process with long process, high energy consumption and high pollution, which causes the price of titanium alloy to be high. The main reason for the wide range of applications is limited.
  • Molten salt electrolysis is a research hotspot for the direct preparation of titanium alloy from titanium oxide.
  • titanium oxide can be compounded with a certain amount of oxide of the alloying element and the titanium-based alloy is directly prepared by a metal thermal reduction method (such as an aluminothermic method), the complicated process for producing titanium sponge can be avoided. Thereby, the process cost of the titanium alloy is greatly reduced.
  • the aluminothermic method has the advantages of rapid reaction and low energy consumption. Therefore, using titanium oxide and titanium alloy element oxide as raw materials, direct preparation of titanium-based alloy by aluminothermic method is a promising way to reduce the cost of titanium alloy.
  • aluminum element mainly acts as solid solution strengthening.
  • the tensile strength of room temperature increases by 50 MPa for every 1% Al added.
  • the ultimate solubility of aluminum in titanium is 7.5%, but after the limit solubility, the ordered phase Ti 3 Al( ⁇ 2 ) appears in the microstructure, which is unfavorable to the plasticity, toughness and stress corrosion of the alloy. Therefore, the amount of aluminum added is generally less than 7 %, some aluminum alloys are even lower in aluminum. Therefore, controlling the aluminum content in titanium alloys is particularly important.
  • titanium and aluminum in the alloy are prone to form titanium-aluminum intermetallic compounds, resulting in high aluminum content in the alloy ( ⁇ 10%).
  • the aluminum content in the alloy is difficult to pass through the self-propagating reaction process. The ingredients are controlled.
  • the invention is based on the defects of long process flow, high energy consumption and high cost of preparing titanium alloy, and the difficulty in controlling the aluminum content in the process of preparing titanium alloy by aluminothermic method, and proposed rutile or high titanium slag or titanium dioxide as raw materials.
  • the present invention proposes to use high titanium slag or rutile or titanium dioxide as raw materials, based on aluminum.
  • a method for preparing titanium alloy by thermal self-propagating gradient reduction and slag washing and refining which is based on aluminothermic self-propagating reaction, that is, using rutile or high-titanium slag or titanium dioxide, aluminum powder as raw materials, and adopting gradient feeding method for aluminum self-propagation
  • the reaction obtains a high-temperature melt, undergoes gradient reduction smelting, and adopts batch feeding or continuous feeding to realize the reaction process and temperature control and complete reduction of the metal oxide. After the feeding is completed, the melting is kept, and then the high-temperature melt is added.
  • the titanium The alloy is a titanium aluminum vanadium alloy.
  • a method for preparing a titanium alloy based on aluminum thermal self-propagating gradient reduction and slag washing refining comprises the following steps:
  • the aluminothermic reduction reaction materials are separately pretreated to obtain a pretreated aluminum thermal reduction reaction material
  • the aluminothermic reduction reaction material is a titanium-containing material, aluminum powder, V 2 O 5 powder, CaO and KClO 3 ;
  • the titanium-containing material is one or a mixture of rutile, high titanium slag or titanium dioxide;
  • the particle diameter of each material is: rutile ⁇ 3mm, high titanium slag ⁇ 3mm, or titanium dioxide particle size ⁇ 0.02mm; aluminum powder particle size ⁇ 2mm; V 2 O 5 powder ⁇ 0.2mm; CaO particle size ⁇ 0.2mm; KClO 3 particle size ⁇ 2mm;
  • each mixture to the reaction furnace aluminum is respectively added, and the amount of aluminum is gradually decreased to 1.75 to 0.65 times of the stoichiometric ratio according to the stoichiometric ratio of the reaction; the total amount of aluminum powder added is obtained according to the chemical reaction equation.
  • the mass of the first batch of the mixture fed into the reaction furnace accounts for 10 to 30% of the mass of the total mixture, and the first batch of the mixture to be added to the reaction furnace is required to be added with magnesium powder as a igniting material, and the mixture is ignited to cause self-propagation. Reacting to obtain a first batch of high temperature melt sufficient to initiate a subsequent reaction;
  • the other mixture materials are sequentially added to the reaction furnace until all the materials are completely reacted to obtain a high temperature melt;
  • the aluminum powder is added to the continuous mixer at a decreasing gradient flow rate, so that the aluminum content of the continuously added mixture material is gradually reduced from 1.15 to 1.35 times the stoichiometric ratio to 0.85 to 0.65 times the stoichiometric ratio, wherein The number of changes in the amount of aluminum gradient satisfies the relationship:
  • m is the number of times the gradient of the amount of aluminum is changed
  • b is the highest amount of aluminum
  • c is the lowest amount of aluminum
  • a is the coefficient of variation of the amount of aluminum, 0 ⁇ a ⁇ 0.04;
  • the total mass of the added aluminum powder is theoretically added to the total mass m t
  • the actual total mass of the aluminum powder is m a
  • the aluminum thermal self-propagating reaction raw material is continuously added to the reaction furnace after being mixed by the continuous mixer to carry out the aluminothermic reduction reaction until all the materials are completely reacted to obtain a high-temperature melt;
  • Step 3 Melting under the action of electromagnetic field
  • Electromagnetic induction is used to heat the high-temperature melt, and the thermal insulation is melted to realize the separation of slag gold to obtain a layered melt.
  • the upper layer is alumina-based slag and the lower alloy melt; wherein, during the melting process, the control temperature is 1700 ⁇ 1800 ° C, holding time 5 ⁇ 25min;
  • Step 4 slag washing and refining
  • the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag contains chemical components and mass percentages of CaF 2 : 5% to 10%, CaO: 40% to 60%, and Na 2 O: 0 to 2%, TiO 2 : 30% to 40%, V 2 O 5 : 5% to 15%, the balance being unavoidable impurities; among them, CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag
  • the upper molten slag was removed to obtain a titanium alloy.
  • the titanium alloy prepared by the invention contains chemical components and mass fractions thereof: Al is 5.5%-6.5%, V is 3.5%-4.5%, Si is 0.2%-1.0%, Fe is 0.2%-1.0%, O ⁇ 0.9%, the balance is Ti.
  • the method for pretreating the aluminum thermal reduction reaction materials separately is as follows:
  • the titanium-containing material, V 2 O 5 powder and CaO are respectively calcined, the calcination temperature is ⁇ 120 ° C, and the calcination time is 12 to 36 h;
  • the plurality of parts are n parts, n ⁇ 4.
  • the electromagnetic induction device is an intermediate frequency induction furnace, and the frequency of the electromagnetic field is greater than or equal to 1000 Hz.
  • the eccentric mechanical stirring has an eccentricity of 0.2 to 0.4.
  • the blowing is preferably performed at the bottom of the intermediate frequency induction furnace.
  • the high-purity inert gas is high-purity argon gas, and the purity is greater than or equal to 99.95%.
  • the CaF 2 -CaO-TiO 2 -V 2 O 5 -based scouring slag is pretreated before being calcined at a calcination temperature of 150 to 450 ° C for 10 to 48 hours.
  • the invention relates to a method for preparing a titanium alloy based on aluminum thermal self-propagating gradient reduction and slag washing refining, and has significant progress and advantages compared with the vacuum consumable arc melting method or the mixed element method for preparing a titanium alloy:
  • the rutile or high titanium slag or titanium dioxide, aluminum powder and V 2 O 5 powder of the invention are used as raw materials, and a new idea of preparing a titanium alloy by using aluminum thermal reduction-slag washing refining is proposed, which has short process, low energy consumption and simple operation. , the alloy, Al, V content is easy to control and so on;
  • the high aluminum distribution coefficient ensures a strong reducing atmosphere in the obtained melt, and ensures complete reduction of the metal oxide
  • the aluminum distribution coefficient of the material is gradually reduced from the stoichiometric ratio to less than the stoichiometric ratio, so that the excess reducing agent combined with the titanium in the melt is gradually released, and the titanium in the lower aluminum compound material added later is added.
  • the vanadium oxide gradually reacts to achieve effective control of the aluminum content in the final product;
  • the alkalinity and melting point of the slag are adjusted by using the added refining slag, the viscosity of the slag is lowered, the fluidity of the slag is improved, and the chemical reaction of the slag gold interface and the separation of the slag gold are completely carried out to realize oxidation. Aluminum and other inclusions are effectively removed; at the same time, the heat preservation smelting and slag washing and refining processes make full use of the system heat of reaction and reduce energy consumption;
  • Electromagnetic induction heating is used for slag washing and refining, and eccentric mechanical stirring is applied to form an upper layer of alumina-based slag layer and a lower layer of gold melt layer to strengthen the slag gold separation process.
  • the composition of rutile and its mass percentage is TiO 2 ⁇ 92%, the balance is impurity, the particle size is ⁇ 3mm;
  • the composition of high titanium slag and its mass percentage is TiO 2 ⁇ 92%, the balance is Impurity, particle size ⁇ 3mm;
  • the slag forming agent particle size ⁇ 0.2mm;
  • the purity of high purity argon is greater than 99.95%
  • the equipment used in the melting process and the slag washing and scouring process are medium frequency induction furnaces, and the frequency of the electromagnetic field in the medium frequency induction furnace is not less than 1000 Hz.
  • a method for preparing a titanium alloy based on aluminum thermal self-propagating gradient reduction and slag washing refining comprises the following steps:
  • the aluminothermic reduction materials were separately pretreated, specifically high titanium slag and V 2 O 5 powder containing 92% by mass of TiO 2 , calcined at 600 ° C for 32 h, respectively; CaO was calcined at 200 ° C for 16 h; KClO 3 was Drying at 160 ° C for 18 h; obtaining a preheated aluminum thermal reduction reaction material;
  • the particle diameters of the respective materials are: high titanium slag particle size ⁇ 3 mm; aluminum powder particle size ⁇ 2 mm; V 2 O 5 powder ⁇ 0.2 mm; CaO particle size ⁇ 0.2 mm; KClO 3 particle size ⁇ 2mm;
  • each mixture to the reaction furnace aluminum is respectively added, and the amount of aluminum is sequentially 1.20, 1.05, 1.0, 0.90, and 0.85 times the stoichiometric ratio; the total mass of the aluminum powder added according to the chemical reaction equation is theoretically added.
  • the mass of the first batch of the mixture fed into the reaction furnace accounts for 20% of the mass of the total mixture, and the first batch of the mixture to be added to the reactor requires the addition of magnesium powder as a pilot, and the mixture is ignited to initiate a self-propagating reaction.
  • the other mixture materials are sequentially added to the reaction furnace until all the materials are completely reacted to obtain a high temperature melt;
  • Step 3 Melting under the action of electromagnetic field
  • Electromagnetic induction is used to heat the high-temperature melt, and the thermal insulation is melted to realize the separation of slag gold to obtain a layered melt.
  • the upper layer is alumina-based slag and the lower alloy melt; wherein, during the melting process, the control temperature is 1800 °C. , holding time 15min;
  • Step 4 slag washing and refining
  • the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag contains chemical components and mass percentages of CaF 2 : 5%, CaO: 60%, Na 2 O: 0%, TiO 2 : 30%, V 2 O 5 : 5%; wherein each component contained in the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag: CaO, CaF 2 , Na 2 O, TiO 2 , V 2 O 5
  • the particle size of the powder is ⁇ 0.2 mm; the CaF 2 -CaO-TiO 2 -V 2 O 5 -based scouring slag is pretreated before use: the calcination temperature is 150 ° C and calcined for 10 h.
  • the upper molten slag was removed to obtain a titanium alloy.
  • the titanium alloy prepared by the present invention contains chemical components and mass fractions thereof: Al is 6.2%, V is 3.50%, Si is 0.2%, Fe is 0.2%, O is 0.32%, and the balance is Ti.
  • a method for preparing a titanium alloy based on aluminum thermal self-propagating gradient reduction and slag washing refining comprises the following steps:
  • the aluminothermic reduction materials were pretreated separately, specifically titanium dioxide and V 2 O 5 powders containing 99.5% by mass of TiO 2 and calcined at 650 ° C for 36 h; CaO was calcined at 200 ° C for 8 h; KClO 3 at 160 ° C Drying for 18 hours; obtaining the aluminothermic reduction reaction material after pretreatment;
  • the particle diameters of the respective materials are: titanium dioxide particle size ⁇ 0.02 mm; aluminum powder particle size ⁇ 2 mm; V 2 O 5 powder ⁇ 0.2 mm; CaO particle size ⁇ 0.2 mm; KClO 3 particle size ⁇ 2 mm ;
  • the aluminum hot self-propagating reaction raw materials other than the aluminum powder are uniformly mixed to obtain a mixture, and the mixture is divided into 6 parts;
  • the mass of the first batch of the mixture fed into the reaction furnace accounts for 28.6% of the mass of the total mixture, and the first batch of the mixture to be added to the reactor requires the addition of magnesium powder as a pilot, and the ignition of the mixture causes a self-propagating reaction.
  • the other mixture materials are sequentially added to the reaction furnace until all the materials are completely reacted to obtain a high temperature melt;
  • Step 3 Melting under the action of electromagnetic field
  • Electromagnetic induction is used to heat the high-temperature melt, and the thermal insulation is melted to realize the separation of slag gold to obtain a layered melt.
  • the upper layer is alumina-based slag and the lower alloy melt; wherein, during the melting process, the control temperature is 1750 °C. , holding time 20min;
  • Step 4 slag washing and refining
  • the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag contains chemical components and mass percentages of CaF 2 : 10%, CaO : 50%, Na 2 O : 0%, TiO 2 : 30%, V 2 O 5 : 10%; wherein each component contained in the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag: CaO, CaF 2 , Na 2 O, TiO 2 , V 2 O 5
  • the particle size of the powder is ⁇ 0.2 mm; the CaF 2 -CaO-TiO 2 -V 2 O 5 -based scouring slag is pretreated before being calcined at a calcination temperature of 150 ° C for 20 h.
  • the upper molten slag was removed to obtain a titanium alloy.
  • the titanium alloy prepared by the present invention contains chemical components and mass fractions of: Al is 6.0%, V is 3.80%, Si is 0.3%, Fe is 0.6%, O is 0.24%, and the balance is Ti.
  • a method for preparing a titanium alloy based on aluminum thermal self-propagating gradient reduction and slag washing refining comprises the following steps:
  • the aluminothermic reduction materials were pretreated separately, specifically rutile and V 2 O 5 powders containing 92% by mass of TiO 2 and calcined at 600 ° C for 24 h; CaO was calcined at 300 ° C for 12 h; KClO 3 at 200 ° C Drying for 18 hours; obtaining the aluminothermic reduction reaction material after pretreatment;
  • the particle size of each material is: rutile particle size ⁇ 3mm; aluminum powder particle size ⁇ 2mm; V 2 O 5 powder ⁇ 0.2mm; CaO particle size ⁇ 0.2mm; KClO 3 particle size ⁇ 2mm;
  • each mixture is respectively added, and the amount of aluminum is sequentially stoichiometrically 1.20, 1.1, 1.0, 0.95, 0.925, 0.90, 0.875, 0.85 times; and aluminum powder is obtained according to the chemical reaction equation.
  • the mass of the first batch of the mixture fed into the reaction furnace accounts for 22.2% of the mass of the total mixture, and the first batch of the mixture to be added to the reactor requires the addition of magnesium powder as a pilot, and the mixture is ignited to initiate a self-propagating reaction.
  • Step 3 Melting under the action of electromagnetic field
  • Electromagnetic induction is used to heat the high temperature melt, and the thermal insulation is melted to realize the separation of slag gold to obtain a layered melt.
  • the upper layer is alumina-based slag and the lower alloy melt; wherein, during the melting process, the control temperature is 1700 °C. , holding time 25min;
  • Step 4 slag washing and refining
  • the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag contains chemical components and mass percentages of CaF 2 : 5%, CaO: 40%, Na 2 O: 0%, TiO 2 : 40%, V 2 O 5 : 15%; wherein each component contained in the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag: CaO, CaF 2 , Na 2 O, TiO 2 , V 2 O 5
  • the particle size of the powder is ⁇ 0.2 mm; the CaF 2 -CaO-TiO 2 -V 2 O 5 -based scouring slag is pretreated before use: the calcination temperature is 180 ° C and calcined for 20 h.
  • the upper molten slag was removed to obtain a titanium alloy.
  • the titanium alloy prepared by the present invention contains chemical components and mass fractions thereof: Al is 5.8%, V is 4.40%, Si is 0.4%, Fe is 0.8%, O is 0.2%, and the balance is Ti.
  • a method for preparing a titanium alloy based on aluminum thermal self-propagating gradient reduction and slag washing refining comprises the following steps:
  • the aluminothermic reduction materials were pretreated separately, specifically high titanium slag and V 2 O 5 powder containing 93% by mass of TiO 2 and calcined at 700 ° C for 12 h; CaO was calcined at 300 ° C for 36 h; KClO 3 was Drying at 250 ° C for 8 h; obtaining a preheated aluminothermic reaction material;
  • the particle diameters of the respective materials are: high titanium slag particle size ⁇ 3 mm; aluminum powder particle size ⁇ 2 mm; V 2 O 5 powder ⁇ 0.2 mm; CaO particle size ⁇ 0.2 mm; KClO 3 particle size ⁇ 2mm;
  • the aluminum powder is added to the continuous mixer at a decreasing gradient flow rate, and the aluminum content of the continuously added mixture material is gradually reduced from 1.28 times the stoichiometric ratio to 0.7 times the stoichiometric ratio, wherein the aluminum content gradient changes.
  • the number of times satisfies the relationship:
  • m is the number of times the gradient of the amount of aluminum is changed
  • b is the highest amount of aluminum
  • c is the lowest amount of aluminum
  • a is the coefficient of variation of the amount of aluminum
  • a 0.01; calculated by m is 58 times, aluminum
  • the time interval of the powder flow gradient change is the total reaction time divided by m.
  • the total mass of the added aluminum powder is theoretically added to the total mass m t
  • the actual total mass of the aluminum powder is m a
  • the aluminum thermal self-propagating reaction raw material is continuously added to the reaction furnace after being mixed by the continuous mixer to carry out the aluminothermic reduction reaction until all the materials are completely reacted to obtain a high-temperature melt;
  • Step 3 Melting under the action of electromagnetic field
  • Electromagnetic induction is used to heat the high-temperature melt, and the thermal insulation is melted to realize the separation of slag gold to obtain a layered melt.
  • the upper layer is alumina-based slag and the lower alloy melt; wherein, during the melting process, the control temperature is 1800 °C. , holding time 15min;
  • Step 4 slag washing and refining
  • the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag contains chemical components and mass percentages of CaF 2 : 10%, CaO : 50%, Na 2 O : 0%, TiO 2 : 35%, V 2 O 5 : 5%; wherein each component contained in the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag: CaO, CaF 2 , Na 2 O, TiO 2 , V 2 O 5
  • the particle size of the powder is ⁇ 0.2 mm; the CaF 2 -CaO-TiO 2 -V 2 O 5 -based scouring slag is pretreated before use: the calcination temperature is 150 ° C and calcined for 10 h.
  • the upper molten slag was removed to obtain a titanium alloy.
  • the titanium alloy prepared by the invention contains chemical components and mass fractions thereof: Al is 6.1%, V is 3.60%, Si is 0.6%, Fe is 0.7%, O is 0.31%, and the balance is Ti.
  • a method for preparing a titanium alloy based on aluminum thermal self-propagating gradient reduction and slag washing refining comprises the following steps:
  • the thermite reaction mass were pre-reduction, particularly containing mass% of TiO 2 is 92.5% of the slag containing a high percentage of the mass of TiO 2 was 99.6% titanium dioxide, V 2 O 5 powder were calcined at 650 °C 20h; CaO is calcined at 200 ° C for 12h; KClO 3 is dried at 150 ° C for 18h; wherein the mass ratio of high titanium slag and titanium dioxide is 1:1, the pretreated aluminum thermal reduction reaction material is obtained;
  • the particle diameters of the respective materials are: high titanium slag particle size ⁇ 3 mm, titanium dioxide particle size ⁇ 0.02 mm; aluminum powder particle size ⁇ 2 mm; V 2 O 5 powder ⁇ 0.2 mm; CaO particle size ⁇ 0.2mm; KClO 3 particle size ⁇ 2mm;
