WO2018225868A1 - iPS細胞の遺伝子発現プロファイルによる軟骨細胞への分化能予測方法 - Google Patents

iPS細胞の遺伝子発現プロファイルによる軟骨細胞への分化能予測方法 Download PDF

Info

Publication number
WO2018225868A1
WO2018225868A1 PCT/JP2018/022116 JP2018022116W WO2018225868A1 WO 2018225868 A1 WO2018225868 A1 WO 2018225868A1 JP 2018022116 W JP2018022116 W JP 2018022116W WO 2018225868 A1 WO2018225868 A1 WO 2018225868A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
gene
ips cells
differentiation
chondrocytes
Prior art date
Application number
PCT/JP2018/022116
Other languages
English (en)
French (fr)
Inventor
真 渡辺
佐藤 孝明
淳也 戸口田
Original Assignee
株式会社 島津製作所
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 島津製作所, 国立大学法人京都大学 filed Critical 株式会社 島津製作所
Priority to US16/620,647 priority Critical patent/US11603563B2/en
Priority to JP2019523997A priority patent/JPWO2018225868A1/ja
Publication of WO2018225868A1 publication Critical patent/WO2018225868A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6881Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for tissue or cell typing, e.g. human leukocyte antigen [HLA] probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to a method for predicting the differentiation potential of iPS cells into chondrocytes at the stage of undifferentiated iPS cells, which belongs to the fields of regenerative medicine, cell culture, and basic research.
  • the present invention also relates to a genetic marker for predicting the differentiation potential of undifferentiated iPS cells into chondrocytes.
  • the present invention can be used by users who need to produce chondrocytes from iPS cells regardless of the fields of regenerative medicine, cell culture, and basic research.
  • iPS cells mouse and human induced pluripotent stem cells (iPS cells) have been established. iPS cells differ in their ability to differentiate into chondrocytes, depending on the strain.
  • FIG. 1 is a diagram schematically showing a path of differentiation induction from iPS cells to chondrocytes.
  • iPS cell culture on feeder cells is performed (this end time is defined as day 0), and then iPS cell culture on matrigel (in a feeder-free state) is performed (see FIG. 1). This end time is, for example, about the seventh day).
  • the cultured undifferentiated iPS cells are induced to differentiate into NC cells (the end point is, for example, about the 15th day).
  • NC cells are further induced to differentiate into cartilage progenitor cells on a medium for cartilage progenitor cells (fibronectin coat) (passage 1 and pass 2 and this end point is, for example, about 24 days). Chondrocyte progenitor cells are induced into chondrocytes on the cartilage differentiation medium (the end point is about 55 days, for example).
  • a medium for cartilage progenitor cells fibronectin coat
  • Chondrocyte progenitor cells are induced into chondrocytes on the cartilage differentiation medium (the end point is about 55 days, for example).
  • FIG. 2 is a diagram showing the expression level of the NC marker CD271 in neural crest cells (NC cells), the horizontal axis is the expression level (fluorescence intensity) of CD271, and the vertical axis is the number of cells.
  • an NC cell population with a low CD271 expression level (CD271 low + NC cells) is shown as a P4 fraction
  • an NC cell population with a high expression level (CD271 high + NC cells) is shown as a P5 fraction.
  • Non-Patent Documents 1 and 2 the user selects an iPS cell line with a high proportion of CD271 high + NC cells (high differentiation potential) using the expression level of CD271 in NC cells induced to differentiate from iPS cells as an index. As a result, iPS cells with high ability to differentiate into cartilage are selected.
  • NC cells neural crest cells
  • NC cells neural crest cells
  • cartilage progenitor cells and further into chondrocytes JP-A-2016- No. 88909 can be referred to.
  • IPS cells differ in their ability to differentiate into chondrocytes depending on the strain. Therefore, a user who creates chondrocytes from iPS cells needs to select iPS cells with high differentiation potential into chondrocytes.
  • the differentiation potential of iPS cells there are no markers or methods for predicting the differentiation potential of iPS cells at the stage of undifferentiated iPS cells. If the differentiation potential of iPS cells can be predicted at the stage of undifferentiated iPS cells, the induction of differentiation of iPS cell lines with low differentiation potential into NC cells and further chondrocytes can be omitted, resulting in efficient cell culture and running. Since cost reduction can be achieved, it is very useful in both the regenerative medicine field and the basic research field.
  • the present inventors have found that the differentiation ability of undifferentiated iPS cells into chondrocytes can be predicted based on gene expression data of undifferentiated iPS cells.
  • the present invention includes the following inventions.
  • NC cells neural crest cells
  • the gene is represented by a gene ID (Unique Sorted Transcript Cluster ID), As the gene for decreasing the expression, 16713399, 16984394, 17121974, 17122170, 16860191, 16999432, 17121970, 17065663, 17028547, 17022610, 17035441, 16825196, 16946689, 16906788, 16700250, 17048704, 16729023, 16938761, 16885703, 17000077, 16917881, 16809811 16666487, 17092402, 16826158, 17038957, 16684995, 1710391, 16897399, and 1669918; and 16697219, 16798158, 16990845, 17118850, 16830980, 16778675, 17110283, 1681422, 1697049, 16838105, 16831379, 16875952, 1717410, 17103230, 16999147, 16688792, 16718764, 1707
  • a method for predicting the differentiation potential of iPS cells into chondrocytes at the stage of undifferentiated iPS cells is provided.
  • iPS cells differ in their ability to differentiate into chondrocytes, depending on the strain. Therefore, a user who creates chondrocytes from iPS cells needs to select iPS cells with high differentiation potential into chondrocytes.
  • a marker or method for predicting the differentiation potential of iPS cells at the stage of undifferentiated iPS cells there has been no marker or method for predicting the differentiation potential of iPS cells at the stage of undifferentiated iPS cells.
  • the ability of iPS cells to differentiate into chondrocytes can be predicted at the stage of undifferentiated iPS cells, and the ability to differentiate into chondrocytes without inducing differentiation of iPS cell lines into NC cells or further chondrocytes.
  • High iPS cell lines and low differentiation iPS cell lines can be distinguished at the stage of undifferentiated iPS cells. This makes it possible to efficiently induce differentiation into chondrocytes from the iPS cell line using a selected iPS cell line with high differentiation potential into chondrocytes.
  • the present invention is very useful in both the regenerative medicine field and the basic research field. Furthermore, it became possible to quantify (scoring) the prediction of the iPS cell differentiation ability based on the expression level of each gene (whether the ratio of CD271 high + NC cells is higher than 20%, for example). This makes it possible to predict the differentiation ability of iPS cells into chondrocytes by applying the present invention to other iPS cell lines whose differentiation ability is unknown.
  • a genetic marker for predicting the differentiation potential of undifferentiated iPS cells into chondrocytes is provided.
  • FIG. 1 is a diagram schematically showing a path of differentiation induction from iPS cells to chondrocytes.
  • FIG. 2 is a diagram showing the expression level of the NC marker CD271 in neural crest cells (NC cells), the horizontal axis is the expression level (fluorescence intensity) of CD271, and the vertical axis is the number of cells.
  • FIG. 3 is a graph showing the differentiation efficiency (NC induction efficiency (CD271 high + (%))) into neural crest cells (NC cells) in each iPS cell line.
  • FIG. 4 is a t-test based on the differentiation efficiency (Induction efficiency (CD271 high + (%))) of the high cell group (High) and the low cell group (Low) with differentiating efficiency into neural crest cells (NC cells).
  • FIG. 5 is a diagram showing identification of iPS cells based on gene expression profiles.
  • FIG. 6 is a diagram showing evaluation of an identification model for each of the cell group (Low) and the cell group (High), which have a low differentiation efficiency into neural crest cells (NC cells).
  • FIG. 7 is a diagram showing a result of data exchange verification (Permutation test).
  • FIG. 8 is a diagram showing a prediction score of differentiation potential based on a gene expression profile. A larger prediction score means that the iPS cells are expected to have higher production efficiency of CD271 high + NC cells.
  • FIG. 9 is a diagram showing a prediction score of differentiation potential based on a gene expression profile in Experimental Example 2.
  • FIG. 9 is a diagram showing a prediction score of differentiation potential based on a gene expression profile in Experimental Example 2.
  • FIG. 10 is a diagram showing the differentiation efficiency (NC induction efficiency (CD271 high + (%))) into neural crest cells (NC cells) in each iPS cell line in Experimental Example 2.
  • FIG. 11 is a diagram showing a comparison of predicted scores between an iPS cell group with high differentiation efficiency (Good clone) and an iPS cell group with low differentiation efficiency (Poor clone) in Experimental Example 2.
  • FIG. 12 is an ROC curve with respect to the predicted score value calculated from the gene expression profile in Experimental Example 2, the horizontal axis represents 100-specificity (%), and the vertical axis represents sensitivity (Sensitivity) ( %).
  • the present invention is a method for predicting the differentiation ability of undifferentiated iPS cells into chondrocytes based on gene expression data of undifferentiated iPS cells. This will be described below.
  • FIG. 3 is a graph showing the differentiation efficiency (NC induction efficiency (CD271 high + (%))) into neural crest cells (NC cells) in each iPS cell line.
  • the vertical axis shows the proportion of CD271 high + NC cells in the NC cells.
  • FIG. 4 is a t-test based on the differentiation efficiency (Induction efficiency (CD271 high + (%))) of the high cell group (High) and the low cell group (Low) with differentiating efficiency into neural crest cells (NC cells). It is a figure which shows a comparison.
  • the high differentiation efficiency into neural crest cells means that the proportion of CD271 high + NC cells contained in neural crest cells (NC cells) is, for example, 15% or more, The case may be 18% or more, 20% or more, 25% or more, or 30% or more.
  • R GeneChip
  • 61 genes were statistically significant (significant difference test by t-test) P ⁇ 0.05).
