WO2018221296A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2018221296A1
WO2018221296A1 PCT/JP2018/019504 JP2018019504W WO2018221296A1 WO 2018221296 A1 WO2018221296 A1 WO 2018221296A1 JP 2018019504 W JP2018019504 W JP 2018019504W WO 2018221296 A1 WO2018221296 A1 WO 2018221296A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal substrate
insulating sheet
insulating
power conversion
conversion device
Prior art date
Application number
PCT/JP2018/019504
Other languages
English (en)
French (fr)
Inventor
貴文 野中
熊谷 隆
規央 鈴木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2018221296A1 publication Critical patent/WO2018221296A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present invention relates to a power converter, and more particularly to a power converter having a metal substrate on which a power semiconductor element is mounted.
  • Patent Document 1 proposes an insulating heat dissipation substrate used in such a power conversion device or the like.
  • the insulating heat dissipation substrate includes a metal plate, a sheet-like heat transfer layer, a measurement electrode formed inside the heat transfer layer, and a measurement electrode formed on the surface layer of the heat transfer layer.
  • the measurement electrode and the metal plate formed inside the heat transfer layer are electrically insulated by the heat transfer layer. Further, the measurement electrode formed on the surface layer of the heat transfer layer and the metal plate are electrically insulated by the heat transfer layer. That is, in this insulated heat dissipation substrate, the heat transfer layer that insulates between the measurement electrode formed inside the heat transfer layer and the metal plate, and the measurement electrode formed on the surface layer of the heat transfer layer and the metal plate. It is insulated twice by the heat transfer layer that insulates.
  • the heat transfer layer is formed of a plurality of layers in order to double-insulate.
  • contact thermal resistance is generated at the contact surface between one heat transfer layer and another heat transfer layer that are in contact with each other.
  • the heat transfer layer is a resin insulator and is formed from a relatively hard material, so that the contact surface between one heat transfer layer and the other heat transfer layer that are in contact with each other can be in close contact with each other. Difficult and can cause gaps. For this reason, the contact thermal resistance tends to be high.
  • the heat transfer layer is made of resin and the metal plate and the measurement electrode are made of metal, the heat transfer layer, the metal plate, and the measurement electrode have different thermal expansion coefficients. For this reason, the contact surface between the heat transfer layer and the metal plate (or measurement electrode) is likely to be displaced with respect to temperature change, which becomes a factor of increasing the contact thermal resistance.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a power converter capable of reducing contact thermal resistance.
  • the power conversion device includes a heat dissipation housing, an insulating sheet, a metal substrate, a power semiconductor, and a printed circuit board.
  • the insulating sheet is disposed on the heat dissipation housing.
  • the metal substrate is disposed on the heat radiating casing with an insulating sheet interposed therebetween, and has a circuit pattern formed on the insulating layer and the insulating layer on the surface opposite to the surface on which the insulating sheet is located.
  • the power semiconductor element is mounted on the circuit pattern.
  • the printed circuit board is disposed so as to be electrically connected to the power semiconductor element.
  • the insulating sheet and the metal substrate are brought into close contact with each other and the insulating sheet and the heat radiating housing are brought into close contact with each other by sandwiching the insulating sheet between the metal substrate and the heat radiating housing.
  • the contact thermal resistance between the insulating sheet and the metal substrate and the contact thermal resistance between the insulating sheet and the heat dissipation housing can be reduced.
  • FIG. 1 is a cross-sectional view of a power conversion device according to a first embodiment.
  • it is the elements on larger scale which show the structure of the metal substrate.
  • it is a partial expanded sectional view which shows a screw and its periphery.
  • it is sectional drawing which shows 1 process of the manufacturing method of a power converter device.
  • FIG. 5 is a cross-sectional view showing a step performed after the step shown in FIG. 4 in the same embodiment.
  • FIG. 6 is a cross-sectional view showing a step performed after the step shown in FIG. 5 in the same embodiment.
  • FIG. 7 is a cross-sectional view showing a step performed after the step shown in FIG. 6 in the same embodiment.
  • FIG. 8 is a cross-sectional view showing a step performed after the step shown in FIG. 7 in the same embodiment.
  • It is sectional drawing of the power converter device which concerns on Embodiment 2.
  • FIG. In the same embodiment, it is a partial expanded sectional view which shows a screw and its periphery. In the same embodiment, it is sectional drawing which shows 1 process of the manufacturing method of a power converter device. It is sectional drawing of the power converter device which concerns on Embodiment 3.
  • it is sectional drawing which shows 1 process of the manufacturing method of a power converter device. It is sectional drawing of the power converter device which concerns on Embodiment 4. In each embodiment, it is sectional drawing which shows the power converter device which concerns on a modification.
  • heat transfer refers to heat transport that occurs between one member that contacts each other and another member.
  • the heat transfer coefficient is a value (W / m 2 ⁇ K) indicating the ease of transfer of thermal energy between two different substances.
  • the value of the heat transfer coefficient varies depending on the contact state of the two substances.
  • heat conduction refers to a phenomenon in which heat propagates from a high temperature to a low temperature when a temperature difference occurs locally within a certain substance.
  • the thermal conductivity refers to a temperature gradient (W / m ⁇ K) indicating the temperature gradient when the heat conduction occurs, that is, the ease of heat transfer.
  • the thermal resistance K / W
  • Thermal resistance represents the difficulty in transferring heat in a substance.
  • Contact thermal resistance refers to thermal resistance caused by unevenness present on the contact surface between solids. Even on a solid surface that is smooth, there are microscopic irregularities, and when solids with such irregularities are combined, there is low thermal conductivity, such as air, in the gaps between the irregularities. As a result, a large thermal resistance is generated.
  • the unit is defined as K / W.
  • the power conversion device 1 includes a mounting board 11 and a printed board 13.
  • the mounting substrate 11 includes an aluminum casing 23 as a heat dissipation casing, an insulating sheet 25, and a metal substrate 15.
  • a metal substrate 15 is disposed on the aluminum casing 23 with an insulating sheet 25 interposed therebetween.
  • the printed circuit board 13 is formed with a circuit pattern (not shown) including a power conversion circuit such as a switching power supply, an inverter, and a converter.
  • a power conversion circuit such as a switching power supply, an inverter, and a converter.
  • a commonly used printed board such as glass epoxy, glass composite, paper phenol, or the like is applied.
