WO2018212305A1 - モータ制御システム、モータ制御システムの制御方法、及びロボットシステム - Google Patents

モータ制御システム、モータ制御システムの制御方法、及びロボットシステム Download PDF

Info

Publication number
WO2018212305A1
WO2018212305A1 PCT/JP2018/019195 JP2018019195W WO2018212305A1 WO 2018212305 A1 WO2018212305 A1 WO 2018212305A1 JP 2018019195 W JP2018019195 W JP 2018019195W WO 2018212305 A1 WO2018212305 A1 WO 2018212305A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
command
motor
output shaft
transmission error
Prior art date
Application number
PCT/JP2018/019195
Other languages
English (en)
French (fr)
Inventor
信高 坪井
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201880032397.9A priority Critical patent/CN110651427B/zh
Priority to EP18802438.4A priority patent/EP3627693B1/en
Priority to US16/614,410 priority patent/US10919150B2/en
Publication of WO2018212305A1 publication Critical patent/WO2018212305A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/40Regulating or controlling the amount of current drawn or delivered by the motor for controlling the mechanical load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1641Programme controls characterised by the control loop compensation for backlash, friction, compliance, elasticity in the joints
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41059Play in gear, screw backlash, lost motion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50391Robot

Definitions

  • the present invention relates to a motor control system, a control method for the motor control system, and a robot system.
  • Patent Document 1 a positioning system capable of correcting a positioning error caused by an angle transmission error of a reduction gear is known (see, for example, Patent Document 1).
  • This positioning system includes an error correction unit that corrects the position command based on error correction data for correcting the positioning error of the output shaft of the actuator including the motor and the speed reducer, and sends the corrected position command to the motor. Supply to the driving driver. Thereby, the positioning error of the actuator can be corrected.
  • Patent Document 1 cannot appropriately suppress fluctuations in the rotation speed of the output shaft of the actuator, and sometimes the behavior of the load connected to the output shaft of the actuator becomes unstable.
  • a motor control system controls a motor by controlling a current supplied to the motor based on a position command input from a host device, and an input shaft is an output of the motor.
  • a motor control system that controls the operation of a reduction gear that is connected to a shaft and whose output shaft is connected to a load, the detection unit detecting an event for detecting the rotational speed of the output shaft of the motor, and the position
  • a speed deviation generating unit that generates a speed command based on the command and calculates a speed deviation that is a deviation between the speed command and a rotation speed of the output shaft of the motor detected based on the event detected by the detection unit;
  • An angle transmission error between the rotation angle of the output shaft of the motor and the rotation angle of the output shaft of the speed reducer is estimated, and the speed command, the speed deviation, or the An angle transmission error compensation unit that corrects the rotational speed of the output shaft of the motor detected based on the event detected by the detection unit, a current command generation unit that generates a
  • the angle transmission error can be compensated with a simple configuration, and the unstable behavior of the load due to the angle transmission error can be suppressed.
  • the present invention has an effect that the unstable behavior of the load due to the angle transmission error can be suppressed.
  • FIG. 1 is a diagram schematically illustrating a configuration example of a robot system according to a first embodiment.
  • FIG. 2 is a block diagram schematically showing a configuration example of a control system of the robot system of FIG. 1.
  • FIG. 2 is a block diagram schematically illustrating a configuration example of a control system of a servo control unit of the robot system of FIG. 1. It is explanatory drawing of an angle transmission error.
  • 6 is a graph showing a relationship between a speed feedforward command value and a correction value of a speed feedforward command value in an operation example of the robot system according to the second embodiment. It is a block diagram which shows roughly the structural example of the control system of the servo control part of the robot system which concerns on Embodiment 3 of this invention.
  • FIG. 1 is a diagram schematically illustrating a configuration example of a robot system according to a first embodiment.
  • FIG. 2 is a block diagram schematically showing a configuration example of a control system of the robot system of FIG. 1.
  • FIG. 10 is a block diagram schematically showing a configuration example of a control system of a servo control unit of a robot system according to a fourth embodiment.
  • FIG. 10 is a block diagram schematically showing a configuration example of a control system of a servo control unit of a robot system according to a fifth embodiment.
  • FIG. 10 is a block diagram schematically showing a configuration example of a control system of a servo control unit of a robot system according to a sixth embodiment.
  • FIG. 20 is a block diagram schematically showing a configuration example of a control system of a servo control unit of a robot system according to a seventh embodiment.
  • a motor control system controls the motor by controlling a current supplied to the motor based on a position command input from a host device, and the input shaft is connected to the output shaft of the motor and the output shaft Is a motor control system for controlling the operation of a speed reducer connected to a load, wherein a detection unit for detecting an event for detecting the rotational speed of the output shaft of the motor and a speed command are generated based on the position command And a speed deviation generator for calculating a speed deviation which is a deviation between the speed command and a rotational speed of the output shaft of the motor detected based on the event detected by the detector, and rotation of the output shaft of the motor The angle transmission error between the angle and the rotation angle of the output shaft of the reduction gear is estimated, and the speed command, the speed deviation, or the detection unit is detected based on the estimated angle transmission error.
  • An angle transmission error compensator that corrects the rotational speed of the output shaft of the motor detected based on the current, a current command generator that generates a current command based on the speed deviation, and a supply to the motor based on the current command And a current control unit for controlling the current to be generated.
  • the angle transmission error can be compensated with a simple configuration, and the unstable behavior of the load due to the angle transmission error can be suppressed.
  • the speed command may be a speed feedforward command obtained by time differentiation of the position command.
  • the speed of the motor can be appropriately controlled in accordance with a speed feedforward command for controlling the rotational speed of the output shaft of the motor.
  • the angle transmission error compensation unit may correct the speed command by correcting the speed feedforward command based on the estimated angle transmission error.
  • the speed command can be appropriately corrected by correcting the speed feedforward command for controlling the rotation speed of the output shaft of the motor, and the angle transmission error can be properly compensated.
  • the detection unit detects an event for detecting a rotation angle and a rotation speed of the output shaft of the motor, and the speed command includes a speed feedforward command obtained by time-differentiating the position command, the position command, and the detection.
  • a value obtained by adding a gain speed command obtained by multiplying a deviation from the rotation angle of the output shaft of the motor detected based on the event detected by the unit by a position proportional gain may be used.
  • the motor speed can be appropriately controlled along the speed feedforward command for controlling the rotation speed of the motor output shaft, and the motor rotation angle can be appropriately controlled according to the gain speed command. Can be controlled.
  • the angle transmission error compensation unit may correct the speed command by correcting the speed feedforward command based on the estimated angle transmission error.
  • the speed command can be appropriately corrected by correcting the speed feedforward command for controlling the rotation speed of the output shaft of the motor, and the angle transmission error can be properly compensated.
  • the angle transmission error compensation unit further corrects the position command based on the estimated angle transmission error, and the speed command includes a speed feedforward command obtained by time-differentiating the position command input from a host device, and a correction. It may be a value obtained by adding a gain speed command obtained by multiplying a deviation between the position command and the rotation angle of the output shaft of the motor detected based on the event detected by the detection unit by a position proportional gain.
  • the angle transmission error can be compensated more appropriately.
  • the angle transmission error compensation unit may estimate the angle transmission error based on a periodic function that models a periodic variation of the angle transmission error.
  • the wave reducer may be a wave gear device.
  • a control method for a motor control system wherein a current supplied to a motor is controlled based on a position command input from a host device to control the motor, and an input shaft is connected to an output shaft of the motor.
  • a deviation generating unit and estimating an angle transmission error between a rotation angle of the output shaft of the motor and a rotation angle of the output shaft of the speed reducer, and the speed based on the estimated angle transmission error
  • An angle transmission error compensator that corrects the rotational speed of the output shaft of the motor detected based on the command, the speed deviation, or an event detected by the detector, and a current command that generates a current command based on the speed deviation A generation unit; and a current control unit that controls a current supplied to the motor based on the current command.
  • the angle transmission error can be compensated with a simple configuration, and the unstable behavior of the load due to the angle transmission error can be suppressed.
  • a robot system includes a robot arm, a motor that is a drive source of the joint of the robot arm, an input shaft connected to the output shaft of the motor, and an output shaft connected to the joint of the robot arm.
  • a reduction gear a command unit that generates a position command
  • a motor control system that controls the operation of the motor by controlling a current supplied to the motor based on the position command generated by the command unit,
  • the motor control system is configured to detect an event for detecting a rotation speed of the output shaft of the motor, generate a speed command based on the position command, and an event detected by the speed command and the detection unit.
  • a speed deviation generating unit that calculates a speed deviation that is a deviation from the rotational speed of the output shaft of the motor detected based on the rotational speed of the output shaft of the motor and the deceleration The motor detected based on the speed command, the speed deviation, or an event detected by the detection unit based on the estimated angle transmission error.
  • An angle transmission error compensation unit that corrects the rotation speed of the output shaft of the motor, a current command generation unit that generates a current command based on the speed deviation, and a current that controls a current supplied to the motor based on the current command And a control unit.
  • the angle transmission error can be compensated with a simple configuration, and the vibration of the robot arm caused by the angle transmission error can be suppressed.
  • FIG. 1 is a diagram schematically showing a configuration example of a robot system 100 according to the first embodiment.
  • FIG. 2 is a block diagram schematically showing a configuration example of the control system of the robot system 100.
  • the robot system 100 is used for industrial use, for example.
  • the robot system 100 includes a robot 1 including a robot arm and a robot control device 2 that controls the operation of the robot 1.
  • the robot 1 is an articulated robot (multi-joint robot) having a plurality of joints 10 and a robot arm having a hand 14 at the tip. As shown in FIG. 2, each joint 10 is provided with a drive unit that drives the joint 10, and the drive unit includes a servo motor (motor) 11, an encoder 12, and a speed reducer 13.
  • the robot 1 is not limited to an articulated robot.
  • the robot arm of the robot 1 is configured such that six joints are arranged in a line.
  • Encoder (detection unit) 12 detects an event for detecting the actual rotation angle and actual rotation speed of the output shaft 11a of the servo motor 11.
  • the encoder 12 outputs information including the actual rotation angle of the output shaft 11a of the servo motor 11 based on the detected event.
  • an encoder value differentiating unit 37 which will be described in detail later, calculates the actual rotation speed of the output shaft 11a of the servomotor 11 by time-differentiating the actual rotation angle of the output shaft 11a of the servomotor 11.
  • the reduction gear 13 includes an input shaft 13 a connected to the output shaft 11 a of the servo motor 11 and an output shaft 13 b connected to the joint 10 (load) of the robot 1.
  • the input shaft 13a may be integrated with the output shaft 11a of the servomotor 11.
  • the reduction gear 13 may be comprised with one apparatus, and may be comprised with several apparatus.
  • the speed reducer 13 decelerates the rotation of the output shaft 11a of the servo motor 11 input to the input shaft 13a at a predetermined reduction ratio R, and outputs it from the output shaft 13b.
  • the speed reducer 13 is, for example, a wave gear device (harmonic drive (registered trademark)). However, it is not limited to this.
  • the wave gear device includes a circular spline, a flex spline, and a wave generator.
  • the circular spline is a rigid internal gear, and is provided integrally with the housing, for example.
  • the flex spline is a flexible external gear and meshes with the circular spline.
  • the flexspline has fewer teeth than the circular spline and is connected to the output shaft 13b.
  • the wave generator is an elliptical cam that contacts the inside of the flexspline and is connected to the input shaft 13a.
  • the wave gear device has characteristics suitable for a speed reducer of a robot drive mechanism because of its features such as small size and light weight, high reduction ratio, high torque capacity, and non-backlash.
  • the robot control device 2 includes a command unit 21, a servo control unit 22 provided corresponding to each joint, and a servo amplifier 23 provided corresponding to each joint.
  • the servo control unit 22 and the servo amplifier 23 constitute a motor control system.
  • the motor control system controls the operation of the servo motor 11 by controlling the current supplied to the servo motor 11 based on the position command input from the command unit 21, which is a host device, and the input shaft 13 a is connected to the servo motor 11.
  • the operation of the speed reducer 13 connected to the output shaft 11a and the output shaft 13b connected to the load is controlled.
  • the load is the joint 10 of the robot arm of the robot 1, and the working end of the robot arm (the end where the hand is provided) can be moved by rotating the joint 10. It is configured.
  • the command unit 21 generates and outputs a position command based on the operation program.
  • the output position command is input to the servo control unit 22.
  • the position command is a control amount for controlling the position of the output shaft 11a of the servo motor 11, and is a rotation angle of the output shaft 11a of the servo motor 11.
  • FIG. 3 is a block diagram schematically showing a configuration example of the control system of the servo control unit of the robot system. Note that gravity compensation and dynamic compensation may be performed on the position command.
  • the servo control unit 22 generates a current command based on the position command generated by the command unit 21. As shown in FIG. 3, the servo control unit 22 includes a speed deviation generation unit 31, an angle transmission error compensation unit 34, and a current command generation unit 36.
  • the speed deviation generating unit 31, the angle transmission error compensating unit 34, and the current command generating unit 36 are functional blocks that are realized by executing a predetermined control program by a calculation unit (not shown).
  • the arithmetic unit includes an arithmetic unit such as a programmable logic device (PLD) such as a microcontroller, CPU, ASIC, or FPGA.
  • PLD programmable logic device
  • the calculation unit may be configured by a single controller that performs centralized control, or may be configured by a plurality of controllers that perform distributed control in cooperation with each other.
  • the robot control device 2 also includes a storage device (not shown) that stores various programs and data.
  • the speed deviation generating unit 31 generates a speed command based on the position command, and is a speed that is a deviation between the speed command and the actual rotational speed of the output shaft 11a of the servo motor 11 detected based on the event detected by the encoder 12. Calculate the deviation.
  • the speed deviation generation unit 31 includes a speed feedforward command generation unit 32, a position deviation calculation unit 41, a gain speed command generation unit 42, a speed deviation calculation unit 60, and an encoder value differentiation unit 37.
  • the speed feed forward command generation unit 32 generates a speed feed forward command based on the position command.
  • the speed feedforward command generator 32 includes a differentiator that differentiates the position command with respect to time, and generates a speed feedforward command by differentiating the position command with respect to time.
  • the position deviation calculation unit 41 subtracts the actual rotation angle of the output shaft 11a of the servo motor 11 from the position command, and the deviation between the position command and the actual rotation angle of the output shaft 11a of the servo motor 11 output from the encoder 12. The positional deviation which is is calculated.
  • the gain speed command generation unit 42 calculates a value obtained by multiplying the position deviation calculated by the position deviation calculation unit 41 by the position proportional gain Kp. This calculated value constitutes the gain speed command. In this way, the gain speed command generation unit 42 performs P control (proportional control).
  • the encoder value differentiating unit 37 calculates the rotation speed of the actual output shaft 11a of the servo motor 11 based on the rotation angle of the actual output shaft 11a of the servo motor 11 output from the encoder 12.
  • the encoder value differentiating unit 37 includes a differentiator that differentiates the actual rotation angle of the actual output shaft 11a of the servo motor 11 with respect to time, and differentiates the actual rotation angle of the actual output shaft 11a of the servo motor 11 with respect to time. The rotational speed of the output shaft 11a is calculated.
  • the speed deviation calculation unit 60 generates a speed command by adding a corrected speed feedforward command (details will be described later) corrected for the speed feedforward command and a gain speed command. Further, the speed deviation calculation unit 60 calculates a speed deviation which is a deviation between the speed command and the rotation speed of the output shaft 11 a of the servo motor 11 calculated by the encoder value differentiation unit 37.
  • the order of addition / subtraction of the corrected speed feedforward command, the gain speed command, and the rotational speed of the output shaft 11a of the servomotor 11 in the speed deviation calculation unit 60 is not limited to this.
  • the angle transmission error compensator 34 estimates an angle transmission error between the rotation angle of the output shaft 11a of the servo motor 11 (the rotation angle of the input shaft 13a of the speed reducer 13) and the rotation angle of the output shaft 13b of the speed reducer 13. To do. Further, the angle transmission error compensator 34 corrects the speed feedforward command based on the estimated angle transmission error, and generates a corrected speed feedforward command.
  • the angle transmission error compensation unit 34 includes an angle transmission error estimation unit 51 and a correction unit 52.
  • a reduction gear including a wave gear device has a theoretical output rotation angle obtained by multiplying an input rotation angle input to the reduction gear by a reduction ratio and an actual output due to a processing error or the like.
  • An angle transmission error that is a difference from the rotation angle occurs. This angle transmission error changes periodically with the rotation of the output shaft of the motor.
  • Such an angle transmission error ATE of the output shaft of the speed reducer can be approximately expressed by a model using a function according to the following equation (1).
  • the angle transmission error estimator 51 is based on a periodic function that models the periodic variation of the angle transmission error according to the above equation (1), and the output shaft 11a of the servo motor 11 that is the input rotation angle with respect to the speed reducer 13.
  • a compensation amount ⁇ ( ⁇ ) comp to be applied to the output shaft 11a of the servo motor 11 is determined.
  • ⁇ ( ⁇ ) is assumed to be a symbol in which one symbol (dot) is added on ⁇ .
  • the angle transmission error estimation unit 51 calculates a compensation amount ⁇ (•) comp to be applied to the output shaft 11a of the servomotor 11 based on the following equation (2).
  • the expression (2) is obtained by differentiating the expression (1) with respect to time, adding a negative sign to the reduction ratio, and multiplying this by the following equation.
  • the amplitude A and the phase difference ⁇ in the expressions (1) and (2) are Are pre-defined. For example, it has been found that the component having a frequency of 2 has a particularly large influence on the angle transmission error of the wave gear device. Accordingly, when the speed reducer 13 is a wave gear device, the frequency f is defined as 2, and the compensation amount ⁇ ( ⁇ ) comp based on the above function using the separately identified amplitude A and phase ⁇ corresponding to the frequency f. May be calculated. As described above, the angle transmission error estimation unit 51 estimates the angle transmission error based on the values of the position command and the speed feedforward command (time differential value of the position command).
  • the correction unit 52 adds the compensation amount ⁇ ( ⁇ ) comp to the speed feedforward command value and generates a corrected speed feedforward command.
  • the correction unit 52 corrects the speed feedforward command value based on the angle transmission error estimated by the angle transmission error estimation unit 51, and generates a corrected speed feedforward command. Then, as described above, the speed deviation calculating unit 60 adds the corrected speed feedforward command and the gain speed command to generate a speed command.
  • the angle transmission error compensation unit 34 indirectly corrects the speed command by correcting the speed feedforward command, and further corrects the correction deviation indirectly.
  • the current command generator 36 generates a current command based on the speed deviation generated by the speed deviation generator 31.
  • the current command is a control amount for controlling the current supplied to the winding of the servo motor 11.
  • the current command generation unit 36 includes a speed proportional gain unit 62, an integration unit 63, a speed integration gain unit 64, and an addition / subtraction unit 65.
  • the speed proportional gain unit 62 calculates the value of the first command obtained by multiplying the speed deviation calculated by the speed deviation calculating unit 60 by the speed proportional gain Kvp.
  • the integrator 63 integrates the value of the first command.
  • the speed integration gain unit 64 calculates the value of the second command obtained by multiplying the value integrated by the integration unit 63 by the speed integration gain Kvi.
  • the addition / subtraction unit 65 calculates a value obtained by adding the value of the first command calculated by the speed proportional gain unit 62 and the value of the second command calculated by the speed integral gain unit 64, and outputs this value as a current command. That is, the current command generation unit 36 is configured to perform PI control (proportional integration control). The output current command is input to the servo amplifier 23.
  • PI control proportional integration control
  • the servo amplifier (current control unit) 23 controls the current supplied to the servo motor 11 based on the current command generated by the current command generation unit 36.
  • the angle transmission error compensation unit 34 estimates an angle transmission error between the rotation angle of the output shaft 11a of the servo motor 11 and the rotation angle of the output shaft 13b of the speed reducer 13, and the position command Since the speed command is corrected by correcting the lower order command, that is, the speed feedforward command, and the speed deviation is corrected, the angle transmission error can be appropriately compensated.
  • the angle transmission error compensation unit 34 corrects the speed feedforward command for controlling the rotation speed of the output shaft 11a of the servomotor 11, and the servomotor 11 is controlled along the corrected corrected speed feedforward command.
  • the rotational speed of the output shaft 11a is controlled. That is, the robot controller 2 controls the output shaft 11a of the servo motor 11 to rotate at a speed that compensates for the angle transmission error.
  • the angle transmission error compensator 34 corrects the speed command by correcting the speed feedforward command and corrects the speed deviation. This can be done with a configuration, and unstable load behavior (vibration, etc.) due to angular transmission errors can be suppressed.
  • the fluctuation of the rotation speed of the joint caused by the angle transmission error appears as the vibration of the hand 14. Therefore, by suppressing the fluctuation of the rotation speed of the joint caused by the angle transmission error, the vibration of the hand 14 caused by the angle transmission error can be suppressed, and the positioning accuracy can be improved.
  • the angle transmission error compensator 34 corrects the speed command by correcting the speed feedforward command and corrects the speed deviation. Therefore, in the robot system 100 that controls the servo motor 11 using the speed feedforward command, The speed command can be appropriately corrected, and the angle transmission error can be appropriately compensated.
  • FIG. 5 is a graph showing the relationship between the speed feedforward command and the corrected value of the speed feedforward command in the operation example of the robot system according to the second embodiment.
  • the angle transmission error estimator 51 uses the value of the speed feedforward command to calculate the compensation amount ⁇ ( ⁇ ) comp to be applied to the output shaft 11a of the servomotor 11 as shown in equation (2). Calculated.
  • the angle transmission error estimating unit 51 first corrects the value of the velocity feedforward command ⁇ (•) based on the equations (3) to (5), and ⁇ (•) a is calculated.
  • FIG. 5 is a graph of equations (3) to (5).
  • the speed feedforward command value ⁇ (•) is equal to or less than vlim
  • the velocity feedforward command value ⁇ (• ) Is set as the speed feed forward command value correction value ⁇ ( ⁇ ) a.
  • the angle transmission error estimator 51 uses the correction value ⁇ ( ⁇ ) a of the speed feedforward command value based on the equation (6), and the compensation amount ⁇ () to be applied to the output shaft 11a of the servomotor 11. -) Calculate comp.
  • the compensation amount ⁇ ( ⁇ ) comp in the present embodiment is the same as the compensation amount ⁇ ( ⁇ ) comp in the first embodiment. It is comprised so that it may become.
  • the compensation amount ⁇ (•) comp in the present embodiment is made smaller than the compensation amount ⁇ (•) comp in the first embodiment.
  • the compensation amount ⁇ (•) comp becomes 0.
  • the compensation amount ⁇ (•) comp is configured to be reduced or not compensated.
  • the compensation amount ⁇ ( ⁇ ) comp can be prevented from becoming excessively large, and problems in control can be prevented from occurring. Furthermore, it is possible to simplify the control in a region that is normally operated at a high speed where high accuracy is not required.
  • FIG. 6 is a block diagram schematically showing a configuration example of a control system of the servo control unit 22 of the robot system according to the third embodiment.
  • the servo control unit 22 further includes a gravity compensation unit 337.
  • the gravity compensation unit 337 is a functional unit for performing compensation for canceling the influence of gravity acting on the robot 1.
  • the gravity compensation unit 337 includes a gravity compensation value calculation unit 341 and a correction unit 342.
  • the gravity compensation value calculation unit 341 calculates a gravity compensation value G for canceling the gravity torque acting on the joint 10 of the robot 1.
  • the correction unit 342 adds the gravity compensation value G to the current command value.
  • the phase difference between the output shaft 11a of the servo motor 11 and the output shaft 13b of the speed reducer 13 changes in proportion to the torque applied to the output shaft 13b of the speed reducer 13. Therefore, the change can be approximately expressed by a model expressed as the following function.
  • the angle transmission error estimation unit 51 calculates the compensation amount ⁇ ( ⁇ ) comp to be applied to the output shaft 11a of the servomotor 11 based on the equation (2) by using ⁇ as gravity. Using the gravity compensation value G calculated by the compensation value calculation unit 341, the calculation is performed based on the above equation (7). Note that the proportionality constant a and the phase ⁇ 0 are identified in advance. Then, the angle transmission error estimation unit 51 calculates the compensation amount ⁇ ( ⁇ ) comp to be applied to the output shaft 11a of the servo motor 11 based on the equation (2) using ⁇ used based on the equation (7). To do. Accordingly, the servo control unit 22 can perform angle transmission error compensation more accurately.
  • FIG. 7 is a block diagram schematically showing a configuration example of a control system of the servo control unit of the robot system according to the fourth embodiment.
  • the angle transmission error compensation unit 34 indirectly corrects the speed command by correcting the speed feedforward command, and indirectly corrects the speed deviation.
  • the angle transmission error compensation unit 434 corrects the speed deviation as shown in FIG.
  • the speed deviation calculation unit 60 adds the speed feedforward command and the gain speed command to generate a speed command. Further, the speed deviation calculation unit 60 calculates a speed deviation which is a deviation between the speed command and the rotation speed of the output shaft 11a of the servo motor 11.
  • the correction unit 452 of the angle transmission error compensation unit 434 adds the compensation amount ⁇ ( ⁇ ) comp to the speed deviation to calculate a corrected speed deviation.
  • the current command generation unit 36 generates a current command based on the corrected speed deviation generated by the angle transmission error compensation unit 434. That is, the speed proportional gain unit 62 generates a first command obtained by multiplying the correction deviation calculated by the correction unit 452 of the angle transmission error compensation unit 434 by the speed proportional gain Kvp.
  • FIG. 8 is a block diagram schematically showing a configuration example of the control system of the servo control unit of the robot system according to the fifth embodiment.
  • the angle transmission error compensation unit 34 indirectly corrects the speed command by correcting the speed feedforward command, and indirectly corrects the speed deviation.
  • the angle transmission error compensation unit 534 indirectly corrects the speed command by correcting the gain speed command and indirectly corrects the speed deviation. .
  • the correction unit 552 of the angle transmission error compensation unit 534 adds the compensation amount ⁇ ( ⁇ ) comp to the gain speed command to calculate a corrected gain speed command. Then, the speed deviation calculation unit 60 calculates the speed command by adding the speed feedforward command and the correction gain speed command. Further, the speed deviation calculation unit 60 calculates a speed deviation which is a deviation between the speed command and the rotation speed of the output shaft 11a of the servo motor 11.
  • FIG. 9 is a block diagram schematically showing a configuration example of the control system of the servo control unit of the robot system according to the sixth embodiment.
  • the angle transmission error compensation unit 34 indirectly corrects the speed command by correcting the speed feedforward command, and indirectly corrects the speed deviation.
  • the angle transmission error compensation unit 634 indirectly corrects the speed deviation by correcting the rotational speed of the output shaft 11a of the servo motor 11 as shown in FIG.
  • the correction unit 652 of the angle transmission error compensation unit 634 subtracts the compensation amount ⁇ ( ⁇ ) comp from the rotation speed of the output shaft 11a of the servo motor 11 to calculate a correction rotation speed.
  • the speed deviation calculation unit 60 calculates a speed deviation that is a deviation between the speed command and the corrected rotation speed.
  • FIG. 10 is a block diagram schematically showing a configuration example of the control system of the servo control unit of the robot system according to the seventh embodiment.
  • the angle transmission error compensation unit 34 indirectly corrects the speed command by correcting the speed feedforward command, and indirectly corrects the speed deviation.
  • the angle transmission error compensation unit 734 corrects the position command and the speed feedforward command based on the estimated angle transmission error, as shown in FIG.
  • the angle transmission error compensation unit 734 includes an angle transmission error estimation unit 51, a first correction unit 752, and a second correction unit 753.
  • the first correction unit 752 adds the compensation amount ⁇ ( ⁇ ) comp to the position command and calculates a corrected position command.
  • the speed feed forward command generator 32 generates a speed feed forward command based on the position command before correction.
  • the position deviation calculation unit 41 subtracts the rotation angle of the output shaft 11a of the servo motor 11 from the corrected position command, and calculates a position deviation that is a deviation between the position command and the rotation angle of the output shaft 11a of the servo motor 11.
  • the angle transmission error estimator 51 of the angle transmission error compensator 34 calculates the compensation amount ⁇ ( ⁇ ) comp to be applied to the output shaft 11a of the servomotor 11 based on the equation (2).
  • the compensation amount ⁇ ( ⁇ ) comp was calculated using a predetermined frequency f that has a particularly large influence on the angle transmission error, a predetermined amplitude A corresponding to this frequency, and a predetermined phase difference ⁇ .
  • the angle transmission error estimator 51 of the angle transmission error compensator 34 calculates the compensation amount ⁇ ( ⁇ ) comp to be applied to the output shaft 11a of the servomotor 11 based on the following equation (8). May be.
  • the angle transmission error estimator 51 calculates an angle transmission error for each frequency pattern based on the values of the position command and the speed feedforward command (time differential value of the position command), and adds these values to the angle Used to correct transmission errors. Thereby, the angle transmission error can be corrected more accurately.

Abstract

上位装置から入力された位置指令に基づきモータ(11)に供給される電流を制御してモータ(11)を制御し、且つ入力軸(13a)がモータ(11)の出力軸(11a)に接続され且つ出力軸(13b)が負荷に接続された減速機(13)の動作を制御するモータ制御システムであって、モータ(11)の出力軸(11a)の回転速度を検出するための事象を検知する検知部(12)と、位置指令に基づき速度指令を生成し、且つ速度指令と検知部(12)が検知した事象に基づき検出されたモータ(11)の出力軸(11a)の回転速度との偏差である速度偏差を算出する速度偏差生成部(31)と、モータ(11)の出力軸(11a)の回転角と減速機(13)の出力軸(13b)の回転角との間の角度伝達誤差を推定し、且つ推定した角度伝達誤差に基づいて速度指令、速度偏差、又は検知部(12)が検知した事象に基づき検出されたモータ(11)の出力軸(11a)の回転速度を補正する角度伝達誤差補償部(34)と、速度偏差に基づいて電流指令を生成する電流指令生成部(36)と、電流指令に基づいてモータ(11)に供給される電流を制御する電流制御部(23)と、を含む。

Description

モータ制御システム、モータ制御システムの制御方法、及びロボットシステム
 本発明は、モータ制御システム、モータ制御システムの制御方法、及びロボットシステムに関する。
 従来から減速機の角度伝達誤差に起因した位置決め誤差を補正可能な位置決めシステムが知られている(例えば特許文献1参照)。
 この位置決めシステムは、モータ及び減速機からなるアクチュエータの出力軸の位置決め誤差を補正するための誤差補正データに基づき位置指令に対して補正を施す誤差補正部を備え、補正後の位置指令をモータを駆動するドライバに供給する。これによって、アクチュエータの位置決め誤差を補正することができる。
特開2003-223225号公報
 しかし、特許文献1に記載の位置決めシステムは、アクチュエータの出力軸の回転速度の変動の抑制が適切に行えず、アクチュエータの出力軸に接続された負荷の挙動が不安定になる場合があった。
 上記課題を解決するため、ある態様に係るモータ制御システムは、上位装置から入力された位置指令に基づきモータに供給される電流を制御して前記モータを制御し、且つ入力軸が前記モータの出力軸に接続され且つ出力軸が負荷に接続された減速機の動作を制御するモータ制御システムであって、前記モータの出力軸の回転速度を検出するための事象を検知する検知部と、前記位置指令に基づき速度指令を生成し、且つ前記速度指令と前記検知部が検知した事象に基づき検出された前記モータの出力軸の回転速度との偏差である速度偏差を算出する速度偏差生成部と、前記モータの出力軸の回転角と前記減速機の出力軸の回転角との間の角度伝達誤差を推定し、且つ推定した前記角度伝達誤差に基づいて前記速度指令、前記速度偏差、又は前記検知部が検知した事象に基づき検出された前記モータの出力軸の回転速度を補正する角度伝達誤差補償部と、前記速度偏差に基づいて電流指令を生成する電流指令生成部と、前記電流指令に基づいて前記モータに供給される電流を制御する電流制御部と、を含む。
 この構成によれば、角度伝達誤差の補償を簡易な構成で行うことができ、角度伝達誤差に起因する負荷の不安定な挙動を抑制することができる。
 本発明は、角度伝達誤差に起因する負荷の不安定な挙動を抑制することができるという効果を奏する。
実施の形態1に係るロボットシステムの構成例を概略的に示す図である。 図1のロボットシステムの制御系統の構成例を概略的に示すブロック図である。 図1のロボットシステムのサーボ制御部の制御系統の構成例を概略的に示すブロック図である。 角度伝達誤差の説明図である。 実施の形態2に係るロボットシステムの動作例における速度フィードフォワード指令値と速度フィードフォワード指令値の修正値との関係を示すグラフである。 本発明の実施の形態3に係るロボットシステムのサーボ制御部の制御系統の構成例を概略的に示すブロック図である。 実施の形態4に係るロボットシステムのサーボ制御部の制御系統の構成例を概略的に示すブロック図である。 実施の形態5に係るロボットシステムのサーボ制御部の制御系統の構成例を概略的に示すブロック図である。 実施の形態6に係るロボットシステムのサーボ制御部の制御系統の構成例を概略的に示すブロック図である。 実施の形態7に係るロボットシステムのサーボ制御部の制御系統の構成例を概略的に示すブロック図である。
 ある態様に係るモータ制御システムは、上位装置から入力された位置指令に基づきモータに供給される電流を制御して前記モータを制御し、且つ入力軸が前記モータの出力軸に接続され且つ出力軸が負荷に接続された減速機の動作を制御するモータ制御システムであって、前記モータの出力軸の回転速度を検出するための事象を検知する検知部と、前記位置指令に基づき速度指令を生成し、且つ前記速度指令と前記検知部が検知した事象に基づき検出された前記モータの出力軸の回転速度との偏差である速度偏差を算出する速度偏差生成部と、前記モータの出力軸の回転角と前記減速機の出力軸の回転角との間の角度伝達誤差を推定し、且つ推定した前記角度伝達誤差に基づいて前記速度指令、前記速度偏差、又は前記検知部が検知した事象に基づき検出された前記モータの出力軸の回転速度を補正する角度伝達誤差補償部と、前記速度偏差に基づいて電流指令を生成する電流指令生成部と、前記電流指令に基づいて前記モータに供給される電流を制御する電流制御部と、を含む。
 この構成によれば、角度伝達誤差の補償を簡易な構成で行うことができ、角度伝達誤差に起因する負荷の不安定な挙動を抑制することができる。
 前記速度指令は、前記位置指令を時間微分した速度フィードフォワード指令であってもよい。
 この構成によれば、モータの出力軸の回転速度を制御するための速度フィードフォワード指令に沿ってモータの速度を適切に制御することができる。
 前記角度伝達誤差補償部は、推定した前記角度伝達誤差に基づいて前記速度フィードフォワード指令を補正することによって前記速度指令を補正してもよい。
 この構成によれば、モータの出力軸の回転速度を制御するための速度フィードフォワード指令を補正することによって速度指令を適切に補正することができ、角度伝達誤差の補償を適切に行うことができる。
 前記検知部は、前記モータの出力軸の回転角及び回転速度を検出するための事象を検知し、前記速度指令は、前記位置指令を時間微分した速度フィードフォワード指令と、前記位置指令と前記検知部が検知した事象に基づき検出された前記モータの出力軸の回転角との偏差に位置比例ゲインを乗じたゲイン速度指令とを加算した値であってもよい。
 この構成によれば、モータの出力軸の回転速度を制御するための速度フィードフォワード指令に沿ってモータの速度を適切に制御することができ、且つゲイン速度指令に沿ってモータの回転角を適切に制御することができる。
 前記角度伝達誤差補償部は、推定した前記角度伝達誤差に基づいて前記速度フィードフォワード指令を補正することによって前記速度指令を補正してもよい。
 この構成によれば、モータの出力軸の回転速度を制御するための速度フィードフォワード指令を補正することによって速度指令を適切に補正することができ、角度伝達誤差の補償を適切に行うことができる。
 前記角度伝達誤差補償部は、更に推定した前記角度伝達誤差に基づいて前記位置指令を補正し、前記速度指令は、上位装置から入力された前記位置指令を時間微分した速度フィードフォワード指令と、補正した前記位置指令と前記検知部が検知した事象に基づき検出された前記モータの出力軸の回転角との偏差に位置比例ゲインを乗じたゲイン速度指令とを加算した値であってもよい。
 この構成によれば、角度伝達誤差の補償をより適切に行うことができる。
 前記角度伝達誤差補償部は、前記角度伝達誤差の周期的な変動をモデル化した周期関数に基づいて前記角度伝達誤差を推定してもよい。
 この構成によれば、周期的な誤差として表れる角度伝達誤差を適切に補償することができる。
 前記減速機は、波動歯車装置であってもよい。
 この構成によれば、波動歯車装置の角度伝達誤差に起因する負荷の不安定な挙動を抑制することができる。
 ある態様に係るモータ制御システムの制御方法は、上位装置から入力された位置指令に基づきモータに供給される電流を制御して前記モータを制御し、且つ入力軸が前記モータの出力軸に接続され且つ出力軸が負荷に接続された減速機の動作を制御するモータ制御システムの制御方法であって、前記モータ制御システムは、前記モータの出力軸の回転速度を検出するための事象を検知する検知部と、前記位置指令に基づき速度指令を生成し、且つ前記速度指令と前記検知部が検知した事象に基づき検出された前記モータの出力軸の回転速度との偏差である速度偏差を算出する速度偏差生成部と、前記モータの出力軸の回転角と前記減速機の出力軸の回転角との間の角度伝達誤差を推定し、且つ推定した前記角度伝達誤差に基づいて前記速度指令、前記速度偏差、又は前記検知部が検知した事象に基づき検出された前記モータの出力軸の回転速度を補正する角度伝達誤差補償部と、前記速度偏差に基づいて電流指令を生成する電流指令生成部と、前記電流指令に基づいて前記モータに供給される電流を制御する電流制御部と、を含む。
 この構成によれば、角度伝達誤差の補償を簡易な構成で行うことができ、角度伝達誤差に起因する負荷の不安定な挙動を抑制することができる。
 ある態様に係るロボットシステムは、ロボットアームと、前記ロボットアームの関節の駆動源であるモータと、入力軸が前記モータの出力軸に接続され且つ出力軸が前記ロボットアームの前記関節に接続された減速機と、位置指令を生成する指令部と、前記指令部が生成した前記位置指令に基づき前記モータに供給される電流を制御して前記モータの動作を制御するモータ制御システムと、を備え、前記モータ制御システムは、前記モータの出力軸の回転速度を検出するための事象を検知する検知部と、前記位置指令に基づき速度指令を生成し、且つ前記速度指令と前記検知部が検知した事象に基づき検出された前記モータの出力軸の回転速度との偏差である速度偏差を算出する速度偏差生成部と、前記モータの出力軸の回転角と前記減速機の出力軸の回転角との間の角度伝達誤差を推定し、且つ推定した前記角度伝達誤差に基づいて前記速度指令、前記速度偏差、又は前記検知部が検知した事象に基づき検出された前記モータの出力軸の回転速度を補正する角度伝達誤差補償部と、前記速度偏差に基づいて電流指令を生成する電流指令生成部と、前記電流指令に基づいて前記モータに供給される電流を制御する電流制御部と、を含む。
 この構成によれば、角度伝達誤差の補償を簡易な構成で行うことができ、角度伝達誤差に起因するロボットアームの振動を抑制することができる。
 以下、実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。また、以下では、全ての図を通じて、同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
 (実施の形態1)
 図1は、実施の形態1に係るロボットシステム100の構成例を概略的に示す図である。図2は、ロボットシステム100の制御系統の構成例を概略的に示すブロック図である。
 図1に示すように、ロボットシステム100は、例えば、産業用途に利用される。ロボットシステム100は、ロボットアームを備えるロボット1と、ロボット1の動作を制御するロボット制御装置2とを備える。
 ロボット1は、多関節型ロボットの産業用ロボット(多関節ロボット)であり、複数の関節10を有し、先端部にハンド14を有するロボットアームを有する。図2に示すように、各関節10には、関節10を駆動する駆動部が設けられ、駆動部はサーボモータ(モータ)11と、エンコーダ12と、減速機13とを含む。なお、ロボット1は多関節型ロボットに限定されない。本実施の形態において、ロボット1のロボットアームは、6つの関節が1列に並ぶように構成されている。
 エンコーダ(検知部)12は、サーボモータ11の出力軸11aの実際の回転角及び実際の回転速度を検出するための事象を検知する。本実施の形態において、エンコーダ12は、検知した事象に基づいてサーボモータ11の出力軸11aの実際の回転角を含む情報を出力する。そして、詳細は後述するエンコーダ値微分部37が、サーボモータ11の出力軸11aの実際の回転角を時間微分し、サーボモータ11の出力軸11aの実際の回転速度を算出する。
 減速機13は、サーボモータ11の出力軸11aに接続された入力軸13aと、ロボット1の関節10(負荷)に接続された出力軸13bとを含む。入力軸13aは、サーボモータ11の出力軸11aと一体であってもよい。また、減速機13は、1つの機器で構成されてもよく、複数の機器で構成されてもよい。減速機13は、入力軸13aに入力されたサーボモータ11の出力軸11aの回転を所定の減速比Rで減速し、出力軸13bから出力する。減速機13は、例えば波動歯車装置(ハーモニックドライブ(登録商標))である。しかし、これに限られるものではない。
 波動歯車装置は、サーキュラスプラインと、フレクスプラインと、ウェーブジェネレータとを備える。サーキュラスプラインは、剛性の内歯歯車であり、例えば筐体と一体的に設けられる。フレクスプラインは、可撓性を有する外歯歯車であり、サーキュラスプラインと歯合する。フレクスプラインは、サーキュラスプラインよりも歯数が少なく、出力軸13bと接続される。ウェーブジェネレータは、フレクスプラインの内側に接触する楕円状のカムであり、入力軸13aと接続されている。そして、入力軸13aを回転させることによって、ウェーブジェネレータがフレクスプラインとサーキュラスプラインとの噛み合い位置を移動させ、サーキュラスプラインとフレクスプラインの歯数差に応じてフレクスプラインが回転軸周りに回転し、出力軸13bが回転する。波動歯車装置は、小型・軽量、高減速比、高トルク容量、ノンバックラッシ等の特徴からロボットの駆動機構の減速機に適した特性を有する。
 [ロボット制御装置の構成例]
 図2に示すように、ロボット制御装置2は、指令部21と、各関節に対応して設けられたサーボ制御部22と、各関節に対応して設けられたサーボアンプ23とを含む。サーボ制御部22及びサーボアンプ23がモータ制御システムを構成する。モータ制御システムは、上位装置である指令部21から入力された位置指令に基づきサーボモータ11に供給される電流を制御してサーボモータ11の動作を制御し、且つ入力軸13aがサーボモータ11の出力軸11aに接続され且つ出力軸13bが負荷に接続された減速機13の動作を制御する。本実施の形態において、負荷は、ロボット1のロボットアームの関節10であり、関節10を回動させることによってロボットアームの作業端(ハンドが設けられている端部)を移動させることができるように構成されている。
 指令部21は、動作プログラムに基づき位置指令を生成し、出力する。出力された位置指令は、サーボ制御部22に入力される。本実施の形態において、位置指令とは、サーボモータ11の出力軸11aの位置を制御するための制御量であり、サーボモータ11の出力軸11aの回転角である。
 図3は、ロボットシステムのサーボ制御部の制御系統の構成例を概略的に示すブロック図である。なお、位置指令に重力補償及び動力学補償を行ってもよい。
 サーボ制御部22は、指令部21が生成した位置指令に基づき電流指令を生成する。図3に示すように、サーボ制御部22は、速度偏差生成部31と、角度伝達誤差補償部34と、電流指令生成部36とを含む。
 速度偏差生成部31、角度伝達誤差補償部34、及び電流指令生成部36は、所定の制御プログラムを図示しない演算部が実行することにより実現される機能ブロックである。上記の演算部は、例えばマイクロコントローラ、CPU、ASIC、FPGA等のプログラマブルロジックデバイス(PLD)などの演算器で構成される。演算部は、集中制御する単独の制御器で構成されていてもよく、互いに協働して分散制御する複数の制御器で構成されてもよい。また、ロボット制御装置2は、各種プログラム及びデータを記憶する記憶装置(図示せず)を備えている。
 速度偏差生成部31は、位置指令に基づき速度指令を生成し、且つ速度指令とエンコーダ12が検知した事象に基づき検出されたサーボモータ11の出力軸11aの実際の回転速度との偏差である速度偏差を算出する。
 速度偏差生成部31は、速度フィードフォワード指令生成部32と、位置偏差算出部41と、ゲイン速度指令生成部42と、速度偏差算出部60と、エンコーダ値微分部37とを有する。
 速度フィードフォワード指令生成部32は、位置指令に基づいて速度フィードフォワード指令を生成する。速度フィードフォワード指令生成部32は、位置指令を時間微分する微分器を含み、位置指令を時間微分して速度フィードフォワード指令を生成する。
 位置偏差算出部41は、位置指令からサーボモータ11の実際の出力軸11aの回転角を減算し、位置指令とエンコーダ12から出力されるサーボモータ11の実際の出力軸11aの回転角との偏差である位置偏差を算出する。
 ゲイン速度指令生成部42は、位置偏差算出部41が算出した位置偏差に位置比例ゲインKpを乗じた値を算出する。この算出された値がゲイン速度指令を構成する。このように、ゲイン速度指令生成部42は、P制御(比例制御)を行う。
 エンコーダ値微分部37は、エンコーダ12から出力されるサーボモータ11の実際の出力軸11aの回転角に基づいてサーボモータ11の実際の出力軸11aの回転速度を算出する。エンコーダ値微分部37は、サーボモータ11の実際の出力軸11aの回転角を時間微分する微分器を含み、サーボモータ11の実際の出力軸11aの回転角を時間微分してサーボモータ11の実際の出力軸11aの回転速度を算出する。
 速度偏差算出部60は、速度フィードフォワード指令を補正した補正速度フィードフォワード指令(詳細は後述)とゲイン速度指令とを加算して速度指令を生成する。更に、速度偏差算出部60は、速度指令とエンコーダ値微分部37が算出したサーボモータ11の出力軸11aの回転速度との偏差である速度偏差を算出する。なお、速度偏差算出部60における補正速度フィードフォワード指令、ゲイン速度指令、及びサーボモータ11の出力軸11aの回転速度の加減算の順序はこれに限定されるものではない。
 角度伝達誤差補償部34は、サーボモータ11の出力軸11aの回転角(減速機13の入力軸13aの回転角)と減速機13の出力軸13bの回転角との間の角度伝達誤差を推定する。更に、角度伝達誤差補償部34は、推定した角度伝達誤差に基づいて前記速度フィードフォワード指令を補正し、補正速度フィードフォワード指令を生成する。角度伝達誤差補償部34は、角度伝達誤差推定部51と、補正部52とを含む。
 ところで、図4に示すように、波動歯車装置を含む減速機には、加工誤差等により、減速機に入力される入力回転角に減速比を乗じた理論上の出力回転角と、実際の出力回転角との差である角度伝達誤差が生じる。この角度伝達誤差は、モータの出力軸の回転に伴って周期的に変化する。このような減速機の出力軸の角度伝達誤差ATEは、以下の式(1)に係る関数を用いたモデルによって近似的に表現することが可能である。
Figure JPOXMLDOC01-appb-M000001
 
 角度伝達誤差推定部51は、上記式(1)に係る角度伝達誤差の周期的な変動をモデル化した周期関数に基づいて、減速機13に対する入力回転角であるサーボモータ11の出力軸11aの回転角と減速機13の出力回転角である減速機13の出力軸13bの回転角との間の角度伝達誤差を推定し、角度伝達誤差を補償するため(角度伝達誤差をキャンセルするため)にサーボモータ11の出力軸11aに加えるべき補償量θ(・)compを決定する。ここでθ(・)は、θの上に符号・(ドット)が一つ付された記号であるとする。本実施の形態において、角度伝達誤差推定部51は、サーボモータ11の出力軸11aに加えるべき補償量θ(・)compを、以下の式(2)に基づいて算出する。
Figure JPOXMLDOC01-appb-M000002
 
 式(2)は、式(1)を時間微分し、更に減速比に負号を付してこれを乗じたものであり、式(1)及び式(2)の振幅A及び位相差φは、予め規定されている。例えば、波動歯車装置の角度伝達誤差に特に大きな影響をあたえるのは周波数が2に係る成分であることが判っている。従って、減速機13が波動歯車装置である場合、周波数fを2と規定し、当該周波数fに対応する別途同定した振幅A,位相φを用いて上記関数に基づいて補償量θ(・)compを算出してもよい。このように、角度伝達誤差推定部51は、位置指令及び速度フィードフォワード指令の値(位置指令の時間微分値)に基づき角度伝達誤差を推定する。
 補正部52は、速度フィードフォワード指令値に補償量θ(・)compを加算し、補正速度フィードフォワード指令を生成する。
 このように、角度伝達誤差補償部34は、角度伝達誤差推定部51が推定した角度伝達誤差に基づいて補正部52が速度フィードフォワード指令値を補正し、補正速度フィードフォワード指令を生成する。そして、上述の通り、速度偏差算出部60が、補正速度フィードフォワード指令とゲイン速度指令とを加算して速度指令を生成する。
 このように、角度伝達誤差補償部34は、速度フィードフォワード指令を補正することによって、速度指令を間接的に補正し、更には補正偏差を間接的に補正している。
 電流指令生成部36は、速度偏差生成部31が生成した速度偏差に基づいて電流指令を生成する。電流指令とは、サーボモータ11の巻線に供給する電流を制御するための制御量である。
 例えば、電流指令生成部36は、速度比例ゲイン部62と、積分部63と、速度積分ゲイン部64と、加減算部65とを含む。速度比例ゲイン部62は、速度偏差算出部60が算出した速度偏差に速度比例ゲインKvpを乗じた第1指令の値を算出する。積分部63は、第1指令の値を積分する。速度積分ゲイン部64は、積分部63が積分した値に速度積分ゲインKviを乗じた第2指令の値を算出する。加減算部65は、速度比例ゲイン部62が算出した第1指令の値と、速度積分ゲイン部64が算出した第2指令の値を加算した値を算出し、この値を電流指令として出力する。すなわち、電流指令生成部36は、PI制御(比例積分制御)を行うように構成されている。出力された電流指令はサーボアンプ23に入力される。
 サーボアンプ(電流制御部)23は、電流指令生成部36が生成した電流指令に基づいてサーボモータ11に供給される電流を制御する。
 ところで、位置指令に角度伝達誤差を補償するための補正を加えて速度指令を生成すると、その下位の速度偏差を算出する過程においてこの補正が打ち消され、角度伝達誤差の補償を適切に行えない場合があった。しかし、本実施の形態において、角度伝達誤差補償部34は、サーボモータ11の出力軸11aの回転角と減速機13の出力軸13bの回転角との間の角度伝達誤差を推定し、位置指令よりも下位の指令、すなわち速度フィードフォワード指令を補正することによって速度指令を補正し、速度偏差を補正するので、角度伝達誤差の補償を適切に行うことができる。
 このように、サーボモータ11の出力軸11aの回転速度を制御するための速度フィードフォワード指令を角度伝達誤差補償部34が補正し、この補正された補正速度フィードフォワード指令に沿ってサーボモータ11の出力軸11aの回転速度が制御されるよう構成されている。すなわち、ロボット制御装置2は、サーボモータ11の出力軸11aを角度伝達誤差を補償した速度で回転するよう制御する。
 以上に説明したように、ロボットシステム100は、角度伝達誤差補償部34が、速度フィードフォワード指令を補正することによって速度指令を補正し、速度偏差を補正するので、角度伝達誤差の補償を簡易な構成で行うことができ、角度伝達誤差に起因する負荷の不安定な挙動(振動など)を抑制することができる。
 特に垂直多関節ロボットであるロボット1においては、角度伝達誤差に起因する関節の回動速度の変動は、ハンド14の振動となって表れる。したがって、角度伝達誤差に起因する関節の回動速度の変動を抑制することによって、角度伝達誤差に起因するハンド14の振動を抑制することができ、位置決め精度を向上させることができる。
 また、角度伝達誤差補償部34は、速度フィードフォワード指令を補正することによって速度指令を補正し、速度偏差を補正するので、速度フィードフォワード指令を用いてサーボモータ11を制御するロボットシステム100において、速度指令を適切に補正することができ、角度伝達誤差の補償を適切に行うことができる。
 (実施の形態2)
 以下では実施の形態2の構成、動作について、実施の形態1との相違点を中心に述べる。
 図5は、実施の形態2に係るロボットシステムの動作例における速度フィードフォワード指令と速度フィードフォワード指令の修正値との関係を示すグラフである。
 上記実施の形態1において、角度伝達誤差推定部51は、式(2)の通り、サーボモータ11の出力軸11aに加えるべき補償量θ(・)compを、速度フィードフォワード指令の値を用いて算出した。
 これに対し、本実施の形態において、角度伝達誤差推定部51は、まず、式(3)~式(5)に基づいて速度フィードフォワード指令θ(・)の値を修正し、θ(・)aを算出する。
Figure JPOXMLDOC01-appb-M000003
 
 図5は式(3)~(5)をグラフ化した図であり、速度フィードフォワード指令値θ(・)がvlim以下の場合、式(3)に基づいて、速度フィードフォワード指令値θ(・)をそのまま速度フィードフォワード指令値の修正値θ(・)aとして設定する。
 そして、速度フィードフォワード指令値θ(・)がvlimを超えた場合、式(4)に基づいて、速度フィードフォワード指令値θ(・)が大きくなるにしたがって、速度フィードフォワード指令値の修正値θ(・)aが小さくなるように設定する。
 また、式(4)において速度フィードフォワード指令の修正値θ(・)aが0になる値をvlimが超えると、式(5)に基づいて速度フィードフォワード指令の修正値θ(・)aを0に設定する。
 次に、角度伝達誤差推定部51は、式(6)に基づいて、速度フィードフォワード指令値の修正値θ(・)aを用いて、サーボモータ11の出力軸11aに加えるべき補償量θ(・)compを算出する。
Figure JPOXMLDOC01-appb-M000004
 
 すなわち、速度フィードフォワード指令値θ(・)がvlim以下であった場合は、本実施の形態における補償量θ(・)compは、上記実施の形態1の補償量θ(・)compと同一となるように構成されている。
 一方、速度フィードフォワード指令値θ(・)がvlimを超える場合は、本実施の形態における補償量θ(・)compは、上記実施の形態1の補償量θ(・)compよりも小さくなるように構成され、特に、式(5)に示す通り、速度フィードフォワード指令値θ(・)が所定以上の値になると補償量θ(・)compは0となるように構成されている。
 このように、速度フィードフォワード指令値θ(・)が所定の値を超える場合は、補償量θ(・)compを小さくするよう又は補償を行わないように構成されている。これによって、補償量θ(・)compが過度に大きくなることを防止することができ、制御に不具合が生じることを防止することができる。更に、通常、高い精度が求められない高速で動作させる領域における制御を簡素化することができる。
 また、本実施の形態において、式(4)に示す速度フィードフォワード指令値の範囲においては、速度フィードフォワード指令値θ(・)が大きくなるにしたがって、速度フィードフォワード指令値の修正値θ(・)aが小さくなるように設定するよう構成されているので、速度フィードフォワード指令値θ(・)がvlimを跨いで変化する場合において、ロボット1の動作が急激に変化することを防止することができる。
 (実施の形態3)
 以下では実施の形態3の構成、動作について、実施の形態1との相違点を中心に述べる。
 図6は、実施の形態3に係るロボットシステムのサーボ制御部22の制御系統の構成例を概略的に示すブロック図である。
 本実施の形態において、サーボ制御部22は、重力補償部337を更に含む。
 重力補償部337は、ロボット1に作用する重力の影響をキャンセルする補償を行うための機能部である。重力補償部337は、重力補償値算出部341と、補正部342とを含む。重力補償値算出部341は、ロボット1の関節10に作用する重力トルクを相殺するための重力補償値Gを算出する。補正部342は、重力補償値Gを電流指令値に加算する。
 ところで、サーボモータ11の出力軸11aと減速機13の出力軸13bとの位相差は、減速機13の出力軸13bにかかるトルクに比例して変化する。したがって、当該変化は、以下の関数として表したモデルによって近似的に表現することが可能である。
Figure JPOXMLDOC01-appb-M000005
 
 そして、本実施の形態において、角度伝達誤差推定部51は、サーボモータ11の出力軸11aに加えるべき補償量θ(・)compを式(2)に基づいて算出する際に用いるφを、重力補償値算出部341が算出した重力補償値Gを用いて上記の式(7)に基づいて算出する。なお、比例定数a及び位相φは予め同定される。そして、角度伝達誤差推定部51は、式(7)に基づいて用いたφを用いて、サーボモータ11の出力軸11aに加えるべき補償量θ(・)compを式(2)に基づいて算出する。これによって、サーボ制御部22は、角度伝達誤差補償をより精確におこなうことができる。
 (実施の形態4)
 以下では実施の形態4の構成、動作について、実施の形態1との相違点を中心に述べる。
 図7は、実施の形態4に係るロボットシステムのサーボ制御部の制御系統の構成例を概略的に示すブロック図である。
 上記実施の形態1において、角度伝達誤差補償部34は、速度フィードフォワード指令を補正することによって速度指令を間接的に補正し、速度偏差を間接的に補正した。これに対し、本実施の形態において、角度伝達誤差補償部434は、図7に示すように、速度偏差を補正する。
 すなわち、速度偏差算出部60は、速度フィードフォワード指令とゲイン速度指令とを加算して速度指令を生成する。更に、速度偏差算出部60は、速度指令とサーボモータ11の出力軸11aの回転速度との偏差である速度偏差を算出する。
 そして、角度伝達誤差補償部434の補正部452は、速度偏差に補償量θ(・)compを加算し、補正速度偏差を算出する。
 また、電流指令生成部36は、角度伝達誤差補償部434が生成した補正速度偏差に基づいて電流指令を生成する。すなわち、速度比例ゲイン部62は、角度伝達誤差補償部434の補正部452が算出した補正偏差に速度比例ゲインKvpを乗じた第1指令を生成する。
 (実施の形態5)
 以下では実施の形態5の構成、動作について、実施の形態1との相違点を中心に述べる。
 図8は、実施の形態5に係るロボットシステムのサーボ制御部の制御系統の構成例を概略的に示すブロック図である。
 上記実施の形態1において、角度伝達誤差補償部34は、速度フィードフォワード指令を補正することによって速度指令を間接的に補正し、速度偏差を間接的に補正した。これに対し、本実施の形態において、角度伝達誤差補償部534は、図8に示すように、ゲイン速度指令を補正することによって速度指令を間接的に補正し、速度偏差を間接的に補正する。
 すなわち、角度伝達誤差補償部534の補正部552は、ゲイン速度指令に補償量θ(・)compを加算し、補正ゲイン速度指令を算出する。そして、速度偏差算出部60は、速度フィードフォワード指令と補正ゲイン速度指令とを加算して速度指令を算出する。更に、速度偏差算出部60は、速度指令とサーボモータ11の出力軸11aの回転速度との偏差である速度偏差を算出する。
 (実施の形態6)
 以下では実施の形態6の構成、動作について、実施の形態1との相違点を中心に述べる。
 図9は、実施の形態6に係るロボットシステムのサーボ制御部の制御系統の構成例を概略的に示すブロック図である。
 上記実施の形態1において、角度伝達誤差補償部34は、速度フィードフォワード指令を補正することによって速度指令を間接的に補正し、速度偏差を間接的に補正した。これに対し、本実施の形態において、角度伝達誤差補償部634は、図9に示すように、サーボモータ11の出力軸11aの回転速度を補正することによって速度偏差を間接的に補正する。
 すなわち、角度伝達誤差補償部634の補正部652は、サーボモータ11の出力軸11aの回転速度から補償量θ(・)compを減算し、補正回転速度を算出する。
 そして、速度偏差算出部60は、速度指令と補正回転速度との偏差である速度偏差を算出する。
 (実施の形態7)
 以下では実施の形態7の構成、動作について、実施の形態1との相違点を中心に述べる。
 図10は、実施の形態7に係るロボットシステムのサーボ制御部の制御系統の構成例を概略的に示すブロック図である。
 上記実施の形態1において、角度伝達誤差補償部34は、速度フィードフォワード指令を補正することによって速度指令を間接的に補正し、速度偏差を間接的に補正した。これに対し、本実施の形態において、角度伝達誤差補償部734は、図10に示すように、推定した角度伝達誤差に基づいて位置指令及び速度フィードフォワード指令を補正する。角度伝達誤差補償部734は、角度伝達誤差推定部51と、第1補正部752と、第2補正部753とを含む。
 第1補正部752は、位置指令に補償量θ(・)compを加算し、補正位置指令を算出する。
 第2補正部753は、補正部52と同様であるのでその詳細な説明を省略する。
 速度フィードフォワード指令生成部32は、補正前の位置指令に基づいて速度フィードフォワード指令を生成する。
 位置偏差算出部41は、補正位置指令からサーボモータ11の出力軸11aの回転角を減算し、位置指令とサーボモータ11の出力軸11aの回転角との偏差である位置偏差を算出する。
 (実施の形態8)
 以下では実施の形態8の構成、動作について、実施の形態1との相違点を中心に述べる。
 上記実施の形態1において、角度伝達誤差補償部34の角度伝達誤差推定部51は、式(2)に基づいてサーボモータ11の出力軸11aに加えるべき補償量θ(・)compを算出する際、角度伝達誤差に特に大きな影響を与える所定の周波数f及びこの周波数に対応する所定の振幅A及び所定の位相差φを用いて補償量θ(・)compを算出した。これに代えて、角度伝達誤差補償部34の角度伝達誤差推定部51は、サーボモータ11の出力軸11aに加えるべき補償量θ(・)compを、以下の式(8)に基づいて算出してもよい。
Figure JPOXMLDOC01-appb-M000006
 
 すなわち、角度伝達誤差推定部51は、位置指令及び速度フィードフォワード指令の値(位置指令の時間微分値)に基づき、周波数のパターン毎に角度伝達誤差を算出し、これらを足し合わせた値を角度伝達誤差の補正に用いる。これによって、角度伝達誤差をより正確に補正することができる。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 1 ロボット
 2 ロボット制御装置
 10 回動軸
 11 サーボモータ
 11a 出力軸
 12 エンコーダ
 13 減速機
 13a 入力軸
 13b 出力軸
 22 サーボ制御部
 23 サーボアンプ
 31 速度偏差算出部
 34 角度伝達誤差補償部
 36 電流指令生成部
 100 ロボットシステム

Claims (10)

  1.  上位装置から入力された位置指令に基づきモータに供給される電流を制御して前記モータを制御し、且つ入力軸が前記モータの出力軸に接続され且つ出力軸が負荷に接続された減速機の動作を制御するモータ制御システムであって、
     前記モータの出力軸の回転速度を検出するための事象を検知する検知部と、
     前記位置指令に基づき速度指令を生成し、且つ前記速度指令と前記検知部が検知した事象に基づき検出された前記モータの出力軸の回転速度との偏差である速度偏差を算出する速度偏差生成部と、
     前記モータの出力軸の回転角と前記減速機の出力軸の回転角との間の角度伝達誤差を推定し、且つ推定した前記角度伝達誤差に基づいて前記速度指令、前記速度偏差、又は前記検知部が検知した事象に基づき検出された前記モータの出力軸の回転速度を補正する角度伝達誤差補償部と、
     前記速度偏差に基づいて電流指令を生成する電流指令生成部と、
     前記電流指令に基づいて前記モータに供給される電流を制御する電流制御部と、を含む、モータ制御システム。
  2.  前記速度指令は、前記位置指令を時間微分した速度フィードフォワード指令である、請求項1に記載のモータ制御システム。
  3.  前記角度伝達誤差補償部は、推定した前記角度伝達誤差に基づいて前記速度フィードフォワード指令を補正することによって前記速度指令を補正する、請求項2に記載のモータ制御システム。
  4.  前記検知部は、前記モータの出力軸の回転角及び回転速度を検出するための事象を検知し、
     前記速度指令は、前記位置指令を時間微分した速度フィードフォワード指令と、前記位置指令と前記検知部が検知した事象に基づき検出された前記モータの出力軸の回転角との偏差に位置比例ゲインを乗じたゲイン速度指令とを加算した値である、請求項1に記載のモータ制御システム。
  5.  前記角度伝達誤差補償部は、推定した前記角度伝達誤差に基づいて前記速度フィードフォワード指令を補正することによって前記速度指令を補正する、請求項4に記載のモータ制御システム。
  6.  前記角度伝達誤差補償部は、更に推定した前記角度伝達誤差に基づいて前記位置指令を補正し、
     前記速度指令は、上位装置から入力された前記位置指令を時間微分した速度フィードフォワード指令と、補正した前記位置指令と前記検知部が検知した事象に基づき検出された前記モータの出力軸の回転角との偏差に位置比例ゲインを乗じたゲイン速度指令とを加算した値である、請求項5に記載のモータ制御システム。
  7.  前記角度伝達誤差補償部は、前記角度伝達誤差の周期的な変動をモデル化した周期関数に基づいて前記角度伝達誤差を推定する、請求項1乃至6の何れかに記載のモータ制御システム。
  8.  前記減速機は、波動歯車装置である、請求項1乃至7の何れかに記載のモータ制御システム。
  9.  上位装置から入力された位置指令に基づきモータに供給される電流を制御して前記モータを制御し、且つ入力軸が前記モータの出力軸に接続され且つ出力軸が負荷に接続された減速機の動作を制御するモータ制御システムの制御方法であって、
     前記モータ制御システムは、
     前記モータの出力軸の回転速度を検出するための事象を検知する検知部と、
     前記位置指令に基づき速度指令を生成し、且つ前記速度指令と前記検知部が検知した事象に基づき検出された前記モータの出力軸の回転速度との偏差である速度偏差を算出する速度偏差生成部と、
     前記モータの出力軸の回転角と前記減速機の出力軸の回転角との間の角度伝達誤差を推定し、且つ推定した前記角度伝達誤差に基づいて前記速度指令、前記速度偏差、又は前記検知部が検知した事象に基づき検出された前記モータの出力軸の回転速度を補正する角度伝達誤差補償部と、
     前記速度偏差に基づいて電流指令を生成する電流指令生成部と、
     前記電流指令に基づいて前記モータに供給される電流を制御する電流制御部と、を含む、モータ制御システムの制御方法。
  10.  ロボットアームと、
     前記ロボットアームの関節の駆動源であるモータと、
     入力軸が前記モータの出力軸に接続され且つ出力軸が前記ロボットアームの前記関節に接続された減速機と、
     位置指令を生成する指令部と、前記指令部が生成した前記位置指令に基づき前記モータに供給される電流を制御して前記モータの動作を制御するモータ制御システムと、を備え、
     前記モータ制御システムは、
     前記モータの出力軸の回転速度を検出するための事象を検知する検知部と、
     前記位置指令に基づき速度指令を生成し、且つ前記速度指令と前記検知部が検知した事象に基づき検出された前記モータの出力軸の回転速度との偏差である速度偏差を算出する速度偏差生成部と、
     前記モータの出力軸の回転角と前記減速機の出力軸の回転角との間の角度伝達誤差を推定し、且つ推定した前記角度伝達誤差に基づいて前記速度指令、前記速度偏差、又は前記検知部が検知した事象に基づき検出された前記モータの出力軸の回転速度を補正する角度伝達誤差補償部と、
     前記速度偏差に基づいて電流指令を生成する電流指令生成部と、
     前記電流指令に基づいて前記モータに供給される電流を制御する電流制御部と、を含む、ロボットシステム。
PCT/JP2018/019195 2017-05-18 2018-05-17 モータ制御システム、モータ制御システムの制御方法、及びロボットシステム WO2018212305A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880032397.9A CN110651427B (zh) 2017-05-18 2018-05-17 马达控制系统、马达控制系统的控制方法以及机器人系统
EP18802438.4A EP3627693B1 (en) 2017-05-18 2018-05-17 Motor control system, control method for motor control system, and robot system
US16/614,410 US10919150B2 (en) 2017-05-18 2018-05-17 Motor control system, control method for motor control system, and robot system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017099192A JP7117827B2 (ja) 2017-05-18 2017-05-18 モータ制御システム、モータ制御システムの制御方法、及びロボットシステム
JP2017-099192 2017-05-18

Publications (1)

Publication Number Publication Date
WO2018212305A1 true WO2018212305A1 (ja) 2018-11-22

Family

ID=64273936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019195 WO2018212305A1 (ja) 2017-05-18 2018-05-17 モータ制御システム、モータ制御システムの制御方法、及びロボットシステム

Country Status (5)

Country Link
US (1) US10919150B2 (ja)
EP (1) EP3627693B1 (ja)
JP (2) JP7117827B2 (ja)
CN (1) CN110651427B (ja)
WO (1) WO2018212305A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020000584A (ja) * 2018-06-29 2020-01-09 株式会社三洋物産 遊技機
JP2020000586A (ja) * 2018-06-29 2020-01-09 株式会社三洋物産 遊技機
JP2020000587A (ja) * 2018-06-29 2020-01-09 株式会社三洋物産 遊技機
JP2020000585A (ja) * 2018-06-29 2020-01-09 株式会社三洋物産 遊技機
JP2020000583A (ja) * 2018-06-29 2020-01-09 株式会社三洋物産 遊技機
JP7261755B2 (ja) * 2020-02-04 2023-04-20 株式会社日立産機システム モータ制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223225A (ja) 2002-01-30 2003-08-08 Harmonic Drive Syst Ind Co Ltd 位置決めシステム
WO2007099635A1 (ja) * 2006-03-02 2007-09-07 Harmonic Drive Systems Inc. アクチュエータの速度変動抑制方法
JP2008090692A (ja) * 2006-10-04 2008-04-17 Harmonic Drive Syst Ind Co Ltd アクチュエータの位置変動抑制方法
JP2011204010A (ja) * 2010-03-25 2011-10-13 Okuma Corp 位置制御装置
JP2014136260A (ja) * 2013-01-15 2014-07-28 Daihen Corp 制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189706A (ja) * 1982-04-28 1983-11-05 Fanuc Ltd 速度指令系の速度補正方式
JP2577713B2 (ja) * 1986-12-17 1997-02-05 株式会社神戸製鋼所 ロボツト用制御装置
JP3654475B2 (ja) * 1996-11-27 2005-06-02 株式会社ハーモニック・ドライブ・システムズ 減速機付きサーボモータの制御装置
JP6245858B2 (ja) * 2013-06-25 2017-12-13 株式会社ダイヘン 制御装置
JP6374274B2 (ja) * 2014-09-04 2018-08-15 国立大学法人長岡技術科学大学 制御装置及び減速機システム
JP6463174B2 (ja) * 2015-03-06 2019-01-30 国立大学法人長岡技術科学大学 制御装置及び減速機システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223225A (ja) 2002-01-30 2003-08-08 Harmonic Drive Syst Ind Co Ltd 位置決めシステム
WO2007099635A1 (ja) * 2006-03-02 2007-09-07 Harmonic Drive Systems Inc. アクチュエータの速度変動抑制方法
JP2008090692A (ja) * 2006-10-04 2008-04-17 Harmonic Drive Syst Ind Co Ltd アクチュエータの位置変動抑制方法
JP2011204010A (ja) * 2010-03-25 2011-10-13 Okuma Corp 位置制御装置
JP2014136260A (ja) * 2013-01-15 2014-07-28 Daihen Corp 制御装置

Also Published As

Publication number Publication date
EP3627693A4 (en) 2021-01-27
US10919150B2 (en) 2021-02-16
US20200180149A1 (en) 2020-06-11
JP2018196266A (ja) 2018-12-06
EP3627693B1 (en) 2023-11-29
JP2022091856A (ja) 2022-06-21
CN110651427A (zh) 2020-01-03
JP7117827B2 (ja) 2022-08-15
EP3627693A1 (en) 2020-03-25
CN110651427B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
WO2018212305A1 (ja) モータ制御システム、モータ制御システムの制御方法、及びロボットシステム
JP2020078247A (ja) 駆動装置、アクチュエータユニット、ロボット装置、駆動装置の制御方法、アクチュエータユニットの制御方法、ロボット装置の制御方法
KR101688344B1 (ko) 다관절 로봇의 위빙 제어 장치
US11559891B2 (en) Robot system and method for controlling robot system
CN112840276B (zh) 振动抑制装置、振动抑制方法以及存储单元
JP2016004316A (ja) モータを制御するモータ制御装置
JP4867105B2 (ja) 数値制御装置
WO2018212307A1 (ja) 減速機角度伝達誤差同定システム及び減速機角度伝達誤差同定方法
JP2018139044A (ja) サーボモータ制御装置、サーボモータ制御方法、及びサーボモータ制御用プログラム
JP3981773B2 (ja) ロボット制御装置
CN110955192B (zh) 伺服控制装置、机器人及伺服控制方法
JP2016032326A (ja) モータ制御装置、ロボット装置、モータ制御方法、プログラム及び記録媒体
KR101053205B1 (ko) 백래쉬 보상 기능을 갖는 모터 제어 장치
JP7121599B2 (ja) ロボットシステム及びロボットシステムの制御方法
WO2020009237A1 (ja) ロボットシステム及びロボットシステムの制御方法
JP2022092761A (ja) モータ制御装置およびモータ制御方法、撮像装置、制御システム
JP2021136824A (ja) モータ制御装置、モータ制御システム、およびモータ制御方法
JP2015122932A (ja) ロボットの制御装置および制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018802438

Country of ref document: EP

Effective date: 20191218