  • the aluminum powder is added to the continuous mixer at a decreasing gradient flow rate, and the aluminum content of the continuously added mixture material is gradually reduced from 1.20 times the stoichiometric ratio to 0.75 times the stoichiometric ratio, wherein the aluminum content gradient changes.
  • the number of times satisfies the relationship:
  • m is the number of times the gradient of the amount of aluminum is changed
  • b is the highest amount of aluminum
  • c is the lowest amount of aluminum
  • m is calculated to be 150 times.
  • the total mass of the added aluminum powder is theoretically added to the total mass m t
  • the actual total mass of the aluminum powder is m a
  • the aluminum thermal self-propagating reaction raw material is continuously added to the reaction furnace after being mixed by the continuous mixer to carry out the aluminothermic reduction reaction until all the materials are completely reacted to obtain a high-temperature melt;
  • Step 3 Melting under the action of electromagnetic field
  • Electromagnetic induction is used to heat the high temperature melt, and the thermal insulation is melted to realize the separation of slag gold to obtain a layered melt.
  • the upper layer is alumina-based slag and the lower alloy melt; wherein, during the melting process, the control temperature is 1700 °C. , holding time 15min;
  • Step 4 slag washing and refining
  • the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag contains chemical components and mass percentages of CaF 2 : 5%, CaO: 50%, Na 2 O: 0%, TiO 2 : 30%, V 2 O 5 : 10%; wherein each component contained in the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag: CaO, CaF 2 , Na 2 O, TiO 2 , V 2 O 5
  • the particle size of the powder is ⁇ 0.2 mm; the CaF 2 -CaO-TiO 2 -V 2 O 5 -based scouring slag is pretreated before use: the calcination temperature is 450 ° C for 12 h.
  • the upper molten slag was removed to obtain a titanium alloy.
  • the titanium alloy prepared by the invention contains chemical components and mass fractions of: Al is 5.8%, V is 4.10%, Si is 0.3%, Fe is 0.6%, O is 0.22%, and the balance is Ti.
  • a method for preparing a titanium alloy based on aluminum thermal self-propagating gradient reduction and slag washing refining comprises the following steps:
  • reaction mass separately aluminothermic reduction pretreatment, particularly mass% TiO 2 containing 93% of high-titanium slag containing TiO 2 percent by mass of 99.5% titanium dioxide, and the percentage by mass of TiO 2 containing 94% rutile , V 2 O 5 powder, calcined at 650 ° C for 36h; CaO is calcined at 300 ° C for 16h; KClO 3 is dried at 180 ° C for 24h; wherein, high titanium slag and titanium dioxide and rutile, the mixture ratio of the three is 1:1: 1, obtaining a preheated aluminothermic reaction material;
  • the particle diameters of the respective materials are: high titanium slag particle size ⁇ 3 mm, rutile particle size ⁇ 3 mm, titanium dioxide particle size ⁇ 0.02 mm; aluminum powder particle size ⁇ 2 mm; V 2 O 5 powder ⁇ 0.2 mm CaO particle size ⁇ 0.2mm; KClO 3 particle size ⁇ 2mm;
  • the aluminum powder is added to the continuous mixer at a decreasing gradient flow rate, and the aluminum content of the continuously added mixture material is gradually reduced from 1.2 times the stoichiometric ratio to 0.75 times the stoichiometric ratio, wherein the aluminum content gradient changes.
  • the number of times satisfies the relationship:
  • m is the number of times the gradient of the amount of aluminum is changed
  • b is the highest amount of aluminum
  • c is the lowest amount of aluminum
  • a is the coefficient of variation of the amount of aluminum
  • a 0.001
  • m is calculated to be 450 times.
  • the total mass of the added aluminum powder is theoretically added to the total mass m t
  • the actual total mass of the aluminum powder is m a
  • the aluminum thermal self-propagating reaction raw material is continuously added to the reaction furnace after being mixed by the continuous mixer to carry out the aluminothermic reduction reaction until all the materials are completely reacted to obtain a high-temperature melt;
  • Step 3 Melting under the action of electromagnetic field
  • Electromagnetic induction is used to heat the high-temperature melt, and the thermal insulation is melted to realize the separation of slag gold to obtain a layered melt.
  • the upper layer is alumina-based slag and the lower alloy melt; wherein, during the melting process, the control temperature is 1750 °C. , holding time 20min;
  • Step 4 slag washing and refining
  • the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag contains chemical components and mass percentages of CaF 2 : 10%, CaO : 40%, Na 2 O : 0%, TiO 2 : 35%, V 2 O 5 : 15%; wherein each component contained in the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag: CaO, CaF 2 , Na 2 O, TiO 2 , V 2 O 5
  • the particle size of the powder is ⁇ 0.2 mm; the CaF 2 -CaO-TiO 2 -V 2 O 5 -based scouring slag is pretreated before use: the calcination temperature is 200 ° C for 12 h.
  • the upper molten slag was removed to obtain a titanium alloy.
  • the titanium alloy prepared by the present invention contains chemical components and mass fractions of: Al of 5.6%, V of 4.40%, Si of 0.6%, Fe of 0.8%, O of 0.18%, and balance of Ti.
  • a method for preparing a titanium alloy based on aluminum thermal self-propagating gradient reduction and slag washing refining comprises the following steps:
  • the aluminothermic reduction materials were pretreated separately, specifically rutile and V 2 O 5 powders containing 92% by mass of TiO 2 and calcined at 600 ° C for 24 h; CaO was calcined at 200 ° C for 16 h; KClO 3 at 180 ° C Drying for 20 h; obtaining a preheated aluminothermic reaction material;
  • the particle size of each material is: rutile particle size ⁇ 3mm; aluminum powder particle size ⁇ 2mm; V 2 O 5 powder ⁇ 0.2mm; CaO particle size ⁇ 0.2mm; KClO 3 particle size ⁇ 2mm;
  • each mixture to the reaction furnace aluminum is respectively added, and the amount of aluminum is sequentially 1.20, 1.05, 1.0, 0.90, and 0.85 times the stoichiometric ratio; the total mass of the aluminum powder added according to the chemical reaction equation is theoretically added.
  • the mass of the first batch of the mixture fed into the reaction furnace accounts for 20% of the mass of the total mixture, and the first batch of the mixture to be added to the reactor requires the addition of magnesium powder as a pilot, and the mixture is ignited to initiate a self-propagating reaction.
  • the other mixture materials are sequentially added to the reaction furnace until all the materials are completely reacted to obtain a high temperature melt;
  • Step 3 Melting under the action of electromagnetic field
  • Electromagnetic induction is used to heat the high temperature melt, and the thermal insulation is melted to realize the separation of slag gold to obtain a layered melt.
  • the upper layer is alumina-based slag and the lower alloy melt; wherein, during the melting process, the control temperature is 1700 °C. , holding time 15min;
  • Step 4 slag washing and refining
  • the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag contains chemical components and mass percentages of CaF 2 : 5%, CaO: 50%, Na 2 O: 0%, TiO 2 : 40%, V 2 O 5 : 5%; wherein each component contained in the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag: CaO, CaF 2 , Na 2 O, TiO 2 , V 2 O 5
  • the particle size of the powder is ⁇ 0.2 mm; the CaF 2 -CaO-TiO 2 -V 2 O 5 -based scouring slag is pretreated before use: the calcination temperature is 150 ° C and calcined for 10 h.
  • the upper molten slag was removed to obtain a titanium alloy.
  • the titanium alloy prepared by the present invention contains chemical components and mass fractions of Al of 6.3%, V of 3.70%, Si of 0.4%, Fe of 0.6%, O of 0.35%, and balance of Ti.
  • a method for preparing a titanium alloy based on aluminum thermal self-propagating gradient reduction and slag washing refining comprises the following steps:
  • the aluminothermic reduction reaction mass were pretreated particularly containing mass% TiO 2 99.7% titanium dioxide and mass containing TiO 2 is the percentage of 93% rutile, V 2 O 5 powder were calcined 16h at 700 deg.] C; CaO is calcined at 250 ° C for 16 h; KClO 3 is dried at 180 ° C for 36 h, wherein the mixed mass ratio of titanium dioxide and rutile is 1:1, and the pretreated aluminum thermal reduction reaction material is obtained;
  • the particle size of each material is: titania particle size ⁇ 0.02 mm, rutile particle size ⁇ 3 mm; aluminum powder particle size ⁇ 2 mm; V 2 O 5 powder ⁇ 0.2 mm; CaO particle size ⁇ 0.2 mm; KClO 3 particle size ⁇ 2mm;
  • the aluminum hot self-propagating reaction raw materials other than the aluminum powder are uniformly mixed to obtain a mixture, and the mixture is divided into 6 parts;
  • the mass of the first batch of the mixture fed into the reaction furnace accounts for 28.6% of the mass of the total mixture, and the first batch of the mixture to be added to the reactor requires the addition of magnesium powder as a pilot, and the ignition of the mixture causes a self-propagating reaction.
  • the other mixture materials are sequentially added to the reaction furnace until all the materials are completely reacted to obtain a high temperature melt;
  • Step 3 Melting under the action of electromagnetic field
  • Electromagnetic induction is used to heat the high-temperature melt, and the thermal insulation is melted to realize the separation of slag gold to obtain a layered melt.
  • the upper layer is alumina-based slag and the lower alloy melt; wherein, during the melting process, the control temperature is 1800 °C. , holding time 15min;
  • Step 4 slag washing and refining
  • the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag contains chemical components and mass percentages of CaF 2 : 10%, CaO : 40%, Na 2 O : 0%, TiO 2 : 40%, V 2 O 5 : 10%; wherein each component contained in the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag: CaO, CaF 2 , Na 2 O, TiO 2 , V 2 O 5
  • the particle size of the powder is ⁇ 0.2 mm; the CaF 2 -CaO-TiO 2 -V 2 O 5 -based scouring slag is pretreated before use: the calcination temperature is 150 ° C and calcined for 48 h.
  • the upper molten slag was removed to obtain a titanium alloy.
  • the titanium alloy prepared by the invention contains chemical components and mass fractions of Al of 5.7%, V of 4.20%, Si of 0.7%, Fe of 0.9%, O of 0.18% and the balance being Ti.
  • a method for preparing a titanium alloy based on aluminum thermal self-propagating gradient reduction and slag washing refining comprises the following steps:
  • the aluminothermic reduction materials were pretreated separately, specifically rutile and V 2 O 5 powders containing 92% by mass of TiO 2 and calcined at 650 ° C for 16 h; CaO was calcined at 200 ° C for 16 h; KClO 3 at 180 ° C Drying for 24 hours; obtaining a preheated aluminothermic reaction material;
  • the particle size of each material is: rutile particle size ⁇ 3mm; aluminum powder particle size ⁇ 2mm; V 2 O 5 powder ⁇ 0.2mm; CaO particle size ⁇ 0.2mm; KClO 3 particle size ⁇ 2mm;
  • each mixture is respectively added, and the amount of aluminum is sequentially stoichiometrically 1.20, 1.1, 1.0, 0.95, 0.925, 0.90, 0.875, 0.85 times; and aluminum powder is obtained according to the chemical reaction equation.
  • the mass of the first batch of the mixture fed into the reaction furnace accounts for 22.2% of the mass of the total mixture, and the first batch of the mixture to be added to the reactor requires the addition of magnesium powder as a pilot, and the mixture is ignited to initiate a self-propagating reaction.
  • Step 3 Melting under the action of electromagnetic field
  • Electromagnetic induction is used to heat the high-temperature melt, and the thermal insulation is melted to realize the separation of slag gold to obtain a layered melt.
  • the upper layer is alumina-based slag and the lower alloy melt; wherein, during the melting process, the control temperature is 1750 °C. , holding time 15min;
  • Step 4 slag washing and refining
  • the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag contains chemical components and mass percentages of CaF 2 : 5%, CaO: 50%, Na 2 O: 0%, TiO 2 : 30%, V 2 O 5 : 15%; wherein each component contained in the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag: CaO, CaF 2 , Na 2 O, TiO 2 , V 2 O 5
  • the particle size of the powder is ⁇ 0.2 mm; the CaF 2 -CaO-TiO 2 -V 2 O 5 -based scouring slag is pretreated before use: the calcination temperature is 180 ° C and calcined for 20 h.
  • the upper molten slag was removed to obtain a titanium alloy.
  • the titanium alloy prepared by the invention contains chemical components and mass fractions of: Al of 5.5%, V of 4.30%, Si of 0.2%, Fe of 0.6%, O of 0.16%, and balance of Ti.
  • a method for preparing a titanium alloy based on aluminum thermal self-propagating gradient reduction and slag washing refining comprises the following steps:
  • the aluminothermic reduction materials were pretreated separately, specifically rutile and V 2 O 5 powders containing 93% by mass of TiO 2 and calcined at 500 ° C for 24 h; CaO was calcined at 250 ° C for 12 h; KClO 3 at 150 ° C Drying for 18 hours; obtaining the aluminothermic reduction reaction material after pretreatment;
  • the particle size of each material is: rutile particle size ⁇ 3mm; aluminum powder particle size ⁇ 2mm; V 2 O 5 powder ⁇ 0.2mm; CaO particle size ⁇ 0.2mm; KClO 3 particle size ⁇ 2mm;
  • the aluminum powder is added to the continuous mixer at a decreasing gradient flow rate, and the aluminum content of the continuously added mixture material is gradually reduced from 1.28 times the stoichiometric ratio to 0.78 times the stoichiometric ratio, wherein the number of times of the aluminum alloy gradient is changed. Satisfy the relationship:
  • m is the number of times the gradient of the amount of aluminum is changed
  • b is the highest amount of aluminum
  • c is the lowest amount of aluminum
  • a is the coefficient of variation of the amount of aluminum
  • a 0.004
  • calculated by m is 128 times
  • the time interval of the powder flow gradient change is the total reaction time divided by m.
  • the total mass of the added aluminum powder is theoretically added to the total mass m t
  • the actual total mass of the aluminum powder is m a
  • the aluminum thermal self-propagating reaction raw material is continuously added to the reaction furnace after being mixed by the continuous mixer to carry out the aluminothermic reduction reaction until all the materials are completely reacted to obtain a high-temperature melt;
  • Step 3 Melting under the action of electromagnetic field
  • Electromagnetic induction is used to heat the high temperature melt, and the thermal insulation is melted to realize the separation of slag gold to obtain a layered melt.
  • the upper layer is alumina-based slag and the lower alloy melt; wherein, during the melting process, the control temperature is 1700 °C. , holding time 20min;
  • Step 4 slag washing and refining
  • the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag contains chemical components and mass percentages of CaF 2 : 5%, CaO: 49%, Na 2 O: 1%, TiO 2 : 40%, V 2 O 5 : 5%; wherein each component contained in the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag: CaO, CaF 2 , Na 2 O, TiO 2 , V 2 O 5
  • the particle size of the powder is ⁇ 0.2 mm; the CaF 2 -CaO-TiO 2 -V 2 O 5 -based scouring slag is pretreated before use: the calcination temperature is 150 ° C and calcined for 10 h.
  • the upper molten slag was removed to obtain a titanium alloy.
  • the titanium alloy prepared by the invention contains chemical components and mass fractions of: Al is 5.8%, V is 4.50%, Si is 0.4%, Fe is 0.7%, O is 0.22%, and the balance is Ti.
  • a method for preparing a titanium alloy based on aluminum thermal self-propagating gradient reduction and slag washing refining comprises the following steps:
  • reaction mass separately aluminothermic reduction pretreatment, particularly mass% TiO 2 containing 93% slag and high mass% TiO 2 containing 99.8% titanium dioxide, V 2 O 5 powder, respectively, at 550 °C for Calcined for 36h; CaO is calcined at 250 ° C for 12h; KClO 3 is dried at 150 ° C for 24h; wherein the high-titanium slag and titanium dioxide mixed mass ratio is 1:1, the pretreated aluminum thermal reduction reaction material is obtained;
  • the particle diameters of the respective materials are: high titanium slag particle size ⁇ 3 mm, titanium dioxide particle size ⁇ 0.02 mm, aluminum powder particle size ⁇ 2 mm; V 2 O 5 powder ⁇ 0.2 mm; CaO particle size ⁇ 0.2 Mm; KClO 3 particle size ⁇ 2mm;
  • the aluminum powder is added to the continuous mixer at a decreasing gradient flow rate, and the aluminum content of the continuously added mixture material is gradually reduced from 1.27 times the stoichiometric ratio to 0.7 times the stoichiometric ratio, wherein the aluminum content gradient changes.
  • the number of times satisfies the relationship:
  • m is the number of times the gradient of the amount of aluminum is changed
  • b is the highest amount of aluminum
  • c is the lowest amount of aluminum
  • m is calculated to be 285 times.
  • the total mass of the added aluminum powder is theoretically added to the total mass m t
  • the actual total mass of the aluminum powder is m a
  • the aluminum thermal self-propagating reaction raw material is continuously added to the reaction furnace after being mixed by the continuous mixer to carry out the aluminothermic reduction reaction until all the materials are completely reacted to obtain a high-temperature melt;
  • Step 3 Melting under the action of electromagnetic field
  • Electromagnetic induction is used to heat the high-temperature melt, and the thermal insulation is melted to realize the separation of slag gold to obtain a layered melt.
  • the upper layer is alumina-based slag and the lower alloy melt; wherein, during the melting process, the control temperature is 1750 °C. , holding time 15min;
  • Step 4 slag washing and refining
  • the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag contains chemical components and mass percentages of CaF 2 : 10%, CaO: 43%, Na 2 O: 2 %, TiO 2 : 35%, V 2 O 5 : 10%; wherein each component contained in the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag: CaO, CaF 2 , Na 2 O, TiO 2 , V 2 O 5
  • the particle size of the powder is ⁇ 0.2 mm; the CaF 2 -CaO-TiO 2 -V 2 O 5 -based scouring slag is pretreated before use: the calcination temperature is 200 ° C for 12 h.
  • the upper molten slag was removed to obtain a titanium alloy.
  • the titanium alloy prepared by the present invention contains chemical components and mass fractions thereof: Al is 5.6%, V is 4.0%, Si is 0.7%, Fe is 0.9%, O is 0.13%, and the balance is Ti.
  • a method for preparing a titanium alloy based on aluminum thermal self-propagating gradient reduction and slag washing refining comprises the following steps:
  • the aluminothermic reduction materials were separately pretreated, specifically high titanium slag and V 2 O 5 powder containing 92% by mass of TiO 2 and calcined at 700 ° C for 24 h; CaO was calcined at 250 ° C for 12 h; KClO 3 was Drying at 250 ° C for 24 h; obtaining a preheated aluminothermic reaction material;
  • the particle diameters of the respective materials are: high titanium slag particle size ⁇ 3 mm; aluminum powder particle size ⁇ 2 mm; V 2 O 5 powder ⁇ 0.2 mm; CaO particle size ⁇ 0.2 mm; KClO 3 particle size ⁇ 2mm;
  • the aluminum powder is added to the continuous mixer at a decreasing gradient flow rate, and the aluminum content of the continuously added mixture material is gradually reduced from 1.23 times the stoichiometric ratio to 0.72 times the stoichiometric ratio, wherein the number of times of the aluminum alloy gradient is changed. Satisfy the relationship:
  • m is the number of times the gradient of the amount of aluminum is changed
  • b is the highest amount of aluminum
  • c is the lowest amount of aluminum
  • a is the coefficient of variation of the amount of aluminum
  • a 0.001
  • m is calculated to be 450 times.
  • the total mass of the added aluminum powder is theoretically added to the total mass m t
  • the actual total mass of the aluminum powder is m a
  • the aluminum thermal self-propagating reaction raw material is continuously added to the reaction furnace after being mixed by the continuous mixer to carry out the aluminothermic reduction reaction until all the materials are completely reacted to obtain a high-temperature melt;
  • Step 3 Melting under the action of electromagnetic field
  • Electromagnetic induction is used to heat the high-temperature melt, and the thermal insulation is melted to realize the separation of slag gold to obtain a layered melt.
  • the upper layer is alumina-based slag and the lower alloy melt; wherein, during the melting process, the control temperature is 1750 °C. , holding time 15min;
  • Step 4 slag washing and refining
  • the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag contains chemical components and mass percentages of CaF 2 : 5%, CaO: 49%, Na 2 O: 1%, TiO 2 : 30%, V 2 O 5 : 15%; wherein each component contained in the CaF 2 -CaO-TiO 2 -V 2 O 5 -based refining slag: CaO, CaF 2 , Na 2 O, TiO 2 , V 2 O 5
  • the particle size of the powder is ⁇ 0.2 mm; the CaF 2 -CaO-TiO 2 -V 2 O 5 -based scouring slag is pretreated before use: the calcination temperature is 200 ° C and calcined for 24 h.
  • the upper molten slag was removed to obtain a titanium alloy.
  • the titanium alloy prepared by the present invention contains chemical components and mass fractions of Al of 5.5%, V of 3.60%, Si of 0.4%, Fe of 0.9%, O of 0.10%, and balance of Ti.

