WO2018216292A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2018216292A1
WO2018216292A1 PCT/JP2018/007440 JP2018007440W WO2018216292A1 WO 2018216292 A1 WO2018216292 A1 WO 2018216292A1 JP 2018007440 W JP2018007440 W JP 2018007440W WO 2018216292 A1 WO2018216292 A1 WO 2018216292A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
cylinders
overlap
closing timing
internal combustion
Prior art date
Application number
PCT/JP2018/007440
Other languages
English (en)
French (fr)
Inventor
藤本精一
金子雅昭
田中浩和
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to US16/614,933 priority Critical patent/US20200182163A1/en
Priority to CN201880033438.6A priority patent/CN110662891A/zh
Priority to DE112018002150.5T priority patent/DE112018002150T5/de
Publication of WO2018216292A1 publication Critical patent/WO2018216292A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • F02D13/0219Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • F02D13/0265Negative valve overlap for temporarily storing residual gas in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/004Aiding engine start by using decompression means or variable valve actuation

Definitions

  • the present invention relates to a control device for an internal combustion engine.
  • Patent Document 1 includes a variable valve timing mechanism on the exhaust side and a variable valve timing mechanism on the intake side.
  • the intake valve and the exhaust valve are controlled to minus overlap, and an electronic throttle failure occurs. In this case, a technique for prohibiting a negative overlap state is described.
  • Patent Document 1 discloses a control mode in which the opening and closing timing of an exhaust valve is advanced for the purpose of improving startability and reducing exhaust emission during cold start, and the exhaust valve is closed before exhaust top dead center (TDC).
  • the valve timing mechanism of Patent Document 1 is configured hydraulically and is supplied with hydraulic oil from a hydraulic pump driven by an engine.
  • Patent Document 2 discloses a variable valve mechanism technique in which at least one of an intake valve and an exhaust valve is provided with a variable valve, and exhaust gas is blown back by controlling the variable valve from the start to the start of the internal combustion engine. Are listed.
  • Patent Document 2 describes that exhaust gas is blown out and atomized fuel is atomized by a minus overlap that is set so that the intake valve and the exhaust valve are closed simultaneously.
  • exhaust valve early closing control during low-temperature and low-speed operation immediately after starting, it is described that the responsiveness of valve timing control is reduced in both the hydraulic variable valve mechanism and the electric variable valve mechanism. Has been.
  • An internal combustion engine is required to have good startability when starting in a relatively warm environment, and also has good room for improvement because it requires good startability even in an extremely low temperature environment below 10 ° C.
  • a feature of the present invention is that a plurality of cylinders having a piston that reciprocates in a cylinder in association with rotation of a crankshaft, and an intake valve and an exhaust valve that open and close a combustion chamber in association with rotation of the crankshaft,
  • An internal combustion engine comprising: a starter motor that drives and rotates a crankshaft; and a valve opening / closing timing control mechanism that sets an opening / closing timing of the exhaust valve by driving an electric actuator;
  • An environmental temperature sensor for detecting an environmental temperature around the internal combustion engine; When the ambient temperature detected by the ambient temperature sensor is less than 10 degrees below freezing, the order is set so that the starter motor burns first among the plurality of cylinders in a situation where cranking is performed.
  • the electric actuator is controlled so that EVC that is the closing timing of the exhaust valve is different from TDC that is the top dead center of the piston of the combustion chamber.
  • the valve opening / closing timing control mechanism is operated by driving the electric actuator.
  • EVC which is the closing timing of the exhaust valve
  • ATDC which is after TDC, which is the top dead center of the piston
  • EVC the closing timing of the exhaust valve
  • TDC the top dead center of the piston
  • the exhaust valve open / close timing can be arbitrarily set by the valve open / close timing control mechanism by controlling the electric actuator even at extremely low temperatures. There is no change. Further, in this configuration, the valve opening / closing timing control mechanism sets the opening / closing timing of the exhaust valve by the driving force of the electric actuator, so that the closing timing can be set immediately after the start of cranking as compared with the configuration operated by hydraulic pressure. Therefore, a control device has been constructed that can start the internal combustion engine satisfactorily even in a cryogenic environment.
  • the EVC when the first combustion of the cylinders in which the order is set to be burned first among the plurality of cylinders is performed, the EVC is set to ATDC after the TDC.
  • An overlap that overlaps the EVC and the IVO that is the opening timing of the intake valve may be set.
  • an overlap is created between the exhaust valve and the intake valve, and an internal EGR that takes a part of the combustion gas into the combustion chamber in the intake stroke causes the combustion gas to contact the inner wall of the piston, thereby increasing the temperature of the inner wall.
  • the internal combustion engine can be started well at extremely low temperatures.
  • the overlap amount of the overlap may be reduced after the rotation speed of the crankshaft exceeds a predetermined set value.
  • a negative overlap may be set between the EVC and the IVO that is the opening timing of the intake valve.
  • the combustion gas in the combustion stroke is temporarily confined in the combustion chamber to increase the temperature of the cylinder inner wall of the combustion chamber and the like, and a good start of the internal combustion engine is realized at a very low temperature .
  • the lap amount of the negative overlap may be reduced after the rotation speed of the crankshaft exceeds a predetermined value.
  • the EVC is set later than IVO that is the opening timing of the intake valve.
  • the electric actuator may be controlled to set the overlap.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 2.
  • It is a disassembled perspective view of a valve opening / closing timing control mechanism.
  • It is a flowchart of a starting routine.
  • 3 is a flowchart of a first cryogenic start routine.
  • It is a timing diagram which shows an overlap state.
  • It is a timing diagram which shows the state which eliminated the overlap.
  • It is a timing diagram which shows a negative overlap state.
  • It is a timing diagram which shows the state which eliminated the negative overlap.
  • It is a chart which shows the relationship between an engine speed and an overlap.
  • an intake-side valve opening / closing timing control mechanism VTa for setting an opening / closing timing of an intake valve Va of an engine E as an internal combustion engine
  • an exhaust-side valve opening / closing timing control for setting an opening / closing timing of an exhaust valve Vb.
  • An engine control device 40 that functions as an ECU is configured to control the mechanism VTb and the engine E.
  • the engine E (an example of an internal combustion engine) shown in FIGS. 1 and 2 is assumed to be provided in a vehicle such as a passenger car.
  • the engine E has a cylinder head 3 connected to an upper portion of a cylinder block 2 that supports the crankshaft 1, and a piston 4 is slidably accommodated in a plurality of cylinder bores formed in the cylinder block 2, and the piston 4 is connected to a connecting rod 5. Is connected to the crankshaft 1 to form a four-cycle type.
  • the cylinder head 3 is provided with an intake valve Va that is opened when the combustion chamber is inhaled and an exhaust valve Vb that is opened when the combustion gas is discharged from the combustion chamber, and an intake valve that controls the intake valve Va is provided above the cylinder head 3.
  • a camshaft 7 and an exhaust camshaft 8 that controls the exhaust valve Vb are provided.
  • the timing chain 6 is wound around the output sprocket 1S of the crankshaft 1 and the sprocket 21S of the drive case 21 of the intake side valve opening / closing timing control mechanism VTa and the exhaust side valve opening / closing timing control mechanism VTb. .
  • the cylinder head 3 is provided with an injector 9 and a spark plug 10 for injecting fuel into the combustion chamber.
  • An intake manifold 11 that supplies air to the combustion chamber via an intake valve Va and an exhaust manifold 12 that sends combustion gas from the combustion chamber via an exhaust valve Vb are connected to the cylinder head 3.
  • the engine E includes a starter motor 15 that drives and rotates the crankshaft 1, and a shaft sensor 16 that detects a rotation angle and a rotation speed (the number of rotations per unit time) in the vicinity of the crankshaft 1.
  • An intake side phase sensor 17 for detecting the relative rotational phase between the drive case 21 and the internal rotor 22 is provided in the vicinity of the intake side valve opening / closing timing control mechanism VTa, and the drive is provided in the vicinity of the exhaust side valve opening / closing timing control mechanism VTb.
  • An exhaust-side phase sensor 18 that detects a relative rotational phase between the case 21 and the internal rotor 22 is provided.
  • the engine E is provided with a temperature sensor 14 (an example of an environmental temperature sensor) that detects the water temperature of the cooling water in the water jacket.
  • the temperature sensor 14 is used for control for managing the water temperature when the engine E is in operation.
  • the engine control device 40 detects the ambient environmental temperature and sets the valve opening / closing timing when the engine E is started.
  • a sensor that detects the temperature of a space separated from the engine E such as a sensor that detects the temperature in the engine room of the vehicle, may be used.
  • the engine E includes a cylinder discrimination unit (not shown) that discriminates a cylinder to be combusted, and the shaft sensor 16 is configured by using a part of the configuration of the cylinder discrimination unit.
  • the engine control device 40 functions as an ECU that controls the engine E, and includes a start control unit 41 and a phase control unit 42.
  • the start control unit 41 controls the start of the engine E.
  • the phase control unit 42 controls the relative rotation phase between the intake side valve opening / closing timing control mechanism VTa and the exhaust side valve opening / closing timing control mechanism VTb. Details of the engine control device 40 and the control mode will be described later.
  • valve opening / closing timing control mechanism VT controls the opening / closing timing of the corresponding valve by the driving force of the phase control motor M as an electric actuator.
  • FIGS. 2 to 5 show a valve opening / closing timing control mechanism VTa on the intake side.
  • the valve opening / closing timing control mechanism VTa has a drive case 21 and an internal rotor 22 and controls the phase of the relative rotational phases thereof.
  • a phase adjustment unit that is set by the driving force of the motor M is provided.
  • the drive case 21 has a sprocket 21S formed on the outer periphery and is disposed coaxially with the rotational axis X of the intake camshaft 7.
  • the internal rotor 22 is included so as to be rotatable relative to the drive case 21, and is connected and fixed to the intake camshaft 7 by a connecting bolt 23.
  • a phase adjuster is disposed between the drive case 21 and the internal rotor 22, a front plate 24 is disposed at a position covering the opening of the drive case 21, and this is fastened to the drive case 21 with a plurality of fastening bolts 25.
  • the internal rotor 22 is connected to the exhaust camshaft 8.
  • valve opening / closing timing control mechanism VTa the whole rotates in the driving rotation direction S by the driving force from the timing chain 6 as shown in FIG.
  • the direction in which the relative rotational phase of the internal rotor 22 with respect to the drive case 21 is displaced in the same direction as the drive rotation direction S by the driving force of the phase control motor M is referred to as the advance angle direction Sa, and the displacement in the opposite direction is delayed. This is referred to as the angular direction Sb.
  • the phase adjuster includes a plurality of internal teeth 26 ⁇ / b> T integrally formed on the inner periphery of the inner rotor 22, and includes a ring gear 26 disposed coaxially with the rotational axis X.
  • An eccentric cam body 28 having a plurality of external teeth 27T for engaging with the inner gear 27, an inner gear 27 arranged coaxially with the eccentric shaft core Y in a posture parallel to the rotational shaft core X, And a joint portion J.
  • the number of teeth of the outer tooth portion 27T of the inner gear 27 is smaller by one than the number of teeth of the inner tooth portion 26T of the ring gear 26.
  • joint portion J is configured as an Oldham joint that prevents relative rotation between the drive case 21 and the internal rotor 22 while allowing the internal rotor 22 to be displaced in a direction perpendicular to the rotation axis X with respect to the drive case 21. Has been.
  • the eccentric cam body 28 is supported by the first bearing 31 with respect to the front plate 24 so as to rotate coaxially with the rotation axis X.
  • the eccentric cam body 28 is integrally formed with an eccentric cam surface 28A centering on the eccentric shaft core Y in a posture parallel to the rotational axis X, and the inner gear 27 is connected to the eccentric cam surface 28A via the second bearing 32. It is supported rotatably. Further, a spring body 29 is fitted into a recess formed in the eccentric cam surface 28A, and the urging force of the spring body 29 is applied to the inner gear 27 via the second bearing 32.
  • the eccentric cam body 28 has a tubular shape as a whole, and a pair of engaging grooves 28B are formed in an inner periphery in a posture that is parallel to the rotation axis X.
  • the joint part J has a joint member 33 formed by pressing a plate material.
  • the joint portion J engages a pair of engagement arms 33A formed on the joint member 33 with the engagement groove portion 21G of the drive case 21, and the pair of engagement recesses 33B formed on the joint member 33 engages with the engagement protrusion of the inner gear 27. It is configured to be engaged with the portion 27U.
  • the joint member 33 has a central portion formed in an annular shape, and a pair of engaging arms 33A projecting outward from the annular central portion, and is connected to a space in the annular central portion.
  • the engaging recess 33B is formed.
  • the joint member 33 is freely displaceable in a linear direction connecting the pair of engaging groove portions 21G of the drive case 21, and the inner gear 27 is connected to the joint member 33 in a linear direction connecting the pair of engaging protrusions 27U. Displaceable.
  • the phase control motor M (see FIG. 2) is supported by the engine E, and includes an engagement pin 34 provided in an orthogonal posture with respect to the output shaft Ma.
  • the engagement pin 34 is attached to the eccentric cam body 28. It fits into the inner circumferential engagement groove 28B.
  • a brushless DC motor is used, but a synchronous motor such as a stepping motor may be used.
  • the joint portion J has a structure that restricts the rotation of the inner gear 27 with respect to the drive case 21. Therefore, the inner gear 27 does not rotate with respect to the drive case 21, and the ring gear 26 rotates with respect to the drive case 21 by the rotational force acting on the inner gear 27. As a result, the inner rotor 22 rotates relative to the ring gear 26 integrally, and the rotation phase of the intake camshaft 7 relative to the drive case 21 is adjusted.
  • the intake camshaft 7 is different from the drive case 21 in the number of teeth of the outer teeth 27T of the inner gear 27 (the number of teeth difference). Adjustment is realized with a large reduction ratio since the rotation is performed by an angle corresponding to.
  • phase opening / closing timing control mechanism Overview of phase adjustment
  • the phase control unit 42 of the engine control device 40 outputs the output shaft of the phase control motor M in the same direction as the rotational speed of the intake camshaft 7.
  • the relative rotation phase between the drive case 21 and the internal rotor 22 is maintained by driving and rotating Ma.
  • the relative rotational phase is displaced in the advance angle direction Sa or the retard angle direction Sb by increasing or decreasing the rotation speed of the phase control motor M with reference to the rotation speed of the intake camshaft 7.
  • the displacement direction of the relative rotational phase with respect to the increase or decrease of the rotational speed of the phase control motor M is determined by the gear configuration of the phase adjustment unit.
  • valve opening / closing timing control mechanism VT displaces the relative rotational phase by the driving force of the phase control motor M.
  • movement at high speed is possible compared with what implement
  • valve opening / closing timing control mechanism VT is not limited to the structure shown in the embodiment because the valve opening / closing timing of the corresponding valve may be controlled by the driving force of an actuator such as an electric motor.
  • the engine control device 40 receives detection signals from the temperature sensor 14, the shaft sensor 16, the intake side phase sensor 17, and the exhaust side phase sensor 18 as well as the intake side and the exhaust side.
  • the control signal is output to the phase control motor M and the starter motor 15, and the control signal is output to the combustion management unit 19 that controls the injector 9 and the spark plug 10.
  • the start control unit 41 realizes cranking by controlling the starter motor 15.
  • the phase control unit 42 controls the phase control motor M of the intake side valve opening / closing timing control mechanism VTa and the phase control motor M of the exhaust side valve opening / closing timing control mechanism VTb, thereby controlling the opening / closing timing of the intake valve Va. Setting and setting of the opening / closing timing of the exhaust valve Vb are made possible.
  • the direction for advancing the IVO that is the opening timing of the intake valve Va and the EVO that is the opening timing of the exhaust valve Vb is advanced.
  • the opposite direction is referred to as a retarded direction (retarded side).
  • start control unit 41 and the phase control unit 42 of the engine control device 40 are configured by software, these may be configured by hardware including a circuit having logic or the like. It may be configured by a combination of software and hardware.
  • the combustion management unit 19 manages the operation of pumps that supply fuel to the injector 9 and manages the ignition sequence and ignition timing by controlling an ignition circuit that supplies electric power to the spark plug 10.
  • the intake side valve The opening / closing timing of the intake valve Va is set by controlling the opening / closing timing control mechanism VTa, and the opening / closing timing of the exhaust valve Vb is set by controlling the valve opening / closing timing control mechanism VTb on the exhaust side (steps # 103 and # 104).
  • steps # 103 and # 104 the IVO that is the opening timing of the intake valve Va and the EVC that is the closing timing of the exhaust valve Vb coincide with the TDC that is the top dead center of the piston 4 as shown in the timing diagram of FIG. Control is performed.
  • a region where exhaust is performed by the exhaust valve Vb is shown as an exhaust region Ex
  • a region where intake is performed by the intake valve Va is shown as an intake region In. Note that a slight overlap may be set for each of the opening and closing timings by controlling the IVO that is the opening timing of the intake valve Va in the advance direction.
  • cranking is started by driving the starter motor 15, cylinder discrimination is performed, and the rotation speed of the crankshaft 1 (the number of rotations per unit time) is determined in accordance with the order in which the combustion management unit 19 is set at a predetermined timing.
  • the combustion of the chamber is started (Steps # 105 to # 107).
  • the starter motor 15 is stopped after combustion has started in all cylinders.
  • a first cryogenic start routine as one form of the cryogenic start routine #Sub is shown in the flowchart of FIG.
  • the opening / closing timing of the intake valve Va is set by the control of the intake side valve opening / closing timing control mechanism VTa
  • the opening / closing timing of the exhaust valve Vb is controlled by the control of the exhaust side valve opening / closing timing control mechanism VTb. Is set (steps # 201 and # 202).
  • the IVO that is the opening timing of the intake valve Va is matched with the TDC that is the top dead center of the piston 4, and the EVC that is the closing timing of the exhaust valve Vb is By setting the phase of the ATDC after the TDC (the most retarded position in this control), an overlap is set so that the EVC that is the closing timing overlaps the IVO that is the opening timing of the intake valve Va.
  • cranking is performed by the starter motor 15, and the first combustion of the cylinders in which the order is set so as to burn first among the plurality of cylinders is performed.
  • control is performed such that EVC, which is the closing timing of the exhaust valve Vb, is different from TDC, which is the top dead center of the piston 4 in the combustion chamber.
  • EVC which is the closing timing of the exhaust valve Vb
  • TDC which is the top dead center of the piston 4 in the combustion chamber.
  • cranking is started by driving the starter motor 15, cylinder discrimination is performed, and combustion in each combustion chamber is started at a predetermined timing in the order set by the combustion management unit 19 (steps # 203 to # 205). ).
  • control for changing the overlap to “0” overlap is performed.
  • a specific example of control for reducing the lap amount is performed, and control for stopping the starter motor 15 is performed (steps # 206 and # 207).
  • control is performed to change the overlap to “0” at a timing when it is determined that the crankshaft 1 has been rotated by a predetermined amount (predetermined angle).
  • a predetermined amount predetermined angle
  • control may be performed to change the lap amount to “0” at the timing when it is determined that combustion has been performed in the set number of cylinders.
  • the exhaust valve closing timing EVC coincides with the IVO which is the opening timing of the intake valve Va by the control of the exhaust side valve opening / closing timing control mechanism VTb (to TDC).
  • the overlap may be slightly set instead of the control for changing the overlap amount of the overlap to “0”.
  • the EVC which is the closing timing of the exhaust valve Vb, is set to the most retarded position so that the EVC is set to the phase of the ATDC after the TDC.
  • the temperature can be raised by internal EGR.
  • the inner surface of the cylinder is also in a low temperature state. Therefore, when fuel is injected by the injector 9, the fuel that contacts the inner surface of the cylinder forms droplets and adheres to the inner surface of the cylinder, resulting in a decrease in combustion performance. Was also invited.
  • the opening / closing timing of the intake valve Va is not changed, the intake amount in the intake stroke is not changed, for example, combustion without changing the air-fuel ratio is enabled. Furthermore, in the case of creating an overlap in the phase of ATDC, as shown in FIG. 13, with the passage of time, the rotation speed of the crankshaft 1 (engine rotation speed) reaches the set rotation speed, and thereafter, the overlap becomes “0”. Even after the change, the engine speed increases smoothly, and a smooth start is realized.
  • the EVC that is the closing timing of the exhaust valve Vb is set to the phase of the ATDC after the TDC that is the top dead center.
  • the IVO which is the opening timing of the intake valve Va
  • the IVO is set before the top dead center TDC (BTDC phase) or after the TDC (ATDC phase). It is also possible to do.
  • a second cryogenic start routine as another form of the cryogenic start routine #Sub is shown in the flowchart of FIG.
  • the opening / closing timing of the intake valve Va is set by the control of the intake side valve opening / closing timing control mechanism VTa
  • the opening / closing timing of the exhaust valve Vb is controlled by the control of the exhaust side valve opening / closing timing control mechanism VTb. Is set (steps # 301 and # 302).
  • cranking is performed by the starter motor 15 and when the first combustion of the cylinders in which the order is set so as to burn first among the plurality of cylinders is performed. Then, control is performed such that EVC, which is the closing timing of the exhaust valve Vb, is different from TDC, which is the top dead center of the piston 4 in the combustion chamber.
  • EVC which is the closing timing of the exhaust valve Vb
  • TDC which is the top dead center of the piston 4 in the combustion chamber.
  • cranking is started by driving the starter motor 15, cylinder discrimination is performed, and combustion in each combustion chamber is started at a predetermined timing in the order set by the combustion management unit 19 (steps # 303 to # 305). ).
  • control is performed to change the negative overlap to “0” at the timing when it is determined that the crankshaft 1 has been rotated by a predetermined amount (predetermined angle).
  • control may be performed to change the lap amount to “0” at the timing when it is determined that combustion has been performed in the set number of cylinders.
  • the exhaust valve closing timing EVC coincides with the IVO which is the opening timing of the intake valve Va by the control of the exhaust valve opening / closing timing control mechanism VTb (TDC). Is also matched). Note that a slight negative overlap may be set instead of the control for changing the overlap amount of the negative overlap to “0”.
  • the EVC which is the closing timing of the exhaust valve Vb, is set to the most advanced angle position, so that the EVC is set to the phase of BTDC before the TDC.
  • a negative overlap is created, and the temperature can be raised by containing combustion gas in the combustion chamber.
  • the inner surface of the cylinder is also in a low temperature state. Therefore, when fuel is injected by the injector 9, the fuel that contacts the inner surface of the cylinder forms droplets and adheres to the inner surface of the cylinder, resulting in a decrease in combustion performance. Was also invited.
  • the EVC that is the closing timing of the exhaust valve Vb is set to the phase of BTDC before the TDC that is the top dead center.
  • the IVO that is the opening timing of the intake valve Va is set before the TDC that is the top dead center (the phase of BTDC), or after the TDC that is the top dead center (ATDC) It is also possible to set it to (phase).
  • the present invention can be used in a control device for an internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

極低温の環境においても内燃機関を良好に始動させ得る制御装置を構成する。クランクシャフトの回転に連係して往復作動するピストンと燃焼室を開閉する吸気バルブおよび排気バルブとを有する複数の気筒と、クランクシャフトを駆動回転するスタータモータと、電動アクチュエータの駆動により排気バルブの開閉時期を設定する弁開閉時期制御機構とを備えて内燃機関が構成されている。制御装置は、環境温度センサで検知される環境温度が氷点下10度未満にある場合に、クランキングが行われ、複数の気筒のうち最初に燃焼するように順序が設定された気筒で最初の燃焼が行われる時点では、排気バルブの閉時期を、ピストンの上死点と異ならせるように電動アクチュエータを制御する。

Description

内燃機関の制御装置
 本発明は、内燃機関の制御装置に関する。
 特許文献1には、排気側の可変バルブタイミング機構と、吸気側の可変バルブタイミング機構とを備え、冷間時に吸気バルブと、排気バルブとをマイナスオーバーラップに制御し、電子スロットルフェイルが発生した場合に、マイナスオーバーラップ状態を禁止する技術が記載されている。
 特許文献1では、冷間始動時に始動性の向上および排気エミッションの低減を目的として排気バルブの開閉タイミングを早め、排気バルブが排気上死点(TDC)より以前に閉じる制御形態が示されている。特に、この特許文献1のバルブタイミング機構は油圧式に構成され、エンジンで駆動される油圧ポンプからの作動油が供給される。
 特許文献2には、吸気バルブと排気バルブと少なくとも一方に可変動弁を備え、内燃機関の始動から始動後にかけて可変動弁を制御することで排気ガスの吹き返しを行わせる可変動弁機構技術が記載されている。
 特許文献2では、吸気バルブと排気バルブとが同時に閉じ状態になるように設定するマイナスオーバーラップにより、排気ガスの吹き出しを行わせ、噴射燃料の微粒子化を行う点が記載されている。また、始動直後の低温、低速運転時に排気バルブ早閉じ制御を行う場合に、油圧式可変動弁機構と電動式可変動弁機構との何れでも、バルブタイミング制御の応答性が低下することが記載されている。
特開2008-274822号公報 特開2009-216034号公報
 レシプロ型の内燃機関では、冷熱状態で内燃機関を始動する際に、特許文献1、2にも記載されるように、吸気バルブと排気バルブとのオーバーラップ量の設定により始動性を向上させることが考えられる。しかしながら、吸気バルブと排気バルブとの弁開閉時期制御機構が油圧によって作動するものでは、冷熱状態の環境で作動油の粘性が高いことに起因して適正な作動を期待できないものである。しかも、内燃機関の駆動力により作動油を供給するものでは、クランキング時に必要とする作動を行い難いものであった。
 内燃機関は、比較的温暖な環境で始動する際に良好な始動性が求められると共に、氷点下10度未満の極低温の環境においても良好な始動性が求められるものであり改善の余地がある。
 このような理由から、極低温の環境においても内燃機関を良好に始動させ得る制御装置が求められる。
 本発明の特徴は、クランクシャフトの回転に連係してシリンダ内で往復作動するピストンと前記クランクシャフトの回転に連係して燃焼室を開閉する吸気バルブおよび排気バルブとを有する複数の気筒と、前記クランクシャフトを駆動回転させるスタータモータと、電動アクチュエータの駆動により前記排気バルブの開閉時期を設定する弁開閉時期制御機構と、を備えて内燃機関が構成され、
 前記内燃機関の周囲の環境温度を検知する環境温度センサを備え、
 前記環境温度センサで検知される前記環境温度が氷点下10度未満にある場合には、前記スタータモータによってクランキングが行われる状況で、複数の前記気筒のうち最初に燃焼するように順序が設定された前記気筒の最初の燃焼が行われる時点で、前記排気バルブの閉時期であるEVCを、前記燃焼室のピストンの上死点であるTDCと異ならせるように前記電動アクチュエータを制御する点にある。
 この特徴構成によると、氷点下10度未満の極低温の環境でスタータモータによってクランキングが開始される状況では、複数の気筒のうち最初に燃焼するように設定された気筒の最初の燃焼が行われる時点で、電動アクチュエータの駆動により弁開閉時期制御機構を作動させる。この作動では、例えば、排気バルブの閉時期であるEVCを、ピストンの上死点であるTDCより後であるATDCに設定することでオーバーラップによる内部EGRによる燃焼室の昇温が可能となる。これとは逆に、EVCを、TDCより前のBTDCに設定することでネガティブオーバーラップによる燃焼ガスの一時的な閉じ込めによる昇温も可能となる。
 つまり、極低温下であっても電動アクチュエータを制御することにより弁開閉時期制御機構によって排気バルブの開閉時期を任意に設定できると共に、このように排気バルブの開閉時期を設定しても、吸気量を変化させることもない。更に、この構成では弁開閉時期制御機構が電動アクチュエータの駆動力により排気バルブの開閉時期を設定する構成であるため、油圧によって作動する構成と比較してクランキング開始直後から閉時期を設定できる。
 従って、極低温の環境においても内燃機関を良好に始動させ得る制御装置が構成された。
 他の構成として、複数の前記気筒のうち最初に燃焼するように順序が設定された前記気筒の最初の燃焼が行われる時点では、前記EVCを、前記TDCより後であるATDCに設定することにより、前記EVCと前記吸気バルブの開時期であるIVOとを重複させるオーバーラップが設定されても良い。
 これによると、排気バルブと吸気バルブとの間にオーバーラップを作り出し、吸気行程において燃焼ガスの一部を燃焼室に取り込む内部EGRにより、燃焼ガスをピストンの内壁に接触させて内壁の温度上昇を図り、極低温において内燃機関の良好な始動を実現する。
 他の構成として、前記クランクシャフトの回転数が所定の設定値を超えた後に、前記オーバーラップのラップ量を低減させても良い。
 これによると、燃焼室での燃焼が開始された後には、オーバーラップ量を低減することにより燃焼ガスによる影響を抑制して安定した燃焼を行うことができる。
 他の構成として、複数の前記気筒のうち最初に燃焼するように順序が設定された前記気筒の最初の燃焼が行われる時点では、前記EVCを前記TDCより前となるBTDCに設定することにより、前記EVCと前記吸気バルブの開時期であるIVOとの間にネガティブオーバーラップを設定しても良い。
 これによると、ネガティブオーバーラップを作り出すことにより、燃焼行程の燃焼ガスを一時的に燃焼室に閉じ込めて燃焼室のシリンダ内壁等の温度上昇を図り、極低温において内燃機関の良好な始動を実現する。
 他の構成として、前記クランクシャフトの回転数が所定値を超えた後に、前記ネガティブオーバーラップのラップ量を低減しても良い。
 これによると、燃焼室での燃焼が開始された後には、ネガティブオーバーラップ量を低減することにより吸気行程での吸気量を増大させて必要とする燃焼を行うことができる。
 他の構成として、複数の前記気筒のうち最初に燃焼するように順序が設定された前記気筒の最初の燃焼が行われる時点では、前記EVCを、前記吸気バルブの開時期であるIVOより遅くしてオーバーラップを設定するように前記電動アクチュエータを制御しても良い。
 これによると、排気バルブの閉時期であるEVCを、吸気バルブの開時期であるIVOより遅くしてオーバーラップを作り出すことが可能となる。
エンジンの断面と制御ユニットとを示す図である。 弁開閉時期制御機構の断面図である。 図2のIII-III線断面図である。 図2のIV-IV線断面図である。 弁開閉時期制御機構の分解斜視図である。 始動ルーチンのフローチャートである。 第1の極低温始動ルーチンのフローチャートである。 オーバーラップ状態を示すタイミングダイヤグラムである。 オーバーラップをなくした状態を示すタイミングダイヤグラムである。 第2の極低温始動ルーチンのフローチャートである。 ネガティブオーバーラップ状態を示すタイミングダイヤグラムである。 ネガティブオーバーラップをなくした状態を示すタイミングダイヤグラムである。 エンジン回転数とオーバーラップとの関係を示すチャートである。
 以下、本発明の実施形態を図面に基づいて説明する。
〔基本構成〕
 図1に示すように、内燃機関としてのエンジンEの吸気バルブVaの開閉時期を設定する吸気側の弁開閉時期制御機構VTaと、排気バルブVbの開閉時期を設定する排気側の弁開閉時期制御機構VTbと、エンジンEと、を制御するようにECUとして機能するエンジン制御装置40が構成されている。
 図1、図2に示すエンジンE(内燃機関の一例)は、乗用車等の車両に備えられるものを想定している。エンジンEは、クランクシャフト1を支持するシリンダブロック2の上部にシリンダヘッド3を連結し、シリンダブロック2に形成された複数のシリンダボアにピストン4を摺動自在に収容し、ピストン4をコネクティングロッド5によりクランクシャフト1に連結して4サイクル型に構成されている。
 エンジンEでは、一方の端部から他方に向けて#1気筒、#2気筒、#3気筒、#4気筒(図2では、#1、#2、#3、#4として示している)が配置され、シリンダの内部空間のうちピストン4とシリンダヘッド3との間に燃焼室が形成される。
 シリンダヘッド3には、燃焼室への吸気時に開放する吸気バルブVaと、燃焼室の燃焼ガスの排出時に開放する排気バルブVbとが備えられ、シリンダヘッド3の上部に吸気バルブVaを制御する吸気カムシャフト7と、排気バルブVbを制御する排気カムシャフト8とが備えられている。また、クランクシャフト1の出力スプロケット1Sと、吸気側の弁開閉時期制御機構VTaおよび排気側の弁開閉時期制御機構VTbの駆動ケース21のスプロケット21Sとに亘ってタイミングチェーン6が巻回されている。
 更に、シリンダヘッド3には、燃焼室に燃料を噴射するインジェクタ9と点火プラグ10とが備えられている。シリンダヘッド3には、吸気バルブVaを介して燃焼室に空気を供給するインテークマニホールド11と、排気バルブVbを介して燃焼室からの燃焼ガスを送り出すエキゾーストマニホールド12とが連結する。
 エンジンEでは、クランクシャフト1を駆動回転するスタータモータ15を備え、クランクシャフト1の近傍位置には回転角と回転速度(単位時間あたりの回転数)とを検知するシャフトセンサ16を備えている。吸気側の弁開閉時期制御機構VTaの近傍には駆動ケース21と内部ロータ22との相対回転位相を検知する吸気側位相センサ17を備え、排気側の弁開閉時期制御機構VTbの近傍には駆動ケース21と内部ロータ22との相対回転位相を検知する排気側位相センサ18を備えている。
 また、エンジンEにはウォータジャケットの冷却水の水温を検知する温度センサ14(環境温度センサの一例)を備えている。温度センサ14はエンジンEの稼動時に水温を管理する制御に用いられるものであるが、エンジン制御装置40ではエンジンEの始動時においては、周囲の環境温度を検知すると共に、バルブの開閉時期の設定に利用される。温度センサ14(環境温度センサ)として、車両のエンジンルーム内の温度を検知するもの等、エンジンEから離間する空間の温度を検知するものを用いても良い。
 尚、エンジンEでは、燃焼対象となる気筒を判別する気筒判別ユニット(図示せず)を備えており、この気筒判別ユニットの一部の構成を用いてシャフトセンサ16が構成されている。
 エンジン制御装置40は、エンジンEを制御するECUとして機能するものであり、始動制御部41と、位相制御部42とを備えている。始動制御部41はエンジンEの始動を制御する。位相制御部42は、吸気側の弁開閉時期制御機構VTaと排気側の弁開閉時期制御機構VTbとの相対回転位相を制御する。エンジン制御装置40の詳細と制御形態は後述する。
〔弁開閉時期制御機構〕
 吸気側の弁開閉時期制御機構VTaと、排気側の弁開閉時期制御機構VTbとは共通する構成であるため、これらの上位概念を弁開閉時期制御機構VTと称する。また、弁開閉時期制御機構VTは、電動アクチュエータとしての位相制御モータMの駆動力により対応するバルブの開閉時期を制御する。
 図2~図5には吸気側の弁開閉時期制御機構VTaを示しており、弁開閉時期制御機構VTaは、駆動ケース21と、内部ロータ22とを有すると共に、これらの相対回転位相を位相制御モータMの駆動力により設定する位相調節部を備えている。
 駆動ケース21は、外周にスプロケット21Sが形成されると共に、吸気カムシャフト7の回転軸芯Xと同軸芯に配置されている。内部ロータ22は、駆動ケース21に対して相対回転自在に内包され、連結ボルト23により吸気カムシャフト7に連結固定されている。駆動ケース21と内部ロータ22との間に位相調節部が配置され、駆動ケース21の開口部分を覆う位置にフロントプレート24を配置し、これを複数の締結ボルト25により駆動ケース21に締結している。尚、排気側の弁開閉時期制御機構VTbでは、内部ロータ22が排気カムシャフト8に連結する。
 弁開閉時期制御機構VTaでは、図3に示すようにタイミングチェーン6からの駆動力により全体が駆動回転方向Sに回転する。また、位相制御モータMの駆動力により駆動ケース21に対する内部ロータ22の相対回転位相が、駆動回転方向Sと同方向に変位する方向を進角方向Saと称し、この逆方向への変位を遅角方向Sbと称する。
〔弁開閉時期制御機構:位相調節部〕
 図2~図5に示すように、位相調節部は、内部ロータ22の内周に一体形成される複数の内歯部26Tを有し、回転軸芯Xと同軸芯に配置されるリングギヤ26を備えると共に、これに咬合するための複数の外歯部27Tを有し、回転軸芯Xに平行する姿勢の偏心軸芯Yと同軸芯に配置されるインナギヤ27を備え、偏心カム体28と、継手部Jとを備えて構成される。
 この位相調節部では、リングギヤ26の内歯部26Tの歯数に対して、インナギヤ27の外歯部27Tの歯数が1歯だけ少ないものが用いられる。
 また、継手部Jは、駆動ケース21に対して内部ロータ22が回転軸芯Xに直交する方向への変位を許しつつ、駆動ケース21と内部ロータ22との相対回転を阻止するオルダム継手として構成されている。
 偏心カム体28は、回転軸芯Xと同軸芯で回転するようにフロントプレート24に対して第1軸受31により支持されている。偏心カム体28には、回転軸芯Xに平行する姿勢の偏心軸芯Yを中心とする偏心カム面28Aが一体形成され、偏心カム面28Aに対して第2軸受32を介してインナギヤ27が回転自在に支持される。また、偏心カム面28Aに形成した凹部にバネ体29を嵌め込み、このバネ体29の付勢力を、第2軸受32を、介してインナギヤ27に作用させている。
 偏心カム体28は全体に筒状であり、内周には、一対の係合溝28Bが回転軸芯Xと平行となる姿勢で形成されている。
 これにより、リングギヤ26の内歯部26Tの一部にインナギヤ27の外歯部27Tの一部が咬合する。尚、第1軸受31と第2軸受32とはボールベアリングで構成されるものであるが、ブッシュで構成されるものでも良い。
 継手部Jは、板材をプレス加工して成る継手部材33を有している。継手部Jは、継手部材33に形成した一対の係合アーム33Aを駆動ケース21の係合溝部21Gに係合させ、継手部材33に形成した一対の係合凹部33Bをインナギヤ27の係合突部27Uに係合させて構成されている。
 つまり、継手部材33は、中央部分が環状に形成されると共に、この環状の中央部分から外方に向けて一対の係合アーム33Aを突出形成し、環状の中央部分の空間と連なるように一対の係合凹部33Bを形成した構造を有している。
 継手部Jでは、継手部材33が、駆動ケース21の一対の係合溝部21Gを結ぶ直線方向に変位自在となり、継手部材33に対してインナギヤ27が一対の係合突部27Uを結ぶ直線方向に変位自在となる。
 位相制御モータM(図2参照)は、エンジンEに支持されると共に、出力軸Maに対して直交姿勢で備えた係合ピン34を備えており、係合ピン34を、偏心カム体28の内周の係合溝28Bに嵌め込んでいる。尚、位相制御モータMには、ブラシレス直流モータが使用されるが、ステッピングモータ等の同期モータを用いても良い。
 これにより、エンジンEが停止する状態で作動形態を考えると、位相制御モータMの駆動力で偏心カム体28が回転した場合には、偏心カム面28Aが回転軸芯Xを中心に回転し、この回転に伴いインナギヤ27が回転軸芯Xを中心に公転を開始する。この公転時には、インナギヤ27の外歯部27Tとリングギヤ26の内歯部26Tとの咬合位置がリングギヤ26の内周に沿って変位するためインナギヤ27には偏心軸芯Yを中心に自転させる力が作用する。
 つまり、インナギヤ27が1回転だけ公転した場合には、リングギヤ26の内歯部26Tの歯数と、インナギヤ27の外歯部27Tの歯数との差(歯数差)に相当する角度(1歯に対応する角度)だけインナギヤ27に対して回転させようとする回転力(自転力)が作用する。
 前述したように、継手部Jは、駆動ケース21に対するインナギヤ27の回転を規制する構造である。そのため、駆動ケース21に対してインナギヤ27が回転することはなく、インナギヤ27に作用する回転力により、駆動ケース21に対してリングギヤ26が回転する。これにより、リングギヤ26と一体的に内部ロータ22が相対回転することになり、駆動ケース21に対する吸気カムシャフト7の回転位相の調節が実現する。
 特に、インナギヤ27が、回転軸芯Xを中心に1回転だけ公転した場合には、駆動ケース21に対して吸気カムシャフト7を、インナギヤ27の外歯部27Tの歯数と差(歯数差)に相当する角度だけ回転させるため大きい減速比で調節が実現する。
〔弁開閉時期制御機構:位相調節の概要〕
 吸気側の弁開閉時期制御機構VTaによる位相調節を例に挙げると、エンジン制御装置40の位相制御部42は、吸気カムシャフト7の回転速度と等速度で同じ方向に位相制御モータMの出力軸Maを駆動回転することで駆動ケース21と内部ロータ22との相対回転位相が維持する。
 また、吸気カムシャフト7の回転速度を基準にして、位相制御モータMの回転速度を増大する又は低減することにより相対回転位相を進角方向Sa又は遅角方向Sbに変位させる。位相制御モータMの回転速度の増大と低減とに対する相対回転位相の変位方向(進角方向Saと遅角方向Sbとの何れか)は、位相調節部のギヤ構成によって決まる。
 特に、弁開閉時期制御機構VTは、位相制御モータMの駆動力により相対回転位相を変位させる。これにより、油圧により変位を実現するものと比較して高速での作動が可能である。また、エンジンEの始動時のように油圧が充分でない状況においても、必要とする回転位相に迅速に設定することが可能である。
 尚、弁開閉時期制御機構VTは、電動モータ等のアクチュエータの駆動力により対応するバルブの開閉時期を制御すれば良いため、実施形態に示す構造に限るものではない。
〔制御構成〕
 図1に示すように、エンジン制御装置40は、温度センサ14と、シャフトセンサ16と、吸気側位相センサ17と、排気側位相センサ18とからの検知信号が入力すると共に、吸気側と排気側との位相制御モータMと、スタータモータ15とに制御信号を出力し、更に、インジェクタ9と、点火プラグ10とを制御する燃焼管理部19に制御信号を出力する。
 始動制御部41は、スタータモータ15を制御することによりクランキングを実現する。位相制御部42は、吸気側の弁開閉時期制御機構VTaの位相制御モータMと、排気側の弁開閉時期制御機構VTbの位相制御モータMとを制御することにより、吸気バルブVaの開閉時期の設定と、排気バルブVbの開閉時期の設定とを可能にする。
 以下の制御では、図8、図9、図11、図12に示すように、吸気バルブVaの開時期であるIVO、排気バルブVbの開時期であるEVOを早める方向を進角方向(進角側)と称し、この逆の方向を遅角方向(遅角側)として説明している。
 エンジン制御装置40の始動制御部41と位相制御部42とはソフトウエアで構成されるものを想定しているが、これらが、ロジック等を有する回路で成るハードウエアで構成されるものでも良く、ソフトウエアとハードウエアとの組み合わせによって構成されるものでも良い。
 燃焼管理部19は、インジェクタ9に対して燃料を供給するポンプ類の作動を管理すると共に、点火プラグ10に電力を供給するイグニッション回路の制御により点火順序や点火タイミングを管理する。
〔制御形態〕
 このような構成からエンジンEを始動する制御信号を取得した場合には、図6のフローチャートと、図8、図9等のタイミングダイヤグラムとに示すように、エンジン制御装置40の始動制御部41が以下の制御を実行する。
 つまり、温度センサ14の検知信号から環境の温度を取得し(#101、#102ステップ)、氷点下10度未満(-10℃未満)であることを判定した場合には図7又は図10で示す極低温始動ルーチン(#Sub)に移行する。
 極低温始動ルーチン(#Sub)での制御形態は後述するが、温度センサ14で検知される温度が氷点下10度以上(-10℃以上)であることを判定した場合には、吸気側の弁開閉時期制御機構VTaの制御により吸気バルブVaの開閉時期を設定し、排気側の弁開閉時期制御機構VTbの制御により排気バルブVbの開閉時期を設定する(#103、#104ステップ)。
 #103、#104ステップでは、図9のタイミングダイヤグラムに示すように吸気バルブVaの開時期であるIVOと、排気バルブVbの閉時期であるEVCとをピストン4の上死点であるTDCと一致させる制御が行われる。図9には、排気バルブVbで排気が行われる領域を排気領域Exとして示し、吸気バルブVaで吸気が行われる領域を吸気領域Inとして示している。尚、開閉時期として吸気バルブVaの開時期であるIVOを進角方向に変位させる制御により、各々に僅かにオーバーラップを設定しても良い。
 次に、スタータモータ15の駆動によりクランキングを開始し、気筒判別を行い、クランクシャフト1の回転速度(単位時間あたりの回転数)所定のタイミングで燃焼管理部19が設定された順序で各燃焼室の燃焼を開始する(#105~#107ステップ)。そして、全ての気筒で燃焼が開始した後にスタータモータ15を停止する。
〔制御形態:第1の極低温始動ルーチン〕
 極低温始動ルーチン#Subの一形態としての第1の極低温始動ルーチンを図7のフローチャートに示している。この第1の極低温始動ルーチンでは、吸気側の弁開閉時期制御機構VTaの制御により吸気バルブVaの開閉時期を設定し、排気側の弁開閉時期制御機構VTbの制御により排気バルブVbの開閉時期を設定する(#201、#202ステップ)。
 この開閉時期の設定では、図8のタイミングダイヤグラムに示すように吸気バルブVaの開時期であるIVOとピストン4の上死点であるTDCと一致させ、排気バルブVbの閉時期であるEVCを、TDCより後となるATDCの位相(この制御では最遅角位置)に設定することにより、閉時期であるEVCと吸気バルブVaの開時期であるIVOとを重複させるオーバーラップが設定される。
 つまり、この第1の極低温始動ルーチンでは、スタータモータ15によってクランキングが行われる状況で、且つ複数の気筒のうち最初に燃焼するように順序が設定された気筒の最初の燃焼が行われる時点で、排気バルブVbの閉時期であるEVCを、燃焼室のピストン4の上死点であるTDCと異ならせる制御が行われる。その具体的な制御形態のタイミングダイヤグラムを図8に示している。
 次に、スタータモータ15の駆動によりクランキングを開始し、気筒判別を行い、所定のタイミングで、燃焼管理部19が設定された順序で各燃焼室の燃焼を開始する(#203~#205ステップ)。
 燃焼の開始の後に、シャフトセンサ16の検知に基づいてクランクシャフト1が所定量回転したことが判定されると、図9に示すように、オーバーラップを「0」に変更する制御(オーバーラップのラップ量を低減する制御の具体例)が行われ、スタータモータ15を停止する制御が行われる(#206、#207ステップ)。
 この制御ではクランクシャフト1が所定量(所定角度)だけ回転したことを判別したタイミングでオーバーラップを「0」に変更する制御が行われるが、これに代えて、例えば、4気筒の全て、あるいは、設定数の気筒で燃焼が行われたことを判定したタイミングでラップ量を「0」に変更する制御を行っても良い。
 このオーバーラップを「0」に変更する制御では、排気側の弁開閉時期制御機構VTbの制御により、排気バルブVbの閉時期であるEVCを吸気バルブVaの開時期であるIVOに一致(TDCにも一致)させる制御が行われる。尚、オーバーラップのラップ量を「0」に変更する制御に代えて、僅かにオーバーラップを設定しても良い。
 このように、極低温の環境においてエンジンEを始動する際には、排気バルブVbの閉時期であるEVCを最遅角位置に設定することにより、EVCをTDCより後となるATDCの位相に設定してオーバーラップを作り出し、内部EGRによる昇温を可能にする。
 つまり、極低温のエンジンEでは、シリンダ内面も低温状態であるため、インジェクタ9で燃料を噴射した際には、シリンダ内面に接触した燃料が液滴化してシリンダ内面に付着し、燃焼性能の低下を招くこともあった。
 これに対して、オーバーラップを作り出すことにより、燃焼が行われた際には吸気行程の初期において開放状態にある排気バルブVbを介して、高温の燃焼ガスの一部を燃焼室に取り込むことが可能となる。その結果、高温の燃焼ガスをシリンダの内壁に接触させて内壁の温度を上昇させ、燃料の液滴化を回避することにより、インジェクタ9で噴射された燃料の霧化状態を維持し、燃焼の初期から良好な燃焼を可能にする。
 特にこの制御形態では、吸気バルブVaの開閉時期を変更しないため、吸気行程での吸気量を変化させず、例えば、空燃比を変化させることのない燃焼を可能にする。更に、ATDCの位相にオーバーラップを作り出すものでは、図13に示すように、時間経過と共に、クランクシャフト1の回転数(エンジン回転数)が設定回転数を達し、この後にオーバーラップ「0」に変更した後にもエンジン回転数が滑らかに増大することになり、円滑な始動を実現する。
〔第1の極低温始動ルーチン〕の変形例
 なお、この第1の極低温始動ルーチンでは、排気バルブVbの閉時期であるEVCを、上死点であるTDCより後となるATDCの位相に設定してオーバーラップを形成するため、例えば、吸気バルブVaの開時期であるIVOを上死点であるTDCより前(BTDCの位相)に設定することや、TDCより後(ATDCの位相)に設定することも可能である。
〔制御形態:第2の極低温始動ルーチン〕
 極低温始動ルーチン#Subの他の一形態としての第2の極低温始動ルーチンを図10のフローチャートに示している。この第2の極低温始動ルーチンでは、吸気側の弁開閉時期制御機構VTaの制御により吸気バルブVaの開閉時期を設定し、排気側の弁開閉時期制御機構VTbの制御により排気バルブVbの開閉時期を設定する(#301、#302ステップ)。
 この開閉時期の設定では、図11のタイミングダイヤグラムに示すように吸気バルブVaの開時期であるIVOとピストン4の上死点であるTDCと一致させ、排気バルブVbの閉時期であるEVCを、TDCより前となるBTDCの位相(この制御では最進角位置)に設定することにより、閉時期であるEVCと吸気バルブVaの開時期であるIVOとを重複させるネガティブオーバーラップが設定される。
 つまり、第2の極低温始動ルーチンでは、スタータモータ15によってクランキングが行われる状況で、且つ複数の気筒のうち最初に燃焼するように順序が設定された気筒の最初の燃焼が行われる時点で、排気バルブVbの閉時期であるEVCを、燃焼室のピストン4の上死点であるTDCと異ならせる制御が行われる。その具体的な制御形態のタイミングダイヤグラムを図11に示している。
 次に、スタータモータ15の駆動によりクランキングを開始し、気筒判別を行い、所定のタイミングで、燃焼管理部19が設定された順序で各燃焼室の燃焼を開始する(#303~#305ステップ)。
 燃焼の開始の後に、シャフトセンサ16の検知に基づいてクランクシャフト1が所定量回転したことが判定されると、図12に示すように、ネガティブオーバーラップを「0」に変更する制御(ネガティブオーバーラップのラップ量を低減する制御の具体例)が行われ、スタータモータ15を停止する制御が行われる(#306、#307ステップ)。
 この制御ではクランクシャフト1が所定量(所定角度)だけ回転したことを判別したタイミングでネガティブオーバーラップを「0」に変更する制御が行われるが、これに代えて、例えば、4気筒の全て、あるいは、設定数の気筒で燃焼が行われたことを判定したタイミングでラップ量を「0」に変更する制御を行っても良い。
 このネガティブオーバーラップを「0」に変更する制御では、排気側の弁開閉時期制御機構VTbの制御により、排気バルブVbの閉時期であるEVCを吸気バルブVaの開時期であるIVOに一致(TDCにも一致)させる制御が行われる。尚、ネガティブオーバーラップのラップ量を「0」に変更する制御に代えて、僅かにネガティブオーバーラップを設定しても良い。
 このように、極低温の環境においてエンジンEを始動する際には、排気バルブVbの閉時期であるEVCを最進角位置に設定することにより、EVCをTDCより前となるBTDCの位相に設定してネガティブオーバーラップを作り出し、燃焼室に燃焼ガスを封じ込めることによる昇温が可能にする。
 つまり、極低温のエンジンEでは、シリンダ内面も低温状態であるため、インジェクタ9で燃料を噴射した際には、シリンダ内面に接触した燃料が液滴化してシリンダ内面に付着し、燃焼性能の低下を招くこともあった。
 これに対して、ネガティブオーバーラップを作り出すことにより、燃焼が行われた際には、吸気行程において吸気バルブVaが開時期であるIVOに達するまで燃焼室に燃焼ガスを封じ込めることにより、高温の燃焼ガスを燃焼室のシリンダ内面に接触させて高温状態を維持し、温度上昇を図るようにしている。その結果、高温の燃焼ガスをシリンダ内面に接触させる時間を延長してシリンダ内面の温度を上昇させ、燃料の液滴化を回避することにより、インジェクタ9で噴射された燃料の霧化状態を維持し、燃焼の初期から良好な燃焼を可能にする。
 特にこの制御形態では、吸気バルブVaの開閉時期を変更しないため、吸気行程での吸気量を変化させず、例えば、空燃比を変化させることのない燃焼を可能にする。
〔第2の極低温始動ルーチン〕の変形例
 なお、第2の極低温始動ルーチンでは、排気バルブVbの閉時期であるEVCを、上死点であるTDCより以前となるBTDCの位相に設定してネガティブオーバーラップを形成するため、例えば、吸気バルブVaの開時期であるIVOを上死点であるTDCより前(BTDCの位相)に設定することや、上死点であるTDCより後(ATDCの位相)に設定することも可能である。
 本発明は、内燃機関の制御装置に利用することができる。
1     クランクシャフト
4     ピストン
14    温度センサ(環境温度センサ)
15    スタータモータ
E     エンジン(内燃機関)
M     位相制御モータ(電動アクチュエータ)
Va    吸気バルブ
Vb    排気バルブ
VTb   弁開閉時期制御機構
TDC   上死点
EVC   排気バルブの閉時期
IVO   吸気バルブの開時期
 

Claims (6)

  1.  クランクシャフトの回転に連係してシリンダ内で往復作動するピストンと前記クランクシャフトの回転に連係して燃焼室を開閉する吸気バルブおよび排気バルブとを有する複数の気筒と、前記クランクシャフトを駆動回転させるスタータモータと、電動アクチュエータの駆動により前記排気バルブの開閉時期を設定する弁開閉時期制御機構と、を備えて内燃機関が構成され、
     前記内燃機関の周囲の環境温度を検知する環境温度センサを備え、
     前記環境温度センサで検知される前記環境温度が氷点下10度未満にある場合には、前記スタータモータによってクランキングが行われる状況で、複数の前記気筒のうち最初に燃焼するように順序が設定された前記気筒の最初の燃焼が行われる時点で、前記排気バルブの閉時期であるEVCを、前記燃焼室のピストンの上死点であるTDCと異ならせるように前記電動アクチュエータを制御する内燃機関の制御装置。
  2.  複数の前記気筒のうち最初に燃焼するように順序が設定された前記気筒の最初の燃焼が行われる時点では、前記EVCを、前記TDCより後であるATDCの位相に設定することにより、前記EVCと前記吸気バルブの開時期であるIVOとを重複させるオーバーラップが設定される請求項1に記載の内燃機関の制御装置。
  3.  前記クランクシャフトの回転数が所定の設定値を超えた後に、前記オーバーラップのラップ量を低減させる請求項2に記載の内燃機関の制御装置。
  4.  複数の前記気筒のうち最初に燃焼するように順序が設定された前記気筒の最初の燃焼が行われる時点では、前記EVCを前記TDCより前となるBTDCに設定することにより、前記EVCと前記吸気バルブの開時期であるIVOとの間にネガティブオーバーラップを設定する請求項1に記載の内燃機関の制御装置。
  5.  前記クランクシャフトの回転数が所定値を超えた後に、前記ネガティブオーバーラップのラップ量を低減する請求項4に記載の内燃機関の制御装置。
  6.  複数の前記気筒のうち最初に燃焼するように順序が設定された前記気筒の最初の燃焼が行われる時点では、前記EVCを、前記吸気バルブの開時期であるIVOより遅くしてオーバーラップを設定するように前記電動アクチュエータを制御する請求項1~3のいずれか一項に記載の内燃機関の制御装置。
PCT/JP2018/007440 2017-05-23 2018-02-28 内燃機関の制御装置 WO2018216292A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/614,933 US20200182163A1 (en) 2017-05-23 2018-02-28 Control device for internal combustion engine
CN201880033438.6A CN110662891A (zh) 2017-05-23 2018-02-28 内燃机的控制装置
DE112018002150.5T DE112018002150T5 (de) 2017-05-23 2018-02-28 Steuervorrichtung für eine brennkraftmaschine mit innerer verbrennung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017102039A JP2018197522A (ja) 2017-05-23 2017-05-23 内燃機関の制御装置
JP2017-102039 2017-05-23

Publications (1)

Publication Number Publication Date
WO2018216292A1 true WO2018216292A1 (ja) 2018-11-29

Family

ID=64395414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007440 WO2018216292A1 (ja) 2017-05-23 2018-02-28 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US20200182163A1 (ja)
JP (1) JP2018197522A (ja)
CN (1) CN110662891A (ja)
DE (1) DE112018002150T5 (ja)
WO (1) WO2018216292A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7424732B2 (ja) * 2019-09-26 2024-01-30 ダイハツ工業株式会社 筒内直噴エンジンの制御装置
US11236688B2 (en) * 2019-11-21 2022-02-01 GM Global Technology Operations LLC Exhaust thermal management

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332561A (ja) * 2003-04-30 2004-11-25 Mitsubishi Motors Corp 内燃機関の排気浄化装置
JP2008274822A (ja) * 2007-04-27 2008-11-13 Toyota Motor Corp 内燃機関の制御装置
JP2009085053A (ja) * 2007-09-28 2009-04-23 Toyota Motor Corp 圧縮着火内燃機関の制御装置
JP2016070125A (ja) * 2014-09-29 2016-05-09 ダイハツ工業株式会社 内燃機関の制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6615129B2 (en) * 2001-05-24 2003-09-02 Delphi Technologies, Inc. Apparatus and method for two-step intake phased engine control system
US7992537B2 (en) * 2007-10-04 2011-08-09 Ford Global Technologies, Llc Approach for improved fuel vaporization in a directly injected internal combustion engine
JP4502030B2 (ja) 2008-03-12 2010-07-14 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332561A (ja) * 2003-04-30 2004-11-25 Mitsubishi Motors Corp 内燃機関の排気浄化装置
JP2008274822A (ja) * 2007-04-27 2008-11-13 Toyota Motor Corp 内燃機関の制御装置
JP2009085053A (ja) * 2007-09-28 2009-04-23 Toyota Motor Corp 圧縮着火内燃機関の制御装置
JP2016070125A (ja) * 2014-09-29 2016-05-09 ダイハツ工業株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
CN110662891A (zh) 2020-01-07
JP2018197522A (ja) 2018-12-13
US20200182163A1 (en) 2020-06-11
DE112018002150T5 (de) 2020-01-02

Similar Documents

Publication Publication Date Title
JP4483759B2 (ja) 内燃機関の制御装置
JP4957611B2 (ja) 内燃機関の制御方法
US8843294B2 (en) Apparatus for and method of controlling variable valve timing mechanism
US7316213B2 (en) Valve timing control device and control method for internal combustion engine
JP2008267300A (ja) 内燃機関の可変動弁装置
WO2018216291A1 (ja) 内燃機関の制御装置
US7958858B2 (en) Variable valve timing system and method for controlling the same
WO2018216292A1 (ja) 内燃機関の制御装置
CN107407211B (zh) 内燃机的控制单元
JP2007056839A (ja) 内燃機関のバルブタイミング制御装置
JP2011089467A (ja) 内燃機関の制御方法及び内燃機関システム
WO2018216293A1 (ja) 内燃機関の制御装置
CN107407210B (zh) 内燃机的控制单元
WO2015015824A1 (ja) 内燃機関の制御装置
KR101648620B1 (ko) 내연 기관의 가변 밸브 작동 장치
WO2018216290A1 (ja) 内燃機関の制御装置
JP3873809B2 (ja) 内燃機関のバルブタイミング可変制御装置
JP3861847B2 (ja) 筒内直噴型内燃機関
JP2017180122A (ja) 内燃機関の制御装置
JP2022131468A (ja) 内燃機関の制御装置
JPH1130134A (ja) 内燃機関の制御装置
JP2019007447A (ja) 内燃機関
JP2017172543A (ja) 内燃機関の制御装置
JP2019039312A (ja) 内燃機関
JP2017031868A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805908

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18805908

Country of ref document: EP

Kind code of ref document: A1