WO2018221185A1 - 射出成形金型、樹脂部材、及び、樹脂製品の製造方法 - Google Patents

射出成形金型、樹脂部材、及び、樹脂製品の製造方法 Download PDF

Info

Publication number
WO2018221185A1
WO2018221185A1 PCT/JP2018/018568 JP2018018568W WO2018221185A1 WO 2018221185 A1 WO2018221185 A1 WO 2018221185A1 JP 2018018568 W JP2018018568 W JP 2018018568W WO 2018221185 A1 WO2018221185 A1 WO 2018221185A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
weld
extending direction
resin member
cavity
Prior art date
Application number
PCT/JP2018/018568
Other languages
English (en)
French (fr)
Inventor
俊輔 深津
田中 寛治
陽一 西室
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN201880036635.3A priority Critical patent/CN110709228B/zh
Priority to EP18810184.4A priority patent/EP3632649A4/en
Priority to US16/618,144 priority patent/US20200164559A1/en
Publication of WO2018221185A1 publication Critical patent/WO2018221185A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0046Details relating to the filling pattern or flow paths or flow characteristics of moulding material in the mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2618Moulds having screw-threaded mould walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2618Moulds having screw-threaded mould walls
    • B29C45/2622Moulds having screw-threaded mould walls for moulding interrupted screw threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/12Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • B29C2045/0027Gate or gate mark locations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2701Details not specific to hot or cold runner channels
    • B29C45/2708Gates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • B29K2105/14Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/003Tubular articles having irregular or rough surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/24Pipe joints or couplings

Definitions

  • the present invention relates to an injection mold, a resin member, and a resin product manufacturing method.
  • This application claims priority based on Japanese Patent Application No. 2017-110456 filed in Japan on June 2, 2017, the entire contents of which are incorporated herein by reference.
  • Patent Document 1 When the molten resin joins in the cavity of the injection mold to form a weld part, the strength of the weld part in the molded product tends to be lower than the other parts.
  • Patent Document 1 In order to improve the strength of the weld portion, various attempts have been made conventionally (for example, Patent Document 1).
  • the present invention is for solving the above-described problems, and an object thereof is to provide an injection mold, a resin member, and a method for manufacturing a resin product, which can improve the strength of the weld portion. is there.
  • the injection mold of the present invention includes a gate and a cavity, and is configured such that a weld part is formed in the cavity by injecting molten resin containing reinforcing fibers into the cavity from the gate.
  • the cavity surface of the injection mold has a ridge that extends in a direction intersecting the weld extending direction of the weld and protrudes to the inside of the cavity.
  • at least one end edge part in the extending direction of the protruding line part is both in the weld extending direction and the direction perpendicular to the weld extending direction. It extends in a direction that intersects at a non-perpendicular angle.
  • the resin member of the present invention is made of a resin containing reinforcing fibers and has a weld portion.
  • the outer surface of the resin member extends in a direction intersecting the weld extension direction of the weld portion.
  • a plurality of concave ridges, and the plurality of concave ridges are spaced apart from each other in a direction intersecting the weld extending direction, and each other in the weld extending direction. Are spaced from each other.
  • the method for producing a resin product of the present invention includes a molding step in which a molten resin containing reinforcing fibers is injected from the gate into the cavity of the injection mold described above and a resin member is molded.
  • FIG. 3 is a cross-sectional view perpendicular to the axis along line AA in FIG. It is a side view which expands and shows the principal part of the injection mold shown in FIG. 1, and is a figure for demonstrating the effect
  • FIG. 4 is a sectional view taken along line HH in FIG. 3.
  • FIG. 6A is an axial sectional view taken along line B′-B ′ of FIG. 6B, showing a state when the injection mold of FIG.
  • FIG. 7B is a cross-sectional view perpendicular to the axis along the line A′-A ′ in FIG. 6A, showing the state when the injection mold of FIG.
  • FIG. 8A is an enlarged side view showing the main part of the resin member of FIG. 7, and FIG.
  • FIG. 8B is a cross-sectional view taken along the line H′-H ′ of FIG. 9 (a) is a perspective view showing a joint obtained from the resin member of FIG. 7, and FIG. 9 (b) shows a joint of FIG. 9 (a), EE showing the joint of FIG. 9 (a).
  • It is an axial perpendicular direction sectional view along a line, and is a figure for explaining a mode at the time of use.
  • It is a side view which expands and shows the principal part of the injection mold concerning 2nd Embodiment of this invention, and is a figure for demonstrating the effect
  • FIG. 13 (a) is a perspective view which shows a mode that the principal part of the injection mold which concerns on 2nd Embodiment of this invention was seen from the axial direction one side
  • FIG.13 (b) is FIG.
  • FIG. 15 is a cross-sectional view taken along line F′-F ′ in FIG. 14.
  • FIG. 16A is a perspective view showing a state in which the main part of the resin member according to the second embodiment of the present invention is viewed from one side in the axial direction, and FIG. It is a front view which shows a mode that the resin member of) was seen from the axial direction one side.
  • FIG. 17A is a perspective view showing a main part of an injection mold according to the third embodiment of the present invention viewed from one side in the axial direction, and FIG. It is a front view which shows a mode that the injection mold of (a) was seen from the axial direction one side.
  • FIG. 18 is an axial sectional view taken along line II in FIG. 17.
  • FIG. 17A is a perspective view showing a state in which the main part of the resin member according to the second embodiment of the present invention is viewed from one side in the axial direction
  • FIG. It is a front view which shows a mode that the resin member of) was seen from the axial direction one side.
  • FIG. 18 is an axial sectional view taken along
  • FIG. 19 (a) is a perspective view showing the main part of the resin member according to the third embodiment of the present invention as viewed from one side in the axial direction
  • FIG. 19 (b) is a perspective view of FIG.
  • It is a front view which shows a mode that the resin member of) was seen from the axial direction one side.
  • It is a side view which expands and shows the principal part of the injection mold concerning 4th Embodiment of this invention, and is a figure for demonstrating the effect
  • FIG. 24 is a sectional view taken along line G′-G ′ in FIG. 23.
  • FIG. 25 (a) is a perspective view showing an injection mold according to the fifth embodiment of the present invention
  • FIG. 25 (b) is a perspective view showing a resin member according to the fifth embodiment of the present invention. is there.
  • FIG. 26 (a) is a perspective view showing an injection mold according to the sixth embodiment of the present invention
  • FIG. 26 (b) is a perspective view showing a resin member according to the sixth embodiment of the present invention. is there.
  • the injection mold, resin member, and resin product manufacturing method according to the present invention can be used in the field of resin products of all types, applications, and shapes.
  • embodiments of an injection mold, a resin member, and a resin product manufacturing method according to the present invention will be described with reference to the drawings.
  • FIGS. 1 to 5 show the injection mold 100 of the present embodiment in a closed state
  • FIG. 6 shows the resin member 200 as a molded product by opening the injection mold 100. It shows how it is taken out.
  • 7 and 8 show a resin member 200 of the present embodiment obtained by injection molding using the injection mold 100 of FIGS. 1 to 6.
  • the resin member 200 may be used in the field of resin products of any kind and application, but is suitable for use in a joint.
  • FIG. 9 shows a joint 300, which is an example of a resin product finally obtained using the resin member 200 of FIG.
  • an injection mold (hereinafter also simply referred to as a mold) 100 includes a cavity CV defined by a cavity surface and a reinforcing fiber carried from the runner R. It has one or a plurality of (three in this example) gates G which are injection ports for injecting molten resin into the cavity CV. As will be described in detail later, the mold 100 is configured such that the weld portion W is formed in a state where the resin merges in the cavity CV and the interfaces of the resins are in contact with each other.
  • the resin member 200 of this embodiment is manufactured by the following method. First, as shown in FIGS. 1 to 5, the mold 100 is closed and a cavity CV is formed inside. In this state, molten resin containing reinforcing fibers flows from the runner R toward the gate G and is injected from the gate G into the cavity CV. After the cavity CV is filled with the molten resin, the resin in the cavity CV is cooled and cured to a predetermined degree. Next, as shown in FIG. 6, the metal mold
  • the resin member 200 has a main body MB.
  • the main body MB is molded by the cavity CV.
  • the resin member 200 obtained by the molding process may be used as a final resin product as it is. Alternatively, after the molding step, the resin member 200 may be further processed or assembled with another member to obtain a final resin product.
  • the joint 300 in FIG. 9 is obtained by attaching the outer cylinder portion 310 to the main body MB of the resin member 200 (FIG. 7) obtained by the molding process (assembly process).
  • the joint 300 is suitable for use in water supply and hot water supply pipes, but is also used in pipes for fluids other than water (for example, liquids such as oil and chemicals, and gases such as air and gas). It can be done.
  • the main body MB of the resin member 200 is a cylindrical member that extends straight.
  • the main body MB includes an axial one side portion 221 located on one axial side of the main body MB, an axial intermediate portion 220 located on the axial middle of the main body MB, and the other axial side of the main body MB.
  • the other axial side portion 224 located at the same position.
  • the “cylindrical member” is not limited to a shape in which both the outer peripheral surface and the inner peripheral surface have a circular cross section over the entire length, and is substantially cylindrical when viewed as a whole.
  • the outer peripheral surface and / or the inner peripheral surface may form a non-circular cross section in at least a part of the extending direction.
  • the resin member 200 has a female screw 223 on the inner peripheral surface of the region extending from the axial one side portion 221 to the axial intermediate portion 220.
  • the female screw 223 is configured to be connected to a male screw (not shown) (for example, a metal water pipe).
  • the female screw 223 is a tapered female screw that gradually decreases in diameter from the one side in the axial direction of the main body MB toward the other side (back side) in the axial direction.
  • the “axial direction” of the resin member 200 or the main body MB refers to a direction parallel to the cylindrical central axis O formed by the main body MB. In this example, the central axis O extends linearly.
  • the “one axial side” of the resin member 200 or the main body MB refers to the side where the female screw 223 is formed on both sides in the axial direction, and the “other axial side” of the resin member 200 or the main body MB. Refers to the opposite side.
  • the “axial direction” of the resin member 200 or the main body MB refers to a direction perpendicular to the axial direction.
  • the resin member 200 of this embodiment is made of a resin containing reinforcing fibers. Any resin may be used as the resin constituting the resin member 200.
  • any resin may be used as the resin constituting the resin member 200.
  • PPS polyphenylene sulfide
  • the reinforcing fibers included in the resin constituting the resin member 200 are included to reinforce the strength of the resin.
  • any fiber may be used as long as the strength of the resin can be improved.
  • the resin member 200 is used for the joint 300 as in the example of FIG.
  • the strength of the resin member 200 and the joint 300 specifically, crack resistance and resistance It is good because the creep deformability can be improved. Since the entire resin member 200 including the female screw 223 is integrally formed of resin, the resin member 200 and thus the resin member 200 is expanded as compared with the case where at least a part of the resin member 200 (for example, only the female screw 223) is made of metal. The weight and cost of the joint 300 can be reduced. In addition, since the resin member 200 includes the reinforcing fiber in the resin, it is possible to ensure the same strength as when at least a part is made of metal.
  • the axial direction one side part 221 and the axial direction other side part 224 of the resin member 200 those outer peripheral surfaces are circular in the cross section of an axial direction.
  • the outer peripheral surface of the axial intermediate portion 220 of the resin member 200 has a polygonal shape (in this example, a hexagon) in the cross section in the axial direction, thereby constituting the torque input portion 220.
  • the torque input portion 220 has a polygonal shape in the cross section perpendicular to the axial direction. For example, when the female screw 223 is tightened against another member's male screw during construction of the joint 300, the torque input portion 220 is shown in FIG.
  • the torque from the tool T is firmly input while the tool T such as a wrench grips a pair of opposed flat surfaces of the torque input portion 220 from the outside.
  • a plurality of concave portions 220 a are formed on the outer peripheral surface of the torque input portion 220.
  • the outer diameter of the one axial side portion 221 and the outer diameter of the torque input portion 220 are substantially the same, and along the axial direction. It is almost constant.
  • a distal end portion of the tapered female screw 223 is formed on the inner peripheral surface of the torque input portion 220, that is, the inner diameter thereof is slightly smaller than the axial one side portion 221.
  • the outer diameter of the other axial side portion 224 is significantly smaller than the outer diameters of the axial one side portion 221 and the torque input portion 220.
  • the outer cylinder portion 310 having a larger diameter is attached to the other axial side portion 224.
  • An annular space is defined between the axially other side portion 224 of the resin member 200 and the outer cylinder portion 310, and this annular space is not shown in the figure and is formed of a circular tubular member (for example, made of polybutene or cross-linked polyethylene). Pipe).
  • the mold 100 has outer mold parts 101 to 104 and inner mold parts 105 and 106.
  • a cavity CV is formed by a cavity surface inside the outer mold portions 101 to 104 and a cavity surface outside the inner mold portions 105 and 106. Partition.
  • the cavity CV is configured in a cylindrical shape that extends straight, and thereby configured to mold the main body MB of the resin member 200 that is a cylindrical member.
  • the outer mold portion 101 located on the most axial side of the outer mold portions 101 to 104 has an axial one end surface cavity surface 122 configured to mold the axial one end surface 222 of the resin member 200.
  • the other outer mold parts 102 to 104 are arranged along the circumferential direction on the other side in the axial direction with respect to the outer mold part 101, and each molds an outer peripheral surface over the entire length of the main body part MB of the resin member 200.
  • the outer peripheral surface cavity surface is configured to be configured as described above.
  • Each of the outer peripheral surface cavity surfaces of the outer mold portions 102 to 104 has an axial one side portion cavity surface 121 configured to mold the outer peripheral surface of the axial one side portion 221 of the resin member 200, and a resin.
  • the torque input portion cavity surface 120 configured to mold the outer peripheral surface of the torque input portion 220 of the member 200 and the axial direction configured to mold the outer peripheral surface of the axially other side portion 224 of the resin member 200.
  • the inner mold portion 105 located on one side in the axial direction of the inner mold portions 105 and 106 is configured to mold the female screw 223 of the resin member 200, and thus has a screw cavity surface 123.
  • a portion on one side in the axial direction from the cavity surface 123 is configured to be accommodated in an inner mold accommodating portion 101 a (FIG. 6A) provided in the outer mold portion 101.
  • the female screw cavity surface 123 gradually decreases in diameter as it goes from one axial side of the cavity CV to the other axial side (back side).
  • the other inner mold portion 106 has a cavity surface 125 for the other side portion in the axial direction configured to mold the inner peripheral surface of the other side portion 224 in the axial direction of the resin member 200.
  • the “axial direction” of the mold 100 or the cavity CV indicates a direction parallel to the cylindrical central axis O formed by the cavity CV.
  • the central axis O extends linearly.
  • “one axial direction side” of the mold 100 or the cavity CV refers to the side where the female screw cavity surface 123 is disposed on both sides in the axial direction, and “the other axial direction side of the mold 100 or the cavity CV”. "Refers to the opposite side.
  • the “axial direction” of the mold 100 or the cavity CV indicates a direction perpendicular to the axial direction.
  • the outer mold parts 102 to 104 are respectively removed radially outward from the resin member 200 which is a molded product, and the outer mold part 101 is moved from the resin member 200 to one side in the axial direction. Removed. Further, the inner mold part 105 is pulled out from the resin member 200 to one side in the axial direction while the inner mold part 105 is rotated, and the inner mold part 106 is pulled out from the resin member 200 to the other side in the axial direction.
  • the mold 100 may be configured such that the same cavity CV as in this example is partitioned by an outer mold part and an inner mold part having a different configuration from the outer mold parts 101 to 104 and the inner mold parts 105 and 106 in this example. Good.
  • the axial one-side portion cavity surface 121 and the axial second-side portion cavity surface 124 are circular in a cross section perpendicular to the axial direction.
  • the torque input portion cavity surface 120 has a polygonal shape (in this example, a hexagonal shape) in the axial direction cross section.
  • a plurality of convex portions 120a (FIG. 5) configured to form a plurality of concave portions 220a of the torque input portion 220 of the resin member 200 are formed on the torque input portion cavity surface 120. .
  • the outer diameter of the cavity surface 121 for the one side portion in the axial direction and the outer diameter of the cavity surface 120 for the torque input portion are substantially the same. It is.
  • the distal end portion of the female screw cavity surface 223 is disposed on the inner peripheral side of the torque input portion cavity surface 120, that is, the inner diameter of the cavity CV is slightly smaller than the axial one side portion cavity surface 121.
  • the outer diameter of the axial surface other-side portion cavity surface 124 is significantly smaller than the outer diameter of the axial one-side portion cavity surface 121 and the torque input portion cavity surface 120.
  • a gate G is provided that is directed to one side of the direction and opens into the cavity CV.
  • three gates G are provided at equal intervals in the circumferential direction (at angular positions separated by 120 °).
  • the “angular position” in the mold 100 or the resin member 200 refers to an angular position around the central axis O and corresponds to a circumferential position.
  • the mold 100 of the present example does not continue to the outer peripheral surface cavity surface, more specifically in the present example, the axial one side partial cavity surface 121, in an annular shape, It has a small ridge 140 (projection ridge) that extends in a direction intersecting the weld extension direction (axial direction in this example) and protrudes to the inside of the cavity CV.
  • the small ridge 140 extends in the circumferential direction.
  • the small ridges 140 may extend in a direction that intersects the circumferential direction at a non-right angle.
  • the small ridge 140 is configured to mold the small ridge 240 in the resin member 200.
  • the extending direction of the small ridges 140 is the extending direction (longitudinal direction) when the outer edge shape of the root end face of the small ridges 140 is viewed.
  • the operation of the mold 100 configured as described above will be described with reference to FIG.
  • the molten resin containing the reinforcing fibers is injected from the gate G into the cavity CV
  • the molten resin is first inside the cavity CV inside the torque input portion cavity surface 120 toward one side in the axial direction.
  • the inside of the cavity CV inside the cavity surface 121 for one side portion in the axial direction is sequentially moved in the axial direction while spreading in the circumferential direction.
  • the resin moves inside the cavity CV inside the cavity surface 124 for the other side in the axial direction toward the other side in the axial direction. Flows in the direction and is also filled with resin. In this way, the entire cavity CV is filled with the resin.
  • the small ridge 140 is not provided on the cavity surface of the mold 100, and the axial one-side partial cavity surface 121 and the axial one-side end surface cavity surface 122 are smooth surfaces without irregularities, respectively.
  • the gate that is the position (angular position) of each gate G
  • the weld W is easily formed in a planar shape parallel to the axial direction and the radial direction.
  • the reinforcing fibers F in the resin extend parallel to the extending direction of the weld portion W (weld extending direction, which is the axial direction in this example) on both sides of the interface between the resins.
  • welding extending direction which is the axial direction in this example
  • the “resin flow direction” is a direction approximating a rough direction in which the resin injected from the gate G flows in the cavity CV, and in this example, the directing direction of the gate G and hence the axial direction. It corresponds to the direction toward one side.
  • the “weld extending direction” is a direction approximating the extending direction of the weld portion W to one direction, and corresponds to a direction approximating the extending direction of the virtual plane passing through the inter-gate position BGP to one direction, In this example, it is the axial direction.
  • the direction intersecting the weld extending direction may be referred to as a “weld intersecting direction”.
  • the weld portion W is formed straight along the axial direction, and the reinforcing fibers F in the resin in the weld portion W are oriented parallel to the extending direction of the weld portion W.
  • the resin member 200 that is a molded product may not have sufficient strength against the external force in the radial direction.
  • the strength of the weld portion W is substantially equal to the resin. Only the strength can be obtained. Since the resin member 200 of the present example has the female thread 223 on the inner peripheral side of the one axial side part 221 and the torque input part 220, for example, when the joint 300 is constructed, the external member with a male thread is the female thread. When screwed into 223, the axial one side portion 221 and the torque input portion 220 receive a force in the diameter expanding direction.
  • the axial one side portion 221 may be damaged. For this reason, the weld portion W needs to have sufficient strength.
  • the female screw 223 of this example is a tapered female screw
  • the thickness of the peripheral wall of the axial one side portion 221 is smaller than that of the torque input portion 220 and close to the axial one side end surface 222. It gets thinner.
  • the female screw 223 is a parallel female screw
  • there is a possibility that the force in the diameter expanding direction input from the external member with a male screw is increased. Accordingly, the necessity for improving the strength of the weld portion W is high, and in particular, the closer to the one end surface 222 in the axial direction, the higher the necessity.
  • the mold 100 does not continue to the outer peripheral surface cavity surface, more specifically in the present example, the axial one side partial cavity surface 121 in an annular shape.
  • it has a small ridge 140 (projection ridge) that extends in a direction intersecting the weld extension direction (axial direction in this example) and protrudes to the inside of the cavity CV.
  • the small ridge 140 extends in the circumferential direction.
  • the small ridges 140 may extend in a direction that intersects the circumferential direction at a non-right angle. According to this configuration, as schematically shown in FIG. 3 and FIG.
  • the molten resin injected from the gate G moves slightly to one side in the axial direction, and is once blocked before the small protrusion 140. Then, after turning to the end in the extending direction (circumferential direction in this example) of the small ridge 140 so as to bypass it, the small ridge 140 advances to one side in the axial direction from the small ridge 140. In this way, it is possible to urge the resin to flow in the weld crossing direction, that is, in the circumferential direction in this example, in the region from the small protrusion 140 to the axial one-side end face cavity surface 122.
  • the weld cross direction component (particularly the circumferential component) of the shape of the weld portion W and the weld cross direction component (particularly the circumferential component) of the orientation of the reinforcing fibers F in the vicinity of the inter-gate position BGP and thus in the vicinity of the weld portion W. ) Can be increased. Therefore, the strength of the weld portion W can be improved. Moreover, since the small protruding item
  • the resin member 200 molded by the mold 100 having the above-described configuration has the following configuration.
  • the resin member 200 of the present example is not continuously annularly connected to the outer peripheral surface, more specifically to the outer peripheral surface of the one axial side portion 221 in this example, and the weld extending direction (the main In the example, it has a small groove portion 240 (concave portion) that extends in a direction intersecting the axial direction), and more specifically in the present example, extends in the circumferential direction.
  • the small groove part 240 may be extended in the direction which cross
  • the extending direction of the small groove part 240 shall be an extending direction (longitudinal direction) when the outer edge shape of the opening end surface in the small groove part 240 is seen.
  • the gate G, the gate position GP, and the inter-gate position BGP are shown together with the resin member 200 for convenience.
  • the trace of the gate G formed at the time of injection molding may remain at the position of the gate G. From the trace of the gate G of the resin member 200, the position of the gate G and its directing direction (as a result, the direction in which the resin is injected from the gate G, in this example, one side in the axial direction) can be specified.
  • the resin member 200 provided with the small ridges 240 having the above-described configuration is the weld crossing direction of the shape of the weld part W during the injection molding as described above with respect to the function and effect of the small ridges 140 of the mold 100. It is possible to increase the component (particularly the circumferential component) and the weld cross direction component (particularly the circumferential component) of the orientation of the reinforcing fibers F in the vicinity of the inter-gate position BGP and thus in the vicinity of the weld portion W. Therefore, the strength of the weld portion W can be improved. Moreover, since the small groove part 240 does not continue cyclically
  • the configuration and operational effect of the resin member 200 correspond to the configuration and operational effect of the mold 100.
  • the configuration and operational effects of the mold 100 and the configuration of the resin member 200 will be described, and description of the operational effects of the resin member 200 may be omitted.
  • the mold 100 of this example has a plurality of small ridges 140 on the outer peripheral cavity surface, more specifically, on the one axial side cavity surface 121 in this example.
  • Small ridges 150, 151, 160, 161 are not distinguished from each other, each of them is referred to as a “small ridge 140”.
  • the small ridges 140 (small ridges 150, 151, 160, 161) are configured to mold the small ridges 240 (small ridges 250, 251, 260, 261) in the resin member 200. Yes.
  • a plurality of small ridges 140 are spaced from each other in the direction intersecting the weld extending direction and spaced from each other in the weld extending direction.
  • the mold 100 includes a plurality of (six in the example) small protrusions 151 arranged in a direction (circumferential direction in this example) that is spaced from each other and intersects the weld extending direction (in this example, the circumferential direction).
  • annular concave portion 170 extending continuously in the circumferential direction is configured by the axial one-side partial cavity surface 121 between the small convex portion rows 180 and 181.
  • the annular groove 170 is recessed to the outside of the cavity CV, and is configured to mold the annular protrusion 270 in the resin member 200.
  • the molten resin injected from the gate G and moved to one side in the axial direction is the small ridges 151, 161 of the small ridge line 181 on the upstream side.
  • the resin is once blocked before the small ridges 150 and 160 of the small ridge row 180 on the downstream side, and passes through the annular groove 170 so as to bypass them, and then the small ridges.
  • the strength of the weld portion W can be improved. Further, since the small convex strips 151 and 161 of the upstream small convex strip array 181 and the small convex strips 150 and 160 of the downstream small convex strip array 180 are not in communication with each other, for example, Compared with the case where two annular ridge portions 130 (FIG. 10) are provided, it is possible to suppress a decrease in strength of the resin member 200 that is a molded product. In addition, the presence of the annular groove 170 that forms the annular protrusion 270 between the small protrusions rows 180 and 181 makes it possible to improve the strength of the resin member 200 that is a molded product. Similarly, as shown in FIG.
  • the resin member 200 of the present example is provided on the outer peripheral surface, more specifically, on the outer peripheral surface of the one axial side portion 221 in the present example.
  • Small concave ridges 250, 251, 260, 261 are not distinguished from each other, these individual members are referred to as “small groove portions 240”.
  • a plurality of small concave strips 240 are arranged spaced apart from each other in a direction intersecting the weld extending direction, and spaced from each other in the weld extending direction. Are arranged.
  • the resin member 200 has a plurality of (six in this example) small concave portions 251 arranged in a direction (circumferential direction in this example) that is spaced from each other and intersects the weld extending direction. , 261, and a direction of crossing the weld extending direction at a distance from each other, arranged on one side in the axial direction that is downstream of the small groove portion row 281 in the resin flow direction. It has a plurality of small groove portions 250 and 260 (six in the example shown in the drawing in the circumferential direction), and a small groove portion row 280 composed of the small groove portions 250 and 260.
  • an annular ridge portion 270 that extends continuously in the circumferential direction is configured by the outer peripheral surface of the axially one side portion 221 between the small groove portion rows 280 and 281.
  • each small ridge 140 is disposed downstream of the cavity CV in the resin flow direction (one side in the axial direction).
  • the downstream side of the cavity CV in the resin flow direction (one axial direction) means the end of the gate G and the cavity CV on the downstream side in the resin flow direction (in this example, one end in the axial direction). That is, the resin flow direction distance (in this example, the distance along the axial direction) between the axial direction one-side end surface cavity surface 122) extends over a distance of 65% of the most downstream side in the resin flow direction. Refers to an area.
  • each small convex portion 140 is arranged upstream of the cavity CV in the resin flow direction (the other side in the axial direction).
  • the flow of the resin in the vicinity of the weld W is positively directed in the weld crossing direction (circumferential direction), so that the strength of the weld W can be improved.
  • each small recess 240 is arranged on the downstream side (one axial direction) of the main body MB in the resin flow direction.
  • the downstream side in the resin flow direction of the main body part MB (one side in the axial direction) means the end of the gate part G and the main body part MB on the downstream side in the resin flow direction (in this example, one in the axial direction). This is the most downstream region in the resin flow direction extending over a distance of 65% of the resin flow direction distance (in this example, the axial direction distance) LG ′ between the side end and the one axial end surface 222).
  • each small protrusion 140 is on the downstream side in the resin flow direction (one side in the axial direction) in the cavity CV and on the upstream side of the end portion on the downstream side in the resin flow direction of the cavity CV.
  • Arrangement is preferred. More specifically, in this example, the end edge portion 140ce on the upstream side in the resin flow direction (the other side in the axial direction) of each small ridge 140 is one end in the axial direction (one in the axial direction) of the gate G and the cavity CV, respectively.
  • the axial position ap2 that is separated from the end 122 on the downstream side in the resin flow direction of the cavity CV toward the upstream side in the resin flow direction, and a distance L3 (L3 0.85 ⁇ L121) that is 85% of the total axial length L121. It is more preferable that the cavity CV is disposed between the end 121 of the cavity CV downstream in the resin flow direction and the axial position ap3 away from the upstream end in the resin flow direction. In this way, if each small protrusion 140 is disposed near the end of the cavity CV on the downstream side in the resin flow direction (one axial direction), it is relatively close to the gate G and thus the weld W.
  • each small concave strip 240 is located downstream of the main body MB in the resin flow direction (one axial direction) and downstream of the main body MB in the resin flow direction. It is suitable if it is arranged upstream from the end.
  • end edge portions 240ce on the upstream side (the other side in the axial direction) in the resin flow direction of each small groove portion 240 are respectively one axial end (the axial direction) of the gate G and the main body portion MB.
  • the resin flow direction from the end 222 on the downstream side in the resin flow direction of the main body MB by a distance L2 ′ (L2 ′ 0.25 ⁇ LG ′) that is 25% of the axial distance LG ′ between the one end surface 222)
  • the downstream end of the main body MB in the resin flow direction by an axial position ap2 ′ that is separated upstream and a distance L3 ′ (L3 ′ 0.52 ⁇ LG ′) that is 52% of the axial distance LG ′. It is more preferable that it is disposed between the axial position ap3 ′, which is away from the upstream side in the resin flow direction from 222.
  • 0.85 ⁇ L221) is more preferable if it is disposed between the end 222 on the downstream side in the resin flow direction of the main body MB and the axial position ap3 ′ that is separated from the upstream side in the resin flow direction.
  • the resin flow direction can be specified from the trace of the gate G included in the resin member 200.
  • a pair of small protrusions 150 and 151 and 160 and 161 adjacent to each other in the weld extending direction overlap in the weld extending direction. These are arranged so as to be shifted in a direction perpendicular to the weld extending direction (circumferential direction in this example).
  • the molten resin that has passed through the upstream small ridge portion row 181 is more effectively damped by the small ridge portions 150 and 160 of the downstream small ridge portion row 180, and is directly downstream. It can suppress passing the small convex strip part row
  • the resin member 200 of this example includes a pair of small concave strips 250 and 251 that are adjacent to each other in the weld extending direction (in this example, the axial direction), 260 and 261. Although they overlap in the weld extending direction, they are shifted in the direction perpendicular to the weld extending direction (the circumferential direction in this example).
  • the small ridge 140 is at least one side (both sides in the example) in the extending direction (circumferential direction in this example) of the small ridge 140 in the outer edge of the root end surface.
  • Edge portions 140ae and 140be extend in a direction that intersects the weld extension direction (in this example, the axial direction) at a non-right angle and is perpendicular to the weld extension direction (in this example, the circumferential direction). Extending in a direction that intersects non-perpendicularly to (direction).
  • the extending direction of the small ridge 140 is such that the molten resin is once dammed before the small ridge 140 and bypasses it.
  • the wall surfaces 140a, 140b on the end side in the extending direction of the small ridge 140 The flow of the resin can be effectively promoted to flow in the direction intersecting the weld extending direction, that is, in the circumferential direction in this example.
  • the weld cross direction component (circumferential component) of the shape of the weld portion W and the weld cross direction component (circumferential component) of the orientation of the reinforcing fiber F in the vicinity of the inter-gate position BGP and in the vicinity of the weld portion W are thereby obtained. Can be increased. Therefore, the strength of the weld portion W can be improved.
  • the small groove portion 240 is at least one side of the outer edge of the opening end surface in the extending direction (circumferential direction in this example) of the small groove portion 240 (example in the figure).
  • the edge portions 240ae and 240be on both sides extend in a direction that intersects the weld extending direction (axial direction in this example) at a non-right angle, and in a direction perpendicular to the weld extending direction (present In the example, it extends in a direction crossing non-perpendicularly with respect to the circumferential direction).
  • the outer edges of the root end surfaces of the small ridges 140 have a parallelogram shape.
  • the small ridge 140 has the edge extending portions 140ae and 140be on both sides in the extending direction of the small ridge 140 (circumferential direction in this example) among the outer edges of the base end surface, respectively. As it goes to one side (in the axial direction in this example), it extends (inclines) so as to go to the same side (first side) in the direction perpendicular to the weld extending direction (circumferential direction in this example). .
  • edge portions 140ae and 140be on both sides in the extending direction of the small protruding portion 140 at the outer edge of the root end face of each small protruding portion 140 are respectively one side portion (downstream side portion) in the weld extending direction. Extends (inclined) on the same side (first side) in the direction perpendicular to the weld extension direction (circumferential direction in this example) with respect to the other side portion (upstream side portion) of each weld extension direction is doing.
  • the small convex By the wall surfaces 140a and 140b on the end side in the extending direction of the strip 140, the flow of the resin can be effectively urged to flow in the direction intersecting the weld extending direction, that is, in the circumferential direction in this example.
  • the weld cross direction component (circumferential component) of the shape of the weld portion W and the weld cross direction component (circumferential component) of the orientation of the reinforcing fiber F in the vicinity of the inter-gate position BGP and in the vicinity of the weld portion W are thereby obtained. Can be increased. Therefore, the strength of the weld portion W can be improved.
  • the outer edge of each small concave strip 240 has a parallelogram shape.
  • the edge portions 240ae and 240be on both sides in the extending direction of the small groove portion 240 (in the circumferential direction in this example) among the outer edges of the opening end face are weld extending directions, respectively. As it goes to one side (in the axial direction in this example), it extends (inclines) so as to go to the same side (first side) in the direction perpendicular to the weld extending direction (circumferential direction in this example). .
  • edge portions 240ae and 240be on both sides in the extending direction (circumferential direction in the present example) of the small groove portion 240 at the outer edge of the opening end surface of each small groove portion 240 are respectively on one side in the weld extending direction.
  • Portion (downstream portion) is the same side (first side) in the direction perpendicular to the weld extension direction (circumferential direction in this example) with respect to the other side portion (upstream side portion) of each weld extension direction It is extended (inclined).
  • both ends in the extending direction of the small ridge 140 (circumferential in this example) at the outer edge of the root end surface of each small ridge 140
  • One side portion (downstream portion) in the weld extending direction of the edge portions 140ae and 140be is shifted to the same side (first side) as the inclined side with respect to the other side portion (upstream side portion) in the respective weld extending direction.
  • the small ridges 150 and 160 of the small ridge line row 180 on the downstream side dam the molten resin that has passed through the small ridge line row 181 on the upstream side, so that the annular groove 170 is formed in an annular shape.
  • the function of urging passage along the concave line portion 170 can be exhibited more effectively.
  • the extending direction (in this example, Direction side) of the edge portions 240ae and 240be on the both sides in the weld extending direction (downstream portion) on the same side (the first side) inclined with respect to the other side portion (upstream portion) in the weld extending direction. 1 side) is shifted.
  • the extended length (the circumferential length in this example) of each small convex strip 140 is non-uniform.
  • the small ridge portion row 180 includes a plurality of types (two types in the example) of small ridge portions 150 and 160 having different extending lengths (in the example, circumferential length) l150 and l160. have.
  • the longest small ridge 150 is arranged at a position (circumferential position) that overlaps with the gate position GP, and the short ridge 160 shorter than that is at a position (circumference) that does not overlap with the gate position GP. (Direction position).
  • the shortest small ridge 160 is arranged at a position (circumferential position) overlapping with the inter-gate position BGP (and thus the weld W). The same applies to the small ridge portion row 181 and the description thereof is omitted. Since the gate position GP is originally the place where the strength is highest in the resin member 200, the longest small ridge 150 is arranged there, and the longest small ridge 250 is formed there. 200 strength reduction can be suppressed as much as possible.
  • the inter-gate position BGP (and thus the weld portion W) is originally where the strength is most likely to decrease in the resin member 200, a relatively short small ridge 160 is disposed there, and as a result By making the comparatively short small groove part 260 molded, the strength reduction of the resin member 200 can be suppressed.
  • the extending length (the length in the circumferential direction in this example) of each small concave strip 240 is non-uniform.
  • the small groove portion row 280 includes a plurality of types (two types in the example in the figure) of small groove portions 250 and 260 having different extending lengths (circumferential lengths in this example). ing.
  • the longest small groove portion 250 is arranged at a position (circumferential position) overlapping with the gate position GP, and the short groove portion 260 shorter than that is not overlapped with the gate position GP (circumferential position). (Direction position). More specifically, in this example, the shortest short groove portion 260 is disposed at a position (circumferential position) overlapping with the inter-gate position BGP (and thus the weld portion W). The same applies to the small and small concave line portion row 281 and the description thereof will be omitted.
  • the convex portion 150 that is, the longest small convex portion 150 in this example, has the wall surfaces 140a, 140b on at least one side (both sides in the example in the drawing) of the extending direction (circumferential direction in this example). As it goes to each corresponding side of the extending direction of the part 150, it goes to the root end surface of the small convex part 150 continuously or stepwise (that is, the height of the small convex part 150 decreases). ), Extended.
  • the small ridge 150 has the wall surfaces 140a, 140b on at least one side (both sides in the example in the drawing) in the extending direction (circumferential direction in this example). As it goes to each corresponding side of the extending direction of the straight line, the straight line extends continuously toward the root end face of the small convex part 150 (that is, the height of the small convex part 150 decreases). It is present (inclined), that is, configured in a tapered shape.
  • the small ridge 160 disposed at the position (circumferential position) overlapping the inter-gate position BGP (and hence the weld portion W), that is, the shorter small ridge 160 in this example is However, it may be configured as such.
  • the small ridge 160 disposed at a position (circumferential position) overlapping with the inter-gate position BGP (and thus the weld part W) is at least in the extending direction (circumferential direction in this example).
  • the wall surfaces 140a, 140b on one side move toward the center side in the extending direction of the small ridge 160
  • the wall faces 140a, 140b are directed toward the root end face of the small ridge 160 in a continuous or stepwise manner. It is extended to.
  • the wall surfaces 140a and 140b on both sides in the extending direction (the circumferential direction in this example) of the small ridge 150 are small compared to the case where the wall surfaces 140a and 140b are perpendicular to the root end face of the small ridge 150.
  • the function of urging the flow of resin by the ridges 140 to flow to the same side in the direction intersecting the weld extending direction, that is, the same side in the circumferential direction in this example, can be more effectively exhibited, and The strength of a certain resin member 200 can be further increased, and the small ridges 150 of the mold 100 can be easily removed from the small ridges 240 of the resin member 200 at the time of release.
  • the longest small ridge 150 is easier to reduce the strength of the resin member 200 than the short small ridge 160, this configuration can suppress a decrease in the strength of the resin member 200.
  • the position (circumferential position) that overlaps the gate position GP among the small groove portions 250 and 260 in the small groove portion row 280. ) Arranged on the wall surface 240a on at least one side (both sides in the example in the drawing) of the extending direction (circumferential direction in this example). As 240b goes to the corresponding side in the extending direction of the small groove 250, it is directed toward the open end surface of the small groove 250 continuously (ie, the depth of the small groove 250).
  • the small groove portion 250 has the wall surfaces 240a and 240b on at least one side (both sides in the example in the drawing) in the extending direction (circumferential direction in this example). As it goes to the corresponding side of each extending direction, it extends continuously toward the opening end face of the small groove 250 (that is, the depth of the small groove 250 decreases). It is present (inclined), that is, configured in a tapered shape.
  • the small groove portion 260 arranged at the position (circumferential direction position) overlapping with the inter-gate position BGP (and thus the weld portion W), that is, the short small groove portion 260 in this example is However, it may be configured as such.
  • the small concave portion 260 arranged at a position (circumferential position) overlapping with the inter-gate position BGP (and thus the weld portion W) is at least in the extending direction (circumferential direction in this example).
  • the wall surfaces 240a and 240b on one side move toward the center side in the extending direction of the small groove portion 260, the wall surfaces 240a and 240b continuously or stepwise toward the opening end surface of the small groove portion 260. It is extended to.
  • the mold 100 of this example measurement was performed along a direction (radial direction) perpendicular to the root end face of the small convex portion 140 at a position where the height of the small convex portion 140 is maximum.
  • the height h140 of the small ridge 140 is 25% or more of the thickness e of the cavity CV when measured along the direction (radial direction) perpendicular to the root end face of the small ridge 140 at the position. If there is, it is preferable. Thereby, the small protruding item
  • the small ridge when measured along the direction (radial direction) perpendicular to the root end face of the small ridge 140 at the position where the height of the small ridge 140 is maximum. It is preferable that the height h140 of the portion 140 is 50% or less of the thickness e of the cavity CV when measured along the direction (radial direction) perpendicular to the root end face of the small ridge 140 at the position. is there. Thereby, it can suppress that the depth of the small groove part 240 shape
  • the “thickness e of the cavity CV” as measured along the radial direction corresponds to the thickness of the cylindrical peripheral wall formed by the cavity CV, and the inner side of the cavity CV as in this example.
  • the screw cavity surface 123 When the screw cavity surface 123 is provided, the position on the outermost peripheral side of the female screw cavity surface 123 is the lower end, and the root end surface of the annular ridge 130 (on the one side in the axial direction of the annular ridge 130). This is a length obtained by measuring the distance from the lower end to the upper end, with the position of the adjacent axial direction one-side partial cavity surface 121) as the upper end.
  • the direction perpendicular to the opening end face of the small groove portion 240 at the position where the depth of the small groove portion 240 is maximum (radial direction). )
  • the depth d240 of the small groove 240 is measured along the direction (radial direction) perpendicular to the opening end surface of the small groove 240 at the position. It is preferable that it is 25% or more of the thickness e ′.
  • the small concave when measured along the direction (radial direction) perpendicular to the opening end surface of the small concave portion 240 at the position where the depth of the small concave portion 240 is maximum.
  • the depth d240 of the strip 240 is 50% or less of the thickness e ′ of the main body MB when measured along the direction (radial direction) perpendicular to the opening end surface of the small concave strip 240 at the position. Is preferable.
  • the “thickness e ′ of the main body MB” measured along the radial direction corresponds to the thickness of the cylindrical peripheral wall formed by the main body MB, and as in this example, the thickness of the main body MB.
  • the position on the outermost peripheral side of the female screw 223 is the lower end, and the opening end surface of the annular concave portion 230 (adjacent to one side in the axial direction of the annular concave portion 230) This is a length obtained by measuring the distance from the lower end to the upper end, with the position of the axial one side portion 221 extending from the outer peripheral surface as the upper end.
  • the mold 100 may have only one row or three or more rows of small protrusions 180, 181 on the cavity surface (more specifically, in this example, the axial surface portion cavity surface 121). .
  • the resin member 200 has only one row or three or more rows of small groove portions 280 and 281 on the outer peripheral surface (more specifically, the outer peripheral surface of the one axial side portion 221 in this example).
  • the mold 100 may not be configured such that the cavity CV forms the female screw 223, and in that case, the required strength of the weld portion W may not be so high.
  • the mold 100 is configured such that the cavity CV is formed with a female screw 223 on the inner peripheral surface on at least one side in the axial direction of the main body MB that is a cylindrical member. Even in such a case, the strength of the weld portion can be sufficiently secured.
  • the main body portion MB which is a cylindrical member may not have the female screw 223, or the inner periphery on at least one side in the axial direction of the main body portion MB as in this example. You may have a female thread in the surface.
  • the mold 100 includes a small convex portion row 180, a small convex portion row 181 and a small convex portion each composed of a plurality of small convex strip portions 140.
  • a small groove portion row having a plurality of small groove portions 240 each having a plurality of small groove portions 240. 280, a small groove portion row 281 and an annular ridge portion 270 between the small groove portion row 280 and the small groove portion row 281.
  • the mold 100 of the present example is disposed on one axial side that is downstream of the torque input portion cavity surface 120 in the resin flow direction, that is, on one axial portion side cavity surface 121. Further, it has an annular ridge 130 that extends in the circumferential direction and protrudes to the inside of the cavity CV.
  • the annular ridge 130 is configured to mold the annular recess 230 in the resin member 200.
  • the annular ridge 130 extends continuously in the circumferential direction. According to this configuration, the molten resin injected from the gate G moves slightly to the one side in the axial direction, and is once dammed before the annular ridge 130, and the flow of the resin is disturbed.
  • the strength of the weld portion W can be improved.
  • the annular ridge 130 is disposed on the axial surface for one side portion 121 in the axial direction because the weld portion W is not easily formed in the cavity CV inside the cavity surface for torque input portion 120.
  • the weld portion W is easily formed in the cavity CV inside the cavity surface 121 for one side portion in the axial direction.
  • the resin member 200 of the present example is placed on the one axial side that is downstream of the torque input portion 220 in the resin flow direction, that is, on the outer circumferential surface of the one axial side portion 221. It has an annular recess 230 extending in the direction. In the present example, the annular recess 230 extends continuously in the circumferential direction.
  • the resin flow direction can be specified from the trace of the gate G of the resin member 200 as described above.
  • the height h130 of the annular ridge 130 when measured along the radial direction is the same as the position where the height h130 of the annular ridge 130 is measured. It is preferable that it is 25% or more of the thickness e of the cavity CV when measured along the radial direction at the position.
  • the height h130 of the annular ridge 130 when measured along the radial direction is the same as the position where the height h130 of the annular ridge 130 is measured in the radial direction. It is preferable that it is 50% or less of the thickness e of the cavity CV when measured along. Thereby, it can suppress that the depth of the annular groove part 230 shape
  • the depth d230 of the annular groove portion 230 when measured along the radial direction is the depth d230 of the annular groove portion 230.
  • the thickness e ′ of the main body MB when measured along the radial direction at the same position as the position.
  • the depth d230 of the annular groove portion 230 when measured along the radial direction is the same as the position where the depth d230 of the annular groove portion 230 is measured in the radial direction. It is preferable that it is 50% or less of the thickness e ′ of the main body MB when measured along.
  • the height h130 of the annular ridge 130 when measured along the radial direction is the height h130 of the annular ridge 130 when measured along the axial direction. It is larger than the width w130. Accordingly, the annular ridge 130 can be raised to effectively exhibit the function of uniforming the resin flow by the annular ridge 130, and the annular ridge formed by the annular ridge 130. It can suppress that the width
  • the depth d230 of the annular groove portion 230 when measured along the radial direction at a predetermined position is as measured along the axial direction. It is larger than the width w230 of the annular recess 230.
  • the annular ridge 130 is separated from the torque input portion cavity surface 120 on one side in the axial direction, which is the downstream side in the resin flow direction. And is continuously extended in the circumferential direction by the cavity surface 121 for one side in the axial direction between the cavity surface 120 for the torque input portion and the annular ridge portion 130 and outside the cavity CV.
  • An annular recess 131 that is recessed is formed.
  • the annular groove portion 131 is configured to mold the annular protrusion portion 231 in the resin member 200. According to this configuration, as schematically shown in FIG.
  • the molten resin injected from the gate G moves along the torque input portion cavity surface 120 and then once on the outer circumferential side at the annular recess 131. And then dammed in front of the annular ridge 130, the effect of damming the resin is enhanced by the annular ridge 130 compared to the case where there is no annular ridge 131, and consequently the annular ridge 130. It is possible to effectively exhibit the function of uniforming the resin flow due to.
  • the annular concave strip 230 is separated from the torque input portion 220 on one axial side that is downstream in the resin flow direction.
  • An annular ridge portion 231 that extends continuously in the circumferential direction is constituted by the outer peripheral surface of the one axial side portion 221 between the torque input portion 220 and the annular groove portion 230. ing.
  • the width w131 of the annular groove portion 131 when measured along the axial direction is the width of the annular protrusion portion 130 when measured along the axial direction. It is suitable that it is below w130.
  • the annular ridge 130 sufficiently close to the torque input portion 220 and the gate G (on the other side in the axial direction), the function of blocking the resin by the annular ridge 130 can be effectively exhibited.
  • the width w231 of the annular ridge portion 231 when measured along the axial direction is the annular groove portion when measured along the axial direction.
  • the width w230 of 230 or less is preferable.
  • the mold 100 is not limited to this example, and the annular protrusion 130 may have an arbitrary number (one or a plurality) at an arbitrary position in the axial one-side portion cavity surface 121. .
  • the mold 100 may have two or more annular ridges 130, but it is better to have only one annular ridge 130 from the viewpoint of ensuring the strength of the resin member 200 that is a molded product.
  • the resin member 200 is not limited to this example, and the annular member 230 has an arbitrary number (one or more) of annular recesses 230 at arbitrary positions on the outer peripheral surface of the one axial side portion 221. Good.
  • the resin member 200 may have two or more annular recess portions 230, but it is better to have only one annular recess portion 230.
  • the mold 100 further includes one or a plurality (three in this example) of resin reservoirs 110 that are recesses that open to the cavity CV.
  • the outer mold part 101 has a resin reservoir 110, and the resin reservoir 110 is open to the axial end surface cavity surface 122.
  • the resin reservoir 110 is a portion in which a part of the molten resin in the cavity CV flows and accumulates while the molten resin is injected into the cavity CV, and forms the protrusion 210 in the resin member 200.
  • the resin reservoir 110 is provided to improve the strength of the weld portion W.
  • the main body MB is molded by the cavity CV, and the protrusions 210 are molded by the resin reservoir 110.
  • the protrusion 210 of the resin member 200 may be removed by cutting or the like (removal step).
  • the resin member 200 of the present embodiment further includes one or a plurality (three in this example) of protrusions 210 connected to the main body MB.
  • a protrusion 210 is connected to an end surface 222 on one axial side of the main body MB of the resin member 200 after the molding process and before the removal process.
  • a trace 211 (not shown) from which the protruding portion 210 is removed may remain on the end surface 222 on one axial side of the main body portion MB.
  • the opening end surface 110S (the boundary surface between the resin reservoir 110 and the cavity CV) of the resin reservoir 110 to the cavity CV is formed in a non-circular shape. More specifically, in this example, it is formed in a parallelogram shape in which the length in one direction is longer than the length in the direction perpendicular thereto. Then, in the first cross section along the opening end face 110S to the cavity CV of the resin reservoir 110, the width center line CL11 of the resin reservoir 110 and the cavity CV as measured along the perpendicular n12 of the width center line CL12 of the cavity CV.
  • the distance CLD between the first and second width center lines CL12 is not always constant along the width center line CL12 of the cavity CV, but varies at least in part.
  • the “first cross section” along the opening end face 110S is a cross section of the mold 100 along a virtual plane including the opening end face 110S.
  • the first cross section is a cross section parallel to the axial direction.
  • the “width center line CL11” of the resin reservoir 110 in the first section refers to the width direction of the opening end face 110S when the direction perpendicular to the extending direction (longitudinal direction) of the opening end face 110S in the first section is the width direction.
  • a line passing through the center is referred to as an equidistant line from a pair of opposing long sides of the parallelogram formed by the opening end face 110S in this example.
  • the “perpendicular line n11” of the width center line CL11 of the resin reservoir 110 in the first cross section is perpendicular to a tangent at an arbitrary point on the width center line CL11 of the resin reservoir 110 and passes through this point. Is a line.
  • the “width center line CL12” of the cavity CV in the first cross section passes through the center in the width direction of the cavity CV when the direction perpendicular to the extending direction (longitudinal direction) of the cavity CV in the first cross section is the width direction.
  • the width center line CL12 of the cavity CV in the first cross section is perpendicular to the tangent at an arbitrary point on the width center line CL12 of the cavity CV and passes through the line. It is.
  • the width direction of the cavity CV (direction perpendicular to the extending direction of the cavity CV in the axial direction cross section).
  • the shape of the weld portion W formed in the vicinity of the inter-gate position BGP is not a shape that extends straight in the axial direction, for example, a shape that is blurred in three dimensions, an inclined shape, or a bent shape.
  • the shape is three-dimensionally complicated. Therefore, the strength of the weld portion W can be improved.
  • the direction of the reinforcing fibers F in the resin is disturbed in a wide range in the width direction of the cavity CV in the cross section in the axial direction, and the reinforcing fibers F are three-dimensional. Therefore, the ratio of the reinforcing fibers F oriented in the direction intersecting with the axial direction and thus in the weld intersecting direction is increased. Therefore, the strength of the weld portion W can be improved also by this.
  • the distance CLD between the width center line CL11 of the resin reservoir 110 and the width center line CL12 of the cavity CV when measured along the perpendicular line n12 of the width center line CL12 of the cavity CV is In the case where the width is constant along the width center line CL12 of the cavity CV, the flow direction of the resin and the orientation direction of the reinforcing fibers F in the vicinity of the inter-gate position BGP and thus in the vicinity of the weld portion W In the width direction of the cavity CV in FIG. Similarly, as shown in FIG.
  • the connecting end surface 210S (the boundary surface between the protrusion 210 and the main body MB) of the protrusion 210 to the main body MB is formed in a non-circular shape. More specifically, in this example, it is formed in a parallelogram shape whose length in one direction is longer than the length in the direction perpendicular thereto. Then, in the first cross section along the connection end surface 210S to the main body MB of the protrusion 210, the width center line CL21 of the protrusion 210 when measured along the perpendicular n22 of the width center line CL22 of the main body MB.
  • the distance CLD ′ between the main body MB and the width center line CL22 is changed at least partially along the width center line CL22 of the main body MB (always changing in the example in the figure).
  • the “first cross section” along the connection end face 210S is a cross section of the resin member 200 along a virtual plane including the connection end face 210S.
  • the first cross section is a cross section parallel to the axial direction.
  • the “width center line CL21” of the protrusion 210 in the first cross section is the width direction of the connecting end face 210S when the direction perpendicular to the extending direction (longitudinal direction) of the connecting end face 210S in the first cross section is the width direction.
  • a line passing through the center is referred to as an equidistant line from a pair of opposed long sides of the parallelogram formed by the connecting end surface 210S in this example.
  • the “width center line CL22” of the main body MB in the first cross section is the width direction of the main body MB when the direction perpendicular to the extending direction (longitudinal direction) of the main body MB in the first cross section is the width direction.
  • a line passing through the center is referred to as an equidistant line from the outer peripheral edge and the inner peripheral edge of the annular shape formed by the main body MB in the first cross section in this example.
  • the “perpendicular line n22” of the width center line CL22 of the main body MB in the first cross section is the width center line CL22 of the main body MB when the width center line CL22 of the main body MB is non-linear as in this example.
  • the three resin reservoirs 110 included in the mold 100 have the same configuration, and the configuration when the three resin reservoirs 110 are viewed as a unit is the central axis O of the cavity CV.
  • the configuration when the three resin reservoirs 110 are viewed as a unit is the central axis O of the cavity CV.
  • it is rotated around 120 ° (360 ° / 3)
  • it is made to have 120-degree symmetry (also referred to as 3-fold symmetry) so as to overlap with itself.
  • the mold 100 includes n (n ⁇ 2) resin reservoirs 110
  • the configuration when these n resin reservoirs 110 are viewed as a unit is around the central axis O of the cavity CV.
  • (360 / n) degrees may be made to be (360 / n) degree symmetric (also referred to as n-fold symmetry).
  • the plurality of resin reservoirs 110 included in the mold 100 may have different configurations.
  • the three protrusions 210 included in the resin member 200 have the same configuration, and the configuration when the three protrusions 210 are viewed as a unit is the center of the main body MB. When it is rotated around the axis O by 120 °, it is made to have 120 degree symmetry (also referred to as three-fold symmetry) so as to overlap with itself.
  • the resin member 200 includes n (n ⁇ 2) projections 210
  • the configuration when the n projections 210 are viewed as a unit is the center axis O of the main body MB.
  • the width center line CL11 of the resin reservoir 110 is non-perpendicular to the width center line CL12 of the cavity CV in the first cross section along the opening end face 110S to the cavity CV of the resin reservoir 110. It extends in the direction that intersects.
  • the width center line CL11 of the resin reservoir 110 is linear
  • the width center line CL12 of the cavity CV is non-linear (circular).
  • the width center line CL11 of the resin reservoir 110 in the first cross section “extends in a direction that intersects non-perpendicularly” with respect to the width center line CL12 of the cavity CV means that the resin reservoir 110 in the first cross section
  • the width center line CL11 in the case where the width center line CL11 of the resin reservoir 110 does not intersect the width center line CL12 of the cavity CV
  • the smaller crossing angle ⁇ between the tangent line of the width center line CL11 of the resin reservoir 110 and the tangent line of the width center line CL12 of the cavity CV at the intersection point is greater than 0 ° and less than 90 °. Point to.
  • the width center line CL11 of the resin reservoir 110 does not extend in a direction that intersects the width center line CL12 of the cavity CV at a non-right angle, that is, for example, the width center of the resin reservoir 110 Compared with the case where the line CL11 extends in a direction along the width center line CL12 of the cavity CV or extends in a direction perpendicular to the width center line CL12 of the cavity CV (radial direction in this example),
  • the shape of the portion W and the orientation (extending direction) of the reinforcing fibers F in the vicinity of the inter-gate position BGP and in the vicinity of the weld portion W can be disturbed in a wider range and more complicatedly. As a result, the strength of the weld W can be improved.
  • the width center line CL21 of the protrusion 210 is the same as the width center line CL22 of the main body MB. On the other hand, it extends in a direction intersecting at a non-right angle.
  • the width center line CL21 of the protrusion 210 is linear, and the width center line CL22 of the main body MB is non-linear (circular).
  • the width center line CL21 of the protrusion 210 is "extends in a direction that intersects non-perpendicularly" with respect to the width center line CL22 of the main body MB.
  • Width center line CL21 in the case where the width center line CL21 of the protrusion 210 does not intersect the width center line CL22 of the main body MB
  • the mold 100 has a width center line CL11 of the resin reservoir 110 (the width center line CL11 of the resin reservoir 110 is the width center line of the cavity CV in the first cross section. If not intersecting with CL12, at the intersection of the width center line CL11 of the resin reservoir 110 and the width center line CL12 of the cavity CV, and at the intersection
  • the smaller crossing angle ⁇ with the tangent to the width center line CL12 of the cavity CV is preferably 10 ° to 30 °.
  • the resin member 200 has a width center line CL21 of the protrusion 210 (the width center line CL21 of the protrusion 210 does not intersect with the width center line CL22 of the main body MB) in the first cross section.
  • the smaller crossing angle ⁇ ′ with the tangent to the width center line CL22 is preferably 10 ° to 30 °.
  • the width center line CL11 of the resin reservoir 110 in the first cross section extends not only in a direction that intersects the width center line CL12 of the cavity CV in the first cross section at a non-right angle. In fact, they intersect non-right angles.
  • the shape of the weld part W and the orientation (extension direction) of the reinforcing fibers F in the vicinity of the inter-gate position BGP and in the vicinity of the weld part W can be further improved as compared with the case where they do not actually intersect. It can be disturbed over a wide range and more complex. As a result, the strength of the weld W can be improved.
  • the width center line CL21 of the protrusion 210 in the first cross section extends in a direction that intersects the width center line CL22 of the main body MB in the first cross section at a non-right angle. Not only are they actually crossing at non-right angles.
  • the width center line CL11 of the resin reservoir 110 in the first cross section is a portion in which the distance from the center axis O of the cavity CV is not constant over the entire length and varies along the width center line CL11.
  • the distance from the central axis O of the cavity CV of the width center line CL11 of the resin reservoir 110 in the first cross section changes along the width center line CL11 over the entire length.
  • the width center line CL21 of the protrusion 210 in the first cross section has a distance from the center axis O of the main body MB that is not constant over the entire length, and is along the width center line CL21. Part that changes. More specifically, in this example, the width center line CL21 of the protrusion 210 in the first cross section has a distance from the center axis O of the main body MB changing along the width center line CL21 over the entire length. .
  • one end of the width center line CL11 of the resin reservoir 110 in the first cross section is closer to the center axis O of the cavity CV than the other end of the width center line CL11.
  • the distance is long. More specifically, in this example, the width center line CL11 of the resin reservoir 110 in the first cross section has a distance from the center axis O of the cavity CV over the entire length from the end on one side of the width center line CL11 to the other side. It becomes longer gradually toward the end of the.
  • the end on one side of the width center line CL21 of the protrusion 210 in the first cross section is the center of the main body MB rather than the end on the other side of the width center line CL21.
  • the distance from the axis O is long. More specifically, in this example, the width center line CL21 of the protrusion 210 in the first cross section has a distance from the center axis O of the main body MB over the entire length from the end on one side of the width center line CL21 to the other. The length gradually increases toward the end of the side.
  • the outer edge of the open end surface 110 ⁇ / b> S to the cavity CV of the resin reservoir 110 is formed in a parallelogram shape having a non-right angle diagonal.
  • the shape of the weld portion W and the orientation of the reinforcing fibers F in the vicinity of the inter-gate position BGP and in the vicinity of the weld portion W can be disturbed in a wider range and more complicatedly.
  • the strength of the weld W can be improved.
  • the outer edge of the connecting end surface 210 ⁇ / b> S to the main body MB of the protrusion 210 is formed in a parallelogram shape having a non-perpendicular diagonal.
  • the opening end surface 110S to the cavity CV of the resin reservoir 110 does not overlap with the inter-gate position BGP, and is shifted from the inter-gate position BGP (and thus the weld portion W) (angular position). )It is in.
  • the molten resin before flowing into the resin reservoir 110 during injection tends to flow away from the inter-gate position BGP toward the resin reservoir 110.
  • the shape of the weld portion W and the orientation of the reinforcing fibers F in the vicinity of the inter-gate position BGP and in the vicinity of the weld portion W are It can be disturbed more extensively and more complexly. As a result, the strength of the weld W can be improved.
  • the connecting end surface 210S of the protrusion 210 to the main body MB does not overlap with the inter-gate position BGP, and is displaced from the inter-gate position BGP (and thus the weld portion W). In position (angular position).
  • the opening end surface 110S to the cavity CV of the resin reservoir 110 does not overlap with the gate position GP, and is at a position (angular position) between the gate position GP and the inter-gate position BGP. .
  • the opening end surface 110S of the resin reservoir 110 is not too far from the inter-gate position BGP, so that the molten resin in the vicinity of the inter-gate position BGP flows toward the resin reservoir 110. It can be effectively promoted.
  • the connecting end surface 210S of the protrusion 210 to the main body MB does not overlap the gate position GP, and the position (angle) between the gate position GP and the inter-gate position BGP. Position).
  • the resin reservoir 110 is open to the cavity surface 122 for one end surface in the axial direction.
  • the resin reservoir 110 extends toward one side in the axial direction, and more specifically, extends in the axial direction. That is, in this example, the extending direction of the resin reservoir 110 is the same as the resin flow direction. However, the extending direction of the resin reservoir 110 may be a direction inclined with respect to the axial direction. With this configuration, it is assumed that the resin reservoir 110 is open to the outer peripheral surface cavity surface (for example, the axial one-side portion cavity surface 121 or the torque input portion cavity surface 120) and extends in the radial direction.
  • the resin effectively The strength of the weld W can be improved by disturbing the flow.
  • the protrusion 210 is connected to the one end surface 222 in the axial direction. Further, the protrusion 210 extends toward one side in the axial direction, and more specifically, extends in the axial direction. That is, in this example, the extending direction of the protrusion 210 is the same as the resin flow direction. However, the extending direction of the protrusion 210 may be a direction inclined with respect to the axial direction.
  • the resin reservoir 110 has the largest cross-sectional area in the cross section perpendicular to the axial direction (the extending direction of the resin reservoir 110 in this example) on the opening end surface 110S to the cavity CV. More specifically, in the example of the figure, the resin reservoir 110 has a cross-sectional area in a cross section perpendicular to the axial direction (in this example, the extending direction of the resin reservoir 110) from the opening end surface 110S (root) to the front of the tip. Although it is constant, it is gradually reduced toward the tip only at the tip portion. According to this configuration, the effect of disturbing the resin flow by the resin reservoir 110 can be enhanced.
  • the protrusion 210 has the largest cross-sectional area in the cross section perpendicular to the axial direction (in this example, the extending direction of the protrusion 210) on the connecting end surface 210S to the main body MB. . More specifically, in the example of the figure, the protrusion 210 has a cross-sectional area in a cross section perpendicular to the axial direction (in this example, the extending direction of the protrusion 210), from the connection end surface 210S (root) to the front of the tip. Although it is constant, it is gradually reduced toward the tip only at the tip portion.
  • the resin reservoir 110 is molded on the both sides in the axial direction of the main body MB which is a cylindrical member. It is preferable that an opening is formed in a cavity surface for molding the end surface 222 on the side to be formed (in this example, the cavity surface 122 for one end surface in the axial direction). According to this configuration, the strength of the weld portion W can be sufficiently secured particularly around the female screw that requires strength.
  • the projection 210 has an end face on the side having the female screw 223 on both sides in the axial direction of the main body MB that is a cylindrical member ( In this example, it is preferable to be connected to the one axial end surface 222).
  • FIGS. 17 to 19 show the mold 100 of the present embodiment.
  • FIG. 19 shows a resin member 200 of the present embodiment.
  • the third embodiment is different from the second embodiment only in the shape of the resin reservoir 110 of the mold 100 and the shape of the protrusion 210 of the resin member 200.
  • the configuration of the cavity CV of the mold 100, the arrangement of the resin reservoir 110, the configuration of the main body MB of the resin member 200, and the arrangement of the protrusions 210 are the same as in the second embodiment.
  • the resin reservoir 110 opens in the cavity surface 122 for one end surface in the axial direction.
  • the resin reservoir 110 extends toward one side in the axial direction, and more specifically, extends in the axial direction.
  • the gate G is directed to one side in the axial direction of the cavity CV, and is configured to inject molten resin into the cavity CV along the axial direction toward one side in the axial direction. That is, in this example, the extending direction of the resin reservoir 110 is substantially the same as the direction in which the gate G is directed and thus the resin flow direction. However, the extending direction of the resin reservoir 110 may be a direction inclined with respect to the axial direction.
  • the protrusion part 210 is connected with the axial direction one side end surface 222 like 2nd Embodiment.
  • the protrusion 210 extends toward one side in the axial direction, and more specifically, extends in the axial direction.
  • the extending direction of the protrusion 210 is substantially the same as the direction of the gate G and the resin flow direction.
  • the extending direction of the protrusion 210 may be a direction inclined with respect to the axial direction.
  • the resin reservoir 110 has a tip side portion (a tip side portion having a length that is half the total axial length of the resin reservoir 110) along the opening end face 110 ⁇ / b> S to the cavity CV.
  • a first virtual plane VP11 that includes a perpendicular n11 of the width center line CL11 of the resin reservoir 110 in the first cross section passing through the center point CL11c of the width center line CL11 of the resin reservoir 110 in the first cross section and is perpendicular to the first cross section.
  • it has an asymmetric shape.
  • the volume of the resin reservoir 110 is different at both ends of the first virtual plane VP11 at the tip side portion thereof, that is, at the tip side portion, the volume of the portion on one side with respect to the first virtual plane VP11. Is larger than the volume of the portion on the other side with respect to the first virtual plane VP11. Accordingly, during injection, while a part of the molten resin flows into the resin reservoir 110, the flow of the resin in the resin reservoir 110 promotes the disturbance of the flow of the resin before flowing into the resin reservoir 110. Therefore, the shape of the weld portion W and the orientation of the reinforcing fibers F in the vicinity of the inter-gate position BGP and in the vicinity of the weld portion W can be disturbed in a wider range and more complicatedly.
  • the protrusion 210 has a tip end portion (a tip end portion having a length that is half the total length of the protrusion 210 in the axial direction) connected to the main body MB.
  • 210A includes a perpendicular n21 of the width center line CL21 of the protrusion 210 in the first cross section passing through the center point CL21c of the width center line CL21 of the protrusion 210 in the first cross section along 210S, and is perpendicular to the first cross section. It has an asymmetric shape with respect to one virtual plane VP21.
  • the protrusion 210 has a tip portion that has a different volume on both sides of the first virtual plane VP21. That is, the volume of one side of the first virtual plane VP21 is the first virtual plane VP21. It is larger than the volume of the portion on the other side with respect to VP21.
  • the width center line CL11 of the resin reservoir 110 in the first cross section along the opening end surface 110S to the cavity CV of the resin reservoir 110 is the center of the cavity CV.
  • the distance from the axis O is constant over the entire length, and the distance from the width center line CL12 of the cavity CV in the first cross section is also constant over the entire length.
  • the tip side portion of the resin reservoir 110 is asymmetrical with respect to the first virtual plane VP11, so that the shape of the weld portion W, the vicinity of the inter-gate position BGP, and thus the weld portion can be obtained.
  • the orientation of the reinforcing fiber F in the vicinity of W can be disturbed.
  • the resin member 200 of this example has a width center line CL21 of the protrusion 210 in the first cross section along the connection end surface 210S to the main body MB of the protrusion 210.
  • the distance from the central axis O of the main body MB is constant over the entire length, and the distance from the width central line CL22 of the main body MB in the first cross section is also constant over the entire length.
  • the inner peripheral surface of the resin reservoir 110 is partitioned by the outer peripheral surface of the inner mold part 105.
  • the inner mold portion 105 is pulled out from the resin member 200 to one side in the axial direction while being rotated. Accordingly, the protrusion 210 of the resin member 200 obtained thereafter may extend so as to increase in diameter toward the outer periphery as it goes from the root toward the tip, unlike the one shown in FIG.
  • each resin reservoir 110 is a portion on the same side in the circumferential direction with respect to the first virtual plane VP11. Is larger than the volume of the other side of each first virtual plane VP11.
  • the resin reservoir 110 has a tip protruding portion 110P that protrudes toward the inner peripheral side of the cavity CV at the tip side portion.
  • the tip protrusions 110P of the resin reservoirs 110 are located on the same side in the circumferential direction with respect to the first virtual planes VP11.
  • the resin member 200 of FIG. 19 is provided with a plurality of (three in the illustrated example) protrusions 210, and each protrusion 210 has the same circumferential direction with respect to the first virtual plane VP21.
  • the volume of the portion on the side is larger than the volume of the portion on the other side with respect to each first virtual plane VP21.
  • the protrusion 210 has a tip protrusion 210P that protrudes toward the inner peripheral side of the main body MB at the tip side.
  • the tip protrusions 210P of the protrusions 210 are located on the same side in the circumferential direction with respect to the first virtual plane VP21.
  • the resin reservoir 110 includes a perpendicular line n11 of the width center line CL11 of the resin reservoir 110 in the first cross section at the tip side portion, and the extending direction of the resin reservoir 110 (in this example, the axial direction) ),
  • the cross-sectional area of the cross section in parallel with the width of the resin reservoir 110 is not constant over the entire length of the width center line CL11 of the resin reservoir 110, and changes at least partially along the width center line CL11 of the resin reservoir 110, Specifically, in the example of the figure, the resin reservoir 110 is configured to constantly change along the width center line CL11.
  • the protruding portion 210 includes a perpendicular n21 of the width center line CL21 of the protruding portion 210 in the first cross section at the tip side portion, and the extending direction of the protruding portion 210 (this example)
  • the cross-sectional area in the cross-section parallel to the axial direction is not constant over the entire length of the width center line CL21 of the protrusion 210, and is configured to change at least partially along the width center line CL21 of the protrusion 210. More specifically, in the example of the figure, the protrusion 210 is configured to always change along the width center line CL21.
  • the resin reservoir 110 has a volume of a tip side portion thereof rather than a volume of a root side portion thereof (a portion on the base side having a length that is half the total axial length of the resin reservoir 110). Is bigger. More specifically, in the example of FIG. 17, the resin reservoir 110 gradually increases in cross section in a cross section perpendicular to the axial direction from the opening end face 110 ⁇ / b> S (root) to the tip along the axial direction over the entire length in the axial direction. Has been enlarged to.
  • the protrusion 210 has a tip side portion that is larger than the volume of the root side portion (the portion on the root side having a length that is half the axial length of the protrusion 210). The volume of is larger. More specifically, in the example of FIG.
  • the projecting portion 210 has a cross-sectional area in a cross section perpendicular to the axial direction gradually extending along the axial direction from the connecting end face 210 ⁇ / b> S (root) toward the tip along the axial length. Has been enlarged to.
  • the fourth embodiment of the present invention will be described with a focus on differences from the first embodiment.
  • 20 to 22 show the mold 100 of the present embodiment.
  • 23 and 24 show the resin member 200 of the present embodiment.
  • the fourth embodiment is different from the first embodiment only in the configuration of the cavity surface 121 for the one side portion in the axial direction of the mold 100 and the configuration of the one side portion 221 in the axial direction of the resin member 200.
  • the mold 100 similarly to the first embodiment, similarly to the first embodiment, the mold 100 includes a small convex portion row 180, a small convex portion row 181, and a small convex portion, each of which includes a plurality of small convex strips 140.
  • a small groove portion row having a plurality of small groove portions 240 each having a plurality of small groove portions 240. 280, a small groove portion row 281 and an annular ridge portion 270 between the small groove portion row 280 and the small groove portion row 281.
  • a small ridge 140 is arranged in the vicinity of the end of the cavity CV on the downstream side in the resin flow direction (in this example, one side in the axial direction). Yes.
  • “near the end of the cavity CV in the resin flow direction downstream side” means the end of the gate G and the cavity CV on the downstream side in the resin flow direction (in this example, one end in the axial direction, that is, one end face in the axial direction). It is the most downstream region in the resin flow direction, extending over a distance of 35% of the resin flow direction distance (in this example, the axial direction distance) LG with the cavity surface 122 for use. More specifically, the end edge portion 140ce on the upstream side in the resin flow direction (the other side in the axial direction) of each small convex portion 140 in this example is the one end in the axial direction (the one end surface in the axial direction) of the gate G and the cavity CV.
  • an end edge portion 140ce on the upstream side in the resin flow direction (the other side in the axial direction) of each small convex portion 140 in this example is a distance L1 that is 37% of the axial total length L121 of the cavity surface 121 for one axial side portion.
  • the small ridge 140 is provided in the vicinity of the end portion on the downstream side in the resin flow direction (one side in the axial direction), which is a region where the weld portion W is particularly easily formed and a particularly high strength is required.
  • the strength of the weld portion W can be improved by actively directing the flow of the resin in the region in the weld crossing direction (circumferential direction).
  • a small recess 240 is disposed in the vicinity of the end of the main body MB on the downstream side in the resin flow direction (in this example, one side in the axial direction).
  • a plurality of (specifically three) small concave strips 240 arranged in the vicinity of the end of the main body MB on the downstream side in the resin flow direction (one side in the axial direction in this example) are mutually connected.
  • the vicinity of the end of the main body MB on the downstream side in the resin flow direction means the end on the downstream side of the gate G and the main body MB in the resin flow direction (in this example, one end in the axial direction, that is, one in the axial direction). This is the most downstream region in the resin flow direction that extends over a distance of 35% of the resin flow direction distance (in this example, the axial direction distance) LG with the side end surface 222).
  • an end edge portion 240ce on the other side in the axial direction of each small groove portion 240 of the present example is between the gate G and one end in the axial direction of the main body MB (the one end surface 222 in the axial direction).
  • An axial position separated from the end 222 on the downstream side in the resin flow direction of the main body MB by the distance L1 ′ (L1 ′ 0.23 ⁇ LG ′), which is 23% of the axial distance LG ′, toward the upstream side in the resin flow direction. It is suitable if it is arranged downstream of ap1 ′ in the resin flow direction.
  • the small ridges 140 of the small ridge line 182 are arranged at positions (circumferential positions) that do not overlap with the inter-gate position BGP (and thus the weld part W). It is spaced from the inter-gate position BGP (and thus the weld portion W) in the direction intersecting the weld extending direction (more specifically, in the circumferential direction in this example). Specifically, the small ridge 140 is arranged at a position (circumferential position) overlapping with the gate position GP.
  • the small convex portion 140 is not arranged there, and the small concave portion 240 is formed there. By preventing the resin member 200 from being molded, a decrease in strength of the resin member 200 can be suppressed.
  • the gate position GP is originally where the strength is highest in the resin member 200, by arranging the small convex portion 140 there and by forming the small concave portion 240 there, The strength reduction of the resin member 200 can be suppressed as much as possible.
  • the small groove portions 240 of the small groove portion row 282 are disposed at positions (circumferential positions) that do not overlap with the inter-gate position BGP (and thus the weld portion W). That is, it is separated from the inter-gate position BGP (and thus the weld portion W) in a direction intersecting the weld extending direction (more specifically, in the circumferential direction in this example).
  • the small groove part 240 is arrange
  • the gate position GP and the inter-gate position BGP can be specified from the trace of the gate G as described above.
  • the small convex strip 140 of the small convex strip array 182 is at least one side in the extending direction of the small convex strip 140 (the circumferential direction in this example) among the outer edges of the root end face.
  • the edge portions 140ae and 140be (both sides in the example in the figure) extend in a direction that intersects the weld extending direction (in this example, the axial direction) at a non-right angle, and are perpendicular to the weld extending direction. It extends in a direction that intersects non-perpendicular to a certain direction (circumferential direction in this example). According to this configuration, as schematically shown in FIGS.
  • the extending direction of the small ridge 140 is such that the molten resin is once dammed in front of the small ridge 140 and bypasses it.
  • the wall surfaces 140a, 140b on the end side in the extending direction of the small ridge 140 The flow of the resin can be effectively promoted to flow in the direction intersecting the weld extending direction, that is, in the circumferential direction in this example.
  • the weld cross direction component (circumferential component) of the shape of the weld portion W and the weld cross direction component (circumferential component) of the orientation of the reinforcing fiber F in the vicinity of the inter-gate position BGP and in the vicinity of the weld portion W are thereby obtained. Can be increased. Therefore, the strength of the weld portion W can be improved.
  • the small groove portion 240 of the small groove portion row 282 is in the extending direction (the circumferential direction in this example) of the small groove portion 240 of the outer edge of the opening end surface.
  • Edge portions 240ae and 240be on at least one side extend in a direction that intersects non-perpendicular to the weld extending direction (axial direction in this example), and the weld extension It extends in a direction that intersects non-perpendicular to a direction perpendicular to the direction (circumferential direction in this example).
  • the small ridge 140 of the small ridge line 182 has an outer edge of the root end surface of a parallelogram. And the small ridge 140 has the edge extending portions 140ae and 140be on both sides in the extending direction of the small ridge 140 (circumferential direction in this example) among the outer edges of the base end surface, respectively. As it goes to one side (in the axial direction in this example), it extends linearly so as to go to the same side in the direction perpendicular to the weld extending direction (circumferential direction in this example).
  • the flow of the resin is effectively urged to circulate from the small ridge 140 to the same side in the weld crossing direction, that is, the same side in the circumferential direction in this example. Can do.
  • the outer edge of the small groove part 240 of the small groove part row 282 has a parallelogram shape.
  • the edge portions 240ae and 240be on both sides in the extending direction of the small groove portion 240 (in the circumferential direction in this example) among the outer edges of the opening end face are weld extending directions, respectively. As it goes to one side (in the axial direction in this example), it extends linearly so as to go to the same side in the direction perpendicular to the weld extending direction (circumferential direction in this example).
  • the function of urging the flow of the resin by the ridges 140 to flow to the same side in the weld crossing direction, that is, the same side in the circumferential direction in this example, can be exhibited more effectively, and the resin member 200 which is a molded product
  • the small protrusions 140 of the mold 100 can be easily removed from the small protrusions 240 of the resin member 200 at the time of mold release.
  • the small groove portions 240 of the small groove portion row 282 have at least one wall surface 240a on the extending direction (circumferential direction in this example) (both sides in the illustrated example).
  • the small groove portion 240 has at least one side wall surface 240a, 240b in the extending direction (circumferential direction in this example). As it goes to the corresponding side of each extending direction, it extends continuously straight toward the opening end face of the small groove 240 (that is, the depth of the small groove 240 decreases). It is present (inclined), that is, configured in a tapered shape.
  • the small convex portion when measured along the radial direction at a position where the height of the small convex portion 140 of the small convex portion row 182 is maximum.
  • a suitable numerical range of the height h140 of 140 is the same as that described with reference to FIG. 4 in the first embodiment.
  • the resin member 200 of this example when the depth of the small groove portion 240 of the small groove portion row 282 is measured along the radial direction at the position where the depth is the maximum, The preferable numerical range of the depth d240 of the small groove portion 240 is the same as that described with reference to FIG. 8B in the first embodiment.
  • die 100 is not restricted to the example of FIG. 20,
  • line 182 may be arbitrary numbers (one or more).
  • the resin member 200 is not limited to the example of FIG. 23, and the number of the small groove portions 240 constituting the small groove portion row 282 may be an arbitrary number (one or a plurality).
  • FIG. 25B shows the resin member 200 of the present embodiment.
  • the cavity CV of the mold 100 is formed in a cylindrical shape whose axial length is longer than the outer diameter.
  • the cavity CV of the mold 100 is in the axial direction. It is formed in an annular shape (doughnut shape) whose outer diameter is longer than the length.
  • the mold 100 has only one gate G.
  • the position (angular position) corresponding to the gate G is the gate position GP, and the position (angular position) equidistant from the gate position GP along the cavity CV is the inter-gate position BGP.
  • W is formed substantially along the radial direction.
  • the resin flow direction in this example is the circumferential direction of the cavity CV.
  • the cavity surface for molding the one end surface in the axial direction of the resin member 200 is a small protrusion 140 (projection) that protrudes inward of the cavity CV on the downstream side in the resin flow direction of the cavity CV. It has a plurality.
  • the small ridge 140 extends in a direction intersecting the weld extending direction (in the example shown, a direction perpendicular to the weld extending direction).
  • the downstream side in the resin flow direction of the cavity CV is the resin flow direction distance (circumferential direction distance) between the gate position GP and the inter-gate position BGP that is the downstream end of the cavity CV in the resin flow direction. It refers to the most downstream region in the resin flow direction extending along the resin flow direction (circumferential direction) over a distance of 65%.
  • the plurality of small ridges 140 are arranged at intervals from each other in a direction intersecting the weld extending direction, and are arranged at intervals from each other in the weld extending direction.
  • each small convex portion 140 has an edge portion on at least one side (both sides in the example of the drawing) in the extending direction of the small protruding portion 140 among the outer edges of the root end face.
  • 140ae and 140be extend in a direction that intersects the weld extension direction in a non-perpendicular direction, and extends in a direction that intersects in a non-perpendicular direction with respect to a direction perpendicular to the weld extension direction.
  • Other configurations of the small ridge 140 are the same as those described in the first embodiment.
  • the resin member 200 in FIG. 25B is obtained by the molding process described in the first embodiment using the mold 100 in FIG.
  • this resin member 200 there is only one gate position GP, and a position (angular position) that is equidistant from the gate position GP along the resin member 200 is the inter-gate position BGP. Is formed substantially along the radial direction.
  • the resin flow direction of this example specified from the trace of the gate G of the resin member 200 is the circumferential direction of the resin member 200.
  • the gate position GP and the inter-gate position BGP can also be specified from the trace of the gate G.
  • One end surface in the axial direction of the resin member 200 has a plurality of small concave portions 240 (concave portions) on the downstream side in the resin flow direction of the resin member 200.
  • the small concave strip 240 extends in a direction intersecting the weld extending direction (in the example shown in the drawing, a direction perpendicular to the weld extending direction).
  • the “downstream side in the resin flow direction of the resin member 200” means the resin flow direction distance (circumferential direction distance) between the gate position GP and the inter-gate position BGP which is the downstream end of the resin member 200 in the resin flow direction. ), Which extends along the resin flow direction (circumferential direction) over a distance of 65%.
  • each small groove part 240 is an edge part of the at least one side (in the example of a figure) of the extending direction of the small groove part 240 among the outer edges of the opening end surface.
  • 240ae and 240be extend in a direction that intersects the weld extension direction in a non-perpendicular direction and extends in a direction that intersects in a non-perpendicular direction with respect to a direction perpendicular to the weld extension direction.
  • the structure of the other small groove part 240 it is the same as that of what was described in 1st Embodiment.
  • FIG. Fig.26 (a) has shown the metal mold
  • FIG. 26B shows the resin member 200 of the present embodiment.
  • the cavity CV of the mold 100 is formed in a flat plate shape such that the length in one direction is longer than the length in the direction perpendicular to the one in a plan view, and the thickness is thin. .
  • the mold 100 has one gate G at each end in the extending direction (longitudinal direction) of the cavity CV (two in total).
  • the extension direction position of the cavity CV corresponding to the gate G is the gate position GP
  • the position (extension direction position) that is equidistant from the gate position GP along the cavity CV is the inter-gate position BGP.
  • the weld portion W is formed along a direction substantially perpendicular to the extending direction of the cavity CV.
  • the resin flow direction in this example is a direction toward the center side of the extending direction along the extending direction of the cavity CV.
  • the cavity surface for molding one end surface in the thickness direction of the resin member 200 is a small protrusion 140 projecting to the inside of the cavity CV on the downstream side in the resin flow direction of the cavity CV. ).
  • the small ridge 140 extends in a direction intersecting with the weld extending direction (in the example of the drawing, a direction intersecting non-perpendicularly with the weld extending direction).
  • the downstream side of the cavity CV in the resin flow direction means the distance in the resin flow direction between the gate position GP and the inter-gate position BGP which is the downstream end of the cavity CV in the resin flow direction (the extension of the cavity CV).
  • the plurality of small ridges 140 are arranged at intervals from each other in a direction intersecting the weld extending direction, and are arranged at intervals from each other in the weld extending direction. Also in the present embodiment, as in the first to fifth embodiments described above, it is relatively far from the gate G compared to the case where each small protrusion 140 is disposed upstream of the cavity CV in the resin flow direction.
  • each small convex portion 140 has an edge portion on at least one side (both sides in the example of the drawing) in the extending direction of the small protruding portion 140 among the outer edges of the root end face.
  • 140ae and 140be extend in a direction that intersects the weld extension direction in a non-perpendicular direction, and extends in a direction that intersects in a non-perpendicular direction with respect to a direction perpendicular to the weld extension direction.
  • Other configurations of the small ridge 140 are the same as those described in the first embodiment.
  • the resin member 200 in FIG. 26B is obtained by the molding process described in the first embodiment using the mold 100 in FIG.
  • the gate position GP has one (two in total) at both ends in the extending direction (longitudinal direction) of the resin member 200.
  • a position (extension direction position) that is equidistant from the gate position GP along the resin member 200 is an inter-gate position BGP, and in the vicinity thereof, the weld portion W is in a direction substantially perpendicular to the extension direction of the cavity CV. Formed along.
  • the resin flow direction of this example specified from the trace of the gate G of the resin member 200 is a direction toward the center of the extending direction along the extending direction of the resin member 200.
  • the gate position GP and the inter-gate position BGP can also be specified from the trace of the gate G.
  • One end surface in the thickness direction of the resin member 200 has a plurality of small concave portions 240 (concave portions) on the downstream side in the resin flow direction of the resin member 200.
  • the small concave ridge portion 240 extends in a direction intersecting with the weld extending direction (in the example of the drawing, a direction intersecting non-perpendicularly with the weld extending direction).
  • the downstream side in the resin flow direction of the resin member 200 means the distance in the resin flow direction between the gate position GP and the inter-gate position BGP which is the downstream end of the resin member 200 in the resin flow direction.
  • each small groove part 240 is an edge part of the at least one side (in the example of a figure) of the extending direction of the small groove part 240 among the outer edges of the opening end surface.
  • 240ae and 240be extend in a direction that intersects the weld extension direction in a non-perpendicular direction and extends in a direction that intersects in a non-perpendicular direction with respect to a direction perpendicular to the weld extension direction.
  • the structure of the other small groove part 240 it is the same as that of what was described in 1st Embodiment.
  • the manufacturing method of the injection mold which concerns on this invention, the resin member, and the resin product is not restricted to embodiment mentioned above, Various modifications are possible.
  • the technical elements of any of the embodiments described above may be combined with other embodiments.
  • the small ridges 140, the small ridges row 180, the small ridges row 181 and the annular ridges 170 of the first embodiment are used in the second to fourth embodiments. You may use combining at least 1 arbitrarily selected from the resin pool 110 demonstrated, the cyclic
  • a combination of at least one arbitrarily selected from the protrusions 210, the annular groove portions 230, the small groove portions 240, and the small groove portions row 282 described in (1) may be used.
  • the shape of the cavity CV of the mold 100 and the shape of the main body MB of the resin member 200 are not limited to the cylindrical shape, the annular shape, and the flat plate shape as described above, and may have any shape.
  • the injection mold, resin member, and resin product manufacturing method according to the present invention can be used in the field of resin products of all kinds, applications, and shapes.
  • Injection mold 101-104 Outer mold part 101a: Inner mold accommodating part 105, 106: Inner mold part 110: Resin reservoir 110P: Protruding tip part 110S: Open end face 120: Torque input Cavity surface for part (cavity surface for intermediate part in axial direction), 120a: convex part, 121: cavity surface for one side part in axial direction, 122: cavity surface for one end face in axial direction, 123: cavity surface for female screw, 124 125: Cavity surface for the other side portion in the axial direction, 130: Annular ridge, 131: Annular ridge, 140, 150, 151, 160, 161: Small ridge (projection), 140a, 140b: Wall surface of small ridge, 140ae, 140be, 140ce: edge of outer edge of root end surface of small ridge, 170: annular ridge, 180, 181, 182: small ridge Part row (convex strip portion row), 200: resin member, 210: protrusion, 210P: tip protrusion, 210

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

射出成形金型は、ゲート及びキャビティを備え、強化繊維入りの溶融樹脂をゲートからキャビティ内に射出することにより、キャビティ内でウェルド部が形成されるように構成された、射出成形金型において、射出成形金型のキャビティ面は、キャビティの樹脂流動方向の下流側に、ウェルド部のウェルド延在方向と交差する方向に延在するとともにキャビティの内側へ突出する凸条部140を、複数有しており、複数の凸条部は、ウェルド延在方向に交差する方向に互いから間隔を空けて配置されているとともに、ウェルド延在方向に互いから間隔を空けて配置されている。

Description

射出成形金型、樹脂部材、及び、樹脂製品の製造方法
 この発明は、射出成形金型、樹脂部材、及び、樹脂製品の製造方法に関するものである。
 本願は、2017年6月2日に、日本に出願された特願2017-110456号に基づく優先権を主張するものであり、その内容の全文をここに援用する。
 射出成形金型のキャビティ内で溶融樹脂が合流してウェルド部が形成される場合、成形品におけるウェルド部の強度が他の部分よりも低くなる傾向がある。ウェルド部の強度を向上するために、従来より様々な試みが行われてきた(例えば、特許文献1)。
日本国特開2002-240096号公報
 しかしながら、従来の技術では、ウェルド部の強度を十分に向上できず、改善の余地があった。
 この発明は、上述した課題を解決するためのものであり、ウェルド部の強度を向上できる、射出成形金型、樹脂部材、及び、樹脂製品の製造方法を、提供することを目的とするものである。
 本発明の射出成形金型は、ゲート及びキャビティを備え、強化繊維入りの溶融樹脂を前記ゲートから前記キャビティ内に射出することにより、前記キャビティ内でウェルド部が形成されるように構成された、射出成形金型において、前記射出成形金型のキャビティ面は、前記ウェルド部のウェルド延在方向と交差する方向に延在するとともに前記キャビティの内側へ突出する、凸条部を有しており、前記凸条部は、その根元端面の外縁のうち、該凸条部の延在方向の少なくとも一方側の端縁部が、前記ウェルド延在方向と前記ウェルド延在方向に垂直な方向との両方に対して非直角に交差する方向に延在している。
 本発明の樹脂部材は、強化繊維入りの樹脂から構成され、ウェルド部が形成されている、樹脂部材において、前記樹脂部材の外表面は、前記ウェルド部のウェルド延在方向と交差する方向に延在する凹条部を、複数有しており、前記複数の凹条部は、前記ウェルド延在方向に交差する方向に互いから間隔を空けて配置されているとともに、前記ウェルド延在方向に互いから間隔を空けて配置されている。
 本発明の樹脂製品の製造方法は、上記の射出成形金型の前記キャビティ内に、強化繊維入りの溶融樹脂を前記ゲートから射出し、樹脂部材を成形する、成形工程を含む。
 この発明によれば、ウェルド部の強度を向上できる、射出成形金型、樹脂部材、及び、樹脂製品の製造方法を、提供できる。
本発明の第1実施形態に係る射出成形金型を示す側面図である。 図2(a)は、図1の射出成形金型を示す、図2(b)のB-B線に沿った軸方向断面図であり、図2(b)は、図1の射出成形金型を示す、図2(a)のA-A線に沿った軸直方向断面図である。 図1に示す射出成形金型の要部を拡大して示す、側面図であり、本発明の第1実施形態の作用を説明するための図である。 図3のH-H線断面図である。 図2(a)に示す射出成形金型の要部を、一部軸方向断面図及び斜視図により示す、部分断面斜視図である。 図6(a)は、図1の射出成形金型が離型時にあるときの様子を示す、図6(b)のB’-B’線に沿った軸方向断面図であり、図6(b)は、図1の射出成形金型が離型時にあるときの様子を示す、図6(a)のA’-A’線に沿った軸直方向断面図である。 本発明の第1実施形態に係る樹脂部材を示す斜視図である。 図8(a)は、図7の樹脂部材の要部を拡大して示す側面図であり、図8(b)は、図8(a)のH’-H’線断面図である。 図9(a)は、図7の樹脂部材から得られた継手を示す斜視図であり、図9(b)は、図9(a)の継手を示す、図9(a)のE-E線に沿った軸直方向断面図であり、使用時の様子を説明するための図である。 本発明の第2実施形態に係る射出成形金型の要部を拡大して示す、側面図であり、本発明の第2実施形態の作用を説明するための図である。 図10のF-F線断面図である。 図10に示す射出成形金型の要部を、一部軸方向断面図及び斜視図により示す、部分断面斜視図である。 図13(a)は、本発明の第2実施形態に係る射出成形金型の要部を、軸方向一方側から観た様子を示す、斜視図であり、図13(b)は、図13(a)の射出成形金型を、軸方向一方側から観た様子を示す、正面図である。 本発明の第2実施形態に係る樹脂部材の要部を拡大して示す、側面図である。 図14のF’-F’線断面図である。 図16(a)は、本発明の第2実施形態に係る樹脂部材の要部を、軸方向一方側から観た様子を示す、斜視図であり、図16(b)は、図16(a)の樹脂部材を、軸方向一方側から観た様子を示す、正面図である。 図17(a)は、本発明の第3実施形態に係る射出成形金型の要部を、軸方向一方側から観た様子を示す、斜視図であり、図17(b)は、図17(a)の射出成形金型を、軸方向一方側から観た様子を示す、正面図である。 図17のI-I線に沿った軸方向断面図である。 図19(a)は、本発明の第3実施形態に係る樹脂部材の要部を、軸方向一方側から観た様子を示す、斜視図であり、図19(b)は、図19(a)の樹脂部材を、軸方向一方側から観た様子を示す、正面図である。 本発明の第4実施形態に係る射出成形金型の要部を拡大して示す、側面図であり、本発明の第4実施形態の作用を説明するための図である。 図20のG-G線断面図である。 図20に示す射出成形金型の要部を、一部軸方向断面図及び斜視図により示す、部分断面斜視図である。 本発明の第4実施形態に係る樹脂部材の要部を拡大して示す、側面図である。 図23のG’-G’線断面図である。 図25(a)は、本発明の第5実施形態に係る射出成形金型を示す斜視図であり、図25(b)は、本発明の第5実施形態に係る樹脂部材を示す斜視図である。 図26(a)は、本発明の第6実施形態に係る射出成形金型を示す斜視図であり、図26(b)は、本発明の第6実施形態に係る樹脂部材を示す斜視図である。
 本発明に係る射出成形金型、樹脂部材、及び、樹脂製品の製造方法は、あらゆる種類、用途及び形状の樹脂製品の分野に利用できるものである。
 以下に、図面を参照しつつ、この発明に係る射出成形金型、樹脂部材、及び、樹脂製品の製造方法の実施形態を例示説明する。
 〔第1実施形態〕
 図1~図9を参照しながら、本発明の第1実施形態を説明する。
 図1~図5は、本実施形態の射出成形金型100を型閉した状態で示しており、図6は、この射出成形金型100を型開して、成形品である樹脂部材200を取り出すときの様子を示している。図7及び図8は、図1~図6の射出成形金型100を用いた射出成形により得られる、本実施形態の樹脂部材200を示している。この樹脂部材200は、任意の種類及び用途の樹脂製品の分野に用いられてよいが、継手に用いられるのに好適なものである。図9は、図7の樹脂部材200を用いて最終的に得られる樹脂製品の一例である、継手300を示している。
 図1及び図2に示すように、本実施形態の射出成形金型(以下、単に金型ともいう。)100は、キャビティ面によって区画されたキャビティCVと、ランナーRから運ばれる強化繊維入りの溶融樹脂をキャビティCV内に注入するための注入口である1つ又は複数(本例では3つ)のゲートGとを、有している。
 後に詳述するように、この金型100は、キャビティCV内で樹脂が合流して樹脂の界面どうしが突き合った状態で硬化されたウェルド部Wが形成されるように構成されている。
 本実施形態の樹脂部材200は、つぎの方法で製造される。
 まず、図1~図5に示すように、金型100を閉じ、内部にキャビティCVを形成する。その状態で、強化繊維入りの溶融樹脂をランナーRからゲートGに向けて流し、ゲートGからキャビティCV内へ射出する。キャビティCV内に溶融樹脂が充填された後、キャビティCV内の樹脂を所定の程度まで冷却及び硬化させる。つぎに、図6に示すように、金型100を開いて、樹脂部材200を取り出す。以上のようにして、樹脂部材200の成形工程が完了し、図7に示すような、強化繊維入りの樹脂から構成された樹脂部材200が得られる。樹脂部材200は、本体部MBを、有している。成形工程では、キャビティCVによって本体部MBが成形される。
 成形工程により得られた樹脂部材200は、そのまま最終的な樹脂製品として利用されてもよい。あるいは、成形工程後、樹脂部材200をさらに加工したり他の部材と組み立てたりすることにより、最終的な樹脂製品を得るようにしてもよい。
 図9の継手300は、成形工程により得られた樹脂部材200(図7)の本体部MBに外筒部310が装着される(組立工程)ことにより、得られたものである。この継手300は、給水・給湯用配管への利用に好適なものであるが、水以外の流体(例えば油、薬液等の液体や、空気、ガス等の気体等)のための配管にも利用できるものである。
 ここで、図7~図9を参照して、本実施形態の樹脂部材200の構成について、さらに詳しく説明する。
 図7及び図9(a)に示すように、樹脂部材200の本体部MBは、まっすぐに延びる円筒状部材である。本体部MBは、本体部MBの軸方向一方側に位置する軸方向一方側部分221と、本体部MBの軸方向中間部に位置する軸方向中間部分220と、本体部MBの軸方向他方側に位置する軸方向他方側部分224とを、有している。
 なお、本明細書において、「円筒状部材」とは、全長にわたって外周面及び内周面の両方が円形断面を有するような形状のものに限られず、全体的に観たときに略円筒状をなす形状のものも含むものであり、延在方向の少なくとも一部分で外周面及び/又は内周面が非円形の断面をなしていてもよい。
 樹脂部材200は、軸方向一方側部分221から軸方向中間部分220にわたる領域の内周面に、めねじ223を有している。このめねじ223は、図示しない他の部材(例えば金属製の水道管)のおねじと接続されるように構成されている。また、このめねじ223は、本体部MBの軸方向一方側から軸方向他方側(奥側)に向かうにつれて徐々に縮径する、テーパめねじである。
 なお、本明細書において、樹脂部材200又は本体部MBの「軸方向」とは、本体部MBのなす円筒形状の中心軸線Oに平行な方向を指す。本例では、中心軸線Oは直線状に延びている。また、樹脂部材200又は本体部MBの「軸方向一方側」とは、軸方向両側のうち、めねじ223が形成された側を指し、樹脂部材200又は本体部MBの「軸方向他方側」とは、その反対側を指す。また、樹脂部材200又は本体部MBの「軸直方向」とは、軸方向に垂直な方向を指す。
 本実施形態の樹脂部材200は、強化繊維入りの樹脂から構成されている。
 樹脂部材200を構成する樹脂としては、任意の樹脂を用いてよい。例えば図9の例のように樹脂部材200が継手300に用いられる場合、樹脂部材200を構成する樹脂としては、例えばポリフェニレンサルファイド(PPS:Polyphenylenesulfide)を用いると、耐熱性、耐薬品性等に優れているので好適である。
 樹脂部材200を構成する樹脂に含められている強化繊維は、樹脂の強度を強化するために含められている。強化繊維としては、樹脂の強度を向上できるものである限り、任意の繊維を用いてよい。例えば図9の例のように樹脂部材200が継手300に用いられる場合、強化繊維としては、例えばガラス繊維を用いると、樹脂部材200ひいては継手300の強度を、具体的には耐割れ性及び耐クリープ変形性を、向上できるので、よい。
 樹脂部材200は、めねじ223を含めた全体が樹脂により一体に成形されているので、樹脂部材200の少なくとも一部分(例えばめねじ223のみ)を金属製とした場合に比べて、樹脂部材200ひいては継手300の軽量化及び低コスト化が可能である。また、樹脂部材200は、樹脂に強化繊維が含められているので、少なくとも一部分を金属製とした場合と同等の強度を確保することが可能となる。
 樹脂部材200の軸方向一方側部分221及び軸方向他方側部分224は、それらの外周面が、軸直方向断面において円形である。
 樹脂部材200の軸方向中間部分220は、その外周面が軸直方向断面において多角形状(本例では六角形)をなしており、これによりトルク入力部分220を構成している。トルク入力部分220は、外周面が軸直方向断面において多角形状をなすため、例えば継手300の施工時にめねじ223を他の部材のおねじに対して締め付けるとき等において、図9(b)に示すようにレンチ等の工具Tがトルク入力部分220の互いに対向する一対の平坦面を外側から掴んだ状態で、工具Tからのトルクがしっかりと入力されるようにされている。本例では、トルク入力部分220の外周面に、複数の凹部220aが形成されている。
 図の例では、軸方向一方側部分221の外径とトルク入力部分220の外径(トルク入力部分220の多角形断面の外接円の径)が、ほぼ同じであり、また、軸方向に沿ってほぼ一定である。トルク入力部分220の内周面には、テーパめねじ223の末端部が形成されており、すなわちそこでの内径が軸方向一方側部分221よりもやや小さくされている。これにより、トルク入力部分220の周壁の厚さひいては強度を確保して、上述の工具Tからのトルクに耐えられるようにされている。
 軸方向他方側部分224の外径は、軸方向一方側部分221やトルク入力部分220の外径よりも、大幅に小さくされている。図9(a)の継手300では、軸方向他方側部分224に、それより大径の外筒部310が装着されている。樹脂部材200の軸方向他方側部分224と外筒部310との間には、円環状の空間が区画されており、この環状空間は、図示しない円管状部材(例えばポリブテン製又は架橋ポリエチレン製のパイプ)が差し込まれるように構成されている。
 つぎに、図1~図6を参照して、上述した本実施形態の樹脂部材200を成形するように構成された、本実施形態の射出成形金型100の構成について、さらに詳しく説明する。
 金型100は、外型部101~104と、内型部105、106とを、有している。金型100は、図1~図5に示すような閉じた状態にあるとき、外型部101~104の内側のキャビティ面と、内型部105、106の外側のキャビティ面とにより、キャビティCVを区画する。
 図2に示すように、このキャビティCVは、まっすぐに延びる円筒形状に構成されており、これにより、円筒状部材である樹脂部材200の本体部MBを成形するように構成されている。外型部101~104のうち最も軸方向一方側に位置する外型部101は、樹脂部材200の軸方向一方側端面222を成形するように構成された軸方向一方側端面用キャビティ面122を有している。他の外型部102~104は、外型部101に対して軸方向他方側で、周方向に沿って配列されており、それぞれが、樹脂部材200の本体部MBの全長にわたる外周面を成形するように構成された外周面用キャビティ面を有している。外型部102~104の各外周面用キャビティ面は、それぞれ、樹脂部材200の軸方向一方側部分221の外周面を成形するように構成された軸方向一方側部分用キャビティ面121と、樹脂部材200のトルク入力部分220の外周面を成形するように構成されたトルク入力部分用キャビティ面120と、樹脂部材200の軸方向他方側部分224の外周面を成形するように構成された軸方向他方側部分用キャビティ面124とを、有している。内型部105、106のうち軸方向一方側に位置する内型部105は、樹脂部材200のめねじ223を成形するように構成されためねじ用キャビティ面123を有しており、めねじ用キャビティ面123より軸方向一方側の部分が、外型部101に設けられた内型収容部101a(図6(a))に収容されるように構成されている。めねじ用キャビティ面123は、キャビティCVの軸方向一方側から軸方向他方側(奥側)に向かうにつれて徐々に縮径する。他方の内型部106は、樹脂部材200の軸方向他方側部分224の内周面を成形するように構成された軸方向他方側部分用キャビティ面125を有している。
 なお、本明細書において、金型100又はキャビティCVの「軸方向」とは、キャビティCVのなす円筒形状の中心軸線Oに平行な方向を指す。本例では、中心軸線Oは直線状に延びている。また、金型100又はキャビティCVの「軸方向一方側」とは、軸方向両側のうち、めねじ用キャビティ面123が配置された側を指し、金型100又はキャビティCVの「軸方向他方側」とは、その反対側を指す。また、金型100又はキャビティCVの「軸直方向」とは、軸方向に垂直な方向を指す。
 離型時では、図6に示すように、外型部102~104がそれぞれ成形品である樹脂部材200から径方向外側へと外され、外型部101が樹脂部材200から軸方向一方側へ外される。また、内型部105が回転されながら樹脂部材200から軸方向一方側へと引き抜かれ、内型部106が樹脂部材200から軸方向他方側へと引き抜かれる。
 なお、金型100は、本例と同じキャビティCVを、本例の外型部101~104及び内型部105、106とは異なる構成の外型部及び内型部によって区画するようにしてもよい。
 以下では、金型100の説明において、特に断りがない限り、金型100は閉じた状態にあるものとする。
 軸方向一方側部分用キャビティ面121及び軸方向他方側部分用キャビティ面124は、軸直方向断面において円形である。
 トルク入力部分用キャビティ面120は、図2(b)に示すように、軸直方向断面において多角形状(本例では六角形)をなしている。図の例では、トルク入力部分用キャビティ面120に、樹脂部材200のトルク入力部分220の複数の凹部220aを形成するように構成された、複数の凸部120a(図5)が形成されている。
 図の例では、軸方向一方側部分用キャビティ面121の外径とトルク入力部分用キャビティ面120の外径(トルク入力部分用キャビティ面120の多角形断面の外接円の径)が、ほぼ同じである。トルク入力部分用キャビティ面120の内周側には、めねじ用キャビティ面223の末端部が配置されており、すなわちそこでのキャビティCVの内径が軸方向一方側部分用キャビティ面121よりもやや小さくされている。
 軸方向他方側部分用キャビティ面124の外径は、軸方向一方側部分用キャビティ面121やトルク入力部分用キャビティ面120の外径よりも、大幅に小さくされている。
 図2に示すように、トルク入力部分用キャビティ面120の軸方向他方側には、より具体的に本例においてトルク入力部分用キャビティ面120の軸方向他方側の端部の近傍には、軸方向一方側を向くように指向されてキャビティCVに開口した、ゲートGが設けられている。図の例では、3つのゲートGが、周方向に等間隔に(120°ずつ離れた角度位置に)設けられている。なお、本明細書において、金型100又は樹脂部材200における「角度位置」とは、中心軸線O周りの角度位置を指しており、周方向位置に相当する。
 図3及び図5に示すように、本例の金型100は、外周面用キャビティ面に、より具体的に本例では軸方向一方側部分用キャビティ面121に、環状には連続せず、ウェルド延在方向(本例では軸方向)に交差する方向に延在するとともにキャビティCVの内側へ突出する、小凸条部140(凸条部)を有している。
 本例では、小凸条部140は、周方向に延在している。ただし、小凸条部140は、周方向に対して非直角に交差する方向に延在していてもよい。小凸条部140は、樹脂部材200における小凹条部240を成形するように構成されている。小凸条部140の延在方向は、小凸条部140における根元端面の外縁形状を見たときの延在方向(長手方向)であるものとする。
 つぎに、上述のように構成された金型100の作用について、図5を参照しながら説明する。
 成形工程において、強化繊維入りの溶融樹脂がゲートGからキャビティCV内に射出される間、溶融樹脂は、最初、軸方向一方側に向かって、トルク入力部分用キャビティ面120の内側のキャビティCV内、それから軸方向一方側部分用キャビティ面121の内側のキャビティCV内を、周方向に広がりながら軸方向に順次移動していく。ゲートGより軸方向一方側のキャビティCVが樹脂で充填されると、つぎに、樹脂は、軸方向他方側に向かって、軸方向他方側部分用キャビティ面124の内側のキャビティCV内を、軸方向に流れ、そこも樹脂で充填される。このようにして、キャビティCVの全体が樹脂で充填される。
 ここで、仮に、金型100のキャビティ面に小凸条部140が設けられておらず、軸方向一方側部分用キャビティ面121及び軸方向一方側端面用キャビティ面122がそれぞれ凹凸のない平滑面のみからなる場合、樹脂流動方向(本例では軸方向)においてゲートGから離れた、軸方向一方側部分用キャビティ面121の内側のキャビティCVでは、各ゲートGの位置(角度位置)であるゲート位置GPどうしからキャビティCVに沿って等距離にある位置(角度位置)であるゲート間位置BGPの各々で、ウェルド部Wが、軸方向及び径方向に平行な平面状に形成されやすくなる。また、この場合、ウェルド部Wでは、樹脂どうしの界面の両側において、樹脂内の各強化繊維Fが、ウェルド部Wの延在方向(ウェルド延在方向。本例では軸方向)に平行に延在する(配向される)おそれが高くなる。
 ここで、本明細書において、「樹脂流動方向」とは、キャビティCV内でゲートGから射出された樹脂が流れる大まかな方向を近似した方向であり、本例ではゲートGの指向方向ひいては軸方向一方側に向かう方向に相当する。また、「ウェルド延在方向」は、ウェルド部Wの延在方向を一方向に近似した方向であり、ゲート間位置BGPを通る仮想平面の延在方向を一方向に近似した方向に相当し、本例では軸方向である。また、本明細書では、ウェルド延在方向に交差する方向を、「ウェルド交差方向」ということがある。
 なお、樹脂流動方向(本例では軸方向)においてゲートGから近い、トルク入力部分用キャビティ面120の内側のキャビティCV内では、射出中にゲートGから射出されたばかりの高温の樹脂どうしが合流しても樹脂の界面は消えて残りにくく、ウェルド部Wは形成されにくい。樹脂流動方向においてゲートGから遠ければ遠いほど、すなわち軸方向一方側端面222に近ければ近いほど、ゲートGから射出されてから時間が経ち、やや冷却された樹脂どうしが合流すると、そこで界面が残りやすく、ウェルド部Wが形成されやすくなる。
 上述のように、仮に、ウェルド部Wが軸方向に沿ってまっすぐに形成され、かつ、ウェルド部Wにおける樹脂内の各強化繊維Fが、ウェルド部Wの延在方向に平行に配向される場合、成形品である樹脂部材200は、径方向の外力に対する強度が十分でないおそれがある。なお、樹脂を強化繊維Fで補強していても、ウェルド部Wにおける各強化繊維Fがウェルド部Wの延在方向に平行に配向されていると、ウェルド部Wの強度は、実質上、樹脂のみの強度しか得られない。
 本例の樹脂部材200は、軸方向一方側部分221及びトルク入力部分220の内周側にめねじ223を有しているため、例えば継手300の施工時において、おねじ付きの外部部材がめねじ223にねじ込まれる際に、軸方向一方側部分221及びトルク入力部分220は、拡径方向の力を受ける。このとき、軸方向一方側部分221に形成されたウェルド部Wの強度が十分でないと、軸方向一方側部分221に破損が生じるおそれがある。このため、ウェルド部Wには、十分な強度を持たせる必要がある。特に、本例のめねじ223はテーパめねじであることから、軸方向一方側部分221の周壁の厚さは、トルク入力部分220に比べて薄く、しかも軸方向一方側端面222に近ければ近いほど薄くなる。また、めねじ223が平行めねじである場合に比べて、おねじ付きの外部部材から入力される拡径方向の力が大きくなるおそれがある。その分、ウェルド部Wの強度向上の必要性は高く、特に、軸方向一方側端面222に近ければ近いほどその必要性は高まる。
 一方、本実施形態においては、上述のように、金型100が、その外周面用キャビティ面に、より具体的に本例では軸方向一方側部分用キャビティ面121に、環状には連続せず、ウェルド延在方向(本例では軸方向)に交差する方向に延在するとともにキャビティCVの内側へ突出する、小凸条部140(凸条部)を有している。本例では、小凸条部140は、周方向に延在している。ただし、小凸条部140は、周方向に対して非直角に交差する方向に延在していてもよい。
 この構成によれば、図3及び図4に概略的に示すように、ゲートGから射出された溶融樹脂は、少し軸方向一方側に移動した後、小凸条部140の手前でいったんせき止められて、それを迂回するように小凸条部140の延在方向(本例では周方向)の端部へ回ってから、小凸条部140より軸方向一方側へと進む。このようにして、小凸条部140から軸方向一方側端面用キャビティ面122までの領域で、樹脂の流動を、ウェルド交差方向へ、すなわち本例では周方向へ、流れるよう促すことができる。これにより、ウェルド部Wの形状のウェルド交差方向成分(特に周方向成分)や、ゲート間位置BGPの近傍ひいてはウェルド部Wの近傍での強化繊維Fの配向のウェルド交差方向成分(特に周方向成分)を増やすことができる。よって、ウェルド部Wの強度を向上できる。また、小凸条部140は、環状には連続しないので、後述する環状凸条部130に比べて、樹脂部材200の強度低下を抑制できる。
 上述の構成の金型100によって成形される樹脂部材200は、つぎの構成を有する。
 図7に示すように、本例の樹脂部材200は、外周面に、より具体的に本例では軸方向一方側部分221の外周面に、環状には連続せず、ウェルド延在方向(本例では軸方向)に交差する方向に延在し、より具体的に本例では周方向に延在する、小凹条部240(凹条部)を有している。ただし、小凹条部240は、周方向に対して非直角に交差する方向に延在していてもよい。小凹条部240の延在方向は、小凹条部240における開口端面の外縁形状を見たときの延在方向(長手方向)であるものとする。
 図7及び図9では、便宜のために、ゲートG、ゲート位置GP、及びゲート間位置BGPを、樹脂部材200とともに示している。樹脂部材200には、ゲートGの位置に、射出成形の際に形成されたゲートGの跡が残ることがある。樹脂部材200が有するゲートGの跡から、ゲートGの位置及びその指向方向(ひいてはゲートGから樹脂が射出される方向、本例では軸方向一方側)を特定できるので、それらと樹脂部材200の形状から特定されるキャビティCVの形状とに基づいて、キャビティCV内での樹脂流動方向、ゲート位置GP、及びゲート間位置BGPを、特定することができる。
 上述のような構成を有する小凹条部240を備えた樹脂部材200は、金型100の小凸条部140の作用効果について上述したように、射出成形時にウェルド部Wの形状のウェルド交差方向成分(特に周方向成分)や、ゲート間位置BGPの近傍ひいてはウェルド部Wの近傍での強化繊維Fの配向のウェルド交差方向成分(特に周方向成分)を増やすことができる。よって、ウェルド部Wの強度を向上できる。また、小凹条部240は、環状には連続しないので、後述する環状凹条部230に比べて、樹脂部材200の強度低下を抑制できる。
 なお、ウェルド部Wに関連する構成に関し、樹脂部材200の構成及び作用効果は、金型100の構成及び作用効果に、対応することとなる。以下の説明では、簡単のため、金型100の構成及び作用効果と樹脂部材200の構成を説明し、樹脂部材200の作用効果の説明を省略することがある。
 図3及び図5に示すように、本例の金型100は、外周面用キャビティ面に、より具体的に本例では軸方向一方側部分用キャビティ面121に、複数の小凸条部140(小凸条部150、151、160、161)を有している。以下では、小凸条部150、151、160、161どうしを区別しないときに、これらの個々を「小凸条部140」とよぶ。小凸条部140(小凸条部150、151、160、161)は、樹脂部材200における小凹条部240(小凹条部250、251、260、261)を成形するように構成されている。
 そして、本例の金型100は、複数の小凸条部140が、ウェルド延在方向に交差する方向に互いから間隔を空けて配置されているとともに、ウェルド延在方向に互いから間隔を空けて配置されている。具体的には、金型100は、互いから間隔を空けてウェルド延在方向に交差する方向(本例では周方向)に配列された複数(図の例では6本)の小凸条部151、161から構成された小凸条部列181と、小凸条部列181より樹脂流動方向下流側である軸方向一方側に配置され、互いから間隔を空けてウェルド延在方向に交差する方向(本例では周方向)に配列された複数(図の例では6本)の小凸条部150、160から構成された小凸条部列180とを、有している。また、これらの小凸条部列180、181どうしの間の軸方向一方側部分用キャビティ面121によって、周方向に連続して延在する環状凹条部170が構成されている。環状凹条部170は、キャビティCVの外側へ窪んでおり、樹脂部材200における環状凸条部270を成形するように構成されている。
 この構成によれば、図3に概略的に示すように、ゲートGから射出されて軸方向一方側へ移動した溶融樹脂は、上流側の小凸条部列181の小凸条部151、161の手前でいったんせき止められて、それらを迂回するように小凸条部151、161の延在方向(本例では周方向)の端部へ回ってから、小凸条部151、161より軸方向一方側へと進む。つぎに、樹脂は、下流側の小凸条部列180の小凸条部150、160手前でいったんせき止められて、それらを迂回するように環状凹条部170を通ってから、小凸条部150、160の延在方向(本例では周方向)の端部へ回って、軸方向一方側へ進む。このようにして、溶融樹脂は、各小凸条部140の延在方向の端部の脇を通過する際や、環状凹条部170を通る際に、ウェルド延在方向に交差する方向(本例では周方向)へ流れるよう促される。これにより、ウェルド部Wの形状のウェルド交差方向成分(周方向成分)や、ゲート間位置BGPの近傍ひいてはウェルド部Wの近傍での強化繊維Fの配向のウェルド交差方向成分(周方向成分)を増やすことができる。よって、ウェルド部Wの強度を向上できる。また、上流側の小凸条部列181の小凸条部151、161どうし、下流側の小凸条部列180の小凸条部150、160どうしは、互いに連通していないので、例えば後述する環状凸条部130(図10)を2本設ける場合に比べて、成形品である樹脂部材200の強度低下を抑制できる。また、小凸条部列180、181どうしの間に、環状凸条部270を成形する環状凹条部170があることにより、その分、成形品である樹脂部材200の強度を向上できる。
 同様に、図8(a)に示すように、本例の樹脂部材200は、外周面に、より具体的に本例では軸方向一方側部分221の外周面に、複数の小凹条部240(小凹条部250、251、260、261)を有している。以下では、小凹条部250、251、260、261どうしを区別しないときに、これらの個々を「小凹条部240」とよぶ。
 そして、本例の樹脂部材200は、複数の小凹条部240が、ウェルド延在方向に交差する方向に互いから間隔を空けて配置されているとともに、ウェルド延在方向に互いから間隔を空けて配置されている。具体的には、樹脂部材200は、互いから間隔を空けてウェルド延在方向に交差する方向(本例では周方向)に配列された複数(図の例では6本)の小凹条部251、261から構成された小凹条部列281と、小凹条部列281より樹脂流動方向下流側である軸方向一方側に配置され、互いから間隔を空けてウェルド延在方向に交差する方向(本例では周方向)に配列された複数(図の例では6本)の小凹条部250、260から構成された小凹条部列280とを、有している。また、これらの小凹条部列280、281どうしの間の軸方向一方側部分221の外周面によって、周方向に連続して延在する環状凸条部270が構成されている。
 図3の金型100において、各小凸条部140は、キャビティCVの樹脂流動方向下流側(軸方向一方側)に配置されている。ここで、「キャビティCVの樹脂流動方向下流側(軸方向一方側)」とは、キャビティCV内において、ゲートGとキャビティCVの樹脂流動方向下流側の端(本例では、軸方向一方側端、すなわち軸方向一方側端面用キャビティ面122)との間の樹脂流動方向距離(本例では、軸方向に沿った距離)LGの65%の距離にわたって延在する、最も樹脂流動方向下流側の領域を指す。
 このように、仮に各小凸条部140がキャビティCVの樹脂流動方向上流側(軸方向他方側)に配置される場合に比べて、比較的ゲートGから遠く、ひいてはウェルド部Wが形成されやすい領域に、小凸条部140が設けられることにより、ウェルド部W近傍での樹脂の流動を積極的にウェルド交差方向(周方向)に向けられるので、ウェルド部Wの強度を向上できる。
 同様に、図8(a)の樹脂部材200において、各小凹条部240は、本体部MBの樹脂流動方向下流側(軸方向一方側)に配置されている。ここで、「本体部MBの樹脂流動方向下流側(軸方向一方側)」とは、本体部MBにおいて、ゲートGと本体部MBの樹脂流動方向下流側の端(本例では、軸方向一方側端、軸方向一方側端面222)との間の樹脂流動方向距離(本例では軸方向距離)LG’の65%の距離にわたって延在する、最も樹脂流動方向下流側の領域を指す。
 図3の金型100では、各小凸条部140は、キャビティCV内の樹脂流動方向下流側(軸方向一方側)、かつ、キャビティCVの樹脂流動方向下流側の端部よりも上流側に配置されていると、好適である。より具体的に、本例において各小凸条部140の樹脂流動方向上流側(軸方向他方側)の端縁部140ceは、それぞれ、ゲートGとキャビティCVの軸方向一方側端(軸方向一方側端面用キャビティ面122)との間の軸方向距離LGの25%の距離L2(L2=0.25×LG)だけ、キャビティCVの樹脂流動方向下流側の端122から樹脂流動方向上流側へ離れた、軸方向位置ap2と、当該軸方向距離LGの52%の距離L3(L3=0.52×LG)だけ、キャビティCVの樹脂流動方向下流側の端122から樹脂流動方向上流側へ離れた、軸方向位置ap3との間に、配置されると、より好適である。また、各小凸条部140の軸方向他方側の端縁部140ceは、それぞれ、軸方向一方側部分用キャビティ面121の軸方向全長L121の43%の距離L2(L2=0.43×L121)だけ、キャビティCVの樹脂流動方向下流側の端122から樹脂流動方向上流側へ離れた、軸方向位置ap2と、当該軸方向全長L121の85%の距離L3(L3=0.85×L121)だけ、キャビティCVの樹脂流動方向下流側の端121から樹脂流動方向上流側へ離れた、軸方向位置ap3との間に、配置されると、より好適である。
 このように、仮に各小凸条部140がキャビティCVの樹脂流動方向下流側(軸方向一方側)の端部近傍に配置される場合に比べて、比較的ゲートGに近く、ひいてはウェルド部Wが形成されにくい領域に、多数の小凸条部140が設けられることにより、樹脂部材200の強度低下を抑制しつつ、ウェルド樹脂の流動を積極的にウェルド交差方向(周方向)に向けられるので、ウェルド部Wの強度を向上できる。
 同様に、図8(a)の樹脂部材200では、各小凹条部240は、本体部MBの樹脂流動方向下流側(軸方向一方側)、かつ、本体部MBの樹脂流動方向下流側の端部よりも上流側に配置されていると、好適である。より具体的に、本例において各小凹条部240の樹脂流動方向上流側(軸方向他方側)の端縁部240ceは、それぞれ、ゲートGと本体部MBの軸方向一方側端(軸方向一方側端面222)との間の軸方向距離LG’の25%の距離L2’(L2’=0.25×LG’)だけ、本体部MBの樹脂流動方向下流側の端222から樹脂流動方向上流側へ離れた、軸方向位置ap2’と、当該軸方向距離LG’の52%の距離L3’(L3’=0.52×LG’)だけ、本体部MBの樹脂流動方向下流側の端222から樹脂流動方向上流側へ離れた、軸方向位置ap3’との間に、配置されると、より好適である。また、本例において各小凹条部240の軸方向他方側の端縁部240ceは、それぞれ、軸方向一方側部分221の軸方向全長L221の43%の距離L2’(L2’=0.43×L221)だけ、本体部MBの樹脂流動方向下流側の端222から樹脂流動方向上流側へ離れた、軸方向位置ap2’と、該軸方向全長L221の85%の距離L3’(L3’=0.85×L221)だけ、本体部MBの樹脂流動方向下流側の端222から樹脂流動方向上流側へ離れた、軸方向位置ap3’との間に、配置されると、より好適である。なお、上述のように、樹脂部材200において、樹脂流動方向は、樹脂部材200が有するゲートGの跡から特定できる。
 図3の金型100では、ウェルド延在方向(本例では軸方向)に互いに隣接する一対の小凸条部150、151どうし、160、161どうしが、ウェルド延在方向に重複していながらも、ウェルド延在方向に垂直な方向(本例では周方向)にずれて配置されている。
 この構成によれば、下流側の小凸条部列180の小凸条部150、160によって、上流側の小凸条部列181を通過した溶融樹脂を、より効果的にせき止めて、そのまま下流側の小凸条部列180を通過するのを抑制し、環状凹条部170を環状凹条部170に沿って通るよう促すことができる。よって、ウェルド部Wの形状のウェルド交差方向成分(周方向成分)や、ゲート間位置BGPの近傍ひいてはウェルド部Wの近傍での強化繊維Fの配向のウェルド交差方向成分(周方向成分)を増やすことができる。よって、ウェルド部Wの強度を向上できる。
 同様に、図8(a)に示すように、本例の樹脂部材200は、ウェルド延在方向(本例では軸方向)に互いに隣接する一対の小凹条部250、251どうし、260、261どうしが、ウェルド延在方向に重複していながらも、ウェルド延在方向に垂直な方向(本例では周方向)にずれて配置されている。
 図3の金型100において、小凸条部140は、その根元端面の外縁のうち、小突条部140の延在方向(本例では周方向)の少なくとも一方側(図の例では両側)の端縁部140ae、140beが、ウェルド延在方向(本例では軸方向)に対して非直角に交差する方向に延在しているとともに、ウェルド延在方向に垂直な方向(本例では周方向)に対して非直角に交差する方向に延在している。
 この構成によれば、図3及び図4に概略的に示すように、溶融樹脂が小凸条部140の手前でいったんせき止められて、それを迂回するように小凸条部140の延在方向(本例では周方向)の端部へ回ってから、小凸条部140より軸方向一方側へと進もうとする際、小凸条部140の延在方向端側の壁面140a、140bによって、樹脂の流動を、ウェルド延在方向に交差する方向へ、すなわち本例では周方向へ、流れるように効果的に促すことができる。これにより、ウェルド部Wの形状のウェルド交差方向成分(周方向成分)や、ゲート間位置BGPの近傍ひいてはウェルド部Wの近傍での強化繊維Fの配向のウェルド交差方向成分(周方向成分)を増やすことができる。よって、ウェルド部Wの強度を向上できる。
 同様に、図8の樹脂部材200において、小凹条部240は、その開口端面の外縁のうち、小凹条部240の延在方向(本例では周方向)の少なくとも一方側(図の例では両側)の端縁部240ae、240beが、ウェルド延在方向(本例では軸方向)に対して非直角に交差する方向に延在しているとともに、ウェルド延在方向に垂直な方向(本例では周方向)に対して非直角に交差する方向に延在している。
 図3及び図5に示すように、本例の金型100において、各小凸条部140は、その根元端面の外縁が平行四辺形状をなしている。そして、小凸条部140は、その根元端面の外縁のうち、小凸条部140の延在方向(本例では周方向)の両側の端縁部140ae、140beが、それぞれ、ウェルド延在方向(本例では軸方向)の一方側に向かうにつれて、ウェルド延在方向に垂直な方向(本例では周方向)の同じ側(第1側)に向かうように、延在(傾斜)している。いいかえれば、各小凸条部140の根元端面の外縁における小凸条部140の延在方向の両側の端縁部140ae、140beは、それぞれ、ウェルド延在方向一方側の部分(下流側部分)がそれぞれのウェルド延在方向他方側の部分(上流側部分)に対して、ウェルド延在方向に垂直な方向(本例では周方向)の同じ側(第1側)に、延在(傾斜)している。
 この構成によれば、溶融樹脂が小凸条部140の延在方向(本例では周方向)の端部の脇を通って、それより軸方向一方側へと進もうとする際、小凸条部140の延在方向端側の壁面140a、140bによって、樹脂の流動を、ウェルド延在方向に交差する方向へ、すなわち本例では周方向へ、流れるように効果的に促すことができる。これにより、ウェルド部Wの形状のウェルド交差方向成分(周方向成分)や、ゲート間位置BGPの近傍ひいてはウェルド部Wの近傍での強化繊維Fの配向のウェルド交差方向成分(周方向成分)を増やすことができる。よって、ウェルド部Wの強度を向上できる。
 同様に、図8(a)の樹脂部材200において、各小凹条部240は、その開口端面の外縁が平行四辺形状をなしている。そして、小凹条部240は、その開口端面の外縁のうち、小凹条部240の延在方向(本例では周方向)の両側の端縁部240ae、240beが、それぞれ、ウェルド延在方向(本例では軸方向)の一方側に向かうにつれて、ウェルド延在方向に垂直な方向(本例では周方向)の同じ側(第1側)に向かうように、延在(傾斜)している。いいかえれば、各小凹条部240の開口端面の外縁における小凹条部240の延在方向(本例では周方向)の両側の端縁部240ae、240beは、それぞれ、ウェルド延在方向一方側の部分(下流側部分)がそれぞれのウェルド延在方向他方側の部分(上流側部分)に対して、ウェルド延在方向に垂直な方向(本例では周方向)の同じ側(第1側)に、延在(傾斜)している。
 図3の金型100では、ウェルド延在方向(本例では軸方向)に互いに隣接する一対の小凸条部150、151どうし、160、161どうしを観たときに、ウェルド延在方向の一方側(下流側、軸方向一方側)の小凸条部150、160が、ウェルド延在方向の他方側(上流側、軸方向他方側)の小凸条部151、161に対して、ウェルド延在方向に垂直な方向(本例では周方向)の両側のうち、各小凸条部140の根元端面の外縁における小凸条部140の延在方向(本例では周方向)の両側の端縁部140ae、140beのウェルド延在方向一方側部分(下流側部分)がそれぞれのウェルド延在方向他方側部分(上流側部分)に対して傾斜した側と同じ側(第1側)に、ずれて配置されている。
 この構成によれば、下流側の小凸条部列180の小凸条部150、160によって、上流側の小凸条部列181を通過した溶融樹脂をせき止めて、環状凹条部170を環状凹条部170に沿って通るよう促す機能を、より効果的に発揮させることができる。
 同様に、図8(a)の樹脂部材200では、ウェルド延在方向(本例では軸方向)に互いに隣接する一対の小凹条部250、251どうし、260、261どうしを観たときに、ウェルド延在方向の一方側(下流側、軸方向一方側)の小凹条部250、260が、ウェルド延在方向の他方側(上流側、軸方向他方側)の小凹条部251、261に対して、ウェルド延在方向に垂直な方向(本例では周方向)の両側のうち、各小凹条部240の開口端面の外縁における小凹条部240の延在方向(本例では周方向)の両側の端縁部240ae、240beのウェルド延在方向一方側部分(下流側部分)がそれぞれのウェルド延在方向他方側部分(上流側部分)に対して傾斜した側と同じ側(第1側)に、ずれて配置されている。
 図3及び図4に示すように、本例の金型100では、各小凸条部140の延在長さ(本例では周方向長さ)が、非均一である。より具体的には、小凸条部列180が、延在長さ(本例では周方向長さ)l150、l160の異なる複数種類(図の例では2種類)の小凸条部150、160を有している。そして、そのうち、最も長い小凸条部150が、ゲート位置GPと重複する位置(周方向位置)に配置されており、それより短い小凸条部160が、ゲート位置GPと重複しない位置(周方向位置)に配置されている。より具体的に本例では、最も短い小凸条部160が、ゲート間位置BGP(ひいてはウェルド部W)と重複する位置(周方向位置)に、配置されている。小凸条部列181も同様であるので、その説明を省略する。
 ゲート位置GPは、もともと樹脂部材200において最も強度が高いところであることから、そこに最も長い小凸条部150を配置し、ひいてはそこに最も長い小凹条部250を成形させることで、樹脂部材200の強度低下を極力抑制できる。また、逆に、ゲート間位置BGP(ひいてはウェルド部W)は、もともと樹脂部材200において最も強度が低下しやすいところであることから、そこに比較的短い小凸条部160を配置し、ひいてはそこに比較的短い小凹条部260が成形されるようにすることで、樹脂部材200の強度低下を抑制できる。
 同様に、図8(a)の樹脂部材200では、各小凹条部240の延在長さ(本例では周方向長さ)が、非均一である。より具体的には、小凹条部列280が、延在長さ(本例では周方向長さ)の異なる複数種類(図の例では2種類)の小凹条部250、260を有している。そして、そのうち、最も長い小凹条部250が、ゲート位置GPと重複する位置(周方向位置)に配置されており、それより短い小凹条部260が、ゲート位置GPと重複しない位置(周方向位置)に配置されている。より具体的に本例では、最も短い小凹条部260が、ゲート間位置BGP(ひいてはウェルド部W)と重複する位置(周方向位置)に、配置されている。小小凹条部列281も同様であるので、その説明を省略する。
 図4に示すように、本例の金型100では、小凸条部列180における各小凸条部150、160のうち、ゲート位置GPと重複する位置(周方向位置)に配置された小凸条部150、すなわち本例では最も長い小凸条部150は、その延在方向(本例では周方向)の少なくとも一方側(図の例では両側)の壁面140a、140bが、小凸条部150の延在方向のそれぞれの対応する側に向かうにつれて、連続的又は段階的に、小凸条部150の根元端面に向かうように(すなわち小凸条部150の高さが減少するように)、延在している。より具体的に、本例では、小凸条部150は、その延在方向(本例では周方向)の少なくとも一方側(図の例では両側)の壁面140a、140bが、小凸条部150の延在方向のそれぞれの対応する側に向かうにつれて、連続的に、小凸条部150の根元端面に向かうように(すなわち小凸条部150の高さが減少するように)、まっすぐに延在(傾斜)しており、すなわち、テーパ状に構成されている。図の例では、ゲート間位置BGP(ひいてはウェルド部W)と重複する位置(周方向位置)に配置された小凸条部160、すなわち本例では短いほうの小凸条部160は、そのように構成されていないが、そのように構成されてもよい。なお、図の例では、ゲート間位置BGP(ひいてはウェルド部W)と重複する位置(周方向位置)に配置された小凸条部160は、その延在方向(本例では周方向)の少なくとも一方側(図の例では両側)の壁面140a、140bが、小凸条部160の延在方向の中心側に向かうにつれて、連続的又は段階的に、小凸条部160の根元端面に向かうように、延在している。
 この構成によれば、仮に例えば小凸条部150の延在方向(本例では周方向)の両側の壁面140a、140bが小凸条部150の根元端面に垂直である場合に比べて、小凸条部140による、樹脂の流動を、ウェルド延在方向に交差する方向の同じ側、すなわち本例では周方向の同じ側へ流れるよう促す機能をより効果的に発揮させられるとともに、成形品である樹脂部材200の強度をより高めることができ、また、離型時において金型100の小凸条部150を樹脂部材200の小凹条部240から抜き易くなる。また、特に、最も長い小凸条部150は、短い小凸条部160に比べて、樹脂部材200の強度を低下させやすいので、この構成によって、樹脂部材200の強度低下を抑制できる。
 同様に、図8(b)に示すように、本例の樹脂部材200では、小凹条部列280における各小凹条部250、260のうち、ゲート位置GPと重複する位置(周方向位置)に配置された小凹条部250、すなわち本例では最も長い小凹条部250は、その延在方向(本例では周方向)の少なくとも一方側(図の例では両側)の壁面240a、240bが、小凹条部250の延在方向のそれぞれの対応する側に向かうにつれて、連続的又は段階的に、小凹条部250の開口端面に向かうように(すなわち小凹条部250の深さが減少するように)、延在している。より具体的に、本例では、小凹条部250は、その延在方向(本例では周方向)の少なくとも一方側(図の例では両側)の壁面240a、240bが、小凹条部250の延在方向のそれぞれの対応する側に向かうにつれて、連続的に、小凹条部250の開口端面に向かうように(すなわち小凹条部250の深さが減少するように)、まっすぐに延在(傾斜)しており、すなわち、テーパ状に構成されている。図の例では、ゲート間位置BGP(ひいてはウェルド部W)と重複する位置(周方向位置)に配置された小凹条部260、すなわち本例では短いほうの小凹条部260は、そのように構成されていないが、そのように構成されてもよい。なお、図の例では、ゲート間位置BGP(ひいてはウェルド部W)と重複する位置(周方向位置)に配置された小凹条部260は、その延在方向(本例では周方向)の少なくとも一方側(図の例では両側)の壁面240a、240bが、小凹条部260の延在方向の中心側に向かうにつれて、連続的又は段階的に、小凹条部260の開口端面に向かうように、延在している。
 図4に示すように、本例の金型100において、小凸条部140の高さが最大となる位置で小凸条部140の根元端面に垂直な方向(径方向)に沿って測ったときの小凸条部140の高さh140は、当該位置で小凸条部140の根元端面に垂直な方向(径方向)に沿って測ったときのキャビティCVの厚さeの25%以上であると、好適である。これにより、小凸条部140を十分に高くして、小凸条部140による樹脂流動の案内機能を効果的に発揮させることができる。
 また、本例の金型100において、小凸条部140の高さが最大となる位置で小凸条部140の根元端面に垂直な方向(径方向)に沿って測ったときの小凸条部140の高さh140は、当該位置で小凸条部140の根元端面に垂直な方向(径方向)に沿って測ったときのキャビティCVの厚さeの50%以下であると、好適である。これにより、小凸条部140によって成形される小凹条部240の深さが深くなるのを抑制し、樹脂部材200の強度が低下するのを抑制できる。
 ここで、径方向に沿って測ったときの「キャビティCVの厚さe」は、キャビティCVのなす円筒形状の周壁の厚さに相当し、本例のようにキャビティCVの内周側にめねじ用キャビティ面123が設けられている場合、めねじ用キャビティ面123の最も外周側の位置を下端とし、また、環状凸条部130の根元端面(環状凸条部130の軸方向一方側に隣接する軸方向一方側部分用キャビティ面121からの延長面)の位置を上端として、下端から上端までの距離を測定した長さである。
 同様に、図8(b)に示すように、本例の樹脂部材200において、小凹条部240の深さが最大となる位置で小凹条部240の開口端面に垂直な方向(径方向)に沿って測ったときの、小凹条部240の深さd240は、当該位置で小凹条部240の開口端面に垂直な方向(径方向)に沿って測ったときの本体部MBの厚さe’の25%以上であると、好適である。
 また、本例の樹脂部材200において、小凹条部240の深さが最大となる位置で小凹条部240の開口端面に垂直な方向(径方向)に沿って測ったときの、小凹条部240の深さd240は、当該位置で小凹条部240の開口端面に垂直な方向(径方向)に沿って測ったときの本体部MBの厚さe’の50%以下であると、好適である。 ここで、径方向に沿って測ったときの、「本体部MBの厚さe’」は、本体部MBのなす円筒形状の周壁の厚さに相当し、本例のように本体部MBの内周側にめねじ223が設けられている場合、めねじ223の最も外周側の位置を下端とし、また、環状凹条部230の開口端面(環状凹条部230の軸方向一方側に隣接する軸方向一方側部分221の外周面からの延長面)の位置を上端として、下端から上端までの距離を測定した長さである。
 金型100は、キャビティ面(より具体的に本例では軸方向一方側部分用キャビティ面121)に、小凸条部列180、181を1列のみ、あるいは3列以上有していてもよい。ただし、成形品である樹脂部材200の強度確保の観点からは、小凸条部列180、181を2列以下のみ有するほうがよい。
 同様に、樹脂部材200は、外周面(より具体的に本例では軸方向一方側部分221の外周面)に、小凹条部列280、281を1列のみ、あるいは3列以上有していてもよいが、小凹条部列280、281を2列以下のみ有するほうがよい。
 なお、金型100は、キャビティCVがめねじ223を成形するように構成されていなくてもよく、その場合、要求されるウェルド部Wの強度はさほど高くなくなる場合がある。ただし、金型100は、本例のように、キャビティCVが、円筒状部材である本体部MBの軸方向の少なくともいずれか一方側の内周面にめねじ223を成形するように構成されていてもよく、その場合でも、ウェルド部の強度を十分に確保できるものである。
 同様に、樹脂部材200は、円筒状部材である本体部MBがめねじ223を有していなくてもよく、あるいは、本例のように本体部MBの軸方向の少なくともいずれか一方側の内周面にめねじを有していてもよい。
 〔第2実施形態〕
 図10~図16を参照しながら、本発明の第2実施形態について、第1実施形態と異なる点を中心に、説明する。図10~図13は、本実施形態の金型100を示している。図14~図16は、本実施形態の樹脂部材200を示している。
 第2実施形態は、第1実施形態と同様に、金型100が、それぞれ複数の小凸条部140から構成された小凸状部列180、小凸状部列181と、小凸状部列180及び小凸状部列181どうしの間の環状凹条部170とを、有しており、また、樹脂部材200が、それぞれ複数の小凹条部240から構成された小凹条部列280、小凹条部列281と、小凹条部列280及び小凹条部列281どうしの間の環状凸条部270とを、有している。小凸条部140、小凸状部列180、小凸状部列181、環状凹条部170、小凹条部240、小凹条部列280、小凹条部列281、環状凸条部270の構成については、第1実施形態と同様なので、その説明を省略する。
 図10及び図12に示すように、本例の金型100は、トルク入力部分用キャビティ面120よりも樹脂流動方向下流側である軸方向一方側に、すなわち軸方向一方側部分用キャビティ面121に、周方向に延在するとともにキャビティCVの内側へ突出する環状凸条部130を有している。環状凸条部130は、樹脂部材200における環状凹条部230を成形するように構成されている。本例において、環状凸条部130は、周方向に連続して延在している。
 この構成によれば、ゲートGから射出された溶融樹脂は、少し軸方向一方側に移動した後、環状凸条部130の手前でいったんせき止められて、樹脂の流動が乱されることにより流動がウェルド交差方向(特に周方向)へ流れるように均一化される。これにより、そこでの樹脂どうしの界面が低減するとともに、樹脂内の強化繊維Fの配向もウェルド交差方向(特に周方向)へ向くように均一化される。そして、樹脂は、環状凸条部130を乗り越えた後、流動が均一化された状態を保ったまま、軸方向一方側へと進む。よって、環状凸条部130から軸方向一方側端面用キャビティ面122までの領域で、ウェルド部Wの形成を抑制できるとともに、強化繊維Fの配向が軸方向に交差する向きひいてはウェルド交差方向になる割合を高めることができる。よって、ウェルド部Wの強度を向上できる。環状凸条部130を軸方向一方側部分用キャビティ面121に配置しているのは、上述したように、トルク入力部分用キャビティ面120の内側のキャビティCV内ではウェルド部Wが形成されにくいのに対し、軸方向一方側部分用キャビティ面121の内側のキャビティCV内ではウェルド部Wが形成されやすいからである。
 同様に、図14に示すように、本例の樹脂部材200は、トルク入力部分220よりも樹脂流動方向下流側である軸方向一方側に、すなわち軸方向一方側部分221の外周面に、周方向に延在する環状凹条部230を有している。本例において、環状凹条部230は、周方向に連続して延在している。なお、樹脂部材200において、樹脂流動方向は、上述のように、樹脂部材200の有するゲートGの跡から特定できる。
 図11に示すように、本例の金型100において、径方向に沿って測ったときの環状凸条部130の高さh130は、環状凸条部130の高さh130を測った位置と同じ位置で径方向に沿って測ったときのキャビティCVの厚さeの25%以上であると、好適である。これにより、環状凸条部130を十分に高くして、環状凸条部130による樹脂流動の均一化の機能を効果的に発揮させることができる。
 また、本例の金型100において、径方向に沿って測ったときの環状凸条部130の高さh130は、環状凸条部130の高さh130を測った位置と同じ位置で径方向に沿って測ったときのキャビティCVの厚さeの50%以下であると、好適である。これにより、環状凸条部130によって成形される環状凹条部230の深さが深くなるのを抑制し、樹脂部材200の強度が低下するのを抑制できる。
 同様に、図15に示すように、本例の樹脂部材200において、径方向に沿って測ったときの環状凹条部230の深さd230は、環状凹条部230の深さd230を測った位置と同じ位置で径方向に沿って測ったときの本体部MBの厚さe’の25%以上であると、好適である。
 また、本例の樹脂部材200において、径方向に沿って測ったときの環状凹条部230の深さd230は、環状凹条部230の深さd230を測った位置と同じ位置で径方向に沿って測ったときの本体部MBの厚さe’の50%以下であると、好適である。
 図11に示すように、本例の金型100において、径方向に沿って測ったときの環状凸条部130の高さh130は、軸方向に沿って測ったときの環状凸条部130の幅w130よりも、大きい。これにより、環状凸条部130を高くして、環状凸条部130による樹脂流動の均一化の機能を効果的に発揮させることができるとともに、環状凸条部130によって成形される環状凹条部230の幅が広くなるのを抑制し、樹脂部材200の強度が低下するのを抑制できる。
 同様に、図15に示すように、本例の樹脂部材200において、所定位置で径方向に沿って測ったときの環状凹条部230の深さd230は、軸方向に沿って測ったときの環状凹条部230の幅w230よりも、大きい。
 図10及び図11に示すように、本例の金型100において、環状凸条部130は、トルク入力部分用キャビティ面120に対して、樹脂流動方向下流側である軸方向一方側に、離間した位置に配置されており、トルク入力部分用キャビティ面120と環状凸条部130との間の軸方向一方側部分用キャビティ面121によって、周方向に連続して延在するとともにキャビティCVの外側へ窪んだ環状凹条部131が構成されている。環状凹条部131は、樹脂部材200における環状凸条部231を成形するように構成されている。
 この構成によれば、図11に概略的に示すように、ゲートGから射出された溶融樹脂は、トルク入力部分用キャビティ面120に沿って移動してから環状凹条部131のところでいったん外周側へ移動し、それから環状凸条部130の手前でせき止められるので、仮に環状凹条部131が無い場合に比べて、環状凸条部130によって樹脂をせき止める効果が高まり、ひいては、環状凸条部130による樹脂流動の均一化の機能を効果的に発揮させることができる。
 同様に、図14及び図15に示すように、本例の樹脂部材200において、環状凹条部230は、トルク入力部分220に対して、樹脂流動方向下流側である軸方向一方側に、離間した位置に配置されており、トルク入力部分220と環状凹条部230との間の軸方向一方側部分221の外周面によって、周方向に連続して延在する環状凸条部231が構成されている。
 図11に示すように、本例の金型100において、軸方向に沿って測ったときの環状凹条部131の幅w131は、軸方向に沿って測ったときの環状凸条部130の幅w130以下であると、好適である。
 これによって、環状凸条部130を十分にトルク入力部分220やゲートGに近い位置(軸方向他方側)に配置することにより、環状凸条部130によって樹脂をせき止める機能を効果的に発揮させることができるとともに、樹脂部材200において特に強度が要求される軸方向一方側端面222の近傍で強度が低下するのを抑制できる。
 同様に、図15に示すように、本例の樹脂部材200において、軸方向に沿って測ったときの環状凸条部231の幅w231は、軸方向に沿って測ったときの環状凹条部230の幅w230以下であると、好適である。
 なお、金型100は、本例に限られず、環状凸条部130を、軸方向一方側部分用キャビティ面121における任意の位置に、任意の本数(1本又は複数本)だけ有してよい。また、金型100は、環状凸条部130を2本以上有してもよいが、成形品である樹脂部材200の強度確保の観点からは、環状凸条部130を1本のみ有するほうがよい。
 同様に、樹脂部材200は、本例に限られず、環状凹条部230を、軸方向一方側部分221の外周面における任意の位置に、任意の本数(1本又は複数本)だけ有してよい。また、樹脂部材200は、環状凹条部230を2本以上有してもよいが、環状凹条部230を1本のみ有するほうがよい。
 図10及び図12に示すように、本実施形態の金型100は、キャビティCVに開口する凹部である1つ又は複数(本例では3つ)の樹脂溜まり110を、さらに有している。外型部101は、樹脂溜まり110を有しており、樹脂溜まり110は、軸方向一方側端面用キャビティ面122に開口している。樹脂溜まり110は、キャビティCV内に溶融樹脂が射出される間、キャビティCV内の溶融樹脂の一部が流れ込んで溜まる部分であり、樹脂部材200における突起部210を成形するものである。樹脂溜まり110は、ウェルド部Wの強度を向上させるために設けられている。成形工程では、キャビティCVによって本体部MBが成形されるとともに、樹脂溜まり110によって突起部210が成形される。成形工程後、樹脂部材200の突起部210を、切断する等して除去してもよい(除去工程)。
 図14に示すように、本実施形態の樹脂部材200は、本体部MBに連結された1つ又は複数(本例では3つ)の突起部210を、さらに有している。図14に示すように、成形工程後かつ除去工程前の樹脂部材200の本体部MBの軸方向一方側の端面222には、突起部210が連結されている。成形工程後に樹脂部材200から突起部210が除去された場合、本体部MBの軸方向一方側の端面222には、突起部210が除去された跡211(図示せず)が残る場合がある。
 図13(b)に示すように、本例の金型100においては、樹脂溜まり110のキャビティCVへの開口端面110S(樹脂溜まり110とキャビティCVとの境界面)は、非正円形状に形成されており、より具体的に本例では、一方向の長さがそれに垂直な方向の長さよりも長い平行四辺形状に形成されている。
 そして、樹脂溜まり110のキャビティCVへの開口端面110Sに沿った第1断面において、キャビティCVの幅中心線CL12の垂線n12に沿って測ったときの、樹脂溜まり110の幅中心線CL11とキャビティCVの幅中心線CL12との間の距離CLDは、キャビティCVの幅中心線CL12に沿って、常に一定ではなく、少なくとも一部分で変化するようにされている。
 ここで、開口端面110Sに沿った「第1断面」とは、開口端面110Sを含む仮想平面に沿った金型100の断面である。本例において、第1断面は、軸直方向に平行な断面である。
 第1断面における樹脂溜まり110の「幅中心線CL11」とは、第1断面における開口端面110Sの延在方向(長手方向)に垂直な方向を幅方向としたとき、開口端面110Sの幅方向の中心を通る線をいい、本例では、開口端面110Sのなす平行四辺形状の互いに対向する一対の長辺からの等距離線である。また、第1断面における樹脂溜まり110の幅中心線CL11の「垂線n11」とは、樹脂溜まり110の幅中心線CL11上の任意の点での接線に対して垂直であるとともに、該点を通る、線である。
 第1断面におけるキャビティCVの「幅中心線CL12」とは、第1断面におけるキャビティCVの延在方向(長手方向)に垂直な方向を幅方向としたときのキャビティCVの幅方向の中心を通る線をいい、本例では、第1断面におけるキャビティCVのなす円環形状の外周縁と内周縁からの等距離線である。また、第1断面におけるキャビティCVの幅中心線CL12の「垂線n12」とは、キャビティCVの幅中心線CL12上の任意の点での接線に対して垂直であるとともに、該点を通る、線である。
 これにより、図10に概略的に示すように、射出中において溶融樹脂が樹脂溜まり110に流れ込む直前に、軸直方向断面におけるキャビティCVの幅方向(キャビティCVの延在方向に垂直な方向。キャビティCVの厚さ方向。)の広い範囲において、樹脂の流れが乱れて、樹脂が3次元的に様々な方向に流れる。これにより、ゲート間位置BGPの近傍に形成されるウェルド部Wの形状が、軸方向にまっすぐ延びた形状でなく、例えば3次元的に観てぼやけた形状、傾斜した形状、あるいは曲がった形状になる等、3次元的に複雑に乱れた形状となる。よって、ウェルド部Wの強度を向上できる。また、ゲート間位置BGPの近傍、ひいてはウェルド部Wの近傍では、軸直方向断面におけるキャビティCVの幅方向の広い範囲において、樹脂内の強化繊維Fの向きが乱れて、強化繊維Fが3次元的に様々な方向に配向されるので、軸方向に交差する向き、ひいてはウェルド交差方向に、配向される強化繊維Fの割合が高くなる。よって、これによっても、ウェルド部Wの強度を向上できる。
 なお、仮に、第1断面において、キャビティCVの幅中心線CL12の垂線n12に沿って測ったときの、樹脂溜まり110の幅中心線CL11とキャビティCVの幅中心線CL12との間の距離CLDが、キャビティCVの幅中心線CL12に沿って、常に一定である場合、ゲート間位置BGPの近傍ひいてはウェルド部Wの近傍において、樹脂の流動方向や強化繊維Fの配向の向きを、軸直方向断面におけるキャビティCVの幅方向においてさほど広範囲に、また、さほど複雑に、乱すことができない。
 同様に、図16(b)に示すように、突起部210の本体部MBへの連結端面210S(突起部210と本体部MBとの境界面)は、非正円形状に形成されており、より具体的に本例では、一方向の長さがそれに垂直な方向の長さよりも長い平行四辺形状に形成されている。
 そして、突起部210の本体部MBへの連結端面210Sに沿った第1断面において、本体部MBの幅中心線CL22の垂線n22に沿って測ったときの、突起部210の幅中心線CL21と本体部MBの幅中心線CL22との間の距離CLD’が、本体部MBの幅中心線CL22に沿って、少なくとも一部分で変化する(図の例では常に変化する)ようにされている。
 ここで、連結端面210Sに沿った「第1断面」とは、連結端面210Sを含む仮想平面に沿った樹脂部材200の断面である。本例において、第1断面は、軸直方向に平行な断面である。
 第1断面における突起部210の「幅中心線CL21」とは、第1断面における連結端面210Sの延在方向(長手方向)に垂直な方向を幅方向としたとき、連結端面210Sの幅方向の中心を通る線をいい、本例では、連結端面210Sのなす平行四辺形状の互いに対向する一対の長辺からの等距離線である。
 第1断面における本体部MBの「幅中心線CL22」とは、第1断面における本体部MBの延在方向(長手方向)に垂直な方向を幅方向としたときの本体部MBの幅方向の中心を通る線をいい、本例では、第1断面における本体部MBのなす円環形状の外周縁と内周縁からの等距離線である。また、第1断面における本体部MBの幅中心線CL22の「垂線n22」とは、本例のように本体部MBの幅中心線CL22が非直線である場合、本体部MBの幅中心線CL22上の任意の点での接線に対して垂直であるとともに、該点を通る、線である。
 なお、図13の例では、金型100が備える3つの樹脂溜まり110が互いに同様の構成を有しており、3つの樹脂溜まり110を一体として観たときの構成が、キャビティCVの中心軸線Oの周りを120°(360°/3)回転させると自らと重なるような120度対称(3回対称ともいう)となるようにされている。本例に限らず、金型100がn個(n≧2)の樹脂溜まり110を備える場合、これらn個の樹脂溜まり110を一体として観たときの構成が、キャビティCVの中心軸線Oの周りを(360/n)°回転させると自らと重なるような(360/n)度対称(n回対称ともいう)となるようにされてもよい。あるいは、金型100が備える複数の樹脂溜まり110が互いに異なる構成を有していてもよい。
 同様に、図16の例では、樹脂部材200が備える3つの突起部210が互いに同様の構成を有しており、3つの突起部210を一体として観たときの構成が、本体部MBの中心軸線Oの周りを120°回転させると自らと重なるような120度対称(3回対称ともいう)となるようにされている。本例に限らず、樹脂部材200がn個(n≧2)の突起部210を備える場合、これらn個の突起部210を一体として観たときの構成が、本体部MBの中心軸線Oの周りを(360/n)°回転させると自らと重なるような(360/n)度対称(n回対称ともいう)となるようにされてもよい。あるいは、樹脂部材200が備える複数の突起部210が互いに異なる構成を有していてもよい。
 図13の金型100では、樹脂溜まり110のキャビティCVへの開口端面110Sに沿った第1断面において、樹脂溜まり110の幅中心線CL11は、キャビティCVの幅中心線CL12に対して、非直角に交差する方向に延びている。なお、本例では、第1断面において、樹脂溜まり110の幅中心線CL11は直線状であり、キャビティCVの幅中心線CL12は非直線状(円状)である。
 ここで、第1断面において樹脂溜まり110の幅中心線CL11がキャビティCVの幅中心線CL12に対して「非直角に交差する方向に延びている」とは、第1断面において、樹脂溜まり110の幅中心線CL11(樹脂溜まり110の幅中心線CL11がキャビティCVの幅中心線CL12と交差していない場合は、樹脂溜まり110の幅中心線CL11の延長線)とキャビティCVの幅中心線CL12との交点での、樹脂溜まり110の幅中心線CL11の接線と、その交点でのキャビティCVの幅中心線CL12の接線との、小さいほうの交差角θが、0°超90°未満であることを指す。
 この構成によれば、仮に、樹脂溜まり110の幅中心線CL11が、キャビティCVの幅中心線CL12に対して非直角に交差する方向に延びていない場合、すなわち、例えば、樹脂溜まり110の幅中心線CL11が、キャビティCVの幅中心線CL12に沿う方向に延びていたり、あるいは、キャビティCVの幅中心線CL12に垂直な方向(本例では径方向)に延びていたりする場合に比べて、ウェルド部Wの形状や、ゲート間位置BGPの近傍ひいてはウェルド部Wの近傍における強化繊維Fの配向(延在方向)を、より広範囲に、また、より複雑に、乱すことができる。ひいては、ウェルド部Wの強度を向上できる。
 同様に、図16の樹脂部材200では、突起部210の本体部MBへの連結端面210Sに沿った第1断面において、突起部210の幅中心線CL21は、本体部MBの幅中心線CL22に対して、非直角に交差する方向に延びている。なお、本例では、第1断面において、突起部210の幅中心線CL21は直線状であり、本体部MBの幅中心線CL22は非直線状(円状)である。
 ここで、第1断面において突起部210の幅中心線CL21が本体部MBの幅中心線CL22に対して「非直角に交差する方向に延びている」とは、第1断面において、突起部210の幅中心線CL21(突起部210の幅中心線CL21が本体部MBの幅中心線CL22と交差していない場合は、突起部210の幅中心線CL21の延長線)と本体部MBの幅中心線CL22との交点での、突起部210の幅中心線CL21の接線と、その交点での本体部MBの幅中心線CL22の接線との、小さいほうの交差角θ’が、0°超90°未満であることを指す。
 図13に戻り、ウェルド部Wの強度向上の観点からは、金型100は、第1断面において、樹脂溜まり110の幅中心線CL11(樹脂溜まり110の幅中心線CL11がキャビティCVの幅中心線CL12と交差していない場合は、樹脂溜まり110の幅中心線CL11の延長線)とキャビティCVの幅中心線CL12との交点での、樹脂溜まり110の幅中心線CL11の接線と、その交点でのキャビティCVの幅中心線CL12の接線との、小さいほうの交差角θが、10°~30°であると、好適である。
 同様に、図16を参照し、樹脂部材200は、第1断面において、突起部210の幅中心線CL21(突起部210の幅中心線CL21が本体部MBの幅中心線CL22と交差していない場合は、突起部210の幅中心線CL21の延長線)と本体部MBの幅中心線CL22との交点での、突起部210の幅中心線CL21の接線と、その交点での本体部MBの幅中心線CL22の接線との、小さいほうの交差角θ’が、10°~30°であると、好適である。
 図13の金型100では、第1断面における樹脂溜まり110の幅中心線CL11が、第1断面におけるキャビティCVの幅中心線CL12に対して、非直角に交差する方向に延びているだけでなく、実際に、非直角に交差している。
 この構成によれば、実際に交差していない場合に比べて、ウェルド部Wの形状や、ゲート間位置BGPの近傍ひいてはウェルド部Wの近傍における強化繊維Fの配向(延在方向)を、より広範囲に、また、より複雑に、乱すことができる。ひいては、ウェルド部Wの強度を向上できる。
 同様に、図16の樹脂部材200では、第1断面における突起部210の幅中心線CL21が、第1断面における本体部MBの幅中心線CL22に対して、非直角に交差する方向に延びているだけでなく、実際に、非直角に交差している。
 図13の金型100において、第1断面における樹脂溜まり110の幅中心線CL11は、キャビティCVの中心軸線Oからの距離が、全長にわたって一定ではなく、該幅中心線CL11に沿って変化する部分を有している。より具体的に、本例では、第1断面における樹脂溜まり110の幅中心線CL11は、キャビティCVの中心軸線Oからの距離が、全長にわたって、該幅中心線CL11に沿って変化している。
 この構成によって、ウェルド部Wの形状や、ゲート間位置BGPの近傍ひいてはウェルド部Wの近傍における強化繊維Fの配向(延在方向)を、より広範囲に、また、より複雑に、乱すことができる。ひいては、ウェルド部Wの強度を向上できる。
 同様に、図16の樹脂部材200において、第1断面における突起部210の幅中心線CL21は、本体部MBの中心軸線Oからの距離が、全長にわたって一定ではなく、該幅中心線CL21に沿って変化する部分を有している。より具体的に、本例では、第1断面における突起部210の幅中心線CL21は、本体部MBの中心軸線Oからの距離が、全長にわたって、該幅中心線CL21に沿って変化している。
 図13の金型100において、第1断面における樹脂溜まり110の幅中心線CL11の一方側の端部は、該幅中心線CL11の他方側の端部よりも、キャビティCVの中心軸線Oからの距離が長い。より具体的に、本例では、第1断面における樹脂溜まり110の幅中心線CL11は、キャビティCVの中心軸線Oからの距離が、全長にわたって、幅中心線CL11の一方側の端部から他方側の端部に向かうにつれて徐々に長くなる。
 この構成によって、ウェルド部Wの形状や、ゲート間位置BGPの近傍ひいてはウェルド部Wの近傍における強化繊維Fの配向を、より広範囲に、また、より複雑に、乱すことができる。ひいては、ウェルド部Wの強度を向上できる。
 同様に、図16の樹脂部材200において、第1断面における突起部210の幅中心線CL21の一方側の端部は、該幅中心線CL21の他方側の端部よりも、本体部MBの中心軸線Oからの距離が長い。より具体的に、本例では、第1断面における突起部210の幅中心線CL21は、本体部MBの中心軸線Oからの距離が、全長にわたって、幅中心線CL21の一方側の端部から他方側の端部に向かうにつれて徐々に長くなる。
 図13の金型100において、樹脂溜まり110のキャビティCVへの開口端面110Sの外縁は、非直角の対角を有する平行四辺形状に形成されている。
 この構成によって、ウェルド部Wの形状や、ゲート間位置BGPの近傍ひいてはウェルド部Wの近傍における強化繊維Fの配向を、より広範囲に、また、より複雑に、乱すことができる。ひいては、ウェルド部Wの強度を向上できる。
 同様に、図16の樹脂部材200において、突起部210の本体部MBへの連結端面210Sの外縁は、非直角の対角を有する平行四辺形状に形成されている。
 図13の金型100において、樹脂溜まり110のキャビティCVへの開口端面110Sは、ゲート間位置BGPとは重複しておらず、ゲート間位置BGP(ひいてはウェルド部W)からずれた位置(角度位置)にある。
 この構成によれば、図5に概略的に示すように、射出中において樹脂溜まり110に流れ込む手前の溶融樹脂が、ゲート間位置BGPから離れて樹脂溜まり110に向かってに流れ込もうとする。これにより、ゲート間位置BGPの近傍ひいてはウェルド部Wの近傍において樹脂の流動が乱れるので、ウェルド部Wの形状や、ゲート間位置BGPの近傍ひいてはウェルド部Wの近傍における強化繊維Fの配向を、より広範囲に、また、より複雑に、乱すことができる。ひいては、ウェルド部Wの強度を向上できる。
 同様に、図16の樹脂部材200において、突起部210の本体部MBへの連結端面210Sは、ゲート間位置BGPとは重複しておらず、ゲート間位置BGP(ひいてはウェルド部W)からずれた位置(角度位置)にある。
 図13の金型100において、樹脂溜まり110のキャビティCVへの開口端面110Sは、ゲート位置GPとも重複しておらず、ゲート位置GPとゲート間位置BGPとの間の位置(角度位置)にある。
 この構成によれば、樹脂溜まり110の開口端面110Sがゲート間位置BGPから遠すぎないようになるので、ゲート間位置BGP近傍の溶融樹脂が樹脂溜まり110に向かってに流れ込もうとする流れを効果的に促進できる。
 同様に、図16の樹脂部材200において、突起部210の本体部MBへの連結端面210Sは、ゲート位置GPとも重複しておらず、ゲート位置GPとゲート間位置BGPとの間の位置(角度位置)にある。
 図12の金型100では、樹脂溜まり110が、軸方向一方側端面用キャビティ面122に開口している。また、樹脂溜まり110は、軸方向一方側に向かって延在しており、より具体的には、軸方向に延在している。すなわち、本例では、樹脂溜まり110の延在方向は、樹脂流動方向と同じである。ただし、樹脂溜まり110の延在方向は、軸方向に対して傾斜した方向でもよい。
 この構成により、仮に、樹脂溜まり110が外周面用キャビティ面(例えば軸方向一方側部分用キャビティ面121やトルク入力部分用キャビティ面120等)に開口し、径方向に延在している場合などに比べて、ウェルド部Wが特に形成されやすい、ゲートGから最も遠い領域、また、ウェルド部Wの強度が最も要求される領域である、軸方向一方側端部近傍において、効果的に樹脂の流動を乱して、ウェルド部Wの強度を向上させることができる。
 同様に、図16の樹脂部材200では、突起部210が、軸方向一方側端面222に連結している。また、突起部210は、軸方向一方側に向かって延在しており、より具体的には、軸方向に延在している。すなわち、本例では、突起部210の延在方向は、樹脂流動方向と同じである。ただし、突起部210の延在方向は、軸方向に対して傾斜した方向でもよい。
 図12及び図13の金型100において、樹脂溜まり110は、軸方向(本例では樹脂溜まり110の延在方向)に垂直な断面における断面積が、キャビティCVへの開口端面110Sで最も大きい。より具体的に、図の例において、樹脂溜まり110は、軸方向(本例では樹脂溜まり110の延在方向)に垂直な断面における断面積が、開口端面110S(根元)から先端部の手前まで一定であるが、先端部のみで先端に向かうにつれて徐々に小さくされている。
 この構成によれば、樹脂溜まり110による樹脂の流動を乱す効果を高めることができる。また、樹脂溜まり110の十分な容積を確保しつつ、離型時において外型部101を突起部210から抜きやすくすることができる。
 同様に、図16の樹脂部材200において、突起部210は、軸方向(本例では突起部210の延在方向)に垂直な断面における断面積が、本体部MBへの連結端面210Sで最も大きい。より具体的に、図の例において、突起部210は、軸方向(本例では突起部210の延在方向)に垂直な断面における断面積が、連結端面210S(根元)から先端部の手前まで一定であるが、先端部のみで先端に向かうにつれて徐々に小さくされている。
 金型100は、めねじ223を成形するように構成されている場合、本例のように、樹脂溜まり110が、円筒状部材である本体部MBの軸方向両側のうち、めねじ223が成形される側の端面222を成形するためのキャビティ面(本例では軸方向一方側端面用キャビティ面122)に、開口していると、好適である。
 この構成によれば、特に強度が要求されるめねじの周辺で、ウェルド部Wの強度を十分に確保できる。
 同様に、樹脂部材200は、めねじ223を有する場合、本例のように、突起部210が、円筒状部材である本体部MBの軸方向両側のうち、めねじ223を有する側の端面(本例では軸方向一方側端面222)に、連結していると、好適である。
 〔第3実施形態〕
 図17~図19を参照しながら、本発明の第3実施形態について、第2実施形態と異なる点を中心に、説明する。図17及び図18は、本実施形態の金型100を示している。図19は、本実施形態の樹脂部材200を示している。
 第3実施形態は、金型100の樹脂溜まり110の形状と樹脂部材200の突起部210の形状のみが、第2実施形態と異なる。金型100のキャビティCVの構成や樹脂溜まり110の配置、ならびに、樹脂部材200の本体部MBの構成や突起部210の配置は、第2実施形態と同様である。
 図17の金型100では、第2実施形態と同様、樹脂溜まり110が、軸方向一方側端面用キャビティ面122に開口している。また、樹脂溜まり110は、軸方向一方側に向かって延在しており、より具体的には、軸方向に延在している。一方、ゲートGは、キャビティCVの軸方向一方側に指向されており、溶融樹脂をキャビティCV内へ軸方向に沿って軸方向一方側に向かって射出するように構成されている。すなわち、本例では、樹脂溜まり110の延在方向は、ゲートGの指向方向ひいては樹脂流動方向とほぼ同じである。ただし、樹脂溜まり110の延在方向は、軸方向に対して傾斜した方向でもよい。
 また、図19の樹脂部材200では、第2実施形態と同様、突起部210が、軸方向一方側端面222に連結している。また、突起部210は、軸方向一方側に向かって延在しており、より具体的には、軸方向に延在している。すなわち、本例では、突起部210の延在方向は、ゲートGの指向方向ひいては樹脂流動方向とほぼ同じである。ただし、突起部210の延在方向は、軸方向に対して傾斜した方向でもよい。
 図17の金型100において、樹脂溜まり110は、その先端側部分(樹脂溜まり110の軸方向全長の半分の長さを持つ先端側の部分。)が、キャビティCVへの開口端面110Sに沿った第1断面における樹脂溜まり110の幅中心線CL11の中心点CL11cを通るような第1断面における樹脂溜まり110の幅中心線CL11の垂線n11を含むとともに第1断面に垂直な、第1仮想平面VP11に対して、非対称の形状を有する。そして、樹脂溜まり110は、その先端側部分で、第1仮想平面VP11の両側で体積が異なるものであり、すなわち、その先端側部分で、第1仮想平面VP11に対して一方側の部分の体積が、第1仮想平面VP11に対して他方側の部分の体積よりも大きい。
 これにより、射出中において、溶融樹脂の一部が樹脂溜まり110に流れ込む間、樹脂溜まり110内の樹脂の流動によって、樹脂溜まり110に流れ込む手前の樹脂の流動の乱れが促進される。よって、ウェルド部Wの形状や、ゲート間位置BGPの近傍ひいてはウェルド部Wの近傍における強化繊維Fの配向を、より広範囲に、また、より複雑に、乱すことができる。ひいては、ウェルド部Wの強度を向上できる。
 同様に、図19の樹脂部材200において、突起部210は、その先端側部分(突起部210の軸方向全長の半分の長さを持つ先端側の部分。)が、本体部MBへの連結端面210Sに沿った第1断面における突起部210の幅中心線CL21の中心点CL21cを通るような第1断面における突起部210の幅中心線CL21の垂線n21を含むとともに第1断面に垂直な、第1仮想平面VP21に対して、非対称の形状を有する。そして、突起部210は、その先端側部分で、第1仮想平面VP21の両側で体積が異なるものであり、すなわち、第1仮想平面VP21に対して一方側の部分の体積が、第1仮想平面VP21に対して他方側の部分の体積よりも大きい。
 本例の金型100は、図17(b)に示すように、樹脂溜まり110のキャビティCVへの開口端面110Sに沿った第1断面における樹脂溜まり110の幅中心線CL11は、キャビティCVの中心軸線Oからの距離が、全長にわたって一定であり、第1断面におけるキャビティCVの幅中心線CL12からの距離も、全長にわたって一定である。
 このような構成によっても、上述のように樹脂溜まり110の先端側部分が第1仮想平面VP11に対して非対称形状であることにより、ウェルド部Wの形状や、ゲート間位置BGPの近傍ひいてはウェルド部Wの近傍における強化繊維Fの配向を、乱すことができるのである。
 同様に、本例の樹脂部材200は、図19(b)に示すように、突起部210の本体部MBへの連結端面210Sに沿った第1断面における突起部210の幅中心線CL21は、本体部MBの中心軸線Oからの距離が、全長にわたって一定であり、第1断面における本体部MBの幅中心線CL22からの距離も、全長にわたって一定である。
 なお、図18に示すように、本例の金型100は、樹脂溜まり110の内周面が、内型部105の外周面によって区画されている。離型時においては、図6を参照して上述したのと同様に、外型部101が樹脂部材200から軸方向一方側へ外された後に、突起部210がまだ柔らかい間に、内型部105が回転されながら樹脂部材200から軸方向一方側へと引き抜かれる。よって、その後に得られる樹脂部材200の突起部210は、図19に示すものとは異なり、根元から先端に向かうにつれて外周側へ拡径するように延在する場合がある。
 図17の金型100では、複数(図の例では3つ)の樹脂溜まり110が設けられており、各樹脂溜まり110は、それぞれの第1仮想平面VP11に対して周方向の同じ側の部分の体積が、それぞれの第1仮想平面VP11に対して他方側の部分の体積よりも大きい。また、本例において、樹脂溜まり110は、その先端側部分で、キャビティCVの内周側に向かって突出する先端突出部110Pを有している。各樹脂溜まり110の先端突出部110Pは、それぞれの第1仮想平面VP11に対して周方向の同じ側に位置している。
 これにより、樹脂溜まり110による樹脂の流動を乱す効果を高めることができ、ひいては、ウェルド部Wの強度を向上できる。
 同様に、図19の樹脂部材200では、複数(図の例では3つ)の突起部210が設けられており、各突起部210は、それぞれの第1仮想平面VP21に対して周方向の同じ側の部分の体積が、それぞれの第1仮想平面VP21に対して他方側の部分の体積よりも大きい。また、本例において、突起部210は、その先端側部分で、本体部MBの内周側に向かって突出する先端突出部210Pを有している。各突起部210の先端突出部210Pは、それぞれの第1仮想平面VP21に対して周方向の同じ側に位置している。
 図17の金型100において、樹脂溜まり110は、その先端側部分で、第1断面における樹脂溜まり110の幅中心線CL11の垂線n11を含むとともに樹脂溜まり110の延在方向(本例では軸方向)に平行な、断面における断面積が、樹脂溜まり110の幅中心線CL11の全長にわたって一定ではなく、樹脂溜まり110の幅中心線CL11に沿って少なくとも一部分で変化するように構成されており、より具体的に、図の例では、樹脂溜まり110の幅中心線CL11に沿って常に変化するように構成されている。
 これにより、樹脂溜まり110による樹脂の流動を乱す効果を高めることができ、ひいては、ウェルド部Wの強度を向上できる。
 同様に、図19の樹脂部材200では、突起部210が、その先端側部分で、第1断面における突起部210の幅中心線CL21の垂線n21を含むとともに突起部210の延在方向(本例では軸方向)に平行な、断面における断面積が、突起部210の幅中心線CL21の全長にわたって一定ではなく、突起部210の幅中心線CL21に沿って少なくとも一部分で変化するように構成されており、より具体的に、図の例では、突起部210の幅中心線CL21に沿って常に変化するように構成されている。
 図17の金型100において、樹脂溜まり110は、その根元側部分(樹脂溜まり110の軸方向全長の半分の長さを持つ根元側の部分。)の体積よりも、その先端側部分の体積のほうが、大きい。より具体的に、図17の例において、樹脂溜まり110は、その軸方向全長にわたって、軸方向に垂直な断面における断面積が、軸方向に沿って開口端面110S(根元)から先端に向かうにつれて徐々に大きくされている。
 この構成によれば、樹脂溜まり110の先端側部分で容積を確保することで、樹脂溜まり110による樹脂流動を乱す機能を確保できるとともに、成形工程後の除去工程において、樹脂溜まり110によって成形された突起部210をその根元側で切断等により除去する作業がしやすくなる。
 同様に、図19の樹脂部材200では、突起部210が、その根元側部分(突起部210の軸方向全長の半分の長さを持つ根元側の部分。)の体積よりも、その先端側部分の体積のほうが、大きい。より具体的に、図19の例において、突起部210は、その軸方向全長にわたって、軸方向に垂直な断面における断面積が、軸方向に沿って連結端面210S(根元)から先端に向かうにつれて徐々に大きくされている。
 〔第4実施形態〕
 図20~図24を参照しながら、本発明の第4実施形態について、第1実施形態と異なる点を中心に、説明する。図20~図22は、本実施形態の金型100を示している。図23、図24は、本実施形態の樹脂部材200を示している。
 第4実施形態は、金型100の軸方向一方側部分用キャビティ面121の構成と樹脂部材200の軸方向一方側部分221の構成のみが、第1実施形態と異なる。第4実施形態は、第1実施形態と同様に、金型100が、それぞれ複数の小凸条部140から構成された小凸状部列180、小凸状部列181と、小凸状部列180及び小凸状部列181どうしの間の環状凹条部170とを、有しており、また、樹脂部材200が、それぞれ複数の小凹条部240から構成された小凹条部列280、小凹条部列281と、小凹条部列280及び小凹条部列281どうしの間の環状凸条部270とを、有している。小凸条部140、小凸状部列180、小凸状部列181、環状凹条部170、小凹条部240、小凹条部列280、小凹条部列281、環状凸条部270の構成については、第1実施形態と同様なので、その説明を省略する。
 図20及び図22に示すように、本例の金型100では、キャビティCVの樹脂流動方向下流側(本例では軸方向一方側)の端部近傍に、小凸条部140が配置されている。図の例では、キャビティCVの樹脂流動方向下流側(本例では軸方向一方側)の端部近傍に配置された複数本(具体的には3本)の小凸条部140が、互いから間隔を空けてウェルド延在方向と交差する方向(より具体的に本例では周方向)に配列されて、小凸条部列182(凸条部列)を構成している。ここで、「キャビティCVの樹脂流動方向下流側の端部近傍」とは、ゲートGとキャビティCVの樹脂流動方向下流側の端(本例では、軸方向一方側端、すなわち軸方向一方側端面用キャビティ面122)との間の樹脂流動方向距離(本例では軸方向距離)LGの35%の距離にわたって延在する、最も樹脂流動方向下流側の領域を指す。より具体的に、本例の各小凸条部140の樹脂流動方向上流側(軸方向他方側)の端縁部140ceは、ゲートGとキャビティCVの軸方向一方側端(軸方向一方側端面用キャビティ面122)との間の軸方向距離LGの23%の距離L1(L1=0.23×LG)だけ、キャビティCVの樹脂流動方向下流側の端122から樹脂流動方向上流側へ離れた、軸方向位置ap1よりも、樹脂流動方向下流側に配置されると、好適である。また、本例の各小凸条部140の樹脂流動方向上流側(軸方向他方側)の端縁部140ceは、軸方向一方側部分用キャビティ面121の軸方向全長L121の37%の距離L1(L1=0.37×L121)だけ、キャビティCVの樹脂流動方向下流側の端122から樹脂流動方向上流側へ離れた、軸方向位置ap1よりも、樹脂流動方向下流側に配置されると、好適である。
 このように、特にウェルド部Wが形成されやすく、また、特に高い強度が要求される領域である、樹脂流動方向下流側(軸方向一方側)の端部近傍に、小凸条部140を設けることにより、当該領域で樹脂の流動を積極的にウェルド交差方向(周方向)に向けて、ウェルド部Wの強度を向上できる。また、仮に同じ領域に環状凸条部130(図10)を設ける場合に比べて、樹脂部材200の強度低下を抑制できる。
 同様に、図23の樹脂部材200において、本体部MBの樹脂流動方向下流側(本例では軸方向一方側)の端部近傍に、小凹条部240が配置されている。図の例では、本体部MBの樹脂流動方向下流側(本例では軸方向一方側)の端部近傍に配置された複数本(具体的には3本)の小凹条部240が、互いから間隔を空けてウェルド延在方向と交差する方向(より具体的に本例では周方向)に配列されて、小凹条部列282(凹条部列)を構成している。ここで、「本体部MBの樹脂流動方向下流側の端部近傍」とは、ゲートGと本体部MBの樹脂流動方向下流側の端(本例では、軸方向一方側端、すなわち軸方向一方側端面222)との間の樹脂流動方向距離(本例では軸方向距離)LGの35%の距離にわたって延在する、最も樹脂流動方向下流側の領域を指す。より具体的に、本例の各小凹条部240の軸方向他方側の端縁部240ceは、ゲートGと本体部MBの軸方向一方側端(軸方向一方側端面222)との間の軸方向距離LG’の23%の距離L1’(L1’=0.23×LG’)だけ、本体部MBの樹脂流動方向下流側の端222から樹脂流動方向上流側へ離れた、軸方向位置ap1’よりも、樹脂流動方向下流側に配置されると、好適である。また、本例の各小凹条部240の軸方向他方側の端縁部240ceは、軸方向一方側部分221の軸方向全長L221の37%の距離L1’(L1’=0.37×L221)だけ、本体部MBの樹脂流動方向下流側の端から樹脂流動方向上流側へ離れた、軸方向位置ap1’よりも、樹脂流動方向下流側に配置されると、好適である。
 図20の金型100において、小凸条部列182の小凸条部140は、ゲート間位置BGP(ひいてはウェルド部W)とは重複しない位置(周方向位置)に配置されており、すなわち、ゲート間位置BGP(ひいてはウェルド部W)から、ウェルド延在方向と交差する方向(より具体的に本例では周方向)に離間している。具体的には、小凸条部140は、ゲート位置GPと重複する位置(周方向位置)に配置されている。
 ゲート間位置BGP(ひいてはウェルド部W)は、もともと樹脂部材200において最も強度が低下しやすいところであることから、そこに小凸条部140を配置しないようにし、ひいてはそこに小凹条部240が成形されないようにすることで、樹脂部材200の強度低下を抑制できる。また、逆に、ゲート位置GPは、もともと樹脂部材200において最も強度が高くなるところであることから、そこに小凸条部140を配置し、ひいてはそこに小凹条部240を成形させることで、樹脂部材200の強度低下を極力抑制できる。
 同様に、図23の樹脂部材200において、小凹条部列282の小凹条部240は、ゲート間位置BGP(ひいてはウェルド部W)とは重複しない位置(周方向位置)に配置されており、すなわち、ゲート間位置BGP(ひいてはウェルド部W)から、ウェルド延在方向と交差する方向(より具体的に本例では周方向)に離間している。具体的には、小凹条部240は、ゲート位置GPと重複する位置(周方向位置)に配置されている。なお、樹脂部材200において、ゲート位置GPやゲート間位置BGPは、上述のように、ゲートGの跡から特定できる。
 図20の金型100において、小凸条部列182の小凸条部140は、その根元端面の外縁のうち、小凸条部140の延在方向(本例では周方向)の少なくとも一方側(図の例では両側)の端縁部140ae、140beが、ウェルド延在方向(本例では軸方向)に対して非直角に交差する方向に延在しているとともに、ウェルド延在方向に垂直な方向(本例では周方向)に対して非直角に交差する方向に延在している。
 この構成によれば、図20及び図21に概略的に示すように、溶融樹脂が小凸条部140の手前でいったんせき止められて、それを迂回するように小凸条部140の延在方向(本例では周方向)の端部へ回ってから、小凸条部140より軸方向一方側へと進もうとする際、小凸条部140の延在方向端側の壁面140a、140bによって、樹脂の流動を、ウェルド延在方向に交差する方向へ、すなわち本例では周方向へ、流れるように効果的に促すことができる。これにより、ウェルド部Wの形状のウェルド交差方向成分(周方向成分)や、ゲート間位置BGPの近傍ひいてはウェルド部Wの近傍での強化繊維Fの配向のウェルド交差方向成分(周方向成分)を増やすことができる。よって、ウェルド部Wの強度を向上できる。
 同様に、図23の樹脂部材200において、小凹条部列282の小凹条部240は、その開口端面の外縁のうち、小凹条部240の延在方向(本例では周方向)の少なくとも一方側(図の例では両側)の端縁部240ae、240beが、ウェルド延在方向(本例では軸方向)に対して非直角に交差する方向に延在しているとともに、ウェルド延在方向に垂直な方向(本例では周方向)に対して非直角に交差する方向に延在している。
 図20の金型100において、小凸条部列182の小凸条部140は、その根元端面の外縁が平行四辺形状をなしている。そして、小凸条部140は、その根元端面の外縁のうち、小凸条部140の延在方向(本例では周方向)の両側の端縁部140ae、140beが、それぞれ、ウェルド延在方向(本例では軸方向)の一方側に向かうにつれて、ウェルド延在方向に垂直な方向(本例では周方向)の同じ側に向かうように、直線状に延在している。
 この構成によれば、小凸条部140から軸方向一方側で、樹脂の流動が、ウェルド交差方向の同じ側、すなわち本例では周方向の同じ側へ、循環するように効果的に促すことができる。
 同様に、図23の樹脂部材200において、小凹条部列282の小凹条部240は、その開口端面の外縁が平行四辺形状をなしている。そして、小凹条部240は、その開口端面の外縁のうち、小凹条部240の延在方向(本例では周方向)の両側の端縁部240ae、240beが、それぞれ、ウェルド延在方向(本例では軸方向)の一方側に向かうにつれて、ウェルド延在方向に垂直な方向(本例では周方向)の同じ側に向かうように、直線状に延在している。
 図21及び図22に示すように、本例の金型100において、小凸条部列182の小凸条部140は、その延在方向(本例では周方向)の少なくとも一方側(図の例では両側)の壁面140a、140bが、小凸条部140の延在方向のそれぞれの対応する側に向かうにつれて、連続的又は段階的に、小凸条部140の根元端面に向かうように(すなわち小凸条部140の高さが減少するように)、延在している。より具体的に、本例では、小凸条部140は、その延在方向(本例では周方向)の少なくとも一方側(図の例では両側)の壁面140a、140bが、小凸条部140の延在方向のそれぞれの対応する側に向かうにつれて、連続的に、小凸条部140の根元端面に向かうように(すなわち小凸条部140の高さが減少するように)、まっすぐに延在(傾斜)しており、すなわち、テーパ状に構成されている。
 この構成によれば、仮に例えば小凸条部140の延在方向(本例では周方向)の両側の壁面140a、140bが小凸条部140の根元端面に垂直である場合に比べて、小凸条部140による、樹脂の流動を、ウェルド交差方向の同じ側、すなわち本例では周方向の同じ側へ流れるよう促す機能を、より効果的に発揮させられるとともに、成形品である樹脂部材200の強度をより高めることができ、また、離型時において金型100の小凸条部140を樹脂部材200の小凹条部240から抜き易くなる。
 同様に、図23の樹脂部材200において、小凹条部列282の小凹条部240は、その延在方向(本例では周方向)の少なくとも一方側(図の例では両側)の壁面240a、240bが、小凹条部240の延在方向のそれぞれの対応する側に向かうにつれて、連続的又は段階的に、小凹条部240の開口端面に向かうように(すなわち小凹条部240の深さが減少するように)、延在している。より具体的に、本例では、小凹条部240は、その延在方向(本例では周方向)の少なくとも一方側(図の例では両側)の壁面240a、240bが、小凹条部240の延在方向のそれぞれの対応する側に向かうにつれて、連続的に、小凹条部240の開口端面に向かうように(すなわち小凹条部240の深さが減少するように)、まっすぐに延在(傾斜)しており、すなわち、テーパ状に構成されている。
 図21に示すように、本例の金型100において、小凸条部列182の小凸条部140の高さが最大となる位置で径方向に沿って測ったときの当該小凸条部140の高さh140の好適な数値範囲は、第1実施形態において図4を参照して説明したものと同様である。
 同様に、図24に示すように、本例の樹脂部材200において、小凹条部列282の小凹条部240の深さが最大となる位置で径方向に沿って測ったときの、当該小凹条部240の深さd240好適な数値範囲は、第1実施形態において図8(b)を参照して説明したものと同様である。
 なお、金型100は、図20の例に限られず、小凸条部列182を構成する小凸条部140の本数は、任意の本数(1本又は複数本)でよい。
 同様に、樹脂部材200は、図23の例に限られず、小凹条部列282を構成する小凹条部240の本数は、任意の本数(1本又は複数本)でよい。
 〔第5実施形態〕
 図25を参照しながら、本発明の第5実施形態について、説明する。図25(a)は、本実施形態の金型100を示している。図25(b)は、本実施形態の樹脂部材200を示している。
 第1実施形態では、金型100のキャビティCVが、外径よりも軸方向長さのほうが長い円筒状に形成されていたが、第5実施形態は、金型100のキャビティCVが、軸方向長さよりも外径が長い円環状(ドーナツ状)に形成されている。
 図25(a)において、金型100は、ゲートGを1つのみ有している。このゲートGに対応する位置(角度位置)がゲート位置GPであり、ゲート位置GPからキャビティCVに沿って等距離にある位置(角度位置)がゲート間位置BGPであり、そこの近傍でウェルド部Wがほぼ径方向に沿って形成されるようにされている。本例における樹脂流動方向は、キャビティCVの周方向である。
 金型100における、樹脂部材200の軸方向一方側端面を成形するためのキャビティ面は、キャビティCVの樹脂流動方向下流側に、キャビティCVの内側へ突出する小凸条部140(凸条部)を複数有している。小凸条部140は、ウェルド延在方向と交差する方向(図の例ではウェルド延在方向に垂直な方向)に延在している。ここで、「キャビティCVの樹脂流動方向下流側」とは、ゲート位置GPとキャビティCVの樹脂流動方向下流側の端であるゲート間位置BGPとの間の樹脂流動方向距離(周方向距離)の65%の距離にわたって樹脂流動方向(周方向)に沿って延在する、最も樹脂流動方向下流側の領域を指す。複数の小凸条部140は、ウェルド延在方向に交差する方向に互いから間隔を空けて配置されているとともに、ウェルド延在方向に互いから間隔を空けて配置されている。
 本実施形態によっても、上述した各実施形態1~4と同様に、仮に各小凸条部140がキャビティCVの樹脂流動方向上流側に配置される場合に比べて、比較的ゲートGから遠く、ひいてはウェルド部Wが形成されやすい領域に、小凸条部140が設けられることにより、ウェルド部W近傍での樹脂の流動を積極的にウェルド交差方向に向けられるので、ウェルド部Wの強度を向上できる。
 また、本例の金型100において、各小凸条部140は、その根元端面の外縁のうち、小突条部140の延在方向の少なくとも一方側(図の例では両側)の端縁部140ae、140beが、ウェルド延在方向に対して非直角に交差する方向に延在しているとともに、ウェルド延在方向に垂直な方向に対して非直角に交差する方向に延在している。
 その他の小凸条部140の構成については、第1実施形態で述べたものと同様である。
 図25(b)の樹脂部材200は、図25(a)の金型100を用いて、第1実施形態で述べた成形工程により得られるものである。この樹脂部材200においては、ゲート位置GPが1つのみあり、ゲート位置GPから樹脂部材200に沿って等距離にある位置(角度位置)がゲート間位置BGPであり、そこの近傍でウェルド部Wがほぼ径方向に沿って形成される。樹脂部材200が有するゲートGの跡から特定される、本例の樹脂流動方向は、樹脂部材200の周方向である。ゲート位置GP、ゲート間位置BGPも、ゲートGの跡から特定できる。
 樹脂部材200の軸方向一方側端面は、樹脂部材200の樹脂流動方向下流側に、小凹条部240(凹条部)を複数有している。小凹条部240は、ウェルド延在方向と交差する方向(図の例ではウェルド延在方向に垂直な方向)に延在している。ここで、「樹脂部材200の樹脂流動方向下流側」とは、ゲート位置GPと樹脂部材200の樹脂流動方向下流側の端であるゲート間位置BGPとの間の樹脂流動方向距離(周方向距離)の65%の距離にわたって樹脂流動方向(周方向)に沿って延在する、最も樹脂流動方向下流側の領域を指す。複数の小凹条部240は、ウェルド延在方向に交差する方向に互いから間隔を空けて配置されているとともに、ウェルド延在方向に互いから間隔を空けて配置されている。
 また、本例の樹脂部材200において、各小凹条部240は、その開口端面の外縁のうち、小凹条部240の延在方向の少なくとも一方側(図の例では両側)の端縁部240ae、240beが、ウェルド延在方向に対して非直角に交差する方向に延在しているとともに、ウェルド延在方向に垂直な方向に対して非直角に交差する方向に延在している。
 その他の小凹条部240の構成については、第1実施形態で述べたものと同様である。
 〔第6実施形態〕
 図26を参照しながら、本発明の第6実施形態について、説明する。図26(a)は、本実施形態の金型100を示している。図26(b)は、本実施形態の樹脂部材200を示している。
 第5実施形態において、金型100のキャビティCVは、平面視において一方向の長さがそれに垂直な方向の長さよりも長い長方形であり、厚さが薄いような、平板形状に形成されている。
 図26(a)において、金型100は、ゲートGを、キャビティCVの延在方向(長手方向)の両端部に1つずつ(計2つ)有している。このゲートGに対応するキャビティCVの延在方向位置がゲート位置GPであり、ゲート位置GPからキャビティCVに沿って等距離にある位置(延在方向位置)がゲート間位置BGPであり、そこの近傍でウェルド部Wが、キャビティCVの延在方向にほぼ垂直な方向に沿って形成されるようにされている。本例における樹脂流動方向は、キャビティCVの延在方向に沿って延在方向の中心側に向かう方向である。
 金型100における、樹脂部材200の厚さ方向一方側端面を成形するためのキャビティ面は、キャビティCVの樹脂流動方向下流側に、キャビティCVの内側へ突出する小凸条部140(凸条部)を複数有している。小凸条部140は、ウェルド延在方向と交差する方向(図の例ではウェルド延在方向に非垂直に交差する方向)に延在している。ここで、「キャビティCVの樹脂流動方向下流側」とは、ゲート位置GPとキャビティCVの樹脂流動方向下流側の端であるゲート間位置BGPとの間の樹脂流動方向距離(キャビティCVの延在方向に沿う距離)の65%の距離にわたって樹脂流動方向(キャビティCVの延在方向)に沿って延在する、最も樹脂流動方向下流側の領域を指す。複数の小凸条部140は、ウェルド延在方向に交差する方向に互いから間隔を空けて配置されているとともに、ウェルド延在方向に互いから間隔を空けて配置されている。
 本実施形態によっても、上述した各実施形態1~5と同様に、仮に各小凸条部140がキャビティCVの樹脂流動方向上流側に配置される場合に比べて、比較的ゲートGから遠く、ひいてはウェルド部Wが形成されやすい領域に、小凸条部140が設けられることにより、ウェルド部W近傍での樹脂の流動を積極的にウェルド交差方向に向けられるので、ウェルド部Wの強度を向上できる。
 また、本例の金型100において、各小凸条部140は、その根元端面の外縁のうち、小突条部140の延在方向の少なくとも一方側(図の例では両側)の端縁部140ae、140beが、ウェルド延在方向に対して非直角に交差する方向に延在しているとともに、ウェルド延在方向に垂直な方向に対して非直角に交差する方向に延在している。
 その他の小凸条部140の構成については、第1実施形態で述べたものと同様である。
 図26(b)の樹脂部材200は、図26(a)の金型100を用いて、第1実施形態で述べた成形工程により得られるものである。この樹脂部材200においては、ゲート位置GPが樹脂部材200の延在方向(長手方向)の両端部に1つずつ(計2つ)有している。このゲート位置GPから樹脂部材200に沿って等距離にある位置(延在方向位置)がゲート間位置BGPであり、そこの近傍でウェルド部WがキャビティCVの延在方向にほぼ垂直な方向に沿って形成される。樹脂部材200が有するゲートGの跡から特定される、本例の樹脂流動方向は、樹脂部材200の延在方向に沿って延在方向の中心側に向かう方向である。ゲート位置GP、ゲート間位置BGPも、ゲートGの跡から特定できる。
 樹脂部材200の厚さ方向一方側端面は、樹脂部材200の樹脂流動方向下流側に、小凹条部240(凹条部)を複数有している。小凹条部240は、ウェルド延在方向と交差する方向(図の例ではウェルド延在方向に非垂直に交差する方向)に延在している。ここで、「樹脂部材200の樹脂流動方向下流側」とは、ゲート位置GPと樹脂部材200の樹脂流動方向下流側の端であるゲート間位置BGPとの間の樹脂流動方向距離(樹脂部材200の延在方向に沿う距離)の65%の距離にわたって樹脂流動方向(樹脂部材200の延在方向)に沿って延在する、最も樹脂流動方向下流側の領域を指す。複数の小凹条部240は、ウェルド延在方向に交差する方向に互いから間隔を空けて配置されているとともに、ウェルド延在方向に互いから間隔を空けて配置されている。
 また、本例の樹脂部材200において、各小凹条部240は、その開口端面の外縁のうち、小凹条部240の延在方向の少なくとも一方側(図の例では両側)の端縁部240ae、240beが、ウェルド延在方向に対して非直角に交差する方向に延在しているとともに、ウェルド延在方向に垂直な方向に対して非直角に交差する方向に延在している。
 その他の小凹条部240の構成については、第1実施形態で述べたものと同様である。
 なお、本発明に係る射出成形金型、樹脂部材、及び、樹脂製品の製造方法は、上述した実施形態に限られず、様々な変形例が可能である。
 例えば、上述した各実施形態のうちいずれかの実施形態の技術要素を、他の実施形態に組み合わせてもよい。例えば、金型100においては、第1実施形態の小凸条部140、小凸条部列180、小凸条部列181、環状凹条部170と、第2実施形態~第4実施形態で説明した樹脂溜まり110、環状凸条部130、小凸条部140、及び小凸条部列182のうち、任意に選択される少なくとも1つとを、組み合わせて用いてもよい。同様に、樹脂部材200においては、第1実施形態の小凹条部240、小凹条部列280、小凹条部列281、環状凸条部270と、第2実施形態~第4実施形態で説明した突起部210、環状凹条部230、小凹条部240、及び小凹条部列282のうち、任意に選択される少なくとも1つとを、組み合わせて用いてもよい。また、金型100のキャビティCVの形状、ひいては樹脂部材200の本体部MBの形状は、上述したような円筒形状、円環形状、平板形状に限らず、任意の形状を有していてよい。
 本発明に係る射出成形金型、樹脂部材、及び、樹脂製品の製造方法は、あらゆる種類、用途及び形状の樹脂製品の分野に利用できる。
100:射出成形金型、 101~104:外型部、 101a:内型収容部、 105、106:内型部、 110:樹脂溜まり、 110P:先端突出部、 110S:開口端面、 120:トルク入力部分用キャビティ面(軸方向中間部分用キャビティ面)、 120a:凸部、 121:軸方向一方側部分用キャビティ面、 122:軸方向一方側端面用キャビティ面、 123:めねじ用キャビティ面、 124、125:軸方向他方側部分用キャビティ面、 130:環状凸条部、 131:環状凹条部、 140、150、151、160、161:小凸条部(凸条部)、 140a、140b:小凸条部の壁面、 140ae、140be、140ce:小凸条部の根元端面の外縁の端縁部、 170:環状凹条部、 180、181、182:小凸条部列(凸条部列)、 200:樹脂部材、 210:突起部、 210P:先端突出部、 210S:連結端面、 211:除去跡、 220:トルク入力部分(軸方向中間部分)、 220a:凹部、 221:軸方向一方側部分、 222:軸方向一方側端面、 223:めねじ、 224:軸方向他方側部分、 230:環状凹条部、 231:環状凸条部、 240、250、251、260、261:小凹条部(凹条部)、 240a、240b:小凹条部の壁面、 240ae、240be、240ce:小凹条部の開口端面の外縁の端縁部、 270:環状凸条部、 280、281、282:小凹条部列(凹条部列)、 300:継手、 310:外筒部、 BGP:ゲート間位置、 CL11:樹脂溜まりの幅中心線、 CL11c:樹脂溜まりの幅中心線の中心点、 CL12:キャビティの幅中心線、 CL21:突起部の幅中心線、 CL21c:突起部の幅中心線の中心点、 CL22:本体部の幅中心線、 CV:キャビティ、 F:強化繊維、 G:ゲート(又はゲートの跡)、 GP:ゲート位置、 MB:本体部、 n11:樹脂溜まりの幅中心線の垂線、 n12:キャビティの幅中心線の垂線、 n21:突起部の幅中心線の垂線、 n22:本体部の幅中心線の垂線、 O:中心軸線、 R:ランナー、 T:工具、 VP11、VP21:第1仮想平面、 W:ウェルド部
 

Claims (20)

  1.  ゲート及びキャビティを備え、強化繊維入りの溶融樹脂を前記ゲートから前記キャビティ内に射出することにより、前記キャビティ内でウェルド部が形成されるように構成された、射出成形金型において、
     前記射出成形金型のキャビティ面は、前記キャビティの樹脂流動方向の下流側に、前記ウェルド部のウェルド延在方向と交差する方向に延在するとともに前記キャビティの内側へ突出する凸条部を、複数有しており、
     前記複数の凸条部は、前記ウェルド延在方向に交差する方向に互いから間隔を空けて配置されているとともに、前記ウェルド延在方向に互いから間隔を空けて配置されている、射出成形金型。
  2.  各前記凸条部は、その根元端面の外縁のうち、該凸条部の延在方向の少なくとも一方側の端縁部が、前記ウェルド延在方向と前記ウェルド延在方向に垂直な方向との両方に対して非直角に交差する方向に延在している、請求項1に記載の射出成形金型。
  3.  前記ウェルド延在方向に互いに隣接する一対の前記凸条部どうしは、前記ウェルド延在方向に垂直な方向にずれて配置されている、請求項1又は2に記載の射出成形金型。
  4.  各前記凸条部の根元端面の外縁における該凸条部の延在方向の両側の端縁部は、それぞれ、前記ウェルド延在方向の一方側の部分が前記ウェルド延在方向の他方側の部分に対して、前記ウェルド延在方向に垂直な方向の第1側に傾斜している、請求項1~3のいずれか一項に記載の射出成形金型。
  5.  前記ウェルド延在方向に互いに隣接する一対の前記凸条部のうち、前記ウェルド延在方向の一方側の凸条部は、前記ウェルド延在方向の他方側の凸条部に対して、前記ウェルド延在方向に垂直な方向の前記第1側に、ずれて配置されている、請求項4に記載の射出成形金型。
  6.  前記凸条部は、該凸条部の延在方向の少なくとも一方側の壁面が、該凸条部の延在方向のそれぞれ対応する側に向かうにつれて、該凸条部の根元端面に向かうように、延在している、請求項1~5のいずれか一項に記載の射出成形金型。
  7.  前記キャビティは、円筒状部材を成形するように構成されており、
     前記ウェルド延在方向及び前記樹脂流動方向は、前記キャビティの軸方向である、請求項1~6のいずれか一項に記載の射出成形金型。
  8.  前記凸条部の延在方向は、前記キャビティの周方向である、請求項7に記載の射出成形金型。
  9.  前記キャビティは、前記円筒状部材の軸方向のいずれか一方側の内周面にめねじを成形するように構成されている、請求項7又は8に記載の射出成形金型。
  10.  強化繊維入りの樹脂から構成され、ウェルド部が形成されている、樹脂部材において、
     前記樹脂部材の外表面は、前記ウェルド部のウェルド延在方向と交差する方向に延在する凹条部を、複数有しており、
     前記複数の凹条部は、前記ウェルド延在方向に交差する方向に互いから間隔を空けて配置されているとともに、前記ウェルド延在方向に互いから間隔を空けて配置されている、樹脂部材。
  11.  前記樹脂部材は、前記樹脂部材の射出成形の際に生じたゲートの跡を有しており、
     前記樹脂部材の外表面は、前記ゲートの跡から特定される、前記樹脂部材の射出成形の際の樹脂流動方向下流側に、前記複数の凹条部を有している、請求項10に記載の樹脂部材。
  12.  各前記凹条部は、その開口端面の外縁のうち、該凹条部の延在方向の少なくとも一方側の端縁部が、前記ウェルド延在方向と前記ウェルド延在方向に垂直な方向との両方に対して非直角に垂直な方向に延在している、請求項10又は11に記載の樹脂部材。
  13.  前記ウェルド延在方向に互いに隣接する一対の前記凹条部どうしは、前記ウェルド延在方向に垂直な方向にずれて配置されている、請求項10~12のいずれか一項に記載の樹脂部材。
  14.  各前記凹条部の開口端面の外縁における該凹条部の延在方向の両側の端縁部は、それぞれ、前記ウェルド延在方向の一方側の部分が前記ウェルド延在方向の他方側の部分に対して、前記ウェルド延在方向に垂直な方向の第1側に傾斜している、請求項10~13のいずれか一項に記載の樹脂部材。
  15.  前記ウェルド延在方向に互いに隣接する一対の前記凹条部のうち、前記ウェルド延在方向の一方側の凹条部は、前記ウェルド延在方向の他方側の凹条部に対して、前記ウェルド延在方向に垂直な方向の前記第1側に、ずれて配置されている、請求項14に記載の樹脂部材。
  16.  前記凹条部は、該凹条部の延在方向の少なくとも一方側の壁面が、該凹条部の延在方向のそれぞれ対応する側に向かうにつれて、該凹条部の開口端面に向かうように、延在している、請求項10~15のいずれか一項に記載の樹脂部材。
  17.  前記樹脂部材は、円筒状部材であり、
     前記ウェルド延在方向は、前記樹脂部材の軸方向である、請求項10~16のいずれか一項に記載の樹脂部材。
  18.  前記凹条部の延在方向は、前記樹脂部材の周方向である、請求項17に記載の樹脂部材。
  19.  前記樹脂部材は、前記円筒状部材の軸方向のいずれか一方側の内周面にめねじを有している、請求項17又は18に記載の樹脂部材。
  20.  樹脂製品の製造方法であって、
     請求項1~9のいずれか一項に記載の射出成形金型の前記キャビティ内に、強化繊維入りの溶融樹脂を前記ゲートから射出し、樹脂部材を成形する、成形工程を含む、樹脂製品の製造方法。
     
PCT/JP2018/018568 2017-06-02 2018-05-14 射出成形金型、樹脂部材、及び、樹脂製品の製造方法 WO2018221185A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880036635.3A CN110709228B (zh) 2017-06-02 2018-05-14 注射成形模具、树脂构件以及树脂产品的制造方法
EP18810184.4A EP3632649A4 (en) 2017-06-02 2018-05-14 INJECTION MOLD, RESIN ELEMENT, AND METHOD FOR MANUFACTURING A RESIN ARTICLE
US16/618,144 US20200164559A1 (en) 2017-06-02 2018-05-14 Injection mold, resin member, and method for producing resin product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-110456 2017-06-02
JP2017110456A JP6823546B2 (ja) 2017-06-02 2017-06-02 射出成形金型、樹脂部材、及び、樹脂製品の製造方法

Publications (1)

Publication Number Publication Date
WO2018221185A1 true WO2018221185A1 (ja) 2018-12-06

Family

ID=64454627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018568 WO2018221185A1 (ja) 2017-06-02 2018-05-14 射出成形金型、樹脂部材、及び、樹脂製品の製造方法

Country Status (6)

Country Link
US (1) US20200164559A1 (ja)
EP (1) EP3632649A4 (ja)
JP (1) JP6823546B2 (ja)
CN (1) CN110709228B (ja)
TW (1) TWI680854B (ja)
WO (1) WO2018221185A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11873835B2 (en) * 2021-03-31 2024-01-16 Stokes Technology Development Ltd. Manufacturing method of axial air moving device with blades overlapped in axial projection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117785A (ja) * 1998-10-14 2000-04-25 Honda Motor Co Ltd 樹脂成形体
JP2002240096A (ja) 2001-02-14 2002-08-28 Hitachi Metals Ltd 樹脂製管継手の製造法
JP2004358665A (ja) * 2003-06-02 2004-12-24 Enplas Corp 射出成形樹脂歯車及び射出成形樹脂回転体
WO2016021389A1 (ja) * 2014-08-04 2016-02-11 株式会社ブリヂストン 管継手
JP2017110456A (ja) 2015-12-18 2017-06-22 五洋建設株式会社 地盤改良装置及び地盤改良工法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3657944B2 (ja) * 2003-02-19 2005-06-08 株式会社フコク 等速ジョイント用樹脂製ブーツの製造方法等速ジョイント用樹脂製ブーツの製造装置
JP4878977B2 (ja) * 2006-09-29 2012-02-15 富士フイルム株式会社 インサート部材、及びこれを備えた多孔質フィルターカートリッジの製造方法
DE102008018514A1 (de) * 2008-04-12 2009-10-15 Voss Automotive Gmbh Verfahren zur Herstellung eines Formteils mit ringförmigem Querschnitt und Formteil nach einem solchen Verfahren
JP2010173179A (ja) * 2009-01-29 2010-08-12 Mitsubishi Heavy Ind Ltd 樹脂成形品および金型
AT514828B1 (de) * 2013-09-24 2015-06-15 Hoerbiger Kompressortech Hold Verfahren und Form zur Herstellung von Dichtplatten im Spritzguss sowie entsprechend hergestellte Dichtplatten
JP2016080050A (ja) * 2014-10-15 2016-05-16 日本精工株式会社 軸受用樹脂製保持器、及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117785A (ja) * 1998-10-14 2000-04-25 Honda Motor Co Ltd 樹脂成形体
JP2002240096A (ja) 2001-02-14 2002-08-28 Hitachi Metals Ltd 樹脂製管継手の製造法
JP2004358665A (ja) * 2003-06-02 2004-12-24 Enplas Corp 射出成形樹脂歯車及び射出成形樹脂回転体
WO2016021389A1 (ja) * 2014-08-04 2016-02-11 株式会社ブリヂストン 管継手
JP2017110456A (ja) 2015-12-18 2017-06-22 五洋建設株式会社 地盤改良装置及び地盤改良工法

Also Published As

Publication number Publication date
CN110709228B (zh) 2021-08-24
CN110709228A (zh) 2020-01-17
JP2018202732A (ja) 2018-12-27
EP3632649A4 (en) 2021-03-03
US20200164559A1 (en) 2020-05-28
EP3632649A1 (en) 2020-04-08
TWI680854B (zh) 2020-01-01
TW201908101A (zh) 2019-03-01
JP6823546B2 (ja) 2021-02-03

Similar Documents

Publication Publication Date Title
WO2018221187A1 (ja) 射出成形金型、樹脂部材、及び、樹脂製品の製造方法
JP5008197B2 (ja) 射出成形樹脂歯車の成形方法及び射出成形樹脂歯車
JP6752214B2 (ja) 樹脂製管継手、配管及び、配管の製造方法
WO2018221185A1 (ja) 射出成形金型、樹脂部材、及び、樹脂製品の製造方法
WO2018221184A1 (ja) 射出成形金型、樹脂部材、及び、樹脂製品の製造方法
JP6846290B2 (ja) 射出成形金型、樹脂部材、及び、樹脂製品の製造方法
JP6851909B2 (ja) 射出成形金型、樹脂部材、及び、樹脂製品の製造方法
JP6846291B2 (ja) 射出成形金型、樹脂部材、及び、樹脂製品の製造方法
JP6846292B2 (ja) 射出成形金型、樹脂部材、及び、樹脂製品の製造方法
JP6846289B2 (ja) 射出成形金型、樹脂部材、及び、樹脂製品の製造方法
JP6832085B2 (ja) 中空の成形品、及び、中空の成形品の製造方法
WO2018221186A1 (ja) 樹脂部材
JP6818571B2 (ja) 樹脂製筒状体、樹脂製筒状体の製造金型、及び樹脂製筒状体の製造方法
JP7048154B2 (ja) フィルタ
JP6956158B2 (ja) 配管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018810184

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018810184

Country of ref document: EP

Effective date: 20200102