Abstract

一种基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,属于钛铝合金技术领域。该方法为将原料预处理后,按质量比,金红石或高钛渣或二氧化钛:铝粉:V2O5粉末:CaO:KClO3=1.0:(0.60~0.24):(0.042~0.048):(0.12~0.26):(0.22~0.30)称量原料,采用梯度加料的方式进行铝热自蔓延反应得到高温熔体,进行梯度还原熔炼,加料完毕之后进行保温熔分,然后向高温熔体中加入CaF2-CaO-TiO2-V2O5基精炼渣,进行渣洗精炼,最后除渣得到钛合金。该方法具有流程短、能耗低、操作简单、合金中Al、V含量易于控制等优点。

Description

基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法 技术领域
本发明属于钛铝合金技术领域,特别涉及一种基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法。
背景技术
钛合金由于具有比重小、比强度高、高温性能好、耐酸碱侵蚀、生物相容性好等优良性能被广泛应用于航空航天、船舶、国防军工、生物医疗等领域,未来的市场十分巨大。目前,世界钛合金加工材年产量已达4万余吨,钛合金牌号近30种,其中Ti-6Al-4V(TC4)是使用最广泛的铁合金之一,应用率占钛合金总产量的50%以上,占全部钛合金加工件的95%,是世界各国钛合金应用中的主导材料。Ti-6Al-4V合金是1954年由美国Illinois技术研究所研制的等轴马氏体型α+β两相钛合金,拥有较好的强度、韧性、塑性、成形性、可辉性、耐热性、耐烛性和生物相容性;最先应用于宇航工业,但随着科学技术的进步,该合金转向应用于军事、生物医学、汽车、海洋、安全与防护、体育及休闲用品等领域,并发展成为目前应用最广,产量最大的钛合金。同时,由于Ti-6Al-4V合金的广泛应用,其制备方法、组织性能分析以及应用的研究也最多,成为钛合金的典型代表。
目前,Ti-6Al-4V合金的工业生产方式主要有为真空熔铸法和粉末冶金法。真空熔铸法以海绵钛为原料,按照目标合金加入中间合金元素,充分混合后经过压制、焊接成电极,然后在电弧熔炼炉、电子束熔炼炉或等离子体熔炼炉里进行熔炼,然后浇铸成锭,再进行热处理制成成品。粉末冶金法,又称混合元素法(Blending elements,BE),是一种生产复杂形状零件的近净成形技术,具有工艺流程短、材料利用率高、组织细小均匀、成分可控以及近净成形等优点,是制备高性能、低成本钛合金的理想工艺。该方法是将钛粉和元素粉按照合金的成分配比混合后,经模压或者冷等静压成形,再在真空下烧结,然后经过热处理制备出成品。但以上两种方法都是以海绵钛或钛粉为原料,而目前工业大量制备海绵钛的Kroll法是一个流程长,能耗高,高污染的复杂工艺过程,这是造成钛合金价格高,应用范围被广泛限制的主要原因。熔盐电解法是目前利用钛氧化物直接制取钛合金的研究热点,它是在熔体CaCl 2中电解TiO 2直接制备出低氧含量的钛合金,但该法存在工艺条件不成熟,电流效率、生产效率低等缺点。如果能以钛氧化物,再配入一定量的合金元素的氧化物,采用金属热还原法(如铝热法等)直接制备出钛基合金,就可以避开生产海绵钛的复杂工艺过程,从而使钛合金的工艺成本大大降低。铝热法具有反应迅速,能耗低等优点。因此,以钛氧化物,钛合金元素氧化 物为原料,采用铝热法直接制备钛基合金是降低钛合金成本一个有前景的途径。铝元素作为钛合金主要α相稳定元素,主要起固溶强化作用,每添加1%Al,室温抗拉强度增加50MPa。铝在钛中的极限溶解度为7.5%,但超过极限溶解度后,组织中出现有序相Ti 3Al(α 2),对合金的塑性、韧性及应力腐蚀不利,故一般加铝量不超过7%,有的钛合金中铝甚至更低。因此,控制钛合金中的铝含量显得尤其重要。但由于铝热还原过程中TiO 2还原不彻底,合金中钛与铝易于生成钛铝金属间化合物,导致合金中铝含量偏高(≥10%),合金中铝含量难以通过自蔓延反应过程中配料进行控制。
本发明基于目前制备钛合金工艺流程长、能耗高、成本高等的缺点以及铝热法制备钛合金过程中存在的铝含量难以控制等难题,提出了以金红石或高钛渣或二氧化钛为原料,采用铝热还原-渣洗精炼制备钛合金的新方法。
发明内容
为解决现有以炉外铝热法制备钛铁合金中存在的TiO 2还原不彻底,铝残留量高,氧含量高等问题,本发明提出了以高钛渣或金红石或二氧化钛为原料,采用基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,该方法基于铝热自蔓延反应,即以金红石或高钛渣或二氧化钛、铝粉等为原料,采用梯度加料的方式进行铝热自蔓延反应得到高温熔体,进行梯度还原熔炼,并采用分批加料或连续加料方式实现反应过程及温度的控制以及金属氧化物的彻底还原,加料完毕之后保温熔分,然后向高温熔体中加入高碱度CaF 2-CaO-TiO 2-V 2O 5基精炼渣,调整渣的碱度和熔点,进行渣洗精炼,最后将高温熔体冷却至室温除去上部的熔炼渣得到钛合金,该钛合金是钛铝钒合金。
本发明的一种基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,具体包括以下步骤:
步骤1:物料预处理
将铝热还原反应物料分别进行预处理,得到预处理后的铝热还原反应物料;
所述的铝热还原反应物料为含钛物料、铝粉、V 2O 5粉末、CaO和KClO 3
所述的含钛物料为金红石、高钛渣或二氧化钛中的一种或几种混合;
按配比,称量预处理后的铝热还原反应物料,其中,按质量比,含钛物料∶铝粉∶V 2O 5粉末∶CaO∶KClO 3=1.0∶(0.60~0.24)∶(0.042~0.048)∶(0.12~0.26)∶(0.22~0.30);
所述的铝热还原反应物料中,各个物料的粒径分别为:金红石≤3mm,高钛渣≤3mm,或二氧化钛粒度≤0.02mm;铝粉粒度≤2mm;V 2O 5粉末≤0.2mm;CaO粒度≤0.2mm;KClO 3粒度≤2mm;
步骤2:铝热自蔓延反应
采用以下两种加料方式之一进行梯度铝热还原:
加料方式一:
将称量的除铝粉以外的铝热自蔓延反应原料混合均匀,得到混合物料,将混合物料分为若干份;
按照每份混合物料加入反应炉的顺序,分别配铝,配铝量按照反应化学计量比的1.15~1.35倍逐渐降低至化学计量比的0.85~0.65倍;按照化学反应方程式得到加入铝粉的总质量为理论加入总质量m t,铝粉的实际加入总质量为m a,其中,m a=m t×(95~100)%;
其中,第一批加入反应炉的混合物料的质量占总混合物料质量的10~30%,并且第一批加入反应炉的混合物料,需加入镁粉作为引燃物,点燃混合物料引发自蔓延反应,得到足以引发后续反应的第一批高温熔体;
按照配铝量的化学计量比依次降低的顺序,依次加其它份混合物料到反应炉中,直至所有物料完全反应,得到高温熔体;
加料方式二:
将除铝粉以外的铝热自蔓延反应原料混合均匀,得到混合物料,将混合物料以均匀流速加料到连续混料机中;
同时,将铝粉以梯度递减的流速加入连续混料机,使连续加入的混合物料的配铝量由化学计量比的1.15~1.35倍逐渐降低至化学计量比的0.85~0.65倍,其中,配铝量梯度变化次数满足关系式:
m=(b-c)÷a (1)
式中,m为配铝量梯度变化的次数,b为最高的配铝量,c为最低的配铝量,a为配铝量梯度变化系数,0<a≤0.04;
按照化学反应方程式得到加入铝粉的总质量为理论加入总质量m t,铝粉的实际加入总质量为m a,其中,理论加入总质量m t和实际加入总质量为m a满足以下关系:m a=m t×(95~100)%;
铝热自蔓延反应原料在连续混料机混匀后连续加入到反应炉中进行铝热还原反应,直至所有物料完全反应后得到高温熔体;
步骤3:电磁场作用下的熔分
采用电磁感应对高温熔体加热,进行保温熔分,实现渣金分离,得到分层熔体,上层为氧化铝基熔渣,下层合金熔体;其中,熔分过程中,控制温度为1700~1800℃,保温时间5~25min;
步骤4:渣洗精炼
(1)将上层的氧化铝基熔渣总体积的85~95%移除,对剩余的体积的氧化铝基熔渣和下层 的合金熔体进行偏心机械搅拌,搅拌转速50~150rpm;控制温度为1700~1800℃;
(2)当熔体混合均匀后,持续搅拌,并以高纯惰性气体为载气,向混合均匀的熔体喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣,进行渣洗精炼;其中,按质量比,铝热自蔓延反应原料∶CaF 2-CaO-TiO 2-V 2O 5基精炼渣=1.0∶(0.02~0.08);
所述的CaF 2-CaO-TiO 2-V 2O 5基精炼渣,含有的化学成分及其质量百分比分别为CaF 2∶5%~10%,CaO∶40%~60%,Na 2O∶0~2%,TiO 2∶30%~40%,V 2O 5∶5%~15%,余量为不可避免的杂质;其中,CaF 2-CaO-TiO 2-V 2O 5基精炼渣中含有的各个组分:CaO、CaF 2、Na 2O、TiO 2、V 2O 5粉末粒度粒度均≤0.2mm;
(3)喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣后,在1700~1800℃保温并持续偏心机械搅拌10~30min,得到钛合金熔体;
步骤5:冷却
将钛合金熔体冷却至室温后,除去上部的熔炼渣,得到钛合金。
本发明制备的钛合金含有的化学成分及其质量分数为:Al为5.5%~6.5%,V为3.5%~4.5%,Si为0.2%~1.0%,Fe为0.2%~1.0%,O≤0.9%,余量为Ti。
所述的步骤1中,所述的将铝热还原反应物料分别进行预处理的方法如下:
(1)将含钛物料,V 2O 5粉末,CaO分别进行焙烧,焙烧温度≥120℃,焙烧时间12~36h;
(2)将KClO 3在150~300℃干燥时间12~48h。
所述的步骤2中,所述若干份为n份,n≥4。
所述的步骤3中,所述的电磁感应的设备为中频感应炉,其电磁场的频率大于等于1000Hz。
所述的步骤4中,所述的偏心机械搅拌,偏心率为0.2~0.4。
所述的步骤4中,所述的喷吹优选为在中频感应炉底部喷吹。
所述的步骤4中,所述的高纯惰性气体为高纯氩气,纯度大于等于99.95%。
所述的步骤4(2)中,所述的CaF 2-CaO-TiO 2-V 2O 5基精练渣使用前,进行预处理:焙烧温度150~450℃焙烧10~48h。
本发明的一种基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,和真空自耗电弧熔炼法或混合元素法制备钛合金相比,具有显著的进步和优点:
1、本发明金红石或高钛渣或二氧化钛、铝粉、V 2O 5粉末为原料,提出采用铝热还原-渣洗精炼制备钛合金的的新思路,具有流程短、能耗低、操作简单、合金中Al、V含量易于控制等优点;
2、首先采用比化学计量比高的配铝系数物料进行铝热自蔓延,得到更高温度的高温熔体, 有利于后续低配铝系数物料的反应引发;
3、高的配铝系数保证了所得到的熔体中强烈的还原气氛,保证了金属氧化物的彻底还原;
4、物料配铝系数由大于化学计量比逐渐降低至小于化学计量比,这样开始得到熔体中与钛结合的过量的还原剂被逐渐释放出来,与后续加入的低配铝系数物料中的钛、钒的氧化物逐渐反应,实现了最终产品中铝含量有效控制;
5、加料批次越多或连续加料梯度越小,配铝系数梯度变化越小,梯度还原效果越明显,合金的收率越高;同时,调整加料速度也能对反应过程中的温度进行控制;
6、渣洗精炼过程中,利用加入的精炼渣调整渣的碱度和熔点,降低了渣的粘度,提高了渣的流动性,实现渣金界面化学反应和渣金分离的彻底进行,实现氧化铝等夹杂有效脱除;同时,保温熔炼与渣洗精炼过程充分利用了体系反应热,降低能耗;
7、采用电磁感应加热进行渣洗精炼,外加偏心机械搅拌,形成上层为氧化铝基熔渣层,下层为金熔体层,强化了渣金分离过程。
具体实施方式
下面结合实施例对本发明作进一步的详细说明。
以下实施例中:
含钛物料中:金红石含有的成分及其质量百分比为TiO 2≥92%,余量为杂质,其粒度≤3mm;高钛渣含有的成分及其质量百分比为TiO 2≥92%,余量为杂质,其粒度≤3mm;二氧化钛含有的成分及其质量百分比为TiO 2≥99.5%,余量为杂质,其粒度≤0.02mm;
V 2O 5粉末粒度≤0.2mm;
铝粉粒度≤2mm;
造渣剂粒度≤0.2mm;
高纯氩气的纯度大于99.95%;
以下实施例中,熔分过程和渣洗精练过程,采用的设备均为中频感应炉,中频感应炉中的电磁场的频率不低于1000Hz。
实施例1
一种基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,具体包括以下步骤:
步骤1:物料预处理
将铝热还原反应物料分别进行预处理,具体为含TiO 2的质量百分比为92%的高钛渣、V 2O 5粉末,分别在600℃焙烧32h;CaO在200℃焙烧16h;KClO 3在160℃干燥18h;得到预处理后的铝热还原反应物料;
按配比,称量预处理后的铝热还原反应物料,其中,按质量比,高钛渣∶铝粉∶V 2O 5粉 末∶CaO∶KClO 3=1.0∶0.26∶0.045∶0.16∶0.28;
所述的铝热还原反应物料中,各个物料的粒径分别为:高钛渣粒度≤3mm;铝粉粒度≤2mm;V 2O 5粉末≤0.2mm;CaO粒度≤0.2mm;KClO 3粒度≤2mm;
步骤2:铝热自蔓延反应
将称量的除铝粉以外的铝热自蔓延反应原料混合均匀,得到混合物料,将混合物料分为5份;
按照每份混合物料加入反应炉的顺序,分别配铝,配铝量依次为化学计量比的1.20、1.05、1.0、0.90、0.85倍,;按照化学反应方程式得到加入铝粉的总质量为理论加入总质量m t,铝粉的实际加入总质量为m a,其中,m a=m t×95%;
其中,第一批加入反应炉的混合物料的质量占总混合物料质量的20%,并且第一批加入反应炉的混合物料,需加入镁粉作为引燃物,点燃混合物料引发自蔓延反应,得到足以引发后续反应的第一批高温熔体;
按照配铝量的化学计量比依次降低的顺序,依次加其它份混合物料到反应炉中,直至所有物料完全反应,得到高温熔体;
步骤3:电磁场作用下的熔分
采用电磁感应对高温熔体加热,进行保温熔分,实现渣金分离,得到分层熔体,上层为氧化铝基熔渣,下层合金熔体;其中,熔分过程中,控制温度为1800℃,保温时间15min;
步骤4:渣洗精炼
(1)将上层的氧化铝基熔渣总体积的90%移除,对剩余的体积的氧化铝基熔渣和下层的合金熔体进行偏心机械搅拌,偏心距为0.3,搅拌转速50rpm;控制温度为1800℃;
(2)当熔体混合均匀后,持续搅拌,并从中频感应炉底部以高纯惰性气体为载气,向混合均匀的熔体喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣,进行渣洗精炼;其中,按质量比,铝热自蔓延反应原料∶CaF 2-CaO-TiO 2-V 2O 5基精炼渣=1.0∶0.02;
所述的CaF 2-CaO-TiO 2-V 2O 5基精炼渣,含有的化学成分及其质量百分比分别为CaF 2∶5%,CaO∶60%,Na 2O∶0%,TiO 2∶30%,V 2O 5∶5%;其中,CaF 2-CaO-TiO 2-V 2O 5基精炼渣中含有的各个组分:CaO、CaF 2、Na 2O、TiO 2、V 2O 5粉末粒度粒度均≤0.2mm;所述的CaF 2-CaO-TiO 2-V 2O 5基精练渣使用前,进行预处理:焙烧温度为150℃焙烧10h。
(3)喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣后,在1800℃保温并持续偏心机械搅拌10min,停止偏心搅拌,得到钛合金熔体;
步骤5:冷却
将钛合金熔体冷却至室温后,除去上部的熔炼渣,得到钛合金。
本发明制备的钛合金含有的化学成分及其质量分数为:Al为6.2%,V为3.50%,Si为0.2%,Fe为0.2%,O为0.32%,余量为Ti。
实施例2
一种基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,具体包括以下步骤:
步骤1:物料预处理
将铝热还原反应物料分别进行预处理,具体为含TiO 2的质量百分比为99.5%的二氧化钛、V 2O 5粉末,分别在650℃焙烧36h;CaO在200℃焙烧8h;KClO 3在160℃干燥18h;得到预处理后的铝热还原反应物料;
按配比,称量预处理后的铝热还原反应物料,其中,按质量比,二氧化钛∶铝粉∶V 2O 5粉末∶CaO∶KClO 3=1.0∶0.26∶0.045∶0.16∶0.28;
所述的铝热还原反应物料中,各个物料的粒径分别为:二氧化钛粒度≤0.02mm;铝粉粒度≤2mm;V 2O 5粉末≤0.2mm;CaO粒度≤0.2mm;KClO 3粒度≤2mm;
步骤2:铝热自蔓延反应
将称量的除铝粉以外的铝热自蔓延反应原料混合均匀,得到混合物料,将混合物料分为6份;
按照每份混合物料加入反应炉的顺序,分别配铝,配铝量依次为化学计量比的1.20、1.1、0.95、0.90、0.85、0.80倍,;按照化学反应方程式得到加入铝粉的总质量为理论加入总质量m t,铝粉的实际加入总质量为m a,其中,m a=m t×98%;
其中,第一批加入反应炉的混合物料的质量占总混合物料质量的28.6%,并且第一批加入反应炉的混合物料,需加入镁粉作为引燃物,点燃混合物料引发自蔓延反应,得到足以引发后续反应的第一批高温熔体;
按照配铝量的化学计量比依次降低的顺序,依次加其它份混合物料到反应炉中,直至所有物料完全反应,得到高温熔体;
步骤3:电磁场作用下的熔分
采用电磁感应对高温熔体加热,进行保温熔分,实现渣金分离,得到分层熔体,上层为氧化铝基熔渣,下层合金熔体;其中,熔分过程中,控制温度为1750℃,保温时间20min;
步骤4:渣洗精炼
(1)将上层的氧化铝基熔渣总体积的95%移除,对剩余的体积的氧化铝基熔渣和下层的合金熔体进行偏心机械搅拌,偏心距为0.2,搅拌转速100rpm;控制温度为1750℃;
(2)当熔体混合均匀后,持续搅拌,并从中频感应炉底部以高纯惰性气体为载气,向混合均匀的熔体喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣,进行渣洗精炼;其中,按质量比,铝热自蔓 延反应原料∶CaF 2-CaO-TiO 2-V 2O 5基精炼渣=1.0∶0.04;
所述的CaF 2-CaO-TiO 2-V 2O 5基精炼渣,含有的化学成分及其质量百分比分别为CaF 2∶10%,CaO∶50%,Na 2O∶0%,TiO 2∶30%,V 2O 5∶10%;其中,CaF 2-CaO-TiO 2-V 2O 5基精炼渣中含有的各个组分:CaO、CaF 2、Na 2O、TiO 2、V 2O 5粉末粒度粒度均≤0.2mm;所述的CaF 2-CaO-TiO 2-V 2O 5基精练渣使用前,进行预处理:焙烧温度为150℃焙烧20h。
(3)喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣后,在1750℃保温并持续偏心机械搅拌30min,停止偏心搅拌,得到钛合金熔体;
步骤5:冷却
将钛合金熔体冷却至室温后,除去上部的熔炼渣,得到钛合金。
本发明制备的钛合金含有的化学成分及其质量分数为:Al为6.0%,V为3.80%,Si为0.3%,Fe为0.6%,O为0.24%,余量为Ti。
实施例3
一种基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,具体包括以下步骤:
步骤1:物料预处理
将铝热还原反应物料分别进行预处理,具体为含TiO 2的质量百分比为92%的金红石、V 2O 5粉末,分别在600℃焙烧24h;CaO在300℃焙烧12h;KClO 3在200℃干燥18h;得到预处理后的铝热还原反应物料;
按配比,称量预处理后的铝热还原反应物料,其中,按质量比,金红石∶铝粉∶V 2O 5粉末∶CaO∶KClO 3=1.0∶0.26∶0.045∶0.16∶0.28;
所述的铝热还原反应物料中,各个物料的粒径分别为:金红石粒度≤3mm;铝粉粒度≤2mm;V 2O 5粉末≤0.2mm;CaO粒度≤0.2mm;KClO 3粒度≤2mm;
步骤2:铝热自蔓延反应
将称量的除铝粉以外的铝热自蔓延反应原料混合均匀,得到混合物料,将混合物料分为8份;
按照每份混合物料加入反应炉的顺序,分别配铝,配铝量依次为化学计量比的1.20、1.1、1.0、0.95、0.925、0.90、0.875、0.85倍,;按照化学反应方程式得到加入铝粉的总质量为理论加入总质量m t,铝粉的实际加入总质量为m a,其中,m a=m t×99%;
其中,第一批加入反应炉的混合物料的质量占总混合物料质量的22.2%,并且第一批加入反应炉的混合物料,需加入镁粉作为引燃物,点燃混合物料引发自蔓延反应,得到足以引发后续反应的第一批高温熔体;
按照配铝量的化学计量比依次降低的顺序,依次加其它份混合物料到反应炉中,直至所 有物料完全反应,得到高温熔体;
步骤3:电磁场作用下的熔分
采用电磁感应对高温熔体加热,进行保温熔分,实现渣金分离,得到分层熔体,上层为氧化铝基熔渣,下层合金熔体;其中,熔分过程中,控制温度为1700℃,保温时间25min;
步骤4:渣洗精炼
(1)将上层的氧化铝基熔渣总体积的95%移除,对剩余的体积的氧化铝基熔渣和下层的合金熔体进行偏心机械搅拌,偏心距为0.2,搅拌转速100rpm;控制温度为1700℃;
(2)当熔体混合均匀后,持续搅拌,并从中频感应炉底部以高纯惰性气体为载气,向混合均匀的熔体喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣,进行渣洗精炼;其中,按质量比,铝热自蔓延反应原料∶CaF 2-CaO-TiO 2-V 2O 5基精炼渣=1.0∶0.06;
所述的CaF 2-CaO-TiO 2-V 2O 5基精炼渣,含有的化学成分及其质量百分比分别为CaF 2∶5%,CaO∶40%,Na 2O∶0%,TiO 2∶40%,V 2O 5∶15%;其中,CaF 2-CaO-TiO 2-V 2O 5基精炼渣中含有的各个组分:CaO、CaF 2、Na 2O、TiO 2、V 2O 5粉末粒度粒度均≤0.2mm;所述的CaF 2-CaO-TiO 2-V 2O 5基精练渣使用前,进行预处理:焙烧温度为180℃焙烧20h。
(3)喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣后,在1700℃保温并持续偏心机械搅拌30min,停止偏心搅拌,得到钛合金熔体;
步骤5:冷却
将钛合金熔体冷却至室温后,除去上部的熔炼渣,得到钛合金。
本发明制备的钛合金含有的化学成分及其质量分数为:Al为5.8%,V为4.40%,Si为0.4%,Fe为0.8%,O为0.2%,余量为Ti。
实施例4
一种基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,具体包括以下步骤:
步骤1:物料预处理
将铝热还原反应物料分别进行预处理,具体为含TiO 2的质量百分比为93%的高钛渣、V 2O 5粉末,分别在700℃焙烧12h;CaO在300℃焙烧36h;KClO 3在250℃干燥8h;得到预处理后的铝热还原反应物料;
按配比,称量预处理后的铝热还原反应物料,其中,按质量比,高钛渣∶铝粉∶V 2O 5粉末∶CaO∶KClO 3=1.0∶0.26∶0.045∶0.16∶0.28;
所述的铝热还原反应物料中,各个物料的粒径分别为:高钛渣粒度≤3mm;铝粉粒度≤2mm;V 2O 5粉末≤0.2mm;CaO粒度≤0.2mm;KClO 3粒度≤2mm;
步骤2:铝热自蔓延反应
将除铝粉以外的铝热自蔓延反应原料混合均匀,得到混合物料,将混合物料以均匀流速加料到连续混料机中;
同时,将铝粉以梯度递减的流速加入连续混料机,使连续加入的混合物料的配铝量由化学计量比的1.28倍逐渐降低至化学计量比的0.7倍,其中,配铝量梯度变化次数满足关系式:
m=(b-c)÷a (1)
式中,m为配铝量梯度变化的次数,b为最高的配铝量,c为最低的配铝量,a为配铝量梯度变化系数,a=0.01;经计算m为58次,铝粉流量梯度变化的时间间隔为总反应时间除以m。
按照化学反应方程式得到加入铝粉的总质量为理论加入总质量m t,铝粉的实际加入总质量为m a,其中,理论加入总质量m t和实际加入总质量为m a满足以下关系:m a=m t×98%;
铝热自蔓延反应原料在连续混料机混匀后连续加入到反应炉中进行铝热还原反应,直至所有物料完全反应后得到高温熔体;
步骤3:电磁场作用下的熔分
采用电磁感应对高温熔体加热,进行保温熔分,实现渣金分离,得到分层熔体,上层为氧化铝基熔渣,下层合金熔体;其中,熔分过程中,控制温度为1800℃,保温时间15min;
步骤4:渣洗精炼
(1)将上层的氧化铝基熔渣总体积的85%移除,对剩余的体积的氧化铝基熔渣和下层的合金熔体进行偏心机械搅拌,偏心距为0.4,搅拌转速50rpm;控制温度为1800℃;
(2)当熔体混合均匀后,持续搅拌,并从中频感应炉底部以高纯惰性气体为载气,向混合均匀的熔体喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣,进行渣洗精炼;其中,按质量比,铝热自蔓延反应原料∶CaF 2-CaO-TiO 2-V 2O 5基精炼渣=1.0∶0.05;
所述的CaF 2-CaO-TiO 2-V 2O 5基精炼渣,含有的化学成分及其质量百分比分别为CaF 2∶10%,CaO∶50%,Na 2O∶0%,TiO 2∶35%,V 2O 5∶5%;其中,CaF 2-CaO-TiO 2-V 2O 5基精炼渣中含有的各个组分:CaO、CaF 2、Na 2O、TiO 2、V 2O 5粉末粒度粒度均≤0.2mm;所述的CaF 2-CaO-TiO 2-V 2O 5基精练渣使用前,进行预处理:焙烧温度为150℃焙烧10h。
(3)喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣后,在1800℃保温并持续偏心机械搅拌20min,停止偏心搅拌,得到钛合金熔体;
步骤5:冷却
将钛合金熔体冷却至室温后,除去上部的熔炼渣,得到钛合金。
本发明制备的钛合金含有的化学成分及其质量分数为:Al为6.1%,V为3.60%,Si为0.6%,Fe为0.7%,O为0.31%,余量为Ti。
实施例5
一种基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,具体包括以下步骤:
步骤1:物料预处理
将铝热还原反应物料分别进行预处理,具体为含TiO 2的质量百分比为92.5%的高钛渣和含TiO 2的质量百分比为99.6%的二氧化钛、V 2O 5粉末,分别在650℃焙烧20h;CaO在200℃焙烧12h;KClO 3在150℃干燥18h;其中,高钛渣和二氧化钛混合质量比为1:1,得到预处理后的铝热还原反应物料;
按配比,称量预处理后的铝热还原反应物料,其中,按质量比,高钛渣和二氧化钛∶铝粉∶V 2O 5粉末∶CaO∶KClO 3=1.0∶0.26∶0.045∶0.16∶0.28;
所述的铝热还原反应物料中,各个物料的粒径分别为:高钛渣的粒度≤3mm,二氧化钛粒度≤0.02mm;铝粉粒度≤2mm;V 2O 5粉末≤0.2mm;CaO粒度≤0.2mm;KClO 3粒度≤2mm;
步骤2:铝热自蔓延反应
将除铝粉以外的铝热自蔓延反应原料混合均匀,得到混合物料,将混合物料以均匀流速加料到连续混料机中;
同时,将铝粉以梯度递减的流速加入连续混料机,使连续加入的混合物料的配铝量由化学计量比的1.20倍逐渐降低至化学计量比的0.75倍,其中,配铝量梯度变化次数满足关系式:
m=(b-c)÷a (1)
式中,m为配铝量梯度变化的次数,b为最高的配铝量,c为最低的配铝量,a为配铝量梯度变化系数,a=0.003;经计算m为150次。
按照化学反应方程式得到加入铝粉的总质量为理论加入总质量m t,铝粉的实际加入总质量为m a,其中,理论加入总质量m t和实际加入总质量为m a满足以下关系:m a=m t×96%;
铝热自蔓延反应原料在连续混料机混匀后连续加入到反应炉中进行铝热还原反应,直至所有物料完全反应后得到高温熔体;
步骤3:电磁场作用下的熔分
采用电磁感应对高温熔体加热,进行保温熔分,实现渣金分离,得到分层熔体,上层为氧化铝基熔渣,下层合金熔体;其中,熔分过程中,控制温度为1700℃,保温时间15min;
步骤4:渣洗精炼
(1)将上层的氧化铝基熔渣总体积的90%移除,对剩余的体积的氧化铝基熔渣和下层的合金熔体进行偏心机械搅拌,偏心距为0.4,搅拌转速150rpm;控制温度为1700℃;
(2)当熔体混合均匀后,持续搅拌,并从中频感应炉底部以高纯惰性气体为载气,向混合均匀的熔体喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣,进行渣洗精炼;其中,按质量比,铝热自蔓 延反应原料∶CaF 2-CaO-TiO 2-V 2O 5基精炼渣=1.0∶0.05;
所述的CaF 2-CaO-TiO 2-V 2O 5基精炼渣,含有的化学成分及其质量百分比分别为CaF 2∶5%,CaO∶50%,Na 2O∶0%,TiO 2∶30%,V 2O 5∶10%;其中,CaF 2-CaO-TiO 2-V 2O 5基精炼渣中含有的各个组分:CaO、CaF 2、Na 2O、TiO 2、V 2O 5粉末粒度粒度均≤0.2mm;所述的CaF 2-CaO-TiO 2-V 2O 5基精练渣使用前,进行预处理:焙烧温度为450℃焙烧12h。
(3)喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣后,在1700℃保温并持续偏心机械搅拌10min,停止偏心搅拌,得到钛合金熔体;
步骤5:冷却
将钛合金熔体冷却至室温后,除去上部的熔炼渣,得到钛合金。
本发明制备的钛合金含有的化学成分及其质量分数为:Al为5.8%,V为4.10%,Si为0.3%,Fe为0.6%,O为0.22%,余量为Ti。
实施例6
一种基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,具体包括以下步骤:
步骤1:物料预处理
将铝热还原反应物料分别进行预处理,具体为含TiO 2的质量百分比为93%的高钛渣、含TiO 2的质量百分比为99.5%的二氧化钛和含TiO 2的质量百分比为94%的金红石、V 2O 5粉末,分别在650℃焙烧36h;CaO在300℃焙烧16h;KClO 3在180℃干燥24h;其中,高钛渣和二氧化钛和金红石,三者的混合质量比为1:1:1,得到预处理后的铝热还原反应物料;
按配比,称量预处理后的铝热还原反应物料,其中,按质量比,高钛渣和二氧化钛和金红石∶铝粉∶V 2O 5粉末∶CaO∶KClO 3=1.0∶0.26∶0.045∶0.16∶0.28;
所述的铝热还原反应物料中,各个物料的粒径分别为:高钛渣粒度≤3mm,金红石粒度≤3mm,二氧化钛粒度≤0.02mm;铝粉粒度≤2mm;V 2O 5粉末≤0.2mm;CaO粒度≤0.2mm;KClO 3粒度≤2mm;
步骤2:铝热自蔓延反应
将除铝粉以外的铝热自蔓延反应原料混合均匀,得到混合物料,将混合物料以均匀流速加料到连续混料机中;
同时,将铝粉以梯度递减的流速加入连续混料机,使连续加入的混合物料的配铝量由化学计量比的1.2倍逐渐降低至化学计量比的0.75倍,其中,配铝量梯度变化次数满足关系式:
m=(b-c)÷a (1)
式中,m为配铝量梯度变化的次数,b为最高的配铝量,c为最低的配铝量,a为配铝量梯度变化系数,a=0.001;经计算m为450次。
按照化学反应方程式得到加入铝粉的总质量为理论加入总质量m t,铝粉的实际加入总质量为m a,其中,理论加入总质量m t和实际加入总质量为m a满足以下关系:m a=m t×95%;
铝热自蔓延反应原料在连续混料机混匀后连续加入到反应炉中进行铝热还原反应,直至所有物料完全反应后得到高温熔体;
步骤3:电磁场作用下的熔分
采用电磁感应对高温熔体加热,进行保温熔分,实现渣金分离,得到分层熔体,上层为氧化铝基熔渣,下层合金熔体;其中,熔分过程中,控制温度为1750℃,保温时间20min;
步骤4:渣洗精炼
(1)将上层的氧化铝基熔渣总体积的90%移除,对剩余的体积的氧化铝基熔渣和下层的合金熔体进行偏心机械搅拌,偏心距为0.4,搅拌转速50rpm;控制温度为1750℃;
(2)当熔体混合均匀后,持续搅拌,并从中频感应炉底部以高纯惰性气体为载气,向混合均匀的熔体喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣,进行渣洗精炼;其中,按质量比,铝热自蔓延反应原料∶CaF 2-CaO-TiO 2-V 2O 5基精炼渣=1.0∶0.06;
所述的CaF 2-CaO-TiO 2-V 2O 5基精炼渣,含有的化学成分及其质量百分比分别为CaF 2∶10%,CaO∶40%,Na 2O∶0%,TiO 2∶35%,V 2O 5∶15%;其中,CaF 2-CaO-TiO 2-V 2O 5基精炼渣中含有的各个组分:CaO、CaF 2、Na 2O、TiO 2、V 2O 5粉末粒度粒度均≤0.2mm;所述的CaF 2-CaO-TiO 2-V 2O 5基精练渣使用前,进行预处理:焙烧温度为200℃焙烧12h。
(3)喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣后,在1750℃保温并持续偏心机械搅拌30min,停止偏心搅拌,得到钛合金熔体;
步骤5:冷却
将钛合金熔体冷却至室温后,除去上部的熔炼渣,得到钛合金。
本发明制备的钛合金含有的化学成分及其质量分数为:Al为5.6%,V为4.40%,Si为0.6%,Fe为0.8%,O为0.18%,余量为Ti。
实施例7
一种基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,具体包括以下步骤:
步骤1:物料预处理
将铝热还原反应物料分别进行预处理,具体为含TiO 2的质量百分比为92%的金红石、V 2O 5粉末,分别在600℃焙烧24h;CaO在200℃焙烧16h;KClO 3在180℃干燥20h;得到预处理后的铝热还原反应物料;
按配比,称量预处理后的铝热还原反应物料,其中,按质量比,金红石∶铝粉∶V 2O 5粉末∶CaO∶KClO 3=1.0∶0.26∶0.045∶0.16∶0.28;
所述的铝热还原反应物料中,各个物料的粒径分别为:金红石粒度≤3mm;铝粉粒度≤2mm;V 2O 5粉末≤0.2mm;CaO粒度≤0.2mm;KClO 3粒度≤2mm;
步骤2:铝热自蔓延反应
将称量的除铝粉以外的铝热自蔓延反应原料混合均匀,得到混合物料,将混合物料分为5份;
按照每份混合物料加入反应炉的顺序,分别配铝,配铝量依次为化学计量比的1.20、1.05、1.0、0.90、0.85倍,;按照化学反应方程式得到加入铝粉的总质量为理论加入总质量m t,铝粉的实际加入总质量为m a,其中,m a=m t×98%;
其中,第一批加入反应炉的混合物料的质量占总混合物料质量的20%,并且第一批加入反应炉的混合物料,需加入镁粉作为引燃物,点燃混合物料引发自蔓延反应,得到足以引发后续反应的第一批高温熔体;
按照配铝量的化学计量比依次降低的顺序,依次加其它份混合物料到反应炉中,直至所有物料完全反应,得到高温熔体;
步骤3:电磁场作用下的熔分
采用电磁感应对高温熔体加热,进行保温熔分,实现渣金分离,得到分层熔体,上层为氧化铝基熔渣,下层合金熔体;其中,熔分过程中,控制温度为1700℃,保温时间15min;
步骤4:渣洗精炼
(1)将上层的氧化铝基熔渣总体积的90%移除,对剩余的体积的氧化铝基熔渣和下层的合金熔体进行偏心机械搅拌,偏心距为0.3,搅拌转速100rpm;控制温度为1700℃;
(2)当熔体混合均匀后,持续搅拌,并从中频感应炉底部以高纯惰性气体为载气,向混合均匀的熔体喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣,进行渣洗精炼;其中,按质量比,铝热自蔓延反应原料∶CaF 2-CaO-TiO 2-V 2O 5基精炼渣=1.0∶0.04;
所述的CaF 2-CaO-TiO 2-V 2O 5基精炼渣,含有的化学成分及其质量百分比分别为CaF 2∶5%,CaO∶50%,Na 2O∶0%,TiO 2∶40%,V 2O 5∶5%;其中,CaF 2-CaO-TiO 2-V 2O 5基精炼渣中含有的各个组分:CaO、CaF 2、Na 2O、TiO 2、V 2O 5粉末粒度粒度均≤0.2mm;所述的CaF 2-CaO-TiO 2-V 2O 5基精练渣使用前,进行预处理:焙烧温度为150℃焙烧10h。
(3)喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣后,在1700℃保温并持续偏心机械搅拌10min,停止偏心搅拌,得到钛合金熔体;
步骤5:冷却
将钛合金熔体冷却至室温后,除去上部的熔炼渣,得到钛合金。
本发明制备的钛合金含有的化学成分及其质量分数为:Al为6.3%,V为3.70%,Si为 0.4%,Fe为0.6%,O为0.35%,余量为Ti。
实施例8
一种基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,具体包括以下步骤:
步骤1:物料预处理
将铝热还原反应物料分别进行预处理,具体为含TiO 2的质量百分比为99.7%的二氧化钛和含TiO 2的质量百分比为93%的金红石、V 2O 5粉末,分别在700℃焙烧16h;CaO在250℃焙烧16h;KClO 3在180℃干燥36h,其中,二氧化钛和金红石的混合质量比例为1:1,得到预处理后的铝热还原反应物料;
按配比,称量预处理后的铝热还原反应物料,其中,按质量比,二氧化钛和金红石∶铝粉∶V 2O 5粉末∶CaO∶KClO 3=1.0∶0.26∶0.045∶0.16∶0.28;
所述的铝热还原反应物料中,各个物料的粒径分别为:二氧化钛粒度≤0.02mm,金红石粒度≤3mm;铝粉粒度≤2mm;V 2O 5粉末≤0.2mm;CaO粒度≤0.2mm;KClO 3粒度≤2mm;
步骤2:铝热自蔓延反应
将称量的除铝粉以外的铝热自蔓延反应原料混合均匀,得到混合物料,将混合物料分为6份;
按照每份混合物料加入反应炉的顺序,分别配铝,配铝量依次为化学计量比的1.20、1.1、0.95、0.90、0.85、0.80倍,;按照化学反应方程式得到加入铝粉的总质量为理论加入总质量m t,铝粉的实际加入总质量为m a,其中,m a=m t×98%;
其中,第一批加入反应炉的混合物料的质量占总混合物料质量的28.6%,并且第一批加入反应炉的混合物料,需加入镁粉作为引燃物,点燃混合物料引发自蔓延反应,得到足以引发后续反应的第一批高温熔体;
按照配铝量的化学计量比依次降低的顺序,依次加其它份混合物料到反应炉中,直至所有物料完全反应,得到高温熔体;
步骤3:电磁场作用下的熔分
采用电磁感应对高温熔体加热,进行保温熔分,实现渣金分离,得到分层熔体,上层为氧化铝基熔渣,下层合金熔体;其中,熔分过程中,控制温度为1800℃,保温时间15min;
步骤4:渣洗精炼
(1)将上层的氧化铝基熔渣总体积的95%移除,对剩余的体积的氧化铝基熔渣和下层的合金熔体进行偏心机械搅拌,偏心距为0.4,搅拌转速50rpm;控制温度为1800℃;
(2)当熔体混合均匀后,持续搅拌,并从中频感应炉底部以高纯惰性气体为载气,向混合均匀的熔体喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣,进行渣洗精炼;其中,按质量比,铝热自蔓 延反应原料∶CaF 2-CaO-TiO 2-V 2O 5基精炼渣=1.0∶0.06;
所述的CaF 2-CaO-TiO 2-V 2O 5基精炼渣,含有的化学成分及其质量百分比分别为CaF 2∶10%,CaO∶40%,Na 2O∶0%,TiO 2∶40%,V 2O 5∶10%;其中,CaF 2-CaO-TiO 2-V 2O 5基精炼渣中含有的各个组分:CaO、CaF 2、Na 2O、TiO 2、V 2O 5粉末粒度粒度均≤0.2mm;所述的CaF 2-CaO-TiO 2-V 2O 5基精练渣使用前,进行预处理:焙烧温度为150℃焙烧48h。
(3)喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣后,在1800℃保温并持续偏心机械搅拌20min,停止偏心搅拌,得到钛合金熔体;
步骤5:冷却
将钛合金熔体冷却至室温后,除去上部的熔炼渣,得到钛合金。
本发明制备的钛合金含有的化学成分及其质量分数为:Al为5.7%,V为4.20%,Si为0.7%,Fe为0.9%,O为0.18%,余量为Ti。
实施例9
一种基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,具体包括以下步骤:
步骤1:物料预处理
将铝热还原反应物料分别进行预处理,具体为含TiO 2的质量百分比为92%的金红石、V 2O 5粉末,分别在650℃焙烧16h;CaO在200℃焙烧16h;KClO 3在180℃干燥24h;得到预处理后的铝热还原反应物料;
