WO2018225386A1 - 光学装置、描画及び消去装置、ならびに照射方法 - Google Patents

光学装置、描画及び消去装置、ならびに照射方法 Download PDF

Info

Publication number
WO2018225386A1
WO2018225386A1 PCT/JP2018/015877 JP2018015877W WO2018225386A1 WO 2018225386 A1 WO2018225386 A1 WO 2018225386A1 JP 2018015877 W JP2018015877 W JP 2018015877W WO 2018225386 A1 WO2018225386 A1 WO 2018225386A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
recording medium
erasing
reversible
reversible recording
Prior art date
Application number
PCT/JP2018/015877
Other languages
English (en)
French (fr)
Inventor
栗原 研一
綾 首藤
暢一 平井
雄紀 大石
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP18813876.2A priority Critical patent/EP3636443B1/en
Priority to US16/619,598 priority patent/US10919329B2/en
Priority to CN201880036110.XA priority patent/CN110730720B/zh
Priority to JP2019523378A priority patent/JPWO2018225386A1/ja
Publication of WO2018225386A1 publication Critical patent/WO2018225386A1/ja
Priority to US17/166,455 priority patent/US20210162792A1/en
Priority to JP2022068551A priority patent/JP2022093420A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/475Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material for heating selectively by radiation or ultrasonic waves
    • B41J2/4753Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material for heating selectively by radiation or ultrasonic waves using thermosensitive substrates, e.g. paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/455Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using laser arrays, the laser array being smaller than the medium to be recorded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/475Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material for heating selectively by radiation or ultrasonic waves
    • B41J2/4753Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material for heating selectively by radiation or ultrasonic waves using thermosensitive substrates, e.g. paper
    • B41J2002/4756Erasing by radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/30Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using chemical colour formers
    • B41M5/305Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using chemical colour formers with reversible electron-donor electron-acceptor compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • B41M7/0009Obliterating the printed matter; Non-destructive removal of the ink pattern, e.g. for repetitive use of the support

