WO2018227972A1 - 洗衣机 - Google Patents
洗衣机 Download PDFInfo
- Publication number
- WO2018227972A1 WO2018227972A1 PCT/CN2018/073198 CN2018073198W WO2018227972A1 WO 2018227972 A1 WO2018227972 A1 WO 2018227972A1 CN 2018073198 W CN2018073198 W CN 2018073198W WO 2018227972 A1 WO2018227972 A1 WO 2018227972A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- rotor
- short
- angle
- axis
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F34/00—Details of control systems for washing machines, washer-dryers or laundry dryers
- D06F34/08—Control circuits or arrangements thereof
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/24—Vector control not involving the use of rotor position or rotor speed sensors
- H02P21/32—Determining the initial rotor position
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2103/00—Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
- D06F2103/44—Current or voltage
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2105/00—Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2105/00—Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
- D06F2105/46—Drum speed; Actuation of motors, e.g. starting or interrupting
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F33/00—Control of operations performed in washing machines or washer-dryers
- D06F33/30—Control of washing machines characterised by the purpose or target of the control
- D06F33/32—Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry
- D06F33/36—Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry of washing
Definitions
- the present invention relates to a washing machine capable of properly performing starting of a motor for a washing machine equipped with a permanent magnet synchronous motor.
- such a washing machine is configured to include: a pulsator for stirring the laundry; a permanent magnet synchronous type motor that drives the pulsator; and controlling the start and stop of the rotor of the motor in a sensorless manner Control unit.
- the start may fail.
- Patent Documents 1 and 2 As a solution for solving the failure of starting of the motor, for example, the solutions shown in Patent Documents 1 and 2 are disclosed.
- Patent Document 1 discloses a technique in which rotation is stabilized by a rotor position detecting unit of a position sensor during start-up or low-speed rotation with a large load fluctuation, and shifts to a rotor position detecting unit without using a rotor position detecting unit during high-speed rotation. Sensorless control reduces current distortion caused by fluctuations in the position detecting unit, resulting in low noise.
- Patent Document 2 includes a rotor position detecting circuit that is realized by detecting an induced voltage.
- the induction voltage is detected during the commutation period after the rotor is fixed at the time of starting, thereby appropriately adjusting the energization mode, increasing the motor output torque at the time of startup, and starting at a high speed and stably.
- Patent Document 1 Japanese Laid-Open Patent Publication No. 2007-175135
- Patent Document 2 Japanese Laid-Open Patent Publication No. 2002-252996
- the position of the rotor at the time of stopping is not known in principle. Therefore, when the suction direction of the rotor is not appropriate, a large retreat or forward rotation of the rotor may occur, and the rotor may generate short-time vibration.
- Fig. 13 shows an example in which the rotor R of the motor M constituting the permanent magnet synchronous type is stopped at the phase of (a).
- the magnetic pole appears on the stator side, and the attraction and repulsive force of the magnet of the rotor R causes the rotor R to rotate by about 90° to move to (b). status. If the rotation is synchronized to the synchronous rotation during the rotation and vibration of the rotor R, the rotor R cannot be smoothly rotated with respect to the rotating magnetic field generated between the stator and the stator, and the step-out may occur.
- the positioning time of the rotor R is long, in the washing machine, it is necessary to quickly reverse the pulsator in order to obtain the washing power, and thus the positioning time cannot be set to be long.
- the present invention has been made in view of such a problem, and an object of the present invention is to accurately synchronize the rotation by estimating the phase of the rotor when the motor is stopped and estimating the position of the rotor without using the position detecting unit of the rotor.
- the mode starts the motor and enables the transfer to control without sensor control.
- the present invention has adopted the following scheme.
- the washing machine of the present invention is characterized by comprising: a pulsator, a stirring washing material; a permanent magnet synchronous type motor that drives the pulsator; and a control unit that controls the starting and stopping of the rotor of the motor in a sensorless manner
- the control unit includes: a short-circuit brake control unit that performs short-circuit braking at the time of stop; and a stop phase estimation unit that estimates a phase at which the rotor stops by a phase current before stopping in a phase current flowing through the winding by short-circuit braking; And a storage unit that stores the estimated phase, the control unit picks up the estimated stop phase of the rotor from the storage unit at the time of startup, and generates a current vector as a rotor positioning at the start of the synchronous rotation based on the Current vector.
- the stop phase estimating unit performs a short circuit for a vector of a phase current flowing through the winding by short-circuit braking on a plurality of sectors on the stationary coordinate classified according to the magnitude relationship of the phase currents. The judgment of which sector the moving current vector belongs to before stopping.
- the stop phase estimating unit takes a phase phase angle of the determined sector as a phase angle of a short-circuit braking current vector existing in the vicinity of the q-axis of the rotating coordinate system, and adds or subtracts the phase angle Specify the angle to estimate the phase angle of the d-axis.
- the stop phase estimating unit adds an angle obtained by adding a correction angle derived from a predetermined phase relationship based on a phase current to a reference phase angle of the estimated sector as a short circuit existing in the vicinity of the q-axis.
- the phase angle of the moving current vector is added and subtracted by a predetermined angle to estimate the phase angle of the d-axis.
- the phase of the rotor at the time of stopping can be estimated by the stop phase estimating unit, and the estimated phase can be stored by the storage unit. Therefore, since the position of the rotor can be known to some extent by calling the phase of the rotor from the storage unit, the detection means for detecting the position of the rotor can be omitted, and the product cost can be reduced. In addition, since the rotor can be reliably positioned by calling the phase of the rotor, and the rotor positioning time can be shortened, the power consumption of the motor for each inversion can be reduced.
- the orientation of the short-circuit braking current vector can be easily grasped.
- the phase angle of the d-axis can be estimated without performing special calculation.
- the angle obtained by adding the correction angle derived from the reference phase predetermined relationship based on the reference phase angle of the sector is taken as the phase angle of the q-axis, it is possible to perform a relatively simple operation.
- the phase angle of the d-axis with high accuracy is estimated.
- the phase of the rotor is called from the storage unit and the positioning current vector at the start of the synchronous rotation is generated, it is possible to appropriately prevent the large-scale retreat, the forward rotation, and the vibration of the rotor at the start of the synchronous rotation.
- Fig. 1 is a perspective view showing an appearance of a washing machine according to a first embodiment of the present invention.
- Fig. 2 is a longitudinal sectional view showing a schematic configuration of a washing machine.
- FIG. 3 is a circuit diagram showing a system configuration of a motor control system which is a premise of a phase estimation by short-circuit braking according to the present embodiment.
- Fig. 4 is a block diagram showing functions of phase estimation by short-circuit braking and activation based on the system in the present embodiment.
- Fig. 5 is a view showing a relationship between a positioning current vector and a stationary coordinate system.
- Fig. 6 is a view showing a vector locus of a short-circuit braking current vector from the application of short-circuit braking to the stop of the rotor.
- Fig. 7 is a view showing a relationship between d-q coordinates before stopping and a short-circuit braking current vector.
- Fig. 8 is a view showing a relationship between a short-circuit braking current vector and a d-axis.
- Fig. 9 is a view showing the relationship between the magnitude and phase of the short-circuit braking current vector.
- FIG. 10 is a flowchart showing a processing procedure of phase estimation in the present embodiment.
- FIG. 11 is a flowchart showing a part of the processing procedure of the phase estimation according to the second embodiment of the present invention.
- FIG. 12 is a view showing a configuration of a short-circuit brake control unit according to a modification of the present invention.