  • the metal substrate 15 has an aluminum base 17, an insulating layer 19, and a circuit pattern 21.
  • a circuit pattern 21 is arranged on the aluminum base 17 with an insulating layer 19 interposed.
  • the power semiconductor element 3 is mounted on the circuit pattern 21.
  • the circuit pattern 21 is formed of copper foil (thickness: about several tens of ⁇ m).
  • the size of the metal substrate 15 is, for example, about 100 mm ⁇ 200 mm, and preferably about 300 mm ⁇ 300 mm or less.
  • the insulating layer 19 is formed of an insulator such as glass epoxy.
  • the thermal conductivity of the insulating layer 19 is inferior to the thermal conductivity of metals such as copper and aluminum, but exhibits high insulation performance.
  • the insulating layer 19 has a thickness of about several tens of ⁇ m and has a withstand voltage capability of about several kV. Since the thickness of the insulating layer 19 is about several tens of ⁇ m, the thermal resistance is lowered.
  • the aluminum base 17 is made of aluminum and has a high thermal conductivity. The thickness of the aluminum base 17 is, for example, about 1.0 mm to 3.0 mm.
  • a power semiconductor element called a TO (Transistor Outline) package is applied as the power semiconductor element 3.
  • a heat radiating plate 7 is attached to the back surface of the package of this type of power semiconductor element 3.
  • Lead terminals 5 are provided so as to protrude from the package.
  • the heat sink 7 is joined to the circuit pattern 21 (copper foil portion) by solder 9.
  • the lead terminal 5 is joined to the printed circuit board 13 by solder (not shown).
  • the model numbers of this type of power semiconductor element 3 include, for example, TO-220, TO-3P, TO-247, TO-252, TO-263, and the like.
  • the power semiconductor element 3 is electrically connected to the printed board 13 and thermally connected to the metal board 15.
  • the power conversion circuit formed on the printed circuit board 13 is operated, heat generated in the power semiconductor element 3 is conducted to the metal substrate 15.
  • the metal substrate 15 is fixed to the aluminum housing 23 by screws 27 and insulating bushes 29. As shown in FIG. 3, an insulating bush 29 is attached so as to penetrate the metal substrate 15 and the insulating sheet 25 and reach the aluminum housing 23. A screw 27 is inserted into the insulating bush 29 and screwed into the aluminum housing 23.
  • the metal substrate 15 and the insulating sheet 25 are fixed to the aluminum casing 23 by tightening the screws 27.
  • the metal substrate 15 is preferably fixed to the aluminum casing 23 by at least two screws 27 or the like. Although a plain washer is shown in FIG. 3, it is not essential and is attached as necessary.
  • the insulating sheet 25 is obtained by processing, for example, silicone rubber.
  • silicone rubber for example, a sheet-type heat radiation silicone rubber processed product manufactured by Shin-Etsu Chemical Co., Ltd. (Shin-Etsu Silicone (registered trademark)) can be applied.
  • This processed silicone rubber is a sheet having a thickness of about 0.1 to 1.0 mm.
  • the thermal conductivity of the processed silicone rubber is about 0.5 to 5.0 W / m ⁇ K.
  • the thermal resistance is proportional to the thickness of the substance and inversely proportional to the thermal conductivity.
  • the processed silicone rubber product has high insulation performance (several kV to 20 kV). The insulation performance is higher when the thickness is thicker than when the thickness is thin.
  • the length below the collar portion of the insulating bush 29 is set to be shorter than the total thickness of the metal substrate 15 and the insulating sheet 25.
  • the length below the collar portion of the insulating bush 29 is designed to be equal to or less than the total thickness of the metal substrate 15 and the insulating sheet 25.
  • circuit pattern 21 and the aluminum casing 23 formed on the metal substrate 15 are electrically insulated by the insulating layer 19 and the insulating bush 29. That is, the circuit pattern 21 and the aluminum housing 23 are double-insulated.
  • the heat radiating plate 7 of the power semiconductor element 3 is joined to the circuit pattern 21 of the metal substrate 15 with solder 9.
  • the lead terminal 5 of the power semiconductor element 3 is joined to the printed circuit board 13 by solder (not shown).
  • an insulating sheet 25 is placed on the aluminum casing 23.
  • the metal substrate 15 is disposed on the insulating sheet 25, and the insulating sheet 25 is sandwiched between the metal substrate 15 and the aluminum housing 23.
  • the insulating bush 29 is attached to the metal substrate 15. The screw 27 is inserted through the flat washer 28 and the insulating bush 29.
  • the metal substrate 15 and the insulating sheet 25 are fixed to the aluminum casing 23 by tightening the screws 27. In this way, the main part of the power converter 1 is completed.
  • the heat generated in the power semiconductor element 3 is thermally conducted to the circuit pattern 21 of the metal substrate 15 through the heat sink 7 and the solder 9. At this time, since the circuit pattern 21 is formed from a copper foil having a high thermal conductivity, heat can be diffused and heat conduction is performed efficiently.
  • the heat conducted to the circuit pattern 21 is conducted to the aluminum base 17 through the insulating layer 19.
  • the heat conducted to the aluminum base 17 is diffused in the aluminum base 17 and spreads over the entire aluminum base 17.
  • the heat diffused throughout the aluminum base 17 is transferred to the aluminum casing 23 via the insulating sheet 25.
  • the aluminum casing 24 is in contact with air, and the heat transferred to the aluminum casing 23 is further transferred into the air to be radiated.
  • the insulating substrate 25 having elasticity is sandwiched between the metal substrate 15 and the aluminum housing 23 and the screw 27 is tightened, whereby the metal substrate 15 and the insulating sheet 25 are attached to the aluminum housing 23. It is fixed to. Therefore, the insulating sheet 25 and the aluminum base 17 of the metal substrate 15 are in close contact with each other, and the insulating sheet 25 and the aluminum casing 23 are in close contact with each other.
  • the aluminum base 17, the insulating sheet 25, and the aluminum casing 23 of the metal substrate 15 have different thermal expansion coefficients. For this reason, the contact surface between the insulating sheet 25 and the aluminum base 17 or the aluminum housing 23 is likely to be displaced with respect to the temperature change, but the displacement is absorbed by the insulating sheet 25 having elasticity. Thereby, compared with the case where a shift
  • contact thermal resistance can be reduced using the insulation sheet 25, the screw 27, and the insulation bush 29, and compared with the case of the conventional insulated heat dissipation board, the mold and It can be manufactured by applying a commercially available member without requiring a press or the like, and can contribute to a reduction in production cost.
