WO2018214607A1 - 一种主动柔性力控制设备 - Google Patents

一种主动柔性力控制设备 Download PDF

Info

Publication number
WO2018214607A1
WO2018214607A1 PCT/CN2018/077580 CN2018077580W WO2018214607A1 WO 2018214607 A1 WO2018214607 A1 WO 2018214607A1 CN 2018077580 W CN2018077580 W CN 2018077580W WO 2018214607 A1 WO2018214607 A1 WO 2018214607A1
Authority
WO
WIPO (PCT)
Prior art keywords
force control
disposed
linear guide
grating
slider
Prior art date
Application number
PCT/CN2018/077580
Other languages
English (en)
French (fr)
Inventor
李凯格
蔡奕松
周雪峰
程韬波
Original Assignee
广东省智能制造研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省智能制造研究所 filed Critical 广东省智能制造研究所
Publication of WO2018214607A1 publication Critical patent/WO2018214607A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D17/00Control of torque; Control of mechanical power
    • G05D17/02Control of torque; Control of mechanical power characterised by the use of electric means

Definitions

  • the invention relates to the technical field of industrial equipment, and in particular to an active flexible force control device.
  • Active flexible force control refers to the ability to simultaneously control the output force of the moving member during the movement of the mechanism.
  • the main power control technology is one of the key technologies used in many application scenarios, such as automated polishing, automated grinding and automated assembly.
  • Most of the existing solutions in this type of application use the cylinder as the drive to control the output pressure by controlling the internal pressure.
  • Another solution in the application of the robot technology is to use the six-axis universal robot with its end-mounted force sensor. Force feedback controls the output torque of each joint motor, and then controls the contact force of the end.
  • Most of the force control technologies used in the market are passive force control, which can only achieve force control in a single environment, and is not versatile and intelligent.
  • the use of cylinders as a driving method is relatively low-cost, and is very suitable for low-speed applications where the force control requirements are not high.
  • the disadvantage is that the pneumatic drive has a long lag in output force and cannot be applied to a relatively high-speed environment.
  • the torque output of each joint motor is controlled according to the force feedback of the end force sensor, and the accuracy and speed are good.
  • the disadvantage is that the cost is very high, and it is tried for high-end automation equipment, and the cost for the low-end automation application is too high.
  • the existing equipment still has the following problems: 1) the force control of the existing equipment does not have universality; 2) the influence of the self-weight of the force control end is not eliminated; 3) the force control of the fixed direction can only be achieved due to the influence of the terminal self-weight ( Except for six-axis robots with force sensors).
  • an active flexible force control device comprising a force control body, the force control body comprising an upper cover, a protective cover and a bottom plate, the protective cover is arranged around the periphery of the bottom plate, and the upper cover is sealed An upper side of the protective cover, the bottom plate sealing the lower side of the protective cover;
  • the force control body is provided with a fixing mechanism, an intermediate motion connecting mechanism and a motion platform mechanism;
  • the intermediate motion connecting mechanism is disposed on the fixing mechanism Slide along the lower deck of the upper cover and the moving platform mechanism is slidable along the fixing mechanism;
  • the upper cover is provided with a threaded hole through which the force control object to be controlled passes A threaded hole is mounted on the force control body;
  • the force control body is further provided with a linear grating sensor for detecting a change in position of the motion platform mechanism.
  • the protective cover is used to protect the active flexible force control device; the motion platform cooperates with the upper cover to install the force control object to be controlled and perform the flexible force control detection; the linear grating sensor can detect the position change of the motion platform mechanism, thereby confirming The magnitude of the representative force of the force control object to be controlled.
  • the fixing mechanism includes a first linear guide, a second linear guide, a servo motor, a screw module, a timing belt, a first synchronous wheel, a second synchronous wheel and a mounting plate, and the first linear guide and the second
  • the linear guide rail, the servo motor and the screw rod module are respectively fixed on the bottom plate
  • the first linear guide rail is respectively provided with a first limiting block and a second limiting block
  • a third limiting block and a fourth limiting block are respectively disposed at the two ends
  • the first linear guide rail and the second linear guide rail are symmetrically disposed and parallel to each other
  • the servo motor and the screw rod module are located on the first linear guide rail
  • the screw module includes a drive screw, a first fixed seat, a second fixed seat, a first bearing fixed in the first fixed seat, and a fixed in the second fixed seat a second bearing
  • the second fixing seat is fixed on the bottom plate, and two ends of the driving screw are respectively inserted into the
  • the first bearing and the second bearing are arranged such that the driving screw rotates in the two bearings under the driving of the servo motor; when the servo motor rotates, the first synchronous wheel rotates, and the second synchronous wheel is linked by the timing belt, thereby rotating the driving wire Rod.
  • the intermediate motion connecting mechanism includes a motion bracket, a first slider disposed on the first linear guide and sliding along the second linear guide, a second slider disposed on the second linear guide and sliding along the ball, and a ball a bearing and a spring; the first slider and the second slider are respectively fixed at two ends of the motion bracket, the ball bearing and the spring are respectively fixed on the motion bracket, and the roller bearing will
  • the movement bracket is pierced at two ends, the transmission screw is disposed on the ball bearing;
  • the linear grating sensor comprises a grating bracket and a grating read head, and the grating bracket is disposed on the motion bracket, the grating A readhead is attached to the grating holder. Under the drive of the drive screw, the ball bearing drives the motion bracket to move along the drive screw.
  • the motion platform mechanism includes a slider connecting plate, a grating ruler, a link plate, and a light-opening baffle respectively disposed on a lower side of the upper cover, and the slider connecting plate is provided with a third slider; the link The plate interferes with or disengages from the free end of the spring when the motion platform mechanism moves; the grating read head is aligned with the grating ruler; the third slider and the slider connection plate are respectively provided with four, two for each The slider connecting plates are located on the same side of the upper cover, and the slider connecting plates on both sides of the upper cover are symmetrically disposed; two of the third sliders located on one side are disposed on the first linear guide Up and along the slide, two of the third sliders on the other side are disposed on the second linear guide and slid along it.
  • the third slider is arranged to enable the motion platform mechanism to slide along two linear guide rails; the grating read head is aligned with the grating scale to read the scale in time; and the freedom of the link plate to resist or disengage the spring when the motion platform mechanism slides
  • the grating read head reads the reading of the initial state on the grating ruler, thereby detecting the change of the distance, that is, the magnitude of the spring expansion and contraction, and knowing the force of the force control object, and controlling the output torque of the servo motor according to the feedback of the force.
  • the bottom plate is provided with a first photoelectric limit sensor, a second photoelectric limit sensor and a third photoelectric limit sensor arranged side by side, and the light-opening baffle passes through the first photoelectric device as the moving platform mechanism moves.
  • the passage of the opening baffle causes the optical signals of the photoelectric limit sensors to be cut off, thereby confirming the positional information of the movement of the motion platform mechanism.
  • the bottom plate is provided with a tilt sensor for detecting an angle between the servo motor output force and the gravity axis. After the tilt sensor detects the angle between the servo motor output force and the gravity axis, the servo motor is required to provide the corresponding output force according to the load's own weight.
  • the side of the first fixing seat opposite to the second fixing seat is an inner side, and the inner side of the first fixing seat and the inner side of the second fixing seat are respectively provided with a buffering block.
  • the buffer block can increase the support of the upper cover, and can avoid the impact of the intermediate movement connecting mechanism on the two fixing seats, forming a buffer protection for the fixed seat.
  • a bottom plate is disposed on the lower side of the upper cover, and a notch is formed through the lower side of the back plate, and the grating ruler is located in the notch.
  • the lower side of the bottom plate is provided with a connecting flange.
  • the force control body can be fixed to the component connected thereto by a connecting flange.
  • the invention has the advantages that the device has low cost, strong versatility, flexible and simple installation, and the force control body can be equipped with various custom tools for force control; the servo motor is used for driving, and its dynamic response The speed is fast; the position information detected by the linear grating sensor is used to characterize the distance, and the force control precision is high; the device adopts a servo motor, a linear grating sensor and a tilt sensor to form a full closed loop, which can overcome the self-weight and load, and has two-way force control and load. A range of functions that can be easily adjusted.
  • Figure 1 is a perspective view of a top view of an embodiment of the present invention
  • FIG. 2 is a perspective view of a bottom view of an embodiment of the present invention.
  • FIG. 3 is a top plan view showing a fixing mechanism mounted on a bottom plate according to an embodiment of the present invention
  • FIG. 4 is a perspective view of a fixing mechanism mounted on a bottom plate according to an embodiment of the present invention.
  • Figure 5 is a perspective view of an intermediate motion connecting mechanism according to an embodiment of the present invention.
  • Figure 6 is a second perspective view of the intermediate motion connecting mechanism of the embodiment of the present invention.
  • Figure 7 is a third perspective view of the intermediate motion connecting mechanism of the embodiment of the present invention.
  • Figure 8 is a perspective view of the motion platform mechanism mounted on the upper cover according to an embodiment of the present invention.
  • Figure 9 is a plan view showing the mounting of the motion platform mechanism on the upper cover according to an embodiment of the present invention.
  • Figure 10 is a side view of the movable platform mechanism mounted on the upper cover according to an embodiment of the present invention.
  • Figure 11 is a plan view showing the fixing mechanism and the intermediate movement connecting mechanism after installation according to an embodiment of the present invention.
  • Figure 12 is a cross-sectional view taken along line A-A of Figure 11;
  • Figure 13 is a perspective view of the fixing mechanism and the intermediate motion connecting mechanism after installation according to an embodiment of the present invention.
  • Figure 14 is a second perspective view of the fixing mechanism and the intermediate movement connecting mechanism according to the embodiment of the present invention.
  • Figure 15 is a plan view of Figure 11 after the pad is added
  • Figure 16 is a perspective view of Figure 11 with the pad attached.
  • an active flexible force control device includes a force control body including an upper cover 1, a shield 2 and a bottom plate 3, and the shield 2 is disposed around the periphery of the bottom plate 3, and the upper cover 1 Sealing the upper side of the protective cover 2, the bottom plate 3 sealing the lower side of the protective cover 2;
  • the force control body is provided with a fixing mechanism, an intermediate motion connecting mechanism and a motion platform mechanism;
  • the intermediate motion connecting mechanism is disposed on the fixing mechanism and along the same Sliding, the motion platform mechanism is disposed on the lower side of the upper cover 1 and the motion platform mechanism is slidable along the fixing mechanism;
  • the upper cover 1 is provided with a threaded hole 4, and the force control object to be controlled is mounted on the force control body through the threaded hole 4;
  • the control body is also provided with a linear grating sensor for detecting a change in the position of the motion platform mechanism.
  • the direction of the arrow in Fig. 1 indicates the direction of movement of the motion platform mechanism portion.
  • the protective cover 2 is used for protecting the active flexible force control device; the moving platform cooperates with the upper cover 1 to install the force control object to be controlled and perform the detection of the flexible force control; the linear grating sensor can detect the position change of the motion platform mechanism, Thereby confirming the magnitude of the representative force of the force control object to be controlled.
  • the fixing mechanism includes a first linear guide 5, a second linear guide 6, a servo motor 7, a screw module, a timing belt 8, a first synchronous wheel 9, a second synchronous wheel 10, and a mounting plate.
  • the first linear guide 5, the second linear guide 6, the servo motor 7, the screw module are respectively fixed on the bottom plate 3;
  • the first linear guide 5 is provided with a first limit block 11 and a first Two limiting blocks 12, two ends of the second linear guide 6 are respectively provided with a third limiting block 13 and a fourth limiting block 14, the first linear guide 5 and the second linear guide 6 are symmetrically arranged and parallel to each other, and the servo
  • the motor 7 and the screw module are located between the first linear guide 5 and the second linear guide 6;
  • the screw module includes a drive screw 15, a first fixing seat 16, a second fixing seat 17, and is fixed at the first fixing a first bearing 18 in the seat 16, and a second bearing 19 fixed in the second fixing seat 17, the second fixing seat 17 is fixed on the bottom plate 3, and the
  • the first bearing 18 and the second bearing 19 are disposed such that the driving screw 15 rotates in the two bearings under the driving of the servo motor 7; when the servo motor 7 rotates, the first synchronous wheel 9 rotates, and the second belt 9 is linked by the timing belt 8 The wheel 10 is synchronized to rotate the drive screw 15.
  • the intermediate motion connecting mechanism includes a motion bracket 21, a first slider 22 disposed on the first linear guide 5 and slid along the first linear guide 5, and a first linear guide 6 disposed along and sliding along the second linear guide 6
  • the bearing penetrates both ends of the motion bracket 21, and the transmission screw 15 is disposed on the ball bearing 24.
  • the linear grating sensor includes a grating bracket 26 and a grating read head 27, and the grating bracket 26 is disposed on the motion bracket 21, and the grating read head 27 is fixed at On the grating bracket 26.
  • the ball bearing 24 drives the motion bracket 21 to move along the drive screw 15.
  • the motion platform mechanism includes a slider connecting plate 28, a grating scale 29, a link plate 30, and a light-emitting shutter 31 respectively disposed on a lower side surface of the upper cover 1, and the slider connecting plate 28 is provided with a first a three-slider 32; the link plate 30 interferes with or disengages from the free end of the spring 25 when the motion platform mechanism moves; the grating read head 27 is aligned with the scale 29; the third slider 32 and the slider connection plate 28 are respectively provided with four, Each of the two slider connecting plates 28 is located on the same side of the upper cover 1 plate, and the slider connecting plates 28 on both sides of the upper cover 1 are symmetrically disposed; the two third sliders 32 located on one side are disposed at the first The linear guides 5 are slid along them, and the two third sliders 32 on the other side are disposed on the second linear guide 6 and slid along them.
  • the third slider 32 is arranged such that the motion platform mechanism can slide along the two linear guide rails; the grating read head 27 is aligned with the grating ruler 29, and the grating scale 29 can be read in time; when the motion platform mechanism slides, the link plate 30 is in conflict with Or, away from the free end of the spring 25, the grating read head 27 reads out the reading of the initial state on the scale 29, thereby detecting the change in the distance, that is, the amount of expansion and contraction of the spring 25, and knowing the force of the force control object, according to the force Feedback is used to control the magnitude of the output torque of the servo motor 7.
  • the bottom plate 3 is provided with a first photoelectric limit sensor 33, a second photoelectric limit sensor 34, and a third photoelectric limit sensor 35 arranged side by side, and the light-opening baffle 31 passes through the first photo-limiting with the movement of the motion platform mechanism.
  • the passage of the opening shutter 31 causes the optical signals of the photoelectric limit sensors to be cut off, thereby confirming the positional information of the movement of the motion platform mechanism.
  • the bottom plate 3 is provided with a tilt sensor 36 for detecting the angle between the output force of the servo motor 7 and the gravity axis. After the inclination sensor 36 detects the angle between the output force of the servo motor 7 and the gravity axis, the servo motor 7 is required to provide a corresponding output force by calculating the terminal thrust to be output according to the load.
  • the side opposite to the second fixing seat 17 is the inner side, and the inner side of the first fixing base 16 and the inner side of the second fixing base 17 are respectively provided with a buffer stopper 37.
  • the buffer block 37 can increase the support of the upper cover 1 and avoid the impact of the intermediate motion connecting mechanism on the two fixing seats, thereby forming a buffer protection for the fixed seat.
  • a lower surface of the upper cover 1 is provided with a backing plate 38.
  • a notch 39 is formed through the upper and lower sides of the backing plate 38, and the grating scale 29 is located in the notch 39.
  • a connecting flange 40 is provided on the lower side of the bottom plate 3.
  • the force control body can be fixed to the component connected thereto by a connecting flange 40.
  • the tilt sensor 36 can detect the angle between the output force of the servo motor 7 and the gravity axis, and calculate the end thrust to output the set according to the load weight.
  • the servo motor 7 needs to provide a corresponding output force.
  • the change in the distance detected by the linear lenticular sensor described above is the amount of expansion and contraction of the spring 25.
  • the magnitude of the thrust of the spring 25 received by the motion platform mechanism can be characterized by the position information detected by the grating sensor.
  • the linear grating sensor can control the rotation of the servo motor 7 according to the position information of the grating sensor, that is, control the relative distance L between the motion bracket 21 of the intermediate motion connecting mechanism and the link plate 30 of the motion platform mechanism, and the spring 25 is located between the motion bracket 21 of the intermediate motion connecting mechanism and the link plate 30 of the motion platform mechanism, and the interaction force of the two is proportional to L, that is, a full-closed force control system is realized.
  • the device realizes fast and precise force control in any direction of space, with independent controller, can be freely installed at the required position, and can realize force control at any position within a short distance (several centimeters).
  • the tilt sensor 36 of the device is also called a gyro sensor, and the working process of the device is as follows:
  • the spring 25 inside the intermediate motion connecting mechanism of FIG. 13 is in a stretched or compressed state, the spring force Fc generated by the spring 25, the gravity Gf component (calculated according to the tilt angle fed back by the tilt sensor 36), and the motion platform mechanism and the output force Fo balance.
  • the motion platform mechanism When the disturbance external force ⁇ F acts on the motion platform mechanism (Fig. 8), the motion platform mechanism will move in the direction indicated by the arrow shown in Fig. 1, thereby causing the spring 25 to compress or stretch and generate a deformation amount of ⁇ X due to
  • the grating reading head 27 and the grating ruler 29 are respectively located on the intermediate movement connecting mechanism and the moving platform mechanism, and the deformation amount ⁇ X of the spring 25 can be directly detected by the grating sensor, because ⁇ F and ⁇ X are linear, that is, the grating ruler 29 is at this time.
  • the disturbance external force ⁇ F causes the spring 25 to generate a deformation of ⁇ X .
  • the control system is a follower system in the form of double closed loop, that is, the position of the spring 25 is fixed (fixed with the ball bearing 24 on the drive screw 15) to make ⁇ X zero, that is, ⁇ F is zero, to realize the output force Fo Force control.
  • the output force of the system is Fo 12N, because the system is double closed loop
  • the ball bearing 24 fixed to the other end of the spring 25 is driven to move along the axial direction of the drive screw by controlling the servo motor 7 to drive the rotation of the drive screw, and the movement amount is 2 mm.
  • the spring 25 will again return to the original compression amount Xo, and the motion platform mechanism output force will change back to Fo. That is, the force at which the Fo output is always 10N is achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

一种主动柔性力控制设备,包括力控本体,力控本体包括上盖(1)、防护罩(2)和底板(3);力控本体内设置有固定机构、中间运动连接机构和运动平台机构;中间运动连接机构设置在固定机构上并沿其滑动,运动平台机构设置在上盖(1)的下侧面且运动平台机构可沿固定机构滑动;上盖(1)开设有螺纹孔(4),待控制的力控对象通过螺纹孔(4)安装在力控本体上;力控本体还设有用于检测运动平台机构位置变化的直线光栅传感器。力控本体可加装各种自定义工具,进行力控制,安装灵活简便;采用伺服电机(7)与直线光栅传感器、倾角传感器(36)组成全闭环,能够克服自重及负载,可简易调节双向力控制及负载范围。

Description

一种主动柔性力控制设备 技术领域
本发明涉及工业设备技术领域,尤其涉及一种主动柔性力控制设备。
背景技术
主动柔性力控制是指在机构运动过程中还能够同时控制运动构件输出力的大小。在自动化及机器人应用领域中,主动力控制技术是众多应用场景中需要用到的关键技术之一,例如自动化抛光,自动化磨削及自动化装配等应用。在这类应用中现有解决方案大部分是利用气缸作为驱动,通过控制内部压力实现输出力控制,在机器人技术应用中的另一种解决方案是采用六轴通用机器人其末端安装力传感器,根据力反馈来控制各关节电机输出力矩大小,进而控制末端接触力的大小。市面上大部分采用的力控制技术为被动式力控制,只能实现单一环境下的力控制,不具有通用性和智能性。
采用气缸作为驱动的方式成本较低,在低速应用中对力控制要求不高的条件下非常合适,缺点是采用气动驱动,输出力会有比较长的滞后,无法适用于相对高速的环境下。采用六轴通用机器人时根据末端力传感器的力反馈来控制各关节电机力矩输出,准确性和速度良好,缺点是成本非常高,试用于高端自动化装备,对于低端自动化应用成本太高。
其次,现有设备还存在以下问题:1)现有设备的力控制不具备通用性;2)对于力控制末端的自重影响没有消除;3)由于末端自重影响只能实现固定方向的力控制(采用力传感器的六轴机器人除外)。
发明内容
本发明的目的是克服上述现有技术的不足,提供一种主动柔性力控制设备。
本发明是通过以下技术方案来实现的:一种主动柔性力控制设备,其包括力控本体,所述力控本体包括上盖、防护罩和底板,防护罩环绕底板周边设置,并且上盖封合防护罩的上侧面,底板封合防护罩的下侧面;所述力控本体内设置有固定机构、中间运动连接机构和运动平台机构;所述中间运动连接机 构设置在所述固定机构上并沿其滑动,所述运动平台机构设置在所述上盖的下侧面且所述运动平台机构可沿所述固定机构滑动;所述上盖开设有螺纹孔,待控制的力控对象通过所述螺纹孔安装在所述力控本体上;所述力控本体还设有用于检测运动平台机构位置变化的直线光栅传感器。
防护罩用于保护本主动柔性力控制设备;运动平台与上盖配合,从而将待控制的力控对象安装好并进行柔性力控制的检测;直线光栅传感器可检测运动平台机构位置变化,从而确认待控制的力控对象的表征力的大小。
所述固定机构包括第一直线导轨、第二直线导轨、伺服电机、丝杆模组、同步带、第一同步轮、第二同步轮和安装板,所述第一直线导轨、第二直线导轨、伺服电机、丝杆模组分别固定在所述底板上;所述第一直线导轨的两端分别设置有第一限位块和第二限位块,所述第二直线导轨的两端分别设置有第三限位块和第四限位块,所述第一直线导轨与第二直线导轨对称设置且相互平行,所述伺服电机与丝杆模组位于第一直线导轨与第二直线导轨之间;所述丝杆模组包括传动丝杆、第一固定座、第二固定座、固定在第一固定座内的第一轴承、以及固定在第二固定座内的第二轴承,所述第二固定座固定在所述底板上,所述传动丝杆的两端分别套入所述第一轴承、第二轴承内;所述伺服电机通过所述安装板固定在所述底板上,所述第一固定座设置在所述安装板上,所述第一同步轮设置在所述伺服电机的输出轴上,所述第二同步轮设置在由所述第一轴承伸出的传动丝杆上,第一同步轮通过所述同步带与所述第二同步轮联结在一起。第一轴承与第二轴承的设置,使得传动丝杆在伺服电机的驱动下在两轴承内转动;伺服电机转动时,第一同步轮转动,通过同步带联动第二同步轮,从而转动传动丝杆。
所述中间运动连接机构包括运动支架、设置在所述第一直线导轨上并沿其滑行的第一滑块、设置在所述第二直线导轨上并沿其滑行的第二滑块、滚珠轴承、弹簧;所述第一滑块与第二滑块分别固定在所述运动支架的两端,所述滚珠轴承与所述弹簧分别固定在所述运动支架上,且所述滚轴轴承将所述运动支架两端贯穿,所述传动丝杆穿设在所述滚珠轴承上;所述直线光栅传感器包括光栅支架和光栅读数头,所述光栅支架设置在所述运动支架上,所述光栅读数头固定在所述光栅支架上。在传动丝杆的传动之下,滚珠轴承带动运动支架沿传动丝杆移动。
所述运动平台机构包括分别设置在所述上盖下侧面上的滑块连接板、光栅尺、链接板、以及开光挡板,所述滑块连接板上设置有第三滑块;所述链接板在所述运动平台机构移动时抵触或脱离所述弹簧的自由端;所述光栅读数头对准所述光栅尺;所述第三滑块及滑块连接板分别设置有四个,每两个滑块连接板位于上盖板的同一侧边上,上盖板两侧的滑块连接板对称设置;位于一侧边的两个所述第三滑块设置在所述第一直线导轨上并沿其滑行,位于另一侧边的两个所述第三滑块设置在所述第二直线导轨上并沿其滑行。第三滑块的设置,可使得运动平台机构可沿两条直线导轨滑行;光栅读数头对准光栅尺,可及时对光栅尺进行读数;运动平台机构滑行时,链接板抵触或脱离弹簧的自由端,光栅读数头读出光栅尺上初始状态的读数,从而检测到距离的变化,即弹簧伸缩量的大小,可获知力控对象的受力,根据力的反馈来控制伺服电机输出力矩大小。
所述底板设置有顺次并排设置的第一光电限位传感器、第二光电限位传感器、第三光电限位传感器,所述开光挡板随所述运动平台机构的移动而穿过第一光电限位传感器或第二光电限位传感器或第三光电限位传感器。开光挡板的穿过,使得各光电限位传感器的光信号切断,从而确认运动平台机构行进的位置信息。
所述底板设置有用于检测所述伺服电机输出力与重力轴的夹角的倾角传感器。倾角传感器检测出伺服电机输出力与重力轴的夹角后,根据负载自重计算出要输出设定的末端推力需要伺服电机提供相应的输出力。
以所述第一固定座与所述第二固定座相对的一侧为内侧,所述第一固定座的内侧与所述第二固定座的内侧分别设置有缓冲挡块。缓冲挡块即可增加对上盖的支撑,又可避免中间运动连接机构对两个固定座的撞击,形成对固定座的缓冲保护。
所述上盖的下侧面设置有垫板,垫板上下侧面贯穿开设有缺口,所述光栅尺位于缺口内。
所述底板下侧面设置有连接法兰。力控本体可通过连接法兰固定在与其连接的部件上。
与现有技术对比,本发明的优点在于:本装置成本低、通用性强,安装灵活简便,力控本体可加装各种自定义工具,进行力控制;采用伺服电机进行驱 动,其动态响应速度快;采用直线光栅传感器检测的位置信息来表征离的大小,力控精度高;本装置采用伺服电机与直线光栅传感器、倾角传感器组成全闭环,能够克服自重及负载,具有双向力控制及负载范围可简易调节的功能。
附图说明
图1为本发明实施例俯视方向的立体图;
图2为本发明实施例仰视方向的立体图;
图3为本发明实施例固定机构安装在底板的俯视图;
图4为本发明实施例固定机构安装在底板的立体图;
图5为本发明实施例中间运动连接机构的立体图之一;
图6为本发明实施例中间运动连接机构的立体图之二;
图7为本发明实施例中间运动连接机构的立体图之三;
图8为本发明实施例运动平台机构安装在上盖的立体图;
图9为本发明实施例运动平台机构安装在上盖的俯视图;
图10为本发明实施例运动平台机构安装在上盖的侧视图;
图11为本发明实施例固定机构与中间运动连接机构安装后的俯视图;
图12为图11中A-A向剖视图;
图13为本发明实施例固定机构与中间运动连接机构安装后的立体图之一;
图14为本发明实施例固定机构与中间运动连接机构安装后的立体图之二;
图15为图11加装垫板后的俯视图;
图16为图11加装垫板后的立体图。
图中附图标记含义:1、上盖;2、防护罩;3、底板;4、螺纹孔;5、第一直线导轨;6、第二直线导轨;7、伺服电机;8、同步带;9、第一同步轮;10、第二同步轮;11、第一限位块;12、第二限位块;13、第三限位块;14、第四限位块;15、传动丝杆;16、第一固定座;17、第二固定座;18、第一轴承;19、第二轴承;20、安装板;21、运动支架;22、第一滑块;23、第二滑块;24、滚珠轴承;25、弹簧;26、光栅支架;27、光栅读数头;28、滑块连接板;29、光栅尺;30、链接板;31、开光挡板;32、第三滑块;33、 第一光电限位传感器;34、第二光电限位传感器;35、第三光电限位传感器;36、倾角传感器;37、缓冲挡块;38、垫板;39、缺口;40、连接法兰。
具体实施方式
下面结合附图和具体实施方式对本发明的内容做进一步详细说明。
实施例
参阅图1至图16,为一种主动柔性力控制设备,其包括力控本体,力控本体包括上盖1、防护罩2和底板3,防护罩2环绕底板3周边设置,并且上盖1封合防护罩2的上侧面,底板3封合防护罩2的下侧面;力控本体内设置有固定机构、中间运动连接机构和运动平台机构;中间运动连接机构设置在固定机构上并沿其滑动,运动平台机构设置在上盖1的下侧面且运动平台机构可沿固定机构滑动;上盖1开设有螺纹孔4,待控制的力控对象通过螺纹孔4安装在力控本体上;力控本体还设有用于检测运动平台机构位置变化的直线光栅传感器。图1中箭头方向表示运动平台机构部的运动方向。
防护罩2用于保护本主动柔性力控制设备;运动平台与上盖1配合,从而将待控制的力控对象安装好并进行柔性力控制的检测;直线光栅传感器可检测运动平台机构位置变化,从而确认待控制的力控对象的表征力的大小。
参阅图3及图4,固定机构包括第一直线导轨5、第二直线导轨6、伺服电机7、丝杆模组、同步带8、第一同步轮9、第二同步轮10和安装板20,第一直线导轨5、第二直线导轨6、伺服电机7、丝杆模组分别固定在底板3上;第一直线导轨5的两端分别设置有第一限位块11和第二限位块12,第二直线导轨6的两端分别设置有第三限位块13和第四限位块14,第一直线导轨5与第二直线导轨6对称设置且相互平行,伺服电机7与丝杆模组位于第一直线导轨5与第二直线导轨6之间;丝杆模组包括传动丝杆15、第一固定座16、第二固定座17、固定在第一固定座16内的第一轴承18、以及固定在第二固定座17内的第二轴承19,第二固定座17固定在底板3上,传动丝杆15的两端分别套入第一轴承18、第二轴承19内;伺服电机7通过安装板20固定在底板3上,第一固定座16设置在安装板20上,第一同步轮9设置在伺服电机7的输出轴上,第二同步轮10设置在由第一轴承18伸出的传动丝杆15上,第一同步轮9通过同步带8与第二同步轮10联结在一起。第一轴承18与第二轴承19的设 置,使得传动丝杆15在伺服电机7的驱动下在两轴承内转动;伺服电机7转动时,第一同步轮9转动,通过同步带8联动第二同步轮10,从而转动传动丝杆15。
参阅图5至图7,中间运动连接机构包括运动支架21、设置在第一直线导轨5上并沿其滑行的第一滑块22、设置在第二直线导轨6上并沿其滑行的第二滑块23、滚珠轴承24、弹簧25;第一滑块22与第二滑块23分别固定在运动支架21的两端,滚珠轴承24与弹簧25分别固定在运动支架21上,且滚轴轴承将运动支架21两端贯穿,传动丝杆15穿设在滚珠轴承24上;直线光栅传感器包括光栅支架26和光栅读数头27,光栅支架26设置在运动支架21上,光栅读数头27固定在光栅支架26上。在传动丝杆15的传动之下,滚珠轴承24带动运动支架21沿传动丝杆15移动。
参阅图8及图9,运动平台机构包括分别设置在上盖1下侧面上的滑块连接板28、光栅尺29、链接板30、以及开光挡板31,滑块连接板28上设置有第三滑块32;链接板30在运动平台机构移动时抵触或脱离弹簧25的自由端;光栅读数头27对准光栅尺29;第三滑块32及滑块连接板28分别设置有四个,每两个滑块连接板28位于上盖1板的同一侧边上,上盖1板两侧的滑块连接板28对称设置;位于一侧边的两个第三滑块32设置在第一直线导轨5上并沿其滑行,位于另一侧边的两个第三滑块32设置在第二直线导轨6上并沿其滑行。第三滑块32的设置,可使得运动平台机构可沿两条直线导轨滑行;光栅读数头27对准光栅尺29,可及时对光栅尺29进行读数;运动平台机构滑行时,链接板30抵触或脱离弹簧25的自由端,光栅读数头27读出光栅尺29上初始状态的读数,从而检测到距离的变化,即弹簧25伸缩量的大小,可获知力控对象的受力,根据力的反馈来控制伺服电机7输出力矩大小。
底板3设置有顺次并排设置的第一光电限位传感器33、第二光电限位传感器34、第三光电限位传感器35,开光挡板31随运动平台机构的移动而穿过第一光电限位传感器33或第二光电限位传感器34或第三光电限位传感器35。开光挡板31的穿过,使得各光电限位传感器的光信号切断,从而确认运动平台机构行进的位置信息。
底板3设置有用于检测伺服电机7输出力与重力轴的夹角的倾角传感器36。倾角传感器36检测出伺服电机7输出力与重力轴的夹角后,根据负载自 重计算出要输出设定的末端推力需要伺服电机7提供相应的输出力。
以第一固定座16与第二固定座17相对的一侧为内侧,第一固定座16的内侧与第二固定座17的内侧分别设置有缓冲挡块37。缓冲挡块37即可增加对上盖1的支撑,又可避免中间运动连接机构对两个固定座的撞击,形成对固定座的缓冲保护。
上盖1的下侧面设置有垫板38,垫板38上下侧面贯穿开设有缺口39,光栅尺29位于缺口39内。
底板3下侧面设置有连接法兰40。力控本体可通过连接法兰40固定在与其连接的部件上。
本实施例中,倾角传感器36能够检测伺服电机7输出力与重力轴的夹角,并根据负载自重计算出要输出设定的末端推力需要伺服电机7提供相应的输出力。
上述结构直线光栅传感器检测到的距离变化为弹簧25的伸缩量的大小,根据胡克定律,即运动平台机构所受到的弹簧25推力大小可通过光栅传感器检测到的位置信息来表征。直线光栅传感器作为伺服电机7的位置反馈可以实现根据光栅传感器的位置信息控制伺服电机7的转动,即控制位于中间运动连接机构的运动支架21与运动平台机构的链接板30的相对距离L,弹簧25位于中间运动连接机构的运动支架21与运动平台机构的链接板30之间,两者的相互作用力正比于L,即实现了全闭环的力控制系统。
本装置实现空间任意方向的快速精确力控制,配合独立控制器,可自由安装在所需位置,并可在短距离内(数厘米)实现任意位置的力控制。
本装置中倾角传感器36又称陀螺仪传感器,本装置的工作过程如下:
系统平衡时,图13中间运动连接机构内部的弹簧25处于拉伸或压缩状态,弹簧25产生的弹力Fc、重力Gf分力(根据倾角传感器36反馈的倾角计算)与运动平台机构及输出力Fo平衡。
当扰动外力△F作用在运动平台机构(图8)时,运动平台机构将沿图1所示箭头所示方向产生运动,从而使弹簧25产生压缩或拉伸并产生△X的变形量,由于光栅读数头27和光栅尺29分别位于中间运动连接机构和运动平台机构上,弹簧25变形量△X可直接由光栅传感器检测出来,因△F与△X为线性关系,即光栅尺29此时作为力传感器使用,扰动外力△F引起弹簧25产生△ X的形变。
控制系统为双闭环形式的随动系统,即通过控弹簧25一端(与传动丝杆15上的滚珠轴承24固定)的位置来使△X为零,即△F为零,来实现输出力Fo的力控制。
如下为恒力控制的示例:当输出力Fo为10N时,弹簧25原压缩量为Xo外部突然有2N的反作用力作用在运动平台机构上,此时弹簧25受力平衡被破坏,假设弹簧25弹性系数为1mm/N,此时弹簧25的一端(与运动平台机构相连接的一端)与运动平台机构将同时产生2mm的移动,此时系统输出力为Fo为12N,由于系统为双闭环随动系统,光栅传感器检测出2mm的移动后,通过控制伺服电机7带动传动丝杠旋转使与弹簧25另一端固定的滚珠轴承24产生沿传动丝杠轴向的移动,移动量为2mm,此时弹簧25将又恢复到原压缩量Xo,运动平台机构输出力又变回Fo。即实现了Fo输出恒为10N的力。
上列详细说明是针对本发明可行实施例的具体说明,该实施例并非用以限制本发明的专利范围,凡未脱离本发明所为的等效实施或变更,均应包含于本案的专利范围中。

Claims (9)

  1. 一种主动柔性力控制设备,其特征在于:其包括力控本体,所述力控本体包括上盖(1)、防护罩(2)和底板(3),防护罩(2)环绕底板(3)周边设置,并且上盖(1)封合防护罩(2)的上侧面,底板(3)封合防护罩(2)的下侧面;所述力控本体内设置有固定机构、中间运动连接机构和运动平台机构;所述中间运动连接机构设置在所述固定机构上并沿其滑动,所述运动平台机构设置在所述上盖(1)的下侧面且所述运动平台机构可沿所述固定机构滑动;所述上盖(1)开设有螺纹孔(4),待控制的力控对象通过所述螺纹孔(4)安装在所述力控本体上;所述力控本体还设有用于检测运动平台机构位置变化的直线光栅传感器。
  2. 根据权利要求1所述的主动柔性力控制设备,其特征在于:所述固定机构包括第一直线导轨(5)、第二直线导轨(6)、伺服电机(7)、丝杆模组、同步带(8)、第一同步轮(9)、第二同步轮(10)和安装板(20),所述第一直线导轨(5)、第二直线导轨(6)、伺服电机(7)、丝杆模组分别固定在所述底板(3)上;所述第一直线导轨(5)的两端分别设置有第一限位块(11)和第二限位块(12),所述第二直线导轨(6)的两端分别设置有第三限位块(13)和第四限位块(14),所述第一直线导轨(5)与第二直线导轨(6)对称设置且相互平行,所述伺服电机(7)与丝杆模组位于第一直线导轨(5)与第二直线导轨(6)之间;所述丝杆模组包括传动丝杆(15)、第一固定座(16)、第二固定座(17)、固定在第一固定座(16)内的第一轴承(18)、以及固定在第二固定座(17)内的第二轴承(19),所述第二固定座(17)固定在所述底板(3)上,所述传动丝杆(15)的两端分别套入所述第一轴承(18)、第二轴承(19)内;所述伺服电机(7)通过所述安装板(20)固定在所述底板(3)上,所述第一固定座(16)设置在所述安装板(20)上,所述第一同步轮(9)设置在所述伺服电机(7)的输出轴上,所述第二同步轮(10)设置在由所述第一轴承(18)伸出的传动丝杆(15)上,第一同步轮(9)通过所述同步带(8)与所述第二同步轮(10)联结在一起。
  3. 根据权利要求2所述的主动柔性力控制设备,其特征在于:所述中间运动连接机构包括运动支架(21)、设置在所述第一直线导轨(5)上并沿其滑 行的第一滑块(22)、设置在所述第二直线导轨(6)上并沿其滑行的第二滑块(23)、滚珠轴承(24)、弹簧(25);所述第一滑块(22)与第二滑块(23)分别固定在所述运动支架(21)的两端,所述滚珠轴承(24)与所述弹簧(25)分别固定在所述运动支架(21)上,且所述滚轴轴承将所述运动支架(21)两端贯穿,所述传动丝杆(15)穿设在所述滚珠轴承(24)上;所述直线光栅传感器包括光栅支架(26)和光栅读数头(27),所述光栅支架(26)设置在所述运动支架(21)上,所述光栅读数头(27)固定在所述光栅支架(26)上。
  4. 根据权利要求3所述的主动柔性力控制设备,其特征在于:所述运动平台机构包括分别设置在所述上盖(1)下侧面上的滑块连接板(28)、光栅尺(29)、链接板(30)、以及开光挡板(31),所述滑块连接板(28)上设置有第三滑块(32);所述链接板(30)在所述运动平台机构移动时抵触或脱离所述弹簧(25)的自由端;所述光栅读数头(27)对准所述光栅尺(29);所述第三滑块(32)及滑块连接板(28)分别设置有四个,每两个滑块连接板(28)位于上盖(1)板的同一侧边上,上盖(1)板两侧的滑块连接板(28)对称设置;位于一侧边的两个所述第三滑块(32)设置在所述第一直线导轨(5)上并沿其滑行,位于另一侧边的两个所述第三滑块(32)设置在所述第二直线导轨(6)上并沿其滑行。
  5. 根据权利要求4所述的主动柔性力控制设备,其特征在于:所述底板(3)设置有顺次并排设置的第一光电限位传感器(33)、第二光电限位传感器(34)、第三光电限位传感器(35),所述开光挡板(31)随所述运动平台机构的移动而穿过第一光电限位传感器(33)或第二光电限位传感器(34)或第三光电限位传感器(35)。
  6. 根据权利要求2所述的主动柔性力控制设备,其特征在于:所述底板(3)设置有用于检测所述伺服电机(7)输出力与重力轴的夹角的倾角传感器(36)。
  7. 根据权利要求2所述的主动柔性力控制设备,其特征在于:以所述第一固定座(16)与所述第二固定座(17)相对的一侧为内侧,所述第一固定座(16)的内侧与所述第二固定座(17)的内侧分别设置有缓冲挡块(37)。
  8. 根据权利要求4所述的主动柔性力控制设备,其特征在于:所述上盖(1)的下侧面设置有垫板(38),垫板(38)上下侧面贯穿开设有缺口(39), 所述光栅尺(29)位于缺口(39)内。
  9. 根据权利要求1所述的主动柔性力控制设备,其特征在于:所述底板(3)下侧面设置有连接法兰(40)。
PCT/CN2018/077580 2017-05-25 2018-02-28 一种主动柔性力控制设备 WO2018214607A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710380849.X 2017-05-25
CN201710380849.XA CN107102657B (zh) 2017-05-25 2017-05-25 一种主动柔性力控制设备

Publications (1)

Publication Number Publication Date
WO2018214607A1 true WO2018214607A1 (zh) 2018-11-29

Family

ID=59669962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077580 WO2018214607A1 (zh) 2017-05-25 2018-02-28 一种主动柔性力控制设备

Country Status (2)

Country Link
CN (1) CN107102657B (zh)
WO (1) WO2018214607A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109807744A (zh) * 2019-03-26 2019-05-28 四川工程职业技术学院 用于打磨的浮动装置及其浮动机构

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107102657B (zh) * 2017-05-25 2022-12-23 广东省科学院智能制造研究所 一种主动柔性力控制设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1498288A1 (de) * 1965-06-19 1969-01-16 Bosch Gmbh Robert Regelsystem fuer konstante hydraulische Leistung
CN201607646U (zh) * 2010-03-19 2010-10-13 宁波大学 一种对力/力矩进行伺服控制的机械装置
US20150019019A1 (en) * 2012-01-05 2015-01-15 OptoForce Müszaki Fejlesztö és Innovációs Kft. Driving Mechanism
CN105115504A (zh) * 2015-09-08 2015-12-02 中国人民解放军国防科学技术大学 加矩装置及包含该装置的液浮式稳定平台
CN206021103U (zh) * 2016-08-03 2017-03-15 成都华川电装有限责任公司 扭矩加载装置
CN107102657A (zh) * 2017-05-25 2017-08-29 广东省智能制造研究所 一种主动柔性力控制设备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4884941A (en) * 1987-03-30 1989-12-05 Regents Of The University Of Minnesota Active compliant end-effector with force, angular position, and angular velocity sensing
US5497061A (en) * 1993-03-31 1996-03-05 Hitachi, Ltd. Method of controlling robot's compliance
US7469885B2 (en) * 2005-10-24 2008-12-30 The Boeing Company Compliant coupling force control system
WO2010024794A1 (en) * 2008-08-29 2010-03-04 Abb Research Ltd. Compliant apparatus for the tool at the end of an arm of an industrial robot
JP4975192B2 (ja) * 2009-09-17 2012-07-11 三菱電機株式会社 制振装置および制振装置を備えたディスク装置
CN101707181B (zh) * 2009-11-06 2011-08-10 华中科技大学 一种芯片拾放控制方法及装置
GB2478302B (en) * 2010-03-02 2012-02-15 Cinetic Landis Ltd A machine axis including a counterbalance and methods of operation thereof
TW201242732A (en) * 2011-04-19 2012-11-01 Prec Machinery Res & Dev Ct Compliance mechanism
DE202011103223U1 (de) * 2011-07-08 2012-10-11 Kuka Systems Gmbh Arbeitsvorrichtung
DE202011052431U1 (de) * 2011-12-22 2013-03-25 Kuka Systems Gmbh Bearbeitungswerkzeug
CN102700726B (zh) * 2012-06-15 2014-10-15 西北工业大学 一种三坐标的双支臂定位器
CN103029126B (zh) * 2012-12-21 2014-08-20 北京大学 一种柔性可控的关节驱动器
CN105563309B (zh) * 2015-11-11 2019-04-12 华中科技大学 一种用于可调距螺旋桨机器人磨削的主动顺应末端执行器及其控制方法
CN105500147A (zh) * 2015-12-14 2016-04-20 中国科学院沈阳自动化研究所 基于力控制的龙门吊装机器人打磨加工方法
CN105643399B (zh) * 2015-12-29 2018-06-26 沈阳理工大学 基于柔顺控制的机器人复杂曲面自动研抛系统及加工方法
CN105563502B (zh) * 2016-02-25 2017-06-30 渤海大学 一种力/位混合柔顺控制的夹持装置、手操设备以及夹持装置和手操设备的控制方法
CN105751218B (zh) * 2016-05-05 2018-05-08 佛山市新鹏机器人技术有限公司 一种用于机器人末端的恒力装置及其控制方法
CN106181995B (zh) * 2016-07-08 2019-05-28 燕山大学 力/位可控式柔性驱动器
CN106483991B (zh) * 2016-11-18 2023-07-04 广东省智能制造研究所 力控制设备
CN206863600U (zh) * 2017-05-25 2018-01-09 广东省智能制造研究所 一种主动柔性力控制设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1498288A1 (de) * 1965-06-19 1969-01-16 Bosch Gmbh Robert Regelsystem fuer konstante hydraulische Leistung
CN201607646U (zh) * 2010-03-19 2010-10-13 宁波大学 一种对力/力矩进行伺服控制的机械装置
US20150019019A1 (en) * 2012-01-05 2015-01-15 OptoForce Müszaki Fejlesztö és Innovációs Kft. Driving Mechanism
CN105115504A (zh) * 2015-09-08 2015-12-02 中国人民解放军国防科学技术大学 加矩装置及包含该装置的液浮式稳定平台
CN206021103U (zh) * 2016-08-03 2017-03-15 成都华川电装有限责任公司 扭矩加载装置
CN107102657A (zh) * 2017-05-25 2017-08-29 广东省智能制造研究所 一种主动柔性力控制设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109807744A (zh) * 2019-03-26 2019-05-28 四川工程职业技术学院 用于打磨的浮动装置及其浮动机构

Also Published As

Publication number Publication date
CN107102657A (zh) 2017-08-29
CN107102657B (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
US11752626B2 (en) Apparatus and method for automated contact tasks
CN108698223B (zh) 机器人关节和具有至少一个这种机器人关节的机器人
US9636827B2 (en) Robot system for performing force control
JP4560235B2 (ja) 角度調整テーブル装置
US9789578B2 (en) Counterforce mechanism and methods of operation thereof
US7236850B2 (en) Working robot, actuator and control method thereof
WO2018214607A1 (zh) 一种主动柔性力控制设备
US9316472B2 (en) Slide guide device
CN104110561A (zh) 一种基于柔顺机构的大行程平面三自由度精密定位平台
CN102069201B (zh) 一种自由曲面超精密车削的两自由度动态误差抵消装置
GB2109337A (en) A robotic arm
JP2886452B2 (ja) 変形量検出手段付き直線運動装置
JPWO2012025948A1 (ja) 直動機構及びロボット
CN206863600U (zh) 一种主动柔性力控制设备
CN201950226U (zh) 一种自由曲面超精密车削的两自由度动态误差抵消装置
RU161185U1 (ru) Манипулятор
CN219854578U (zh) 一种主动力控液压浮动装置及机器人
JP5886084B2 (ja) ステージ装置
JPH0776889B2 (ja) 摩擦駆動装置
JPH0839475A (ja) 作業ハンド用のフローティング装置
EP0207625A3 (en) Force sensor for a manipulator
CN116330107A (zh) 一种适于力控平台的全闭环控制方法及其力控平台
JP2024080318A (ja) 実装装置及び実装方法
JP2001277068A (ja) 直動スライダの保護カバー装置
JPH03245933A (ja) 定圧クランプ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806619

Country of ref document: EP

Kind code of ref document: A1