WO2018211788A1 - リング状部材の製造方法及びリング状部材 - Google Patents

リング状部材の製造方法及びリング状部材 Download PDF

Info

Publication number
WO2018211788A1
WO2018211788A1 PCT/JP2018/008870 JP2018008870W WO2018211788A1 WO 2018211788 A1 WO2018211788 A1 WO 2018211788A1 JP 2018008870 W JP2018008870 W JP 2018008870W WO 2018211788 A1 WO2018211788 A1 WO 2018211788A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
ring
shaped member
butted
butting
Prior art date
Application number
PCT/JP2018/008870
Other languages
English (en)
French (fr)
Inventor
敦 碇
藤井 智
Original Assignee
日本新工芯技株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本新工芯技株式会社 filed Critical 日本新工芯技株式会社
Priority to CN201880002209.8A priority Critical patent/CN109287126B/zh
Priority to EP18802750.2A priority patent/EP3454361B1/en
Priority to SG11201810732UA priority patent/SG11201810732UA/en
Priority to KR1020187034663A priority patent/KR102214968B1/ko
Priority to US16/307,849 priority patent/US10984988B2/en
Publication of WO2018211788A1 publication Critical patent/WO2018211788A1/ja
Priority to US17/207,693 priority patent/US11551915B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32642Focus rings
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32807Construction (includes replacing parts of the apparatus)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge clamping, e.g. clamping ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • H01J2237/3341Reactive etching

