WO2018216160A1 - 回転子部材及び回転電機 - Google Patents
回転子部材及び回転電機 Download PDFInfo
- Publication number
- WO2018216160A1 WO2018216160A1 PCT/JP2017/019501 JP2017019501W WO2018216160A1 WO 2018216160 A1 WO2018216160 A1 WO 2018216160A1 JP 2017019501 W JP2017019501 W JP 2017019501W WO 2018216160 A1 WO2018216160 A1 WO 2018216160A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sleeve
- rotor member
- rotor
- shaft
- member according
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
Definitions
- the present invention relates to a rotor member of a surface magnet type motor and a rotating electrical machine.
- the rotor of a surface magnet type motor is configured by fixing a rotor member to a shaft.
- the rotor member is configured by a split magnet, a sleeve, and a reinforcing sleeve, and the rotor member is fixed to the shaft by coupling the sleeve and the shaft by hydraulic fitting or press-fitting.
- Patent Document 1 discloses a rotor in which an inner periphery of a sleeve of a rotor member is a tapered surface, and a rotary shaft portion that is a shaft is press-fitted into the sleeve.
- Patent Document 1 has a problem that it is not easy to attach or remove the rotary shaft to the sleeve because the rotary shaft portion is press-fitted into the sleeve.
- the present invention has been made in view of the above, and an object thereof is to obtain a rotor member in which a shaft can be easily attached and detached.
- the present invention provides a cylindrical first sleeve and a cylindrical second sleeve that is press-fitted into the first sleeve so that the outer periphery is in contact with the inner periphery of the first sleeve. And a sleeve.
- the present invention relates to a plurality of divided magnets arranged in the circumferential direction on the outer periphery of the first sleeve, and a cylinder arranged on the outer peripheral side of the plurality of divided magnets and sandwiching the plurality of divided magnets between the first sleeve. Shaped reinforcing sleeve.
- the rotor member according to the present invention has an effect that the shaft can be easily attached and detached.
- vertical to the rotating shaft of the rotor member which concerns on Embodiment 1 of this invention Sectional drawing along the rotating shaft of the rotor member which concerns on Embodiment 1.
- positioned the reinforcement sleeve in the outer peripheral side of the division magnet of the rotor member which concerns on Embodiment 1 Sectional drawing along the rotating shaft in the state which has arrange
- FIG. Sectional drawing along the rotating shaft of the rotor which fixed the rotor member which concerns on Embodiment 1 to the shaft The figure which shows the structure of the rotor using the rotor member which concerns on Embodiment 2 of this invention. Sectional drawing along the rotating shaft of the rotor member which concerns on Embodiment 3 of this invention.
- Sectional drawing along the rotating shaft of the rotor member which concerns on Embodiment 4 of this invention Sectional drawing along the rotating shaft of the rotor using the rotor member which concerns on Embodiment 4.
- FIG. Sectional drawing along the rotating shaft of the rotor member which concerns on Embodiment 5 of this invention Side view of a rotor using a rotor member according to Embodiment 5 The figure which shows the structure of the rotary electric machine provided with the rotor using the rotor member which concerns on any of Embodiment 1-5.
- FIG. 1 is a cross-sectional view perpendicular to the rotation axis of a rotor member 10 according to Embodiment 1 of the present invention.
- FIG. 2 is a cross-sectional view taken along the rotation axis of the rotor member 10 according to the first embodiment.
- FIG. 2 shows a cross section taken along line II-II in FIG.
- the rotor member 10 according to the first embodiment includes a cylindrical first sleeve 1 and a cylindrical second sleeve that is press-fitted into the first sleeve 1 so that the outer periphery 2o is in contact with the inner periphery 1i of the first sleeve 1.
- the inner periphery 1i has a taper.
- the second sleeve 2 has a taper of the same inclination as the inner periphery 1 i of the first sleeve 1 at the outer periphery 2 o.
- the second sleeve 2 has a cylindrical portion 2t as a whole.
- a screw hole 2 a is formed in the end portion 21 on the large diameter side of the second sleeve 2.
- the reinforcing sleeve 4 is formed of a material having high strength and high rigidity such as carbon fiber reinforced plastic.
- the reinforcing sleeve 4 has a strength that does not cause plastic deformation or fracture even when the divided magnet 3 is pressed.
- the thickness at the center in the axial direction of the second sleeve 2 is thicker than the thickness at the center in the axial direction of the first sleeve 1.
- the second sleeve 2 has a thickness that can prevent the second sleeve 2 from being deformed when being pressed into the first sleeve 1.
- the thickness of the second sleeve 2 at the center in the axial direction is at least twice the thickness of the first sleeve 1 at the center in the axial direction. Therefore, deformation of the second sleeve 2 when the second sleeve 2 is press-fitted into the first sleeve 1 is suppressed.
- the first sleeve 1 and the second sleeve 2 are preferably formed of a magnetic material from the viewpoint of forming a magnetic path. Further, in order to ensure the allowance for press-fitting between the first sleeve 1 and the second sleeve 2 even when the temperature of the rotor member 10 becomes high, the coefficient of thermal expansion of the material of the second sleeve 2 is the first. It is desirable that the coefficient of thermal expansion is equal to or higher than the material of the sleeve 1. By forming the first sleeve 1 and the second sleeve 2 from a magnetic material, it is possible to increase the output of the rotating electrical machine configured using the rotor member 10. When the coefficient of thermal expansion of the material of the first sleeve 1 is larger, it is preferable that the difference in the coefficient of thermal expansion between the material of the first sleeve 1 and the material of the second sleeve 2 is smaller.
- FIG. 3 is a cross-sectional view perpendicular to the rotation axis in a state where the divided magnet 3 is arranged on the outer periphery 1o of the first sleeve 1 of the rotor member 10 according to the first embodiment.
- FIG. 4 is a cross-sectional view along the rotation axis in a state where the divided magnet 3 is arranged on the outer periphery 1o of the first sleeve 1 of the rotor member according to the first embodiment.
- FIG. 4 shows a cross section taken along line IV-IV in FIG.
- the divided magnet 3 is arranged on the outer periphery 1o of the first sleeve 1 and fixed with an adhesive.
- the distance between the divided magnets 3 is set to a set value by positioning using a jig. From the viewpoint of motor characteristics, it is desirable that the gaps between the divided magnets 3 be uniform in size.
- FIG. 5 is a cross-sectional view perpendicular to the rotation axis in a state where the reinforcing sleeve 4 is disposed on the outer periphery 3o side of the divided magnet 3 of the rotor member 10 according to the first embodiment.
- FIG. 6 is a cross-sectional view along the rotation axis in a state where the reinforcing sleeve 4 is disposed on the outer periphery 3o side of the divided magnet 3 of the rotor member 10 according to the first embodiment.
- FIG. 6 shows a cross section taken along line VI-VI in FIG.
- the divided magnet 3 is located between the first sleeve 1 and the reinforcing sleeve 4, but is not pressed against the inner periphery 4 i of the reinforcing sleeve 4.
- the second sleeve 2 is press-fitted into the first sleeve 1.
- the divided magnet 3 is pressed against the inner periphery 4 i of the reinforcing sleeve 4.
- the divided magnet 3 pressed against the reinforcing sleeve 4 is fixed between the first sleeve 1 and the reinforcing sleeve 4 by frictional force, whereby the rotor member 10 shown in FIGS. 1 and 2 is configured.
- FIG. 7 is a cross-sectional view taken along the rotation axis of the rotor 15 in which the rotor member 10 according to the first embodiment is fixed to the shaft 5.
- the shaft 5 is provided with a flange portion 5a, and a hole 5b is formed in the flange portion 5a.
- the shaft 5 provided with the flange portion 5a is inserted into the second sleeve 2, and the bolt 6 passed through the hole 5b formed in the flange portion 5a is fastened to the screw hole 2a.
- the rotor 15 is configured by fixing the rotor member 10 to the shaft 5.
- the shaft press-fitted into the rotor member cannot be easily removed. If the rotor member 10 according to the first embodiment is used, the split magnet 3 can be firmly fixed even during high-speed rotation by the force for press-fitting the second sleeve 2 into the first sleeve 1, and the shaft 5 can be easily removed from the rotor member 10. As a result, the customer who installed the electric motor using the rotor 15 can easily attach and detach the shaft 5 to the rotor member 10.
- the rotor member 10 according to the first embodiment can be fixed to the shaft 5 without being press-fitted, even if the rotor member 10 removed from the shaft 5 is attached to the shaft 5 again, the coupling force does not decrease. Therefore, the rotor member 10 according to the first embodiment can be removed from the shaft 5 and reused.
- the rotor member 10 according to the first embodiment only needs to press-fit the second sleeve 2 shorter than the shaft 5 into the first sleeve 1 when assembling, the shaft itself is press-fit into the sleeve and the rotor is inserted. Compared to the structure to be assembled, the equipment for press-fitting work can be reduced in size.
- the configuration in which the bolt 6 is used for fixing the rotor member 10 and the shaft 5 is illustrated.
- the fixing of the rotor member 10 and the shaft 5 is performed by fitting a key and a key groove.
- a technique or a technique of fitting a spline and a spline hole can also be applied.
- the rotor member 10 according to the first embodiment can be fixed to the shaft 5 without press-fitting the shaft 5, a large force is not required when removing from the shaft 5, and it can be reused after being removed from the shaft 5. It is.
- FIG. FIG. 8 is a diagram showing a configuration of a rotor using a rotor member according to Embodiment 2 of the present invention.
- a flange portion 2b is formed at the end portion 21 of the second sleeve 2 on the large diameter side. Therefore, in the second embodiment, the second sleeve 2 includes the cylindrical portion 2t and the flange portion 2b.
- a screw hole 2a is formed in the flange portion 2b.
- the shaft 5 is also provided with a flange portion 5a, and a hole 5b is formed in the flange portion 5a.
- the rotor member 10 is fixed to the shaft 5 by fastening the bolt 6 passed through the hole 5b to the screw hole 2a.
- the rest is the same as that of the rotor member 10 according to the first embodiment.
- the assembly procedure of the rotor member 10 is the same as that in the first embodiment.
- the flange portion 2b is provided on the second sleeve 2, and the area of the end surface on the large diameter side is enlarged by the amount of the flange portion 2b.
- the area where pressure can be applied when the second sleeve 2 is press-fitted into the first sleeve 1 is increased. Therefore, the rotor member 10 according to the second embodiment can easily perform the work of press-fitting the second sleeve 2 into the first sleeve 1.
- the diameter of the bolt 6 is not restricted by the thickness of the second sleeve 2. Therefore, by using the bolt 6 having a diameter equal to or larger than the thickness of the second sleeve 2 for fixing the rotor member 10 and the shaft 5, the same as when using a bolt having a diameter smaller than the thickness of the second sleeve 2 is used. Coupling force can be realized with a small number of bolts 6. Therefore, the rotor member 10 according to Embodiment 2 can reduce the number of man-hours for the work of fastening the bolt 6.
- the radial distance from the rotary shaft to the key groove is longer than when a key groove is provided in the cylindrical portion 2t of the second sleeve 2. Therefore, the torque that the key can receive can be increased. Further, since the depth of the key groove is not restricted by the thickness of the second sleeve 2, it is possible to form a larger key groove in the flange portion 2b than when the key groove is provided in the cylindrical portion 2t of the second sleeve 2. it can.
- the heat capacity of the second sleeve 2 is increased by providing the flange portion 2b, the temperature rise of the rotor member 10 can be easily suppressed. Further, since the orientation of the second sleeve 2 can be easily determined, it is possible to prevent the second sleeve 2 from being press-fitted into the first sleeve 1 from the end portion 21 on the large diameter side.
- a blade plate may be installed on the flange portion 2b so that airflow is blown to the rotor member 10 when the rotor rotates.
- FIG. 9 is a cross-sectional view along the rotation axis of the rotor member according to Embodiment 3 of the present invention.
- a concave portion 2 c is formed in an intermediate portion in the axial direction of the inner periphery 2 i of the second sleeve 2.
- the whole is the cylinder part 2t.
- the recess 2 c is formed on the inner circumference 2 i of the second sleeve 2 over the entire circumference.
- the inner diameter of the concave portion 2c at the intermediate portion in the axial direction is larger than the inner diameter at the end portion 21 on the large diameter side and the inner diameter at the end portion 2s on the small diameter side.
- the rest is the same as that of the rotor member 10 according to the first embodiment.
- the assembly procedure of the rotor member 10 is the same as that in the first embodiment.
- the portion of the inner periphery 2i of the second sleeve 2 that is in contact with the shaft 5 requires processing accuracy to prevent eccentricity, and it is difficult to increase the processing speed.
- the machining accuracy of the inner periphery 2 i is not required for the recess 2 c in the intermediate portion in the axial direction. Therefore, the processing speed of the inner periphery 2i can be increased in the concave portion 2c of the second sleeve 2.
- the second sleeve 2 has an inner circumference 2i of the inner diameter i of the inner circumference i and an inner circumference 2i of the smaller diameter end 2s in contact with the shaft 5, so that the inner circumference 2i is in contact with the shaft 5 at the recess 2c. Even if not, it is possible to prevent the shaft 5 from being inclined.
- the machining cost can be reduced by lowering the machining accuracy of the inner periphery 2i and increasing the machining speed at the concave portion 2c.
- the second sleeve 2 of the rotor member 10 after processing the inner periphery 2i of the small-diameter end 2s that contacts the shaft 5 in a state where the large-diameter end 21 is gripped, The inner circumference 2i of the large-diameter end 2l that contacts the shaft 5 can be machined in a state where the small-diameter end 2s is re-gripped and the small-diameter end 2s is gripped. Easy to raise.
- the sleeve In a rotor with a single sleeve and a structure in which the tapered shaft is press-fitted into the sleeve, if a recess is provided in the inner periphery of the central portion in the axial direction of the sleeve, the sleeve will swell when the tapered shaft is pressed-in. Therefore, it is difficult to uniformly expand the sleeve in the axial direction.
- the concave portion is not formed in the first sleeve 1 that sandwiches the divided magnet 3 with the reinforcing sleeve 4, the first sleeve 1 is inserted when the second sleeve 2 is press-fitted into the first sleeve 1. It can be expanded uniformly in the axial direction.
- the flange portion 2b is provided at the end portion 21 on the large diameter side of the second sleeve 2, and the intermediate portion in the axial direction of the inner periphery 2i of the second sleeve 2 is provided. It is also possible to form the recess 2c in the bottom.
- FIG. 10 is a cross-sectional view along the rotation axis of the rotor member according to Embodiment 4 of the present invention.
- a step portion 2d is provided on the inner periphery 2i of the second sleeve 2, and the inner diameter of the second sleeve 2 is gradually reduced at the end portion 21 on the large diameter side.
- the rest is the same as that of the rotor member 10 according to the first embodiment.
- the assembly procedure of the rotor member 10 is the same as that in the first embodiment.
- FIGS. 11 and 12 are cross-sectional views along the rotation axis of the rotor using the rotor member according to the fourth embodiment.
- the rotor member 10 according to the fourth embodiment can be fixed to the shaft 5 having different flange portions 5a.
- the shaft 5 When the shaft 5 is inserted into the second sleeve 2, the shaft 5 can be easily positioned in the axial direction by abutting the flange portion 5a against the step portion 2d.
- the third embodiment and the fourth embodiment are combined to form the recess 2c in the intermediate portion in the axial direction of the inner circumference 2i of the second sleeve 2, and the inner diameter of the second sleeve 2 is set to the larger diameter side. It is also possible to make it small in steps at the end 2l.
- FIG. FIG. 13 is a cross-sectional view along the rotation axis of the rotor member according to the fifth embodiment of the present invention.
- a spiral groove 2e connected from the large-diameter end portion 2l to the small-diameter end portion 2s is provided on the inner periphery 2i of the second sleeve 2.
- the rest is the same as that of the rotor member 10 according to the first embodiment.
- the assembly procedure of the rotor member 10 is the same as that in the first embodiment.
- FIG. 14 is a side view of a rotor using the rotor member according to the fifth embodiment. Even in a state where the rotor member 10 is fixed to the shaft 5, the spiral groove 2e is not closed by the shaft 5, and is connected from the large-diameter end 21 to the small-diameter end 2s of the second sleeve 2. Yes. Therefore, in the rotor using the rotor member 10 according to the fifth embodiment, the fluid flows through the spiral groove 2e between the large-diameter side end portion 21 and the small-diameter side end portion 2s of the second sleeve 2. Can do.
- the rotor using the rotor member according to Embodiment 5 can cool the rotor member 10 by flowing a cooling medium through the spiral groove 2e. Further, when the second sleeve 2 is tightly fitted to the shaft 5, when removing the rotor member 10 from the shaft 5, the second sleeve 2 is rotated by flowing oil into the spiral groove 2 e and expanding the second sleeve 2 by hydraulic pressure. The child member 10 can be easily removed from the shaft 5.
- the groove connected from the large-diameter end portion 2l to the small-diameter end portion 2s of the second sleeve 2 does not have to be spiral, and may be a linear or zigzag groove.
- the number of grooves connected from the large-diameter end 21 to the small-diameter end 2s of the second sleeve 2 is not necessarily one, and a plurality of grooves may be formed.
- the rotor member 10 according to the second embodiment, the third embodiment, or the fourth embodiment is formed with a groove that is connected from the large-diameter end portion 2l to the small-diameter end portion 2s of the second sleeve 2. It is also possible.
- FIG. 15 is a diagram illustrating a configuration of a rotating electrical machine including a rotor using the rotor member according to any one of the first to fifth embodiments.
- the rotor 15 using the rotor member 10 according to any one of Embodiments 1 to 5 can constitute the rotating electrical machine 30 by being inserted into the cylindrical stator 20. That is, by using the rotor member 10 according to any one of the first to fifth embodiments, the rotating electrical machine 30 including the rotor member 10 that can be reused after being removed from the shaft 5 can be obtained.
- the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
回転子部材(10)は、筒状の第1スリーブ(1)と、外周(2o)が第1スリーブ(1)の内周(1i)に接するように第1スリーブ(1)に圧入される筒状の第2スリーブ(2)とを備える。回転子部材(10)は、第1スリーブ(1)の外周(1o)に、周方向に配置された複数の分割磁石(3)と、複数の分割磁石(3)の外周(3o)側に配置され、第1スリーブ(1)との間に複数の分割磁石(3)を挟んで保持する筒状の補強スリーブ(4)とを備える。
Description
本発明は、表面磁石型モータの回転子部材及び回転電機に関する。
表面磁石型モータの回転子は、回転子部材をシャフトに固定して構成される。回転子部材の構造の一例では、分割磁石、スリーブ及び補強スリーブで構成され、油圧嵌め又は圧入によってスリーブとシャフトとが結合されることによって、回転子部材がシャフトに固定される。特許文献1には、回転子部材のスリーブの内周をテーパ面とし、シャフトである回転軸部をスリーブ内に圧入する回転子が開示されている。
特許文献1に開示される発明は、スリーブに回転軸部を圧入するため、スリーブへの回転軸の取り付け又は取り外しが容易でないという問題があった。
本発明は、上記に鑑みてなされたものであって、シャフトの取り付け及び取り外しが容易な回転子部材を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、筒状の第1スリーブと、外周が第1スリーブの内周に接するように第1スリーブに圧入される筒状の第2スリーブとを備える。本発明は、第1スリーブの外周に周方向に配置された複数の分割磁石と、複数の分割磁石の外周側に配置され、第1スリーブとの間に複数の分割磁石を挟んで保持する筒状の補強スリーブとを備える。
本発明に係る回転子部材は、シャフトの取り付け及び取り外しが容易であるという効果を奏する。
以下に、本発明の実施の形態に係る回転子部材及び回転電機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1に係る回転子部材10の回転軸に垂直な断面図である。図2は、実施の形態1に係る回転子部材10の回転軸に沿った断面図である。図2は、図1中のII-II線における断面を示す。実施の形態1に係る回転子部材10は、筒状の第1スリーブ1と、外周2oが第1スリーブ1の内周1iに接するように第1スリーブ1に圧入される筒状の第2スリーブ2と、第1スリーブ1の外周1oに複数配置された分割磁石3と、分割磁石3の外周3o側に配置された筒状の補強スリーブ4とを備える。第1スリーブ1は、内周1iがテーパを有する。第2スリーブ2は、第1スリーブ1の内周1iと同じ傾斜のテーパを外周2oが有する。
図1は、本発明の実施の形態1に係る回転子部材10の回転軸に垂直な断面図である。図2は、実施の形態1に係る回転子部材10の回転軸に沿った断面図である。図2は、図1中のII-II線における断面を示す。実施の形態1に係る回転子部材10は、筒状の第1スリーブ1と、外周2oが第1スリーブ1の内周1iに接するように第1スリーブ1に圧入される筒状の第2スリーブ2と、第1スリーブ1の外周1oに複数配置された分割磁石3と、分割磁石3の外周3o側に配置された筒状の補強スリーブ4とを備える。第1スリーブ1は、内周1iがテーパを有する。第2スリーブ2は、第1スリーブ1の内周1iと同じ傾斜のテーパを外周2oが有する。
第2スリーブ2は、全体が筒部2tとなっている。第2スリーブ2の大径側の端部2lには、ねじ穴2aが形成されている。
第2スリーブ2は、第1スリーブ1に圧入されているため、第1スリーブ1の外周1oに配置された分割磁石3には、内径側から外径側に向かう力が加わり、分割磁石3は、補強スリーブ4の内周4iに押し付けられている。すなわち、第2スリーブ2を第1スリーブ1に圧入すると、分割磁石3は、第1スリーブ1と補強スリーブ4との間に挟み込まれ、補強スリーブ4と分割磁石3との間に生じる摩擦力及び第1スリーブ1と分割磁石3との間に生じる摩擦力によって固定される。補強スリーブ4は、炭素繊維強化プラスチックといった高強度かつ高剛性の材料で形成されている。補強スリーブ4は、分割磁石3が押し付けられても塑性変形又は破断は生じない強度を有している。
第2スリーブ2の軸方向の中央での厚さは、第1スリーブ1の軸方向の中央での厚さよりも厚くなっている。第2スリーブ2は、第1スリーブ1に圧入した際に、第2スリーブ2が変形してしまうことが抑制されるだけの厚さを有している。一例を挙げると、第2スリーブ2の軸方向の中央での厚さは、第1スリーブ1の軸方向の中央での厚さの2倍以上となっている。したがって、第2スリーブ2を第1スリーブ1に圧入した際に、第2スリーブ2が変形してしまうことは抑制される。
第1スリーブ1及び第2スリーブ2は、磁路を形成する観点からは、磁性材料で形成されることが好ましい。また、回転子部材10の温度が高くなっても、第1スリーブ1と第2スリーブ2との圧入代を確保できるようにするためには、第2スリーブ2の材料の熱膨張率が第1スリーブ1の材料の熱膨張率以上であることが望ましい。第1スリーブ1及び第2スリーブ2を磁性材料で形成することにより、回転子部材10を用いて構成する回転電機の出力を高めることができる。第1スリーブ1の材料の熱膨張率の方が大きい場合には、第1スリーブ1の材料と第2スリーブ2の材料とで熱膨張率の差が小さいほど好ましい。
実施の形態1に係る回転子部材10の組立手順について説明する。図3は、実施の形態1に係る回転子部材10の第1スリーブ1の外周1oに分割磁石3を配置した状態での回転軸に垂直な断面図である。図4は、実施の形態1に係る回転子部材の第1スリーブ1の外周1oに分割磁石3を配置した状態での回転軸に沿った断面図である。図4は、図3中のIV-IV線における断面を示す。まず、第1スリーブ1の外周1oに分割磁石3を配置し接着剤で固定する。分割磁石3を配置する際には、治具を用いて位置決めを行うことで、分割磁石3の間隔を設定値にする。モータ特性上、分割磁石3同士の隙間は寸法を均等にすることが望ましい。
分割磁石3を第1スリーブ1の外周1oに配置した後に、分割磁石3の外周3o側に補強スリーブ4を配置する。図5は、実施の形態1に係る回転子部材10の分割磁石3の外周3o側に補強スリーブ4を配置した状態での回転軸に垂直な断面図である。図6は、実施の形態1に係る回転子部材10の分割磁石3の外周3o側に補強スリーブ4を配置した状態での回転軸に沿った断面図である。図6は、図5中のVI-VI線における断面を示す。分割磁石3は、第1スリーブ1と補強スリーブ4との間に位置するが、補強スリーブ4の内周4iに押し付けられてはいない状態である。
分割磁石3の外周3o側に補強スリーブ4を配置した後に、第2スリーブ2を第1スリーブ1に圧入する。第2スリーブ2を第1スリーブ1に圧入することにより、分割磁石3が補強スリーブ4の内周4iに押し付けられる。補強スリーブ4に押し付けられた分割磁石3が、摩擦力によって第1スリーブ1と補強スリーブ4との間に固定されることにより、図1及び図2に示した回転子部材10が構成される。
図7は、実施の形態1に係る回転子部材10をシャフト5に固定した回転子15の回転軸に沿った断面図である。シャフト5にはフランジ部5aが設けられており、フランジ部5aには穴5bが形成されている。フランジ部5aが設けられたシャフト5を第2スリーブ2に挿入し、フランジ部5aに形成されている穴5bを通したボルト6をねじ穴2aに締結することにより、回転子部材10がシャフト5に固定される。回転子部材10がシャフト5に固定されることにより、回転子15が構成される。
回転子部材とシャフトとの固定方法が圧入であると、回転子部材に圧入されたシャフトを容易に取り外すことができない。実施の形態1に係る回転子部材10を用いれば、第1スリーブ1に第2スリーブ2を圧入する力によって、高速回転時にも分割磁石3を強固に固定することが可能であり、かつ、シャフト5を回転子部材10から容易に取り外すことが可能となる。その結果、回転子15を用いた電動機を設置した客先においても、シャフト5を回転子部材10に容易に取り付け及び取り外しが可能となる。
回転子部材とシャフトとの固定方法が圧入であると、シャフトを圧入する際に回転子部材に塑性変形が生じるため、シャフトから取り外した回転子部材に再度シャフトを圧入しても、元と同じ結合力は得られない。つまり、シャフトから取り外した回転子部材に再度シャフトを圧入しても、回転子部材の塑性変形の影響で、回転子の強度が低下し、電動機の信頼性の低下につながってしまう。実施の形態1に係る回転子部材10は、圧入することなくシャフト5に固定できるため、シャフト5から取り外した回転子部材10を再度シャフト5に取り付けても、結合力が低下することはない。したがって、実施の形態1に係る回転子部材10は、シャフト5から取り外して再利用することができる。
また、実施の形態1に係る回転子部材10は、組み立てる際に、シャフト5よりも短い第2スリーブ2を第1スリーブ1に圧入すれば良いため、シャフト自体をスリーブに圧入して回転子を組み立てる構造と比較すると、圧入作業の設備を小型化できる。
なお、上記の説明においては、回転子部材10とシャフト5との固定にボルト6を用いる構成を例示したが、回転子部材10とシャフト5との固定は、キーとキー溝とを嵌合させる手法、又はスプラインとスプライン穴とを嵌合させる手法を適用することもできる。
実施の形態1に係る回転子部材10は、シャフト5を圧入することなくシャフト5に固定できるため、シャフト5から取り外す際に大きな力は必要なく、シャフト5から取り外した後に再利用することも可能である。
実施の形態2.
図8は、本発明の実施の形態2に係る回転子部材を用いた回転子の構成を示す図である。実施の形態2に係る回転子部材10は、第2スリーブ2の大径側の端部2lにフランジ部2bが形成されている。したがって、実施の形態2においては、第2スリーブ2は、筒部2tとフランジ部2bとを備えている。フランジ部2bにはねじ穴2aが形成されている。一方、シャフト5にもフランジ部5aが設けられており、フランジ部5aには穴5bが形成されている。穴5bを通したボルト6をねじ穴2aに締結することにより、回転子部材10はシャフト5に固定されている。この他は実施の形態1に係る回転子部材10と同様である。回転子部材10の組立手順は、実施の形態1と同様である。
図8は、本発明の実施の形態2に係る回転子部材を用いた回転子の構成を示す図である。実施の形態2に係る回転子部材10は、第2スリーブ2の大径側の端部2lにフランジ部2bが形成されている。したがって、実施の形態2においては、第2スリーブ2は、筒部2tとフランジ部2bとを備えている。フランジ部2bにはねじ穴2aが形成されている。一方、シャフト5にもフランジ部5aが設けられており、フランジ部5aには穴5bが形成されている。穴5bを通したボルト6をねじ穴2aに締結することにより、回転子部材10はシャフト5に固定されている。この他は実施の形態1に係る回転子部材10と同様である。回転子部材10の組立手順は、実施の形態1と同様である。
実施の形態2に係る回転子部材10は、第2スリーブ2にフランジ部2bが設けられており、大径側の端面の面積がフランジ部2bの分だけ拡大されているため、第2スリーブ2がフランジ部2bを備えない実施の形態1に係る回転子部材10と比較した場合、第2スリーブ2を第1スリーブ1に圧入する際に圧力をかけることができる面積が大きくなる。したがって、実施の形態2に係る回転子部材10は、第2スリーブ2を第1スリーブ1に圧入する作業を行いやすい。
実施の形態2に係る回転子部材10は、フランジ部2bを利用して回転子部材10をシャフト5に固定するため、ボルト6の径は第2スリーブ2の肉厚による制約を受けない。したがって、回転子部材10とシャフト5との固定に第2スリーブ2の肉厚以上の径を有するボルト6を用いることで、第2スリーブ2の肉厚未満の径を有するボルトを用いる場合と同じ結合力を、少ない本数のボルト6で実現できる。よって、実施の形態2に係る回転子部材10は、ボルト6を締結する作業の工数を低減することができる。
また、回転子部材10とシャフト5との固定にキーを用いるのであれば、第2スリーブ2の筒部2tにキー溝を設ける場合よりも、回転軸からキー溝までの径方向の距離を長くとれるため、キーが受けることができるトルクを大きくできる。また、キー溝の深さは第2スリーブ2の肉厚による制約を受けないため、第2スリーブ2の筒部2tにキー溝を設ける場合よりも大きいキー溝をフランジ部2bに形成することができる。
また、フランジ部2bを設けることにより第2スリーブ2の熱容量が大きくなるため、回転子部材10の温度上昇を抑制しやすくなる。また、第2スリーブ2の向きを容易に判別できるため、第2スリーブ2を大径側の端部2lから第1スリーブ1に圧入してしまうことを防止できる。
なお、フランジ部2bに翼板を設置し、回転子が回転した際に回転子部材10に気流が吹き付けられるようにしても良い。
実施の形態3.
図9は、本発明の実施の形態3に係る回転子部材の回転軸に沿った断面図である。実施の形態3に係る回転子部材10は、第2スリーブ2の内周2iの軸方向の中間部に凹部2cが形成されている。第2スリーブ2は、全体が筒部2tとなっている。凹部2cは、第2スリーブ2の内周2iに全周にわたって形成されている。したがって、第2スリーブ2は、軸方向の中間部の凹部2cの部分の内径が、大径側の端部2lでの内径及び小径側の端部2sでの内径よりも大きくなっている。この他は実施の形態1に係る回転子部材10と同様である。回転子部材10の組立手順は、実施の形態1と同様である。
図9は、本発明の実施の形態3に係る回転子部材の回転軸に沿った断面図である。実施の形態3に係る回転子部材10は、第2スリーブ2の内周2iの軸方向の中間部に凹部2cが形成されている。第2スリーブ2は、全体が筒部2tとなっている。凹部2cは、第2スリーブ2の内周2iに全周にわたって形成されている。したがって、第2スリーブ2は、軸方向の中間部の凹部2cの部分の内径が、大径側の端部2lでの内径及び小径側の端部2sでの内径よりも大きくなっている。この他は実施の形態1に係る回転子部材10と同様である。回転子部材10の組立手順は、実施の形態1と同様である。
第2スリーブ2の内周2iにおいてシャフト5と接する部分は、偏心を防ぐために加工精度が要求され、加工速度を高めることが難しい。実施の形態3に係る回転子部材10では、軸方向の中間部の凹部2cは、内周2iがシャフト5と接触しないため、内周2iの加工精度は要求されない。したがって、第2スリーブ2の凹部2cの部分では内周2iの加工速度を速めることができる。また、第2スリーブ2は、内周iの大径側の端部2l及び小径側の端部2sの内周2iがシャフト5と接するため、凹部2cの部分で内周2iがシャフト5と接していなくても、シャフト5に傾きが生じることは防止できる。凹部2cの部分で内周2iの加工精度を低くして加工速度を速めることによって、加工コストの低減を図ることができる。
実施の形態3に係る回転子部材10の第2スリーブ2は、大径側の端部2lを把持した状態で、シャフト5と接触する小径側の端部2sの内周2iを加工したのち、小径側の端部2sを把持し直して、小径側の端部2sを把持した状態で、シャフト5と接触する大径側の端部2lの内周2iを加工することができるため、加工精度を高めやすい。
スリーブが一つであり、テーパシャフトをスリーブに圧入する構造の回転子では、スリーブの軸方向の中央部の内周に凹部を設けると、テーパシャフトを圧入した際にスリーブが中膨れを起こしてしまい、軸方向で均一にスリーブを膨張させることが困難である。実施の形態3では、補強スリーブ4との間に分割磁石3を挟み込む第1スリーブ1には凹部が形成されないため、第2スリーブ2を第1スリーブ1に圧入した際に、第1スリーブ1を軸方向で均一に膨張させることができる。
なお、実施の形態2と実施の形態3とを組み合わせて、第2スリーブ2の大径側の端部2lにフランジ部2bを設けるとともに、第2スリーブ2の内周2iの軸方向の中間部に凹部2cを形成することも可能である。
実施の形態4.
図10は、本発明の実施の形態4に係る回転子部材の回転軸に沿った断面図である。第2スリーブ2の内周2iに段部2dが設けられており、第2スリーブ2の内径は、大径側の端部2lにおいて段階的に小さくなっている。この他は実施の形態1に係る回転子部材10と同様である。回転子部材10の組立手順は、実施の形態1と同様である。
図10は、本発明の実施の形態4に係る回転子部材の回転軸に沿った断面図である。第2スリーブ2の内周2iに段部2dが設けられており、第2スリーブ2の内径は、大径側の端部2lにおいて段階的に小さくなっている。この他は実施の形態1に係る回転子部材10と同様である。回転子部材10の組立手順は、実施の形態1と同様である。
図11及び図12は、実施の形態4に係る回転子部材を用いた回転子の回転軸に沿った断面図である。図11及び図12に示すように、実施の形態4に係る回転子部材10は、フランジ部5aの大きさが異なるシャフト5に固定できる。シャフト5を第2スリーブ2に挿入する際には、段部2dにフランジ部5aを突き当てることでシャフト5の軸方向の位置決めを容易に行える。
なお、実施の形態3と実施の形態4とを組み合わせて、第2スリーブ2の内周2iの軸方向の中間部に凹部2cを形成するとともに、第2スリーブ2の内径を、大径側の端部2lにおいて段階的に小さくすることも可能である。
実施の形態5.
図13は、本発明の実施の形態5に係る回転子部材の回転軸に沿った断面図である。実施の形態5に係る回転子部材10は、第2スリーブ2の内周2iに、大径側の端部2lから小径側の端部2sまでつながった螺旋溝2eが設けられている。この他は実施の形態1に係る回転子部材10と同様である。回転子部材10の組立手順は、実施の形態1と同様である。
図13は、本発明の実施の形態5に係る回転子部材の回転軸に沿った断面図である。実施の形態5に係る回転子部材10は、第2スリーブ2の内周2iに、大径側の端部2lから小径側の端部2sまでつながった螺旋溝2eが設けられている。この他は実施の形態1に係る回転子部材10と同様である。回転子部材10の組立手順は、実施の形態1と同様である。
図14は、実施の形態5に係る回転子部材を用いた回転子の側面図である。回転子部材10をシャフト5に固定した状態においても、螺旋溝2eはシャフト5で塞がれておらず、第2スリーブ2の大径側の端部2lから小径側の端部2sまで繋がっている。したがって、実施の形態5に係る回転子部材10を用いた回転子は、第2スリーブ2の大径側の端部2lと小径側の端部2sとの間に螺旋溝2eを通じて流体を流すことができる。
実施の形態5に係る回転子部材を用いた回転子は、螺旋溝2eに冷却媒体を流すことで、回転子部材10を冷却することができる。また、第2スリーブ2がシャフト5にしまり嵌めされている場合は、回転子部材10をシャフト5から取り外す際に、螺旋溝2eに油を流して油圧で第2スリーブ2を拡げることで、回転子部材10をシャフト5から取り外しやすくすることができる。
第2スリーブ2の大径側の端部2lから小径側の端部2sまで繋がった溝は、螺旋状である必要はなく、直線状又はジグザグ状の溝であってもよい。第2スリーブ2の大径側の端部2lから小径側の端部2sまで繋がった溝は、1本である必要はなく、複数本形成されてもよい。
なお、実施の形態2、実施の形態3又は実施の形態4に係る回転子部材10に、第2スリーブ2の大径側の端部2lから小径側の端部2sまで繋がった溝を形成することも可能である。
図15は、実施の形態1から5のいずれかに係る回転子部材を用いた回転子を備えた回転電機の構成を示す図である。実施の形態1から5のいずれかに係る回転子部材10を用いた回転子15は、筒状の固定子20の中に挿入することにより、回転電機30を構成することができる。すなわち、実施の形態1から5のいずれかに係る回転子部材10を用いることにより、シャフト5から取り外した後で再利用できる回転子部材10を備えた回転電機30を得られる。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 第1スリーブ、1i,2i,4i 内周、1o,2o,3o 外周、2 第2スリーブ、2a ねじ穴、2b,5a フランジ部、2c 凹部、2d 段部、2e 螺旋溝、2l 大径側の端部、2s 小径側の端部、2t 筒部、3 分割磁石、4 補強スリーブ、5 シャフト、5b 穴、6 ボルト、10 回転子部材、15 回転子、20 固定子、30 回転電機。
Claims (11)
- 筒状の第1スリーブと、
外周が前記第1スリーブの内周に接するように前記第1スリーブに圧入される筒状の第2スリーブと、
前記第1スリーブの外周に、周方向に配置された複数の分割磁石と、
複数の前記分割磁石の外周側に配置され、前記第1スリーブとの間に複数の前記分割磁石を挟んで保持する筒状の補強スリーブとを備えることを特徴とする回転子部材。 - 前記第2スリーブの軸方向の中央での厚さは、前記第1スリーブの軸方向の中央での厚さよりも厚いことを特徴とする請求項1に記載の回転子部材。
- 前記第2スリーブの軸方向の中央での厚さは、前記第1スリーブの軸方向の中央での厚さの2倍以上であることを特徴とする請求項2に記載の回転子部材。
- 前記第2スリーブの材料の熱膨張率は、前記第1スリーブの材料の熱膨張率以上であることを特徴とする請求項1から3のいずれか1項に記載の回転子部材。
- 前記第1スリーブの材料及び前記第2スリーブの材料は、磁性材料であることを特徴とする請求項1から4のいずれか1項に記載の回転子部材。
- 前記第2スリーブは、大径側の端部にフランジ部を備えることを特徴とする請求項1から5のいずれか1項に記載の回転子部材。
- 前記フランジ部にねじ穴が形成されていることを特徴とする請求項6に記載の回転子部材。
- 前記第2スリーブは、軸方向の中間部の内径が両端部の内径よりも大きいことを特徴とする請求項1から7のいずれか1項に記載の回転子部材。
- 前記第2スリーブは、大径側の端部において、内径が段階的に小さくなることを特徴とする請求項1から7のいずれか1項に記載の回転子部材。
- 前記第2スリーブは、大径側の端部から小径側の端部まで繋がった溝が内周に形成されていることを特徴とする請求項1から7のいずれか1項に記載の回転子部材。
- 請求項1から10のいずれか1項に記載の回転子部材をシャフトに固定した回転子と、
前記回転子が挿入される筒状の固定子とを有することを特徴とする回転電機。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/019501 WO2018216160A1 (ja) | 2017-05-25 | 2017-05-25 | 回転子部材及び回転電機 |
CN201780085624.XA CN110366808B (zh) | 2017-05-25 | 2017-05-25 | 转子部件及旋转电机 |
JP2018513400A JP6351915B1 (ja) | 2017-05-25 | 2017-05-25 | 回転子部材及び回転電機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/019501 WO2018216160A1 (ja) | 2017-05-25 | 2017-05-25 | 回転子部材及び回転電機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018216160A1 true WO2018216160A1 (ja) | 2018-11-29 |
Family
ID=62779899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/019501 WO2018216160A1 (ja) | 2017-05-25 | 2017-05-25 | 回転子部材及び回転電機 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6351915B1 (ja) |
CN (1) | CN110366808B (ja) |
WO (1) | WO2018216160A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10651698B2 (en) | 2016-01-26 | 2020-05-12 | Mitsubishi Electric Corporation | Rotor of rotary electric machine, rotary electric machine, and rotor member of rotary electric machine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60125025U (ja) * | 1984-02-01 | 1985-08-23 | トヨタ自動車株式会社 | 異種材料の締結構造 |
JPH0217837A (ja) * | 1988-07-06 | 1990-01-22 | Hitachi Ltd | ブラシレス同期電動機の回転子 |
JP2013192291A (ja) * | 2012-03-12 | 2013-09-26 | Asmo Co Ltd | ロータ及びモータ |
JP2014212680A (ja) * | 2013-04-03 | 2014-11-13 | ファナック株式会社 | 回転電機の回転軸部に固定される回転子部材、回転子部材を備える回転子、および回転電機、ならびに、回転子を製造する方法 |
JP6072395B1 (ja) * | 2016-01-26 | 2017-02-01 | 三菱電機株式会社 | 回転電機の回転子部材、回転電機の回転子及び回転電機 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62203539A (ja) * | 1986-02-28 | 1987-09-08 | Hitachi Ltd | 無整流子モ−タの回転子 |
JP2000245086A (ja) * | 1999-02-18 | 2000-09-08 | Shinko Electric Co Ltd | 永久磁石型回転電機のロータ |
-
2017
- 2017-05-25 CN CN201780085624.XA patent/CN110366808B/zh active Active
- 2017-05-25 WO PCT/JP2017/019501 patent/WO2018216160A1/ja active Application Filing
- 2017-05-25 JP JP2018513400A patent/JP6351915B1/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60125025U (ja) * | 1984-02-01 | 1985-08-23 | トヨタ自動車株式会社 | 異種材料の締結構造 |
JPH0217837A (ja) * | 1988-07-06 | 1990-01-22 | Hitachi Ltd | ブラシレス同期電動機の回転子 |
JP2013192291A (ja) * | 2012-03-12 | 2013-09-26 | Asmo Co Ltd | ロータ及びモータ |
JP2014212680A (ja) * | 2013-04-03 | 2014-11-13 | ファナック株式会社 | 回転電機の回転軸部に固定される回転子部材、回転子部材を備える回転子、および回転電機、ならびに、回転子を製造する方法 |
JP6072395B1 (ja) * | 2016-01-26 | 2017-02-01 | 三菱電機株式会社 | 回転電機の回転子部材、回転電機の回転子及び回転電機 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018216160A1 (ja) | 2019-06-27 |
JP6351915B1 (ja) | 2018-07-04 |
CN110366808A (zh) | 2019-10-22 |
CN110366808B (zh) | 2020-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5689550B2 (ja) | 回転電機の回転軸部に固定される回転子部材、回転子部材を備える回転子、および回転電機、ならびに、回転子を製造する方法 | |
CN107546888B (zh) | 转子构件、转子以及电动机 | |
JP5139562B2 (ja) | 回転軸にスリーブを高精度に取り付け可能な電動機 | |
US9680342B2 (en) | Magnet holding member used in rotating electrical machine, rotor, rotating electrical machine, and machine tool | |
US10944306B2 (en) | Rotary electric rotor and method of manufacturing rotary electric rotor | |
JP6212020B2 (ja) | 回転子の製造方法 | |
JP5718391B2 (ja) | 回転電機 | |
WO2010001776A1 (ja) | 永久磁石式回転機の回転子構造 | |
KR20090041300A (ko) | 회전 전기기계의 회전자, 및 그 제조 방법 | |
EP2582015A1 (en) | Rotating electrical machine rotor | |
JP2005102460A (ja) | 回転電機の回転子 | |
JP6159572B2 (ja) | トルク伝達装置 | |
JPWO2007069332A1 (ja) | ガスタービン用永久磁石発電機ロータ、その製造方法及びガスタービン | |
JP2013150479A (ja) | 分割式コアを有する電動機の回転子及びその製造方法 | |
JP2012029460A (ja) | 電動機のロータ | |
JP2019030061A (ja) | 回転子、回転電機及び回転子の製造方法 | |
JP6351915B1 (ja) | 回転子部材及び回転電機 | |
CN110268600B (zh) | 转子及旋转电机 | |
JP4301060B2 (ja) | アキシャルギャップ電動機のロータ構造 | |
JP2007097240A (ja) | 回転電機におけるエンコーダの回転ディスクの固定方法および固定構造 | |
CN111264017B (zh) | 旋转电机 | |
JP7049285B2 (ja) | 回転電機のロータの製造方法 | |
US20230283124A1 (en) | Rotor for a rotating electric machine | |
WO2024185025A1 (ja) | ロータ用スリーブ、ロータおよびモータ | |
JP2021180588A (ja) | 回転電機用のロータの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018513400 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17911178 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17911178 Country of ref document: EP Kind code of ref document: A1 |