- Fig. 13 is a view showing a relationship between a rotor phase and a failure state at the time of synchronous rotation start.
- FIG. 1 is a perspective view showing an appearance of a vertical washing machine (hereinafter referred to as "washing machine") 1 according to an embodiment of the present invention.
- FIG. 2 is a vertical cross-sectional view showing a schematic configuration of the washing machine 1 of the present embodiment.
- the washing machine 1 includes a washing machine body 11, an outer tub 12, a dewatering tub (washing tub) 13, an input unit 14, a pulsator (stirring blade) 15, a drive unit 16, and a control unit C (see Fig. 3).
- a washing machine body 11 an outer tub 12, a dewatering tub (washing tub) 13, an input unit 14, a pulsator (stirring blade) 15, a drive unit 16, and a control unit C (see Fig. 3).
- the start button not shown
- the pulsator pulsator
- the washing machine main body 11 has a substantially rectangular parallelepiped shape, and has an opening 11b for loading/unloading laundry (clothing) into the dewatering tub 13 and an opening and closing lid 11c that can open and close the opening 11b on the upper surface 11a, which can be opened and closed by opening and closing the lid 11c, the laundry is put into/out of the dewatering tub 13 via the opening 11b. Further, the input unit 14 is formed on the upper surface 11a of the washing machine body 11.
- the outer tub 12 shown in Fig. 2 is a bottomed cylindrical member that is disposed inside the washing machine main body 11 and that can store water.
- the dewatering tub 13 as a washing tub is a bottomed cylindrical member that is disposed coaxially with the outer tub 12 and that is rotatably supported by the outer tub 12 .
- the dewatering tub 13 has a smaller diameter than the outer tub 12, and its wall surface 13a has a plurality of water-passing holes (not shown).
- the pulsator 15 is rotatably disposed in the center of the bottom portion 13b of the dewatering tub 13, and agitates the water stored in the tub 12 to generate a water flow.
- the drive unit 16 includes a motor M and a clutch 16b.
- the motor M of the present embodiment uses a motor called a permanent magnet type synchronous motor (so-called "PM motor").
- the motor M rotates the dewatering tub 13 by rotating the drive shaft m that extends toward the bottom portion 13a of the dewatering tub 13. Further, the motor M can also apply a torque to the pulsator 15 via the switching clutch 16b to rotate the pulsator 15. Therefore, the washing machine 1 can mainly reverse only the pulsator 15 during a predetermined rotation ON period and OFF rotation period in the washing process and the rinsing process, and can dewater the bucket 13 in the spin-drying process.
- the pulsator 15 is integrally rotated at one speed in one direction.
- the rotation speed of the pulsator 15 at the time of forward and reverse rotation is set to, for example, 900 rpm.
- the control unit C is configured to include a short-circuit brake control unit 61 that performs short-circuit braking at the time of stop, and a phase current that flows through the winding by short-circuit braking.
- the stop phase estimating unit 7 that estimates the phase of the rotor R at the time of stopping the phase current before the stop; and the storage unit 8 that stores the phase of the rotor R at the estimated stop, and the estimated value is obtained from the storage unit 8 at the time of startup.
- the stop phase of the rotor R is based on this, and a current vector V1 (hereinafter referred to as "positioning current vector") for positioning the rotor R is generated at the start of synchronous rotation.
- the phase of the rotor R at the time of stopping can be estimated without using the rotor position detecting device, and stored in the storage unit 8. Therefore, if the phase of the stored rotor is used, the positioning of the rotor R at the start of the synchronous rotation can be reliably performed. Therefore, it is possible to appropriately prevent the rotor R from greatly retreating, advancing the rotation, and vibrating, and to start the rotor quickly and reliably. R. In addition, the rotor positioning time can be shortened, and the power consumption of the motor for each inversion can be reduced.
- the short-circuit braking means that the U/V/W winding is short-circuited by a switching element such as an IGBT, and the rotational energy is converted into Joule heat of the motor to perform braking.
- the configuration of the control unit C that performs sensorless control will be described first.
- the motor drive control unit 6 of the control unit C is configured to forcibly rotate the rotor R to a certain speed in a synchronous rotation manner in the synchronous rotation control unit 62, and thereafter, without a sensor/ The vector control unit 63 shifts to vector control.
- the control unit C includes a torque command generation unit 2 that generates a torque command based on a deviation between the motor rotation speed command value ⁇ *m and the motor rotation speed estimation value ⁇ m provided as a control amount; and a motor drive control unit. 3.
- the torque command generating unit 2 and the motor drive control unit 3 are constituent elements of a general-purpose inverter controller. Further, it is set here to generate motor voltages Vq and Vd equal to the motor voltage command values V*q and V*d.
- the rotation speed command ⁇ *m supplied from the microcomputer or the like that controls the overall operation of the washing machine 1 and the estimated speed value ⁇ m estimated based on the motor drive state are input to the subtracter 21.
- the differential output of the subtractor 21 is input to the speed controller 22.
- the speed controller 22 In order to control the rotation speed of the motor M to the target value, the speed controller 22 generates a torque command T* based on the difference between the rotation speed command ⁇ *m and the estimated speed ⁇ m by PI control.
- the torque command T* generated by the torque command generating unit 22 is input to the motor drive control unit 3.
- the motor drive control unit 3 performs voltage drive while switching the switches SW1 and SW2 in the rotational coordinate system (d, q) of the magnetic pole that rotates in accordance with the rotation of the rotor R of the synchronous motor M.
- Id* predetermined current value, for example, 3 (A).
- the q-axis current value Iq outputted from the second converter 51 to be described later, which is converted by [uvw ⁇ dq], is supplied as a subtraction value to the subtractor 32, and the d-axis current value Iq output from the second converter 51 is supplied.
- the subtraction value is supplied to the subtractor 35.
- the q-axis current controller 33 generates a q-axis voltage command value Vq* by performing PI control based on the difference between the q-axis current command value Iq* and the q-axis current value Iq.
- the d-axis current controller 36 generates the d-axis voltage command value Vd* by performing PI control based on the difference between the d-axis current command value Id* and the q-axis current value Iq. Then, it is input to the first converter 37 that performs (d-q ⁇ u-v-w) conversion in order to convert to a three-phase voltage command.
- the first converter 37 converts the q, d voltage command values Vq*, Vd* into three-phase voltage command values Vu, Vv, Vw based on the estimated rotor rotational phase angle ⁇ e by the given rotor rotational phase angle ⁇ e .
- the motor M is energized via the motor excitation circuit 38.
- control loop 5 detects the phase currents Iu, Iv, and Iw through the phase current detecting unit 50 provided in the motor exciting circuit 38, and inputs them to the second converter 51 that performs (uvw ⁇ dq) conversion.
- the second converter 51 converts the phase current value into q, d-axis current values Id, Iq by being given the estimated rotor rotation phase angle ⁇ e .
- These q, d-axis current values are input to the subtractors 35, 32, respectively.
- the estimated value of the rotor phase is switched by the switch SW3.
- the switch SW3 is connected to the B side during sensorless/vector control, detects the motor current/voltage, and estimates the motor speed by the speed estimator 4. This is integrated as the rotor phase ⁇ .
- the switch SW3 is connected to the A side, and the integral value of the axial speed command ⁇ *m is added to the integral initial value of the storage unit 8 to obtain the phase ⁇ , and the ⁇ obtained here is forcibly performed. Synchronous rotation.
- the initial phase is the integral initial value.
- the speed estimator 4 is composed of a rotor phase error estimator (not shown) and a PLL (Phase Locked Loop) controller, and is generally known.
- the positioning current vector V1 can be placed in the vicinity of the d-axis of the rotating coordinate system, the reverse/forward rotation of the rotor R at the time of starting is hardly generated. That is, as shown in FIG. 5(a), if the positioning current vector V1 is appropriately set for the phase away from the d-axis, as shown in FIG. 5(b), torque is generated by the q-axis current component Iq, which may result in The dq axis of the rotor R begins to rotate. As shown in Fig. 5(c), the end position of the rotation is made to be a phase extremely close to the d-axis.
- the positioning current vector V1 is disposed near the q-axis from the beginning as shown in Fig. 5(c)
- the torque in the rotational direction can be prevented from being generated, so that the rotor R can be rotated without being rotated during positioning. .
- the stop phase estimating unit 7 shown in FIG. 4 estimates the d-axis phase angle ⁇ 0 which is the stop phase of the rotor R.
- the stop phase estimating unit 7 is configured to include a pre-stop detecting unit 71, a UVW comparing unit 72, and a phase determining unit 73.
- the pre-stop detecting unit 71 monitors the phase current and detects whether the phase current has reached a predetermined current value as a phase current value before the stop of the rotor R.
- the UVW comparing unit 72 pairs the phase currents of the Iu, Iv, and Iw in the plurality of sectors 1 to 6 on the stationary coordinates ( ⁇ , ⁇ ) classified by the magnitude relationship of the phase currents, and the phase currents flowing through the windings by short-circuit braking.
- the vector (hereinafter referred to as "short-circuit brake current vector V2") is compared with the determination of which sector belongs to the time point when the detection unit 71 detects the predetermined current value before the stop, that is, before the stop.
- the phase determination unit 73 determines the stop phase based on the comparison result of the UVW comparison unit 72.
- the determination as to which sector the short-circuit brake current vector V2 belongs to by the magnitude relationship of the phase currents makes it possible to easily grasp the direction of the short-circuit brake current vector V2.
- the short-circuit brake is in the short-circuit state of the motor winding, that is, the state where the applied voltage of the motor is 0, therefore,
- the short-circuit braking current vector V2 at a high speed of 900 (rpm) is located close to the d-axis of the third quadrant.
- the short-circuit braking current vector V2 turns to the left while decreasing the norm while decreasing the rotation speed, and reaches the origin when the motor M stops. Therefore, it is considered that the short-circuit braking current vector V2 before the stop of the motor M is located near the negative side of the q-axis.
- the short-circuit braking current vector V2 at a high speed of 900 (rpm) is from the vicinity of the d-axis of the third quadrant, and a vector trajectory symmetrically above and below is drawn. , turn right to the origin. It is considered that the short-circuit braking current vector V2 before the stop of the motor M is located near the positive side of the q-axis.
- Fig. 7 the ⁇ - ⁇ stationary coordinates and the dq rotation coordinates are shown, and here, the short-circuit braking current vector V2 before the stop is shown.
- the short-circuit braking current vector V2 at the time of positive rotation exists in the third quadrant of the dq coordinate system.
- the short-circuit braking current vector V2 decreases as ⁇ 2n decreases, and the length of the vector becomes shorter, gradually approaching the negative side of the q-axis.
- the short-circuit brake current vector V2 belongs to the fourth quadrant and the sector 5.
- the d-q coordinate in the negative rotation is rotated by - ⁇ 2n, and the short-circuit braking current vector V2 exists in the second quadrant of the d-q coordinate.
- the short-circuit braking current vector V2 decreases with ⁇ 2n, the length of the vector becomes shorter and gradually approaches the positive side of the q-axis.
- the short-circuit braking current vector V2 belongs to the second quadrant and sector 3.
- the sector in which the short-circuit braking current vector V2 is terminated is determined by investigating the magnitude relationship of the currents Iu, Iv, and Iw of the respective phases according to Table 1.
- the UVW comparing unit 72 acquires the amplitude values of Iu, Iv, and Iw, compares the large, medium, and small relationships, and determines which sector the short-circuit braking current vector V2 exists in based on the result.
- the phase determining unit 73 first holds the data of Table 1, and determines the sector center phase angle ⁇ M from the sector estimated by the UVW comparing unit 72 as the phase angle ⁇ ⁇ of the short-circuit braking current vector V2.
- the center determined by the sector as a phase angle ⁇ ⁇ short brake current vector phase angle ⁇ ⁇ V2, and can no special phase angle can be estimated by calculating the d-axis.
- the pre-stop detecting unit 71 of the present embodiment detects that the phase current before the stop of the rotor R is equal to or lower than a predetermined value (for example, 0.9 (A)), and at this time, the UVW comparing unit 72 and the phase determining unit 73 are operated. .
- a predetermined value for example, 0.9 (A)
- the pre-stop detecting unit 71 first obtains the amplitude of the current vector by the following equation.
- phase angle from the q-axis to the current vector can be obtained by the following equation.
- Figure 9 shows the magnitude and phase of the short circuit braking current vector V2.
- phase current amplitude ia 0.9 (A)
- the phase difference between the d-axis and the current vector is approximately 99°.
- the rotation speed of about 13 (rpm) can be regarded as the near stop.
- the UVW comparing unit 72 obtains the sector in which the short-circuit braking current vector V2 is located by the magnitude relationship of Iu, Iv, and Iw at the time point when the short-circuit braking phase current amplitude becomes a threshold value (for example, 0.9 (A)).
- a threshold value for example, 0.9 (A)
- the phase determining unit 73 sets the center phase angle ⁇ M of the obtained sector as the phase angle ⁇ ⁇ of the short-circuit current vector V2 at the time of stopping, and advances the predetermined angle ⁇ x from the direction of rotation as shown in FIG. 8 .
- the angle at this position is the d-axis phase angle ⁇ 0 indicating the stop phase of the rotor based on the ⁇ -axis.
- ⁇ 0 ⁇ M ⁇ ⁇ x
- the predetermined angle ⁇ x corresponds to a value obtained by adding an error angle and 90° as an angle between d-q axes.
- the error angle includes a phase difference between the short-circuit braking current vector V2 and the q-axis before stopping, and the like.
- FIG. 10 is a flowchart showing an outline of a procedure performed by the control unit C using the short-circuit brake control unit 61, the stop phase estimating unit 7, and the storage unit 8.
- step S2 Determine if the rotation starts. If YES, the process moves to step S2, and if NO, the process returns to step S1.
- the receiving rotation period ends to make the short-circuit brake work.
- Short-circuit braking is performed in FIG. 3 by connecting switches SW4, SW5 to 0V.
- Step S6 Determine if Im ⁇ ref. Ref is a current value determined to be almost stopped by the rotation. If YES, the process goes to step S6, and if NO, it returns to step S3.
- the sector is judged by the large, medium, and small relationship of Iu, Iv, and Iw.
- the phase currents Iu, Iv, and Iw are detected by the motor M.
- the d phase stop phase angle ⁇ 0 is calculated from the center phase ⁇ M of the sector of Table 1, and is stored as the integral initial value in the storage unit 8 of FIGS. 3 and 4, and returns to the start.
- the positioning current vector V1 is given an initial value in the direction of FIG. 5(c) close to the d-axis, and the synchronous rotation can be smoothly started from this state.
- the measurement of the center phase ⁇ M of the short-circuit braking current vector V2 is a sector unit. Therefore, the phase error is generated up to ⁇ 30°.
- the stop phase estimating unit 7 of the present embodiment is configured to add the center phase angle ⁇ M of the estimated sector as a reference phase angle, and to derive the reference phase angle ⁇ M from a predetermined relationship based on the phase current.
- the angle obtained by correcting the angle ⁇ is used as the phase angle ⁇ ⁇ of the positioning current vector V1, and the phase angle ⁇ 0 of the d-axis is estimated by adding or subtracting the phase angle ⁇ ⁇ by the predetermined angle ⁇ x.
- phase angle ⁇ 0 of the d-axis with high precision can be estimated by a relatively simple calculation.
- Steps S6a to S6d of Fig. 11 indicate the order of the phase determination and storage unit applied instead of steps S6 and S7 of the above embodiment.
- the correction angle ⁇ ⁇ is calculated from the following equation according to ⁇ ⁇ and ⁇ .
- the integral initial value ⁇ 0 is stored in the storage unit 8 and returns to the start.
- the phase ⁇ ⁇ of the short-circuit current vector V2 closer to the q-axis phase can be obtained.
- 332.6° obtained by advancing the 232.6° as 100° of the predetermined angle is determined as the phase angle ⁇ 0 of the d-axis. Therefore, the positioning current vector V1 is given a direction substantially coincident with the d-axis, and the synchronous rotation at the time of starting can be started more smoothly from this state.
- the short-circuit braking is performed by setting the dq-axis voltage to 0 (V) as described above, it is also possible to pass the short circuit constituting FIG. 12 regardless of the dq-axis voltage.
- the switch drive circuit of the brake control unit 161 (1) all of the high-side switching elements SW (H) are turned off (OFF), or (2) all of the low-side switching elements SW (L) are turned off, so that Three-phase U, V, W short circuit.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Control Of Washing Machine And Dryer (AREA)
Abstract
通过推定转子(R)停止时的相位,由此即使不另外使用位置检测单元,也能实现以顺畅的同步旋转的方式启动并转移至无传感器控制的控制。具备:波轮(15),搅拌洗涤物;永磁同步型的电机(M),正反驱动波轮(15);以及控制单元(C)以无传感器的方式对该电机(M)的转子(R)的启动和停止进行控制,控制单元(C)具备:短路制动控制部(61),停止时进行短路制动;停止相位推定部(7),由通过短路制动在绕组流通的相电流中的停止前的相电流推定出转子(R)停止的相位;以及存储部(8),存储所推定的停止相位,所述控制单元(C)在启动时从存储部(8)调取所推定的转子(R)的停止相位,并基于此在同步旋转开始时生成作为进行转子(R)定位的电流矢量的定位电流矢量(V1)。
Description
本发明涉及一种洗衣机,对于具备永磁同步电机的洗衣机,能恰当地执行电机的启动。
通常,这种洗衣机构成为具备:搅拌洗涤物的波轮;驱动所述波轮的永磁同步型的电机;以及以无传感器(sensor less)的方式对该电机的转子的启动和停止进行控制的控制单元。
但是,在电机启动时如果永磁同步电机的转子位置不明确,则启动可能会失败。
作为解决电机的启动不良的方案,公开了例如专利文献1、2所示的方案。
在专利文献1中,公开了以下的技术:在负荷变动大的启动或者低速旋转时,通过利用位置传感器的转子位置检测单元来使旋转稳定,在高速旋转时转移至不使用转子位置检测单元的无传感器控制,使起因于位置检测单元的波动导致的电流失真减少,实现低噪音化。
此外专利文献2具备由检测感应电压实现的转子位置检测电路。构成为:在启动时的转子固定后的换流期间检测出感应电压,由此来适当地调节通电模式,增大启动时的电机输出转矩,高速、稳定地启动。
现有技术文献
专利文献
专利文献1:日本特开2007-175135号公报
专利文献2:日本特开2002-252996号公报
发明内容
发明所要解决的问题
但是,存在如下问题:为了检测出转子的位置均需要某种位置检测单元,而成为成本增加的主要原因。
另一方面,为了通过不使用转子的位置检测单元的无传感器控制恰当地执行电机的启动,需要为了进行转子的定位而在三相绕组适当地流通电流来通过磁力将转子朝适当的方向引向定子,并利用在与定子之间产生的旋转磁场开始转子的同步旋转。
为此,必须解决以下问题。由于在无传感器控制中,原理上不清楚停止时的转子的位置,因此在转子的吸引方向不恰当的情况下,有时会产生转子的大幅度的后退或前进旋转,转子产生短时振动。
图13表示其中一个例子,设定为:构成永磁同步型的电机M的转子R在(a)的相位停止。在这种状态下,如果流通如图所示的电流Iu、Iv、Iw,则在定子侧出现磁极,通过转子R的磁铁的引力和斥力使得转子R旋转约90°,移至(b)的状态。如果在该转子R的旋转、振动的过程中转移至同步旋转,则转子R相对于在与定子之间产生的旋转磁场不能顺利地同步旋转,而有时会发生失步。
虽然如果转子R的定位时间长,则难以产生这样的问题,但是对于洗衣机,为了获得清洗力而需要迅速地使波轮反转,因此无法将定位时间设定得很长。
本发明是着眼于这样的问题而完成的,其目的在于,通过推定电机停止时的转子的相位并推定转子的位置,来即使不另外使用转子的位置检测单元,也能以顺畅地同步旋转的方式启动电机并实现转移至无传感器控制的控制。
用于解决问题的方案
本发明为了实现该目的,采取了如下的方案。
本发明的洗衣机的特征在于,具备:波轮,搅拌洗涤物;永磁同步型的电机,驱动所述波轮;以及控制单元,以无传感器的方式对该电机的转子的启动和停止进行控制,所述控制单元具备:短路制动控制部,停止时进行短路制动;停止相位推定部,由通过短路制动在绕组流通的相电流中的停止前的相电流推定出转子停止的相位;以及存储部,存储所推定的相位,所述控制单元在启动时从所述存储部调取所推定的转子的停止相位,并基于此在同步旋转开始时生成作为进行转子定位的电流矢量的定位电流矢量。
理想的是:这种情况下,所述停止相位推定部对于根据相电流的大小关系分类的静止坐标上的多个扇区,进行作为通过短路制动在绕组流通的相电流的矢量的短路制动电流矢量在停止前属于哪个扇区的判断。
特别地,理想的是:所述停止相位推定部将所判断的扇区的中心相位角作为存在于旋转坐标系的q轴附近的短路制动电流矢量的相位角,并对该相位角加减规定角度来推定d轴的相位角。
或者,理想的是:所述停止相位推定部将对所推定的扇区的基准相位角加上由基于相电流预先确定的对应关系导出的校正角得到的角度作为存在于q轴附近的短路制动电流矢量的相位角,并对该相位角加减规定角度来推定d轴的相位角。
发明效果
根据本发明,在波轮的反转动作中,能通过停止相位推定部推定停止时的转子相位,并由存储部来存储所推定的相位。因此,由于通过从存储部调出转子的相位而可在一定程度上知道转子的位置,因此可以不另外设置检测转子的位置的检测手段,能降低产品成本。此外由于通过调出转子的相位,能可靠地定位转子,并且能缩短转子定位时间,因此能减轻每次反转的电机功耗。
此外,根据本发明,由于通过相电流的大小关系进行短路制动电流矢量属于哪个扇区的判断,因此能简单地掌握短路制动电流矢量的朝向。
此外,根据本发明,由于将所判定的扇区的中心相位角作为旋转坐标系的q轴的相位角,因此无需进行特别的运算就能推定d轴的相位角。
此外,根据本发明,由于将在所推定的扇区的基准相位角加上由基于相电流预先确定的对应关系导出的校正角得到的角度作为q轴的相位角,因此能通过比较简单的运算,推定出精度高的d轴的相位角。
此外,根据本发明,由于从存储部调取转子的相位而生成同步旋转开始时的定位电流矢量,因此能适当地防止同步旋转开始时的转子的大幅度的后退、前进旋转、振动。
图1是表示本发明的第一实施方式的洗衣机的外观的立体图。
图2是表示洗衣机的概略构成的纵剖图。
图3是表示本实施方式的作为由短路制动实现的相位推定的前提构成的电机控制体系的系统构成的电路图。
图4是表示本实施方式的系统中的由短路制动实现的相位推定和基于其的 启动的功能的框图。
图5是表示定位电流矢量与静止坐标系的关系的图。
图6是表示从施加短路制动到转子停止为止的短路制动电流矢量的矢量轨跡的图。
图7是表示停止前的d-q坐标和短路制动电流矢量的关系的图。
图8是表示短路制动电流矢量与d轴的关系的图。
图9是表示短路制动电流矢量的大小与相位的关系的图。
图10是表示本实施方式的相位推定的处理顺序的流程图。
图11是表示本发明的第二实施方式的相位推定的处理顺序的一部分的流程图。
图12是表示本发明的变形例的短路制动控制部的构成的图。
图13是表示同步旋转启动时的转子相位与产生不良状况的关系的图。
以下,参照附图对本发明的实施方式进行说明。
<第一实施方式>
图1是表示本发明的一实施方式的立式洗衣机(以下称为“洗衣机”。)1的外观的立体图。此外,图2是表示本实施方式的洗衣机1的概略构成的纵剖图。
该洗衣机1具备:洗衣机主体11、外桶12、脱水桶(洗涤桶)13、输入部14、波轮(搅拌叶片)15、驱动部16、控制单元C(参照图3)。对于这样的洗衣机1,在按压位于输入部14的、以全自动进行洗涤的未图示的开始键时,自动判断脱水桶13内存在的洗涤物的量以作为负荷量,并基于负荷量自动确定洗涤工序以及漂洗工序中贮存于外桶12的水量,通过正反驱动波轮15进行洗涤动作。
洗衣机主体11为大致长方体形状,在上表面11a具有用于向脱水桶13投入/取出洗涤物(衣服)的开口11b和可开闭该开口11b的开闭盖11c,是可以通过打开开闭盖11c,经由开口11b将洗涤物投入/取出脱水桶13的构成。此外,在这样的洗衣机主体11的上表面11a,形成有所述输入部14。
图2所示的外桶12是配置于洗衣机主体11的内部的、可储存水的有底筒状的构件。
作为洗涤桶的脱水桶13是与外桶12同轴地配置于外桶12的内部,并且通过外桶12旋转自如地被支承的有底筒状的构件。脱水桶13的直径比外桶12小,其壁面13a具有许多未图示的通水孔。
波轮15旋转自如地配置于脱水桶13的底部13b中央,搅拌储存于外桶12的水而产生水流。
驱动部16包括电机M和离合器16b。本实施方式的电机M使用一种被称为永磁型同步电机(所谓的“PM电机”)的电机。电机M通过使朝脱水桶13的底部13a延伸出的驱动轴m旋转来使脱水桶13旋转。此外,电机M还能通过切换离合器16b对波轮15赋予转矩,来使波轮15旋转。因此,洗衣机1能在洗涤工序以及漂洗工序中主要仅使波轮15在预先确定的旋转接通(ON)期间和旋转断开(OFF)期间正反转,在脱水工序中能使脱水桶13和波轮15一体地以高速向一个方向旋转。正反转时的波轮15的转速设定为例如900rpm。
如上所述,为了使停止后的转子R以无传感器的方式恰当地启动,需要在三相绕组适当地流通电流而通过磁力将转子R引向适当的方向,顺利地开始同步旋转。
因此,在本实施方式中,如图4所示,控制单元C构成为,包括:在停止时进行短路制动的短路制动控制部61;由通过短路制动在绕组流通的相电流中的停止前的相电流推定出停止时的转子R的相位的停止相位推定部7;以及存储所推定的停止时的转子R的相位的存储部8,在启动时从存储部8调取所推定的转子R的停止相位,基于此在同步旋转开始时生成进行转子R的定位的电流矢量V1(以下称为“定位电流矢量”)。
通过这样构成,在波轮15的反转动作中,不另外使用转子位置检测装置就能推定停止时的转子R的相位,并存储于存储部8。因此,如果使用所存储的转子的相位,就能可靠地进行同步旋转开始时的转子R的定位,因此可以恰当地防止转子R的大幅度的后退、前进旋转、振动,迅速、可靠地启动转子R。此外,能缩短转子定位时间,能减轻每次反转的电机功耗。
此处短路制动是指,通过IGBT等开关元件将U/V/W绕组短路,将旋转能转换为电机的焦耳热来进行制动。
以下,首先对进行无传感器控制的控制单元C的构成进行说明。从电机停止开始启动时,在转子停止或者极低速状态下,电机M的感应电压过小,因此 无法实现无传感器/矢量控制。因此,如图4所示,控制单元C的电机驱动控制部6构成为,在同步旋转控制部62中以同步旋转的方式强制性地使转子R旋转至一定程度的速度,之后在无传感器/矢量控制部63中转移至矢量控制。
图3所示,控制单元C具备:转矩指令生成部2,基于作为控制量提供的电机旋转速度指令值ω*m与电机旋转速度推定值ω
m的偏差生成转矩指令;电机驱动控制部3,将驱动时的电机电流Iq(Id)与对应于转矩指令值T*的电流指令值Iq*(Id*)的偏差转换为电机电压指令值V*q、V*d来驱动电机M;以及作为速度推定部的速度推定器4,使用电机电流Iq、Id以及电机电压指令值V*q、V*d的电机电压Vq、Vd推定出电机旋转速度ω
m,该速度推定器4构成于控制环路5内。转矩指令生成部2和电机驱动控制部3是一般所说的变频控制器(inverter controller)的构成要素。此外,这里设定为产生与电机电压指令值V*q、V*d相等的电机电压Vq、Vd。
转矩指令生成部2中,首先将由控制洗衣机1的整体运转的微型计算机等提供的旋转速度指令ω*m和根据电机驱动状态推定出的推定速度值ω
m输入减法器21。减法器21的差分输出输入速度控制器22。
速度控制器22为了将电机M的转速控制在目标值,基于旋转速度指令ω*m与推定速度ω
m的差分量并通过PI控制生成转矩指令T*。
由该转矩指令生成部22生成的转矩指令T*输入电机驱动控制部3。
电机驱动控制部3在随着同步电机M的转子R的旋转进行旋转的磁极的旋转坐标系(d、q)下,一边切换开关SW1、SW2一边进行电压驱动。
对于开关SW2,在无传感器/矢量控制时连接于B侧,转矩指令值T*通过在增益乘法部31乘以转矩系数1/K
E而成为q轴电流指令值Iq*,经由减法器32输入至q轴电流控制器33。在同步旋转时开关SW2连接于A侧而成为Iq*=0。对于开关SW1,在无传感器/矢量控制时连接于B侧,从d轴电流指令部34输出指令值Id*=0,经由减法器35输入至d轴电流控制器36。在同步旋转时开关SW1连接于A侧而成为Id*=规定电流值,例如3(A)。从进行[u-v-w→d-q]转换的后述的第二转换器51输出的q轴电流值Iq作为减法运算值被提供给减法器32,从所述第二转换器51输出的d轴电流值Iq作为减法运算值被提供给减法器35。
q轴电流控制器33通过基于q轴电流指令值Iq*与q轴电流值Iq的差分进 行PI控制,来生成q轴电压指令值Vq*。d轴电流控制器36通过基于d轴电流指令值Id*与q轴电流值Iq的差分进行PI控制,来生成d轴电压指令值Vd*。然后,为了转换为三相电压指令而输入至进行(d-q→u-v-w)转换的第一转换器37。
通过开关SW4、SW5对进行电压驱动控制还是进行短路制动控制进行切换。开关SW4通常连接于d轴电压指令值Vd*侧(AB侧),但在停止转子R时通过短路制动控制切换至短路制动指令Vd=0侧(C侧)。开关SW5通常连接于q轴电压指令值Vq*侧(AB侧),但在停止转子R时通过短路制动控制切换至短路制动指令Vq=0侧(C侧)。
第一转换器37通过被赋予推定转子旋转相位角θ
e,基于该推定转子旋转相位角θ
e将q、d电压指令值Vq*、Vd*转换为三相电压指令值Vu、Vv、Vw,经由电机励磁电路38对电机M通电。
另一方面,控制环路5通过设置于电机励磁电路38的相电流检测部50检测出相电流Iu、Iv、Iw,并将其输入至进行(u-v-w→d-q)转换的第二转换器51。第二转换器51通过被赋予推定转子旋转相位角θ
e,将相电流值转换为q、d轴电流值Id、Iq。这些q、d轴电流值分别被输入至所述减法器35、32。
需要说明的是,转子相位的推定值通过开关SW3被切换。该开关SW3在无传感器/矢量控制时连接于B侧,检测出电机电流/电压,通过速度推定器4推定电机速度。将此进行积分以作为转子相位θ。另一方面,在启动初始的同步旋转时,开关SW3连接于A侧,在存储部8的积分初始值加上轴速度指令ω*m的积分值得到相位θ,通过这里得到的θ强制地进行同步旋转。初始相位为积分初始值。
速度推定器4由未图示的转子相位误差推定器和PLL(Phase Locked Loop:锁相环)控制器构成,是一般广为人知的构件。
以上述结构为前提,对转子停止/再启动时的相位推定、适用的算法进行说明。
如果能将定位电流矢量V1配置于旋转坐标系的d轴附近,则基本不会产生启动时的转子R的后退/前进旋转。即,如图5(a)所示,如果对远离d轴的相位适当地设定定位电流矢量V1,如图5(b)所示,则由q轴电流成分Iq而产生转矩,会导致转子R的d-q轴开始旋转。如图5(c)所示使旋转的结束位置 成为极其靠近d轴的相位。
因此,如果能从最初开始就如图5(c)所示,在q轴附近配置定位电流矢量V1,则能防止产生旋转方向的转矩,因此在定位时转子R能不旋转而进入同步旋转。
因此,在本实施方式中,在图4所示的停止相位推定部7推定作为转子R的停止相位的d轴相位角θ
0。停止相位推定部7构成为,包括:停止前检测部71、UVW比较部72以及相位决定部73。停止前检测部71监测相电流,检测相电流是否达到作为转子R的停止前的相电流值预先确定的电流值。UVW比较部72对于通过相电流的大小关系分类的静止坐标(α、β)上的多个扇区1~6,按Iu、Iv、Iw的大小关系对通过短路制动在绕组流通的相电流的矢量(以下,称为“短路制动电流矢量V2”。)在停止前、即在停止前检测部71检测出预先确定的电流值的时间点而言属于哪个扇区的判断进行比较。相位决定部73基于UVW比较部72的比较结果来确定停止相位。
如此一来,通过相电流的大小关系进行短路制动电流矢量V2属于哪个扇区的判断,从而能简单地掌握短路制动电流矢量V2的朝向。
以下,对为此的转子R的停止前的d轴相位角的推定算法进行说明。这里将电角速度作为ω
2n进行说明。
永磁同步电机的电压方程式在一般的PM电机模型中,为:
数1
R:绕组电阻、L
d,L
q:电感、Φ:磁链 [Wb]、ω
2n:电角速度[rad/s] p:微分算符 v
d:d轴电压[V],v
q:q轴电压[V] i
d:d轴电流[A],i
q:q轴电流[A]
。
因为短路制动处于电机绕组短路状态,即电机施加电压为0的状态,因此,
数2
v
d=v
q=0
在短路制动时,认为d-q电流不会急剧变化,因此微分项(p的项)也为0,
数3
由此,得到下面的Iq、Id。
数4
即,在短路制动时,可知Id、Iq通过旋转速度ω
2n进行变化。
根据上述式子,在图6中示出旋转速度通过短路制动从±900(rpm)变化至0(rpm)的情况下的电流矢量轨跡。但是,以R=2.2(Ω)、Ld=25(mH)、Lq=28(mH)、Φ=0.174(Wb)、Ppn=8进行计算。
在转子R正旋转即逆时针旋转的情况下,旋转速度为高速900(rpm)时的短路制动电流矢量V2位于靠近第三象限的d轴的位置。另一方面,短路制动电流矢量V2一边降低旋转速度的同时减少范数(norm)一边向左转,在电机M停止时到达原点。由此,认为电机M停止前的短路制动电流矢量V2位于q轴负侧附近。
在转子R反旋转即顺时针旋转的情况下,旋转速度为高速900(rpm)时的短路制动电流矢量V2从第三象限的d轴附近位置,描画出与上述情况上下对称的矢量轨跡,向右旋靠近原点。并认为电机M停止前的短路制动电流矢量V2位于q轴正侧附近。
由于电机转矩与Iq成比例,因此产生与旋转方向反向的转矩、即制动转矩。
图7中,表示α-β静止坐标和d-q旋转坐标,在此示出停止前的短路制动电流矢量V2。正旋转时的短路制动电流矢量V2存在于d-q坐标系第三象限。短路制动电流矢量V2随着ω
2n降低,矢量的长度变短,逐渐靠近q轴负侧。在停止前的位置为图7(a)的情况下,短路制动电流矢量V2属于第四象限、扇区5。
此外,负旋转中d-q坐标以-ω2n旋转,短路制动电流矢量V2存在于d-q坐标的第二象限。短路制动电流矢量V2随着ω2n降低,矢量的长度变短,逐渐靠近q轴正侧。图7(b)的情况下,短路制动电流矢量V2属于第二象限、扇区3。
短路制动电流矢量V2终止于哪个扇区,能通过根据表1调查各相的电流Iu、Iv、Iw的大小关系来进行判定。UVW比较部72调取Iu、Iv、Iw的振幅值,比较大中小关系,根据其结果确定短路制动电流矢量V2存在于哪个扇区。
表1
扇区 | 距离α轴的角度[°] | 扇区中心相位 | U/V/W大小关系 |
① | 0°~60° | 30 | U>V>W |
② | 60°~120° | 90° | V>U>W |
③ | 120°~180° | 150° | V>W>U |
④ | 180°~240° | 210° | W>V>U |
⑤ | 240°~300° | 270° | W>U>V |
⑥ | 300°~360 | 330° | U>W>V |
由此,如图8所示顺时针旋转90°~100°转到的位置为d轴的位置。相位决定部73首先保持表1的数据,根据UVW比较部72所推断出的扇区来确定扇区中心相位角θ
M,并作为短路制动电流矢量V2的相位角θ
∧。
如此一来,通过将判定出的扇区的中心相位角θ
∧作为短路制动电流矢量V2的相位角θ
∧,能不需要特别的运算就能推定d轴的相位角。
但是,若转子R完全停止,则短路制动的相电流变为0,因此变得无法判别。因此,本实施方式的停止前检测部71检测出转子R停止前的相电流变为某规定值以下(例如0.9(A)),在这个时间点,使UVW比较部72和相位决定部73工作。
停止前检测部71首先通过下述的式子取得电流矢量的振幅。
数5
此外,能通过下述的式子取得从q轴到电流矢量的相位角。
数6
图9示出短路制动电流矢量V2的大小和相位。
对于相电流振幅ia=0.9(A),d轴与电流矢量的相位差大约为99°。另外,此时,旋转速度为约13(rpm)可以看作临近停止。
即,在进行短路制动时的d轴的位置检测时,
(1)UVW比较部72通过短路制动相电流振幅变为阈值(例如0.9(A))的时间点的Iu、Iv、Iw的大小关系,求出短路制动电流矢量V2所在的扇区。
(2)相位决定部73将所求出的扇区的中心相位角θ
M作为停止时的短路电流矢量V2的相位角θ
∧,并从此朝向旋转方向如图8所示前进规定角度θ
x,例如100°相位。在该位置的角度成为表示以α轴为基准的转子的停止相位的d轴相位角θ
0。
θ
0=θ
M±θ
x
该规定角度θx相当于误差角度和作为d-q轴间角度的90°相加得到的值。误差角度中包括停止前的短路制动电流矢量V2与q轴的相位差等。
图10是表示使用短路制动控制部61、停止相位推定部7、存储部8,控制单元C实施的顺序的概要的流程图。当程序开始时,
<步骤S1>
判断旋转是否开始。如果为“是”,则移至步骤S2,如果为“否”,则返回至步骤S1之前。
<步骤S2>
判断旋转接通期间是否结束。在此,为清洗、漂洗时的正转旋转时的接通期间。“是”的情况下,则移至步骤S3,“否”的情况下,则返回至步骤S2之前。
<步骤S3>
接收旋转期间结束,使短路制动工作。短路制动在图3中通过将开关SW4、SW5连接于0V来进行。
<步骤S4>
运算短路制动电流的振幅。虽然短路制动电流的大小如上所述地即使使用Id、Iq也能监视,但是此处使用相电流振幅Im来监视振幅。Im如下式所述。
数7
<步骤S5>
判断是否Im<ref。ref是判断为旋转几乎停止的电流值。如果为“是”,则移至步骤S6,如果为“否”,则返回至步骤S3之前。
<步骤S6>
通过Iu、Iv、Iw的大中小关系来判断扇区。由电机M检测出相电流Iu、Iv、Iw。
<步骤S7>
根据表1的扇区的中心相位θ
M计算出d轴的停止相位角θ
0,作为积分初始值存储于图3、图4的存储部8,返回至开始。
由此,定位电流矢量V1在接近d轴的图5(c)的方向赋予初始值,能从该状态顺利地开始同步旋转。
<第二实施方式>
接着,参照图11对本发明的第二实施方式进行说明。
所述实施方式的算法中,短路制动电流矢量V2的中心相位θ
M的测定为扇区单位。因此,生成相位误差最大±30°。
在实施上,虽然此误差在实现顺利的启动的基础上不会特别造成妨碍,但是通过加入提高d轴的推定精度的算法,能实现更顺利的启动。
本实施方式的停止相位推定部7构成为:将所推定的扇区的中心相位角θ
M作为基准相位角,将对该基准相位角θ
M加上从基于相电流预先确定的对应关系导出的校正角Δθ而得到的角度作为定位电流矢量V1的相位角θ
∧,将该相位角θ
∧加减规定角度θx来推定d轴的相位角θ
0。
通过设定为这样的方式,能通过比较简单的运算推定出精度高的d轴的相位角θ
0。
具体而言,存在通过三角正弦波的三相的瞬时值,近似推定该时间点的相位的表2所示的算法,因此利用这个算法。
对于通过上述实施方式判别出的每个扇区内,若使用表2所示的基于U、V、W的校正角θ,则能使计算结果更接近真实值。
表2
图11的步骤S6a~S6d表示代替上述实施方式的步骤S6、S7而适用的相位确定和存储部的顺序。
<步骤S6a>
根据θ
∧、Δθ通过下式计算出校正角θ
∧。
数8
<步骤S6b>
判断旋转方向是否是负方向。
<步骤S6c、S6d>
在步骤S6c、6b中,将相当于规定角度θ
x=100°的弧度(radian)根据旋转方向进行±,从而求出d轴的停止相位角θ
0。
<步骤S7a>
将积分初始值θ
0存储于存储部8,返回开始。
例如在t=0.8(s)下转子R停止的情况下,在t=0.78(s)下读取下述表3的相电流。
表3
Value[A] | |
I u | -0.5621 |
I v | -0.3707 |
I w | 0.9328 |
因为Iw>Iv>Iu,所以在该时间点,短路制动电流矢量V2位于扇区4内。
因此,
数9
数10
根据第一实施方式的运算,为210°,因此能得到更接近q轴相位的短路电流矢量V2的相位θ
∧。然后,将由该232.6°前进作为规定角度的100°而得到的332.6°确定为d轴的相位角θ
0。因此,定位电流矢量V1被赋予大致与d轴一致的方向,可以从该状态更顺利地开始启动时的同步旋转。
<变形例>
需要说明的是,关于短路制动,虽然如上所述短路制动是将d-q轴电压设定为0(V)来实现的,但是也可以与d-q轴电压无关地,通过在构成图12的短路制动控制部161的开关驱动电路中,(1)将高侧的开关元件SW(H)全部断开(OFF),或者(2)将低侧的开关元件SW(L)全部断开,使得三相U、V、W短路。
这样的话,因为不进行PWM开关转换,所以可以获得不存在空载时间(dead time)的影响且不产生开关转换噪音,计算机的运算负荷轻的优点。
以上,对本发明的实施方式进行了说明,但是转子相位的推定、存储机理等并不仅限于上述实施方式。
其它的结构也可以在不脱离本发明的技术精神的范围内进行各种变形。
附图标记说明
1:洗衣机;7:停止相位推定部;8:存储部;15:波轮;61:短路制动控制部;C:控制单元;M:电机;R:转子;V1:定位电流矢量;V2:短路制动电流矢量;θ
0:转子停止相位;θ
M:中心相位角(基准相位角);θ
x:规定角度;Δ
θ:校正角。
Claims (4)
- 一种洗衣机,其特征在于,具备:波轮,搅拌洗涤物;永磁同步型的电机,正反驱动所述波轮;以及控制单元,以无传感器的方式对该电机的转子的启动和停止进行控制,所述控制单元具备:短路制动控制部,停止时进行短路制动;停止相位推定部,由通过短路制动在绕组流通的相电流中的停止前的相电流推定出转子停止的相位;以及存储部,存储所推定的停止相位,所述控制单元在启动时从所述存储部调取所推定的转子的停止相位,并基于此在同步旋转开始时生成作为进行转子定位的电流矢量的定位电流矢量。
- 根据权利要求1所述的洗衣机,所述停止相位推定部对于根据相电流的大小关系分类的静止坐标上的多个扇区,进行作为通过短路制动在绕组流通的相电流的矢量的短路制动电流矢量在停止前属于哪个扇区的判断。
- 根据权利要求2所述的洗衣机,所述停止相位推定部将所判定的扇区的中心相位角作为存在于旋转坐标系的q轴附近的短路制动电流矢量的相位角,并对该相位角加减规定角度来推定d轴的相位角。
- 根据权利要求2所述的洗衣机,所述停止相位推定部将对所推定的扇区的基准相位角加上由基于相电流预先确定的对应关系导出的校正角得到的角度作为存在于q轴附近的短路制动电流矢量的相位角,并对该相位角加减规定角度来推定d轴的相位角。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880038563.6A CN110731046B (zh) | 2017-06-14 | 2018-01-18 | 洗衣机 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017117063A JP7049623B2 (ja) | 2017-06-14 | 2017-06-14 | 洗濯機 |
JP2017-117063 | 2017-06-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018227972A1 true WO2018227972A1 (zh) | 2018-12-20 |
Family
ID=64658859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/073198 WO2018227972A1 (zh) | 2017-06-14 | 2018-01-18 | 洗衣机 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7049623B2 (zh) |
CN (1) | CN110731046B (zh) |
WO (1) | WO2018227972A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240007558A (ko) * | 2022-07-08 | 2024-01-16 | 삼성전자주식회사 | 세탁기 및 세탁기의 제어방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060061319A1 (en) * | 2004-09-22 | 2006-03-23 | Hamilton Sundstrand | Carrier injection sensorless control of aircraft variable frequency wound field synchronous starter/generators |
CN101373948A (zh) * | 2007-05-29 | 2009-02-25 | 株式会社东芝 | 电动机控制装置、洗衣机及电动机控制方法 |
CN103607155A (zh) * | 2013-10-28 | 2014-02-26 | 浙江大学 | 基于旋转电流矢量的永磁同步电机无位置传感器控制方法 |
US20140145653A1 (en) * | 2012-11-29 | 2014-05-29 | Electro-Motive Diesel, Inc. | System and method for estimating the position of a wound rotor synchronous machine |
CN104038130A (zh) * | 2013-03-07 | 2014-09-10 | 株式会社东芝 | 电动机旋转位置检测装置及检测方法、洗衣机 |
CN104631052A (zh) * | 2013-11-08 | 2015-05-20 | Lg电子株式会社 | 电机驱动装置及具有该电机驱动装置的洗涤物处理设备 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3636340B2 (ja) * | 1997-06-30 | 2005-04-06 | 富士電機機器制御株式会社 | 交流回転機用電力変換装置 |
JP4430356B2 (ja) | 2003-08-04 | 2010-03-10 | パナソニック株式会社 | モータ駆動装置並びにそれを用いた洗濯機及び乾燥機 |
JP5599280B2 (ja) | 2010-10-08 | 2014-10-01 | シャープ株式会社 | 洗濯乾燥機 |
JP6361018B2 (ja) | 2014-02-24 | 2018-07-25 | パナソニックIpマネジメント株式会社 | インバータ装置およびこれを備えた洗濯機 |
CN103516281B (zh) * | 2013-10-25 | 2015-02-11 | 南车株洲电力机车研究所有限公司 | 永磁同步电机带速重新投入的控制方法、装置及系统 |
JP2016036400A (ja) | 2014-08-05 | 2016-03-22 | ハイアールアジア株式会社 | ドラム式洗濯機 |
CN105262401A (zh) * | 2015-11-11 | 2016-01-20 | 苏州展宇电子有限公司 | 一种pmsm永磁同步电机初始相位定位方法 |
-
2017
- 2017-06-14 JP JP2017117063A patent/JP7049623B2/ja active Active
-
2018
- 2018-01-18 CN CN201880038563.6A patent/CN110731046B/zh active Active
- 2018-01-18 WO PCT/CN2018/073198 patent/WO2018227972A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060061319A1 (en) * | 2004-09-22 | 2006-03-23 | Hamilton Sundstrand | Carrier injection sensorless control of aircraft variable frequency wound field synchronous starter/generators |
CN101373948A (zh) * | 2007-05-29 | 2009-02-25 | 株式会社东芝 | 电动机控制装置、洗衣机及电动机控制方法 |
US20140145653A1 (en) * | 2012-11-29 | 2014-05-29 | Electro-Motive Diesel, Inc. | System and method for estimating the position of a wound rotor synchronous machine |
CN104038130A (zh) * | 2013-03-07 | 2014-09-10 | 株式会社东芝 | 电动机旋转位置检测装置及检测方法、洗衣机 |
CN103607155A (zh) * | 2013-10-28 | 2014-02-26 | 浙江大学 | 基于旋转电流矢量的永磁同步电机无位置传感器控制方法 |
CN104631052A (zh) * | 2013-11-08 | 2015-05-20 | Lg电子株式会社 | 电机驱动装置及具有该电机驱动装置的洗涤物处理设备 |
Also Published As
Publication number | Publication date |
---|---|
JP2019000329A (ja) | 2019-01-10 |
CN110731046A (zh) | 2020-01-24 |
CN110731046B (zh) | 2023-04-25 |
JP7049623B2 (ja) | 2022-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9590552B2 (en) | Motor drive device and electric compressor | |
JP5025142B2 (ja) | モータ制御装置 | |
US20230081528A1 (en) | Optimized regenerative braking control of electric motors using look-up tables | |
KR102267061B1 (ko) | 동력 장치, 동력 장치의 제어방법 및 동력 장치에 포함되는 전동기 구동 장치 | |
JP3672876B2 (ja) | ベクトル制御インバータ装置及び回転駆動装置 | |
KR20050075706A (ko) | 모터 구동 장치 | |
JP2007037352A (ja) | モータ制御装置,洗濯機,エアコンおよび電動オイルポンプ | |
KR20030009217A (ko) | 세탁기 모터 구동 장치 | |
US10164558B2 (en) | Electric motor control device | |
CN109804545B (zh) | 逆变器控制装置以及驱动器系统 | |
WO2017020852A1 (zh) | 洗衣机 | |
WO2018227972A1 (zh) | 洗衣机 | |
JP5250603B2 (ja) | モータ制御装置 | |
JP5223280B2 (ja) | 電動機付ターボチャージャ制御システム | |
WO2019128597A1 (zh) | 洗衣机 | |
JP6634603B2 (ja) | 洗濯機 | |
JP2018023208A (ja) | インバータ装置 | |
JP7009861B2 (ja) | モータ制御装置 | |
JP6681541B2 (ja) | 洗濯機 | |
JP7567532B2 (ja) | 永久磁石同期電動機の高効率運転制御装置および高効率運転制御方法 | |
JP7468669B2 (ja) | 電動機の制御方法及び制御装置 | |
JP7517939B2 (ja) | 誘導電動機の駆動制御装置および駆動制御方法 | |
JP7522964B2 (ja) | 洗濯機 | |
JP2018137911A (ja) | モータ制御装置、及びそれを用いた洗濯機、乾燥機 | |
JP2016202592A (ja) | モータ駆動装置およびこれを用いた洗濯機又は洗濯乾燥機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18817499 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18817499 Country of ref document: EP Kind code of ref document: A1 |