  • a cell group with high differentiation efficiency into NC cells with respect to an average expression level of each gene of a cell group with low differentiation efficiency into NC cells (4 strains: 409B2, 610B1, TIG118-4f1, TIG107-4f1)
  • Ratio of the average expression level of each gene of (6 strains: 201B2, 201B7, 414C2, 451F3, 604A1, 606B1): [Expression ratio] [Each gene expression level in the high group] / [Each gene expression level in the low group]
  • 61 types of genes were statistically significant (p ⁇ 0.05 by t-test, p ⁇ 0.05) and fluctuated 1.5 times or more (Fold Change defined later) ).
  • genes expressed by gene ID (Unique Sorted Transcript Cluster ID), 16713399, 16984394, 17121974, 17122170, 16860191, 16999432, 17121970, 17065663, 17028547, 17022610, 17035441, 16825196, 16946689, 16906788, 16700250, 17048704, 16729023, 16938761, 16885703, 17000077, 16917881, 16809811, 16684087, 17092402, 16826158, 17038957, 16684995, 17103991, 16897399, and 16696918 (Table 1), 16788743,16788693,16788572,17118804,16662749,17100659,16747661,17083911,16788727,16692589,16729321,16976012,16697219,16798158,16990845,17118850,16830980,16778675,17110283,16
  • Table 1 shows a group of genes whose expression decreases in a group of cells with high differentiation efficiency into NC cells.
  • Fold Change expression variation amount
  • Table 1 shows a group of genes whose expression decreases in a group of cells with high differentiation efficiency into NC cells.
  • Fold Change expression variation amount
  • Table 1 shows a group of genes whose expression decreases in a group of cells with high differentiation efficiency into NC cells.
  • Fold Change expression variation amount
  • Table 1 shows a group of genes whose expression decreases in a group of cells with high differentiation efficiency into NC cells.
  • Table 2 shows a group of genes whose expression is enhanced in a group of cells having high differentiation efficiency into NC cells.
  • Fold Change expression variation amount
  • Table 2 shows a group of genes whose expression is enhanced in a group of cells having high differentiation efficiency into NC cells.
  • Fold Change expression variation amount
  • Table 2 shows a group of genes whose expression is enhanced in a group of cells having high differentiation efficiency into NC cells.
  • Fold Change expression variation amount
  • Table 2 shows a group of genes whose expression is enhanced in a group of cells having high differentiation efficiency into NC cells.
  • FIG. 5 is a diagram showing identification of iPS cells based on a gene expression profile, where the horizontal axis is the variation between groups (in this case, the High and Low cell groups), and the vertical axis is each group within the group. It shows cell variation.
  • the cell group having high differentiation efficiency into NC cells High; ⁇
  • the low cell group Low; ⁇
  • both groups are clearly discriminated.
  • FIG. 6 is a diagram showing the evaluation of the discrimination model for each of the cell group (Low) and the cell group (High) having a low differentiation efficiency into NC cells.
  • the vertical axis shows R2 value and Q2 value.
  • FIG. 7 is a diagram showing the result of data exchange verification (Permutation test), and the horizontal axis (x axis) represents the frequency of data exchange with respect to the original data (200 Permutations 1 components).
  • the vertical axis (y-axis) indicates the R2 value or Q2 value.
  • FIG. 8 is a diagram showing the prediction score of differentiation potential based on the gene expression profile, and the vertical axis shows the prediction score (Prediction Score). The larger the prediction score, the higher the differentiation ability (for example, the differentiation efficiency is expected to be 20% or more).
  • the present invention is a method for predicting the differentiation ability of undifferentiated iPS cells into chondrocytes based on gene expression data of undifferentiated iPS cells.
  • the present invention predicts the differentiation ability of the iPS cells into neural crest cells (NC cells) based on the gene expression data of undifferentiated iPS cells, whereby the undifferentiated iPS cells are transformed into chondrocytes. It is a method for predicting differentiation potential.
  • the undifferentiated iPS cells can be feeder-free.
  • the undifferentiated iPS cells are in an undifferentiated state before being differentiated into neural crest cells (NC cells).
  • the gene is represented by a gene ID (Unique Sorted Transcript Cluster ID), 16713399, 16984394, 17121974, 17122170, 16860191, 16999432, 17121970, 17065663, 17028547, 17022610, 17035441, 16825196, 16946689, 16906788, 16700250, 17048704, 16729023, 16938761, 16885703, 17000077, 16917881, 16809811, 16684087, 17092402, 16826158, 17038957, 16684995, 1703991, 16897399, and 16696918; and 16788743, 16788693, 16788572, 17118804, 16662749, 17100659, 16747661, 17083911, 16788727, 16692589, 167293219, 16976012, 16697219, 16798158,16990845,17118850,16830980,16778675,
  • the target undifferentiated iPS cells when the calculated expression level ratio is less than 0.9 for the gene with decreased expression and greater than 1.1 for the gene with increased expression Is judged to have a high differentiation potential into chondrocytes.
  • the target undifferentiated iPS for the gene with decreased expression The cells may be judged to have a high differentiation potential into chondrocytes.
  • the calculated expression level ratio is greater than 1.2, greater than 1.3, or greater than 1.5, the target undifferentiated iPS for the gene whose expression is enhanced The cells may be judged to have a high differentiation potential into chondrocytes.
  • each iPS cell can also be determined by calculating the predicted score calculated from the model.
  • the average value of the predicted scores calculated from undifferentiated iPS cells (control) with low differentiation potential is calculated, for example, Those skilled in the art will be able to appropriately define the value of [average value + 2 ⁇ standard deviation] as a reference value.
  • the standard undifferentiated iPS cells (control) having a low differentiation potential can be appropriately selected by those skilled in the art.
  • an undifferentiated iPS cell (control) with low differentiation potential an example using the average value of a cell group (409B2, 610B1, TIG118-4f1, TIG107-4f1) having low differentiation efficiency into NC cells is used. Indicated. Not only these four strains but any undifferentiated iPS cells with low differentiation efficiency into this type of NC cells could be used as a control.
  • NC cells neural crest cells
  • NC cells neural crest cells
  • cartilage progenitor cells and further chondrocytes are known, for example, Reference can be made to JP-A-2016-88909.
  • iPS cells are cultured on matrigel (Becton-Dickinson) in mTeSR medium (Stem-Cell Technologies) for 9 days. On the 9th day, the cells are cultured for 6 days in the medium for inducing differentiation into the first NC cells. Thereafter, the cells are collected using 0.05% trypsin-EDTA, and after re-seeding on a fibronectin-coated dish, differentiation is induced into cartilage progenitor cells by performing subculture work three times every three days. Chondrocytes can be obtained by culturing these cells using a cartilage differentiation-inducing medium containing PDGF-BB, ⁇ TGF ⁇ 3, and BMP4 as growth factors.
  • Example 1 10 undifferentiated iPS cell lines derived from human somatic cells (201B2, 201B7, 414C2, 409B2, TIG118-4f1, 604A1, 606A1, 610B1, 451F3, TIG107-4f1) were used.
  • iPS cells derived from human somatic cells cultured on feeder cells (on-feeder) on matrigel (Matrigel-Growth Factor-Reduce, Corning) (passage ratio 1: 5) And cultured for one week using a feeder-free medium (mTeSR1, manufactured by Sakai Veritas).
  • RNA extraction buffer RLT buffer (Qiagen) + 5% mercaptoethanol
  • RLT buffer Qiagen + 5% mercaptoethanol
  • CRNA and ssDNA single-strand cDNA were synthesized from the extracted RNA and fragmented using uracil DNA glycosylase and aurinic / apyrimidinic endonuclease 1.
  • the fragmented ssDNA biotinylated, after GeneChip (R) Human Gene 2.0 ST Array 17 hours hybridization (Thermo Fisher SCIENTIFIC Co.) to the washing-staining, by reading the fluorescence scanner Gene expression data were obtained.
  • the expression levels of the genes shown in Tables 1 and 2 were extracted from the obtained expression data, and applied to an identification model (algorithm) to calculate a differentiation efficiency prediction score (FIG. 8).
  • iPS cells derived from human somatic cells cultured on feeder cells (on-feeder) on matrigel (Matrigel-Growth Factor-Reduce, Corning) (passage ratio 1: 5) And cultured for one week using a feeder-free medium (mTeSR1, manufactured by Sakai Veritas).
  • RNA extraction buffer (RLT buffer (Qiagen) + 5% mercaptoethanol) was added to the cultured cells to recover RNA.
  • CRNA and ssDNA single-strand cDNA were synthesized from the extracted RNA and fragmented using uracil DNA glycosylase and aurinic / apyrimidinic endonuclease 1. Then, the fragmented ssDNA biotinylated, after GeneChip (R) Human Gene 2.0 ST Array 17 hours hybridization (Thermo Fisher SCIENTIFIC Co.) to the washing-staining, by reading the fluorescence scanner Gene expression profile data was obtained.
  • FIG. 9 is a diagram showing the prediction score of differentiation potential based on the gene expression profile, and the vertical axis shows the prediction score (Prediction Score).
  • FIG. 10 is a diagram showing the differentiation efficiency (NC induction efficiency (CD271 high + (%))) into NC cells in each iPS cell line.
  • the vertical axis shows the proportion of CD271 high + NC cells in the NC cells.
  • iPS cell group (Good clone; 6 strains: 201B6, 253G4, 604A3, 604B1, 606A1, 610A2) with high differentiation efficiency into NC cells and low differentiation efficiency into NC cells as a result It was found that the cells were divided into iPS cell groups (Poor clone; 4 strains: 404C2, 454E2, 585A1, 585B1). Here, when the ratio of CD271 high + NC cells contained in NC cells is 20% or more, the differentiation efficiency into NC cells is high.
  • FIG. 11 is a diagram showing a comparison of prediction scores between an iPS cell group with high differentiation efficiency (Good clone) and an iPS cell group with low differentiation efficiency (Poor clone).
  • FIG. 12 is an ROC curve with respect to a predicted score value calculated from a gene expression profile.
  • the horizontal axis represents 100-specificity (%), and the vertical axis represents sensitivity (%).
  • the differentiation potential of each iPS cell can be predicted at an undifferentiated stage of the iPS cell by using the gene expression profile according to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