按配比,称量预处理后的铝热还原反应物料,其中,按质量比,金红石∶铝粉∶V 2O 5粉末∶CaO∶KClO 3=1.0∶0.26∶0.045∶0.16∶0.28;
所述的铝热还原反应物料中,各个物料的粒径分别为:金红石粒度≤3mm;铝粉粒度≤2mm;V 2O 5粉末≤0.2mm;CaO粒度≤0.2mm;KClO 3粒度≤2mm;
步骤2:铝热自蔓延反应
将称量的除铝粉以外的铝热自蔓延反应原料混合均匀,得到混合物料,将混合物料分为8份;
按照每份混合物料加入反应炉的顺序,分别配铝,配铝量依次为化学计量比的1.20、1.1、1.0、0.95、0.925、0.90、0.875、0.85倍,;按照化学反应方程式得到加入铝粉的总质量为理论加入总质量m t,铝粉的实际加入总质量为m a,其中,m a=m t×98%;
其中,第一批加入反应炉的混合物料的质量占总混合物料质量的22.2%,并且第一批加入反应炉的混合物料,需加入镁粉作为引燃物,点燃混合物料引发自蔓延反应,得到足以引发后续反应的第一批高温熔体;
按照配铝量的化学计量比依次降低的顺序,依次加其它份混合物料到反应炉中,直至所 有物料完全反应,得到高温熔体;
步骤3:电磁场作用下的熔分
采用电磁感应对高温熔体加热,进行保温熔分,实现渣金分离,得到分层熔体,上层为氧化铝基熔渣,下层合金熔体;其中,熔分过程中,控制温度为1750℃,保温时间15min;
步骤4:渣洗精炼
(1)将上层的氧化铝基熔渣总体积的95%移除,对剩余的体积的氧化铝基熔渣和下层的合金熔体进行偏心机械搅拌,偏心距为0.2,搅拌转速150rpm;控制温度为1750℃;
(2)当熔体混合均匀后,持续搅拌,并从中频感应炉底部以高纯惰性气体为载气,向混合均匀的熔体喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣,进行渣洗精炼;其中,按质量比,铝热自蔓延反应原料∶CaF 2-CaO-TiO 2-V 2O 5基精炼渣=1.0∶0.05;
所述的CaF 2-CaO-TiO 2-V 2O 5基精炼渣,含有的化学成分及其质量百分比分别为CaF 2∶5%,CaO∶50%,Na 2O∶0%,TiO 2∶30%,V 2O 5∶15%;其中,CaF 2-CaO-TiO 2-V 2O 5基精炼渣中含有的各个组分:CaO、CaF 2、Na 2O、TiO 2、V 2O 5粉末粒度粒度均≤0.2mm;所述的CaF 2-CaO-TiO 2-V 2O 5基精练渣使用前,进行预处理:焙烧温度为180℃焙烧20h。
(3)喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣后,在1750℃保温并持续偏心机械搅拌15min,停止偏心搅拌,得到钛合金熔体;
步骤5:冷却
将钛合金熔体冷却至室温后,除去上部的熔炼渣,得到钛合金。
本发明制备的钛合金含有的化学成分及其质量分数为:Al为5.5%,V为4.30%,Si为0.2%,Fe为0.6%,O为0.16%,余量为Ti。
实施例10
一种基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,具体包括以下步骤:
步骤1:物料预处理
将铝热还原反应物料分别进行预处理,具体为含TiO 2的质量百分比为93%的金红石、V 2O 5粉末,分别在500℃焙烧24h;CaO在250℃焙烧12h;KClO 3在150℃干燥18h;得到预处理后的铝热还原反应物料;
按配比,称量预处理后的铝热还原反应物料,其中,按质量比,金红石∶铝粉∶V 2O 5粉末∶CaO∶KClO 3=1.0∶0.26∶0.045∶0.16∶0.28;
所述的铝热还原反应物料中,各个物料的粒径分别为:金红石粒度≤3mm;铝粉粒度≤2mm;V 2O 5粉末≤0.2mm;CaO粒度≤0.2mm;KClO 3粒度≤2mm;
步骤2:铝热自蔓延反应
将除铝粉以外的铝热自蔓延反应原料混合均匀,得到混合物料,将混合物料以均匀流速加料到连续混料机中;
同时,将铝粉以梯度递减的流速加入连续混料机,使连续加入的混合物料配铝量由化学计量比的1.28倍逐渐降低至化学计量比的0.78倍,其中,配铝量梯度变化次数满足关系式:
m=(b-c)÷a (1)
式中,m为配铝量梯度变化的次数,b为最高的配铝量,c为最低的配铝量,a为配铝量梯度变化系数,a=0.004;经计算m为128次,铝粉流量梯度变化的时间间隔为总反应时间除以m。
按照化学反应方程式得到加入铝粉的总质量为理论加入总质量m t,铝粉的实际加入总质量为m a,其中,理论加入总质量m t和实际加入总质量为m a满足以下关系:m a=m t×98%;
铝热自蔓延反应原料在连续混料机混匀后连续加入到反应炉中进行铝热还原反应,直至所有物料完全反应后得到高温熔体;
步骤3:电磁场作用下的熔分
采用电磁感应对高温熔体加热,进行保温熔分,实现渣金分离,得到分层熔体,上层为氧化铝基熔渣,下层合金熔体;其中,熔分过程中,控制温度为1700℃,保温时间20min;
步骤4:渣洗精炼
(1)将上层的氧化铝基熔渣总体积的85%移除,对剩余的体积的氧化铝基熔渣和下层的合金熔体进行偏心机械搅拌,偏心距为0.4,搅拌转速100rpm;控制温度为1700℃;
(2)当熔体混合均匀后,持续搅拌,并从中频感应炉底部以高纯惰性气体为载气,向混合均匀的熔体喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣,进行渣洗精炼;其中,按质量比,铝热自蔓延反应原料∶CaF 2-CaO-TiO 2-V 2O 5基精炼渣=1.0∶0.04;
所述的CaF 2-CaO-TiO 2-V 2O 5基精炼渣,含有的化学成分及其质量百分比分别为CaF 2∶5%,CaO∶49%,Na 2O∶1%,TiO 2∶40%,V 2O 5∶5%;其中,CaF 2-CaO-TiO 2-V 2O 5基精炼渣中含有的各个组分:CaO、CaF 2、Na 2O、TiO 2、V 2O 5粉末粒度粒度均≤0.2mm;所述的CaF 2-CaO-TiO 2-V 2O 5基精练渣使用前,进行预处理:焙烧温度为150℃焙烧10h。
(3)喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣后,在1700℃保温并持续偏心机械搅拌10min,停止偏心搅拌,得到钛合金熔体;
步骤5:冷却
将钛合金熔体冷却至室温后,除去上部的熔炼渣,得到钛合金。
本发明制备的钛合金含有的化学成分及其质量分数为:Al为5.8%,V为4.50%,Si为0.4%,Fe为0.7%,O为0.22%,余量为Ti。
实施例11
一种基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,具体包括以下步骤:
步骤1:物料预处理
将铝热还原反应物料分别进行预处理,具体为含TiO 2的质量百分比为93%的高钛渣和含TiO 2的质量百分比为99.8%的二氧化钛、V 2O 5粉末,分别在在550℃焙烧36h;CaO在250℃焙烧12h;KClO 3在150℃干燥24h;其中,高钛渣和二氧化钛混合质量比为1:1,得到预处理后的铝热还原反应物料;
按配比,称量预处理后的铝热还原反应物料,其中,按质量比,高钛渣和二氧化钛∶铝粉∶V 2O 5粉末∶CaO∶KClO 3=1.0∶0.26∶0.045∶0.16∶0.28;
所述的铝热还原反应物料中,各个物料的粒径分别为:高钛渣粒度≤3mm,二氧化钛粒度≤0.02mm,铝粉粒度≤2mm;V 2O 5粉末≤0.2mm;CaO粒度≤0.2mm;KClO 3粒度≤2mm;
步骤2:铝热自蔓延反应
将除铝粉以外的铝热自蔓延反应原料混合均匀,得到混合物料,将混合物料以均匀流速加料到连续混料机中;
同时,将铝粉以梯度递减的流速加入连续混料机,使连续加入的混合物料的配铝量由化学计量比的1.27倍逐渐降低至化学计量比的0.7倍,其中,配铝量梯度变化次数满足关系式:
m=(b-c)÷a (1)
式中,m为配铝量梯度变化的次数,b为最高的配铝量,c为最低的配铝量,a为配铝量梯度变化系数,a=0.002;经计算m为285次。
按照化学反应方程式得到加入铝粉的总质量为理论加入总质量m t,铝粉的实际加入总质量为m a,其中,理论加入总质量m t和实际加入总质量为m a满足以下关系:m a=m t×97%;
铝热自蔓延反应原料在连续混料机混匀后连续加入到反应炉中进行铝热还原反应,直至所有物料完全反应后得到高温熔体;
步骤3:电磁场作用下的熔分
采用电磁感应对高温熔体加热,进行保温熔分,实现渣金分离,得到分层熔体,上层为氧化铝基熔渣,下层合金熔体;其中,熔分过程中,控制温度为1750℃,保温时间15min;
步骤4:渣洗精炼
(1)将上层的氧化铝基熔渣总体积的90%移除,对剩余的体积的氧化铝基熔渣和下层的合金熔体进行偏心机械搅拌,偏心距为0.4,搅拌转速150rpm;控制温度为1750℃;
(2)当熔体混合均匀后,持续搅拌,并从中频感应炉底部以高纯惰性气体为载气,向混合均匀的熔体喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣,进行渣洗精炼;其中,按质量比,铝热自蔓 延反应原料∶CaF 2-CaO-TiO 2-V 2O 5基精炼渣=1.0∶0.06;
所述的CaF 2-CaO-TiO 2-V 2O 5基精炼渣,含有的化学成分及其质量百分比分别为CaF 2∶10%,CaO∶43%,Na 2O∶2%,TiO 2∶35%,V 2O 5∶10%;其中,CaF 2-CaO-TiO 2-V 2O 5基精炼渣中含有的各个组分:CaO、CaF 2、Na 2O、TiO 2、V 2O 5粉末粒度粒度均≤0.2mm;所述的CaF 2-CaO-TiO 2-V 2O 5基精练渣使用前,进行预处理:焙烧温度为200℃焙烧12h。
(3)喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣后,在1750℃保温并持续偏心机械搅拌10min,停止偏心搅拌,得到钛合金熔体;
步骤5:冷却
将钛合金熔体冷却至室温后,除去上部的熔炼渣,得到钛合金。
本发明制备的钛合金含有的化学成分及其质量分数为:Al为5.6%,V为4.0%,Si为0.7%,Fe为0.9%,O为0.13%,余量为Ti。
实施例12
一种基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,具体包括以下步骤:
步骤1:物料预处理
将铝热还原反应物料分别进行预处理,具体为含TiO 2的质量百分比为92%的高钛渣、V 2O 5粉末,分别在700℃焙烧24h;CaO在250℃焙烧12h;KClO 3在250℃干燥24h;得到预处理后的铝热还原反应物料;
按配比,称量预处理后的铝热还原反应物料,其中,按质量比,高钛渣∶铝粉∶V 2O 5粉末∶CaO∶KClO 3=1.0∶0.26∶0.045∶0.16∶0.28;
所述的铝热还原反应物料中,各个物料的粒径分别为:高钛渣粒度≤3mm;铝粉粒度≤2mm;V 2O 5粉末≤0.2mm;CaO粒度≤0.2mm;KClO 3粒度≤2mm;
步骤2:铝热自蔓延反应
将除铝粉以外的铝热自蔓延反应原料混合均匀,得到混合物料,将混合物料以均匀流速加料到连续混料机中;
同时,将铝粉以梯度递减的流速加入连续混料机,使连续加入的混合物料配铝量由化学计量比的1.23倍逐渐降低至化学计量比的0.72倍,其中,配铝量梯度变化次数满足关系式:
m=(b-c)÷a (1)
式中,m为配铝量梯度变化的次数,b为最高的配铝量,c为最低的配铝量,a为配铝量梯度变化系数,a=0.001;经计算m为450次。
按照化学反应方程式得到加入铝粉的总质量为理论加入总质量m t,铝粉的实际加入总质量为m a,其中,理论加入总质量m t和实际加入总质量为m a满足以下关系:m a=m t×95%;
铝热自蔓延反应原料在连续混料机混匀后连续加入到反应炉中进行铝热还原反应,直至所有物料完全反应后得到高温熔体;
步骤3:电磁场作用下的熔分
采用电磁感应对高温熔体加热,进行保温熔分,实现渣金分离,得到分层熔体,上层为氧化铝基熔渣,下层合金熔体;其中,熔分过程中,控制温度为1750℃,保温时间15min;
步骤4:渣洗精炼
(1)将上层的氧化铝基熔渣总体积的90%移除,对剩余的体积的氧化铝基熔渣和下层的合金熔体进行偏心机械搅拌,偏心距为0.4,搅拌转速50rpm;控制温度为1750℃;
(2)当熔体混合均匀后,持续搅拌,并从中频感应炉底部以高纯惰性气体为载气,向混合均匀的熔体喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣,进行渣洗精炼;其中,按质量比,铝热自蔓延反应原料∶CaF 2-CaO-TiO 2-V 2O 5基精炼渣=1.0∶0.07;
所述的CaF 2-CaO-TiO 2-V 2O 5基精炼渣,含有的化学成分及其质量百分比分别为CaF 2∶5%,CaO∶49%,Na 2O∶1%,TiO 2∶30%,V 2O 5∶15%;其中,CaF 2-CaO-TiO 2-V 2O 5基精炼渣中含有的各个组分:CaO、CaF 2、Na 2O、TiO 2、V 2O 5粉末粒度粒度均≤0.2mm;所述的CaF 2-CaO-TiO 2-V 2O 5基精练渣使用前,进行预处理:焙烧温度为200℃焙烧24h。
(3)喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣后,在1750℃保温并持续偏心机械搅拌10min,停止偏心搅拌,得到钛合金熔体;
步骤5:冷却
将钛合金熔体冷却至室温后,除去上部的熔炼渣,得到钛合金。
本发明制备的钛合金含有的化学成分及其质量分数为:Al为5.5%,V为3.60%,Si为0.4%,Fe为0.9%,O为0.10%,余量为Ti。

Claims (9)

  1. 一种基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,其特征在于,具体包括以下步骤:
    步骤1:物料预处理
    将铝热还原反应物料分别进行预处理,得到预处理后的铝热还原反应物料;
    所述的铝热还原反应物料为含钛物料、铝粉、V 2O 5粉末、CaO和KClO 3
    所述的含钛物料为金红石、高钛渣或二氧化钛中的一种或几种混合;
    按配比,称量预处理后的铝热还原反应物料,其中,按质量比,含钛物料∶铝粉∶V 2O 5粉末∶CaO∶KClO 3=1.0∶(0.60~0.24)∶(0.042~0.048)∶(0.12~0.26)∶(0.22~0.30);
    所述的铝热还原反应物料中,各个物料的粒径分别为:金红石≤3mm,高钛渣≤3mm,或二氧化钛粒度≤0.02mm;铝粉粒度≤2mm;V 2O 5粉末≤0.2mm;CaO粒度≤0.2mm;KClO 3粒度≤2mm;
    步骤2:铝热自蔓延反应
    采用以下两种加料方式之一进行梯度铝热还原:
    加料方式一:
    将称量的除铝粉以外的铝热自蔓延反应原料混合均匀,得到混合物料,将混合物料分为若干份;
    按照每份混合物料加入反应炉的顺序,分别配铝,配铝量按照反应化学计量比的1.15~1.35倍逐渐降低至化学计量比的0.85~0.65倍;按照化学反应方程式得到加入铝粉的总质量为理论加入总质量m t,铝粉的实际加入总质量为m a,其中,m a=m t×(95~100)%;
    其中,第一批加入反应炉的混合物料的质量占总混合物料质量的10~30%,并且第一批加入反应炉的混合物料,需加入镁粉作为引燃物,点燃混合物料引发自蔓延反应,得到足以引发后续反应的第一批高温熔体;
    按照配铝量的化学计量比依次降低的顺序,依次加其它份混合物料到反应炉中,直至所有物料完全反应,得到高温熔体;
    加料方式二:
    将除铝粉以外的铝热自蔓延反应原料混合均匀,得到混合物料,将混合物料以均匀流速加料到连续混料机中;
    同时,将铝粉以梯度递减的流速加入连续混料机,使连续加入的混合物料的配铝量由化学计量比的1.15~1.35倍逐渐降低至化学计量比的0.85~0.65倍,其中,配铝量梯度变化次数满足关系式:
    m=(b-c)÷a   (1)
    式中,m为配铝量梯度变化的次数,b为最高的配铝量,c为最低的配铝量,a为配铝量梯度变化系数,0<a≤0.04;
    按照化学反应方程式得到加入铝粉的总质量为理论加入总质量m t,铝粉的实际加入总质量为m a,其中,理论加入总质量m t和实际加入总质量为m a满足以下关系:m a=m t×(95~100)%;
    铝热自蔓延反应原料在连续混料机混匀后连续加入到反应炉中进行铝热还原反应,直至所有物料完全反应后得到高温熔体;
    步骤3:电磁场作用下的熔分
    采用电磁感应对高温熔体加热,进行保温熔分,实现渣金分离,得到分层熔体,上层为氧化铝基熔渣,下层合金熔体;其中,熔分过程中,控制温度为1700~1800℃,保温时间5~25min;
    步骤4:渣洗精炼
    (1)将上层的氧化铝基熔渣总体积的85~95%移除,对剩余的体积的氧化铝基熔渣和下层的合金熔体进行偏心机械搅拌,搅拌转速50~150rpm;控制温度为1700~1800℃;
    (2)当熔体混合均匀后,持续搅拌,并以高纯惰性气体为载气,向混合均匀的熔体喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣,进行渣洗精炼;其中,按质量比,铝热自蔓延反应原料∶CaF 2-CaO-TiO 2-V 2O 5基精炼渣=1.0∶(0.02~0.08);
    所述的CaF 2-CaO-TiO 2-V 2O 5基精炼渣,含有的化学成分及其质量百分比分别为CaF 2∶5%~10%,CaO∶40%~60%,Na 2O∶0~2%,TiO 2∶30%~40%,V 2O 5∶5%~15%,余量为不可避免的杂质;其中,CaF 2-CaO-TiO 2-V 2O 5基精炼渣中含有的各个组分:CaO、CaF 2、Na 2O、TiO 2、V 2O 5粉末粒度粒度均≤0.2mm;
    (3)喷吹CaF 2-CaO-TiO 2-V 2O 5基精炼渣后,在1700~1800℃保温并持续偏心机械搅拌10~30min,得到钛合金熔体;
    步骤5:冷却
    将钛合金熔体冷却至室温后,除去上部的熔炼渣,得到钛合金。
  2. 如权利要求1所述的基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,其特征在于,制备的钛合金含有的化学成分及其质量分数为:Al为5.5%~6.5%,V为3.5%~4.5%,Si为0.2%~1.0%,Fe为0.2%~1.0%,O≤0.9%,余量为Ti。
  3. 如权利要求1所述的基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,其特征在于,所述的步骤1中,所述的将铝热还原反应物料分别进行预处理的方法如下:
    (1)将含钛物料,V 2O 5粉末,CaO分别进行焙烧,焙烧温度≥120℃,焙烧时间12~36h;
    (2)将KClO 3在150~300℃干燥时间12~48h。
  4. 如权利要求1所述的基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,其特征在于,所述的步骤2中,所述若干份为n份,n≥4。
  5. 如权利要求1所述的基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,其特征在于,所述的步骤3中,所述的电磁感应的设备为中频感应炉,其电磁场的频率大于等于1000Hz。
  6. 如权利要求1所述的基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,其特征在于,所述的步骤4中,所述的偏心机械搅拌,偏心率为0.2~0.4。
  7. 如权利要求1所述的基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,其特征在于,所述的步骤4中,所述的喷吹优选为在中频感应炉底部喷吹。
  8. 如权利要求1所述的基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,其特征在于,所述的步骤4中,所述的高纯惰性气体为高纯氩气,纯度大于等于99.95%。
  9. 如权利要求1所述的基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法,其特征在于,所述的步骤4(2)中,所述的CaF 2-CaO-TiO 2-V 2O 5基精练渣使用前,进行预处理:焙烧温度150~450℃焙烧10~48h。
PCT/CN2018/087692 2017-06-13 2018-05-21 基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法 WO2018228142A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019504910A JP6810243B2 (ja) 2017-06-13 2018-05-21 テルミット自己伝播勾配還元及びスラグ洗浄精練に基づくチタン合金の製造方法
GB1903087.3A GB2572485B (en) 2017-06-13 2018-05-21 Method for preparing Titanium alloys based on Aluminothermic self-propagating gradient reduction and slag-washing refining
EP18816517.9A EP3495513B1 (en) 2017-06-13 2018-05-21 Aluminum thermal self-propagation gradient reduction and slag washing and refining-based method for preparing titanium alloy
US16/320,000 US11060166B2 (en) 2017-06-13 2018-05-21 Method for preparing titanium alloys based on aluminothermic self-propagating gradient reduction and slag-washing refining
EA201990607A EA201990607A1 (ru) 2017-06-13 2018-05-21 Способ получения титанового сплава на основе восстановления самораспространяющегося градиента алюминотермии и рафинирования шлака

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710443771.1 2017-06-13
CN201710443771.1A CN107151752B (zh) 2017-06-13 2017-06-13 基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法

Publications (1)

Publication Number Publication Date
WO2018228142A1 true WO2018228142A1 (zh) 2018-12-20

Family

ID=59795132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087692 WO2018228142A1 (zh) 2017-06-13 2018-05-21 基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法

Country Status (7)

Country Link
US (1) US11060166B2 (zh)
EP (1) EP3495513B1 (zh)
JP (1) JP6810243B2 (zh)
CN (1) CN107151752B (zh)
EA (1) EA201990607A1 (zh)
GB (1) GB2572485B (zh)
WO (1) WO2018228142A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113957289A (zh) * 2021-10-27 2022-01-21 东北大学 亚/过共晶γ钛铝钒合金一步炉内连续化生产方法与装置
CN113999971A (zh) * 2021-09-24 2022-02-01 攀钢集团攀枝花钢铁研究院有限公司 钒铝合金及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107151752B (zh) * 2017-06-13 2018-10-23 东北大学 基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法
CN107641726A (zh) * 2017-09-21 2018-01-30 攀枝花学院 一种tc4钛合金及其制备方法
CN109943736A (zh) * 2019-04-30 2019-06-28 北京欧菲金太科技有限责任公司 一种铝钒钛合金制作装置及方法
CN113337745B (zh) * 2021-06-04 2023-03-14 中国恩菲工程技术有限公司 熔融含钛渣制备钛基合金的装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029661A (ja) * 2007-07-27 2009-02-12 Japan Carlit Co Ltd:The テルミット反応組成物
CN104131128A (zh) * 2014-07-21 2014-11-05 东北大学 一种基于铝热自蔓延-喷吹深度还原制备钛铁合金的方法
CN105132724A (zh) * 2015-10-23 2015-12-09 攀枝花学院 一种超重力辅助铝热还原法自蔓延制备钛铝合金的方法
CN107151752A (zh) * 2017-06-13 2017-09-12 东北大学 基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625676A (en) * 1969-03-28 1971-12-07 Frederick H Perfect Vanadium-aluminum-titanium master alloys
US4169722A (en) * 1975-05-28 1979-10-02 Atomic Energy Board Aluminothermic process
DE3017782C2 (de) * 1980-05-09 1982-09-30 Th. Goldschmidt Ag, 4300 Essen Verfahren zur Herstellung von sinterfähigen Legierungspulvern auf der Basis von Titan
BR8402087A (pt) * 1984-05-04 1985-12-10 Vale Do Rio Doce Co Processo de obtencao de titanio metalico a partir de um concentrado de anastasio,por aluminotermia e magnesiotermia
RU2206628C2 (ru) * 2001-04-16 2003-06-20 ОАО Верхнесалдинское металлургическое производственное объединение Шихта для получения азотсодержащих лигатур на основе тугоплавких металлов
JP2002339006A (ja) * 2001-05-15 2002-11-27 Sumitomo Titanium Corp チタン粉末及びチタン合金粉末の製造方法
NZ548675A (en) * 2006-07-20 2008-12-24 Titanox Dev Ltd A process for producing titanium metal alloy powder from titanium dioxide and aluminium
RU2331676C2 (ru) * 2006-10-05 2008-08-20 ОАО "Корпорация ВСМПО-АВИСМА" Шихта для алюминотермического получения лигатур с низким содержанием примесей
NZ547606A (en) * 2006-11-30 2009-04-30 Waikatolink Ltd A method for purification of metal based alloy and intermetallic powders or particles comprising introducing calcium vapour
CN101619405B (zh) * 2009-07-17 2012-01-11 攀枝花市银江金勇工贸有限责任公司 一种Ti-Al系金属间化合物合金
EP2794943B8 (en) * 2011-12-22 2019-07-10 Universal Achemetal Titanium, LLC A method for extraction and refining of titanium
CN104120262B (zh) * 2014-07-21 2016-04-06 东北大学 一种铝热还原-熔渣精炼制备CuCr合金铸锭的方法
CN104120304B (zh) * 2014-07-21 2016-04-06 东北大学 一种基于铝热自蔓延-喷吹深度还原制备钛铝合金的方法
CN104131178B (zh) * 2014-07-21 2015-07-15 东北大学 一种基于铝热自蔓延-喷吹深度还原制备金属钛的方法
CN104120261B (zh) * 2014-07-21 2016-04-06 东北大学 一种铝热还原-熔渣精炼制备难混溶合金铸锭的方法
JP7096235B2 (ja) * 2016-09-14 2022-07-05 ユニバーサル アケメタル タイタニウム リミテッド ライアビリティ カンパニー チタン-アルミニウム-バナジウム合金の製造方法
CN107641726A (zh) * 2017-09-21 2018-01-30 攀枝花学院 一种tc4钛合金及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029661A (ja) * 2007-07-27 2009-02-12 Japan Carlit Co Ltd:The テルミット反応組成物
CN104131128A (zh) * 2014-07-21 2014-11-05 东北大学 一种基于铝热自蔓延-喷吹深度还原制备钛铁合金的方法
CN105132724A (zh) * 2015-10-23 2015-12-09 攀枝花学院 一种超重力辅助铝热还原法自蔓延制备钛铝合金的方法
CN107151752A (zh) * 2017-06-13 2017-09-12 东北大学 基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NERSISYAN, H.H. ET AL.: "Effective Two-Step Method for Producing Ti-6A1-4V Alloy Particles with Various Morphologies", POWDER TECHNOLOGY, vol. 254, 11 January 2014 (2014-01-11), pages 57 - 62, XP028661962, ISSN: 0032-5910, DOI: doi:10.1016/j.powtec.2014.01.005 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113999971A (zh) * 2021-09-24 2022-02-01 攀钢集团攀枝花钢铁研究院有限公司 钒铝合金及其制备方法
CN113999971B (zh) * 2021-09-24 2023-06-27 攀钢集团攀枝花钢铁研究院有限公司 钒铝合金及其制备方法
CN113957289A (zh) * 2021-10-27 2022-01-21 东北大学 亚/过共晶γ钛铝钒合金一步炉内连续化生产方法与装置

Also Published As

Publication number Publication date
JP2019529692A (ja) 2019-10-17
EP3495513A4 (en) 2019-09-11
GB201903087D0 (en) 2019-04-24
EA201990607A1 (ru) 2019-07-31
EP3495513B1 (en) 2020-10-07
US11060166B2 (en) 2021-07-13
US20190241994A1 (en) 2019-08-08
CN107151752B (zh) 2018-10-23
GB2572485B (en) 2022-03-30
EP3495513A1 (en) 2019-06-12
CN107151752A (zh) 2017-09-12
GB2572485A (en) 2019-10-02
JP6810243B2 (ja) 2021-01-06

Similar Documents

Publication Publication Date Title
WO2018228142A1 (zh) 基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法
Fang et al. Powder metallurgy of titanium–past, present, and future
US20160089724A1 (en) Process for manufacturing metal containing powder
WO2018228139A1 (zh) 基于铝热自蔓延梯度还原与渣洗精炼制备钒铁合金的方法
JP6886046B2 (ja) 多段・高度還元による高融点金属粉末の製造方法
CN112063907B (zh) 一种多主元高温合金及其制备方法
WO2018228140A1 (zh) 基于铝热自蔓延梯度还原与渣洗精炼制备钛铁合金的方法
CN113444891A (zh) 一种采用稀土氧化物生产含稀土高温合金的方法
RU2618038C2 (ru) Способ получения жаропрочного сплава на основе ниобия
EA035488B1 (ru) Способ получения электродов из сплавов на основе алюминида никеля
JP7352038B2 (ja) チタン合金生成物の製造方法
Zhao et al. Mechanism and kinetic analysis of vacuum aluminothermic reduction for preparing TiAl intermetallics powder
WO2007139403A9 (en) Method for producing metal alloy and intermetallic products
CN112981175A (zh) Ti-6Al-4V合金材料及其制备方法
RU2680321C1 (ru) Способ получения полуфабриката из сплава на основе ниобия
RU2630157C2 (ru) Способ получения электродов из сплавов на основе алюминида титана
Yu et al. Preparation of high-quality FeV50 alloy by an improved SHS-EAH multi-stage process
CN111286638A (zh) 一种(ScAl3+Al2O3+Sc2O3)/Al基复合孕育剂、其制备方法和应用
CN112853129A (zh) 一种含铝钛合金的短流程制备方法
EA040223B1 (ru) Способ получения титанового сплава, основанный на алюмотермическом самораспространяющемся градиентном восстановлении шлака
RU2756045C1 (ru) Способ получения комплексно-легированного материала на основе алюминидов никеля с карбидной и боридной фазами вольфрама
CN116770038B (zh) 一种高性能紧固件的制备方法及紧固件
CN115233063B (zh) 一种高强韧高温NbSiTiCx合金及其制备方法
CN109957693B (zh) 一种高锶高铝含量的铸造镁基复合材料及制备方法
CN114309621A (zh) 一种含有难熔金属元素的微细TiAl合金球形粉体的制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019504910

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18816517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201903087

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20180521

ENP Entry into the national phase

Ref document number: 2018816517

Country of ref document: EP

Effective date: 20190308

NENP Non-entry into the national phase

Ref country code: DE