Definitions

  • the present disclosure relates to an optical device, a drawing and erasing device, and an irradiation method.
  • Thermal recording media using thermal coloring compositions such as leuco dyes are widespread (see, for example, Patent Documents 1 to 3).
  • Patent Documents 1 to 3 an irreversible recording medium that cannot be erased once written and a reversible recording medium that can be rewritten any number of times have been put into practical use.
  • a reversible recording medium single color display has been put into practical use, while full color display has not been put into practical use yet.
  • An optical apparatus is an apparatus that performs at least one of writing and erasing information on a reversible recording medium.
  • the reversible recording medium includes a plurality of recording units including a reversible thermosensitive coloring composition and a photothermal conversion agent.
  • the color tone of each reversible thermosensitive color-forming composition varies from recording unit to recording unit
  • the absorption wavelength of each photothermal conversion agent varies from recording unit to recording unit in the near infrared region (700 nm to 2500 nm).
  • the optical device includes a plurality of laser elements having different emission wavelengths in the near-infrared region, an optical system for combining laser beams emitted from the plurality of laser elements, and a reversible combined light obtained by combining the optical systems.
  • a scanner unit that scans on a recording medium.
  • a drawing and erasing apparatus includes a plurality of laser elements having different emission wavelengths in the near-infrared region, an optical system that combines laser beams emitted from the plurality of laser elements, and an optical system.
  • a scanner unit that scans the multiplexed light obtained by the multiplexing on a reversible recording medium.
  • a drawing method includes a plurality of recording units including a reversible thermosensitive color forming composition and a photothermal conversion agent, and the color tone of each reversible thermosensitive color developing composition varies from recording unit to recording unit.
  • the following is performed on the reversible recording medium in which the absorption wavelength of each photothermal conversion agent is different in the near infrared region (700 nm to 2500 nm) for each recording portion.
  • laser beams emitted from a plurality of laser elements having different emission wavelengths in the near infrared region are combined and obtained
  • the combined light is scanned on the reversible recording medium.
  • the energy required for writing and erasing is reduced, so that deformation of the recording medium can be suppressed.
  • the effect of this indication is not necessarily limited to the effect described here, Any effect described in this specification may be sufficient.
  • FIG. 1 illustrates a system configuration example of a drawing apparatus 1 according to the present embodiment.
  • the drawing apparatus 1 writes and erases information with respect to the reversible recording medium 100. First, the reversible recording medium 100 will be described, and then the drawing apparatus 1 will be described.
  • FIG. 2 shows a configuration example of each layer included in the reversible recording medium 100.
  • the reversible recording medium 100 includes a plurality of recording layers 133 having different color tone.
  • the recording layer 113 corresponds to a specific example of “recording unit” of the present disclosure.
  • the reversible recording medium 100 has, for example, a structure in which recording layers 113 and heat insulating layers 114 are alternately stacked on a substrate 110.
  • the reversible recording medium 100 includes, for example, an underlayer 112, three recording layers 113 (113a, 113b, 113c), two heat insulating layers 114 (114a, 114b), and a protective layer 115 on a substrate 110. It has.
  • the three recording layers 13 (113a, 113b, 113c) are arranged in the order of the recording layer 113a, the recording layer 113b, and the recording layer 113c from the base 110 side.
  • the two heat insulating layers 114 (114a, 114b) are arranged in the order of the heat insulating layer 114a and the heat insulating layer 114b from the base 110 side.
  • the foundation layer 112 is formed in contact with the surface of the substrate 110.
  • the protective layer 115 is formed on the outermost surface of the reversible recording medium 100.
  • the substrate 110 supports each recording layer 113 and each heat insulating layer 114.
  • the base material 110 functions as a substrate for forming each layer on the surface.
  • the base material 110 may transmit light or may not transmit light. When light is not transmitted, the color of the surface of the substrate 110 may be white or a color other than white, for example.
  • the base material 110 is made of, for example, an ABS resin.
  • the underlayer 112 has a function of improving the adhesion between the recording layer 113a and the substrate 110.
  • the underlayer 112 is made of, for example, a material that transmits light.
  • the three recording layers 113 are capable of reversibly changing the state between the colored state and the decolored state.
  • the three recording layers 113 (113a, 113b, 113c) are configured such that the colors in the colored state are different from each other.
  • Each of the three recording layers 113 (113a, 113b, 113c) includes a leuco dye 100A (reversible thermosensitive coloring composition) and a photothermal conversion agent 100B (photothermal conversion agent) that generates heat during writing. Has been.
  • Each of the three recording layers 13 (113a, 113b, 113c) further includes a developer and a polymer.
  • the leuco dye 100A is combined with the developer by heat to be in a colored state, or separated from the developer to be in a decolored state.
  • the color tone of the leuco dye 100A included in each recording layer 113 (113a, 113b, 113c) is different for each recording layer 113.
  • the leuco dye 100A contained in the recording layer 113a develops a magenta color by being combined with the developer by heat.
  • the leuco dye 100A contained in the recording layer 113b develops a cyan color by being combined with the developer by heat.
  • the leuco dye 100A included in the recording layer 113c is colored yellow by being combined with the developer by heat.
  • the positional relationship between the three recording layers 113 (113a, 113b, 113c) is not limited to the above example.
  • the three recording layers 113 (113a, 113b, 113c) are transparent in the decolored state. As a result, the reversible recording medium 100 can record an image using a color in a wide color gamut.
  • the photothermal conversion agent 100B absorbs light in the near infrared region (700 nm to 2500 nm) and generates heat.
  • the near-infrared region refers to a wavelength band of 700 nm to 2500 nm.
  • the absorption wavelengths of the photothermal conversion agent 100B included in each recording layer 113 (113a, 113b, 113c) are different from each other in the near infrared region (700 nm to 2500 nm).
  • FIG. 3 shows an example of the absorption wavelength of the photothermal conversion agent 100B included in each recording layer 113 (113a, 113b, 113c).
  • the photothermal conversion agent 100B included in the recording layer 113c has an absorption peak at 800 nm as shown in FIG.
  • the photothermal conversion agent 110B included in the recording layer 113b has an absorption peak at 860 nm, for example, as shown in FIG.
  • the photothermal conversion agent 100B included in the recording layer 113a has an absorption peak at 915 nm as shown in FIG.
  • the absorption peak of the photothermal conversion agent 100B included in each recording layer 113 (113a, 113b, 113c) is not limited to the above example.
  • the heat insulating layer 114a is for making it difficult for heat to be transmitted between the recording layer 113a and the recording layer 113b.
  • the heat insulating layer 114b is for making it difficult for heat to be transmitted between the recording layer 113b and the recording layer 113c.
  • the protective layer 115 is for protecting the surface of the reversible recording medium 100 and functions as an overcoat layer of the reversible recording medium 100.
  • the two heat insulating layers 114 (114a, 114b) and the protective layer 115 are made of a transparent material.
  • the reversible recording medium 100 may include, for example, a resin layer having a relatively high rigidity (for example, a PEN resin layer) immediately below the protective layer 115.
  • a paint containing the following materials was dispersed for 2 hours using a rocking mill.
  • the paint obtained thereby was applied with a wire bar and subjected to a heat drying treatment at 70 ° C. for 5 minutes. In this way, a recording layer 13 having a thickness of 3 ⁇ m was formed.
  • the paint for forming the recording layer 113a includes the following materials. ⁇ Leuco dye (2 parts by weight) ⁇ Developing / color-reducing agent (4 parts by weight) ⁇ Vinyl chloride vinyl acetate copolymer (5 parts by weight) 90% vinyl chloride, 10% vinyl acetate, average molecular weight (M.W.) 115000 ⁇ Methyl ethyl ketone (MEK) (91 parts by weight) -Photothermal conversion agent Cyanine infrared absorbing dye: 0.19 parts by weight (manufactured by HW SANDS, SDA7775, absorption wavelength peak: 933 nm)
  • the paint for forming the recording layer 113b includes the following materials. ⁇ Leuco dye (1.8 parts by weight) ⁇ Developing / color-reducing agent (4 parts by weight) ⁇ Vinyl chloride vinyl acetate copolymer (5 parts by weight) 90% vinyl chloride, 10% vinyl acetate, average molecular weight (M.W.) 115000 ⁇ Methyl ethyl ketone (MEK) (91 parts by weight) -Photothermal conversion agent Cyanine-based infrared absorbing dye: 0.12 parts by weight (manufactured by HW SANDS, SDA5688, absorption wavelength peak 861 nm)
  • the paint for forming the recording layer 113c includes the following materials. ⁇ Leuko dye 100A (1.3 parts by weight) ⁇ Developing / color-reducing agent (4 parts by weight) ⁇ Vinyl chloride vinyl acetate copolymer (5 parts by weight) 90% vinyl chloride, 10% vinyl acetate, average molecular weight (M.W.) 115000 ⁇ Methyl ethyl ketone (MEK) (91 parts by weight) -Photothermal conversion agent Cyanine infrared absorbing dye: 0.10 parts by weight (manufactured by Nippon Kayaku, CY-10, absorption wavelength peak 798 nm)
  • a polyvinyl alcohol aqueous solution was applied and dried. In this way, a heat insulating layer 114 having a thickness of 20 ⁇ m was formed. Moreover, after apply
  • the drawing apparatus 1 includes a signal processing circuit 10, a laser drive circuit 20, a light source unit 30, an adjustment mechanism 40, a scanner drive circuit 50, and a scanner unit 60.
  • the signal processing circuit 10 for example, together with the laser driving circuit 20, according to the characteristics of the reversible recording medium 100 and the conditions written to the reversible recording medium 100, for example, the light source unit 30 (for example, each of the light sources 31A and 31B described later). , 31C) is controlled.
  • the signal processing circuit 10 generates an image signal in accordance with characteristics such as the wavelength of laser light in synchronization with the scanner operation of the scanner unit 50 from the image signal Din input from the outside.
  • the drawing apparatus 1 writes to the reversible recording medium 100
  • the image signal Din includes image data to be written to the reversible recording medium 100.
  • the drawing apparatus 1 erases the written information from the reversible recording medium 10
  • the image signal Din includes image data for erasing the image written on the reversible recording medium 100. Yes.
  • the signal processing circuit 10 converts the input image signal Din into an image signal corresponding to the wavelength of each light source of the light source unit 30 (color gamut conversion), for example.
  • the signal processing circuit 10 generates a projection video clock signal synchronized with the scanner operation of the scanner unit 50.
  • the signal processing circuit 10 generates a projection image signal in which laser light is emitted according to the generated image signal.
  • the signal processing circuit 10 outputs the generated projection image signal to the laser driving circuit 20.
  • the signal processing circuit 10 outputs a projection image clock signal to the laser driving circuit 20 as necessary, for example.
  • “as necessary” means a case where a projection image clock signal is used when synchronizing a signal source of a high-frequency signal with an image signal, as will be described later.
  • the laser drive circuit 20 drives each light source 31A, 31B, 31C of the light source unit 30 according to a projection video signal corresponding to each wavelength, for example.
  • the laser driving circuit 20 controls the brightness (brightness and darkness) of the laser beam in order to draw an image corresponding to the projection image signal.
  • the laser drive circuit 20 includes, for example, a drive circuit 20A that drives the light source 31A, a drive circuit 20B that drives the light source 31B, and a drive circuit 20C that drives the light source 31C.
  • the light sources 31A, 31B, and 31C emit laser light in the near infrared region.
  • the light source 31A is, for example, a semiconductor laser that emits laser light La having an emission wavelength ⁇ 1.
  • the light source 31B is, for example, a semiconductor laser that emits laser light Lb having an emission wavelength ⁇ 2.
  • the light source 31C is, for example, a semiconductor laser that emits laser light Lc having an emission wavelength ⁇ 3.
  • the emission wavelengths ⁇ 1, ⁇ 2, and ⁇ 3 satisfy the following formulas (1), (2), and (3), for example.
  • ⁇ a1 is the absorption wavelength (absorption peak wavelength) of the recording layer 113a, for example, 915 nm.
  • ⁇ a2 is the absorption wavelength (absorption peak wavelength) of the recording layer 113b, for example, 860 nm.
  • ⁇ a3 is the absorption wavelength (absorption peak wavelength) of the recording layer 113c, for example, 800 nm.
  • “ ⁇ 10 nm” in the formulas (1), (2), and (3) means an allowable error range.
  • the light source unit 30 has a plurality of light sources having different emission wavelengths in the near infrared region.
  • the light source unit 30 includes, for example, three light sources 31A, 31B, and 31C.
  • the light source unit 30 further includes, for example, an optical system that combines laser beams emitted from a plurality of light sources (for example, three light sources 31A, 31B, and 31C).
  • the light source unit 30 includes, for example, two reflection mirrors 32a and 32d, two dichroic mirrors 32b and 32c, and a lens 32e.
  • the laser beams La and Lb emitted from the two light sources 31A and 31B are made into substantially parallel light (collimated light) by, for example, a collimating lens. Thereafter, for example, the laser beam La is reflected by the reflection mirror 32a and reflected by the dichroic mirror 32b, and the laser beam Lb is transmitted through the dichroic mirror 32b, whereby the laser beam La and the laser beam La are combined.
  • the combined light of the laser beam La and the laser beam La passes through the dichroic mirror 32c.
  • the laser light Lc emitted from the light source 31C is made into substantially parallel light (collimated light) by, for example, a collimating lens. Thereafter, the laser beam Lc is reflected by, for example, the reflection mirror 32d and reflected by the dichroic mirror 32c. Thereby, the combined light transmitted through the dichroic mirror 32c and the laser light Lc reflected by the dichroic mirror 32c are combined.
  • the light source unit 32 outputs, for example, combined light Lm obtained by combining by the optical system described above to the scanner unit 50.
  • the adjustment mechanism 40 is a mechanism for adjusting the focus of the combined light Lm emitted from the light source unit 32.
  • the adjustment mechanism 40 is a mechanism that adjusts the position of the lens 32e by a manual operation by a user, for example.
  • the adjustment mechanism 40 may be a mechanism that adjusts the position of the lens 32e by a machine operation.
  • the scanner driving circuit 50 drives the scanner unit 50 in synchronization with the projection video clock signal input from the signal processing circuit 10, for example. Further, for example, when a signal regarding an irradiation angle of a below-described biaxial scanner 61 or the like is input from the scanner unit 60, the scanner driving circuit 40 makes a desired irradiation angle based on the signal. The scanner unit 60 is driven.
  • the scanner unit 60 scans the combined light Lm incident from the light source unit 30 line-sequentially on the surface of the reversible recording medium 100, for example.
  • the scanner unit 60 includes, for example, a biaxial scanner 61 and an f ⁇ lens 62.
  • the biaxial scanner 61 is a galvanometer mirror, for example.
  • the f ⁇ lens 62 converts the constant speed rotation motion by the biaxial scanner 61 into a constant speed linear motion of a spot moving on the focal plane (the surface of the reversible recording medium 100).
  • the reversible recording medium 100 is prepared and set in the drawing apparatus 1 (step S101, FIG. 4).
  • the drawing apparatus 1 emits laser light from at least one of the light sources 31A, 31B, and 31C, and scans the reversible recording medium 100 (step S102, FIG. 4).
  • the light source unit 30 emits laser beams from at least two of the light sources 31A, 31B, and 31C, the laser beams emitted from the two light sources are combined and output. .
  • the light source unit 30 is a laser beam under the condition that the temperature of the recording layer 113 to be written is set to be higher than the coloring temperature due to heat generated by the photothermal conversion agent 100B. Is output.
  • a laser beam La having an emission wavelength of 800 nm is absorbed by the photothermal conversion agent 100B in the recording layer 113c, whereby the leuco dye 100A in the recording layer 113c reaches the writing temperature due to heat generated from the photothermal conversion agent 100B. Arrives and combines with the developer to develop a yellow color.
  • the color density of yellow depends on the intensity of the laser beam La having an emission wavelength of 800 nm.
  • laser light Lb having an emission wavelength of 860 nm is absorbed by the photothermal conversion agent 100B in the recording layer 113b, whereby the leuco dye 100A in the recording layer 113b reaches the writing temperature due to heat generated from the photothermal conversion agent 100B.
  • the cyan color density depends on the intensity of the laser beam Lb having an emission wavelength of 860 nm. Further, for example, laser light Lc having an emission wavelength of 915 nm is absorbed by the photothermal conversion agent 100B in the recording layer 113a, whereby the leuco dye 100A in the recording layer 113a reaches the writing temperature due to heat generated from the photothermal conversion agent 100B.
  • a magenta color is developed. The magenta color density depends on the intensity of the laser beam Lc having an emission wavelength of 915 nm. As a result, a desired color is developed by a mixture of yellow, cyan, and magenta. In this way, the drawing apparatus 1 writes information in the reversible recording medium 100.
  • the reversible recording medium 100 in which information is written as described above is prepared and set in the erasing apparatus 1 (step S101, FIG. 4).
  • the drawing apparatus 1 emits laser light from at least one of the light sources 31A, 31B, and 31C, and scans the reversible recording medium 100 (step S102, FIG. 4).
  • the light source unit 30 emits laser beams from at least two of the light sources 31A, 31B, and 31C
  • the laser beams emitted from the two light sources are combined and output. .
  • the temperature of the recording layer 113 to be erased becomes higher than the decoloring temperature and lower than the coloring temperature due to heat generated by the photothermal conversion agent 100B.
  • the laser beam is output under the conditions set to.
  • the laser light applied to the reversible recording medium 100 includes laser light La having an emission wavelength of 800 nm
  • the laser light La having an emission wavelength of 800 nm is absorbed by the photothermal conversion agent 100B in the recording layer 113c.
  • the leuco dye 100A in the recording layer 113c reaches the decoloring temperature or higher and lower than the coloring temperature by the heat generated from the photothermal conversion agent 100B, and is decolorized by being separated from the developer.
  • the laser light irradiated on the reversible recording medium 100 includes the laser light Lb having an emission wavelength of 860 nm
  • the laser light Lb having an emission wavelength of 860 nm is absorbed by the photothermal conversion agent 100B in the recording layer 113b.
  • the leuco dye 100A in the recording layer 113b reaches the decoloring temperature or higher and lower than the coloring temperature by the heat generated from the photothermal conversion agent 100B, and is decolorized by being separated from the developer.
  • the laser light irradiated on the reversible recording medium 100 includes the laser light Lc having the emission wavelength of 915 nm
  • the laser light Lc having the emission wavelength of 915 nm is absorbed by the photothermal conversion agent 100B in the recording layer 113a.
  • the leuco dye 100A in the recording layer 113a reaches the decoloring temperature or higher and lower than the coloring temperature due to the heat generated from the photothermal conversion agent 100B, and is decolored by being separated from the developer.
  • the drawing apparatus 1 erases information in the reversible recording medium 100.
  • the drawing apparatus 1 uses the energy density [W / cm 2 ] on the reversible recording medium 100 when erasing the information written on the reversible recording medium 100 to write to the reversible recording medium 100.
  • the signal processing circuit 10 and the laser drive circuit 20 use the above-described control mechanism as a laser power when the light source unit 30 (for example, the light source 31A, the light source 31B, and the light source 31C) is erased. You may provide the mechanism which controls the light source part 30 so that it may become smaller.
  • the signal processing circuit 10 and the laser driving circuit 20 are configured so that the peak value of the output pulse from the light source unit 30 is W1 when writing to the reversible recording medium 100.
  • the peak value of the current pulse supplied to the light source unit 30 may be controlled.
  • the signal processing circuit 10 and the laser driving circuit 20 have, for example, as shown in FIG. 5B, when the reversible recording medium 100 is erased, the peak value of the output pulse from the light source unit 30 is W2 (W2 ⁇
  • the peak value of the current pulse supplied to the light source unit 30 may be controlled so that W1).
  • the signal processing circuit 10 and the laser driving circuit 20 use the light source unit 30 as the above control mechanism so that the irradiation time ⁇ T2 of the laser pulse when the light source unit 30 (for example, the light source 31A, the light source 31B, and the light source 31C) is erased.
  • the light source unit 30 may be controlled so as to be shorter than the irradiation time ⁇ T1 at the time of writing.
  • the signal processing circuit 10 and the laser driving circuit 20 are used in the light source unit 30 (for example, the light source 31A, the light source 31B, and the light source 31C) when writing to the reversible recording medium 100.
  • the pulse width of the current pulse supplied to the light source unit 30 may be controlled so that the irradiation time (pulse width) of the laser pulse at the time of writing becomes ⁇ T1.
  • the signal processing circuit 10 and the laser drive circuit 20 are provided with the light source unit 30 (for example, the light source 31A, the light source 31B, and the light source 31C) when erasing the reversible recording medium 100 as shown in FIG. 6B, for example.
  • the pulse width of the current pulse supplied to the light source unit 30 may be controlled so that the irradiation time (pulse width) of the laser pulse at the time of erasing becomes ⁇ T2 ( ⁇ T2 ⁇ T1).
  • the signal processing circuit 10 and the laser driving circuit 20 have, as the above-described control mechanism, so that the laser pulse at the time of erasing the light source unit 30 (for example, the light source 31A, the light source 31B, and the light source 31C) is rectangular.
  • the light source unit 30 may be controlled so that the laser pulse at the time of writing in the light source unit 30 has a waveform different from the waveform at the time of erasing.
  • the laser pulse when the light source unit 30 for example, the light source 31A, the light source 31B, and the light source 31C) is erased becomes rectangular.
  • the light source unit 30 may be controlled as described above.
  • the signal processing circuit 10 and the laser driving circuit 20 may control the light source unit 30 so that the laser pulse at the time of writing in the light source unit 30 has a triangular shape as shown in FIG. 7B, for example. Good.
  • the signal processing circuit 10 and the scanner driving circuit 50 have the above-described control mechanism in which the scanning speed when erasing the light source unit 30 (for example, the light source 31A, the light source 31B, and the light source 31C) is
  • the scanner driving circuit 50 may be controlled so as to be faster than the scanning speed.
  • the adjustment mechanism 40 may include a mechanism for adjusting the focus of the laser light La, the laser light Lb, the laser light Lc, or the combined light Lm as the control mechanism.
  • the spot diameter at the time of writing of the light source unit 30 (for example, the light source 31A, the light source 31B, and the light source 31C) becomes ⁇ D1.
  • the lens 32e may be adjusted.
  • the signal processing circuit 10 and the laser driving circuit 20, as shown in FIG. 8B for example, adjust the lens 32 e so that the spot diameter when the light source unit 30 is erased is ⁇ D2 ( ⁇ D2> ⁇ D1). You may adjust.
  • FIG. 9 show experimental results of the drawing apparatus 1 according to the example.
  • FIG. 12 and FIG. 13 show experimental results of the drawing apparatus according to the comparative example.
  • Examples 1 to 10 shown in FIG. 9 are experimental results at the time of writing
  • Examples 11 to 20 shown in FIG. 10 are experimental results at the time of erasing.
  • Examples 1, 8 to 10, 11 The reversible recording medium 100 was written / erased under the conditions described below, and the reflection density (OD) was measured. At the time of writing, solid images were written on the reversible recording medium 100 under the conditions of emission wavelengths of 800 nm, 860 nm, and 915 nm, output of 2 W, spot diameter of 70 ⁇ m, and scan speed of 5 m / sec. The reflection density was measured.
  • a solid image written on the reversible recording medium 100 under the conditions of emission wavelengths of 800 nm, 860 nm, and 915 nm, an output of 2 W, a spot diameter of 500 ⁇ m, and a scan speed of 0.5 m / sec, respectively. was erased, and the reflection density after erasure was measured.
  • Examples 2 to 7 In Examples 2 to 7 shown in FIG. 9, laser irradiation is performed on the reversible recording medium 100 under the respective conditions in which the laser power, the spot diameter, and the scanning speed are changed from those in Example 1 shown in FIG. The reflection density after writing was measured.
  • Example 12 to 20 In the examples 12 to 20 shown in FIG. 10, the laser power, the spot diameter, and the scanning speed were changed with respect to the reversible recording medium 100 written in the examples 2 to 10 shown in FIG. Then, the reflection density after erasing when laser irradiation was performed was measured.
  • the reflection density is 0.2 or less, and the solid image written on the reversible recording medium 100 is erased.
  • the energy density of the laser beam that irradiates the reversible recording medium 100 is lowered compared with the writing mode by increasing the spot diameter. As described above, the same device can be rewritten by adjusting the writing condition and the erasing condition.
  • FIG. 11 shows the reflection density of the solid image obtained by irradiating each laser irradiation separately from the short wavelength side under the same conditions as in Examples 1, 5, 6, and 7.
  • Comparative Examples 1 to 4 it was found that the reflection density decreased in comparison with the Examples, and a power of about 2.5 W was required to obtain an equivalent reflection density.
  • the laser beam is irradiated on the same line, and the alignment accuracy is desirably ⁇ 2 ⁇ m or less. To realize this, the apparatus cost increases.
  • FIG. 12 shows the reflection density when each laser irradiation is performed separately from the short wavelength side under the same conditions as in Examples 11, 15, 16, and 17.
  • Comparative Examples 5 to 8 all showed a reflection density of 0.2 or more and were not sufficiently erased.
  • FIG. 13 shows the reflection density when the image was drawn under the conditions of Example 1 and erased with the erasing ceramic bar mounted on the thermal printer. If the scanning speed is decreased and a sufficient amount of heat is applied, the base material (ABS) is deformed. On the other hand, if the scanning speed is increased in order to suppress thermal deformation, unerased parts are generated. From the above results, when erasing a substrate having a low heat-resistant temperature, laser erasing is preferable.
  • Thermal recording media using thermal coloring compositions such as leuco dyes are widespread.
  • an irreversible recording medium that cannot be erased once written and a reversible recording medium that can be rewritten any number of times have been put into practical use.
  • a reversible recording medium single color display has been put into practical use, while full color display has not been put into practical use yet.
  • the recording medium may be deformed.
  • laser beams emitted from a plurality of light sources for example, 31A, 31B, and 31C
  • the combined light Lm is scanned on the reversible recording medium 100.
  • writing efficiency or erasing efficiency is improved from the viewpoint of thermal diffusion as compared with the case where each light source is driven separately in terms of time. This reduces the energy required for writing and erasing. As a result, deformation of the reversible recording medium 100 can be suppressed.
  • the temperature of the recording layer 113 to be written is set to be equal to or higher than the coloring temperature due to heat generated by the photothermal conversion agent 100B.
  • Laser light is output under the conditions. Thereby, laser irradiation can be performed at an energy density necessary for writing, and deformation of the reversible recording medium 100 can be suppressed.
  • the temperature of the recording layer 113 to be erased is equal to or higher than the decoloring temperature due to heat generated by the photothermal conversion agent 100B.
  • Laser light is output under conditions set to be lower than the coloring temperature. Thereby, laser irradiation can be performed at an energy density necessary for erasing, and deformation of the reversible recording medium 100 can be suppressed.
  • the energy density [W / cm 2 ] on the reversible recording medium 100 when erasing information written on the reversible recording medium 100 is the reversible recording medium.
  • the energy density on the reversible recording medium 100 [W / cm 2] is controlled. Thereby, laser irradiation can be performed at an energy density necessary for writing / erasing, and deformation of the reversible recording medium 100 can be suppressed.
  • the laser power at the time of erasing each light source (for example, 31A, 31B, 31C) is higher than the laser power at the time of writing by each light source (for example, 31A, 31B, 31C).
  • Each light source (for example, 31A, 31B, 31C) is controlled to be small. Thereby, the information written in the reversible recording medium 100 can be erased.
  • the laser pulse irradiation time ⁇ T2 at the time of erasing each light source is the same as that at the time of writing to each light source (for example, 31A, 31B, and 31C).
  • Each light source (for example, 31A, 31B, 31C) is controlled so as to be shorter than the irradiation time ⁇ T1.
  • the energy density [W / cm 2 ] on the reversible recording medium 100 when erasing the information written on the reversible recording medium 100 is reversibly recorded when writing to the reversible recording medium 100.
  • the energy density on the medium 100 can be made smaller than [W / cm 2 ].
  • laser irradiation can be performed at an energy density necessary for writing / erasing, and deformation of the reversible recording medium 100 can be suppressed.
  • the laser pulse at the time of erasing each light source is rectangular, and each light source (for example, 31A, 31B, 31C).
  • Each light source (for example, 31A, 31B, and 31C) is controlled so that the laser pulse at the time of writing) has a waveform different from the waveform at the time of erasing.
  • the energy density [W / cm 2 ] on the reversible recording medium 100 when erasing the information written on the reversible recording medium 100 is reversibly recorded when writing to the reversible recording medium 100.
  • the energy density on the medium 100 can be made smaller than [W / cm 2 ].
  • laser irradiation can be performed at an energy density necessary for writing / erasing, and deformation of the reversible recording medium 100 can be suppressed.
  • the scanning speed at the time of erasing each light source (for example, 31A, 31B, 31C) is higher than the scanning speed at the time of writing by each light source (for example, 31A, 31B, 31C).
  • the scanner driving circuit 50 is controlled so as to be faster.
  • the energy density [W / cm 2 ] on the reversible recording medium 100 when erasing the information written on the reversible recording medium 100 is reversibly recorded when writing to the reversible recording medium 100.
  • the energy density on the medium 100 can be made smaller than [W / cm 2 ].
  • laser irradiation can be performed at an energy density necessary for writing / erasing, and deformation of the reversible recording medium 100 can be suppressed.
  • an adjustment mechanism 40 that performs focus adjustment of the laser beam La, the laser beam Lb, the laser beam Lc, or the combined beam Lm is provided.
  • the [W / cm 2] can be made smaller than the energy density on the reversible recording medium 100 when writing to the reversible recording medium 100 [W / cm 2].
  • laser irradiation can be performed at an energy density necessary for writing / erasing, and deformation of the reversible recording medium 100 can be suppressed.
  • the reversible recording medium 100 has the recording layers 113 and the heat insulating layers 114 alternately stacked.
  • the reversible recording medium 100 includes the leuco dye 100A and the photothermal conversion agent 100B. You may be comprised including the microcapsule which contains.
  • each recording layer 113 contains the leuco dye 100A as a reversible thermosensitive coloring composition, but a material different from the leuco dye 100A is used. May be included.
  • the drawing apparatus 1 is configured to write and erase information on the reversible recording medium 100. It may be configured to perform at least one of writing and erasing.
  • this indication can take the following composition.
  • a plurality of recording parts including a reversible thermosensitive color-forming composition and a photothermal conversion agent are provided. 700 nm to 2500 nm) an optical device that performs at least one of writing and erasing of information on different information recording units, A plurality of laser elements having different emission wavelengths in the near infrared region; An optical system for combining the laser beams emitted from the plurality of laser elements; An optical apparatus comprising: a scanner unit that scans the combined light obtained by combining by the optical system on the information recording unit.
  • Each of the laser elements outputs laser light under conditions set so that the temperature of the recording unit to be written becomes equal to or higher than the color development temperature due to heat generated by the photothermal conversion agent when writing to the information recording unit
  • the optical device according to (1) (3) When erasing information written in the information recording unit, each laser element is set so that the temperature of the recording unit to be erased is equal to or higher than the color erasing temperature due to heat generated by the photothermal conversion agent.
  • the optical device according to (2) wherein a laser beam is output under a given condition.
  • the energy density [W / cm 2 ] on the information recording unit when erasing the information written on the information recording unit is the energy density on the information recording unit when writing on the information recording unit [W / cm 2 ].
  • the optical device according to the information energy density on the recording unit [W / cm 2], further comprising a control mechanism for controlling the (3).
  • the said control mechanism is a laser drive circuit which controls each said laser element so that the laser power at the time of erasing of each said laser element becomes smaller than the laser power at the time of writing of each said laser element.
  • the control mechanism is a laser drive circuit that controls each laser element such that an irradiation time of a laser pulse at the time of erasing each laser element is shorter than an irradiation time at the time of writing each laser element.
  • the control mechanism is configured so that a laser pulse at the time of erasing each laser element has a rectangular shape, and a laser pulse at the time of writing to each laser element has a waveform different from the waveform at the time of erasing.
  • the optical device according to (4) which is a laser drive circuit that controls a laser element.
  • the control mechanism is a scanner driving circuit that controls the scanner unit so that a scanning speed at the time of erasing each laser element is faster than a scanning speed at the time of writing by each laser element. apparatus.
  • the optical device according to (4), wherein the control mechanism is a mechanism that performs focus adjustment of the combined light.
  • a drawing and erasing apparatus comprising: a scanner unit that scans the combined light obtained by combining by the optical system on the reversible recording medium.
  • a plurality of recording parts including a reversible thermosensitive color-forming composition and a photothermal conversion agent are provided.
  • information writing and erasing Irradiation method including performing at least one.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)
  • Electronic Switches (AREA)
  • Liquid Crystal (AREA)
  • Laser Beam Printer (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Head (AREA)

Abstract

本開示の一実施形態に係る光学装置は、可逆性記録媒体に対して、情報の書き込みおよび消去のうち少なくとも一方を行う装置である。この光学装置は、近赤外域(700nm~2500nm)において発光波長の互いに異なる複数のレーザ素子と、複数のレーザ素子から出射されたレーザ光を合波する光学系と、光学系による合波により得られた合波光を可逆性記録媒体上で走査するスキャナ部とを備えている。

Description

光学装置、描画及び消去装置、ならびに照射方法
 本開示は、光学装置、描画及び消去装置、ならびに照射方法に関する。
 ロイコ色素などの感熱発色性組成物を用いた感熱方式の記録媒体が普及している(例えば、特許文献1~3参照)。現在、そのような記録媒体には、一度書き込んだら消去のできない不可逆性の記録媒体と、何度でも書き換え可能な可逆性の記録媒体が実用化されている。可逆性の記録媒体では、単色表示が実用化されている一方で、フルカラー表示はまだ実用化されていない。
特開2004-74584号公報 特開2004-188827号公報 特開2011-104995号公報
 ところで、感熱方式の記録媒体では、書き込みや消去の際に過剰な熱量が加えられると、記録媒体が変形するおそれがある。従って、記録媒体の変形を抑制することの可能な光学装置、描画及び消去装置、ならびに照射方法を提供することが望ましい。
 本開示の一実施形態に係る光学装置は、可逆性記録媒体に対して、情報の書き込みおよび消去のうち少なくとも一方を行う装置である。ここで、可逆性記録媒体では、可逆性感熱発色性組成物と光熱変換剤とを含む複数の記録部を備えている。この可逆性記録媒体では、さらに、各可逆性感熱発色性組成物の発色色調が記録部ごとに異なるとともに各光熱変換剤の吸収波長が記録部ごとに近赤外域(700nm~2500nm)において異なっている。光学装置は、近赤外域において発光波長の互いに異なる複数のレーザ素子と、複数のレーザ素子から出射されたレーザ光を合波する光学系と、光学系による合波により得られた合波光を可逆性記録媒体上で走査するスキャナ部とを備えている。
 本開示の一実施形態に係る描画及び消去装置は、近赤外域において発光波長の互いに異なる複数のレーザ素子と、複数のレーザ素子から出射されたレーザ光を合波する光学系と、光学系による合波により得られた合波光を可逆性記録媒体上で走査するスキャナ部とを備えている。
 本開示の一実施形態に係る描画方法は、可逆性感熱発色性組成物と光熱変換剤とを含む複数の記録部を備え、各可逆性感熱発色性組成物の発色色調が記録部ごとに異なるとともに各光熱変換剤の吸収波長が記録部ごとに近赤外域(700nm~2500nm)において異なる可逆性記録媒体に対して、以下のことを行うことを含む。
 近赤外域において発光波長の互いに異なる複数のレーザ素子から出射されたレーザ光を合波し、それにより得られた合波光を可逆性記録媒体上で走査することにより、情報の書き込みおよび消去のうち少なくとも一方を行うこと
 本開示の一実施形態に係る光学装置、描画及び消去装置、ならびに描画方法では、近赤外域において発光波長の互いに異なる複数のレーザ素子から出射されたレーザ光が合波され、それにより得られた合波光が可逆性記録媒体上で走査される。このように、各レーザ素子を同時に駆動することで、各レーザ素子を時間的に別々に駆動した場合と比べて、熱拡散の観点から書き込み効率もしくは消去効率が良くなる。これにより、書き込みや消去に必要なエネルギーが低くなる。
 本開示の一実施形態に係る光学装置、描画及び消去装置、ならびに描画方法によれば、書き込みや消去に必要なエネルギーが低くなるようにしたので、記録媒体の変形を抑制することができる。なお、本開示の効果は、ここに記載された効果に必ずしも限定されず、本明細書中に記載されたいずれの効果であってもよい。
本開示の一実施の形態に係る描画装置の概略構成例を表す図である。 可逆性記録媒体の断面構成例を表す図である。 可逆性記録媒体に含まれる各記録層の吸収波長の一例を表す図である。 可逆性記録媒体へのレーザ光の照射手順の一例を表す図である。 光源部の光出力波形の一例を表す図である。 光源部の光出力波形の一例を表す図である。 光源部の光出力波形の一例を表す図である。 光源部の光出力によって形成される光スポットの一例を表す図である。 実施例に係る書き込み実験の結果を表す図である。 実施例に係る消去実験の結果を表す図である。 比較例に係る書き込み実験の結果を表す図である。 比較例に係る消去実験の結果を表す図である。 比較例に係る消去実験の結果を表す図である。
 以下、本開示を実施するための形態について、図面を参照して詳細に説明する。以下の説明は本開示の一具体例であって、本開示は以下の態様に限定されるものではない。
<1.実施の形態>
[構成]
 本開示の一実施の形態に係る描画装置1について説明する。描画装置1は、本開示の「描画及び消去装置」の一具体例に相当する。図1は、本実施の形態に係る描画装置1のシステム構成例を表したものである。描画装置1は、可逆性記録媒体100に対して、情報の書き込みおよび消去を行う。最初に、可逆性記録媒体100について説明し、その後に、描画装置1について説明する。
(可逆性記録媒体100)
 図2は、可逆性記録媒体100に含まれる各層の構成例を表したものである。可逆性記録媒体100は、発色色調が互いに異なる複数の記録層133を備えている。記録層113は、本開示の「記録部」の一具体例に相当する。可逆性記録媒体100は、例えば、基材110上に記録層113と断熱層114とが交互に積層された構造となっている。
 可逆性記録媒体100は、例えば、基材110上に、下地層112と、3つの記録層113(113a,113b,113c)と、2つの断熱層114(114a,114b)と、保護層115とを備えている。3つの記録層13(113a,113b,113c)は、基材110側から、記録層113a、記録層113b、記録層113cの順に配置されている。2つの断熱層114(114a,114b)は、基材110側から、断熱層114a、断熱層114bの順に配置されている。下地層112は、基材110の表面に接して形成されている。保護層115は、可逆性記録媒体100の最表面に形成されている。
 基材110は、各記録層113および各断熱層114を支持する。基材110は、その表面に各層を形成するための基板として機能する。基材110は光を透過するものであってもよいし、光を透過しないものであってもよい。光を透過しない場合には、基材110の表面の色は、例えば白色であってもよいし、白色以外の色であってもよい。基材110は、例えば、ABS樹脂により構成されている。下地層112は、記録層113aと基材110との密着性を向上させる機能を有するものである。下地層112は、例えば、光を透過する材料によって構成されている。
 3つの記録層113(113a,113b,113c)は、発色状態と消色状態との間で可逆的に状態を変化させることができるものである。3つの記録層113(113a,113b,113c)は、発色状態における色が互いに異なる色になるように構成されている。3つの記録層113(113a,113b,113c)は、それぞれ、ロイコ色素100A(可逆性感熱発色性組成物)と、書き込みの際に発熱させる光熱変換剤100B(光熱変換剤)とを含んで構成されている。3つの記録層13(113a,113b,113c)は、それぞれ、さらに、顕色剤およびポリマーを含んで構成されている。
 ロイコ色素100Aは、熱により顕色剤と結合して発色状態になり、あるいは顕色剤と分離して消色状態になるものである。各記録層113(113a,113b,113c)に含まれるロイコ色素100Aの発色色調は、記録層113ごとに異なっている。記録層113aに含まれるロイコ色素100Aは、熱により顕色剤と結合することによりマゼンタ色に発色する。記録層113bに含まれるロイコ色素100Aは、熱により顕色剤と結合することによりシアン色に発色する。記録層113cに含まれるロイコ色素100Aは、熱により顕色剤と結合することにより黄色に発色する。3つの記録層113(113a,113b,113c)の位置関係は、上記の例に限定されるものではない。また、3つの記録層113(113a,113b,113c)は、消色状態では透明になる。これにより、可逆性記録媒体100は、広い色域の色を用いて、画像を記録することができるようになっている。
 光熱変換剤100Bは、近赤外域(700nm~2500nm)の光を吸収して熱を発するものである。なお、本明細書では、近赤外域とは、700nm~2500nmの波長帯を指している。各記録層113(113a,113b,113c)に含まれる光熱変換剤100Bの吸収波長は、近赤外域(700nm~2500nm)において互いに異なっている。図3は、各記録層113(113a,113b,113c)に含まれる光熱変換剤100Bの吸収波長の一例を表したものである。記録層113cに含まれる光熱変換剤100Bは、例えば、図3(A)に示したように、800nmに吸収ピークを有している。記録層113bに含まれる光熱変換剤110Bは、例えば、図3(B)に示したように、860nmに吸収ピークを有している。記録層113aに含まれる光熱変換剤100Bは、例えば、図3(C)に示したように、915nmに吸収ピークを有している。各記録層113(113a,113b,113c)に含まれる光熱変換剤100Bの吸収ピークは、上記の例に限定されるものではない。
 断熱層114aは、記録層113aと記録層113bとの間で互いに熱が伝わりにくくするためのものである。断熱層114bは、記録層113bと記録層113cとの間で互いに熱が伝わりにくくするためのものである。保護層115は、可逆性記録媒体100の表面を保護するためのものであり、可逆性記録媒体100のオーバーコート層として機能する。2つの断熱層114(114a,114b)および保護層115は、透明な材料によって構成されている。可逆性記録媒体100は、例えば、保護層115の直下に、比較的剛性の高い樹脂層(例えば、PEN樹脂層)などを備えていてもよい。
[製造方法]
 次に、可逆性記録媒体100におけるいくつかの層の具体的な製造方法について説明する。
 下記材料を含有する塗料を、ロッキングミルを用いて2時間分散させた。それにより得られた塗料をワイヤーバーで塗布し、70℃にて5分間加熱乾燥処理を施した。このようにして、厚さ3μmの記録層13を形成した。
 記録層113aを形成するための塗料には以下の材料を含む。
・ロイコ色素(2重量部)
Figure JPOXMLDOC01-appb-C000001
・顕・減色剤(4重量部)
Figure JPOXMLDOC01-appb-C000002
・塩化ビニル酢酸ビニル共重合体(5重量部)
  塩化ビニル90%、酢酸ビニル10%、平均分子量(M.W.)115000
・メチルエチルケトン(MEK)(91重量部)
・光熱変換剤
  シアニン系赤外吸収色素:0.19重量部
  (H.W.SANDS社製、SDA7775、吸収波長ピーク:933nm)
 記録層113bを形成するための塗料には以下の材料を含む。
・ロイコ色素(1.8重量部)
Figure JPOXMLDOC01-appb-C000003
・顕・減色剤(4重量部)
Figure JPOXMLDOC01-appb-C000004
・塩化ビニル酢酸ビニル共重合体(5重量部)
  塩化ビニル90%、酢酸ビニル10%、平均分子量(M.W.)115000
・メチルエチルケトン(MEK)(91重量部)
・光熱変換剤
  シアニン系赤外吸収色素:0.12重量部
  (H.W.SANDS社製、SDA5688、吸収波長ピーク861nm)
 記録層113cを形成するための塗料には以下の材料を含む。
・ロイコ色素100A(1.3重量部)
Figure JPOXMLDOC01-appb-C000005
・顕・減色剤(4重量部)
Figure JPOXMLDOC01-appb-C000006
・塩化ビニル酢酸ビニル共重合体(5重量部)
  塩化ビニル90%、酢酸ビニル10%、平均分子量(M.W.)115000
・メチルエチルケトン(MEK)(91重量部)
・光熱変換剤
  シアニン系赤外吸収色素:0.10重量部
  (日本化薬製、CY-10、吸収波長ピーク798nm)
 ポリビニルアルコール水溶液を塗布、乾燥した。このようにして、厚さ20μmの断熱層114を形成した。また、紫外線硬化性樹脂を塗布した後、紫外線を照射して硬化させた。このようにして、厚さ約2μmの保護層115を形成した。
(描画装置1)
 次に、本実施の形態に係る描画装置1について説明する。
 描画装置1は、信号処理回路10、レーザ駆動回路20、光源部30、調整機構40、スキャナ駆動回路50、およびスキャナ部60を備えている。
 信号処理回路10は、例えば、レーザ駆動回路20とともに、可逆性記録媒体100の特徴や、可逆性記録媒体100へ書き込まれた条件に応じて、光源部30(例えば、後述の各光源31A,31B,31C)に印加する電流パルスの波高値などを制御する。信号処理回路10は、例えば、外部から入力された画像信号Dinから、スキャナ部50のスキャナ動作に同期し、レーザ光の波長などの特性に応じた画像信号を生成する。描画装置1が可逆性記録媒体100に対して書き込みを行う際には、画像信号Dinは、可逆性記録媒体100に書き込む画像データを含んでいる。描画装置1が可逆性記録媒体10に対して、書き込まれた情報の消去を行う際には、画像信号Dinは、可逆性記録媒体100に書き込まれた画像を消去するための画像データを含んでいる。
 信号処理回路10は、例えば、入力された画像信号Dinを光源部30の各光源の波長に応じた画像信号に変換(色域変換)する。信号処理回路10は、例えば、スキャナ部50のスキャナ動作に同期した投影映像クロック信号を生成する。信号処理回路10は、例えば、生成した画像信号通りにレーザ光が発光するような投影画像信号を生成する。信号処理回路10は、例えば、生成した投影画像信号を、レーザ駆動回路20に出力する。また、信号処理回路10は、例えば、必要に応じて、投影画像クロック信号を、レーザ駆動回路20に出力する。ここで、「必要に応じて」とは、後述するように、高周波信号の信号源を画像信号に同期させる際に投影画像クロック信号を用いる場合などである。
 レーザ駆動回路20は、例えば、各波長に応じた投影映像信号にしたがって光源部30の各光源31A,31B,31Cを駆動する。レーザ駆動回路20は、例えば、投影画像信号に応じた画像を描画するためにレーザ光の輝度(明暗)をコントロールする。レーザ駆動回路20は、例えば、光源31Aを駆動する駆動回路20Aと、光源31Bを駆動する駆動回路20Bと、光源31Cを駆動する駆動回路20Cとを有している。光源31A,31B,31Cは、近赤外域のレーザ光を出射する。光源31Aは、例えば、発光波長λ1のレーザ光Laを出射する半導体レーザである。光源31Bは、例えば、発光波長λ2のレーザ光Lbを出射する半導体レーザである。光源31Cは、例えば、発光波長λ3のレーザ光Lcを出射する半導体レーザである。発光波長λ1,λ2,λ3は、例えば、以下の式(1)、式(2)、式(3)を満たしている。
 λa1-20nm<λ1<λa1+20nm…(1)
 λa2-20nm<λ2<λa1+20nm…(2)
 λa1-20nm<λ3<λa1+20nm…(3)
 ここで、λa1は、記録層113aの吸収波長(吸収ピーク波長)であり、例えば、915nmである。λa2は、記録層113bの吸収波長(吸収ピーク波長)であり、例えば、860nmである。λa3は、記録層113cの吸収波長(吸収ピーク波長)であり、例えば、800nmである。なお、式(1)、式(2)、式(3)における「±10nm」は、許容誤差範囲を意味している。発光波長λ1,λ2,λ3が式(1)、式(2)、式(3)を満たす場合、発光波長λ1は、例えば、915nmであり、発光波長λ2は、例えば、860nmであり,発光波長λ3は、例えば、800nmである。
 光源部30は、近赤外域において発光波長の互いに異なる複数の光源を有している。光源部30は、例えば、3つの光源31A,31B,31Cを有している。光源部30は、さらに、例えば、複数の光源(例えば、3つの光源31A,31B,31C)から出射されたレーザ光を合波する光学系を有している。光源部30は、そのような光学系として、例えば、2つの反射ミラー32a,32dと、2つのダイクロイックミラー32b,32cと、レンズ32eとを有している。
 2つの光源31A,31Bから出射された各レーザ光La,Lbは、例えば、コリメートレンズによってほぼ平行光(コリメート光)にされる。その後、例えば、レーザ光Laは、反射ミラー32aで反射されるとともにダイクロイックミラー32bで反射され、レーザ光Lbは、ダイクロイックミラー32bを透過することにより、レーザ光Laとレーザ光Laとが合波される。レーザ光Laとレーザ光Laとの合波光は、ダイクロイックミラー32cを透過する。
 光源31Cから出射されたレーザ光Lcは、例えば、コリメートレンズによってほぼ平行光(コリメート光)にされる。その後、レーザ光Lcは、例えば、反射ミラー32dで反射されるとともにダイクロイックミラー32cで反射される。これにより、ダイクロイックミラー32cを透過した上記合波光と、ダイクロイックミラー32cで反射されたレーザ光Lcとが合波される。光源部32は、例えば、上記の光学系による合波により得られた合波光Lmをスキャナ部50に出力する。
 調整機構40は、光源部32から出射される合波光Lmのフォーカスを調整するための機構である。調整機構40は、例えば、ユーザによる手動操作によってレンズ32eの位置を調整する機構である。なお、調整機構40は、機械による操作によってレンズ32eの位置を調整する機構であってもよい。
 スキャナ駆動回路50は、例えば、信号処理回路10から入力された投影映像クロック信号に同期して、スキャナ部50を駆動する。また、スキャナ駆動回路40は、例えば、スキャナ部60から、後述の2軸スキャナ61などの照射角度についての信号が入力される場合には、その信号に基づいて、所望の照射角度になるようにスキャナ部60を駆動する。
 スキャナ部60は、例えば、光源部30から入射された合波光Lmを、可逆性記録媒体100の表面上で線順次で走査させる。スキャナ部60は、例えば、2軸スキャナ61と、fθレンズ62とを有している。2軸スキャナ61は、例えば、ガルバノミラーである。fθレンズ62は、2軸スキャナ61による等速回転運動を、焦点平面(可逆性記録媒体100の表面)上を動くスポットの等速直線運動に変換する。
 次に、描画装置1における情報の書き込み・消去について説明する。
[書き込み]
 まず、可逆性記録媒体100を用意し、描画装置1にセットする(ステップS101、図4)。次に、描画装置1は、例えば、光源31A、光源31Bおよび光源31Cのうち、少なくとも1つの光源からレーザ光を出射し、可逆性記録媒体100上で走査する(ステップS102、図4)。このとき、光源部30は、光源31A、光源31Bおよび光源31Cのうち、少なくとも2つの光源からレーザ光を出射した場合には、2つの光源から出射されたレーザ光同士を合波して出力する。また、光源部30は、可逆性記録媒体100に対する書き込みを行う際は、書き込み対象の記録層113の温度が光熱変換剤100Bによる発熱により発色温度以上となるように設定された条件下でレーザ光を出力する。
 その結果、例えば発光波長800nmのレーザ光Laが、記録層113c内の光熱変換剤100Bに吸収され、それにより、光熱変換剤100Bから発生した熱により記録層113c内のロイコ色素100Aが書き込み温度に到達し、顕色剤と結合して黄色を発色する。黄色の発色濃度は、発光波長800nmのレーザ光Laの強度に依る。また、例えば発光波長860nmのレーザ光Lbが、記録層113b内の光熱変換剤100Bに吸収され、それにより、光熱変換剤100Bから発生した熱により記録層113b内のロイコ色素100Aが書き込み温度に到達し、顕色剤と結合してシアン色を発色する。シアン色の発色濃度は、発光波長860nmのレーザ光Lbの強度に依る。また、例えば発光波長915nmのレーザ光Lcが、記録層113a内の光熱変換剤100Bに吸収され、それにより、光熱変換剤100Bから発生した熱により記録層113a内のロイコ色素100Aが書き込み温度に到達し、顕色剤と結合してマゼンタ色を発色する。マゼンタ色の発色濃度は、発光波長915nmのレーザ光Lcの強度に依る。その結果、黄色、シアン色およびマゼンタ色の混色によって、所望の色が発色する。このようにして、描画装置1は、可逆性記録媒体100における情報の書き込みを行う。
[消去]
 まず、上記のようにして情報の書き込まれた可逆性記録媒体100を用意し、消去装置1にセットする(ステップS101、図4)。次に、描画装置1は、例えば、光源31A、光源31Bおよび光源31Cのうち、少なくとも1つの光源からレーザ光を出射し、可逆性記録媒体100上で走査する(ステップS102、図4)。このとき、光源部30は、光源31A、光源31Bおよび光源31Cのうち、少なくとも2つの光源からレーザ光を出射した場合には、2つの光源から出射されたレーザ光同士を合波して出力する。また、光源部30は、可逆性記録媒体100に書き込まれた情報の消去を行う際は、消去対象の記録層113の温度が光熱変換剤100Bによる発熱により消色温度以上発色温度未満となるように設定された条件下でレーザ光を出力する。
 その結果、可逆性記録媒体100に照射されたレーザ光が発光波長800nmのレーザ光Laを含んでいる場合には、発光波長800nmのレーザ光Laが、記録層113c内の光熱変換剤100Bに吸収され、それにより、光熱変換剤100Bから発生した熱により記録層113c内のロイコ色素100Aが消色温度以上発色温度未満に到達し、顕色剤と分離して消色する。ここで、記録層113c内の光熱変換剤100Bから発生した熱が各記録層113に伝播し、各記録層113内のロイコ色素100Aが消色温度以上発色温度未満に到達した場合には、各記録層113内のロイコ色素100Aが顕色剤と分離して消色する。
 また、可逆性記録媒体100に照射されたレーザ光が発光波長860nmのレーザ光Lbを含んでいる場合には、発光波長860nmのレーザ光Lbが、記録層113b内の光熱変換剤100Bに吸収され、それにより、光熱変換剤100Bから発生した熱により記録層113b内のロイコ色素100Aが消色温度以上発色温度未満に到達し、顕色剤と分離して消色する。ここで、記録層113b内の光熱変換剤100Bから発生した熱が各記録層113に伝播し、各記録層113内のロイコ色素100Aが消色温度以上発色温度未満に到達した場合には、各記録層113内のロイコ色素100Aが顕色剤と分離して消色する。
 また、可逆性記録媒体100に照射されたレーザ光が発光波長915nmのレーザ光Lcを含んでいる場合には、発光波長915nmのレーザ光Lcが、記録層113a内の光熱変換剤100Bに吸収され、それにより、光熱変換剤100Bから発生した熱により記録層113a内のロイコ色素100Aが消色温度以上発色温度未満に到達し、顕色剤と分離して消色する。ここで、記録層113a内の光熱変換剤100Bから発生した熱が各記録層113に伝播し、各記録層113内のロイコ色素100Aが消色温度以上発色温度未満に到達した場合には、各記録層113内のロイコ色素100Aが顕色剤と分離して消色する。このようにして、描画装置1は、可逆性記録媒体100における情報の消去を行う。
 ところで、描画装置1は、可逆性記録媒体100に書き込まれた情報の消去を行う際の可逆性記録媒体100上のエネルギー密度[W/cm2]が、可逆性記録媒体100に書き込みを行う際の可逆性記録媒体100上のエネルギー密度[W/cm2]よりも小さくなるように、可逆性記録媒体100上のエネルギー密度[W/cm2]を制御する制御機構を備えている。
 例えば、信号処理回路10およびレーザ駆動回路20は、上記の制御機構として、光源部30(例えば、光源31A、光源31B、光源31C)の消去時のレーザパワーが光源部30の書き込み時のレーザパワーよりも小さくなるように光源部30を制御する機構を備えていてもよい。信号処理回路10およびレーザ駆動回路20は、例えば、図5(A)に示したように、可逆性記録媒体100への書き込み時には、光源部30からの出力パルスの波高値がW1となるように、光源部30に供給する電流パルスの波高値などを制御してもよい。さらに、信号処理回路10およびレーザ駆動回路20は、例えば、図5(B)に示したように、可逆性記録媒体100の消去時には、光源部30からの出力パルスの波高値がW2(W2<W1)となるように、光源部30に供給する電流パルスの波高値などを制御してもよい。
 また、例えば、信号処理回路10およびレーザ駆動回路20は、上記の制御機構として、光源部30(例えば、光源31A、光源31B、光源31C)の消去時のレーザパルスの照射時間ΔT2が光源部30の書き込み時の照射時間ΔT1よりも短くなるように光源部30を制御してもよい。信号処理回路10およびレーザ駆動回路20は、例えば、図6(A)に示したように、可逆性記録媒体100への書き込み時には、光源部30(例えば、光源31A、光源31B、光源31C)の書き込み時のレーザパルスの照射時間(パルス幅)がΔT1となるように、光源部30に供給する電流パルスのパルス幅などを制御してもよい。さらに、信号処理回路10およびレーザ駆動回路20は、例えば、図6(B)に示したように、可逆性記録媒体100の消去時には、光源部30(例えば、光源31A、光源31B、光源31C)の消去時のレーザパルスの照射時間(パルス幅)がΔT2(ΔT2<ΔT1)となるように、光源部30に供給する電流パルスのパルス幅などを制御してもよい。
 また、例えば、信号処理回路10およびレーザ駆動回路20は、上記の制御機構として、光源部30(例えば、光源31A、光源31B、光源31C)の消去時のレーザパルスが矩形状となるように、そして、光源部30の書き込み時のレーザパルスが消去時の波形とは異なる波形となるように光源部30を制御してもよい。信号処理回路10およびレーザ駆動回路20は、例えば、図7(A)に示したように、光源部30(例えば、光源31A、光源31B、光源31C)の消去時のレーザパルスが矩形状となるように光源部30を制御してもよい。さらに、信号処理回路10およびレーザ駆動回路20は、例えば、図7(B)に示したように、光源部30の書き込み時のレーザパルスが三角形状となるように光源部30を制御してもよい。
 また、例えば、信号処理回路10およびスキャナ駆動回路50は、上記の制御機構として、光源部30(例えば、光源31A、光源31B、光源31C)の消去時のスキャン速度が光源部30の書き込み時のスキャン速度よりも早くなるようにスキャナ駆動回路50を制御してもよい。
 また、例えば、調整機構40は、上記の制御機構として、レーザ光La、レーザ光Lb、レーザ光Lcまたは合波光Lmのフォーカス調整を行う機構を備えていてもよい。信号処理回路10およびレーザ駆動回路20は、例えば、図8(A)に示したように、光源部30(例えば、光源31A、光源31B、光源31C)の書き込み時のスポット径がΔD1となるように、レンズ32eを調整してもよい。さらに、信号処理回路10およびレーザ駆動回路20は、例えば、図8(B)に示したように、光源部30の消去時のスポット径がΔD2(ΔD2>ΔD1)となるように、レンズ32eを調整してもよい。
[実施例]
 次に、本実施の形態に係る描画装置1の実施例について、比較例と対比して説明する。図9、図10は、実施例に係る描画装置1の実験結果を表したものである。図11、図12、図13は、比較例に係る描画装置の実験結果を表したものである。図9に記載の実施例1~10が書き込み時の実験結果であり、図10に記載の実施例11~20が消去時の実験結果である。
[実施例1,8~10、11]
 可逆性記録媒体100に対して、以下に述べる条件で書き込み・消去を行い、反射濃度(OD)の測定を行った。書き込み時には、発光波長800nm、860nmおよび915nmを、それぞれ出力2Wずつ、それぞれのスポット径を70μm、それぞれのスキャン速度を5m/secの条件下で、可逆性記録媒体100に対してベタ画像の書き込みを行い、反射濃度を測定した。消去時には、発光波長800nm、860nmおよび915nmを、それぞれ出力2Wずつ、それぞれのスポット径を500μm、それぞれのスキャン速度を0.5m/secの条件下で、可逆性記録媒体100に書き込まれたベタ画像の消去を行い、消去後の反射濃度を測定した。
[実施例2~7]
 図9に記載の実施例2~7では、レーザパワー、スポット径、スキャン速度を、図9に記載の実施例1とは変化させた各々の条件で、可逆性記録媒体100に対してレーザ照射を行った際の書き込み後の反射濃度を測定した。
[実施例12~20]
 図10に記載の実施例12~20では、図9に記載の実施例2~10で書き込みを行った可逆性記録媒体100に対し、レーザパワー、スポット径、スキャン速度を変化させた各々の条件で、レーザ照射を行った際の消去後の反射濃度を測定した。
 実施例11~20のいずれにおいても、反射濃度は0.2以下となっており、可逆性記録媒体100に書き込んだベタ画像が消去されている。実施例18,19において、スポット径を広くするなどして、書き込み時よりも、可逆性記録媒体100を照射するレーザ光のエネルギー密度を低下させている。このように、書き込み条件と消去条件を調整することで、同一装置で書き換えが可能となる。
 図11には、実施例1,5,6,7と同じ条件で、各レーザ照射を短波長側から、別照射で照射し、得られたベタ画像の反射濃度を示した。比較例1~4では、実施例と比較すると、いずれも反射濃度が低下し、同等の反射濃度を得るためには2.5W程度のパワーが必要となることが分かった。また、各レーザ光を照射する箇所は同一ラインとなることが必須であり、そのアライメント精度も±2μm以下となっていることが望ましく、これを実現させるためには装置コストが上がってしまう。
 図12に、実施例11,15,16,17と同じ条件で、各レーザ照射を短波長側から、別照射で照射した際の反射濃度を示した。比較例5~8では、いずれも反射濃度が0.2以上を示し、十分に消去されていない。実施例と同等に消去するには、2.5W程度のパワーを照射するか、または、スキャン速度を0.3m/s程度に遅くする必要があり、消費電力、タクトの観点から不利である。
 図13に、実施例1の条件で描画し、それを感熱プリンターに搭載されている消去用セラミックバーにより消去した際の反射濃度を示した。スキャン速度を遅くし、十分な熱量を加えると、基材(ABS)が変形してしまう。一方、熱変形を抑制するため、スキャン速度を速くすると消え残りが生じる。以上の結果より、耐熱温度の低い基材を消去する際は、レーザによる消去が好ましい。
[効果]
 次に、本実施の形態に係る描画装置1の効果について説明する。
 ロイコ色素などの感熱発色性組成物を用いた感熱方式の記録媒体が普及している。現在、そのような記録媒体には、一度書き込んだら消去のできない不可逆性の記録媒体と、何度でも書き換え可能な可逆性の記録媒体が実用化されている。可逆性の記録媒体では、単色表示が実用化されている一方で、フルカラー表示はまだ実用化されていない。ところで、感熱方式の記録媒体では、書き込みや消去の際に過剰な熱量が加えられると、記録媒体が変形するおそれがある。
 一方、本実施の形態に係る描画装置1では、近赤外域において発光波長の互いに異なる複数の光源(例えば、31A,31B,31C)から出射されたレーザ光が合波され、それにより得られた合波光Lmが可逆性記録媒体100上で走査される。このように、各光源を同時に駆動することで、各光源を時間的に別々に駆動した場合と比べて、熱拡散の観点から書き込み効率もしくは消去効率が良くなる。これにより、書き込みや消去に必要なエネルギーが低くなる。その結果、可逆性記録媒体100の変形を抑制することができる。
 また、本実施の形態に係る描画装置1では、可逆性記録媒体100に対する書き込みを行う際は、書き込み対象の記録層113の温度が光熱変換剤100Bによる発熱により発色温度以上となるように設定された条件下でレーザ光が出力される。これにより、書き込みに必要なエネルギー密度でレーザ照射を行うとともに、可逆性記録媒体100の変形を抑制することができる。
 また、本実施の形態に係る描画装置1では、可逆性記録媒体100に書き込まれた情報の消去を行う際は、消去対象の記録層113の温度が光熱変換剤100Bによる発熱により消色温度以上発色温度未満となるように設定された条件下でレーザ光が出力される。これにより、消去に必要なエネルギー密度でレーザ照射を行うとともに、可逆性記録媒体100の変形を抑制することができる。
 また、本実施の形態に係る描画装置1では、可逆性記録媒体100に書き込まれた情報の消去を行う際の可逆性記録媒体100上のエネルギー密度[W/cm2]が、可逆性記録媒体100に書き込みを行う際の可逆性記録媒体100上のエネルギー密度[W/cm2]よりも小さくなるように、可逆性記録媒体100上のエネルギー密度[W/cm2]が制御される。これにより、書き込み・消去に必要なエネルギー密度でレーザ照射を行うとともに、可逆性記録媒体100の変形を抑制することができる。
 また、本実施の形態に係る描画装置1では、各光源(例えば、31A,31B,31C)の消去時のレーザパワーが各光源(例えば、31A,31B,31C)の書き込み時のレーザパワーよりも小さくなるように各光源(例えば、31A,31B,31C)が制御される。これにより、可逆性記録媒体100に対して書き込まれた情報の消去を行うことができる。
 また、本実施の形態に係る描画装置1では、各光源(例えば、31A,31B,31C)の消去時のレーザパルスの照射時間ΔT2が各光源(例えば、31A,31B,31C)の書き込み時の照射時間ΔT1よりも短くなるように各光源(例えば、31A,31B,31C)が制御される。これにより、可逆性記録媒体100に書き込まれた情報の消去を行う際の可逆性記録媒体100上のエネルギー密度[W/cm2]を、可逆性記録媒体100に書き込みを行う際の可逆性記録媒体100上のエネルギー密度[W/cm2]よりも小さくすることができる。その結果、書き込み・消去に必要なエネルギー密度でレーザ照射を行うとともに、可逆性記録媒体100の変形を抑制することができる。
 また、本実施の形態に係る描画装置1では、各光源(例えば、31A,31B,31C)の消去時のレーザパルスが矩形状となるように、そして、各光源(例えば、31A,31B,31C)の書き込み時のレーザパルスが消去時の波形とは異なる波形となるように各光源(例えば、31A,31B,31C)が制御される。これにより、可逆性記録媒体100に書き込まれた情報の消去を行う際の可逆性記録媒体100上のエネルギー密度[W/cm2]を、可逆性記録媒体100に書き込みを行う際の可逆性記録媒体100上のエネルギー密度[W/cm2]よりも小さくすることができる。その結果、書き込み・消去に必要なエネルギー密度でレーザ照射を行うとともに、可逆性記録媒体100の変形を抑制することができる。
 また、本実施の形態に係る描画装置1では、各光源(例えば、31A,31B,31C)の消去時のスキャン速度が各光源(例えば、31A,31B,31C)の書き込み時のスキャン速度よりも早くなるようにスキャナ駆動回路50が制御される。これにより、可逆性記録媒体100に書き込まれた情報の消去を行う際の可逆性記録媒体100上のエネルギー密度[W/cm2]を、可逆性記録媒体100に書き込みを行う際の可逆性記録媒体100上のエネルギー密度[W/cm2]よりも小さくすることができる。その結果、書き込み・消去に必要なエネルギー密度でレーザ照射を行うとともに、可逆性記録媒体100の変形を抑制することができる。
 また、本実施の形態に係る描画装置1では、レーザ光La、レーザ光Lb、レーザ光Lcまたは合波光Lmのフォーカス調整を行う調整機構40が設けられている。これにより、書き込み時にフォーカスを相対的に小さくし、消去時にフォーカスを相対的に大きくすることにより、可逆性記録媒体100に書き込まれた情報の消去を行う際の可逆性記録媒体100上のエネルギー密度[W/cm2]を、可逆性記録媒体100に書き込みを行う際の可逆性記録媒体100上のエネルギー密度[W/cm2]よりも小さくすることができる。その結果、書き込み・消去に必要なエネルギー密度でレーザ照射を行うとともに、可逆性記録媒体100の変形を抑制することができる。
 以上、実施の形態およびその変形例を挙げて本開示を説明したが、本開示は上記実施の形態等に限定されるものではなく、種々変形が可能である。
 例えば、上記実施の形態等では、可逆性記録媒体100が記録層113と断熱層114とが交互に積層されていたが、例えば、可逆性記録媒体100がロイコ色素100Aと光熱変換剤100Bとを含むマイクロカプセルを含んで構成されていてもよい。また、例えば、上記実施の形態等では、各記録層113(113a,113b,113c)は、可逆性感熱発色性組成物として、ロイコ色素100Aを含んでいたが、ロイコ色素100Aとは異なる材料を含んでいてもよい。また、例えば、上記実施の形態等では、描画装置1は、可逆性記録媒体100に対して、情報の書き込みおよび消去を行うように構成されていたが、可逆性記録媒体100に対して、情報の書き込みおよび消去のうち少なくとも一方を行うように構成されていてもよい。
 なお、本明細書中に記載された効果は、あくまで例示である。本開示の効果は、本明細書中に記載された効果に限定されるものではない。本開示が、本明細書中に記載された効果以外の効果を持っていてもよい。
 また、例えば、本開示は以下のような構成を取ることができる。
(1)
 可逆性感熱発色性組成物と光熱変換剤とを含む複数の記録部を備え、各前記可逆性感熱発色性組成物の発色色調が互いに異なるとともに各前記光熱変換剤の吸収波長が近赤外域(700nm~2500nm)において互いに異なる情報記録部に対して、情報の書き込みおよび消去のうち少なくとも一方を行う光学装置であって、
 近赤外域において発光波長の互いに異なる複数のレーザ素子と、
 前記複数のレーザ素子から出射されたレーザ光を合波する光学系と、
 前記光学系による合波により得られた合波光を前記情報記録部上で走査するスキャナ部と
 を備えた
 光学装置。
(2)
 各前記レーザ素子は、前記情報記録部に対する書き込みを行う際は、書き込み対象の前記記録部の温度が前記光熱変換剤による発熱により発色温度以上となるように設定された条件下でレーザ光を出力する
 (1)に記載の光学装置。
(3)
 各前記レーザ素子は、前記情報記録部に書き込まれた情報の消去を行う際は、消去対象の前記記録部の温度が前記光熱変換剤による発熱により消色温度以上発色温度未満となるように設定された条件下でレーザ光を出力する
 (2)に記載の光学装置。
(4)
 前記情報記録部に書き込まれた情報の消去を行う際の前記情報記録部上のエネルギー密度[W/cm2]が、前記情報記録部に書き込みを行う際の前記情報記録部上のエネルギー密度[W/cm2]よりも小さくなるように、前記情報記録部上のエネルギー密度[W/cm2]を制御する制御機構を更に備えた
(3)に記載の光学装置。
(5)
 前記制御機構は、各前記レーザ素子の消去時のレーザパワーが各前記レーザ素子の書き込み時のレーザパワーよりも小さくなるように各前記レーザ素子を制御するレーザ駆動回路である
 (4)に記載の光学装置。
(6)
 前記制御機構は、各前記レーザ素子の消去時のレーザパルスの照射時間が各前記レーザ素子の書き込み時の照射時間よりも短くなるように各前記レーザ素子を制御するレーザ駆動回路である
 (4)に記載の光学装置。
(7)
 前記制御機構は、各前記レーザ素子の消去時のレーザパルスが矩形状となるように、そして、各前記レーザ素子の書き込み時のレーザパルスが消去時の波形とは異なる波形となるように各前記レーザ素子を制御するレーザ駆動回路である
 (4)に記載の光学装置。
(8)
 前記制御機構は、各前記レーザ素子の消去時のスキャン速度が各前記レーザ素子の書き込み時のスキャン速度よりも早くなるように前記スキャナ部を制御するスキャナ駆動回路である
 (4)に記載の光学装置。
(9)
 前記制御機構は、前記合波光のフォーカス調整を行う機構である
 (4)に記載の光学装置。
(10)
 近赤外域(700nm~2500nm)において発光波長の互いに異なる複数のレーザ素子と、
 前記複数のレーザ素子から出射されたレーザ光を合波する光学系と、
 前記光学系による合波により得られた合波光を前記可逆性記録媒体上で走査するスキャナ部と
 を備えた
 描画及び消去装置。
(11)
 可逆性感熱発色性組成物と光熱変換剤とを含む複数の記録部を備え、各前記可逆性感熱発色性組成物の発色色調が互いに異なるとともに各前記光熱変換剤の吸収波長が近赤外域(700nm~2500nm)において互いに異なる情報記録部に対して、
 近赤外域において発光波長の互いに異なる複数のレーザ素子から出射されたレーザ光を合波し、それにより得られた合波光を前記情報記録部上で走査することにより、情報の書き込みおよび消去のうち少なくとも一方を行うことを含む
 照射方法。
 本出願は、日本国特許庁において2017年6月8日に出願された日本特許出願番号第2017-113452号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (11)

  1.  可逆性感熱発色性組成物と光熱変換剤とを含む複数の記録部を備え、各前記可逆性感熱発色性組成物の発色色調が前記記録部ごとに異なるとともに各前記光熱変換剤の吸収波長が前記記録部ごとに近赤外域(700nm~2500nm)において異なる可逆性記録媒体に対して、情報の書き込みおよび消去のうち少なくとも一方を行う光学装置であって、
     近赤外域において発光波長の互いに異なる複数のレーザ素子と、
     前記複数のレーザ素子から出射されたレーザ光を合波する光学系と、
     前記光学系による合波により得られた合波光を前記可逆性記録媒体上で走査するスキャナ部と
     を備えた
     光学装置。
  2.  各前記レーザ素子は、前記可逆性記録媒体に対する書き込みを行う際は、書き込み対象の前記記録部の温度が前記光熱変換剤による発熱により発色温度以上となるように設定された条件下でレーザ光を出力する
     請求項1に記載の光学装置。
  3.  各前記レーザ素子は、前記可逆性記録媒体に書き込まれた情報の消去を行う際は、消去対象の前記記録部の温度が前記光熱変換剤による発熱により消色温度以上発色温度未満となるように設定された条件下でレーザ光を出力する
     請求項2に記載の光学装置。
  4.  前記可逆性記録媒体に書き込まれた情報の消去を行う際の前記可逆性記録媒体上のエネルギー密度[W/cm2]が、前記可逆性記録媒体に書き込みを行う際の前記可逆性記録媒体上のエネルギー密度[W/cm2]よりも小さくなるように、前記可逆性記録媒体上のエネルギー密度[W/cm2]を制御する制御機構を更に備えた
     請求項3に記載の光学装置。
  5.  前記制御機構は、各前記レーザ素子の消去時のレーザパワーが各前記レーザ素子の書き込み時のレーザパワーよりも小さくなるように各前記レーザ素子を制御するレーザ駆動回路である
     請求項4に記載の光学装置。
  6.  前記制御機構は、各前記レーザ素子の消去時のレーザパルスの照射時間が各前記レーザ素子の書き込み時の照射時間よりも短くなるように各前記レーザ素子を制御するレーザ駆動回路である
     請求項4に記載の光学装置。
  7.  前記制御機構は、各前記レーザ素子の消去時のレーザパルスが矩形状となるように、そして、各前記レーザ素子の書き込み時のレーザパルスが消去時の波形とは異なる波形となるように各前記レーザ素子を制御するレーザ駆動回路である
     請求項4に記載の光学装置。
  8.  前記制御機構は、各前記レーザ素子の消去時のスキャン速度が各前記レーザ素子の書き込み時のスキャン速度よりも早くなるように前記スキャナ部を制御するスキャナ駆動回路である
     請求項4に記載の光学装置。
  9.  前記制御機構は、前記合波光のフォーカス調整を行う機構である
     請求項4に記載の光学装置。
  10.  近赤外域(700nm~2500nm)において発光波長の互いに異なる複数のレーザ素子と、
     前記複数のレーザ素子から出射されたレーザ光を合波する光学系と、
     前記光学系による合波により得られた合波光を、発色色調が互いに異なる可逆性の複数の記録部を有する可逆性記録媒体上で走査するスキャナ部と
     を備えた
     描画及び消去装置。
  11.  可逆性感熱発色性組成物と光熱変換剤とを含む複数の記録部を備え、各前記可逆性感熱発色性組成物の発色色調が前記記録部ごとに異なるとともに各前記光熱変換剤の吸収波長が前記記録部ごとに近赤外域(700nm~2500nm)において異なる可逆性記録媒体に対して、
     近赤外域において発光波長の互いに異なる複数のレーザ素子から出射されたレーザ光を合波し、それにより得られた合波光を前記可逆性記録媒体上で走査することにより、情報の書き込みおよび消去のうち少なくとも一方を行うことを含む
     照射方法。
PCT/JP2018/015877 2017-06-08 2018-04-17 光学装置、描画及び消去装置、ならびに照射方法 WO2018225386A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18813876.2A EP3636443B1 (en) 2017-06-08 2018-04-17 Optical device and irradiation method
US16/619,598 US10919329B2 (en) 2017-06-08 2018-04-17 Optical apparatus, rendering and erasing apparatus, and irradiation method
CN201880036110.XA CN110730720B (zh) 2017-06-08 2018-04-17 光学装置、绘制和擦除装置、以及照射方法
JP2019523378A JPWO2018225386A1 (ja) 2017-06-08 2018-04-17 光学装置、描画及び消去装置、ならびに照射方法
US17/166,455 US20210162792A1 (en) 2017-06-08 2021-02-03 Optical apparatus, rendering and erasing apparatus, and irradiation method
JP2022068551A JP2022093420A (ja) 2017-06-08 2022-04-18 描画及び消去装置および照射方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017113452 2017-06-08
JP2017-113452 2017-06-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/619,598 A-371-Of-International US10919329B2 (en) 2017-06-08 2018-04-17 Optical apparatus, rendering and erasing apparatus, and irradiation method
US17/166,455 Continuation US20210162792A1 (en) 2017-06-08 2021-02-03 Optical apparatus, rendering and erasing apparatus, and irradiation method

Publications (1)

Publication Number Publication Date
WO2018225386A1 true WO2018225386A1 (ja) 2018-12-13

Family

ID=64566140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015877 WO2018225386A1 (ja) 2017-06-08 2018-04-17 光学装置、描画及び消去装置、ならびに照射方法

Country Status (6)

Country Link
US (2) US10919329B2 (ja)
EP (1) EP3636443B1 (ja)
JP (2) JPWO2018225386A1 (ja)
CN (1) CN110730720B (ja)
TW (1) TWI768042B (ja)
WO (1) WO2018225386A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11386588B2 (en) * 2016-12-27 2022-07-12 Sony Corporation Product design system and design image correction apparatus
US20230025089A1 (en) * 2021-07-22 2023-01-26 Markem-Imaje Corporation Universal Laser for Polymeric Material Processing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066962A (en) * 1989-12-27 1991-11-19 Eastman Kodak Company Laser thermal printer having a light source produced from combined beams
JP2003266952A (ja) * 2002-03-20 2003-09-25 Mitsubishi Paper Mills Ltd 可逆性感熱記録材料及び画像記録方法
JP2004074584A (ja) 2002-08-19 2004-03-11 Sony Corp 可逆性多色記録媒体、及びこれを用いた記録方法
JP2004188827A (ja) 2002-12-12 2004-07-08 Sony Corp 可逆性多色記録媒体の記録装置
JP2009172801A (ja) * 2008-01-22 2009-08-06 Toshiba Tec Corp 非接触光書き込み消去装置及びその方法
JP2011104995A (ja) 2009-10-19 2011-06-02 Ricoh Co Ltd 画像消去方法及び画像消去装置
JP2017113452A (ja) 2015-12-25 2017-06-29 株式会社ユニバーサルエンターテインメント 遊技機

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761173A (ja) * 1993-08-27 1995-03-07 Toshiba Corp 記録媒体および可視像記録方法
JP2002362024A (ja) * 2001-06-01 2002-12-18 Seiko Epson Corp 記録装置、その制御方法、プログラムおよび記録方法
EP2112659A1 (en) * 2001-09-01 2009-10-28 Energy Convertion Devices, Inc. Increased data storage in optical data storage and retrieval systems using blue lasers and/or plasmon lenses
TWI224784B (en) * 2002-02-15 2004-12-01 Sony Corp Rewritable optical information recording medium and recording/reproducing method, recording/reproducing device
JP2004155010A (ja) * 2002-11-06 2004-06-03 Sony Corp 可逆性多色記録媒体、及びこれを用いた記録方法
JP2004188826A (ja) * 2002-12-12 2004-07-08 Sony Corp 可逆性記録層を有する光学記録媒体、及びこれを用いた記録方法
JP4281347B2 (ja) * 2002-12-12 2009-06-17 ソニー株式会社 可逆性多色記録媒体の記録装置
JP5010878B2 (ja) * 2006-09-07 2012-08-29 リンテック株式会社 非接触型書き換え可能記録媒体の記録方法
JP5651935B2 (ja) * 2008-08-28 2015-01-14 株式会社リコー 画像処理装置
JP5515546B2 (ja) * 2008-09-17 2014-06-11 株式会社リコー 熱可逆記録媒体の画像消去方法
JP5494377B2 (ja) * 2010-09-10 2014-05-14 株式会社リコー レーザー消去装置及びレーザー消去方法
JP6025012B2 (ja) * 2011-12-05 2016-11-16 株式会社リコー レーザ書き換え装置
JP6112047B2 (ja) * 2013-03-25 2017-04-12 株式会社リコー 画像処理方法及び画像処理装置
JP6891402B2 (ja) * 2015-06-22 2021-06-18 株式会社リコー 光偏向装置、画像形成装置、画像表示装置、物体装置、及び光偏向装置の調整方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066962A (en) * 1989-12-27 1991-11-19 Eastman Kodak Company Laser thermal printer having a light source produced from combined beams
JP2003266952A (ja) * 2002-03-20 2003-09-25 Mitsubishi Paper Mills Ltd 可逆性感熱記録材料及び画像記録方法
JP2004074584A (ja) 2002-08-19 2004-03-11 Sony Corp 可逆性多色記録媒体、及びこれを用いた記録方法
JP2004188827A (ja) 2002-12-12 2004-07-08 Sony Corp 可逆性多色記録媒体の記録装置
JP2009172801A (ja) * 2008-01-22 2009-08-06 Toshiba Tec Corp 非接触光書き込み消去装置及びその方法
JP2011104995A (ja) 2009-10-19 2011-06-02 Ricoh Co Ltd 画像消去方法及び画像消去装置
JP2017113452A (ja) 2015-12-25 2017-06-29 株式会社ユニバーサルエンターテインメント 遊技機

Also Published As

Publication number Publication date
JP2022093420A (ja) 2022-06-23
CN110730720A (zh) 2020-01-24
TWI768042B (zh) 2022-06-21
US20200147989A1 (en) 2020-05-14
EP3636443A4 (en) 2020-04-29
JPWO2018225386A1 (ja) 2020-04-16
CN110730720B (zh) 2022-02-01
US10919329B2 (en) 2021-02-16
US20210162792A1 (en) 2021-06-03
TW201902725A (zh) 2019-01-16
EP3636443A1 (en) 2020-04-15
EP3636443B1 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
TWI389801B (zh) 標記控制裝置、雷射應用裝置、標記控制方法、以及具有標記控制程式之電腦可讀取記錄媒體
JP2022093420A (ja) 描画及び消去装置および照射方法
US8243111B2 (en) Optical disc label printer, thermosensitive recording printer and thermosensitive recording method
JP2009172801A (ja) 非接触光書き込み消去装置及びその方法
WO2004041543A1 (ja) 可逆性多色記録媒体、及びこれを用いた記録方法
JP7060016B2 (ja) 消去装置および消去方法
JP4281347B2 (ja) 可逆性多色記録媒体の記録装置
JP2004188827A (ja) 可逆性多色記録媒体の記録装置
JP2004249541A (ja) 可逆性多色記録媒体の記録装置
WO2020054330A1 (ja) 描画システム、および、変換プロファイルの作成方法
US6829020B2 (en) Recording method and recording apparatus for thermoreversible recording medium
US11367463B2 (en) Reversible recording medium
JP4586353B2 (ja) 記録方法
JP2004188828A (ja) 可逆性多色記録媒体の記録装置
JP2009000949A (ja) 非接触光書き込み装置
US8223183B2 (en) Image formation device and image formation method
JP2004249539A (ja) 可逆性多色記録媒体の記録装置
JP2004249540A (ja) 可逆性多色記録媒体の記録装置
JP2002321397A (ja) 画像形成装置
JP2004155011A (ja) 可逆性多色記録媒体を用いた記録方法
JPH06143829A (ja) カラーマルチチャンネルレコーダ
JPS6339271A (ja) 記録装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523378

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018813876

Country of ref document: EP

Effective date: 20200108