未分化のiPS細胞の段階での、iPS細胞の軟骨細胞への分化能を予測する方法を提供する。未分化のiPS細胞の軟骨細胞への分化能を予測するための遺伝子マーカーを提供する。未分化のiPS細胞の遺伝子発現データに基づいて、該未分化iPS細胞の軟骨細胞への分化能を予測する方法。未分化のiPS細胞の遺伝子発現データに基づいて、該iPS細胞の神経堤細胞(NC細胞)への分化能を予測し、それにより該未分化iPS細胞の軟骨細胞への分化能を予測する方法。

Description

iPS細胞の遺伝子発現プロファイルによる軟骨細胞への分化能予測方法
 本発明は、再生医療分野、細胞培養分野、及びそれらの基礎研究分野に属し、未分化のiPS細胞の段階での、iPS細胞の軟骨細胞への分化能を予測する方法に関する。また、未分化のiPS細胞の軟骨細胞への分化能を予測するための遺伝子マーカーに関する。本発明は、再生医療分野、細胞培養分野や基礎研究分野を問わず、iPS細胞から軟骨細胞を作製する必要があるユーザーに利用され得る。
 最近において、マウス及びヒトの人工多能性幹細胞(iPS細胞)が樹立されている。iPS細胞は、その株によって、軟骨細胞への分化能が異なっている。
 iPS細胞から軟骨細胞を作製するには、iPS細胞から神経堤細胞(NC細胞)を経て軟骨細胞に分化させる分化誘導経路がある(図1)。図1は、iPS細胞から軟骨細胞への分化誘導の経路を模式的に示す図である。図1を参照して、フィーダー細胞上でのiPS細胞培養が行なわれ(この終了時点を0日目とする)、その後、マトリゲル上でのiPS細胞培養(フィーダーフリー化状態で)が行なわれる(この終了時点は例えば約7日目である)。培養された未分化状態のiPS細胞をNC細胞へと分化誘導する(この終了時点は例えば約15日目である)。NC細胞をさらに軟骨前駆細胞用培地(フィブロネクチンコート)上で軟骨前駆細胞へと分化誘導する(継代1,継代2を経て、この終了時点は例えば約24日目である)。軟骨前駆細胞を軟骨分化培地上で軟骨細胞へと誘導する(この終了時点は例えば約55日目である)。
 iPS細胞からNC細胞へと分化させた際には、NC細胞の細胞表面マーカータンパクであるCD271に対する抗体と蛍光フローサイトメトリー(FACS)を用いた分析を行うと、CD271の発現量が低いNC細胞集団(CD271low+ NC細胞)と発現量が多いNC細胞集団(CD271high+ NC細胞)とに分かれる(図2)。図2は、神経堤細胞(NC細胞)におけるNCマーカーCD271の発現量を示す図であり、横軸は、CD271の発現量(蛍光強度)であり、縦軸は、細胞数である。図2において、CD271の発現量が低いNC細胞集団(CD271low+ NC細胞)はP4フラクションとして示され、発現量が多いNC細胞集団(CD271high+ NC細胞)はP5フラクションとして示されている。
 さらには、これらのNC細胞をそれぞれ軟骨細胞へと分化誘導すると、CD271high+ NC細胞集団から分化させた軟骨細胞は、CD271low+ NC細胞集団から分化させたものと比較して、軟骨関連遺伝子の発現量が高いことがわかっている(非特許文献1,2)。以上のことから、ユーザーはiPS細胞から分化誘導させたNC細胞におけるCD271の発現量を指標として、CD271high+ NC細胞の割合が多い(分化能が高い)iPS細胞株を選定する。結果として、軟骨への分化能の高いiPS細胞を選別することになる。
 また、iPS細胞を神経堤細胞(NC細胞)へと分化誘導する方法や、神経堤細胞(NC細胞)を軟骨前駆細胞、さらに軟骨細胞へと分化誘導する方法については、例えば、特開2016-88909号公報を参照することができる。
特開2016-88909号公報
Umeda K. et al., Long-Term Expandable SOX9+ Chondrogenic Ectomesenchymal Cells from Human Pluripotent Stem Cells, Stem Cell Reports. 2015 Apr 14;4(4):712-726 Fukuta M. et al., Derivation of Mesenchymal Stromal Cells from Pluripotent Stem Cells through a Neural Crest Lineage using Small Molecule Compounds with Defined Media, PLoS One. 2014 2;9(12)
 iPS細胞は、その株によって、軟骨細胞への分化能が異なっている。そのため、iPS細胞から軟骨細胞を作製するユーザーは、軟骨細胞への分化能が高いiPS細胞を選ぶ必要がある。
 作製したiPS細胞株の中から軟骨細胞への分化能が高いものを選ぶ手段としては、iPS細胞から軟骨細胞へ分化誘導させた細胞における軟骨遺伝子発現や免疫組織化学染色等を指標とするものがある。また、代替手段として、上述したように、iPS細胞から分化誘導させたNC細胞の段階におけるFACS解析においてCD271high+ NC細胞集団の割合を指標としたものが用いられてきた。
 しかしながら、未分化iPS細胞の段階でiPS細胞の分化能を予測するマーカーや手法は現時点では全く存在しない。未分化iPS細胞の段階でiPS細胞の分化能を予測することができれば、分化能が低いiPS細胞株のNC細胞やさらに軟骨細胞への分化誘導を省略できるので、結果として効率的細胞培養やランニングコストの削減が達成できるため、再生医療分野や基礎研究分野のいずれにおいても、非常に有用である。
 本発明の目的は、未分化のiPS細胞の段階での、iPS細胞の軟骨細胞への分化能を予測する方法を提供することにある。また、本発明の目的は、未分化のiPS細胞の軟骨細胞への分化能を予測するための遺伝子マーカーを提供することにある。
 本発明者らは、鋭意検討の結果、未分化のiPS細胞の遺伝子発現データに基づいて、該未分化iPS細胞の軟骨細胞への分化能を予測することができることを見出した。
 本発明は、以下の発明を含む。
(1) 未分化のiPS細胞の遺伝子発現データに基づいて、該未分化iPS細胞の軟骨細胞への分化能を予測する方法。
(2) 未分化のiPS細胞の遺伝子発現データに基づいて、該iPS細胞の神経堤細胞(NC細胞)への分化能を予測し、それにより該未分化iPS細胞の軟骨細胞への分化能を予測する方法。
(3) 対象とする未分化のiPS細胞の遺伝子発現プロファイルデータを取得し、各遺伝子の発現量を得て、
 基準となる分化能の低い未分化のiPS細胞(コントロール)の前記各遺伝子の発現量に対する発現量の比率:
 [発現量の比率]=[対象とする未分化iPS細胞の各遺伝子発現量]/[基準となる分化能の低い未分化のiPS細胞(コントロール)の各遺伝子発現量]
を算出し、
 算出された前記発現量の比率が、発現減少の遺伝子については、0.9よりも小さい場合に、発現亢進の遺伝子については、1.1よりも大きい場合に、前記対象とする未分化iPS細胞は軟骨細胞への分化能が高いと判断する、上記(1)又は(2)の方法。
(4) 前記遺伝子が、遺伝子ID (Unique Sorted Transcript Cluster ID)で表して、
 前記発現減少の遺伝子として、16713399、16984394、17121974、17122170、16860191、16999432、17121970、17065663、17028547、17022610、17035441、16825196、16946689、16906788、16700250、17048704、16729023、16938761、16885703、17000077、16917881、16809811、16684087、17092402、16826158、17038957、16684995、17103991、16897399、及び16696918; 及び
 前記発現亢進の遺伝子として、16788743、16788693、16788572、17118804、16662749、17100659、16747661、17083911、16788727、16692589、16729321、16976012、16697219、16798158、16990845、17118850、16830980、16778675、17110283、16851422、16797049、16838105、16831379、16875952、17117410、17103230、16999147、16688792、16718764、17072022、及び16679331;
からなる群から少なくとも1つ選ばれる、上記(1)~(3)のうちのいずれかの方法。
(5) 対象とする未分化のiPS細胞の遺伝子発現プロファイルデータを取得し、各遺伝子の発現量を得て、識別モデルを構築し、その識別モデルと各遺伝子プロファイルから算出した予測スコアを用いて、該未分化iPS細胞の軟骨細胞への分化能を予測する方法。
(6) 前記未分化のiPS細胞は、フィーダーフリー化状態のものである、上記(1)~(5)のうちのいずれかの方法。
(7) 上記(1)~(6)のうちのいずれかの方法により、未分化iPS細胞の軟骨細胞への分化能を予測し、
 軟骨細胞への分化能が高いと判断された未分化のiPS細胞を、軟骨細胞へと分化誘導する方法。
(8) 遺伝子ID (Unique Sorted Transcript Cluster ID)で表して、
 発現減少の遺伝子として、16713399、16984394、17121974、17122170、16860191、16999432、17121970、17065663、17028547、17022610、17035441、16825196、16946689、16906788、16700250、17048704、16729023、16938761、16885703、17000077、16917881、16809811、16684087、17092402、16826158、17038957、16684995、17103991、16897399、及び16696918; 及び
 発現亢進の遺伝子として、16788743、16788693、16788572、17118804、16662749、17100659、16747661、17083911、16788727、16692589、16729321、16976012、16697219、16798158、16990845、17118850、16830980、16778675、17110283、16851422、16797049、16838105、16831379、16875952、17117410、17103230、16999147、16688792、16718764、17072022、及び16679331;
からなる群から少なくとも1つ選ばれる、未分化iPS細胞の軟骨細胞への分化能を予測するための遺伝子マーカー。
 本発明によれば、未分化のiPS細胞の段階での、iPS細胞の軟骨細胞への分化能を予測する方法が提供される。
 iPS細胞は、その株によって、軟骨細胞への分化能が異なっている。そのため、iPS細胞から軟骨細胞を作製するユーザーは、軟骨細胞への分化能が高いiPS細胞を選ぶ必要がある。しかしながら、未分化iPS細胞の段階でiPS細胞の分化能を予測するマーカーや手法はこれまで存在しなかった。本発明によって、未分化iPS細胞の段階でiPS細胞の軟骨細胞への分化能を予測することができ、iPS細胞株をNC細胞やさらに軟骨細胞へ分化誘導することなく、軟骨細胞への分化能の高いiPS細胞株と分化能の低いiPS細胞株とを、未分化iPS細胞の段階で識別することができる。これにより、軟骨細胞への分化能の高い選別されたiPS細胞株を用いて、該iPS細胞株からの効率的な軟骨細胞への分化誘導を行うことができる。このように、本発明は、再生医療分野や基礎研究分野のいずれにおいても、非常に有用である。さらには、各遺伝子の発現量からiPS細胞の分化能の良否予測(CD271high+ NC細胞の割合が例えば20%より高いかどうか)を数値化すること(スコアリング)が可能となった。これによって、分化能が未知である他のiPS細胞株に、本発明を適用してiPS細胞の軟骨細胞への分化能を予測することが可能となる。
 また、本発明によれば、未分化のiPS細胞の軟骨細胞への分化能を予測するための遺伝子マーカーが提供される。
図1は、iPS細胞から軟骨細胞への分化誘導の経路を模式的に示す図である。 図2は、神経堤細胞(NC細胞)におけるNCマーカーCD271の発現量を示す図であり、横軸は、CD271の発現量(蛍光強度)であり、縦軸は、細胞数である。 図3は、各iPS細胞株における神経堤細胞(NC細胞)への分化効率[NC induction efficiency (CD271high+ (%))]を示す図である。 図4は、神経堤細胞(NC細胞)への分化効率が前記高い細胞群(High)と前記低い細胞群(Low)の分化効率[Induction efficiency (CD271high+ (%))]のt-検定による比較を示す図である。 図5は、遺伝子発現プロファイルによるiPS細胞の識別を示す図である。 図6は、神経堤細胞(NC細胞)への分化効率が前記低い細胞群(Low)及び前記高い細胞群(High)それぞれについての、識別モデルの評価を示す図である。 図7は、データ入れ替え検証(Permutation test)結果を示す図である。 図8は、遺伝子発現プロファイルによる分化能の予測スコアを示す図である。予測スコアが大きいほど、そのiPS細胞はCD271high+ NC細胞の産生効率が高いと予想されることを意味する。 図9は、実験例2において、遺伝子発現プロファイルによる分化能の予測スコアを示す図である。 図10は、実験例2において、各iPS細胞株における神経堤細胞(NC細胞)への分化効率[NC induction efficiency (CD271high+ (%))]を示す図である。 図11は、実験例2において、分化効率が高いiPS細胞群(Good clone)と分化効率が低いiPS細胞群(Poor clone)の間での予測スコアの比較を示す図である。 図12は、実験例2において、遺伝子発現プロファイルから算出した予測スコア値に対するROC曲線であり、横軸は、100-特異度(Specificity)(%)を表し、縦軸は、感度(Sensitivity)(%)を表す。
 本発明は、未分化のiPS細胞の遺伝子発現データに基づいて、該未分化iPS細胞の軟骨細胞への分化能を予測する方法である。以下に説明する。
 10種の未分化の各iPS細胞株(201B2, 201B7, 414C2, 409B2, TIG118-4f1, 604A1, 606A1, 610B1, 451F3, TIG107-4f1)から神経堤細胞(NC細胞)に分化誘導した。分化されたNC細胞とCD271に対する抗体とを反応させたサンプル(細胞)を蛍光フローサイトメトリー(FACS)により解析し、その際のCD271high+ NC細胞の割合をNC分化効率として算出した。図3は、各iPS細胞株における神経堤細胞(NC細胞)への分化効率[NC induction efficiency (CD271high+ (%))]を示す図である。縦軸は、NC細胞中に占めるCD271high+ NC細胞の割合を示す。図3に示すように、結果として、NC細胞への分化効率が高い細胞群(6株:201B2, 201B7, 414C2, 451F3, 604A1, 606B1)と、低い細胞群(4株:409B2, 610B1, TIG118-4f1, TIG107-4f1)とに分かれることを確認した。
 さらに、これらの分化効率が高い細胞群(6株:201B2, 201B7, 414C2, 451F3, 604A1, 606B1)と低い細胞群(4株:409B2, 610B1, TIG118-4f1, TIG107-4f1)の分化効率をt-検定により比較解析すると、統計学的有意(p<0.001)に分化効率の差が見られることを確認した(図4)。図4は、神経堤細胞(NC細胞)への分化効率が前記高い細胞群(High)と前記低い細胞群(Low)の分化効率[Induction efficiency (CD271high+ (%))]のt-検定による比較を示す図である。
 図3及び図4の結果から、神経堤細胞(NC細胞)への分化効率が高いとは、神経堤細胞(NC細胞)中に含まれるCD271high+ NC細胞の割合が、例えば、15%以上、18%以上、20%以上、25%以上、又は30%以上である場合が該当し得る。
 次に、各iPS細胞からRNAを抽出し、GeneChip(R)Human Gene 2.0 ST Array (Thermo Fisher SCIENTIFIC 社製)を用いて遺伝子発現プロファイル(全遺伝子48145種類)を取得した。取得した遺伝子プロファイルを神経堤細胞(NC細胞)への分化効率が前記高い群と前記低い群(コントロール)とで比較した結果、61種類の遺伝子が統計学的有意(t-検定による有意差検定でp<0.05)に1.5倍以上変動していた。すなわち、NC細胞への分化効率が低い細胞群(4株:409B2, 610B1, TIG118-4f1, TIG107-4f1)の前記各遺伝子の発現量の平均値に対する、NC細胞への分化効率が高い細胞群(6株:201B2, 201B7, 414C2, 451F3, 604A1, 606B1)の前記各遺伝子の発現量の平均値の比率:
[発現量の比率]=[前記高い群の各遺伝子発現量]/[前記低い群の各遺伝子発現量]
を求めたところ、61種類の遺伝子が統計学的有意(t-検定による有意差検定でp<0.05)に1.5倍以上変動していた(後で定義するFold Change(発現変動量)として)。
 61種類の遺伝子のうち、遺伝子ID (Unique Sorted Transcript Cluster ID)で表して、
 発現減少の遺伝子として、16713399、16984394、17121974、17122170、16860191、16999432、17121970、17065663、17028547、17022610、17035441、16825196、16946689、16906788、16700250、17048704、16729023、16938761、16885703、17000077、16917881、16809811、16684087、17092402、16826158、17038957、16684995、17103991、16897399、及び16696918の30種類が挙げられ(表1)、
 発現亢進の遺伝子として、16788743、16788693、16788572、17118804、16662749、17100659、16747661、17083911、16788727、16692589、16729321、16976012、16697219、16798158、16990845、17118850、16830980、16778675、17110283、16851422、16797049、16838105、16831379、16875952、17117410、17103230、16999147、16688792、16718764、17072022、及び16679331の31種類が挙げられる(表2)。
 表1は、NC細胞への分化効率が高い細胞群で発現が減少する遺伝子群について示したものである。発現減少の遺伝子については、Fold Change(発現変動量)は、前記式の[発現量の比率]の値の逆数にマイナスの符号を付して示されている。すなわち、このFold Change(発現変動量)の値が小さくなるほど、NC細胞への分化効率が低い細胞群(409B2, 610B1, TIG118-4f1, TIG107-4f1)の前記各遺伝子の発現量の平均値に対して、NC細胞への分化効率が高い細胞群(201B2, 201B7, 414C2, 451F3, 604A1, 606B1)の前記各遺伝子の発現量の平均値が、より小さいことを意味している。
 表2は、NC細胞への分化効率が高い細胞群で発現が亢進する遺伝子群について示したものである。発現亢進の遺伝子については、Fold Change(発現変動量)は、前記式の[発現量の比率]の値として示されている。すなわち、このFold Change(発現変動量)の値が大きくなるほど、NC細胞への分化効率が低い細胞群(409B2, 610B1, TIG118-4f1, TIG107-4f1)の前記各遺伝子の発現量の平均値に対して、NC細胞への分化効率が高い細胞群(201B2, 201B7, 414C2, 451F3, 604A1, 606B1)の前記各遺伝子の発現量の平均値が、より大きいことを意味している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 そこで、これら61種類の遺伝子発現プロファイルを用いてOPLS(orthogonal partial least square)法による多変量解析(SIMCA13、Umetrics社製)を行うと、NC細胞への分化効率が高い群と低い群とを明確に識別できるモデル(識別モデル)を構築できることが示された(図5)。図5は、遺伝子発現プロファイルによるiPS細胞の識別を示す図であり、横軸は、群間(今回の場合は、HighとLow細胞群)のバラつきであり、縦軸は、群内での各細胞のバラつきを示している。図5において、NC細胞への分化効率が前記高い細胞群(High;●)と前記低い細胞群(Low;■)とが、横軸方向に大きく離れており、これら両群が明確に判別される。
 さらには、識別モデルのデータへの適合性(説明能力, R2値)、およびクロスバリデーション解析による未知サンプル(データ)への適合性予測性(予測能力、Q2値)を求めると、ともに高い値であることを確認した(図6)。図6は、NC細胞への分化効率が前記低い細胞群(Low)及び前記高い細胞群(High)それぞれについての、識別モデルの評価を示す図である。縦軸は、R2値、Q2値を示す。
 さらには、データ入れ替え実験(Permutation test)により、識別モデルを検証した結果、Q2直線のy切片が負であったことから、このモデルはオリジナルデータのみにオーバーフィットしたものではないことも確認できた(図7)。図7は、データ入れ替え検証(Permutation test)結果を示す図であり、横軸(x軸)は、オリジナルデータに対するデータ入れ替えの頻度を表す(200 Permutations 1 components)。縦軸(y軸)は、R2値、もしくはQ2値を示している。x=1の時のR2値、Q2値がオリジナルデータでの値を示しており、x軸の値が小さいほど、データの入れ替え頻度が大きいことを示している。
 以上のことから、遺伝子発現データを用いて、信頼性の高いiPS細胞の識別評価モデルが構築できることを確認した。
 さらには、構築した識別モデルを用いて各iPS細胞株における61種類の遺伝子発現プロファイルから分化効率予測のスコアリングを行うと、実際に分化効率が高かった株と低かった株で明確に差があることも確認した(図8)。図8は、遺伝子発現プロファイルによる分化能の予測スコアを示す図であり、縦軸は予測スコア(Prediction Score)を示している。予測スコアが大きいほど、分化能が高い(分化効率が例えば、20%以上である)ことが予想されることを意味する。
 以上説明したように、本発明は、未分化のiPS細胞の遺伝子発現データに基づいて、該未分化iPS細胞の軟骨細胞への分化能を予測する方法である。
 また、本発明は、未分化のiPS細胞の遺伝子発現データに基づいて、該iPS細胞の神経堤細胞(NC細胞)への分化能を予測し、それにより該未分化iPS細胞の軟骨細胞への分化能を予測する方法である。
 前記未分化のiPS細胞は、フィーダーフリー化状態のものであり得る。前記未分化のiPS細胞は、神経堤細胞(NC細胞)に分化する前の未分化状態のものである。
 前記遺伝子が、遺伝子ID (Unique Sorted Transcript Cluster ID)で表して、
 発現減少の遺伝子として、16713399、16984394、17121974、17122170、16860191、16999432、17121970、17065663、17028547、17022610、17035441、16825196、16946689、16906788、16700250、17048704、16729023、16938761、16885703、17000077、16917881、16809811、16684087、17092402、16826158、17038957、16684995、17103991、16897399、及び16696918; 及び
 発現亢進の遺伝子として、16788743、16788693、16788572、17118804、16662749、17100659、16747661、17083911、16788727、16692589、16729321、16976012、16697219、16798158、16990845、17118850、16830980、16778675、17110283、16851422、16797049、16838105、16831379、16875952、17117410、17103230、16999147、16688792、16718764、17072022、及び16679331;
からなる群から少なくとも1つ選ばれ得る。
 より具体的には、本発明において、
 対象とする未分化のiPS細胞の遺伝子発現プロファイルデータを取得し、各遺伝子の発現量を得て、
 基準となる分化能の低い未分化のiPS細胞(コントロール)の前記各遺伝子の発現量に対する発現量の比率:
 [発現量の比率]=[対象とする未分化iPS細胞の各遺伝子発現量]/[基準となる分化能の低い未分化のiPS細胞(コントロール)の各遺伝子発現量]
を算出し、
 算出された前記発現量の比率が、前記発現減少の遺伝子については、0.9より小さい場合に、前記発現亢進の遺伝子については、1.1より大きい場合に、前記対象とする未分化iPS細胞は軟骨細胞への分化能が高いと判断する。この際、判断基準とする値については、当業者が適宜選択できるであろう。例えば、算出された前記発現量の比率が、前記発現減少の遺伝子については、0.8より小さい場合、0.7より小さい場合、あるいは0.6より小さい場合に、前記対象とする未分化iPS細胞は軟骨細胞への分化能が高いと判断してもよい。また、算出された前記発現量の比率が、前記発現亢進の遺伝子については、1.2より大きい場合、1.3より大きい場合、あるいは1.5より大きい場合に、前記対象とする未分化iPS細胞は軟骨細胞への分化能が高いと判断してもよい。
 対象とする未分化のiPS細胞の遺伝子発現プロファイルデータを取得し、当業者が適宜選択した遺伝子セットの発現量を得て、前述のOPLS法による多変量解析をすることによって、識別モデルを構築し、モデルから算出した予測スコアを算出しても各iPS細胞の分化能を判断することができる。その場合の判断基準としては、分化能の低い未分化のiPS細胞(コントロール)から算出した予測スコアの平均値を算出し、例えば、
[平均値+2×標準偏差]の値を基準値として設定するなどで当業者が適宜規定できるであろう。
 基準となる分化能の低い未分化のiPS細胞(コントロール)は、当業者が適宜選択できるであろう。本明細書においては、分化能の低い未分化のiPS細胞(コントロール)として、NC細胞への分化効率が低い細胞群(409B2, 610B1, TIG118-4f1, TIG107-4f1)の平均値を用いる例を示した。これら4株に限らず、この種のNC細胞への分化効率が低く且つ未分化のiPS細胞であれば、コントロールとして用いることができるであろう。
 未分化のiPS細胞を神経堤細胞(NC細胞)へと分化誘導する方法や、神経堤細胞(NC細胞)を軟骨前駆細胞、さらに軟骨細胞へと分化誘導する方法は知られており、例えば、特開2016-88909号公報等を参照することができる。
 例えば、iPS細胞をマトリゲル(Becton Dickinson社製)上でmTeSR培地中(Stem-Cell Technologies社製)で9日間培養する。9日目に最初のNC細胞への分化誘導培地中で6日間培養する。その後、0.05% trypsin-EDTAを用いて細胞を回収し、フィブロネクチンコートされたディッシュ上に再播種後、3日ごとに継代作業を3回行うことで軟骨前駆細胞へと分化誘導させる。これらの細胞を、成長因子であるPDGF-BB, TGFβ3, BMP4を含む軟骨分化誘導培地を用いて培養することで軟骨細胞が得られる。
 以下に実施例を示し、本発明を具体的に説明するが、本発明は実施例に制限されるものではない。
[実験例1]
 この例では、ヒトの体細胞由来の10種の未分化の各iPS細胞株(201B2, 201B7, 414C2, 409B2, TIG118-4f1, 604A1, 606A1, 610B1, 451F3, TIG107-4f1)を用いた。
 フィーダー細胞上(オンフィーダー)で培養しているヒトの体細胞由来の上記各iPS細胞をマトリゲル(マトリゲル グロースファクター リデュースト、コーニング社製)でコートした培養dishに再播種(継代比率1:5)し、フィーダーフリー用培地(mTeSR1, ベリタス社製)を用いて一週間培養した。
 一週間後に、培地を除去し、PBSで洗浄した後、培養細胞にRNA抽出バッファー(RLTバッファー(キアゲン社製)+5%メルカプトエタノール)を1mL添加してRNAを回収した。抽出RNAからcRNA, ssDNA(single-strand cDNA)の合成を行い、uracil DNA glycosylaseとapurinic/apyrimidinic endonuclease 1を用いて断片化した。次に、断片化されたssDNAをビオチン標識し、GeneChip(R) Human Gene 2.0 ST Array (Thermo Fisher SCIENTIFIC 社製)へ17時間ハイブリダイゼーションさせた後、洗浄・染色後、スキャナーで蛍光を読み取ることで、遺伝子の発現データを得た。
 得られた発現データから、表1及び2に示された遺伝子の発現量を抽出し、識別モデル(アルゴリズム)に適用することで分化効率の予測スコアを算出した(図8)。予測スコアが大きいほど、そのiPS細胞はCD271high+  NC細胞の産生効率(分化能)が高いと予想されることを意味する。
[実験例2]
 この例では、遺伝子発現プロファイルを用いた未分化iPS細胞の分化能評価アルゴリズムの汎用性について確認した。
 ヒトの体細胞由来の10種の未分化の各iPS細胞株(201B6, 253G4, 404C2, 454E2, 585A1, 585B1, 604A3, 604B1, 606A1, 610A2)を用いた。
 フィーダー細胞上(オンフィーダー)で培養しているヒトの体細胞由来の上記各iPS細胞をマトリゲル(マトリゲル グロースファクター リデュースト、コーニング社製)でコートした培養dishに再播種(継代比率1:5)し、フィーダーフリー用培地(mTeSR1, ベリタス社製)を用いて一週間培養した。
 一週間後に、培地を除去し、PBSで洗浄した後、培養細胞にRNA抽出バッファー(RLTバッファー(キアゲン社製)+5%メルカプトエタノール)を1mL添加してRNAを回収した。抽出RNAからcRNA, ssDNA(single-strand cDNA)の合成を行い、uracil DNA glycosylaseとapurinic/apyrimidinic endonuclease 1を用いて断片化した。次に、断片化されたssDNAをビオチン標識し、GeneChip(R) Human Gene 2.0 ST Array (Thermo Fisher SCIENTIFIC 社製)へ17時間ハイブリダイゼーションさせた後、洗浄・染色後、スキャナーで蛍光を読み取ることで、遺伝子発現プロファイルデータを取得した。
 取得した遺伝子プロファイルデータより、細胞評価アルゴリズムを用いて分化効率の予測スコア(Prediction Score)を算出した(図9)。図9は、遺伝子発現プロファイルによる分化能の予測スコアを示す図であり、縦軸は予測スコア(Prediction Score)を示している。
 他方で、上記未分化の各iPS細胞株から神経堤細胞(NC細胞)に分化誘導した。分化誘導させたNC細胞におけるp75高発現NC細胞の割合を蛍光フローサイトメトリー(FACS)により解析し、その際のCD271high+ NC細胞の割合をNC分化効率として算出した。p75は、低親和性神経成長因子受容体である。図10は、各iPS細胞株におけるNC細胞への分化効率[NC induction efficiency (CD271high+ (%))]を示す図である。縦軸は、NC細胞中に占めるCD271high+ NC細胞の割合を示す。図10に示すように、結果として、NC細胞への分化効率が高いiPS細胞群(Good clone;6株:201B6, 253G4, 604A3, 604B1, 606A1, 610A2)と、NC細胞への分化効率が低いiPS細胞群(Poor clone;4株:404C2, 454E2, 585A1, 585B1)とに分かれることが分かった。なお、ここでは、NC細胞中に含まれるCD271high+ NC細胞の割合が20%以上である場合に、NC細胞への分化効率が高いものとした。
 そこで、これら10種の各iPS細胞株に対して得られた予測スコアを、NC細胞への分化効率が高いiPS細胞群(Good clone)とNC細胞への分化効率が低いiPS細胞群(Poor clone)とで比較をすると、分化効率が高い群(Good clone)で予測スコアが有意に亢進していることを確認した(図11)。p=2.1E-05(すなわち、p=2.1x10-5)であった。図11は、分化効率が高いiPS細胞群(Good clone)と分化効率が低いiPS細胞群(Poor clone)の間での予測スコア(Prediction Score)の比較を示す図である。
 さらに、評価アルゴリズムから算出した予測スコア値を基にROC曲線(Receiver operation characteristic曲線)を作成したところ、識別の性能を表す面積値(AUC:Area under curve)が1であった。このことは、分化効率が未知の未分化iPS細胞に対しても、本発明の評価アルゴリズムによる識別が可能であることを示している(図12)。図12は、遺伝子発現プロファイルから算出した予測スコア値に対するROC曲線であり、横軸は、100-特異度(Specificity)(%)を表し、縦軸は、感度(Sensitivity)(%)を表す。
 以上のことから、本発明による遺伝子発現プロファイルを用いることで、各iPS細胞の分化能をiPS細胞の未分化の段階で予測できることが示された。

Claims (8)

  1.  未分化のiPS細胞の遺伝子発現データに基づいて、該未分化iPS細胞の軟骨細胞への分化能を予測する方法。
  2.  未分化のiPS細胞の遺伝子発現データに基づいて、該iPS細胞の神経堤細胞(NC細胞)への分化能を予測し、それにより該未分化iPS細胞の軟骨細胞への分化能を予測する方法。
  3.  対象とする未分化のiPS細胞の遺伝子発現プロファイルデータを取得し、各遺伝子の発現量を得て、
     基準となる分化能の低い未分化のiPS細胞(コントロール)の前記各遺伝子の発現量に対する発現量の比率:
     [発現量の比率]=[対象とする未分化iPS細胞の各遺伝子発現量]/[基準となる分化能の低い未分化のiPS細胞(コントロール)の各遺伝子発現量]
    を算出し、
     算出された前記発現量の比率が、発現減少の遺伝子については、0.9よりも小さい場合に、発現亢進の遺伝子については、1.1よりも大きい場合に、前記対象とする未分化iPS細胞は軟骨細胞への分化能が高いと判断する、請求項1又は2の方法。
  4.  前記遺伝子が、遺伝子ID (Unique Sorted Transcript Cluster ID)で表して、
     前記発現減少の遺伝子として、16713399、16984394、17121974、17122170、16860191、16999432、17121970、17065663、17028547、17022610、17035441、16825196、16946689、16906788、16700250、17048704、16729023、16938761、16885703、17000077、16917881、16809811、16684087、17092402、16826158、17038957、16684995、17103991、16897399、及び16696918; 及び
     前記発現亢進の遺伝子として、16788743、16788693、16788572、17118804、16662749、17100659、16747661、17083911、16788727、16692589、16729321、16976012、16697219、16798158、16990845、17118850、16830980、16778675、17110283、16851422、16797049、16838105、16831379、16875952、17117410、17103230、16999147、16688792、16718764、17072022、及び16679331;
    からなる群から少なくとも1つ選ばれる、請求項1~3のうちのいずれかの方法。
  5.  対象とする未分化のiPS細胞の遺伝子発現プロファイルデータを取得し、各遺伝子の発現量を得て、識別モデルを構築し、その識別モデルと各遺伝子プロファイルから算出した予測スコアを用いて、該未分化iPS細胞の軟骨細胞への分化能を予測する方法。
  6.  前記未分化のiPS細胞は、フィーダーフリー化状態のものである、請求項1~5のうちのいずれかの方法。
  7.  請求項1~6のうちのいずれかの方法により、未分化iPS細胞の軟骨細胞への分化能を予測し、
     軟骨細胞への分化能が高いと判断された未分化のiPS細胞を、軟骨細胞へと分化誘導する方法。
  8.  遺伝子ID (Unique Sorted Transcript Cluster ID)で表して、
     発現減少の遺伝子として、16713399、16984394、17121974、17122170、16860191、16999432、17121970、17065663、17028547、17022610、17035441、16825196、16946689、16906788、16700250、17048704、16729023、16938761、16885703、17000077、16917881、16809811、16684087、17092402、16826158、17038957、16684995、17103991、16897399、及び16696918; 及び
     発現亢進の遺伝子として、16788743、16788693、16788572、17118804、16662749、17100659、16747661、17083911、16788727、16692589、16729321、16976012、16697219、16798158、16990845、17118850、16830980、16778675、17110283、16851422、16797049、16838105、16831379、16875952、17117410、17103230、16999147、16688792、16718764、17072022、及び16679331;
    からなる群から少なくとも1つ選ばれる、未分化iPS細胞の軟骨細胞への分化能を予測するための遺伝子マーカー。
PCT/JP2018/022116 2017-06-10 2018-06-08 iPS細胞の遺伝子発現プロファイルによる軟骨細胞への分化能予測方法 WO2018225868A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/620,647 US11603563B2 (en) 2017-06-10 2018-06-08 Method of predicting differentiation potential of iPS cells into cartilage cells based on gene expression profiles
JP2019523997A JPWO2018225868A1 (ja) 2017-06-10 2018-06-08 iPS細胞の遺伝子発現プロファイルによる軟骨細胞への分化能予測方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017114804 2017-06-10
JP2017-114804 2017-06-10

Publications (1)

Publication Number Publication Date
WO2018225868A1 true WO2018225868A1 (ja) 2018-12-13

Family

ID=64566847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022116 WO2018225868A1 (ja) 2017-06-10 2018-06-08 iPS細胞の遺伝子発現プロファイルによる軟骨細胞への分化能予測方法

Country Status (3)

Country Link
US (1) US11603563B2 (ja)
JP (1) JPWO2018225868A1 (ja)
WO (1) WO2018225868A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020115771A (ja) * 2019-01-22 2020-08-06 国立大学法人京都大学 多能性幹細胞から軟骨組織を製造する方法
JPWO2021005729A1 (ja) * 2019-07-09 2021-01-14

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11282096B2 (en) * 2020-01-31 2022-03-22 Capital One Services, Llc Methods and systems for collecting survey feedback data

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532047A (ja) * 2006-04-03 2009-09-10 ノバルティス アクチエンゲゼルシャフト 慢性同種移植腎症についての予測バイオマーカー
JP2013545439A (ja) * 2010-09-17 2013-12-26 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 多能性幹細胞の有用性および安全性の特徴決定を行うための機能的ゲノミクスアッセイ
JP2016088909A (ja) * 2014-11-07 2016-05-23 国立大学法人京都大学 軟骨過形成疾患の予防および治療剤ならびにそのスクリーニング方法
JP2016528892A (ja) * 2013-07-23 2016-09-23 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 体細胞の神経堤細胞への低分子による変換
JP2016532435A (ja) * 2013-06-10 2016-10-20 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 多能性幹細胞の有用性および安全性を特徴付けるための初期発生ゲノムアッセイ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532047A (ja) * 2006-04-03 2009-09-10 ノバルティス アクチエンゲゼルシャフト 慢性同種移植腎症についての予測バイオマーカー
JP2013545439A (ja) * 2010-09-17 2013-12-26 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 多能性幹細胞の有用性および安全性の特徴決定を行うための機能的ゲノミクスアッセイ
JP2016532435A (ja) * 2013-06-10 2016-10-20 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 多能性幹細胞の有用性および安全性を特徴付けるための初期発生ゲノムアッセイ
JP2016528892A (ja) * 2013-07-23 2016-09-23 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 体細胞の神経堤細胞への低分子による変換
JP2016088909A (ja) * 2014-11-07 2016-05-23 国立大学法人京都大学 軟骨過形成疾患の予防および治療剤ならびにそのスクリーニング方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE Nucleotide [O] National Center for Biotechnology Information; 5 May 2017 (2017-05-05), "Homo sapiens zinc finger protein 91 pseudogene (LOC441666), non-coding RNA", XP055565951, Database accession no. NR-024380.1 *
GUZZO, R. M. ET AL.: "Establishment of Human cell Type-Specific iPS cells with Enhanced Chondrogenic Potential", STEM CELL REVIEWS AND REPORTS, vol. 10, no. 6, December 2014 (2014-12-01), pages 820 - 829, XP055564627 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020115771A (ja) * 2019-01-22 2020-08-06 国立大学法人京都大学 多能性幹細胞から軟骨組織を製造する方法
JP7269620B2 (ja) 2019-01-22 2023-05-09 国立大学法人京都大学 多能性幹細胞から軟骨組織を製造する方法
JPWO2021005729A1 (ja) * 2019-07-09 2021-01-14
WO2021005729A1 (ja) * 2019-07-09 2021-01-14 株式会社島津製作所 iPS細胞の分化効率予測モデルの構築方法及びiPS細胞の分化効率予測方法
JP7185243B2 (ja) 2019-07-09 2022-12-07 株式会社島津製作所 iPS細胞の分化効率予測モデルの構築方法及びiPS細胞の分化効率予測方法

Also Published As

Publication number Publication date
US20200140946A1 (en) 2020-05-07
JPWO2018225868A1 (ja) 2020-04-09
US11603563B2 (en) 2023-03-14

Similar Documents

Publication Publication Date Title
Karst et al. Retrieval of a million high-quality, full-length microbial 16S and 18S rRNA gene sequences without primer bias
Bagnoli et al. Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq
Kotopka et al. Model-driven generation of artificial yeast promoters
WO2018225868A1 (ja) iPS細胞の遺伝子発現プロファイルによる軟骨細胞への分化能予測方法
Alberti et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition
Sasagawa et al. Quartz-Seq2: a high-throughput single-cell RNA-sequencing method that effectively uses limited sequence reads
Stoeckius et al. Simultaneous epitope and transcriptome measurement in single cells
Wang et al. Advances and applications of single-cell sequencing technologies
CN111315884B (zh) 测序文库的归一化
Mohamed et al. Generation of an E. coli platform strain for improved sucrose utilization using adaptive laboratory evolution
De Mandal et al. Microbial ecology in the era of next generation sequencing
US20200080148A1 (en) Cell characterisation
Turaev et al. High definition for systems biology of microbial communities: metagenomics gets genome-centric and strain-resolved
CN110218807A (zh) 土壤三域微生物高通量绝对定量方法
CN111863127A (zh) 一种构建植物转录因子对靶基因遗传调控网络的方法
CN103789424A (zh) 间充质干细胞体外传代基因组稳定性检测方法
JP5243021B2 (ja) 間葉系幹細胞などの細胞を検出するための遺伝子マーカー
TAŞKIRAN et al. Transcriptome analysis reveals differentially expressed genes between human primary bone marrow mesenchymal stem cells and human primary dermal fibroblasts
CN104561244A (zh) 基于二代测序技术的微生物单细胞转录组分析方法
CN108486269A (zh) 一种鉴定毛栓孔菌s0301中同核体菌株的方法
CN104560974B (zh) 获得嗜热链球菌特异性序列的方法及其使用的半随机引物
Hu et al. A positive correlation between bacterial GC content and growth temperature
WO2017171097A1 (ja) 未分化細胞間における分化傾向の評価方法、分化傾向の評価マーカーとしてのSALL3 mRNA、及び、未分化細胞の分化能力の制御方法
Giguere Applications of nanopore DNA sequencing for improved genome assembly
Kaykov et al. Analysis of Fission Yeast Single DNA Molecules on the Megabase Scale Using DNA Combing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523997

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813911

Country of ref document: EP

Kind code of ref document: A1