  • the heat sink 7 of the power semiconductor element 3 is electrically connected to the internal elements.
  • the power semiconductor element 3 includes a type in which screw holes are formed in the heat radiating plate 7. If a metal screw is inserted into the screw hole to fix the metal substrate 15 to the aluminum casing 23, the power semiconductor element 3 and the aluminum casing 23 cannot be electrically insulated.
  • the power semiconductor element 3 includes a type in which a screw hole is formed in a resin package.
  • a metal screw is inserted into the screw hole and the metal substrate 15 is fixed to the aluminum casing 23, the power semiconductor element 3 and the aluminum casing 23 can be electrically insulated.
  • the insulation capability of the power conversion device 1 depends only on the portion fixed by the screw inserted through the hole of the resin package.
  • the metal substrate 15 is fixed to the aluminum housing 23 by the screws 27 and the insulating bushes 29 without using the screw holes formed in the power semiconductor element 3.
  • the circuit pattern 21 of the metal substrate 15 and the aluminum casing 23 are double-insulated by the insulating layer 19 and the insulating bush 29.
  • the metal substrate 15 on which the power semiconductor element 3 is mounted is provided with an aluminum base 17, so that it is compared with the heat transfer layer of the conventional insulating heat radiating substrate in which an inorganic filler is blended. Then, the heat generated from the power semiconductor element 3 can be radiated efficiently.
  • FIG. A power conversion apparatus 1 according to Embodiment 2 will be described.
  • the metal substrate 15 is fixed to the aluminum housing 23 with a resin screw 31.
  • the resin screw 31 passes through the metal substrate 15 and the insulating sheet 25 and is screwed into the aluminum casing 23.
  • the material of the resin screw 31 is preferably one having mechanical strength and heat resistance, for example, PEEK (Poly Ether Ether Ketone).
  • the plain washer 32 is shown in FIG. 10, it is not essential and is mounted as necessary.
  • the flat washer 32 may be made of metal or resin. Since other configurations are the same as those of the power conversion apparatus 1 shown in FIG. 1 and the like, the same members are denoted by the same reference numerals, and the description thereof will not be repeated unless necessary.
  • the circuit pattern 21 of the metal substrate 15 on which the power semiconductor element 3 is mounted and the aluminum casing 23 are double-insulated by the insulating layer 19 and the insulating sheet 25.
  • the metal substrate 15 is fixed to the aluminum housing 23 by the resin screw 31. Thereby, the screw 31 and the aluminum housing 23 are brought into a non-conductive state. For this reason, the circuit pattern 21 of the metal substrate 15 and the aluminum casing 23 are double-insulated by the insulating layer 19 and the insulating sheet 25.
  • the insulating sheet 25 and the aluminum base 17 of the metal substrate 15 are in close contact with each other, and the insulating sheet 25 and the aluminum casing 23 are in close contact with each other. Accordingly, as described above, the contact thermal resistance between the insulating sheet 25 and the aluminum base 17 and the insulating sheet 25 are compared with the case where a gap is generated on the contact surface as in the conventional insulating heat dissipation substrate. And the contact thermal resistance between the aluminum casing 23 and the aluminum casing 23 can be reduced.
  • the contact thermal resistance can be reduced by using the insulating sheet 25 and the resin screw 31, and as described above, a mold and a press are required as compared with the case of the conventional insulating heat dissipation substrate. Instead, it can be manufactured by applying a commercially available member, which can contribute to a reduction in production cost.
  • resin was mentioned as an example as a material (material) of the screw 31, as long as it is a material which can be insulated and can ensure desired intensity
  • FIG. 12 A power conversion apparatus 1 according to Embodiment 3 will be described.
  • the metal substrate 15 is fixed to the aluminum housing 23 by a spring metal fitting 33.
  • the spring metal fitting 33 is mounted so as to sandwich the insulating sheet 35, the metal substrate 15, the insulating sheet 25, and the aluminum housing 23.
  • the spring metal fitting 33 is a metal spring, for example. As shown in FIG. 14, in the spring metal fitting 33, before the insulating sheet 35 to the aluminum casing 23 are sandwiched, the portion in contact with the insulating sheet 35 and the portion in contact with the aluminum casing 23 are in close proximity to each other.
  • the width of the spring fitting 33 is, for example, about 5 mm to 30 mm.
  • symbol is attached
  • the circuit pattern 21 of the metal substrate 15 on which the power semiconductor element 3 is mounted and the aluminum casing 23 are double-insulated by the insulating layer 19 and the insulating sheet 35.
  • the metal substrate 15 is fixed to the aluminum casing 23 by the spring metal fitting 33.
  • the spring fitting 33 is mounted so as to sandwich the insulating sheet 35 to the aluminum casing 23.
  • the circuit pattern 21 of the metal substrate 15 and the aluminum casing 23 are double-insulated by the insulating layer 19 and the insulating sheet 35.
  • an insulating sheet 25 having elasticity is sandwiched between the metal substrate 15 and the aluminum casing 23, and further, the insulating sheet 35 to the aluminum casing 23 are sandwiched by the spring metal fitting 33, so that the insulating sheet 25 and the metal substrate 15 are sandwiched.
  • the aluminum base 17 is in close contact
  • the insulating sheet 25 and the aluminum housing 23 are in close contact. Accordingly, as described above, the contact thermal resistance between the insulating sheet 25 and the aluminum base 17 and the insulating sheet 25 are compared with the case where a gap is generated on the contact surface as in the conventional insulating heat dissipation substrate. And the contact thermal resistance between the aluminum casing 23 and the aluminum casing 23 can be reduced.
  • the contact thermal resistance can be reduced by using the insulating sheet 25 and the spring metal fitting 33, and as described above, a mold and a press are not required as compared with the case of the conventional insulating heat dissipation substrate. It can be manufactured by applying commercially available members, and can contribute to the reduction of production costs.
  • FIG. 16 A power conversion apparatus 1 according to Embodiment 4 will be described.
  • a metal substrate 15 (aluminum base 17) is disposed on an aluminum housing 23 with an insulating sheet 26 interposed therebetween.
  • the insulating sheet 26 has adhesiveness on the front and back. Since the configuration other than this is the same as that of the power conversion device 1 shown in FIG.