Definitions

  • the present invention relates to a method for manufacturing a ring-shaped member and a ring-shaped member.
  • a dry etching apparatus using plasma is used as a substrate processing apparatus in manufacturing semiconductor integrated devices such as LSI.
  • the dry etching apparatus has a cylindrical vacuum chamber.
  • a high frequency voltage is applied between the counter electrode (anode) and the cathode by a high frequency oscillator in a state where the wafer to be etched is placed on the cathode of the planar electrode and the etching gas is introduced into the vacuum chamber, so that the electrode In the meantime, an etching gas plasma is generated.
  • the positive ions which are active gases in the plasma, enter the wafer surface and perform etching.
  • ring-shaped members are used in the vacuum chamber of the dry etching apparatus.
  • Typical ring-shaped members include a doughnut-shaped focus ring surrounding the wafer to be etched, and an annular grounding ring arranged to cover the side surface of the cylindrical susceptor base on which the wafer is placed. is there.
  • protective materials such as an annular shield ring provided at the peripheral edge of the counter electrode and a side wall member covering the inner wall side surface of the vacuum chamber (Patent Document 1).
  • the focus ring, ground ring, and ring-shaped protective material must have a larger diameter than the wafer to be etched.
  • Current silicon parts for 300 mm wafers are expensive because they are made from a silicon crystal ingot having a diameter of 320 mm or more.
  • the ring-shaped side wall member has a diameter of 700 mm or more, and it may be substantially impossible to make it from a silicon crystal ingot.
  • a silicon part can be manufactured by joining a plurality of silicon members instead of a single piece, it can be manufactured from a silicon crystal ingot having a smaller diameter, and various advantages such as reduction in manufacturing costs are expected.
  • An object of the present invention is to provide a ring-shaped member manufacturing method in which a plurality of silicon members are joined and a ring-shaped member.
  • a method for manufacturing a ring-shaped member according to the present invention is a method for manufacturing a ring-shaped member installed in a processing chamber in which a substrate of a substrate processing apparatus that performs plasma processing on a substrate is accommodated.
  • the silicon member and said other silicon member characterized in that it comprises a step of bonding through the silicon bonding portion.
  • a ring-shaped member according to the present invention is a ring-shaped member installed in a processing chamber in which a substrate of a substrate processing apparatus that performs plasma processing on a substrate is accommodated, and includes a plurality of silicon members and one of the silicon members.
  • a silicon bonding part that joins the one butting surface and the other butting surface, and is provided so as to fill a gap between the butting surface of the other silicon member and the other butting surface of the other silicon member.
  • the bonded portion is a material in which the silicon melt on the end face of the one silicon member and the silicon melt on the end face of the other silicon member come into contact with each other and flow into the gap due to a capillary phenomenon and crystallize.
  • One silicon bonded portion made of single crystal silicon that inherits the crystallinity of the butt surface and single crystal silicon that inherits the crystallinity of the other butt surface. Wherein the other silicon bonded portion are integrated at the atomic level.
  • a plurality of silicon members cut out from a silicon crystal ingot smaller than the outer diameter of the ring-shaped member can be manufactured in combination. Therefore, since the ring-shaped member does not need to use a silicon crystal ingot larger than the outer diameter of the ring-shaped member, the cost can be reduced correspondingly.
  • FIG. 8A is the butt
  • FIG. 8B is the butt
  • FIG. 9A is an upper surface side
  • FIG. 9B is a lower surface side.
  • FIG. 10A is sectional drawing
  • FIG. 10B is a bottom view. It is a figure which shows an embedded silicon
  • a dry etching apparatus 10 shown in FIG. 1 includes a vacuum chamber 12 as a processing chamber, an upper electrode plate 14, and a base 16.
  • the vacuum chamber 12 has a substantially cylindrical shape, and has a processing space 31 surrounded by a cylindrical side wall.
  • the inner surface of the side wall of the vacuum chamber 12 is covered with a side wall member 13.
  • the inner surface around the upper electrode plate 14 on the upper wall of the vacuum chamber 12 is covered with an upper wall member 17.
  • the side wall member 13 and the upper wall member 17 are annular members for protecting the inner wall of the vacuum chamber 12 exposed to the plasma, and are formed of silicon.
  • the vacuum chamber 12 is provided with a baffle plate 25 that partitions the inside of the vacuum chamber 12 in the height direction.
  • An exhaust space 26 is formed on the lower side of the vacuum chamber 12 partitioned by the baffle plate 25, and a processing space 31 is formed on the upper side.
  • the baffle plate 25 is a protective member for preventing the backflow of the etching gas and is made of silicon.
  • the baffle plate 25 has an annular main body, and has a flow passage 27 that penetrates the main body in the thickness direction. As shown in the figure, the baffle plate 25 is provided at the approximate center in the height direction in the vacuum chamber 12.
  • the upper electrode plate 14 is a disk-shaped member and is fixed to the upper part in the vacuum chamber 12. The peripheral edge of the upper electrode plate 14 is covered with a protective ring 20. A shield ring 21 made of quartz is provided between the upper electrode plate 14 and the protective ring 20.
  • the protection ring 20 is a member for protecting the inner wall of the vacuum chamber 12 from plasma generated around the upper electrode plate 14 and is made of silicon. The protection ring 20 may be grounded.
  • the protective ring 20 has a surface on the inner side of the vacuum chamber 12 that protrudes more than the shield ring 21 and has the same height as the upper wall member 17.
  • the upper electrode plate 14 has a plurality of through holes 15 penetrating in the thickness direction.
  • the upper electrode plate 14 is electrically connected to a high frequency power source (not shown).
  • a gas supply pipe 24 is connected to the upper electrode plate 14.
  • the etching gas supplied from the gas supply pipe 24 flows into the vacuum chamber 12 from the through hole 15 of the upper electrode plate 14.
  • the etching gas that has flowed into the vacuum chamber 12 flows into the exhaust space 26 through the flow passage 27 and is discharged to the outside through the discharge port 28.
  • the base 16 is installed in a processing space 31 above the baffle plate 25 in the vacuum chamber 12, and the periphery thereof is surrounded by a ground ring 30.
  • the ground ring 30 is made of silicon and is grounded.
  • a focus ring 18 is provided on the base 16.
  • the focus ring 18 is made of silicon, and a recess 19 that supports the periphery of the wafer 22 is formed over the entire inner periphery.
  • a power source for applying a voltage for stabilizing the plasma during the etching process is electrically connected to the focus ring.
  • a cover ring 23 that protects the side surface of the focus ring 18 may be provided around the focus ring 18.
  • the cover ring 23 is made of quartz, and a recess 33 that supports the periphery of the focus ring 18 is formed over the entire inner periphery.
  • the dry etching apparatus 10 generates plasma between the upper electrode plate 14 and the wafer 22 when an etching gas is supplied through the upper electrode plate 14 and a high frequency voltage is applied from a high frequency power source.
  • the surface of the wafer 22 is etched by this plasma.
  • the ring-shaped member according to the present embodiment can be applied to the focus ring 18, the protective ring 20, the ground ring 30, the side wall member 13, the upper wall member 17, and the baffle plate 25 as silicon parts.
  • the ring-shaped member is not limited to the silicon part.
  • the ring-shaped member is installed in the vacuum chamber 12 of the dry etching apparatus 10, and is applied to a ring for an electrode that becomes a silicon part to which a voltage is applied or grounded, and a ring for a protective material that becomes a silicon part other than the above. Can be applied.
  • the ring-shaped member can have an inner diameter of 290 mm or more and an outer diameter of about 800 mm or less.
  • the ring-shaped member 32 includes a plurality of (three in the present example) first silicon members 34, 36, and 38.
  • the plurality of first silicon members 34, 36, 38 are collectively referred to as silicon members unless otherwise distinguished.
  • the silicon member has a circular arc shape, and is integrated in a ring shape by joining in one direction via a silicon bonding portion (not shown in the figure) at a butting surface 37 that is an end surface in the longitudinal direction. .
  • the silicon member may be single crystal or polycrystalline, and is not limited in its manufacturing method, purity, crystal orientation, and the like.
  • size of a silicon member is not specifically limited, For example, thickness is 1 mm or more and 100 mm or less, and width can be about 10 mm or more and 100 mm or less.
  • FIG. 3 shows a silicon bonding portion 39A on the abutting surface 37 between the silicon members.
  • FIG. 3 shows a butting surface 37 between the first silicon members 34 and 36.
  • the silicon bonding portion 39A is integrated with the single crystal silicon that inherits the crystallinity of the end surface of the silicon member that is in contact with the butting surface 37.
  • the silicon bonding portion 39A is composed of one silicon bonding portion made of single crystal silicon that inherits the crystallinity of the end face of the silicon member 34 and single crystal silicon that inherits the crystallinity of the end face of the silicon member 36.
  • the other silicon bonding part is integrated. That is, the crystal orientation of one silicon bonded portion is the same as the crystal orientation of the end face of the silicon member 34, and the crystal orientation of the other silicon bonded portion is the same as the crystal orientation of the end face of the silicon member 36.
  • the surface treatment is performed on the silicon member.
  • the surface of the silicon member is processed by grinding and polishing, and preferably has a mirror surface.
  • the surface of the silicon member may be etched with a mixed solution of hydrofluoric acid and nitric acid.
  • a silicon bonding portion 39A between the butted surfaces 37 of the first silicon members 34, 36, and 38 is formed by heating and melting silicon in the vicinity of the butted surfaces 37.
  • the gap between the butted surfaces when the first silicon members 34, 36, 38 are arranged in a ring shape is preferably 0 mm to 1 mm.
  • silicon melts its volume decreases.
  • the silicon melt on the end surface of the first silicon member 34 and the silicon melt on the end surface of the first silicon member 36 do not contact each other. For this reason, the silicon bonding portion on the end face of the first silicon member 34 and the silicon bonding portion on the end face of the first silicon member 36 are not joined so as to be integrated.
  • the silicon melt on the end face of the first silicon member 34 comes into contact with the silicon melt on the end face of the first silicon member 36 due to surface tension, and the first silicon member 34 is brought into the gap due to capillary action.
  • the silicon melt on the end surface of the first silicon member 36 and the silicon melt on the end surface of the first silicon member 36 flow in. Therefore, the silicon bonding portion on the end face of the first silicon member 34 and the silicon bonding portion on the end face of the first silicon member 36 are integrated and bonded at the atomic level.
  • the heating method can be performed by light heating.
  • the heating part can be easily moved, and it is easy to change the heating amount according to the power to be supplied.
  • various lamps and lasers are used.
  • the apparatus shown in FIG. 4 can be used.
  • the apparatus shown in the figure includes at least one lamp 42 and an elliptical mirror 44 as a condensing unit that collects light emitted from the lamp 42.
  • a lamp 42 a xenon lamp or a halogen lamp generally used in an infrared crystal growth apparatus can be used.
  • the output is preferably about 1 to 30 kW.
  • an infrared laser having a wavelength of 780 to 1600 nm can be used.
  • a package type light source having a wavelength of 780 to 980 nm and an output of about 200 to 400 W, in which a plurality of semiconductor lasers are modularized.
  • the heating may be from the outside of the butting surface 37, and is not limited to the vertical direction with respect to the silicon member, but may be from an oblique direction.
  • the condensing area is usually about 10 to 30 mm in diameter.
  • the condensing region is expanded to about 30 to 100 mm by shifting the light emission position of the lamp 42 from the focus of the elliptical mirror 44. By expanding the condensing region, the heating range can be expanded.
  • the condensing region is preferably heated by scanning over the entire upper surface of the ring-shaped member 32 of the butting surface 37.
  • the lamp position is adjusted so that the focal position of the elliptical mirror 44 matches the position of the light emitting portion of the lamp 42, and the height of the upper surface of the silicon member is adjusted to be another focal position of the elliptical mirror 44.
  • the expansion of the elliptical mirror 44 at the irradiation position is set to about 3 mm.
  • the elliptic mirror 44 is aligned with the position of the butting surface 37 to increase the power of the lamp 42.
  • the upper surface side of the butt surface 37 is melted to generate a silicon melt.
  • the upper surface starts to melt at 60% of the lamp rating (the surface temperature is estimated to be 1420 ° C.), and the silicon that contacts the butting surface 37 melts between the butting surfaces 37 at 90% of the lamp rating.
  • the melt flows in by capillarity and closes a part between the butt surfaces 37.
  • the space between the abutting surfaces 37 can be filled and closed with molten silicon.
  • the elliptic mirror 44 is scanned and heated over the upper surface side of the ring-shaped member 32 in the outer edge of the abutting surface 37.
  • the butting surface 37 may be heated by the same method on the lower surface side of the ring-shaped member.
  • the silicon melt is crystallized according to the crystal of the silicon member. Specifically, the power of the lamp 42 is lowered in 2 minutes to 60% of the lamp rating at which the silicon melt starts to solidify, and the state is maintained for 5 minutes. The surface temperature at this time is 1400 ° C. to 1415 ° C. The silicon melt becomes a silicon bonding portion 39 ⁇ / b> A that inherits the crystallinity of the end face of the silicon member that contacts the butting surface 37.
  • the silicon bonded portion 39A has inherited the crystallinity of one silicon bonded portion made of single crystal silicon that inherits the crystallinity of the end surface of one silicon member and the crystallinity of the end surface of the other silicon member.
  • Other silicon bonding parts made of single crystal silicon are integrated.
  • the first silicon members 34, 36, and 38 can be joined to form the ring-shaped member 32 by forming the silicon bonding portion 39A in the same manner on all the abutting surfaces 37 by the above procedure.
  • the ring-shaped member 32 obtained as described above can be the focus ring 18 by forming a recess over the entire inner circumference by machining.
  • the ring-shaped member 32 can be manufactured by combining three or more silicon members cut out from a silicon crystal ingot for a wafer smaller than the outer diameter of the silicon part. Therefore, since the ring-shaped member 32 does not need to use a silicon crystal ingot for a wafer larger than the outer diameter of the silicon part, the cost can be reduced correspondingly.
  • the abutting surface 37 is joined by the silicon bonding portion 39A, so that the inside of the vacuum chamber 12 is not contaminated even if plasma is irradiated in the vacuum chamber 12.
  • the silicon piece 40 By forming the silicon bonding portion 39B using the silicon piece 40, it is possible to prevent the upper surface 55 of the abutting surface 37 after the silicon bonding portion 39B is formed from being recessed (FIG. 6).
  • the silicon piece 40 preferably has the same volume as the volume between the butted surfaces 37.
  • a ring-shaped member 46 shown in FIG. 7 includes a first ring body 35 and a second ring body 47.
  • the first ring body 35 shown in the figure includes first silicon members 41, 43, and 45, and is different only in that the width is smaller than that of the ring-shaped member 32 of the first embodiment.
  • the second ring body 47 includes a plurality of (three in the present case) second silicon members 48, 50, 52.
  • the second silicon members 48, 50, 52 are the same as the first silicon members 41, 43, 45, although the symbols are changed for convenience of explanation.
  • the first ring body 35 and the second ring body 47 are coaxially overlapped on the joint surface 54 in a state where the butted surfaces 49 of the silicon members are shifted in the circumferential direction.
  • FIG. 8A shows a butting surface 49 between the first silicon members 41 and 43
  • FIG. 8B shows a butting surface 49 between the second silicon members 48 and 52.
  • the direction of the arrow in the drawing indicates the outward direction of the ring-shaped member 46 in the radial direction.
  • a first silicon bonding portion 51 is formed on the butting surface 49 between the first silicon members 41 and 43 (FIG. 8A).
  • a second silicon bonding portion 53 is formed on the joint surface 54 between the first ring body 35 and the second ring body 47. The first silicon bonding portion is not provided on the butting surface 49 between the second silicon members 48 and 52 (FIG. 8B).
  • the first silicon bonding portion 51 blocks the space between the butted surfaces 49 of the first silicon members 41, 43, 45 and between the joint surfaces 54 of the first ring body 35 and the second ring body 47. Yes.
  • the ring-shaped member 46 of this embodiment will be described. Note that description of steps similar to those in the first embodiment is omitted as appropriate.
  • the three second silicon members 48, 50, 52 after the surface treatment are arranged in a ring shape.
  • the three first silicon members 41, 43, 45 are placed on the upper surfaces of the second silicon members 48, 50, 52.
  • the first silicon members 41, 43, and 45 are arranged so as to be shifted from the previously arranged second silicon members 48, 50, and 52 by half the length in the longitudinal direction. As described above, the first silicon members 41, 43, 45 are stacked on the second silicon members 48, 50, 52.
  • heating is performed from the first silicon members 34, 36, and 38 to generate a silicon melt between the butted surfaces 49 of the first silicon members 41, 43, and 45, and the first silicon bonding portion 51 is formed.
  • the heating condition and the cooling condition can be the same as those in the first embodiment.
  • the silicon between the joint surfaces 54 between the first ring body 35 and the second ring body 47 is heated and melted.
  • the melted silicon flows between the joint surfaces 54 in the horizontal direction by a capillary phenomenon, and forms a second silicon bonding portion 53.
  • the ring-shaped member 46 of the present embodiment is joined between the first silicon bonding part 51 and the bonding surface 54 by the second silicon bonding part 53 between the butting surfaces 49, the first embodiment and the first embodiment. Similar effects can be obtained.
  • the silicon at the end face contacting the butting surface 49 is melted to form the first silicon bonding portion 51
  • the present invention is not limited to this.
  • the silicon piece 40 may be placed on the abutting surface, and the silicon piece 40 may be melted to form the first silicon bonding portion.
  • the ring-shaped member 56 shown in FIGS. 9A and 9B is embedded at a position straddling the plurality of (three in the present example) first silicon members 58, 60, 62 and the first silicon members 58, 60, 62. And a plurality (three) of embedded silicon members 64A.
  • the embedded silicon member 64A is provided on the side opposite to the plasma irradiation side of the ring-shaped member 56, in the case of this figure, on the lower surface side.
  • the embedded silicon member 64A is preferably formed of the same material as the silicon member.
  • the four corners of the embedded silicon member 64A are preferably R processed.
  • the embedded silicon member 64A can prevent damage such as chipping because the four corners are rounded.
  • R is preferably 3 mm or more.
  • the embedded silicon member 64A is preferably formed so that the bottom surface is substantially the same height as the bottom surface of the silicon member.
  • the thickness of the embedded silicon member 64A is preferably 20 to 80%, more preferably 40 to 60% of the thickness of the silicon member.
  • the embedded silicon member 64A is preferably made of a rectangular plate-like member and has a size that does not protrude from the ring-like member 56 in plan view.
  • the length of the embedded silicon member 64A in the longitudinal direction is preferably 2 to 10% of the outer peripheral length of the ring-shaped member 56.
  • the size of the silicon member can be a size obtained by dividing a ring having an inner diameter of 340 mm, an outer diameter of 420 mm, and a thickness of 4 mm into three parts.
  • the embedded silicon member 64A can have a length of 60 mm, a width of 25 mm, and a thickness of 2 mm with R processing of 5 mm at four corners.
  • the hole formed in the lower surface of the silicon member has a shape corresponding to the shape of the silicon piece, and the depth is 2 mm.
  • the thickness of the embedded silicon member 64A is 50% of the thickness of the silicon member, and the length of the embedded silicon member 64A in the longitudinal direction is 5% of the outer peripheral length of the ring-shaped member 56.
  • a hole having a bottom surface is formed at the end in the longitudinal direction on the lower surface of the silicon member.
  • 10A and 10B show a butting surface 63A between the first silicon members 58 and 60.
  • FIG. The embedded silicon member 64A is embedded in the hole.
  • a first silicon bonding portion 68 is provided between the butted surfaces 63A of the first silicon members 58, 60, 62.
  • a second silicon bonding portion 70 is provided between the peripheral edge of the embedded silicon member 64A and the inner surfaces of the holes of the first silicon members 58, 60, and 62.
  • the first silicon adhesive portion 68 on the butt surface according to the present embodiment can be formed by the same method as in the first embodiment.
  • the second silicon bonding part 70 heats the silicon in the vicinity of the peripheral edge of the embedded silicon member 64A and the inner surfaces of the holes of the first silicon members 58, 60, 62 from the lower surface side of the silicon member by the same method as in the first embodiment. Then, it can be formed by generating a melt of silicon.
  • the bonding area between the silicon members can be increased, so that the mechanical strength can be further increased. Further, the ring-shaped member 56 can obtain the same effect as that of the first embodiment because the abutting surfaces 63A are joined by the first silicon bonding portion 68.
  • the embedded silicon member 64A does not have to be rectangular.
  • the longitudinal ends of the embedded silicon members 64B and 64C may be semicircular as shown in FIG.
  • the silicon on the end face contacting the butting surface 63A is melted to form the first silicon bonding portion 68
  • the present invention is not limited to this.
  • the silicon piece 40 may be placed on the abutting surface, and the silicon piece 40 may be melted to form the first silicon bonding portion.
  • Vacuum chamber (processing room) 22 Wafer (substrate) 32 Ring-shaped members 34, 36, 38 First silicon member (silicon member) 37 Abutting surfaces 39A, 39B Silicon bonding portions 41, 43, 45 First silicon member (silicon member) 48, 50, 52 Second silicon member (silicon member) 49 Abutting surface 51 First silicon bonding part (silicon bonding part) 53 Second silicon bonding part (silicon bonding part) 58, 60, 62 First silicon member (silicon member) 63A Butted surfaces 64A, 64B, 64C Embedded silicon member 68 First silicon bonding portion (silicon bonding portion) 70 Second silicon bonding part (silicon bonding part)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

複数のシリコン部材を接合したリング状部材の製造方法及びリング状部材を提供する。基板にプラズマ処理をする基板処理装置の前記基板が収容される処理室内に設置するリング状部材32の製造方法であって、一のシリコン部材34の一の突き合わせ面と、他のシリコン部材36の他の突き合わせ面とが、突き合わされるように配置する工程と、前記一の突き合わせ面と前記他の突き合わせ面とを光加熱により加熱し、一の突き合わせ面の表面のシリコンと他の突き合わせ面の表面のシリコンとを融解し、一の突き合わせ面と他の突き合わせ面との間にシリコン融解物が流れ込むようにする工程と、前記一の突き合わせ面と前記他の突き合わせ面とを冷却し、前記シリコン融解物を結晶化させてシリコン接着部を形成し、一のシリコン部材32と他のシリコン部材34とを前記シリコン接着部を介して接合する工程とを含むことを特徴とする。

Description

リング状部材の製造方法及びリング状部材
 本発明は、リング状部材の製造方法及びリング状部材に関するものである。
 LSI等の半導体集積デバイス製造における基板処理装置として、プラズマを用いたドライエッチング装置が用いられている。ドライエッチング装置は、円筒形状の真空チャンバーを有する。エッチング対象のウエハが平面電極のカソード上に配置され、真空チャンバー内にエッチングガスが導入された状態で、高周波発振器により対向電極(アノード)とカソードの間に高周波電圧が印加されることにより、電極間にエッチングガスのプラズマを生じる。プラズマ中の活性ガスであるプラスイオンがウエハ表面に入射しエッチングをする。
 ドライエッチング装置の真空チャンバー内には、種々のリング状の部材が用いられる。代表的なリング状の部材としては、エッチング対象のウエハを囲むドーナツ状の形状をしたフォーカスリング、ウエハが載置される円柱状のサセプタ基部の側面を覆うように配置された環状の接地リングがある。また、対向電極の周縁部に設けられた環状のシールドリング、真空チャンバーの内壁側面を覆う側壁部材、等の保護材がある(特許文献1)。
 ドライエッチング装置の真空チャンバー内部では、金属製部品を用いると金属汚染が起こるので、シリコン製部品を用いるのが望ましい。フォーカスリング、接地リング、リング状の保護材は、エッチング対象のウエハより大きな直径を有することが必要である。現在主流の300mmウエハ用のシリコン製部品は、320mm以上の直径を有するシリコン結晶インゴットから作製されるため、高価である。特に、リング状の側壁部材は、直径が700mm以上におよぶものもあり、シリコン結晶インゴットから作成することが実質的に不可能である場合もある。
特開2008-251744号公報
 シリコン製部品を、一体物ではなく、複数のシリコン部材を接合することにより製造できれば、より小さい直径を有するシリコン結晶インゴットから作製できるため、製造コストの削減等の種々のメリットが期待される。
 本発明は、複数のシリコン部材を接合したリング状部材の製造方法及びリング状部材を提供することを目的とする。
 本発明に係るリング状部材の製造方法は、基板にプラズマ処理をする基板処理装置の前記基板が収容される処理室内に設置するリング状部材の製造方法であって、一のシリコン部材の一の突き合わせ面と、他のシリコン部材の他の突き合わせ面とが、突き合わされるように配置する工程と、前記一の突き合わせ面と前記他の突き合わせ面とをキセノンランプ又はハロゲンランプにより行われる光加熱により加熱し、前記一の突き合わせ面の表面のシリコンと前記他の突き合わせ面の表面のシリコンとを融解し、前記一の突き合わせ面と前記他の突き合わせ面との間にシリコン融解物が流れ込むようにする工程と、前記一の突き合わせ面と前記他の突き合わせ面とを冷却し、前記シリコン融解物を結晶化させてシリコン接着部を形成し、前記一のシリコン部材と前記他のシリコン部材とを前記シリコン接着部を介して接合する工程とを含むことを特徴とする。
 本発明に係るリング状部材は、基板にプラズマ処理をする基板処理装置の前記基板が収容される処理室内に設置するリング状部材であって、複数のシリコン部材と、一の前記シリコン部材の一の突き合わせ面と他の前記シリコン部材の他の突き合わせ面との間の隙間を埋めるように設けられ、前記一の突き合わせ面と前記他の突き合わせ面とを接合するシリコン接着部とを備え、前記シリコン接着部は、前記一の前記シリコン部材の端面のシリコン融解物と前記他の前記シリコン部材の端面のシリコン融解物とが接触し毛細管現象により前記隙間に流れ込み結晶化したものであり、前記一の突き合わせ面の結晶性を引き継いだ単結晶シリコンからなる一のシリコン接着部と前記他の突き合わせ面の結晶性を引き継いだ単結晶シリコンからなる他のシリコン接着部とが原子レベルで一体化されていることを特徴とする。
 本発明によれば、リング状部材の外径より小さいシリコン結晶インゴットから切り出した複数のシリコン部材を組み合わせて製造することができる。したがってリング状部材は、リング状部材の外径より大きいシリコン結晶インゴットを用いる必要がないので、その分コストを低減することができる。
第1実施形態に係るリング状部材から作製したフォーカスリングを備えたドライエッチング装置の構成を模式的に示す断面図である。 第1実施形態に係るリング状部材を示す斜視図である。 第1実施形態に係る突き合わせ面を示す断面図である。 リング状部材を製造する装置を模式的に示す断面図である。 第1実施形態の変形例に係るリング状部材を製造する方法を示す断面図である。 第1実施形態の変形例に係る製造方法で製造されたシリコン接着部を示す断面図である。 第2実施形態に係るリング状部材を示す斜視図である。 第2実施形態に係る突き合わせ面を示す断面図であり、図8Aは第1リング体における突き合わせ面、図8Bは第2リング体における突き合わせ面である。 第3実施形態に係るリング状部材を示す斜視図であり、図9Aは上面側、図9Bは下面側である。 第3実施形態に係る突き合わせ面を示す断面図であり、図10Aは断面図、図10Bは底面図である。 埋込みシリコン部材を示す図であり、図11Aは変形例(1)、図11Bは変形例(2)である。
 以下、図面を参照して本発明の実施形態について詳細に説明する。
1.第1実施形態
(1)全体構成
 図1に示すドライエッチング装置10は、処理室としての真空チャンバー12と、上部電極板14と、基台16とを備える。真空チャンバー12は、略円筒形状で、内部に、円筒状の側壁で囲まれた処理空間31を有する。真空チャンバー12の側壁の内面は、側壁部材13で覆われている。真空チャンバー12の上壁の上部電極板14の周囲の内面は、上壁部材17で覆われている。側壁部材13及び上壁部材17は、真空チャンバー12のプラズマに曝される内壁を保護するための環状の部材であり、シリコンで形成されている。
 真空チャンバー12は、真空チャンバー12内を高さ方向に仕切るバッフル板25が設けられている。バッフル板25で仕切られた真空チャンバー12内の下側には排気空間26、上側には処理空間31が形成されている。バッフル板25は、エッチングガスの逆流防止のための保護部材であり、シリコンで形成されている。バッフル板25は、環状の本体を有し、本体に厚さ方向に貫通した流通路27を有する。本図に示すように、バッフル板25は、真空チャンバー12内の高さ方向の略中央に設けられている。
 上部電極板14は、円板状の部材であり、真空チャンバー12内の上部に固定されている。上部電極板14の周縁部は、保護リング20で覆われている。上部電極板14と保護リング20の間には、石英で形成されたシールドリング21が設けられている。保護リング20は、上部電極板14周辺に発生するプラズマから真空チャンバー12の内壁を保護するための部材であり、シリコンで形成されている。保護リング20は、接地される場合もある。本図の場合、保護リング20は、真空チャンバー12内側の表面が、シールドリング21よりも突出していると共に、上壁部材17と同じ高さである。上部電極板14は、厚さ方向に貫通した複数の貫通穴15を有する。上部電極板14は、図示しない高周波電源が電気的に接続されている。上部電極板14は、ガス供給管24が接続されている。
 ガス供給管24から供給されたエッチングガスは、上部電極板14の貫通穴15から真空チャンバー12内へ流れ込む。真空チャンバー12内へ流れ込んだエッチングガスは、流通路27を通じて排気空間26へ流れ込み、排出口28から外部に排出される。
 基台16は、真空チャンバー12内のバッフル板25の上側である処理空間31内に設置されており、その周囲はグラウンドリング30で囲まれている。グラウンドリング30はシリコンで形成されており、接地されている。基台16上には、フォーカスリング18が設けられている。フォーカスリング18は、シリコンで形成され、ウエハ22の周縁を支持する凹部19が内側の全周に渡って形成されている。フォーカスリングには、エッチング処理中のプラズマを安定にするための電圧を印加する電源が電気的に接続されている。フォーカスリング18の周囲には、フォーカスリング18の側面を保護するカバーリング23を設けてもよい。カバーリング23は、石英で形成され、フォーカスリング18の周縁を支持する凹部33が内側の全周に渡って形成されている。
 ドライエッチング装置10は、上部電極板14を通じてエッチングガスが供給され、高周波電源から高周波電圧が印加されると、上部電極板14とウエハ22の間でプラズマを生じる。このプラズマによってウエハ22表面がエッチングされる。
 本実施形態に係るリング状部材は、シリコン製部品としての、上記フォーカスリング18、保護リング20、グラウンドリング30、側壁部材13、上壁部材17、バッフル板25に適用可能である。リング状部材は、上記シリコン製部品に限定されない。リング状部材は、ドライエッチング装置10の真空チャンバー12内に設置され、電圧が印加され、又は接地されるシリコン製部品になる電極用リング、及び上記以外のシリコン製部品になる保護材用リングに適用することができる。リング状部材は、内径が290mm以上、外径は800mm以下程度とすることができる。
 一例としてフォーカスリング18用の部材となる本実施形態に係るリング状部材について以下説明する。図2に示すように、リング状部材32は、複数(本図の場合、3個)の第1シリコン部材34,36,38を備える。なお、以下の説明において、複数の第1シリコン部材34,36,38を特に区別しない場合、総称してシリコン部材と呼ぶ。シリコン部材は、円弧状であり、長手方向の端面である突き合わせ面37において、シリコン接着部(本図には図示しない)を介して一方向に接合することにより、リング状に一体化されている。シリコン部材は、単結晶でも多結晶でもよく、その製造方法、純度、結晶方位等において限定されない。シリコン部材の大きさは、特に限定されないが、例えば、厚さ1mm以上100mm以下、幅10mm以上100mm以下程度とすることができる。
 図3に示すように、シリコン部材同士の突き合わせ面37には、シリコン接着部39Aが設けられている。図3には、第1シリコン部材34,36の間の突き合わせ面37を示している。
 シリコン部材が単結晶の場合、シリコン接着部39Aは、突き合わせ面37で接するシリコン部材の端面の結晶性を引き継いだ単結晶シリコンが一体化されている。本図の場合、シリコン接着部39Aは、シリコン部材34の端面の結晶性を引き継いだ単結晶シリコンからなる一のシリコン接着部と、シリコン部材36の端面の結晶性を引き継いだ単結晶シリコンからなる他のシリコン接着部とが一体化されている。すなわち一のシリコン接着部の結晶方位は、シリコン部材34の端面の結晶方位と同一であり、他のシリコン接着部の結晶方位は、シリコン部材36の端面の結晶方位と同一である。
(2)製造方法
 次にリング状部材32を製造する方法について説明する。まずシリコン部材に対し表面処理をする。具体的には、シリコン部材の表面を研削及び研磨などにより加工し、好ましくは鏡面にする。シリコン部材の表面を、弗酸と硝酸の混合液などによりエッチングしてもよい。混合液としてはJIS規格H0609に規定の化学研磨液(弗酸(49%):硝酸(70%):酢酸(100%)=3:5:3)などを用いることができる。
 続いて、3個の第1シリコン部材34,36,38をリング状に並べる。第1シリコン部材34,36,38同士の突き合わせ面37の間のシリコン接着部39Aは、突き合わせ面37近傍のシリコンを加熱して融解して形成する。第1シリコン部材34,36,38をリング状に並べた際の突き合わせ面の間の隙間は、0mm~1mmであるのが好ましい。シリコンは融解すると体積が減少する。例えば第1シリコン部材34,36の間の隙間が1mmを超えると、第1シリコン部材34の端面のシリコン融解物と、第1シリコン部材36の端面のシリコン融解物が接触しない。そのため第1シリコン部材34の端面のシリコン接着部と第1シリコン部材36の端面のシリコン接着部は、一体化するように接合されない。
 隙間が1mm以下の場合、表面張力により、第1シリコン部材34の端面のシリコン融解物と、第1シリコン部材36の端面のシリコン融解物が接触し、毛細管現象により、隙間に第1シリコン部材34の端面のシリコン融解物と、第1シリコン部材36の端面のシリコン融解物が流れ込む。そのため第1シリコン部材34の端面のシリコン接着部と第1シリコン部材36の端面の端面のシリコン接着部は、原子レベルで一体化され接合される。
 加熱方法は光加熱により行うことができる。光加熱は、加熱部位を容易に移動でき、かつ供給する電力に応じて加熱量を変化させることが容易であり、例えば各種ランプ、レーザーが使用される。
 本実施形態の場合、図4に示す装置を用いることができる。本図に示す装置は、少なくとも一つの、ランプ42及び当該ランプ42が出射する光を集光する集光部としての楕円ミラー44を備える。ランプ42としては、赤外線結晶成長装置に一般的に用いられるキセノンランプやハロゲンランプを用いることができる。出力としては1~30kW程度のものが好ましい。レーザーとしては、波長780~1600nmの赤外線レーザーを用いることができる。さらに、取り扱いの容易さおよび光源の寿命の観点から、半導体レーザーを複数モジュール化した波長780~980nm、出力200~400W程度のパッケージタイプの光源を用いることが好ましい。
 加熱は、突き合わせ面37の外側からであればよく、シリコン部材に対して垂直方向には限られず、斜めからであってもよい。
 集光領域は、通常直径10~30mm程度である。集光領域は、ランプ42の発光位置を楕円ミラー44の焦点からずらすことにより、30~100mm程度に広がる。集光領域が広がることにより、加熱範囲をひろげることができる。集光領域を、突き合わせ面37のリング状部材32における上面の全域に亘って走査させて加熱するのが好ましい。
 まず、楕円ミラー44の焦点位置とランプ42の発光部の位置を合致させるようランプ位置を調整し、シリコン部材の上面の高さを楕円ミラー44のもう一つの焦点位置になるように調整することにより、照射位置での楕円ミラー44の広がりを約3mmとする。この状態で、楕円ミラー44を突き合わせ面37の位置に合わせランプ42のパワーを上げる。加熱を開始すると、突き合わせ面37の上面側が融解してシリコン融解物が生成する。具体的には、ランプ定格の60%で上面が解け始める(表面温度が1420℃と推定される)、ランプ定格の90%で突き合わせ面37の間に、突き合わせ面37で接するシリコンが融解しシリコン融解物が毛細管現象により流れ込んで突き合わせ面37の間の一部を塞ぐ。この状態で、楕円ミラー44を突き合わせ面37に沿って一定の速度、例えば5mm/分の速度で走査することにより、突き合わせ面37の間を融解シリコンで埋め、塞ぐことができる。楕円ミラー44を突き合わせ面37の外縁のうち、リング状部材32における上面側に亘って走査させて加熱する。加えてリング状部材の下面側において突き合わせ面37を同様の方法により加熱してもよい。
 次いで、融解した突き合わせ面37の上面を冷却し、シリコン融解物をシリコン部材の結晶に従って結晶化させる。具体的にはシリコン融解物が固まり始めるランプ定格の60%まで2分でランプ42のパワーを下げ、その状態で5分保持する。このときの表面温度は1400℃~1415℃である。シリコン融解物は、突き合わせ面37で接するシリコン部材の端面の結晶性を引き継いだシリコン接着部39Aとなる。シリコン接着部39Aは、シリコン部材が単結晶の場合、一方のシリコン部材の端面の結晶性を引き継いだ単結晶シリコンからなる一のシリコン接着部と、他方のシリコン部材の端面の結晶性を引き継いだ単結晶シリコンからなる他のシリコン接着部が一体化される。
 上記の手順によって、全ての突き合わせ面37において、シリコン接着部39Aを同様に形成することにより、第1シリコン部材34,36,38同士を接合し、リング状部材32を形成することができる。
 上記のようにして得られたリング状部材32は、機械加工により内側の全周に渡って凹部を形成することにより、フォーカスリング18となり得る。
 リング状部材32は、シリコン製部品の外径より小さいウエハ用シリコン結晶インゴットから切り出した3個以上のシリコン部材を組み合わせて製造することができる。したがってリング状部材32は、シリコン製部品の外径より大きいウエハ用シリコン結晶インゴットを用いる必要がないので、その分コストを低減することができる。
 本実施形態に係るリング状部材32は、突き合わせ面37がシリコン接着部39Aにより接合されているので、真空チャンバー12内においてプラズマが照射されても、真空チャンバー12内が汚染されることがない。
(3)変形例
 本実施形態の場合、突き合わせ面37で接する端面のシリコンを融解し、シリコン接着部39Aを形成する場合について説明したが、本発明はこれに限らない。図5に示すように、突き合わせ面上に、単結晶又は多結晶のシリコン片40を置き、当該シリコン片40を融解してシリコン接着部39Bを形成してもよい。シリコン片40を用いない場合、突き合わせ面37の上面側のシリコンが融解して、突き合わせ面37の間に流れ込むことにより、突き合わせ面37の上面が凹む場合がある。シリコン片40を用いてシリコン接着部39Bを形成することにより、シリコン接着部39Bが形成された後の突き合わせ面37の上面55が、凹むことを防止することができる(図6)。シリコン片40は、突き合わせ面37の間の体積と、同じ体積であることが好ましい。
2.第2実施形態
 次に第2実施形態に係るリング状部材について説明する。なお、上記第1実施形態と同様の構成については同様の符号を付し、説明を省略する。図7に示すリング状部材46は、第1リング体35と、第2リング体47とを備える。本図に示す第1リング体35は、第1シリコン部材41,43,45を備え、上記第1実施形態のリング状部材32に比べ幅が小さい点のみが異なる。第2リング体47は、複数(本図の場合3個)の第2シリコン部材48,50,52を備える。第2シリコン部材48,50,52は、説明の便宜上、符号を変えているが、第1シリコン部材41,43,45と同じである。第1リング体35と第2リング体47は、シリコン部材同士の突き合わせ面49が円周方向にずれた状態で接合面54において同軸上に重ねられている。
 図8Aには第1シリコン部材41,43の間の突き合わせ面49、図8Bには第2シリコン部材48,52の間の突き合わせ面49を示している。図中矢印の向きは、リング状部材46の半径方向の外側向きを示す。
 第1シリコン部材41,43の間の突き合わせ面49には、第1シリコン接着部51が形成されている(図8A)。第1リング体35と第2リング体47の間の接合面54には、第2シリコン接着部53が形成されている。第2シリコン部材48,52の間の突き合わせ面49には、第1シリコン接着部が設けられていない(図8B)。
 このようにして第1シリコン接着部51は、第1シリコン部材41,43,45同士の突き合わせ面49の間、及び第1リング体35と第2リング体47の接合面54の間を塞いでいる。
 次に、本実施形態のリング状部材46の製造方法について説明する。なお、上記第1実施形態と同様の工程については適宜説明を省略する。まず表面処理後の3個の第2シリコン部材48,50,52をリング状に並べる。次いで、第2シリコン部材48,50,52の上面に3個の第1シリコン部材41,43,45を置く。第1シリコン部材41,43,45は、先に配置された第2シリコン部材48,50,52に対し、長手方向の長さの半分だけずらして配置する。上記のようにして、第2シリコン部材48,50,52上に、第1シリコン部材41,43,45が積まれた状態となる。
 次に、第1シリコン部材34,36,38側から加熱して、第1シリコン部材41,43,45同士の突き合わせ面49の間にシリコンの融解物を生成し、第1シリコン接着部51を形成する。加熱条件、冷却条件は、上記第1実施形態と同様とすることができる。
 次いで、第1リング体35及び第2リング体47の間の接合面54の間のシリコンを加熱して融解する。融解したシリコンは、毛細管現象により水平方向である接合面54の間に流れ込み、第2シリコン接着部53を形成する。
 本実施形態のリング状部材46は、突き合わせ面49の間に第1シリコン接着部51、及び、接合面54の間が第2シリコン接着部53で接合されているので、上記第1実施形態と同様の効果を得ることができる。
 本実施形態の場合、突き合わせ面49で接する端面のシリコンを融解し、第1シリコン接着部51を形成する場合について説明したが、本発明はこれに限らない。上記図5に示したように、突き合わせ面上にシリコン片40を置き、当該シリコン片40を融解して第1シリコン接着部を形成してもよい。
 本実施形態の場合、上記第1実施形態のリング状部材32に比べ幅が小さい場合について説明したが、本発明はこれに限らない。第1リング体と第2リング体の間の接合面を十分な機械的強度を持つように接合できれば、リング状部材の幅は適宜選択することができる。
 第2シリコン部材48,52の間の突き合わせ面49には、第1シリコン接着部を設けていない場合について説明したが、本発明はこれに限らない。第2シリコン部材48,52の間の突き合わせ面49に第1シリコン接着部を設けてもよい。
3.第3実施形態
 次に第3実施形態に係るリング状部材について説明する。図9A,9Bに示すリング状部材56は、複数(本図の場合、3個)の第1シリコン部材58,60,62と、第1シリコン部材58,60,62同士を跨ぐ位置に埋め込まれた複数(3個)の埋込みシリコン部材64Aとを備える。埋込みシリコン部材64Aは、リング状部材56のプラズマが照射される側と反対側、本図の場合、下面側に設けられる。
 埋込みシリコン部材64Aは、シリコン部材と同じ材料で形成されるのが好ましい。埋込みシリコン部材64Aの四隅は、R加工されているのが好ましい。埋込みシリコン部材64Aは、四隅がR加工されていることにより、欠けなどの損傷を防止することができる。Rは、3mm以上であるのが好ましい。
 埋込みシリコン部材64Aは、下面が、シリコン部材の下面と略同じ高さとなるように形成されるのが好ましい。埋込みシリコン部材64Aの厚さは、シリコン部材の厚さの20~80%が好ましく、40~60%がより好ましい。
 埋込みシリコン部材64Aは、矩形の板状部材からなり、平面視においてリング状部材56から突出しない大きさであるのが好ましい。埋込みシリコン部材64Aの長手方向の長さは、リング状部材56の外周長さの2~10%であるのが好ましい。
 より具体的なシリコン部材のサイズは、内周直径340mm、外周直径420mm、厚み4mmのリングを、3分割した大きさとすることができる。埋込みシリコン部材64Aは、長さ60mm、幅25mm、4隅に5mmのR加工を施した厚さ2mmとすることができる。シリコン部材の下面に形成される穴は、シリコンの小片の形状に対応した形状とし、深さは2mmとする。この場合、埋込みシリコン部材64Aの厚さはシリコン部材の厚さの50%、埋込みシリコン部材64Aの長手方向の長さはリング状部材56の外周長さの5%である。
 図10A,10Bに示すように、シリコン部材の下面には、長手方向の端部に、底面を有する穴が形成されている。図10A,10Bには、第1シリコン部材58,60の間の突き合わせ面63Aを示している。埋込みシリコン部材64Aは、当該穴に埋め込まれる。第1シリコン部材58,60,62同士の突き合わせ面63Aの間には、第1シリコン接着部68が設けられている。埋込みシリコン部材64Aの周縁と、第1シリコン部材58,60,62の穴内面との間には、第2シリコン接着部70が設けられている。
 本実施形態に係る突き合わせ面における第1シリコン接着部68は、上記第1実施形態と同様の方法により、形成することができる。第2シリコン接着部70は、シリコン部材の下面側から埋込みシリコン部材64Aの周縁と第1シリコン部材58,60,62の穴内面の近傍のシリコンを、上記第1実施形態と同様の方法で加熱して、シリコンの融解物を生成することで、形成することができる。
 本実施形態のリング状部材56は、埋込みシリコン部材64Aを設けたことにより、シリコン部材同士の間の接合面積を大きくすることができるので、機械的強度をより大きくすることができる。また、リング状部材56は、突き合わせ面63Aの間が第1シリコン接着部68で接合されていることにより、上記第1実施形態と同様の効果を得ることができる。
 埋込みシリコン部材64Aは、矩形状である必要はなく、例えば、図11A,11Bに示すように、長円形状の埋込みシリコン部材64B(図11A)、円弧状の埋込みシリコン部材64C(図11B)でもよい。また埋込みシリコン部材64B,64Cの長手方向端部は、同図に示すように、半円形状でもよい。
 本実施形態の場合、突き合わせ面63Aで接する端面のシリコンを融解し、第1シリコン接着部68を形成する場合について説明したが、本発明はこれに限らない。図5に示したように、突き合わせ面上にシリコン片40を置き、当該シリコン片40を融解して第1シリコン接着部を形成してもよい。
12 真空チャンバー(処理室)
22 ウエハ(基板)
32 リング状部材
34,36,38 第1シリコン部材(シリコン部材)
37 突き合わせ面
39A,39B シリコン接着部
41,43,45 第1シリコン部材(シリコン部材)
48,50,52 第2シリコン部材(シリコン部材)
49 突き合わせ面
51 第1シリコン接着部(シリコン接着部)
53 第2シリコン接着部(シリコン接着部)
58,60,62 第1シリコン部材(シリコン部材)
63A 突き合わせ面
64A,64B,64C 埋込みシリコン部材
68 第1シリコン接着部(シリコン接着部)
70 第2シリコン接着部(シリコン接着部)

Claims (6)

  1. 基板にプラズマ処理をする基板処理装置の前記基板が収容される処理室内に設置するリング状部材の製造方法であって、
    一のシリコン部材の一の突き合わせ面と、他のシリコン部材の他の突き合わせ面とが、突き合わされるように配置する工程と、
    前記一の突き合わせ面と前記他の突き合わせ面とをキセノンランプ又はハロゲンランプにより行われる光加熱により加熱し、前記一の突き合わせ面の表面のシリコンと前記他の突き合わせ面の表面のシリコンとを融解し、前記一の突き合わせ面と前記他の突き合わせ面との間にシリコン融解物が流れ込むようにする工程と、
    前記一の突き合わせ面と前記他の突き合わせ面とを冷却し、前記シリコン融解物を結晶化させてシリコン接着部を形成し、前記一のシリコン部材と前記他のシリコン部材とを前記シリコン接着部を介して接合する工程と
    を含むことを特徴とするリング状部材の製造方法。
  2. 基板にプラズマ処理をする基板処理装置の前記基板が収容される処理室内に設置するリング状部材の製造方法であって、
    一のシリコン部材の一の突き合わせ面と、他のシリコン部材の他の突き合わせ面とが、隙間を介して突き合わされるように配置する工程と、
    前記一の突き合わせ面と前記他の突き合わせ面とを光加熱により加熱し、前記一の突き合わせ面の表面のシリコンと前記他の突き合わせ面の表面のシリコンとを融解し接触させ、前記一の突き合わせ面と前記他の突き合わせ面との間の前記隙間にシリコン融解物が毛細管現象により流れ込むようにする工程と、
    前記一の突き合わせ面と前記他の突き合わせ面とを冷却し、前記シリコン融解物を結晶化させてシリコン接着部を形成し、前記一のシリコン部材と前記他のシリコン部材とを前記シリコン接着部を介して接合する工程と
    を含むことを特徴とするリング状部材の製造方法。
  3. 前記光加熱が、キセノンランプ又はハロゲンランプにより行われることを特徴とする請求項2記載のリング状部材の製造方法。
  4. 基板にプラズマ処理をする基板処理装置の前記基板が収容される処理室内に設置するリング状部材であって、
    複数のシリコン部材と、
    一の前記シリコン部材の一の突き合わせ面と他の前記シリコン部材の他の突き合わせ面との間の隙間を埋めるように設けられ、前記一の突き合わせ面と前記他の突き合わせ面とを接合するシリコン接着部とを備え、
    前記シリコン接着部は、前記一の前記シリコン部材の端面のシリコン融解物と前記他の前記シリコン部材の端面のシリコン融解物とが接触し毛細管現象により前記隙間に流れ込み結晶化したものであり、前記一の突き合わせ面の結晶性を引き継いだ単結晶シリコンからなる一のシリコン接着部と前記他の突き合わせ面の結晶性を引き継いだ単結晶シリコンからなる他のシリコン接着部とが原子レベルで一体化されている
    ことを特徴とするリング状部材。
  5. 前記隙間が1mm以下であることを特徴とする請求項4記載のリング状部材。
  6. 前記リング状部材は厚さが4mm以上100mm以下であることを特徴とする請求項4または5記載のリング状部材。
PCT/JP2018/008870 2017-05-19 2018-03-07 リング状部材の製造方法及びリング状部材 WO2018211788A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880002209.8A CN109287126B (zh) 2017-05-19 2018-03-07 环状部件的制造方法及环状部件
EP18802750.2A EP3454361B1 (en) 2017-05-19 2018-03-07 Method for manufacturing annular member and annular member
SG11201810732UA SG11201810732UA (en) 2017-05-19 2018-03-07 Method for manufacturing annular member and annular member
KR1020187034663A KR102214968B1 (ko) 2017-05-19 2018-03-07 링 형상 부재의 제조 방법 및 링 형상 부재
US16/307,849 US10984988B2 (en) 2017-05-19 2018-03-07 Method of manufacturing ring-shaped member and ring-shaped member
US17/207,693 US11551915B2 (en) 2017-05-19 2021-03-21 Method of manufacturing ring-shaped member and ring-shaped member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-100173 2017-05-19
JP2017100173A JP6278498B1 (ja) 2017-05-19 2017-05-19 リング状部材の製造方法及びリング状部材

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/307,849 A-371-Of-International US10984988B2 (en) 2017-05-19 2018-03-07 Method of manufacturing ring-shaped member and ring-shaped member
US17/207,693 Division US11551915B2 (en) 2017-05-19 2021-03-21 Method of manufacturing ring-shaped member and ring-shaped member

Publications (1)

Publication Number Publication Date
WO2018211788A1 true WO2018211788A1 (ja) 2018-11-22

Family

ID=61195744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008870 WO2018211788A1 (ja) 2017-05-19 2018-03-07 リング状部材の製造方法及びリング状部材

Country Status (8)

Country Link
US (2) US10984988B2 (ja)
EP (1) EP3454361B1 (ja)
JP (1) JP6278498B1 (ja)
KR (1) KR102214968B1 (ja)
CN (1) CN109287126B (ja)
SG (1) SG11201810732UA (ja)
TW (1) TWI765004B (ja)
WO (1) WO2018211788A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114388324A (zh) * 2020-10-22 2022-04-22 中微半导体设备(上海)股份有限公司 一种接地环及等离子体刻蚀设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257807A (ja) * 2002-03-07 2003-09-12 Shin Etsu Chem Co Ltd シリコン加工品の製造方法およびシリコン加工品
JP2008251744A (ja) 2007-03-29 2008-10-16 Tokyo Electron Ltd プラズマ処理装置
JP2010114313A (ja) * 2008-11-07 2010-05-20 Tokyo Electron Ltd リング状部材及びその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0615431A4 (en) * 1992-08-27 1995-04-19 Craig John Hubbard Ankle joint support.
JP2907375B2 (ja) * 1994-04-21 1999-06-21 古河電気工業株式会社 管路気中ケーブル接続部の防塵リング
US7083694B2 (en) * 2003-04-23 2006-08-01 Integrated Materials, Inc. Adhesive of a silicon and silica composite particularly useful for joining silicon parts
US7074693B2 (en) * 2003-06-24 2006-07-11 Integrated Materials, Inc. Plasma spraying for joining silicon parts
TW200520632A (en) * 2003-09-05 2005-06-16 Tokyo Electron Ltd Focus ring and plasma processing apparatus
JP5110772B2 (ja) * 2004-02-03 2012-12-26 株式会社半導体エネルギー研究所 半導体薄膜層を有する基板の製造方法
KR100684544B1 (ko) * 2005-07-15 2007-02-20 호서대학교 산학협력단 고속처리 고온공정에서 웨이퍼의 스트레스 측정장치
JP5424445B2 (ja) * 2007-06-12 2014-02-26 国立大学法人京都工芸繊維大学 半導体基板の製造方法および半導体基板
US8679288B2 (en) * 2008-06-09 2014-03-25 Lam Research Corporation Showerhead electrode assemblies for plasma processing apparatuses
KR101017160B1 (ko) * 2008-06-17 2011-02-25 주식회사 동부하이텍 불소 확산 방지막 형성 방법
KR101041947B1 (ko) * 2008-12-23 2011-06-15 청주대학교 산학협력단 에스아이오씨 박막 열처리 장치
CN102460650B (zh) * 2009-06-24 2014-10-01 佳能安内华股份有限公司 真空加热/冷却装置及磁阻元件的制造方法
JP5952550B2 (ja) * 2011-11-28 2016-07-13 株式会社半導体エネルギー研究所 貼り合わせ装置
JP5955658B2 (ja) * 2012-06-15 2016-07-20 株式会社Screenホールディングス 熱処理方法および熱処理装置
CN103797285B (zh) * 2012-08-28 2016-04-06 株式会社理研 活塞环
KR200483130Y1 (ko) * 2012-10-20 2017-04-18 어플라이드 머티어리얼스, 인코포레이티드 세그먼트화된 포커스 링 조립체
TW201432826A (zh) * 2013-02-01 2014-08-16 Chipbond Technology Corp 半導體封裝製程及其結構
JP5615454B1 (ja) * 2014-02-25 2014-10-29 コバレントマテリアル株式会社 フォーカスリング

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257807A (ja) * 2002-03-07 2003-09-12 Shin Etsu Chem Co Ltd シリコン加工品の製造方法およびシリコン加工品
JP2008251744A (ja) 2007-03-29 2008-10-16 Tokyo Electron Ltd プラズマ処理装置
JP2010114313A (ja) * 2008-11-07 2010-05-20 Tokyo Electron Ltd リング状部材及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BEAN, J.C. ET AL.: "Epitaxial laser crystallization of thin- film amorphous silicon", APPLIED PHYSICS LETTERS, vol. 33, no. 3, 1 August 1978 (1978-08-01), pages 227 - 230, XP055557001, Retrieved from the Internet <URL:https://doi.org/10.1063/1.90324> *
See also references of EP3454361A4

Also Published As

Publication number Publication date
TWI765004B (zh) 2022-05-21
US11551915B2 (en) 2023-01-10
JP2018195764A (ja) 2018-12-06
EP3454361B1 (en) 2021-05-26
US20190259581A1 (en) 2019-08-22
CN109287126A (zh) 2019-01-29
EP3454361A1 (en) 2019-03-13
JP6278498B1 (ja) 2018-02-14
CN109287126B (zh) 2021-11-09
US10984988B2 (en) 2021-04-20
KR102214968B1 (ko) 2021-02-09
US20210225617A1 (en) 2021-07-22
SG11201810732UA (en) 2018-12-28
EP3454361A4 (en) 2020-03-11
TW201902307A (zh) 2019-01-01
KR20190002635A (ko) 2019-01-08

Similar Documents

Publication Publication Date Title
KR102575442B1 (ko) 전극용 링
US10553405B2 (en) Ring-shaped electrode
US11380525B2 (en) Ring for electrode
JP6278498B1 (ja) リング状部材の製造方法及びリング状部材
JP6176620B1 (ja) 電極用リング
US10580621B2 (en) Electrode Plate
JP6270191B1 (ja) 保護材用リング

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187034663

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018802750

Country of ref document: EP

Effective date: 20181207

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE