WO2018218903A1 - 一种全细胞催化制备曲克芦丁酯的方法 - Google Patents

一种全细胞催化制备曲克芦丁酯的方法 Download PDF

Info

Publication number
WO2018218903A1
WO2018218903A1 PCT/CN2017/113808 CN2017113808W WO2018218903A1 WO 2018218903 A1 WO2018218903 A1 WO 2018218903A1 CN 2017113808 W CN2017113808 W CN 2017113808W WO 2018218903 A1 WO2018218903 A1 WO 2018218903A1
Authority
WO
WIPO (PCT)
Prior art keywords
troxerutin
reaction
pyridine
organic solvent
pseudomonas
Prior art date
Application number
PCT/CN2017/113808
Other languages
English (en)
French (fr)
Inventor
李晓凤
辛璇
赵光磊
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US16/617,503 priority Critical patent/US11286511B2/en
Publication of WO2018218903A1 publication Critical patent/WO2018218903A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/60Preparation of O-glycosides, e.g. glucosides having an oxygen of the saccharide radical directly bound to a non-saccharide heterocyclic ring or a condensed ring system containing a non-saccharide heterocyclic ring, e.g. coumermycin, novobiocin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor

Definitions

  • the invention belongs to the field of biocatalysis and medicinal chemistry, and in particular relates to a method for whole cell catalyzed preparation of troxerutin.
  • Flavonoids are an important class of natural polyhydroxy compounds with many physiological functions such as oxidation resistance, anti-cancer and antibacterial properties.
  • Quk rutin is a kind of flavonoids, which are widely found in tea, coffee beans, grains and various fruits and vegetables.
  • troxerutin can also be obtained by derivatization of rutin.
  • Trake rutin has various pharmacological and physiological activities such as analgesia, inhibition of aggregation of red blood cells and platelets, prevention of cerebral thrombosis, antibacterial and anti-inflammatory, scavenging free radicals, and treatment of diabetes. It is widely used in the treatment of cardiovascular diseases, diabetes and cerebral blood diseases.
  • troxerutin due to the structural limitation of troxerutin, its fat solubility is poor, which in turn reduces its bioavailability, which greatly affects their development and application.
  • the research progress on enhancing the fat solubility of troxerutin mainly includes the synthesis of troxerutin by chemical method and enzymatic method and the transformation of troxerutin into a W/O. Type of microemulsion.
  • the chemical synthesis of troxerutin is mainly catalyzed by strong acid or strong base.
  • the large use of acid and alkali catalysts leads to serious environmental pollution problems, and the chemical synthesis has poor regioselectivity, many by-products and low yield. And so on.
  • the dosage form modification of troxerutin can improve its bioavailability to a certain extent, the preparation of microemulsion requires a large amount of surfactants, and these surfactants (such as lecithin) are expensive, resulting in high production cost and Reports indicate that the greater the amount of surfactant used, the greater its toxicity.
  • the enzymatic method has strong specificity, the separation and purification process of the free enzyme is cumbersome and complicated, and is easily affected by the extreme reaction environment. The commercial enzyme is expensive, which is not suitable for industrial application.
  • biocatalytic technology is also a whole cell catalysis, which refers to the process of chemical transformation using whole microbial whole cells as a catalyst, wherein the catalytic system is the whole cell intracellular enzyme system.
  • the preparation of the whole-cell catalyst is simple and easy to obtain, and the complicated enzyme separation and purification and immobilization processes can be omitted, the production cost is reduced, and the whole cell has a complete cell structure and cell membrane, and the enzyme is naturally immobilized.
  • Protected in cells beneficial in organic solvents, extreme pH
  • the conformation and catalytic activity of the enzyme are maximally maintained in a reaction environment such as high temperature.
  • whole cells can provide different enzyme systems and cofactors for multi-step biotransformation reactions, and can effectively achieve coenzyme regeneration.
  • Whole-cell catalysis technology is also increasingly used in the study of catalytic preparation of flavonoid esters. However, studies on the preparation of troxerutin by whole-cell catalysis have not been reported.
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide a green, simple and efficient method for the whole cell catalysis of the preparation of troxerutin.
  • a method for whole-cell catalyzed preparation of troxerutin comprises the following steps:
  • reaction solution is separated and purified to obtain troxerutin.
  • the pyridine-containing mixed organic solvent in the step (1) is dimethyl sulfoxide, N, N- A binary mixed solvent of one of dimethylformamide, acetonitrile, tetrahydrofuran, tert-butanol, tert-amyl alcohol, cyclohexane, n-hexane, petroleum ether, n-heptane and isooctane and pyridine.
  • the mixed organic solvent has a pyridine content of 25% to 90% by volume.
  • the acyl donor in the step (1) is a fatty acid having a carbon number of 1-18, and the number of carbon is 1-18.
  • the molar ratio of the troxerutin to the acyl donor in the step (1) is 1:5-1:40, further preferably 1:10-1:40.
  • the microbial cells in step (1) are Pseudomonas stutzeri , Pseudomonas fluorescens , Pseudomonas aeruginosa , Rhizopus oligosporus. ), Aspergillus niger , Penicillium citrinum , Rhizopus chinensis , Rhizomucor miehei , Rhizopus oryzae , Aspergillus oryzae or white ground Mildew ( Geotrichum candidum ).
  • the mass ratio of the microbial cells to the troxerutin in step (1) is 2:3-8:3.
  • the amount of the microbial cells in step (1) is 20-8 0 mg/mL.
  • the temperature of the reaction in the step (1) is 20-55 °C.
  • the reaction time in the step (1) is 24-156 hours.
  • the step (2 The separation and purification is carried out by centrifuging the reaction solution after centrifugation, distilling off the solvent under reduced pressure, and separating the trox rutin by column chromatography or thin layer chromatography; the chromatographic solution used is ethyl acetate / methanol / water, volume ratio is 15 : 3.6 : 0.5.
  • the present invention has the following advantages:
  • the present invention employs a highly efficient biocatalyst - Microbial cells catalyze the preparation of troxerutin. Since the whole cell catalyst has a complete cell structure, the cell-linked enzyme is protected in the cell in a natural immobilization manner, overcoming the prior art that the free enzyme is easily inactivated in an extreme reaction environment, and the reaction yield is low. Shortcomings.
  • the present invention does not require a group protection and deprotection operation, and the reaction process is simple and easy to control.
  • the present invention can recover the cells by simple filtration after the end of the reaction, thereby achieving the recycling of the whole cell catalyst and facilitating the separation and purification of the product.
  • the invention has the advantages of mild reaction conditions, environmental friendliness, simple process, less side reactions and high selectivity.
  • Figure 1 is a high performance liquid chromatogram of the synthesis of troxerutin.
  • Figure 2 shows the nuclear magnetic resonance spectrum of troxerutin monoester.
  • Figure 3 shows the nuclear magnetic resonance spectrum of troxerutin diester.
  • the reaction mixture was centrifuged to remove the bacteria, and the solvent was distilled off under reduced pressure, followed by thin layer chromatography to obtain troxerutin.
  • the high performance liquid chromatogram of the synthesis process is shown in Fig. 1.
  • the chromatographic solution used was ethyl acetate / Methanol / water, volume ratio is 15 : 3.6 : 0.5.
  • the substrate conversion rate was 12%
  • the yield of troxerutin monoester was 10.1%.
  • the nuclear magnetic resonance carbon spectrum of troxerutin monoester is shown in Figure 2.
  • the chromatographic solution used was ethyl acetate / methanol / water in a volume ratio of 15 : 3.6 : 0.5. Under the conditions of this example, the substrate conversion was 80.1% and the troxerutin monoester yield was 72%.
  • the chromatographic solution used was ethyl acetate / methanol / water in a volume ratio of 15 : 3.6 : 0.5. Under the conditions of this experiment, the substrate conversion rate was 34.4%, and the yield of troxerutin monoester was 27.7%.
  • the chromatographic solution used was ethyl acetate / methanol / water in a volume ratio of 15 : 3.6 : 0.5. Under the conditions of this experiment, the substrate conversion rate was 60.1%, and the yield of troxerutin monoester was 44.7%.
  • the chromatographic solution used was ethyl acetate / methanol / water in a volume ratio of 15 : 3.6 : 0.5. Under the conditions of this experiment, the substrate conversion rate was 89.4%, and the troxerutin monoester yield was 78.5%.
  • the chromatographic solution used was ethyl acetate / methanol / water in a volume ratio of 15 : 3.6 : 0.5. Under the conditions of this experiment, the substrate conversion rate was 65.7%, and the yield of troxerutin monoester was 50%.
  • the chromatographic solution used was ethyl acetate / methanol / water in a volume ratio of 15 : 3.6 : 0.5. Under the conditions of this experiment, the substrate conversion rate was 96.2%, and the yield of troxerutin monoester was 81.2%.
  • the chromatographic solution used was ethyl acetate / methanol / water in a volume ratio of 15 : 3.6 : 0.5. Under the conditions of this experiment, the substrate conversion rate was 40.4%, and the troxerutin monoester yield was 34.6%.
  • the chromatographic solution used was ethyl acetate / methanol / water in a volume ratio of 15 : 3.6 : 0.5. Under the conditions of this experiment, the substrate conversion rate was 63.4%, and the yield of troxerutin monoester was 53.5%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

一种全细胞催化制备曲克芦丁酯的方法,属于生物催化和药物化学领域。该方法具体包括如下步骤:将曲克芦丁和含吡啶的混合有机溶剂混合均匀后,再加入酰基供体和全细胞催化剂,在反应温度为25-55℃下振荡反应;反应结束后,产物经过柱层析或者薄层层析分离纯化,得到曲克芦丁酯。该方法具有反应条件温和、环境友好、工艺简单,副反应少且选择性高等优点。

Description

一种全细胞催化制备曲克芦丁酯的方法
技术领域
本发明属于生物催化和药物化学领域,具体涉及一种全细胞催化制备曲克芦丁酯的方法。
背景技术
黄酮类化合物是一类重要的天然多羟基化合物,具有抗氧化性、抗癌、抗菌等多种生理功能。曲克芦丁属于黄酮类化合物的一种,广泛存在于茶叶、咖啡豆、谷物以及各种果蔬当中,除此之外,曲克芦丁还可以通过芦丁衍生化制得。曲克芦丁具有镇痛、抑制红细胞与血小板的凝集、防止脑血栓的形成、抗菌消炎、清除自由基以及治疗糖尿病等多种药理和生理活性。在治疗心血管治病、糖尿病以及脑血病等方面得到广泛的应用。但由于曲克芦丁的结构限制导致其脂溶性较差,进而降低其生物利用度,极大地影响到它们的开发和应用。
目前,关于增强曲克芦丁脂溶性的研究进展主要有:利用化学法和酶法合成曲克芦丁酯以及对曲克芦丁进行剂型改造制成一种 W/O 型的微乳液。但是化学法合成曲克芦丁酯主要是通过强酸或强碱进行催化,酸、碱催化剂的大量使用导致严重的环境污染问题,而且存在化学合成的区域选择性差,副产物多,产率较低等缺点。对曲克芦丁进行剂型改造虽然一定程度上能提高其生物利用度,但微乳液的制备需要大量的表面活性剂,这些表面活性剂(如卵磷脂)价格昂贵,造成生产成本高,而且有报道表明表面活性剂的用量越大其毒性也随着增大。酶法虽然专一性强,但游离酶的分离纯化过程繁琐、复杂,且容易受到极端反应环境的影响,商品化酶的价格昂贵,不利于工业化的应用。
生物催化技术除了酶催化,还有一种为全细胞催化,它是指利用完整的微生物全细胞作为催化剂进行化学转化的过程,其中起催化作用的是微生物全细胞内的酶系。相较于酶催化技术,全细胞催化剂的制备简单易得,可以省略繁琐的酶分离纯化和固定化工艺,降低生产成本,而且全细胞具有完整的细胞结构和细胞膜,酶以天然固定化的方式被保护于细胞中,有利于在有机溶剂、极端 pH 、高温等反应环境中最大程度地保持酶的构象和催化活性。此外,全细胞可以给多步生物转化反应提供不同的酶系和辅助因子,而且可以有效地实现辅酶再生。全细胞催化技术也越来越多地应用到催化制备黄酮酯的研究中,然而,关于全细胞催化制备曲克芦丁酯的研究还没有报道。
发明内容
本发明的目的在于克服现有技术存在的不足,提供一种绿色、简单且高效的全细胞催化制备曲克芦丁酯的方法。
本发明的目的通过如下技术方案实现。
一种全细胞催化制备曲克芦丁酯的方法,包括如下步骤:
( 1 )将含吡啶的混合有机溶剂和曲克芦丁混合均匀,再加入酰基供体,然后加入微生物细胞作为催化剂振荡反应;
( 2 )反应结束后,将反应液分离纯化得到曲克芦丁酯。
优选的,步骤( 1 )所述含吡啶的混合有机溶剂为二甲基亚砜、 N,N- 二甲基甲酰胺、乙腈、四氢呋喃、叔丁醇、叔戊醇、环己烷、正己烷、石油醚、正庚烷和异辛烷中的一种与吡啶组成的二元混合溶剂。
进一步优选的,所述混合有机溶剂中吡啶的体积含量为 25%-90% 。
优选的,步骤( 1 )所述酰基供体为碳的个数为 1-18 的脂肪酸、碳的个数为 1-18 的脂肪酸酯或脂肪酸烯醇酯。
优选的,步骤( 1 )所述曲克芦丁与酰基供体的摩尔比为 1:5-1:40 ,进一步优选为 1:10-1:40 。
优选的,步骤( 1 )所述微生物细胞为施氏假单胞菌( Pseudomonas stutzeri )、荧光假单胞菌( Pseudomonas fluorescens )、铜绿假单胞菌( Pseudomonas aeruginosa )、少孢根霉( Rhizopus oligosporus )、黑曲霉( Aspergillus niger )、橘青霉( Penicillium citrinum )、华根霉( Rhizopus chinensis )、米黑根毛霉( Rhizomucor miehei )、米根霉( Rhizopus oryzae )、米曲霉( Aspergillus oryzae )或白地霉( Geotrichum candidum )。
优选的,步骤( 1 )所述微生物细胞与曲克芦丁的质量比为 2:3-8:3 。
优选的,步骤( 1 )所述微生物细胞用量为 20-8 0 mg/mL 。
优选的,步骤( 1 )所述反应的温度为 20-55 ℃ 。
优选的,步骤( 1 )所述反应的时间为 24-156 小时。
优选的,步骤( 2 )所述分离纯化是将反应后的反应液经离心除菌体,减压蒸馏除去溶剂,再经柱层析或薄层层析分离得到曲克芦丁酯;所用层析液为乙酸乙酯 / 甲醇 / 水,体积比为 15 : 3.6 : 0.5 。
与现有技术相比,本发明具有如下的优点:
( 1 ) 本发明采用高效的生物催化剂 - 微生物细胞来催化制备曲克芦丁酯。由于全细胞催化剂有完整的细胞结构,其中的细胞链接酶以天然固定化的方式被保护于细胞中,克服了现有技术中游离酶在极端反应环境中容易失活,反应产率低 的缺点。
( 2 )本发明无需基团保护和去保护操作,反应过程简单易控。
( 3 )反应所需的全细胞催化剂制备简单易得、便宜,避免了游离酶繁琐、复杂的分离纯化工艺和商品化酶的高生产成本。
( 4 )本发明在反应结束后可以通过简单的过滤回收菌体,既实现全细胞催化剂的重复利用,又易于产物的分离纯化。
( 5 )本发明具有反应条件温和、环境友好、工艺简单、副反应少且选择性高等优点。
附图说明
图 1 为曲克芦丁酯合成过程的高效液相色谱图。
图 2 为曲克芦丁单酯的核磁共振碳谱图。
图 3 为曲克芦丁双酯的核磁共振碳谱图。
具体实施方式
为了更好理解本发明,下面结合实施例对本发明做进一步地详细说明,但是本发明要求保护的范围并不局限于实施例表示的范围。
实施例 1
将 30 mmol 曲克芦丁溶解于 1 mL 吡啶 - 异辛烷混合有机溶剂(吡啶体积含量为 25% )中,加入丙酸乙烯酯(曲克芦丁与丙酸乙烯酯的摩尔比为 1:20 )混合均匀,再加入铜绿假单胞菌 GIM1.46 (广东省微生物研究所) (铜绿假单胞菌与曲克芦丁的质量比为 2:1 ),在 20 ℃ 、 振荡速度 180 r/min 下 反应 24 小时。反应结束后,反应混合物经离心除菌体,减压蒸馏除去溶剂,再经薄层层析分离得到 曲克芦丁酯,合成过程的高效液相色谱图如图 1 所示。所用层析液为乙酸乙酯 / 甲醇 / 水,体积比为 15 : 3.6 : 0.5 。该实施条件下,底物转化率为 12% ,曲克芦丁单酯产率为 10.1% 。 曲克芦丁单酯的核磁共振碳谱图如图 2 所示。
实施例 2
将 30 mmol 曲克芦丁溶解于 1 mL 吡啶 - 异辛烷混合有机溶剂(吡啶体积含量为 25% )中,加入丙酸乙烯酯(曲克芦丁与丙酸乙烯酯的摩尔比为 1:20 )混合均匀,再加入施氏假单胞菌 GIM1.273 (广东省微生物研究所) (施氏假单胞菌与曲克芦丁的质量比为 2:1 ),在 37.5 ℃ 、 振荡速度 180 r/min 下 反应 90 小时。反应结束后,反应混合物经离心除菌体,减压蒸馏除去溶剂,再经薄层层析分离得到曲克芦丁酯。所用层析液为乙酸乙酯 / 甲醇 / 水,体积比为 15 : 3.6 : 0.5 。该实施条件下,底物转化率为 78.2% ,曲克芦丁双酯产率为 60.2% 。 曲克芦丁双酯的核磁共振碳谱图如图 3 所示。
实施例 3
将 30 mmol 曲克芦丁溶解于 1 mL 吡啶 - 正庚烷混合有机溶剂(吡啶体积含量为 25% )中,加入丙酸乙烯酯(曲克芦丁与丙酸乙烯酯的摩尔比为 1:20 )混合均匀,再加入铜绿假单胞菌 GIM1.46 (铜绿假单胞菌与曲克芦丁的质量比为 2:1 ),在 55 ℃ 、 振荡速度 180 r/min 下 反应 156 小时。反应结束后,反应混合物经离心除菌体,减压蒸馏除去溶剂,再经薄层层析分离得到曲克芦丁酯。所用层析液为乙酸乙酯 / 甲醇 / 水,体积比为 15 : 3.6 : 0.5 。该实施条件下,底物转化率为 80.1% ,曲克芦丁单酯产率为 72% 。
实施例 4
将 30 mmol 曲克芦丁溶解于 1 mL 吡啶 - 正庚烷混合有机溶剂(吡啶体积含量为 90% )中,加入丙酸乙烯酯(曲克芦丁与丙酸乙烯酯的摩尔比 1:20 )混合均匀,再加入铜绿假单胞菌 GIM1.46 (铜绿假单胞菌与曲克芦丁的质量比为 2:1 ),在 40 ℃ 、 振荡速度 180 r/min 下 反应 48 小时。反应结束后,反应混合物经离心除菌体,减压蒸馏除去溶剂,再经薄层层析分离得到曲克芦丁酯。所用层析液为乙酸乙酯 / 甲醇 / 水,体积比为 15 : 3.6 : 0.5 。该实施条件下,底物转化率为 34.4% ,曲克芦丁单酯产率为 27.7% 。
实施例 5
将 30 mmol 曲克芦丁溶解于 1 mL 吡啶 - 正庚烷混合有机溶剂(吡啶体积含量为 65% )中,加入丙酸乙烯酯(曲克芦丁与丙酸乙烯酯的摩尔比为 1:10 )混合均匀,再加入铜绿假单胞菌 GIM1.46 (铜绿假单胞菌与曲克芦丁的质量比为 2:1 ),在 40 ℃ 、 振荡速度 180 r/min 下 反应 120 小时。反应结束后,反应混合物经离心除菌体,减压蒸馏除去溶剂,再经薄层层析分离得到曲克芦丁酯。所用层析液为乙酸乙酯 / 甲醇 / 水,体积比为 15 : 3.6 : 0.5 。该实施条件下,底物转化率为 60.1% ,曲克芦丁单酯产率为 44.7% 。
实施例 6
将 30 mmol 曲克芦丁溶解于 1 mL 吡啶 - 正庚烷混合有机溶剂(吡啶体积含量为 65% )中,加入丙酸乙烯酯(曲克芦丁与丙酸乙烯酯的摩尔比为 1:40 )混合均匀,再加入铜绿假单胞菌 GIM1.46 (铜绿假单胞菌与曲克芦丁的质量比为 2:1 ),在 40 ℃ 、 振荡速度 180 r/min 下 反应 120 小时。反应结束后,反应混合物经离心除菌体,减压蒸馏除去溶剂,再经薄层层析分离得到曲克芦丁酯。所用层析液为乙酸乙酯 / 甲醇 / 水,体积比为 15 : 3.6 : 0.5 。该实施条件下,底物转化率为 89.4% ,曲克芦丁单酯产率为 78.5% 。
实施例 7
将 30 mmol 曲克芦丁溶解于 1 mL 吡啶 - 正庚烷混合有机溶剂(吡啶体积含量为 65% )中,加入丙酸乙烯酯(曲克芦丁与丙酸乙烯酯的摩尔比为 1:30 )混合均匀,再加入铜绿假单胞菌 GIM1.46 (铜绿假单胞菌与曲克芦丁的质量比为 1:1 ),在 40 ℃ 、 振荡速度 180 r/min 下 反应 120 小时。反应结束后,反应混合物经离心除菌体,减压蒸馏除去溶剂,再经薄层层析分离得到曲克芦丁酯。所用层析液为乙酸乙酯 / 甲醇 / 水,体积比为 15 : 3.6 : 0.5 。该实施条件下,底物转化率为 65.7% ,曲克芦丁单酯产率为 50% 。
实施例 8
将 30 mmol 曲克芦丁溶解于 1 mL 吡啶 - 正庚烷混合有机溶剂(吡啶体积含量为 65% )中,加入丙酸乙烯酯(曲克芦丁与丙酸乙烯酯的摩尔比为 1:30 )混合均匀,再加入铜绿假单胞菌 GIM1.46 (铜绿假单胞菌与曲克芦丁的质量比为 4:1 ),在 40 ℃ 、 振荡速度 180 r/min 下 反应 120 小时。反应结束后,反应混合物经离心除菌体,减压蒸馏除去溶剂,再经薄层层析分离得到曲克芦丁酯。所用层析液为乙酸乙酯 / 甲醇 / 水,体积比为 15 : 3.6 : 0.5 。该实施条件下,底物转化率为 96.2% ,曲克芦丁单酯产率为 81.2% 。
实施例 9
将 30 mmol 曲克芦丁溶解于 1 mL 吡啶 - 正庚烷混合有机溶剂(吡啶体积含量为 65% )中,加入丙酸乙烯酯(曲克芦丁与丙酸乙烯酯的摩尔比为 1:30 )混合均匀,再加入铜绿假单胞菌 GIM1.46 (铜绿假单胞菌与曲克芦丁的质量比为 5:2 ),在 25 ℃ 、 振荡速度 180 r/min 下 反应 120 小时。反应结束后,反应混合物经离心除菌体,减压蒸馏除去溶剂,再经薄层层析分离得到曲克芦丁酯。所用层析液为乙酸乙酯 / 甲醇 / 水,体积比为 15 : 3.6 : 0.5 。该实施条件下,底物转化率为 40.4% ,曲克芦丁单酯产率为 34.6% 。
实施例 10
将 30 mmol 曲克芦丁溶解于 1 mL 吡啶 - 正庚烷混合有机溶剂(吡啶体积含量为 65% )中,加入丙酸乙烯酯(曲克芦丁与丙酸乙烯酯的摩尔比为 1:30 )混合均匀,再加入铜绿假单胞菌 GIM1.46 (铜绿假单胞菌与曲克芦丁的质量比为 5:2 ),在 55 ℃ 、 振荡速度 180 r/min 下 反应 120 小时。反应结束后,反应混合物经离心除菌体,减压蒸馏除去溶剂,再经薄层层析分离得到曲克芦丁酯。所用层析液为乙酸乙酯 / 甲醇 / 水,体积比为 15 : 3.6 : 0.5 。该实施条件下,底物转化率为 63.4% ,曲克芦丁单酯产率为 53.5% 。
本发明的上述实施例仅仅是为了清楚地说明本发明而作的举例,并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

1. 一种全细胞催化制备曲克芦丁酯的方法,其特征在于,包括如下步骤:
( 1 )将含吡啶的混合有机溶剂和曲克芦丁混合均匀,再加入酰基供体,然后加入微生物细胞作为催化剂振荡反应;
( 2 )反应结束后,将反应液分离纯化得到曲克芦丁酯。
根据权利要求 1 所述的方法,其特征在于,步骤( 1 )所述含吡啶的混合有机溶剂为二甲基亚砜、 N,N- 二甲基甲酰胺、乙腈、四氢呋喃、叔丁醇、叔戊醇、环己烷、正己烷、石油醚、正庚烷和异辛烷中的一种与吡啶组成的二元混合溶剂。
根据权利要求 2 所述的方法,其特征在于,所述混合有机溶剂中吡啶的体积含量为 25%-90% 。
根据权利要求 1 所述的方法,其特征在于,步骤( 1 )所述酰基供体为碳的个数为 1-18 的脂肪酸、碳的个数为 1-18 的脂肪酸酯或脂肪酸烯醇酯。
根据权利要求 1 所述的方法,其特征在于,步骤( 1 )所述曲克芦丁与酰基供体的摩尔比为 1:5-1:40 。
根据权利要求 1 所述的方法,其特征在于,步骤( 1 )所述微生物细胞为施氏假单胞菌、洋葱假单胞菌、恶臭假单胞菌、荧光假单胞菌、铜绿假单胞菌、枯草芽孢杆菌、巨大芽孢杆菌、少孢根霉、黑曲霉、橘青霉、华根霉、米黑根毛霉、米根霉、米曲霉或白地霉。
根据权利要求 1 所述的方法,其特征在于,步骤( 1 )所述微生物细胞与曲克芦丁的质量比为 2:3-8:3 。
根据权利要求 1 所述的方法,其特征在于,步骤( 1 )所述反应的温度为 20-55 ℃ 。
根据权利要求 1 所述的方法,其特征在于,步骤( 1 )所述反应的时间为 24-156 小时。
根据权利要求 1 所述的方法,其特征在于,步骤( 2 )所述分离纯化是将反应后的反应液经离心除菌体,减压蒸馏除去溶剂,再经柱层析或薄层层析分离得到曲克芦丁酯;所用层析液为乙酸乙酯 / 甲醇 / 水,体积比为 15 : 3.6 : 0.5 。
PCT/CN2017/113808 2017-05-27 2017-11-30 一种全细胞催化制备曲克芦丁酯的方法 WO2018218903A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/617,503 US11286511B2 (en) 2017-05-27 2017-11-30 Method for preparing troxerutin ester using whole-cell catalysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710392731.9 2017-05-27
CN201710392731.9A CN107164423B (zh) 2017-05-27 2017-05-27 一种全细胞催化制备曲克芦丁酯的方法

Publications (1)

Publication Number Publication Date
WO2018218903A1 true WO2018218903A1 (zh) 2018-12-06

Family

ID=59822050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113808 WO2018218903A1 (zh) 2017-05-27 2017-11-30 一种全细胞催化制备曲克芦丁酯的方法

Country Status (3)

Country Link
US (1) US11286511B2 (zh)
CN (1) CN107164423B (zh)
WO (1) WO2018218903A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107164423B (zh) 2017-05-27 2021-02-19 华南理工大学 一种全细胞催化制备曲克芦丁酯的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070184098A1 (en) * 2003-06-20 2007-08-09 Philippe Moussou Esters of flavonoids with w-substituted c6-c22 fatty acids
CN101704866A (zh) * 2009-11-06 2010-05-12 上海双科医药科技有限公司 一类芦丁脂肪酸酯衍生物,其制备方法及应用
CN102718818A (zh) * 2012-06-07 2012-10-10 河南工业大学 含氮曲克芦丁衍生物及其制备方法和用途
CN104726375A (zh) * 2015-03-18 2015-06-24 华南理工大学 催化秦皮甲素酯交换反应的细菌细胞催化剂的制备方法
CN105002238A (zh) * 2015-07-28 2015-10-28 华南理工大学 一种基于施氏假单胞菌细胞催化的柚皮苷羟基保护反应方法
CN105063137A (zh) * 2015-07-28 2015-11-18 华南理工大学 一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法
CN107164423A (zh) * 2017-05-27 2017-09-15 华南理工大学 一种全细胞催化制备曲克芦丁酯的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107163096B (zh) * 2017-05-26 2020-01-14 河南工业大学 曲克芦丁酰胺类衍生物及其合成方法和用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070184098A1 (en) * 2003-06-20 2007-08-09 Philippe Moussou Esters of flavonoids with w-substituted c6-c22 fatty acids
CN101704866A (zh) * 2009-11-06 2010-05-12 上海双科医药科技有限公司 一类芦丁脂肪酸酯衍生物,其制备方法及应用
CN102718818A (zh) * 2012-06-07 2012-10-10 河南工业大学 含氮曲克芦丁衍生物及其制备方法和用途
CN104726375A (zh) * 2015-03-18 2015-06-24 华南理工大学 催化秦皮甲素酯交换反应的细菌细胞催化剂的制备方法
CN105002238A (zh) * 2015-07-28 2015-10-28 华南理工大学 一种基于施氏假单胞菌细胞催化的柚皮苷羟基保护反应方法
CN105063137A (zh) * 2015-07-28 2015-11-18 华南理工大学 一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法
CN107164423A (zh) * 2017-05-27 2017-09-15 华南理工大学 一种全细胞催化制备曲克芦丁酯的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LAI, XUENENG: "Whole Cell Mediated Acylation of Esculin And Naringin", CHINESE MASTER'S THESES FULL-TEXT DATABASE, 15 December 2015 (2015-12-15) *
XIAO, Y. M. ET AL.: "Regioselective enzymatic acylation of troxerutin in nonaqueous medium", CHINESE CHEMICAL LETTERS, vol. 21, 31 December 2010 (2010-12-31), pages 59 - 62, XP055551274 *
XIAO, YONGMEI ET AL.: "Enzymatic Synthesis of Vinyl Troxerutin Esters in Nonaqueous Medium", CHINESE JOURNAL OF ORGANIC CHEMISTRY, vol. 30, no. 4, 30 April 2010 (2010-04-30), pages 551 - 557, XP055551269 *
XIN, X. ET AL.: "Facile and Efficient Acylation of Bioflavonoids Using Whole- Cell Biocatalysts in Organic Solvents", ACS SUSTAINABLE CHEMISTRY & ENGINEERING, vol. 5, no. 11, 11 October 2017 (2017-10-11), pages 10662 - 10672, XP055551243 *

Also Published As

Publication number Publication date
US20200181668A1 (en) 2020-06-11
US11286511B2 (en) 2022-03-29
CN107164423A (zh) 2017-09-15
CN107164423B (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
CN112368262A (zh) 一种制备普瑞巴林中间体(r)-3-(氨甲酰甲基)-5-甲基己酸的方法
CN106497996A (zh) 手性醇的酶催化制备方法
Liu et al. Efficient two-step chemo-enzymatic synthesis of all-trans-retinyl palmitate with high substrate concentration and product yield
Cimporescu et al. Efficient kinetic resolution of 1, 5-dihydroxy-1, 2, 3, 4-tetrahydronaphthalene catalyzed by immobilized Burkholderia cepacia lipase in batch and continuous-flow system
WO2018218903A1 (zh) 一种全细胞催化制备曲克芦丁酯的方法
CN105969836B (zh) 一种酶法拆分阿巴卡韦手性中间体文斯内酯的方法
CN103665083B (zh) 一种分离纯化11α-羟基坎利酮的方法
WO2019232708A1 (zh) 一种制备普瑞巴林的方法
MXPA97002403A (en) Selective procedure for the distillation of axila compounds
CN103804384A (zh) 苯并二氮杂卓类化合物的制备方法
CN104418825A (zh) 利普司他汀的提纯方法
JP2001252072A (ja) 酵母由来の新規リパーゼcs2
CN103554199A (zh) 一种豆腐果苷酯衍生物制备方法
CN103865976B (zh) 一种生物化学拆分8-苄基-7,9-二氧代-2,8-二氮杂双环[4.3.0]壬烷的方法
CN102409068B (zh) 一种(3aS,6aR)-生物素手性内酯的制备方法
Chattopadhyay et al. Enzymatic esterification of 3-hydroxybutyric acid
CN105925558A (zh) 一种用于制备他汀类药物的复合固定化酶及其制备方法
CN109486866A (zh) 生物催化制备(s)-4-癸醇的方法
CN115584357B (zh) 一种辅酶q10的发酵提取方法
CN115677456B (zh) 一种大麻二酚的制备方法
CN103305584B (zh) 一种酶催化拆分光学纯2-辛醇的方法
JP3583798B2 (ja) 光学活性2−メチルブタン酸およびその誘導体の製造方法
CN111850081B (zh) 使用超临界流体萃取技术拆分光学异构体的方法
RU2261901C2 (ru) Штамм гриба aspergillus terreus № 44-62 - продуцент ловастатина, промышленный способ выделения ловастатина и способ лактонизации статинов
WO2024021261A1 (zh) 一种艾日布林中间体的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17911504

Country of ref document: EP

Kind code of ref document: A1