  • an adhesive insulating sheet 26 is interposed between the aluminum casing 23 and the metal substrate 15. For this reason, the metal substrate 15 and the aluminum housing
  • thermosetting adhesive sheet may be used as the insulating sheet 26. After the adhesive sheet is cured, a power converter that does not use a fixing member such as a screw can be configured.
  • the aluminum casing 23 has been described by taking the plate-shaped aluminum casing 23 of an aluminum lump as an example.
  • the aluminum housing 23 is not limited to this, and may be an aluminum housing 24 having a shape like an aluminum sheet sink, for example, as shown in FIG. Moreover, you may form a housing
  • the present invention is effectively used in a power conversion device in which a metal substrate on which a power semiconductor element is mounted is fixed to an aluminum casing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)

Abstract

電力変換装置(1)は、アルミニウム筐体(23)の上に、絶縁シート(25)を介在させて金属基板(15)が配置されている。金属基板(15)では、アルミニウムベース(17)の上に絶縁層(19)を介在させて回路パターン(21)が配置されている。回路パターン(21)に、半導体素子(3)が実装されている。金属基板(15)は、ねじ(27)および絶縁ブッシュ(29)によってアルミニウム筺体(23)に固定されている。ねじ(27)を締め付けることで、金属基板(15)とアルミニウム筺体(23)との間に、絶縁性を有する絶縁シート(25)が挟み込まれる。

Description

電力変換装置
 本発明は、電力変換装置に関し、特に、パワー半導体素子を搭載した金属基板を有する電力変換装置に関するものである。
 近年、電気電子機器の高性能化に伴って、パワー半導体素子を適用したスイッチング電源、コンバータ、インバータ等の電力変換装置には、さらなる小型化が要求されている。電力変換装置には、たとえば、ハイブリッドカー、電気自動車等の電動モータを駆動させるのに用いられているものがある。
 自動車用の電力変換装置に搭載されているパワー半導体素子を含むパワー半導体部品には、大きな電流が流れるため、人間が触れる可能性がある場合には、二重絶縁(強化絶縁)を対策しておく必要がある。また、電力変換装置には、高い発熱を伴う。
 このため、電力変換装置には、絶縁性能と放熱性能とを両立した実装構造が求められている。たとえば、特許文献1では、そのような電力変換装置等に使用される絶縁放熱基板が提案されている。絶縁放熱基板は、金属板と、シート状の伝熱層と、伝熱層の内部に形成された測定電極と、伝熱層の表層に形成された測定電極とを備えている。
 伝熱層の内部に形成された測定電極と金属板とが、伝熱層によって電気的に絶縁される。また、伝熱層の表層に形成された測定電極と金属板とが、伝熱層によって電気的に絶縁される。すなわち、この絶縁放熱基板では、伝熱層の内部に形成された測定電極と金属板との間を絶縁する伝熱層と、伝熱層の表層に形成された測定電極と金属板との間を絶縁する伝熱層とによって、二重に絶縁されることになる。
特開2009-4731号公報
 上記のように、絶縁放熱基板では、二重に絶縁するために、伝熱層は複数の層から形成されている。複数の層から形成される伝熱層では、互いに接触する一の伝熱層と他の伝熱層との接触面において、接触熱抵抗が生じる。また、伝熱層は、樹脂製の絶縁物であり、比較的硬い材料から形成されているため、互いに接触する一の伝熱層と他の伝熱層との接触面では、密着させることが難しく、隙間が生じることがある。このため、接触熱抵抗が高くなりやすい。
 さらに、伝熱層は樹脂から形成され、金属板および測定電極は金属から形成されているため、伝熱層、金属板および測定電極では、熱膨張係数が異なる。このため、温度変化に対して、伝熱層と金属板(または測定電極)との接触面にずれが生じやすく、接触熱抵抗がより高くなる要因となる。
 本発明は、上記問題点を解決するためになされたものであり、その目的は、接触熱抵抗の低減が図られる電力変換装置を提供することである。
 本発明に係る電力変換装置は、放熱筺体と絶縁シートと金属基板とパワー半導体とプリント基板とを備えている。絶縁シートは、放熱筺体の上に配置されている。金属基板は、放熱筺体の上に絶縁シートを介在させて配置され、絶縁シートが位置する面とは反対側の面に、絶縁層および絶層上に形成された回路パターンを有する。パワー半導体素子は、回路パターン上に搭載されている。プリント基板は、パワー半導体素子と電気的に接続されるように配置されている。
 本発明に係る電力変換装置によれば、金属基板と放熱筺体との間に、絶縁シートを挟み込むことで、絶縁シートと金属基板とが密着するとともに、絶縁シートと放熱筐体とが密着する。これにより、絶縁シートと金属基板との接触熱抵抗と、絶縁シートと放熱筐体との接触熱抵抗とを、低減することができる。
実施の形態1に係る電力変換装置の断面図である。 同実施の形態において、金属基板の構造を示す部分拡大断面図である。 同実施の形態において、ねじとその周辺を示す部分拡大断面図である。 同実施の形態において、電力変換装置の製造方法の一工程を示す断面図である。 同実施の形態において、図4に示す工程の後に行われる工程を示す断面図である。 同実施の形態において、図5に示す工程の後に行われる工程を示す断面図である。 同実施の形態において、図6に示す工程の後に行われる工程を示す断面図である。 同実施の形態において、図7に示す工程の後に行われる工程を示す断面図である。 実施の形態2に係る電力変換装置の断面図である。 同実施の形態において、ねじとその周辺を示す部分拡大断面図である。 同実施の形態において、電力変換装置の製造方法の一工程を示す断面図である。 実施の形態3に係る電力変換装置の断面図である。 同実施の形態において、ばね金具とその周辺を示す部分拡大断面図である。 同実施の形態において、ばね金具を示す部分拡大断面図である。 同実施の形態において、電力変換装置の製造方法の一工程を示す断面図である。 実施の形態4に係る電力変換装置の断面図である。 各実施の形態において、変形例に係る電力変換装置を示す断面図である。
 はじめに、この明細書において使用する熱に関する用語について説明(定義)する。まず、熱伝達とは、互いに接触する一の部材と他の部材との間において発生する熱輸送のことをいう。熱伝達率とは、異なる二つの物質間での熱エネルギーの伝わりやすさを示す値(W/m・K)をいう。熱伝達率は、二つの物質の接触状態によって、その値が変わる。
 また、熱伝導とは、ある物質内において局所的に温度差が発生すると、温度の高いところから低いところへ熱が伝搬する現象のことをいう。熱伝導率とは、前記熱伝導が発生する際の温度勾配、すなわち、熱の伝わりやすさを示す物性値(W/m・K)のことをいう。ある物質において、熱を伝達する方向の距離、つまり、厚みを、熱を伝導する面積と熱伝導率との積で除すと、熱抵抗(K/W)となる。熱抵抗は、物質内における熱の伝わりにくさを表す。
 接触熱抵抗とは、固体同士の接触面に存在する凸凹により生じる熱抵抗のことをいう。一見なめらかな固体表面でも、ミクロ的には凸凹が存在し、そのような凸凹が存在する固体同士を組み合わせたときに、その凸凹の隙間に、熱伝導率が小さい、たとえば、空気などが存在することによって、大きな熱抵抗が生じる。単位はK/Wと定義する。
 実施の形態1.
 実施の形態1に係る電力変換装置について説明する。図1に示すように、電力変換装置1は、実装基板11とプリント基板13とを有する。実装基板11は、放熱筺体としてのアルミニウム筺体23、絶縁シート25および金属基板15を有する。アルミニウム筐体23の上に、絶縁シート25を介在させて金属基板15が配置されている。
 プリント基板13には、たとえば、スイッチング電源、インバータ、コンバータ等の電力変換回路を含む回路パターン(図示せず)が形成されている。プリント基板13として、たとえば、ガラスエポキシ、ガラスコンポジット、紙フェノール等、一般的に使用されているプリント基板が適用される。
 図2に示すように、金属基板15は、アルミニウムベース17、絶縁層19および回路パターン21を有する。アルミニウムベース17の上に絶縁層19を介在させて回路パターン21が配置されている。回路パターン21に、パワー半導体素子3が実装されている。回路パターン21は、銅箔(厚さ:数十μm程度)によって形成されている。金属基板15のサイズは、たとえば、100mm×200mm程度であり、300mm×300mm程度以下が望ましい。
 絶縁層19は、たとえば、ガラスエポキシ等の絶縁物によって形成されている。絶縁層19の熱伝導率は、銅、アルミニウム等の金属の熱伝導率よりも劣るが、高い絶縁性能を示す。絶縁層19は、数十μm程度の厚みを有し、数kV程度の耐電圧能力を有する。絶縁層19の厚さは、数十μm程度であるため、熱抵抗が低くなる。アルミニウムベース17は、アルミニウムから形成されており、高い熱伝導率を有する。アルミニウムベース17の厚さは、たとえば、1.0mm~3.0mm程度である。
 パワー半導体素子3として、TO(Transistor Outline)パッケージと称されるパワー半導体素子が適用されている。この種のパワー半導体素子3のパッケージの背面には、放熱板7が取り付けられている。また、パッケージから突出するようにリード端子5が設けられている。放熱板7が、はんだ9によって回路パターン21(銅箔の部分)に接合されている。リード端子5が、はんだ(図示せず)によってプリント基板13に接合されている。なお、この種のパワー半導体素子3の型番には、たとえば、TO-220、TO-3P、TO-247、TO-252、TO-263等がある。
 こうして、パワー半導体素子3は、プリント基板13とは電気的に接続され、金属基板15とは熱的に接続される。プリント基板13に形成された電力変換回路を動作させた際に、パワー半導体素子3に発生する熱は、金属基板15へと伝導する。
 その金属基板15は、ねじ27および絶縁ブッシュ29によってアルミニウム筺体23に固定されている。図3に示すように、金属基板15および絶縁シート25を貫通してアルミニウム筺体23に達するように絶縁ブッシュ29が装着されている。その絶縁ブッシュ29にねじ27が挿通されて、アルミニウム筺体23に螺合している。
 ねじ27を締め付けることで、金属基板15および絶縁シート25が、アルミニウム筺体23に固定されている。金属基板15は、少なくとも2本のねじ27等によってアルミニウム筐体23に固定されていることが望ましい。なお、図3には、平座金が示されているが、必須のものではなく、必要に応じて装着される。
 絶縁シート25は、たとえば、シリコーンゴムを加工したものであり、たとえば、信越化学工業株式会社(信越シリコーン(登録商標))製のシートタイプの放熱シリコーンゴム加工品を適用することができる。このシリコーンゴム加工品は、厚みが0.1~1.0mm程度のシート状のものである。
 シリコーンゴム加工品の熱伝導率は、0.5~5.0W/m・K程度である。熱伝導率は数値が高いほど熱を伝えやすく、数値が低いほど熱を伝えにくい。また、熱抵抗は、その物質の厚みに比例し、熱伝導率に反比例するため、物質が厚いほど熱を伝えにくく、薄いほど熱を伝えやすい。また、シリコーンゴム加工品は、高い絶縁性能(数kV~20kV)を有している。なお、絶縁性能は、厚みが薄いものより厚いものの方が高い。
 絶縁ブッシュ29のつば部分より下側の長さは、金属基板15の厚さと絶縁シート25の厚さとを合わせた厚さよりも短く設定されている。絶縁ブッシュ29のつば部分より下側の長さは、金属基板15の厚さと絶縁シート25の厚さとを合わせた厚さ以下となるように設計されている。このような長さ関係を採用することで、ねじ27を締め付けた際に、絶縁シート25が、金属基板15とアルミニウム筺体23に挟まれるようにして押しつけられ、密着するとともに、金属基板15がアルミニウム筐体23に固定される。
 こうして、金属基板15に形成された回路パターン21とアルミニウム筺体23とは、絶縁層19と絶縁ブッシュ29とによって電気的に絶縁される。すなわち、回路パターン21とアルミニウム筺体23とが、二重絶縁されることになる。
 次に、上述した電力変換装置1の製造方法の一例について、簡単に説明する。図4に示すように、金属基板15の回路パターン21に、パワー半導体素子3の放熱板7をはんだ9によって接合する。次に、図5に示すように、パワー半導体素子3のリード端子5を、はんだ(図示せず)によってプリント基板13に接合する。
 次に、図6に示すように、アルミニウム筐体23の上に絶縁シート25を載置する。次に、その絶縁シート25の上に、金属基板15を配置し、金属基板15とアルミニウム筐体23との間に絶縁シート25を挟み込む。次に、図7に示すように、絶縁ブッシュ29を金属基板15に装着する。ねじ27を平座金28と絶縁ブッシュ29とに挿通する。
 次に、図8に示すように、ねじ27を締め付けることにより、金属基板15および絶縁シート25がアルミニウム筐体23に固定される。こうして、電力変換装置1の主要部分が完成する。
 次に、上述した電力変換装置1のパワー半導体素子3において発生した熱の流れについて説明する。まず、プリント基板13に形成された電力変換回路を動作させると、パワー半導体素子3が発熱する。
 パワー半導体素子3において発生した熱は、放熱板7およびはんだ9を介して、金属基板15の回路パターン21に熱伝導する。このとき、回路パターン21が、熱伝導率が高い銅箔から形成されているため、熱を拡散させることができ、効率よく熱伝導する。回路パターン21に伝導した熱は、絶縁層19を介してアルミニウムベース17に熱伝導する。
 アルミニウムベース17に熱伝導した熱は、アルミニウムベース17中において熱拡散して、アルミニウムベース17の全体に広がる。アルミニウムベース17の全体に拡散した熱は、絶縁シート25を介してアルミニウム筐体23に熱伝達する。アルミニウム筐体24は、空気と接しており、アルミニウム筐体23に熱伝達した熱が、さらに空気中に熱伝達し、放熱することになる。
 上述した電力変換装置1では、金属基板15とアルミニウム筐体23との間に、弾性を有する絶縁シート25を挟み込み、ねじ27を締め付けることで、金属基板15と絶縁シート25とがアルミニウム筐体23に固定されている。このため、絶縁シート25と金属基板15のアルミニウムベース17とが密着するとともに、絶縁シート25とアルミニウム筐体23とが密着する。
 これにより、従来の絶縁放熱基板のように、接触面に隙間が生じているような場合と比較して、絶縁シート25とアルミニウムベース17との接触熱抵抗と、絶縁シート25とアルミニウム筐体23との接触熱抵抗とを低減することができる。
 また、金属基板15のアルミニウムベース17、絶縁シート25、アルミニウム筐体23では、熱膨張係数が異なる。このため、温度変化に対して、絶縁シート25とアルミニウムベース17またはアルミニウム筐体23との接触面にずれが生じやすいところ、そのずれが、弾性を有する絶縁シート25によって吸収されることになる。これにより、従来の絶縁放熱基板のように、接触面にずれが生じる場合と比較して、接触熱抵抗の変化を低く抑えることができる。
 また、上述した電力変換装置1では、絶縁シート25、ねじ27および絶縁ブッシュ29を使用して、接触熱抵抗を低減することができ、従来の絶縁放熱基板の場合と比較して、金型およびプレス等を必要とせず、市販の部材を適用して製造することができ、生産コストの削減にも寄与することができる。
 さらに、上述した電力変換装置1では、二重絶縁を確保することができる。パワー半導体素子3の放熱板7は、内部の素子と電気的に接続されている。パワー半導体素子3には、放熱板7にねじ穴が形成されているタイプのものがある。そのねじ穴に金属のねじを挿通して金属基板15をアルミニウム筐体23に固定しようとすると、パワー半導体素子3とアルミニウム筐体23とを電気的に絶縁することができなくなる。
 また、パワー半導体素子3には、樹脂パッケージにねじ穴が形成されているタイプのものがある。そのねじ穴に金属のねじを挿通して金属基板15をアルミニウム筐体23に固定する場合には、パワー半導体素子3とアルミニウム筐体23と電気的に絶縁することは可能である。しかしながら、この場合には、電力変換装置1における絶縁能力が、樹脂パッケージの穴に挿通されたねじによって固定されている部分だけに依存することになる。
 上述した電力変換装置1では、パワー半導体素子3に形成されているねじ穴を利用することなく、ねじ27と絶縁ブッシュ29とによって金属基板15がアルミニウム筐体23に固定されている。これにより、金属基板15の回路パターン21とアルミニウム筐体23とが、絶縁層19と絶縁ブッシュ29とで二重絶縁されることになる。
 また、上述した電力変換装置1では、パワー半導体素子3が搭載された金属基板15が、アルミニウムベース17を備えることで、無機フィラーを配合した、従来の絶縁放熱基板の伝熱層の場合と比較すると、パワー半導体素子3から発生した熱を効率よく放熱させることができる。
 実施の形態2.
 実施の形態2に係る電力変換装置1について説明する。図9に示すように、電力変換装置1では、金属基板15は、樹脂製のねじ31によってアルミニウム筺体23に固定されている。図10に示すように、樹脂製のねじ31は、金属基板15および絶縁シート25を貫通してアルミニウム筺体23に螺合している。樹脂製のねじ31の材質としては、機械的強度と耐熱性とを有するものが望ましく、たとえば、PEEK(Poly Ether Ether Ketone)が望ましい。
 なお、図10には、平座金32が示されているが、必須のものではなく、必要に応じて装着される。また、平座金32は、金属製でも樹脂製でもよい。これ以外の構成については、図1等に示す電力変換装置1と同様なので、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。
 上述した電力変換装置1では、パワー半導体素子3が搭載された金属基板15の回路パターン21とアルミニウム筐体23とが、絶縁層19と絶縁シート25とによって二重絶縁される。
 次に、上述した電力変換装置1の製造方法の一例について、簡単に説明する。前述した図4~図6に示す工程と同様の工程を経た後、図11に示すように、樹脂製のねじ31を平座金32とともに、金属基板15に形成された貫通孔(図示せず)に挿通しアルミニウム筐体23に螺合する。樹脂製のねじ31を締め付けることにより、金属基板15および絶縁シート25がアルミニウム筐体23に固定される。こうして、電力変換装置1の主要部分が完成する。
 上述した電力変換装置1では、樹脂製のねじ31によって、金属基板15がアルミニウム筺体23に固定されている。これにより、ねじ31とアルミニウム筺体23とは、非導通状態とされる。このため、金属基板15の回路パターン21とアルミニウム筐体23とは、絶縁層19と絶縁シート25とによって二重絶縁されることになる。
 また、金属基板15とアルミニウム筐体23との間に、弾性を有する絶縁シート25を挟み込み、ねじ31を締め付けることで、絶縁シート25と金属基板15のアルミニウムベース17とが密着するとともに、絶縁シート25とアルミニウム筐体23とが密着する。これにより、前述したように、従来の絶縁放熱基板のように、接触面に隙間が生じているような場合と比較して、絶縁シート25とアルミニウムベース17との接触熱抵抗と、絶縁シート25とアルミニウム筐体23との接触熱抵抗とを低減することができる。
 また、前述したように、温度変化に対して、絶縁シート25とアルミニウムベース17またはアルミニウム筐体23との接触面にずれが生じたとしても、そのずれが、弾性を有する絶縁シート25によって吸収されることになる。これにより、従来の絶縁放熱基板のように、接触面にずれが生じる場合と比較して、接触熱抵抗の変化を低く抑えることができる。
 さらに、絶縁シート25、樹脂製のねじ31を使用して、接触熱抵抗を低減することができ、前述したように、従来の絶縁放熱基板の場合と比較して、金型およびプレス等を必要とせず、市販の部材を適用して製造することができ、生産コストの削減にも寄与することができる。なお、ねじ31の材料(材質)として、樹脂を例に挙げたが、絶縁可能であり、所望の強度を確保できる材料であれば、樹脂に限られない。
 実施の形態3.
 実施の形態3に係る電力変換装置1について説明する。図12に示すように、電力変換装置1では、金属基板15は、ばね金具33によってアルミニウム筺体23に固定されている。図13に示すように、ばね金具33は、絶縁シート35、金属基板15、絶縁シート25およびアルミニウム筺体23を挟み込むように装着されている。
 ばね金具33は、たとえば、金属製のばねである。図14に示すように、ばね金具33は、絶縁シート35~アルミニウム筐体23を挟み込む前では、絶縁シート35に当接する部分とアルミニウム筐体23に当接する部分とが互いに接近した状態にある。ばね金具33の幅は、たとえば、5mm~30mm程度である。なお、これ以外の構成については、図1等に示す電力変換装置1と同様なので、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。
 上述した電力変換装置1では、パワー半導体素子3が搭載された金属基板15の回路パターン21とアルミニウム筐体23とが、絶縁層19と絶縁シート35とによって二重絶縁される。
 次に、上述した電力変換装置1の製造方法の一例について、簡単に説明する。前述した図4~図6に示す工程と同様の工程を経た後、図15に示すように、金属基板15をアルミニウム筐体23(絶縁シート25)に接近させる。次に、当接した状態で、ばね金具33を広げて(矢印参照)、絶縁シート35~アルミニウム筐体23を挟み込む。こうして、図12に示す電力変換装置1が完成する。
 上述した電力変換装置1では、ばね金具33によって、金属基板15がアルミニウム筐体23に固定されている。ばね金具33は、絶縁シート35~アルミニウム筺体23を挟み込むように装着されている。これにより、金属基板15の回路パターン21とアルミニウム筐体23とは、絶縁層19と絶縁シート35とによって二重絶縁されることになる。
 また、金属基板15とアルミニウム筐体23との間に、弾性を有する絶縁シート25を挟み込み、さらに、ばね金具33によって絶縁シート35~アルミニウム筺体23を挟み込むことで、絶縁シート25と金属基板15のアルミニウムベース17とが密着するとともに、絶縁シート25とアルミニウム筐体23とが密着する。これにより、前述したように、従来の絶縁放熱基板のように、接触面に隙間が生じているような場合と比較して、絶縁シート25とアルミニウムベース17との接触熱抵抗と、絶縁シート25とアルミニウム筐体23との接触熱抵抗とを低減することができる。
 また、前述したように、温度変化に対して、絶縁シート25とアルミニウムベース17またはアルミニウム筐体23との接触面にずれが生じたとしても、そのずれが、弾性を有する絶縁シート25によって吸収されることになる。これにより、従来の絶縁放熱基板のように、接触面にずれが生じる場合と比較して、接触熱抵抗の変化を低く抑えることができる。
 さらに、絶縁シート25、ばね金具33を使用して、接触熱抵抗を低減することができ、前述したように、従来の絶縁放熱基板の場合と比較して、金型およびプレス等を必要とせず、市販の部材を適用して製造することができ、生産コストの削減にも寄与することができる。
 実施の形態4.
 実施の形態4に係る電力変換装置1について説明する。図16に示すように、アルミニウム筐体23の上に、絶縁シート26を介在させて金属基板15(アルミニウムベース17)が配置されている。絶縁シート26は、表裏に粘着性を有する。これ以外の構成については、図1等に示す電力変換装置1と同様なので、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。
 上述した電力変換装置1では、アルミニウム筐体23と金属基板15との間に、粘着性を有する絶縁シート26が介在している。このため、金属基板15とアルミニウム筐体23とが、ねじを使うことなく接着されることになる。これにより、絶縁シート26とアルミニウムベース17との接触熱抵抗と、絶縁シート26とアルミニウム筐体23との接触熱抵抗とを低減することができる。その結果、他の実施の形態に係る電力変換装置と同様に、パワー半導体素子3で発生した熱を、アルミニウムベース17および絶縁シート26を介してアルミニウム筐体23に効率よく熱伝達させて、空気中に放熱させることができる。
 なお、上述した電力変換装置1では、絶縁シート26として、熱硬化性の接着シートを用いてもよい。接着シートが硬化した後では、ねじなどの固定部材を用いない電力変換装置を構成することができる。
 上述した各実施の形態では、アルミニウム筐体23として、アルミニウムの塊の板状のアルミニウム筐体23を例に挙げて説明した。アルミニウム筐体23としては、これに限られるものではなく、図17に示すように、たとえば、アルミニウムシートシンクのような形状を有するアルミニウム筐体24でもよい。また、アルミニウムの他に、銅または鉄等によって筐体を形成してもよい。
 なお、各実施の形態において説明した電力変換装置1については、必要に応じて種々組み合わせることが可能である。
 今回開示された実施の形態は例示であってこれに制限されるものではない。本発明は上記で説明した範囲ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。
 本発明は、パワー半導体素子を搭載した金属基板をアルミニウム筐体に固定する態様の電力変換装置に有効に利用される。
 1 電力変換装置、3 パワー半導体素子、5 リード端子、7 放熱板、9 はんだ、11 実装基板、13 プリント基板、15 金属基板、17 アルミニウムベース、19 絶縁層、21 回路パターン、23、24 アルミニウム筐体、25、26 絶縁シート、27 ねじ、28 平座金、29 絶縁ブッシュ、31 ねじ、32 平座金、33 ばね金具、35 絶縁シート。

Claims (11)

  1.  放熱筺体と、
     前記放熱筺体の上に配置された絶縁シートと、
     前記放熱筺体の上に前記絶縁シートを介在させて配置され、前記絶縁シートが位置する面とは反対側の面に、絶縁層および前記絶縁層上に形成された回路パターンを有する金属基板と、
     前記回路パターン上に搭載されたパワー半導体素子と、
     前記パワー半導体素子と電気的に接続されるように配置されたプリント基板と
    を備えた、電力変換装置。
  2.  前記金属基板を前記放熱筺体に固定する締め付け部材を備えた、請求項1記載の電力変換装置。
  3.  前記締め付け部材は、
     前記金属基板および前記絶縁シートを貫通して前記放熱筺体に達するように装着された絶縁性ブッシュと、
     前記絶縁性ブッシュに挿通され、前記放熱筺体に螺合するねじと
    を含み、
     前記ねじを締め付けることで、前記金属基板および前記絶縁シートが前記放熱筺体に固定された、請求項2記載の電力変換装置。
  4.  前記締め付け部材は、前記金属基板および前記絶縁シートを貫通し、前記放熱筺体に螺合する絶縁性ねじを含み、
     前記絶縁性ねじを締め付けることで、前記金属基板および前記絶縁シートが前記放熱筺体に固定された、請求項2記載の電力変換装置。
  5.  前記絶縁性ねじは、樹脂ねじを含む、請求項4記載の電力変換装置。
  6.  前記締め付け部材は、弾性金具を含み、
     前記弾性金具によって、前記金属基板、前記絶縁シートおよび前記放熱筺体を挟み込むことで、前記金属基板および前記絶縁シートが前記放熱筺体に固定された、請求項2記載の電力変換装置。
  7.  前記金属基板は、前記絶縁シートと前記絶縁層との間に介在させた導電性ベース板を含む、請求項1記載の電力変換装置。
  8.  前記導電性ベース板はアルミニウム板を含む、請求項7記載の電力変換装置。
  9.  前記絶縁シートはシリコーンゴムを含む、請求項1記載の電力変換装置。
  10.  前記絶縁シートは粘着性である、請求項1記載の電力変換装置。
  11.  前記放熱筺体は、アルミニウム筐体を含む、請求項1記載の電力変換装置。
PCT/JP2018/019504 2017-05-30 2018-05-21 電力変換装置 WO2018221296A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-106366 2017-05-30
JP2017106366 2017-05-30

Publications (1)

Publication Number Publication Date
WO2018221296A1 true WO2018221296A1 (ja) 2018-12-06

Family

ID=64456237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019504 WO2018221296A1 (ja) 2017-05-30 2018-05-21 電力変換装置

Country Status (1)

Country Link
WO (1) WO2018221296A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212100A (ja) * 1985-03-07 1986-09-20 ベンデイクス・エレクトロニクス・ソシエテ・アノニム 多連締付クリツプおよび一括装着装置
JPS6270487U (ja) * 1985-10-22 1987-05-02
JPS64385U (ja) * 1987-06-22 1989-01-05
JP2008136333A (ja) * 2006-10-30 2008-06-12 Denso Corp 電力変換装置
JP2008300476A (ja) * 2007-05-30 2008-12-11 Sumitomo Electric Ind Ltd パワーモジュール
JP2009004731A (ja) * 2007-01-29 2009-01-08 Panasonic Corp 絶縁放熱基板とその製造方法及びこれを用いた回路モジュール
JP2009027840A (ja) * 2007-07-19 2009-02-05 Fuji Electric Device Technology Co Ltd 電力変換装置
JP2011165867A (ja) * 2010-02-09 2011-08-25 Honda Elesys Co Ltd 電子部品ユニット及びその製造方法
JP2015076442A (ja) * 2013-10-07 2015-04-20 ローム株式会社 パワーモジュールおよびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212100A (ja) * 1985-03-07 1986-09-20 ベンデイクス・エレクトロニクス・ソシエテ・アノニム 多連締付クリツプおよび一括装着装置
JPS6270487U (ja) * 1985-10-22 1987-05-02
JPS64385U (ja) * 1987-06-22 1989-01-05
JP2008136333A (ja) * 2006-10-30 2008-06-12 Denso Corp 電力変換装置
JP2009004731A (ja) * 2007-01-29 2009-01-08 Panasonic Corp 絶縁放熱基板とその製造方法及びこれを用いた回路モジュール
JP2008300476A (ja) * 2007-05-30 2008-12-11 Sumitomo Electric Ind Ltd パワーモジュール
JP2009027840A (ja) * 2007-07-19 2009-02-05 Fuji Electric Device Technology Co Ltd 電力変換装置
JP2011165867A (ja) * 2010-02-09 2011-08-25 Honda Elesys Co Ltd 電子部品ユニット及びその製造方法
JP2015076442A (ja) * 2013-10-07 2015-04-20 ローム株式会社 パワーモジュールおよびその製造方法

Similar Documents

Publication Publication Date Title
US7057896B2 (en) Power module and production method thereof
CN102595785B (zh) 功率切换电路
CN109156090B (zh) 电路结构体
JP6432918B1 (ja) 回路基板収納筐体
JP2007059608A (ja) 電子制御装置
JP2010263003A (ja) プリント基板の熱伝導構造
JP2014165486A (ja) パワーデバイスモジュールとその製造方法
JP2001177006A (ja) 熱伝導基板とその製造方法
JP2015165545A (ja) パワーモジュールとその製造方法
JP2014140026A (ja) 放熱シート、放熱装置、放熱装置の製造方法
JP2004104115A (ja) パワーモジュール及びその製造方法
JP2019079903A (ja) 回路構成体及び回路構成体の製造方法
WO2018221296A1 (ja) 電力変換装置
JPWO2018159152A1 (ja) 半導体装置
US10327324B2 (en) Circuit board
CN109417858B (zh) 电路基板及电接线箱
JP2002076204A (ja) 樹脂付金属板状体
JP2011009475A (ja) 放熱部品一体型回路基板
JPH01164099A (ja) 放熱シールドシート
WO2018215409A1 (en) Power switch
US10420255B2 (en) Electronic control device
CN112119579B (zh) 功率转换装置
JP2014170834A (ja) パワー半導体の放熱構造およびこれを用いたオーディオ装置
JPH0818182A (ja) 回路基板
WO2023090102A1 (ja) 実装基板、及び実装基板を搭載した電気機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP