WO2018207851A1 - 有機el画像表示装置 - Google Patents

有機el画像表示装置 Download PDF

Info

Publication number
WO2018207851A1
WO2018207851A1 PCT/JP2018/018030 JP2018018030W WO2018207851A1 WO 2018207851 A1 WO2018207851 A1 WO 2018207851A1 JP 2018018030 W JP2018018030 W JP 2018018030W WO 2018207851 A1 WO2018207851 A1 WO 2018207851A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
region
liquid crystal
image display
organic
Prior art date
Application number
PCT/JP2018/018030
Other languages
English (en)
French (fr)
Inventor
彩子 村松
大助 柏木
吉成 伸一
匡広 渥美
亮司 後藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019517681A priority Critical patent/JP6830155B2/ja
Publication of WO2018207851A1 publication Critical patent/WO2018207851A1/ja
Priority to US16/678,821 priority patent/US10854852B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic EL image display device.
  • organic electroluminescent image display device In an organic EL image display device that forms an image based on light emission from an organic electroluminescent layer (“organic electroluminescent image display device”, hereinafter, sometimes simply referred to as “image display device”), external light is reflected.
  • organic electroluminescent image display device hereinafter, sometimes simply referred to as “image display device”
  • image display device external light is reflected.
  • a circularly polarizing plate composed of a retardation layer and a polarizing layer.
  • more than half of the light emitted from the organic electroluminescent layer is absorbed by the circularly polarizing plate.
  • Patent Document 1 proposes to provide a polarization separation means between the organic electroluminescent layer and the circularly polarizing plate. Based on the fact that the light passing through the circularly polarizing plate is transmitted by the polarization separating means, the polarized light absorbed by the circularly polarizing plate is reflected and specularly reflected by the reflecting layer in the light emitting element substrate, thereby improving the light use efficiency and luminance. Will improve. Furthermore, in Patent Document 1, a cholesteric liquid crystal layer having wavelength selective reflectivity corresponding to the emission wavelength of the corresponding organic electroluminescent layer is provided in each region divided by the black matrix corresponding to the arrangement of the organic electroluminescent layer. There is specifically disclosed a polarized light separating means obtained by forming.
  • Patent Document 2 in the above configuration, a part of light is absorbed by the polarizing plate because the polarization state of external light changes based on an unnecessary phase difference generated in the cholesteric liquid crystal layer as the viewing angle increases.
  • Patent Document 2 in order to solve the above problem, there is almost no refractive index difference in the in-plane direction, and the phase compensation layer functions as a refractive index ellipsoid whose refractive index in the thickness direction is different from the refractive index in the in-plane direction. It is proposed that the configuration further includes
  • a black matrix for providing a section corresponding to the organic electroluminescent layer is provided between the organic electroluminescent layer and the circularly polarizing plate. Since the amount of light transmitted from the organic electroluminescent layer to the circularly polarizing plate side is reduced by the visible light blocking black matrix, the luminance of the organic EL image display device is reduced. On the other hand, when a cholesteric liquid crystal layer is disposed without providing a visible light blocking layer, there is a problem that blur is observed in an image.
  • the present invention has been made to solve the above problems, and it is an object of the present invention to provide an organic EL image display device having high luminance, light leakage during oblique observation due to external light reflection, and little blurring.
  • the present inventors considered that the light leakage during the oblique observation described above was caused by the optical properties of the cholesteric liquid crystal layer, and further studied and completed the present invention.
  • An organic EL image display device including a light emitting element substrate and a circularly polarizing plate,
  • the light emitting element substrate includes a reflective layer and an organic electroluminescent layer on the reflective layer,
  • the reflective layer, the organic electroluminescent layer, and the circularly polarizing plate are arranged in this order, Including a polarized light separating layer between the organic electroluminescent layer and the circularly polarizing plate,
  • the polarization separation layer includes a polarization separation region that reflects light in one polarization state and transmits light in the other polarization state among light emitted from the organic electroluminescent layer, and a visible light transmission region.
  • the polarization separation region consists of a layer formed by fixing a cholesteric liquid crystal phase,
  • An organic EL image display device comprising a positive C region-containing layer between the organic electroluminescent layer and the circularly polarizing plate.
  • the positive C region-containing layer comprises a positive C region
  • the absolute value of the retardation Rth (X) in the film thickness direction at an arbitrary wavelength Xnm in the visible light region of the positive C region is the retardation Rth-Ch (X) in the film thickness direction at the wavelength X of the polarization separation region.
  • the positive C region-containing layer comprises a positive C region,
  • the absolute value of the retardation Rth (X) in the film thickness direction at an arbitrary wavelength Xnm in the visible light region of the positive C region is the absolute value of the retardation Rth (X) in the film thickness direction at the wavelength Xnm of the polarization separation region.
  • the organic EL image display device [12] The organic EL image display device according to [8], wherein the positive C region-containing layer further includes an optically isotropic region in addition to the positive C region.
  • the absolute value of the retardation Rth (X) in the film thickness direction at an arbitrary wavelength Xnm in the visible light region of the positive C region is the absolute value of the retardation Rth (X) in the film thickness direction at the wavelength Xnm of the polarization separation region.
  • the organic EL image display device which is equal to an absolute value.
  • the organic EL image display device any one of [1] to [13], wherein the light emitting element substrate includes an organic electroluminescent layer group in which the organic electroluminescent layers are arranged in a matrix on the reflective layer. .
  • the organic EL image display device wherein the polarization separation region is a set of polarization separation portions arranged in a matrix corresponding to the organic electroluminescent layer group.
  • the organic electroluminescent layer group includes an organic electroluminescent layer that emits light of two or more wavelengths,
  • the organic EL image display device wherein the polarized light separating portion reflects light in one polarization state in a wavelength region in which the organic electroluminescent layer disposed at a corresponding position emits light.
  • the visible light transmission region is an optically isotropic region
  • the positive C region-containing layer includes the positive C region and an optically isotropic region
  • the positive C region has a matrix shape corresponding to the polarized light separation sites arranged in the matrix shape [15].
  • the organic EL image display apparatus in any one of [16].
  • an organic EL image display device having high luminance and having no light leakage or blurring during oblique observation.
  • FIG. 1 It is a figure which shows schematic sectional drawing of the example of the image display apparatus of this invention. It is a figure which shows L, M, and N in Formula (1) and Formula (2) in the top view which looked at the polarized light separation layer from the image display side in the normal line direction. It is a figure which shows the permeation
  • Blue blue organic electroluminescent layer
  • Green green organic electroluminescent layer
  • Red red organic electroluminescent layer
  • an angle such as “45 °”, “parallel”, “vertical” or “orthogonal” is within a range where the difference from the exact angle is less than 5 ° unless otherwise specified. Means. The difference from the exact angle is preferably less than 4 °, more preferably less than 3 °.
  • (meth) acrylate is used to mean “one or both of acrylate and methacrylate”.
  • sense for circularly polarized light means right circularly polarized light or left circularly polarized light.
  • the sense of circularly polarized light is right circularly polarized when the tip of the electric field vector turns clockwise over time when viewed as light travels toward you, and left when it turns counterclockwise Defined as being circularly polarized.
  • the term “sense” may be used for the twist direction of the spiral of the cholesteric liquid crystal.
  • the twist direction (sense) of the spiral of the cholesteric liquid crystal is right, it reflects right circularly polarized light and transmits left circularly polarized light.
  • the sense When the sense is left, it reflects left circularly polarized light and transmits right circularly polarized light.
  • Visible light is light having a wavelength visible to the human eye among electromagnetic waves, and indicates light having a wavelength range of 380 nm to 780 nm.
  • the visible light transmittance may be measured according to JIS A 5759: 2008.
  • the visible light transmittance can be measured using, for example, an ultraviolet-visible near-infrared spectrometer (manufactured by JASCO Corporation, using V-670, integrating sphere unit ISN-723).
  • visible light reflectance means the numerical value computed based on the calculation method of JISA5759. That is, the reflectance obtained at a wavelength of 380 nm to 780 nm is measured with a spectrophotometer, and the weight obtained from the spectral distribution of CIE (International Commission on Illumination) daylight D65, the wavelength distribution of CIE light adaptation standard relative luminous sensitivity, and the wavelength interval. The light reflectance is obtained by multiplying the coefficient and performing a weighted average.
  • a spectrophotometer “V-670” manufactured by JASCO Corporation can be used.
  • the “slow axis” means a direction in which the refractive index becomes maximum in the plane.
  • Re ( ⁇ ) and Rth ( ⁇ ) respectively represent in-plane retardation and retardation in the thickness direction at a wavelength ⁇ .
  • Re ( ⁇ ) and Rth ( ⁇ ) are values measured at a wavelength ⁇ in AxoScan OPMF-1 (manufactured by Optoscience). By inputting the average refractive index ((Nx + Ny + Nz) / 3) and the film thickness (d ( ⁇ m)) using AxoScan, the following is calculated.
  • the image display device of the present invention is an organic EL image display device that performs image display based on light emission of an organic electroluminescent layer.
  • the organic EL image display device is a self-luminous display device, and has higher display performance than a CRT (Cathode Ray Tube) display device or a liquid crystal display device, and has display performance such as no viewing angle dependency. There are also advantages in that it can be reduced in weight and thickness.
  • the organic EL image display device displays an image using a light emitting element substrate provided with an organic electroluminescent layer.
  • the organic EL image display device generally includes a circularly polarizing plate on the image display side of the organic electroluminescent layer in order to reduce reflection of external light and improve contrast.
  • the image display device of the present invention includes a polarization separation layer between the organic electroluminescent layer and the circularly polarizing plate.
  • the reflective layer, the organic electroluminescent layer, the polarization separation layer, and the circularly polarizing plate are arranged in this order.
  • it is preferable that a plurality of organic electroluminescent layers are included in a matrix on the reflective layer as an organic electroluminescent layer group.
  • the image display device of the present invention further includes a positive C region-containing layer between the organic electroluminescent layer and the circularly polarizing plate.
  • the reflective layer, the organic electroluminescent layer, the positive C region-containing layer, and the circularly polarizing plate are arranged in this order.
  • the order of the polarization separation layer and the positive C region-containing layer is not particularly limited.
  • the organic electroluminescent layer, the positive C region-containing layer, the polarization separation layer, and the circularly polarizing plate may be in this order, and the organic electroluminescent layer, the polarization separation layer, the positive C region-containing layer, and the circularly polarizing plate are in this order. May be.
  • FIG. 1 A schematic cross-sectional view of an example of the image display device of the present invention is shown in FIG. In the figure, an adhesive layer that may be provided between layers is omitted.
  • the polarization separation layer has a polarization separation portion 8 and an optically isotropic visible light transmission region 9.
  • 1 (a), (c) to (e) all show a configuration having a reflective layer 3, an organic electroluminescent layer 2, a polarization separation layer 1, a positive C region-containing layer 12, and a circularly polarizing plate 7 in this order. .
  • FIG. 1 (a), (c) to (e) all show a configuration having a reflective layer 3, an organic electroluminescent layer 2, a polarization separation layer 1, a positive C region-containing layer 12, and a circularly polarizing plate 7 in this order. .
  • the retardation layer 5 has a two-layer structure of a ⁇ / 2 plate and a ⁇ / 4 plate.
  • the retardation layer 5 has a single layer structure. ⁇ / 4 plate (for example, A wavelength-dispersion A plate) is used.
  • the polarization separation layer in the image display device of the present invention preferably includes a plurality of polarization separation sites corresponding to the plurality of organic electroluminescent layers.
  • “corresponding” means that when the image display device is viewed from the image display side, the organic electroluminescent layer and the polarized light separating portion are in the same position or at least partially overlap each other. To do.
  • the light emitted from the organic electroluminescent layer preferably 50% or more, more preferably 60% or more, more preferably 70% or more
  • the corresponding organic electroluminescent layer and the polarized light separating portion may be the same size, the organic electroluminescent layer may be large, and the polarized light separating portion.
  • the size of may be large. Of these, it is preferable that the size of the polarized light separation site is large.
  • the image display device of the present invention is preferably sized so that the organic electroluminescent layer is covered with the corresponding polarized light separating portion when viewed from the image display side.
  • the polarization separation portions are arranged in a matrix in the polarization separation layer.
  • a region formed by a plurality of polarization separation sites may be collectively referred to as a polarization separation region.
  • the polarized light separating portion refers to a portion that performs polarized light separation in the light emission wavelength region of the corresponding organic electroluminescent layer.
  • Polarization separation refers to reflecting light in one polarization state and transmitting light in the other polarization state.
  • the polarization separation may be performed by reflecting the circularly polarized light of one sense and transmitting the circularly polarized light of the other sense.
  • the polarized light separating portion may be a portion capable of selectively performing polarized light separation in the light emission wavelength region of the corresponding organic electroluminescent layer, or a portion capable of performing polarized light separation in a wavelength region other than the above wavelength region. It may be. “Selective polarization separation” refers to polarization separation only in the wavelength region corresponding to the emission wavelength region of the organic electroluminescent layer corresponding to the polarization separation region in the visible light region. Therefore, the polarized light separating portion may be one that performs polarized light separation only in the wavelength region corresponding to the emission wavelength region of the organic electroluminescent layer corresponding to the polarized light separating portion in the visible light region, and is substantially visible light.
  • the polarized light separation site is preferably a site where selective polarization separation can be performed selectively in the emission wavelength region of the corresponding organic electroluminescent layer.
  • the polarization separation site is arranged so that light in the polarization state that does not transmit through the circularly polarizing plate out of the light emitted from the organic electroluminescent layer is reflected by the polarization separation site and travels toward the reflection layer. .
  • the polarization separation layer further includes a visible light transmission region. It is also preferable that the polarization separation layer is divided by a visible light transmission region to form a polarization separation portion.
  • the amount of light reaching the image display side from the organic electroluminescent layer can be increased to improve luminance.
  • the polarized light separating portions by the visible light transmitting region without providing the polarized light separating portions continuously, it is possible to reduce blurring of an image derived from light traveling obliquely from the inside of the organic electroluminescent layer toward the circularly polarizing plate. .
  • Image blur is a process in which light directed obliquely from the inside of the organic electroluminescent layer toward the circularly polarizing plate is reflected by the polarized light separation part, and the reflected light is reflected by the reflective layer and emitted to the image display side. It is considered that the canceled component is generated as a result of multiple reflection.
  • light that is obliquely directed from the inside of the organic electroluminescent layer toward the circularly polarizing plate is transmitted as it is and easily exits to the image display side. Color blur when observed from an oblique direction during display) can be reduced.
  • the visible light transmission region may have a visible light transmittance of 80% to 100%, preferably 90% to 100%.
  • the visible light transmission region is preferably non-light reflective at least on the surface on the organic electroluminescent layer side. In particular, it is preferably non-light reflecting in each emission wavelength region of the organic electroluminescent layer group. It is also preferred that it is non-light reflective over the entire visible light wavelength range.
  • the visible light reflectance on the surface of the visible light transmission region on the organic electroluminescent layer side is preferably 0% to 5%, more preferably 0% to 2%.
  • the visible light transmission region may be, for example, an optically isotropic region, a region having a central wavelength of selective reflection in the ultraviolet light wavelength region or the infrared light wavelength region. Any of these can be prepared by using the same composition as the composition for preparing a polarized light separation site as described later, for example.
  • the visible light transmission region is a portion after removing the coating film and the cured film formed at the time of producing the polarized light separating portion by etching and serving as an adhesive for adhesion to the light emitting element substrate. There may be.
  • the following expression (1) is satisfied in an arbitrary plane Z that passes through the polarization separation portion of the arbitrary coordinate xy of the polarization separation layer matrix and is perpendicular to the reflection layer.
  • the following formula (1) is satisfied in an arbitrary plane Z that passes through the polarization separation portion of the arbitrary coordinate xy of the polarization separation layer matrix and is perpendicular to the reflection layer.
  • the following formula (1) is satisfied in an arbitrary plane Z that passes through the polarization separation portion of the arbitrary coordinate xy of the polarization separation layer matrix and is perpendicular to the reflection layer.
  • L length of the line of intersection of the polarized light separation site of the coordinate xy and the plane Z
  • M length of the line of intersection of the organic electroluminescent layer of the coordinate xy corresponding to the polarization separation site of the coordinate xy and the plane Z N: organic of the coordinate xy
  • L, M, and N may be determined in a plan view of the polarization separation layer viewed from the image display side in the normal direction of the light-emitting element substrate in the image display device of the present invention. For example, as shown in FIG. it can.
  • the following formula (2) is satisfied at the polarized light separating portion at an arbitrary coordinate xy of the polarized light separating layer.
  • the polarization separation portion has a size corresponding to the distance between the polarization separation portion and the organic electroluminescent layer. Light utilization efficiency can be increased and luminance can be improved.
  • the above-described reflection wavelength region of the polarization separation site (reflection in the emission wavelength region of the corresponding organic electroluminescent layer) is wider than the above-described emission wavelength region of the organic electroluminescent layer.
  • the half width of the emission spectrum of each organic electroluminescent layer may be different, but the corresponding organic electroluminescent layer and polarized light separation It suffices if the above relationship is satisfied with the part.
  • the luminance is improved not only in the front but also in the oblique direction.
  • the reflection wavelength of the polarized light separation portion including the cholesteric liquid crystal layer is shifted to a short wavelength. Therefore, even if it is a polarization separation part that reflects light incident in the normal direction from the organic electroluminescent layer, light from an oblique direction may not be reflected.
  • the effect of improving the luminance in the oblique direction is considered to be due to the fact that the light that could not be reflected is reflected by broadening the wavelength range of reflection of the polarized light separation part.
  • the wavelength range of reflection of the polarized light separating part means the half width (full width at half maximum) of the transmission spectrum of the polarized light separating part.
  • the wavelength range of light emission of the organic electroluminescent layer means the half width of the emission spectrum of the organic electroluminescent layer.
  • the half-value width of the emission spectrum of a known organic electroluminescent layer is usually 40 to 55 nm, and the half-value width of the transmission spectrum of the polarized light separation site may be appropriately set within a wider range.
  • 70 to 130 nm is preferable, 80 to 120 nm is more preferable, and 90 to 110 nm is most preferable.
  • the plurality of polarization separation portions in the polarization separation layer may be arranged in a matrix corresponding to the organic electroluminescent layer group.
  • the polarization separation layer may be formed of a plurality of, preferably three, types of polarization separation sites that reflect light in one polarization state and transmit light in the other polarization state at different wavelengths.
  • the reflection wavelengths of the plurality of types of polarization separation sites are made to correspond to the emission wavelengths of the organic electroluminescent layers included in the organic electroluminescent layer group.
  • Each of the polarization separation site and the polarization separation layer may be a single layer or a plurality of layers.
  • the polarized light separating portion and the polarized light separating layer preferably include a cholesteric liquid crystal layer.
  • the polarization separation site and the polarization separation layer may include an alignment layer, a protective layer (additive layer), and the like.
  • the polarization separation site and the polarization separation layer may include an optically isotropic layer formed by curing the composition used for forming the cholesteric liquid crystal layer in a state where the liquid crystal compound is not aligned. .
  • the polarization separation site is not particularly limited as long as it achieves the above property of reflecting light of one polarization state and transmitting light of the other polarization state among the light emitted from the organic electroluminescent layer, but is not limited to cholesteric A portion including a liquid crystal layer is preferable.
  • the polarized light separating portion including the cholesteric liquid crystal layer may be composed of only the cholesteric liquid crystal layer, and may include other layers such as an alignment layer and a protective layer (additive layer).
  • a cholesteric liquid crystal layer means a layer in which a cholesteric liquid crystal phase is fixed.
  • the cholesteric liquid crystal phase selectively reflects the circularly polarized light of either the right circularly polarized light or the left circularly polarized light in a specific wavelength range and exhibits circularly polarized light selective reflection that transmits the circularly polarized light of the other sense.
  • the circularly polarized light selective reflection is sometimes simply referred to as selective reflection.
  • Many films formed from a composition containing a polymerizable liquid crystal compound have been known as a film containing a layer in which a cholesteric liquid crystal phase exhibiting circularly polarized light selectively is fixed. You can refer to the technology.
  • the cholesteric liquid crystal layer may be a layer in which the orientation of the liquid crystal compound in the cholesteric liquid crystal phase is maintained.
  • the polymerizable liquid crystal compound is placed in the orientation state of the cholesteric liquid crystal phase and then irradiated with ultraviolet rays.
  • Any layer may be used as long as it is polymerized and cured by heating or the like to form a layer having no fluidity, and at the same time, the layer is changed to a state in which the orientation is not changed by an external field or an external force.
  • the polymerizable liquid crystal compound may have a high molecular weight due to a curing reaction and may no longer have liquid crystallinity.
  • the central wavelength ⁇ of selective reflection of the cholesteric liquid crystal layer means a wavelength at the center of gravity of the reflection peak of the circularly polarized reflection spectrum measured from the normal direction of the cholesteric liquid crystal layer.
  • the center wavelength of selective reflection means the center wavelength when measured from the normal direction of the cholesteric liquid crystal layer.
  • the selective reflection center wavelength and the half-value width of the cholesteric liquid crystal layer can be obtained as follows.
  • a reduction peak in transmittance is observed in the selective reflection band.
  • the wavelength value on the short wavelength side is ⁇ l (nm)
  • the wavelength value on the long wavelength side is Is ⁇ h (nm)
  • the central wavelength ⁇ and the half-value width ⁇ of selective reflection can be expressed by the following equations.
  • the selective reflection center wavelength obtained as described above substantially matches the wavelength at the center of gravity of the reflection peak of the circularly polarized reflection spectrum measured from the normal direction of the cholesteric liquid crystal layer.
  • the center wavelength of selective reflection can be adjusted by adjusting the pitch of the spiral structure.
  • the center wavelength ⁇ can be adjusted by adjusting the n value and the P value so as to selectively reflect either one of the left circularly polarized light.
  • the peak (maximum value) of the emission spectrum of the organic electroluminescent layer used is substantially the same as the center wavelength of selective reflection possessed by the cholesteric liquid crystal layer at the corresponding polarized light separation site. Adjust it.
  • the center wavelength of selective reflection and the wavelength of the emission peak of the organic electroluminescent layer for image display of the image display device the light of one polarization state is reflected among the light emitted by the organic electroluminescent layer, And the light of the other polarization state can be transmitted.
  • the center wavelength of selective reflection shifts to the short wavelength side for light incident obliquely to the cholesteric liquid crystal layer.
  • the central wavelength of selective reflection when a light ray passes at an angle of ⁇ 2 with respect to the normal direction of the cholesteric liquid crystal layer (the helical axis direction of the cholesteric liquid crystal layer) is ⁇ d .
  • the average refractive index n of the cholesteric liquid crystal layer can be adjusted by the kind of the polymerizable liquid crystal compound. Since the pitch (P value) of the cholesteric liquid crystal phase depends on the kind of chiral agent used together with the polymerizable liquid crystal compound or the concentration of the chiral agent, the desired pitch can be obtained by adjusting these.
  • the method of measuring spiral sense and pitch use the methods described in “Introduction to Liquid Crystal Chemistry Experiments”, edited by the Japanese Liquid Crystal Society, Sigma Publishing 2007, page 46, and “Liquid Crystal Handbook”, Liquid Crystal Handbook Editing Committee, page 196. be able to.
  • a cholesteric liquid crystal layer having a central wavelength of selective reflection corresponding to the emission wavelength of each organic electroluminescent layer in the organic electroluminescent layer group may be used as the polarization separation site.
  • the organic electroluminescent layer group includes an organic electroluminescent layer emitting red light, an organic electroluminescent layer emitting green light, and an organic electroluminescent layer emitting blue light
  • the wavelength range of red light For example, a cholesteric liquid crystal layer having a central wavelength of selective reflection at 580 nm to 700 nm), a cholesteric liquid crystal layer having a central wavelength of selective reflection at a wavelength range of green light (for example, 500 nm to 580 nm), and a wavelength range of blue light (for example, 400 nm).
  • ⁇ 500 nm may include a cholesteric liquid crystal layer having a central wavelength of selective reflection.
  • the cholesteric liquid crystal layer having a central wavelength of selective reflection in the wavelength region of ultraviolet light (eg, 10 to 380 nm) or the wavelength region of infrared light (eg, A cholesteric liquid crystal layer having a central wavelength of selective reflection at 780 nm to 2500 nm may be used.
  • each cholesteric liquid crystal layer a cholesteric liquid crystal layer in which the spiral sense is either right or left in accordance with the sense of circularly polarized light transmitted through the circularly polarizing plate of the image display device of the present invention is used.
  • a cholesteric liquid crystal phase that transmits circularly polarized light having the same sense as that of circularly polarized light that is transmitted through the circularly polarizing plate is used.
  • the sense of reflected circularly polarized light in the cholesteric liquid crystal layer coincides with the sense of a spiral.
  • the senses of the spirals are usually all the same.
  • the reflection wavelength region of the polarized light separation part is wider than the corresponding light emission wavelength region of the organic electroluminescent layer. This may be achieved if the half width of selective reflection of the cholesteric liquid crystal layer included in the polarized light separation site is wider than the half width of the emission spectrum of the organic electroluminescent layer.
  • ⁇ n can be adjusted by adjusting the kind of the polymerizable liquid crystal compound and the mixing ratio thereof, or by controlling the temperature at the time of fixing the alignment.
  • a polymerizable liquid crystal compound or a polymerizable liquid crystal compound described later is used in the image display device of the present invention in order to form a polarized light separation site that exhibits reflection in a wavelength range wider than the emission wavelength range of the corresponding organic electroluminescent layer. It is also preferable to use a combination.
  • cholesteric liquid crystal layer having the same selective reflection center wavelength a plurality of cholesteric liquid crystal layers having the same period P and the same spiral sense may be stacked.
  • the circularly polarized light selectivity can be increased at a specific wavelength.
  • a method for producing a cholesteric liquid crystal layer For the formation of the cholesteric liquid crystal layer, a liquid crystal composition containing a polymerizable liquid crystal compound is used.
  • the liquid crystal composition may further contain a chiral agent (optically active compound). If necessary, apply the above liquid crystal composition, which is further mixed with a surfactant or polymerization initiator and dissolved in a solvent, to the support, alignment film, lower cholesteric liquid crystal layer, etc.
  • a cholesteric liquid crystal layer can be formed by immobilization by curing the composition.
  • the polymerizable liquid crystal compound may be a rod-like liquid crystal compound or a disk-like liquid crystal compound, but a rod-like liquid crystal compound is preferred.
  • Examples of the rod-like polymerizable liquid crystal compound include a rod-like nematic liquid crystal compound.
  • rod-like nematic liquid crystal compounds examples include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines.
  • Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used.
  • a rod-like liquid crystal compound not only a low-molecular liquid crystal compound but also a polymer liquid crystal compound can be used.
  • the polymerizable liquid crystal compound can be obtained by introducing a polymerizable group into the liquid crystal compound.
  • the polymerizable group include an unsaturated polymerizable group, an epoxy group, an oxetanyl group, and an aziridinyl group, preferably an unsaturated polymerizable group, and particularly preferably an ethylenically unsaturated polymerizable group.
  • the polymerizable group can be introduced into the molecule of the liquid crystal compound by various methods.
  • the number of polymerizable groups possessed by the polymerizable liquid crystal compound is preferably 1 to 6, more preferably 1 to 3. Examples of polymerizable liquid crystal compounds are described in Makromol. Chem.
  • a cyclic organopolysiloxane compound having a cholesteric liquid crystal phase as disclosed in JP-A-57-165480 can be used as a polymerizable liquid crystal compound other than the above.
  • the above-mentioned polymer liquid crystal compound includes a polymer in which a mesogenic group exhibiting liquid crystal is introduced into the main chain or side chain, or both of the main chain and side chain, and a polymer cholesteric compound in which a cholesteryl group is introduced into the side chain.
  • a liquid crystal, a liquid crystalline polymer as disclosed in JP-A-9-133810, a liquid crystalline polymer as disclosed in JP-A-11-293252, or the like can be used.
  • the polymerizable liquid crystal compound it is also preferable to use a liquid crystal compound having two or more reactive groups having different polymerization conditions in the same molecule.
  • examples of combinations of reactive groups with different polymerization conditions include combinations of radical photopolymerizable reactive groups and cationic photopolymerizable reactive groups.
  • a liquid crystal compound exhibiting a high refractive index anisotropy ⁇ n in order to make the reflection wavelength region of the polarized light separation site wider than the emission wavelength region of the organic electroluminescent layer.
  • ⁇ n at 30 ° C. of the liquid crystal compound is preferably 0.25 or more, more preferably 0.3 or more, and further preferably 0.35 or more.
  • the upper limit is not particularly limited, but is often 0.6 or less.
  • a method for measuring the refractive index anisotropy ⁇ n a method using a wedge-shaped liquid crystal cell described in page 202 of a liquid crystal handbook (edited by the Liquid Crystal Handbook Editorial Committee, published by Maruzen Co., Ltd.) is generally used. In this case, evaluation with a mixture with another liquid crystal is performed, and the refractive index anisotropy ⁇ n can be estimated from the extrapolated value.
  • liquid crystal compound exhibiting a high refractive index anisotropy ⁇ n examples include, for example, US Pat.
  • examples thereof include compounds described in Japanese Patent Publication No. 5105321, Japanese Patent No. 5705465, Japanese Patent No. 5721484, and Japanese Patent No. 5723641.
  • Preferred examples of the polymerizable liquid crystal compound used in the present invention include compounds represented by the following general formula (I) or (II).
  • the compound represented by the general formula (I) or (II) exhibits a high refractive index anisotropy ⁇ n.
  • A represents a divalent aromatic ring group which may have a substituent
  • m represents an integer of 2 to 12
  • Sp 1 and Sp 2 are each independently one or more of a single bond, a linear or branched alkylene group having 1 to 20 carbon atoms, and a linear or branched alkylene group having 1 to 20 carbon atoms.
  • CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C ( ⁇ O) —, —OC ( ⁇ O) —, or —C ( ⁇ O) O—.
  • A is a divalent aromatic ring group which may have a substituent.
  • a divalent aromatic ring group is a group formed by removing two hydrogen atoms from an aromatic ring.
  • aromatic ring benzene, naphthalene, furan, thiophene, pyrrole, pyrazole, imidazole, pyridine, pyridazine, pyrimidine, pyrazine Etc.
  • a phenylene group is preferable, and a 1,4-phenylene group is particularly preferable.
  • m A and m ⁇ 1 L may be the same or different.
  • the substituent when “may have a substituent” is not particularly limited, and examples thereof include an alkyl group, a cycloalkyl group, an alkoxy group, an alkyl ether group, an amide group, Examples include a substituent selected from the group consisting of an amino group, a halogen atom, and a group formed by combining two or more of the above substituents. Further, examples of the substituent include a substituent represented by —C ( ⁇ O) —X 3 —Sp 3 —Q 3 .
  • X 3 represents a single bond, —O—, —S—, —NH—, or —N (CH 3 ) —
  • Sp 3 has the same meaning as Sp 1
  • Q 3 represents a polymerizable group.
  • the divalent aromatic ring group may have 1 to 4 substituents. When it has two or more substituents, the two or more substituents may be the same or different from each other.
  • the alkyl group may be linear or branched.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 10 carbon atoms, and particularly preferably 1 to 6 carbon atoms.
  • Examples of the alkyl group include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group.
  • a 1,1-dimethylpropyl group n-hexyl group, isohexyl group, linear or branched heptyl group, octyl group, nonyl group, decyl group, undecyl group, or dodecyl group.
  • the above description regarding the alkyl group is the same for the alkoxy group containing an alkyl group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the cycloalkyl group preferably has 3 to 20 carbon atoms, and more preferably 5 to 10 carbon atoms.
  • Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • L is preferably —C ( ⁇ O) O—, —OC ( ⁇ O) —, —NH—C ( ⁇ O) —, or —C ( ⁇ O) —NH—.
  • the m Ls may be the same or different.
  • M represents an integer of 2 to 12, preferably 3 to 7, and more preferably 3 to 5.
  • Sp 1 and Sp 2 are each independently one or more of a single bond, a linear or branched alkylene group having 1 to 20 carbon atoms, and a linear or branched alkylene group having 1 to 20 carbon atoms.
  • CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C ( ⁇ O) —, —OC ( ⁇ O) —, or —C ( ⁇ O) O—.
  • a linking group selected from the group consisting of substituted groups is shown.
  • Sp 1 and Sp 2 are each independently selected from the group consisting of —O—, —OC ( ⁇ O) —, —C ( ⁇ O) O— and —OC ( ⁇ O) O— at both ends, respectively.
  • Straight chain alkylene group having 1 to 10 carbon atoms to which a linking group is bonded —OC ( ⁇ O) —, —C ( ⁇ O) O—, —O—, and straight chain alkylene group having 1 to 10 carbon atoms It is preferably a linking group constituted by combining one or more groups selected from the group consisting of: —O—, —OC ( ⁇ O) —, —C ( ⁇ O) O— at both ends. And a linking group selected from the group consisting of —OC ( ⁇ O) O— is more preferably a linear alkylene group having 1 to 10 carbon atoms bonded thereto.
  • Q 1 and Q 2 each independently represent a polymerizable group, and may represent a polymerizable group selected from the group consisting of groups represented by the following formulas (Q-1) to (Q-5): preferable.
  • an acryloyl group (formula (Q-1)), a methacryloyl group (formula (Q-2)), and an oxetanyl group (formula (Q-5)) are preferable.
  • a compound in which both Q 1 and Q 2 are an acryloyl group or a methacryloyl group, and a compound in which one of Q 1 and Q 2 is an acryloyl group or a methacryloyl group and the other is an oxetanyl group are more preferable.
  • the compound represented by the general formula (I) can be synthesized by the method described in JP-T-11-513019 (WO97 / 00600). Examples of the polymerizable compound represented by the formula (I) are shown below, but are not limited to these examples.
  • a 11 to A 14 each independently represents a divalent aromatic carbon group or divalent heterocyclic group which may have a substituent.
  • a divalent aromatic carbon group is a group formed by removing two hydrogen atoms from an aromatic carbocyclic ring
  • a divalent heterocyclic group is a group formed by removing two hydrogen atoms from a heterocyclic ring.
  • Examples of the aromatic carbocycle include a benzene ring and a naphthalene ring.
  • a 11 to A 14 are preferably divalent aromatic carbon groups, more preferably phenylene
  • the type of substituent that may be substituted on the aromatic carbon group or heterocyclic group is not particularly limited, and examples thereof include a halogen atom, a cyano group, a nitro group, an alkyl group, a halogen-substituted alkyl group, an alkoxy group, an alkylthio group, and an acyloxy group.
  • a halogen atom a cyano group, a nitro group, an alkyl group, a halogen-substituted alkyl group, an alkoxy group, an alkylthio group, and an acyloxy group.
  • a single bond, —COO—, —CONH—, —NHCO— or —C ⁇ C— is preferable.
  • Sp 11 and Sp 12 each independently represent a single bond or an alkylene group having 1 to 25 carbon atoms.
  • the alkylene group may be linear, branched, or cyclic. Among these, an alkylene group having 1 to 10 carbon atoms is more preferable.
  • Q 11 and Q 12 each independently represent a hydrogen atom or a polymerizable group, and at least one of Q 11 and Q 12 represents a polymerizable group.
  • the polymerizable group include polymerizable groups selected from the group consisting of groups represented by formula (Q-1) to formula (Q-5).
  • the polymerizable group represented by Q 11 or Q 12 is preferably an acryloyl group (formula (Q-1)) or a methacryloyl group (formula (Q-2)).
  • n 11 and n 12 each independently represent an integer of 0 to 2, and when n 11 or n 12 is 2, a plurality of A 11 , A 12 , X 11 and X 12 may be the same or different Good.
  • Specific examples of the compound represented by the general formula (II) include compounds represented by the following formulas (2-1) to (2-30).
  • Two or more kinds of polymerizable liquid crystal compounds may be used in combination.
  • the alignment temperature can be lowered.
  • a liquid crystal compound having two or more reactive groups having different polymerization conditions in the same molecule and a liquid crystal compound having two or more reactive groups having the same polymerization condition in the same molecule are used in combination,
  • the reflection band can be expanded, which is more preferable.
  • a combination of a liquid crystal compound containing a (meth) acryloyl group and an oxetanyl group and a liquid crystal compound containing two (meth) acryloyl groups can be given.
  • the addition amount of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 80 to 99.9% by mass, and 85 to 99.5% with respect to the solid content mass (mass excluding the solvent) of the liquid crystal composition. More preferably, it is 90% by mass, and particularly preferably 90-99% by mass.
  • the material used for forming the cholesteric liquid crystal layer preferably contains a chiral agent.
  • the chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase.
  • the chiral compound may be selected according to the purpose because the helical sense or helical pitch induced by the compound is different. There is no restriction
  • Examples of chiral agents include liquid crystal device handbook (Chapter 3, Section 4-3, TN, chiral agent for STN, 199 pages, edited by Japan Society for the Promotion of Science, 142th Committee, 1989), JP-A 2003-287623, Examples thereof include compounds described in JP-A No. 2002-302487, JP-A No. 2002-80478, JP-A No. 2002-80851, JP-A No. 2010-181852 or JP-A No. 2014-034581.
  • a chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used as the chiral agent.
  • the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, they are derived from the repeating unit derived from the polymerizable liquid crystal compound and the chiral agent by a polymerization reaction between the polymerizable chiral agent and the polymerizable liquid crystal compound.
  • the polymerizable group possessed by the polymerizable chiral agent is preferably the same group as the polymerizable group possessed by the polymerizable liquid crystal compound. Therefore, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Particularly preferred.
  • the chiral agent may be a liquid crystal compound.
  • an isosorbide derivative As the chiral agent, an isosorbide derivative, an isomannide derivative, or a binaphthyl derivative can be preferably used.
  • an isosorbide derivative a commercial product such as LC-756 manufactured by BASF may be used.
  • the content of the chiral agent in the liquid crystal composition is preferably 0.01 mol% to 200 mol%, more preferably 1 mol% to 30 mol%, based on the total molar amount of the polymerizable liquid crystal compound.
  • the liquid crystal composition preferably contains a polymerization initiator.
  • the polymerization initiator to be used is preferably a photopolymerization initiator that can start the polymerization reaction by ultraviolet irradiation.
  • the photopolymerization initiator include a radical polymerization initiator and a cationic polymerization initiator.
  • radical polymerization initiators examples include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatics.
  • Group acyloin compounds described in US Pat. No. 2,722,512
  • polynuclear quinone compounds described in US Pat. Nos. 3,046,127 and 2,951,758
  • a combination of triarylimidazole dimer and p-aminophenyl ketone US patent No. 3549367
  • acridine and phenazine compounds JP-A-60-105667, US Pat. No.
  • an acyl phosphine oxide compound or an oxime compound is preferably used.
  • the acylphosphine oxide compound for example, IRGACURE819 (compound name: bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide) manufactured by BASF Japan Ltd. can be used.
  • Examples of the oxime compounds include IRGACURE OXE01 (manufactured by BASF), IRGACURE OXE02 (manufactured by BASF), TR-PBG-304 (manufactured by Changzhou Strong Electronic New Materials Co., Ltd.), Adeka Arcles NCI-831, Adeka Arcles NCI-930 Commercial products such as (ADEKA) and Adeka Arcles NCI-831 (ADEKA) can be used.
  • Examples of the cationic polymerization initiator include organic sulfonium salt systems, iodonium salt systems, phosphonium salt systems, and the like.
  • Organic sulfonium salt systems are preferable, and triphenylsulfonium salts are particularly preferable.
  • As counter ions of these compounds hexafluoroantimonate, hexafluorophosphate, and the like are preferably used.
  • the content of the photopolymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass, and preferably 0.5 to 5% by mass with respect to the content of the polymerizable liquid crystal compound. Further preferred.
  • the liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and improve the durability.
  • a crosslinking agent one that can be cured by ultraviolet rays, heat, moisture, or the like can be suitably used.
  • the crosslinking agent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, polyfunctionality such as trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, etc.
  • Epoxy compounds such as glycidyl (meth) acrylate and ethylene glycol diglycidyl ether; 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) )
  • Aziridine compounds such as diphenylmethane; isocyanate compounds such as hexamethylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysila And N-(2-aminoethyl) 3-aminopropyltrimethoxysilane alkoxysilane compounds may be mentioned.
  • polyfunctional acrylate compounds are preferred.
  • the polyfunctional acrylate compound is preferably a 3-6 functional acrylate compound, and more preferably a 4-6 functional acrylate compound.
  • a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
  • the content of the cross-linking agent in the liquid crystal composition is preferably 0 to 8.0 parts by mass, and 0.1 to 7.0 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound in the liquid crystal composition. Is more preferable, and 0.2 to 5.5 parts by mass is even more preferable.
  • Orientation control agent An alignment control agent that contributes to stable or rapid planar alignment may be added to the liquid crystal composition.
  • the alignment control agent include fluorine (meth) acrylate polymers described in paragraphs [0018] to [0043] of JP-A-2007-272185, and paragraphs [0031] to [0034] of JP-A-2012-203237. And compounds represented by the formulas (I) to (IV) as described above.
  • 1 type may be used independently and 2 or more types may be used together.
  • the addition amount of the alignment control agent in the liquid crystal composition is preferably 0.01% by mass to 10% by mass and more preferably 0.01% by mass to 5.0% by mass with respect to the total mass of the polymerizable liquid crystal compound. 0.02% by mass to 1.0% by mass is particularly preferable.
  • the liquid crystal composition may contain at least one selected from a surfactant for adjusting the surface tension of the coating film to make the thickness uniform, and various additives such as a polymerizable monomer.
  • a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a colorant, metal oxide fine particles, and the like may be added as long as the optical performance is not deteriorated. Can be added.
  • solvent there is no restriction
  • the organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ketones, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, ethers and the like. Can be mentioned. These may be used individually by 1 type and may use 2 or more types together. Among these, ketones are particularly preferable in consideration of environmental load.
  • the method for applying the liquid crystal composition to the support, the alignment film, the quarter-wave plate, the underlying cholesteric liquid crystal layer, etc. is not particularly limited and can be appropriately selected according to the purpose.
  • wire bar coating Method, curtain coating method, extrusion coating method, direct gravure coating method, reverse gravure coating method, die coating method, spin coating method, dip coating method, spray coating method, slide coating method and the like can also be carried out by transferring a liquid crystal composition separately coated on a support.
  • the liquid crystal molecules are aligned by heating the applied liquid crystal composition.
  • cholesteric alignment may be performed, and in forming the quarter-wave plate, nematic alignment is preferable.
  • the heating temperature is preferably 200 ° C. or lower, and more preferably 130 ° C. or lower.
  • the heating temperature is preferably 50 ° C. to 120 ° C., more preferably 60 ° C. to 100 ° C.
  • the aligned liquid crystal compound can be further polymerized to cure the liquid crystal composition.
  • the polymerization may be either thermal polymerization or photopolymerization utilizing light irradiation, but photopolymerization is preferred. It is preferable to use ultraviolet rays for light irradiation.
  • the irradiation energy is preferably 20mJ / cm 2 ⁇ 50J / cm 2, 100mJ / cm 2 ⁇ 1,500mJ / cm 2 is more preferable.
  • light irradiation may be performed under heating conditions or in a nitrogen atmosphere.
  • the irradiation ultraviolet wavelength is preferably 350 nm to 430 nm.
  • the polymerization reaction rate is preferably high from the viewpoint of stability, preferably 70% or more, and more preferably 80% or more.
  • the polymerization reaction rate can be determined by measuring the consumption ratio of the polymerizable functional group using an IR absorption spectrum.
  • each cholesteric liquid crystal layer is not particularly limited as long as it exhibits the above characteristics, but is preferably in the range of 1.0 to 20 ⁇ m, more preferably in the range of 2.0 to 10 ⁇ m.
  • the liquid crystal composition may be applied and formed on the surface of the support or the alignment layer formed on the support surface.
  • the support or the support and the alignment layer may be peeled off after forming the layer.
  • the layer may be peeled off after being bonded to the light emitting element substrate.
  • the support include polyester such as polyethylene terephthalate (PET), polycarbonate, acrylic resin, epoxy resin, polyurethane, polyamide, polyolefin, cellulose derivative, silicone, or glass plate.
  • PET polyethylene terephthalate
  • acrylic resin epoxy resin
  • polyurethane polyamide
  • polyolefin polyamide
  • cellulose derivative polyolefin
  • the orientation layer may be any layer as long as it can impart orientation to the optically anisotropic layer.
  • Preferred examples of the alignment layer include a layer subjected to rubbing treatment of an organic compound such as a polymer (resin such as polyimide, polyvinyl alcohol, polyester, polyarylate, polyamideimide, polyetherimide, polyamide, and modified polyamide), an azobenzene polymer, or a thinner.
  • a photo-alignment layer that exhibits liquid crystal orientation by polarized irradiation typified by a mate polymer, an oblique deposition layer of an inorganic compound, and a layer having a microgroove, ⁇ -tricosanoic acid, dioctadecylmethylammonium chloride, and methyl stearylate
  • a cumulative film formed by the Langmuir-Blodgett method (LB film) or a layer in which a dielectric is oriented by applying an electric field or a magnetic field.
  • the alignment layer preferably contains polyvinyl alcohol, and it is particularly preferable that the alignment layer can be cross-linked with at least one of the upper and lower alignment layers.
  • alignment layers described in JP2009-69793A, JP2010-113249A, and JP2011-203636A can be used.
  • a photo-alignment layer can also be used suitably. This is because when the photo-alignment layer is used, the occurrence of alignment defects due to minute foreign matters is suppressed, and a cholesteric liquid crystal layer can be formed with high optical performance even in a fine shape.
  • a liquid crystal aligning agent for example, a liquid crystal aligning agent containing an epoxy-containing polyorganosiloxane described in JP-A-2015-26050 can be used.
  • a process (alignment process) for controlling the temperature of the applied liquid crystal composition to develop a desired phase may be performed.
  • the thickness of the alignment layer is preferably 0.01 ⁇ m to 5.0 ⁇ m, and more preferably 0.05 ⁇ m to 2.0 ⁇ m.
  • a cholesteric liquid crystal layer can be formed by patterning in order to form a polarization separation layer including a plurality of types of polarization separation sites that exhibit polarization separation at different wavelengths.
  • a patterned cholesteric liquid crystal layer with a selective reflection wavelength adjusted corresponding to the emission wavelength of each organic electroluminescent layer of the light emitting element substrate, the light utilization efficiency can be further increased.
  • the cholesteric liquid crystal layer by the patterning method, it is possible to form a polarized light separating portion and a visible light transmitting region in the polarized light separating layer and to form polarized light separating portions arranged in a matrix.
  • a method by solvent development a method using a photoisomerizable chiral agent (Japanese Patent Laid-Open No. 2001-159706), a method of aligning and fixing in advance and transferring a cholesteric liquid crystal layer using a laser or a thermal head (Japanese Patent Laid-Open No. 2001-159706) 2001-4822, JP-A-2001-4824), inkjet method (JP-A-2001-159709), method utilizing temperature dependence of cholesteric helical pitch (JP-A-2001-159708), between regions And a method of stepwise changing the amount of ultraviolet irradiation when the liquid crystal composition is cured.
  • a method using a photoisomerizable chiral agent can be performed as follows. First, a cholesteric liquid crystal layer having a central wavelength of selective reflection in the ultraviolet wavelength region is formed entirely using a liquid crystal composition containing a photoisomerizable chiral agent. Thereafter, a part of the cholesteric liquid crystal layer is fixed in a state having a central wavelength of selective reflection in the ultraviolet wavelength region or the infrared wavelength region by pattern exposure (ultraviolet irradiation) to form a visible light transmission region. Subsequently, each region is selectively irradiated with light having an absorption wavelength of the chiral agent in an appropriate amount according to each region having the center wavelength of selective reflection to be formed.
  • the entire surface is irradiated with ultraviolet light to fix the orientation of each region, and the polarization separation has a pattern of a cholesteric liquid crystal layer having a visible light transmission region in one layer and a central wavelength of selective reflection in a desired wavelength region.
  • a layer can be formed.
  • pattern exposure can be performed as described above.
  • Examples of the pattern exposure method include contact exposure using a mask, proxy exposure, and projection exposure.
  • the irradiation wavelength of the exposure light source preferably has a peak at 250 to 450 nm, and more preferably has a peak at 300 to 410 nm.
  • an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp, a blue laser, and the like can be given.
  • a preferable exposure amount is usually about 3 to 2000 mJ / cm 2 , more preferably about 5 to 1000 mJ / cm 2 , further preferably about 10 to 500 mJ / cm 2 , and most preferably about 10 to 100 mJ / cm 2.
  • pattern heating may be performed instead of pattern exposure.
  • contact heating using a heated patterning plate, heating by an infrared laser, or the like can be used. Moreover, you may combine both.
  • a polarization separation layer composed of a plurality of layers can be formed as follows. That is, after pattern exposure is performed on the layer formed from the first liquid crystal composition, a layer formed from a new second liquid crystal composition is formed or transferred thereon, and then another pattern exposure is performed. It can be carried out. Furthermore, a layer formed from a new third liquid crystal composition can be formed or transferred thereon, and then another pattern exposure can be performed.
  • the first liquid crystal composition, the second liquid crystal composition, and the third liquid crystal composition may be derived from the same composition or may be derived from different compositions. It is also preferable to use three types of liquid crystal compositions that differ only in the concentration of the chiral agent.
  • the unexposed portion can be made optically isotropic.
  • a layer having a cholesteric liquid crystal layer in a pattern can be formed.
  • a region that is optically isotropic may be formed so as to divide the polarized light separation region, and may be a visible light transmission region.
  • a cholesteric liquid crystal layer having a central wavelength of selective reflection in the wavelength range of red light, a cholesteric liquid crystal layer having a central wavelength of selective reflection in the wavelength range of green light, and a cholesteric having a central wavelength of selective reflection in the wavelength range of blue light By forming a layer having a cholesteric liquid crystal layer in a pattern so as to have a wavelength region corresponding to the color of the color of the organic electroluminescent layer of the light emitting element substrate with respect to the liquid crystal layer, A separation layer can be formed.
  • a protective layer may be used in the case of forming a polarization separation layer having a polarization separation site in a pattern using a liquid crystal composition.
  • the protective layer only needs to contain at least one polymerization initiator having a function of initiating a polymerization reaction by an unreacted reactive group remaining after the liquid crystal composition is temporarily cured.
  • the cholesteric liquid crystal layer and the protective layer are preferably in direct contact.
  • at least 1 type of polymer is included other than a polymerization initiator.
  • the polymer (also referred to as “binder” as another name in the present invention) is not particularly limited, but polymethyl (meth) acrylate, copolymers of (meth) acrylic acid and various esters thereof, polystyrene, styrene, (Meth) acrylic acid or various (meth) acrylic acid ester copolymers, polyvinyltoluene, vinyltoluene and (meth) acrylic acid or various (meth) acrylic acid ester copolymers, styrene / vinyltoluene copolymers, Examples thereof include polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, vinyl acetate / ethylene copolymer, vinyl acetate / vinyl chloride copolymer, polyester, polyimide, carboxymethyl cellulose, polyethylene, polypropylene, and polycarbonate.
  • Preferred examples include copolymers of methyl (meth) acrylate and (meth) acrylic acid, copolymers of allyl (meth) acrylate and (meth) acrylic acid, benzyl (meth) acrylate and (meth) acrylic acid, and others. And multi-component copolymers with other monomers. These polymers may be used alone or in combination of two or more.
  • the polymer content relative to the total solid content is generally 20 to 99% by mass, preferably 40 to 99% by mass, and more preferably 60 to 98% by mass.
  • the polarization separation layer including the cholesteric liquid crystal layer may be formed on the organic electroluminescence layer, or a separately formed polarization separation layer or a laminate including the polarization separation layer may be laminated on the organic electroluminescence layer.
  • a polarization separation layer is formed on a light emitting element substrate including an organic electroluminescent layer group, and a circularly polarizing plate is further formed thereon, or a laminate of the polarization separation layer and the circularly polarizing plate is formed. It is preferable that the laminated body is provided on a light emitting element substrate including an organic electroluminescent layer group, and the latter is more preferable.
  • the organic EL image display device of the present invention includes a positive C region-containing layer.
  • the positive C region is a region optically having positive C performance, and each refractive index when the thickness direction of the layer is the z-axis and the in-plane direction of the layer is the xy plane.
  • the positive C region-containing layer may be a layer composed of positive C regions, ie, a single positive C plate, and includes both positive C regions and optically isotropic regions in the xy plane. A layer may be sufficient and the layer containing the area
  • an organic EL image display device including a cholesteric liquid crystal layer in the polarization separation layer
  • light leakage during oblique observation can be reduced by further providing a positive C region-containing layer. This is because the positive C region showing negative Rth optically compensates for the cholesteric liquid crystal layer showing positive Rth at wavelengths in the visible light region not corresponding to the selective reflection wavelength region.
  • the positive C When the region-containing layer is a layer composed of a layer composed of the positive C region, the absolute value of the retardation Rth (X) in the film thickness direction at the wavelength X of the positive C region is By setting an arbitrary value between the absolute value of the retardation Rth-Ch (X) and the absolute value of the retardation Rth-T (X) at the wavelength X in the visible light transmission region, We found that coloring was reduced.
  • X is an arbitrary wavelength in the visible light region (for example, 550 nm).
  • the absolute value of Rth (X) in the positive C region may be any value between the absolute value of Rth ⁇ Ch (X) and the absolute value of Rth ⁇ T (X).
  • the average value of the absolute value of Rth-Ch (X) and the absolute value of Rth-T (X) is preferably ⁇ 20 nm, more preferably the average value ⁇ 10 nm.
  • a cholesteric liquid crystal layer in which a visible light transmission region is produced using the same composition as the composition for producing a polarized light separation region and has a selective reflection band in the ultraviolet wavelength region or in the infrared wavelength region since Rth-Ch (X) and Rth-T (X) are substantially equal, an intermediate value between the absolute value of Rth-Ch (X) and the absolute value of Rth-T (X) is also equal to them. . Therefore, the absolute value of Rth (X) in the positive C region is preferably equal to the absolute value of Rth ⁇ Ch (X) (and the absolute value of Rth ⁇ T (X)). This is because light leakage can be reduced most effectively with this configuration.
  • the positive C region-containing layer is included in the visible light transmission region of the polarization separation layer together with the positive C region.
  • the optical compensation can be performed only in a necessary region, and an effect of reducing light leakage and coloring during oblique observation can be obtained without affecting the reflectance and the like.
  • the absolute value of Rth (X) in the positive C region is preferably equal to the absolute value of Rth ⁇ Ch (X). This is because light leakage can be reduced particularly effectively with this configuration.
  • the positive C region in the positive C region-containing layer corresponds to this. Is more preferably in the form of a matrix.
  • the thickness of the positive C region-containing layer is preferably 0.3 to 3.0 ⁇ m, more preferably 0.5 to 2.8 ⁇ m, further preferably 0.9 to 2.5 ⁇ m, and 1.0 to 1.5 ⁇ m. Most preferred.
  • the liquid crystal compound has homeotropic alignment.
  • Homeotropic alignment means a state in which the molecular long axis of the liquid crystal compound is aligned in a direction perpendicular to the film surface.
  • the positive C region preferably exhibits a smectic phase or a nematic phase, and more preferably exhibits a smectic phase.
  • the smectic phase has a highly ordered layer structure in which the center of gravity of the liquid crystal molecules are aligned, making it easy to obtain homeotropic alignment and good even when the alignment control force on the layer formation surface (base surface) of the substrate is weak A liquid crystal layer having a homeotropic alignment can be obtained.
  • the positive C region preferably satisfies ⁇ 5 ⁇ Re (550) ⁇ 5 (
  • the positive C region preferably satisfies ⁇ 250 ⁇ Rth (550) ⁇ ⁇ 70, and more preferably satisfies ⁇ 230 ⁇ Rth (550) ⁇ ⁇ 130.
  • the positive C region-containing layer is made of a cured product of the positive C region-containing layer forming composition containing the liquid crystal compound C.
  • the liquid crystal compound C represents all liquid crystal compounds contained in the positive C region-containing layer forming composition, and even if it is composed of one liquid crystal compound, it is a mixture of two or more liquid crystal compounds. Also good.
  • the composition for forming a positive C region-containing layer contains the liquid crystal compound C, and further contains a polymerization initiator, a solvent and the like as necessary.
  • the composition for forming a positive C region-containing layer preferably further contains a vertical alignment agent described later.
  • the liquid crystal compound C As the liquid crystal compound C, a rod-like liquid crystal compound is preferable.
  • the liquid crystal compound C is preferably a liquid crystal compound exhibiting a smectic phase or a nematic phase liquid crystal state, and a liquid crystal compound exhibiting a nematic phase liquid crystal state may be used from the viewpoint of production conditions and the like. You may use the liquid crystal compound which exhibits.
  • any conventionally known liquid crystal compound may be used, and a liquid crystal compound similar to the liquid crystal compound for forming the cholesteric liquid crystal layer may be used.
  • the liquid crystal compound C preferably contains at least one compound selected from the group consisting of a compound represented by the following general formula (IA) and a compound represented by the following general formula (IIA).
  • R 101 to R 104 each independently represents — (CH 2 ) n —OOC—CH ⁇ CH 2 , and n represents an integer of 2 to 8.
  • X 101 and Y 101 each independently represent a hydrogen atom or a methyl group. From the viewpoint of suppressing crystal precipitation, in the general formula (IA) or (IIA), X 101 and Y 101 preferably represent a methyl group. From the viewpoint of exhibiting properties as a liquid crystal, n is preferably an integer of 4 to 8.
  • the amount of liquid crystal compound C in the composition for forming a positive C region-containing layer is preferably 50 to 98% by mass, more preferably 70 to 95% by mass based on the total solid content.
  • the composition for forming a positive C region-containing layer preferably contains a vertical alignment agent.
  • the vertical alignment agent is preferably a boronic acid compound and / or an onium salt.
  • Specific examples of the boronic acid compound include compounds represented by the following formula.
  • R 51 and R 52 each independently represents a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, an aryl group, or a heterocyclic group.
  • R 53 represents a substituent containing a functional group that can be bonded to a (meth) acryl group.
  • a boronic acid compound represented by the general formula (I) described in paragraph Nos. 0023 to 0032 of JP-A-2008-225281 can be used. Further, boronic acid compounds shown below are also preferably used.
  • onium salt examples include compounds represented by the following formula.
  • ring A represents a quaternary ammonium ion composed of a nitrogen-containing heterocyclic ring
  • X 51 represents an anion
  • L 51 represents a divalent linking group
  • L 52 represents a single bond or a divalent linking group.
  • Y 51 represents a divalent linking group having a 5- or 6-membered ring as a partial structure
  • Z represents a divalent linking group having 2 to 20 alkylene groups as a partial structure;
  • P 51 and P 52 represent Each independently represents a monovalent substituent having a polymerizable ethylenically unsaturated group.
  • onium salt examples include onium salts described in paragraph numbers 0052 to 0058 of JP2012-208397A, onium salts described in paragraph numbers 0024 to 0055 of JP2008-026730A, JP Examples thereof include onium salts described in JP-A-2002-37777.
  • the vertical alignment agent is preferably 0.1 to 5% by mass, more preferably 0.5 to 3% by mass with respect to the total mass of the liquid crystal compound contained in the composition for forming a positive C region-containing layer.
  • the vertical alignment agent may contain only one type or two or more types. When two or more types are included, the total amount is within the above range.
  • the composition for forming a positive C region-containing layer may contain a polymerization initiator, a non-liquid crystalline polymerizable compound, a solvent, other additives, and the like.
  • the details regarding the liquid crystal composition for forming the cholesteric liquid crystal layer can be referred to for these details.
  • the composition for forming a positive C region-containing layer does not contain a chiral agent.
  • the positive C region-containing layer can be formed by applying a positive C-containing layer forming composition on the support or the alignment film surface provided on the support.
  • the positive C region-containing layer can be produced by a known method.
  • a positive C region-containing layer including an optically isotropic region in particular, a positive C region-containing layer in which positive C regions and visible light transmission regions are arranged in a matrix
  • the patterning method described above is used.
  • Such a positive C region-containing layer is, for example, 50 ° C. or higher and 400 ° C. or lower, preferably 80 ° C. or higher and 200 ° C. or lower, as described above, with respect to the pattern-exposed layer of the positive C region containing layer forming composition.
  • the unexposed portion can be formed optically isotropic by heating at.
  • the circularly polarizing plate is provided on the image display side of the organic electroluminescent layer to reduce reflection of external light and improve contrast in the organic EL image display device.
  • a circularly-polarizing plate a well-known circularly-polarizing plate can be used as a circularly-polarizing plate used in an organic EL image display apparatus.
  • the circularly polarizing plate includes a retardation layer and a polarizing layer.
  • the circularly polarizing plate may have other layers such as an adhesive layer and a surface protective layer.
  • the circularly polarizing plate is disposed so that the polarization separation layer, the retardation layer, and the polarization layer are in this order.
  • the circularly polarizing plate may be composed of a retardation layer and a polarizing layer.
  • the retardation layer is preferably made of a 1 ⁇ 4 wavelength plate, and the polarizing layer is preferably made of a linear polarizing plate.
  • the linearly polarizing plate transmits specific linearly polarized light out of the light passing therethrough and absorbs linearly polarized light orthogonal thereto.
  • a linear polarizing plate for example, a film in which polyvinyl alcohol is absorbed by iodine and stretched, and a triacetyl cellulose protective layer is applied on both surfaces of a polarizing function, or a metal nanorod such as Ag is added to polyvinyl alcohol. And what was extended
  • the retardation layer in the circularly polarizing plate used in the organic EL image display device may be a retardation layer that functions as a quarter wavelength plate in the visible light region.
  • the quarter wavelength plate may be referred to as a ⁇ / 4 plate.
  • the quarter-wave plate include a single-layer quarter-wave plate, a broadband quarter-wave plate in which a quarter-wave plate and a half-wave retardation plate are stacked, and the like.
  • the front retardation of the former 1 ⁇ 4 wavelength plate may be 1 ⁇ 4 of the emission wavelength of the image display device. Therefore, for example, when the emission wavelength of the image display device is 450 nm, 530 nm, and 640 nm, the wavelength of 450 nm is 112.5 nm ⁇ 10 nm, preferably 112.5 nm ⁇ 5 nm, more preferably 112.5 nm, and 530 nm.
  • a retardation layer is most preferable as a quarter-wave plate, but a retardation plate having a small wavelength dispersion of front retardation and a retardation plate having a forward wavelength dispersion can also be used.
  • the reverse wavelength dispersion means a property that the absolute value of the front retardation becomes larger as the wavelength becomes longer, and the forward wavelength dispersion means a property that the absolute value of the front retardation becomes larger as the wavelength becomes shorter.
  • the laminated quarter-wave plate is formed by laminating a quarter-wave plate and a half-wave retardation plate at an angle of 60 ° with the slow axis, and the side of the half-wave retardation plate is linearly polarized. It is placed on the incident side and the slow axis of the half-wave retardation plate is used so as to cross 15 ° or 75 ° with respect to the plane of polarization of the incident linearly polarized light. Can be suitably used because of its good resistance.
  • quartz plate stretched polycarbonate film, stretched norbornene polymer film, transparent film containing inorganic particles exhibiting birefringence such as strontium carbonate, and oblique deposition of inorganic dielectric on support Thin films and the like.
  • the quarter wave plate examples include (1) a birefringent film having a large front retardation and a small front retardation described in JP-A-5-27118 and JP-A-5-27119.
  • a retardation plate capable of achieving a ⁇ / 4 wavelength in a wide wavelength range by laminating two polymer films as described in Japanese Patent Publication (A) No. 00/26705 Retardation plate capable of achieving ⁇ / 4 wavelength in a wide wavelength range using the modified polycarbonate film described in the lett, (5) Wide wavelength range using the cellulose acetate film described in International Publication No. 00/65384 pamphlet And a retardation plate capable of achieving a ⁇ / 4 wavelength.
  • a commercial item can also be used as a quarter wavelength plate, As a commercial item, brand name: Pure Ace (trademark) WR (Teijin Ltd. make, polycarbonate film) etc. are mentioned, for example.
  • a quarter-wave plate is formed by applying a liquid crystal composition to a support or alignment film, and then forming a polymerizable liquid crystal compound in the liquid crystal composition in a nematic alignment in a liquid crystal state, and then fixing by photocrosslinking or thermal crosslinking. Can be formed.
  • the quarter-wave plate is formed by applying a liquid crystal composition on a surface of a support or alignment film to form a nematic alignment in a liquid crystal state, and then cooling the composition to fix the alignment. The layer obtained may be sufficient.
  • the same rod-like liquid crystal compound as that used for the production of the positive C region-containing layer or the discotic liquid crystal compound described in WO2014 / 073616 is used. it can.
  • the quarter-wave plate also preferably includes an A plate in which the liquid crystal compound has a homogeneous alignment.
  • the homogeneous alignment means a state in which the molecular long axis of the liquid crystal compound is aligned in the horizontal direction with respect to the film surface.
  • the positive A plate preferably exhibits a smectic phase. Note that in this specification, the smectic phase refers to a state in which molecules aligned in one direction have a layer structure.
  • the nematic phase refers to a state in which the constituent molecules have an orientational order but do not have a three-dimensional positional order. It is also preferable to use a reverse wavelength dispersive A-plate as the single-layer quarter-wave plate.
  • the light emitting element substrate includes at least a reflective layer and an organic electroluminescent layer.
  • the light emitting element substrate may be any substrate including a reflective layer and an organic electroluminescent layer on a TFT substrate having a pixel structure formed on a surface of glass or the like by a thin film transistor (TFT) or the like.
  • the organic electroluminescent layer is usually preferably included as a group of organic electroluminescent layers arranged in a matrix on the TFT substrate.
  • any organic electroluminescent layer included in the organic electroluminescent layer group may emit light of the same wavelength.
  • the organic electroluminescent layer group preferably includes organic electroluminescent layers that emit light having different wavelengths, and includes two or more organic electroluminescent layers, particularly three or more organic electroluminescent layers. It is more preferable.
  • the organic electroluminescent layer group preferably includes a red light emitting organic electroluminescent layer, a green light emitting organic electroluminescent layer, and a blue light emitting organic electroluminescent layer.
  • the organic electroluminescent layer has at least a light emitting layer, and as a functional layer other than the light emitting layer, a hole transport layer, an electron transport layer, a hole block layer, an electron block layer, a hole injection layer, an electron injection layer, etc.
  • the layer which may contain each layer is meant.
  • an organic electroluminescent layer having a microcavity structure described in JP-A-2016-139372 may be used.
  • the image display device can display an image by extracting light by a top emission method.
  • the image display device when the TFT substrate, the organic electroluminescent layer, and the reflective layer are arranged in this order, the image display device can display an image by taking out light by a bottom emission method.
  • the image display apparatus of the present invention may be a top emission system or a bottom emission system, but is preferably a top emission system.
  • the reflective layer may be a reflective electrode, for example.
  • an aluminum electrode generally used in an organic electroluminescent device can be used.
  • the light emitting element substrate further includes a transparent electrode such as an ITO (Indium Tin Oxide) electrode.
  • ITO Indium Tin Oxide
  • Examples of the layer structure in the light emitting element substrate include the following. TFT substrate / reflective electrode / organic electroluminescent layer / transparent electrode TFT substrate / transparent electrode / organic electroluminescent layer / reflective electrode
  • the light emitting element substrate may further include a barrier layer for sealing the organic electroluminescent layer, a light extraction layer, and the like.
  • the layers in the organic electroluminescent layer the layers in the organic electroluminescent layer, the material and configuration of the transparent electrode and the reflective electrode, the stacking order, and the configuration of the light emitting element substrate, the description in paragraphs 0081 to 0122 of JP2012-155177A Reference can be made to Japanese Patent No. 40111292 and Japanese Patent Laid-Open No. 2016-139372.
  • the image display device of the present invention may include an adhesive layer for bonding the layers.
  • Adhesives or pressure-sensitive adhesives used to form the adhesive layer include hot melt types, thermosetting types, photocuring types, reactive curing types, and pressure-sensitive adhesive types that do not require curing from the viewpoint of curing methods. , Urethane, urethane acrylate, epoxy, epoxy acrylate, polyolefin, modified olefin, polypropylene, ethylene vinyl alcohol, vinyl chloride, chloroprene rubber, cyanoacrylate, polyamide, polyimide, polystyrene A compound such as polyvinyl butyral can be used.
  • the photo-curing type particularly the ultraviolet curing type
  • the material is acrylate, urethane acrylate, epoxy acrylate, etc. It is preferable to do.
  • the adhesive layer may be a highly transparent adhesive transfer tape (OCA tape).
  • OCA tape is preferably used for adhesion between the organic electroluminescent element substrate and a film (a laminate including a polarization separation layer) provided thereon.
  • a commercially available product for an image display device particularly a commercially available product for the image display unit surface of the image display device may be used. Examples of commercially available products include PANAC Corporation pressure-sensitive adhesive sheets (PD-S1 and the like), MHI Series MHM series pressure-sensitive adhesive sheets, and the like.
  • the thickness of the adhesive layer is preferably 0.1 ⁇ m to 10 ⁇ m, and more preferably 0.5 ⁇ m to 5.0 ⁇ m.
  • a positive C region-containing layer and a polarization separation layer are provided in any order on a light emitting element substrate, and a separately formed circularly polarizing plate is bonded on the surface of the retardation layer.
  • a positive C region-containing layer and a polarization separation layer may be provided in any order on the retardation layer side of the circularly polarizing plate, and the surface may be adhered to the light emitting element substrate. May be. Either one of the positive C region-containing layer and the polarization separation layer may be provided on the light emitting element substrate and the other may be provided on the circularly polarizing plate, and then both may be bonded.
  • the polarization separation sites are arranged in a matrix corresponding to the organic electroluminescent layers. It is preferable to use a polarization separation layer.
  • the organic electroluminescent layer group and the polarization separation region may be aligned, laminated, adhered, and the like so that each organic electroluminescence layer and the polarization separation region correspond to each other.
  • each polarization separation site and positive C region is Positioning may be performed so as to correspond, and lamination, adhesion, or the like may be performed.
  • the organic electroluminescent layer group includes an organic electroluminescent layer that emits light of two or more wavelengths
  • a polarization separation layer in which a polarization separation portion is arranged may be prepared and bonded so that light in one polarization state is reflected in a wavelength range where the light is emitted.
  • the emission band of the organic electroluminescent layer when indicated by a numerical value, it means the half width of the emission spectrum peak of the organic electroluminescent layer.
  • SK-2057 manufactured by Soken Chemical Co., Ltd. was used as the adhesive.
  • a commercially available organic EL image display device (SC-04E manufactured by Samsung) including a blue organic electroluminescent layer, a green organic electroluminescent layer, and a red organic electroluminescent layer was prepared. From this organic EL image display device, a polarizing plate and an optical film were peeled off to expose the surface of the barrier layer protecting the light emitting element, and used as a light emitting element substrate.
  • the light emission spectrum of the blue organic electroluminescent layer of the used light emitting element substrate is center wavelength 450 nm, emission band 40 nm, the emission spectrum of green organic electroluminescent layer is center wavelength 550 nm, emission band 45 nm, and the spectrum of red organic electroluminescent layer is The center wavelength was 650 nm and the emission band was 50 nm.
  • the arrangement of the blue organic electroluminescent layer (Blue), the green organic electroluminescent layer (Green), and the red organic electroluminescent layer (Red) in the light emitting element substrate is as shown in FIG.
  • the angle of the slow axis of the ⁇ / 4 plate was ⁇ 12.5 °. Subsequently, the surface of the barrier layer of the light emitting element substrate and the optically anisotropic layer B of CP1 were bonded together using an adhesive to produce an evaluation image display device.
  • the alignment film composition A is uniformly coated on a glass substrate having a thickness of 0.5 mm (Corning, Eagle XG) using a slit coater, and then dried in an oven at 100 ° C. for 2 minutes to obtain a film thickness of 0.5 ⁇ m.
  • a glass substrate A with an alignment film was obtained.
  • the alignment film was rubbed in a direction parallel to the coating direction.
  • the cholesteric composition LC-1 was spin-coated on the rubbing surface so that the dry film thickness was 1.25 ⁇ m.
  • the glass substrate with the alignment film on which the coating film is arranged is heated on a hot plate at 80 ° C.
  • the surface of the optically anisotropic layer B side of the circularly polarizing plate CP1 similar to that of Comparative Example 1 was bonded to the glass substrate side of the laminate including the layer having the obtained cholesteric liquid crystal layer pattern to prepare a laminate.
  • the layer side having the cholesteric liquid crystal layer pattern of the obtained laminate and the barrier layer of the light emitting element substrate are bonded to the center of the blue organic electroluminescent layer and the cholesteric liquid crystal layer (individual exposed portions) shown in FIG.
  • the images were bonded together so that the centers of the images coincided with each other to produce an evaluation image display device.
  • AS acrylonitrile-styrene
  • the melt-extruded sheet was longitudinally stretched in a longitudinal uniaxial stretching machine at an air supply temperature of 130 ° C., a sheet surface temperature of 120 ° C., a stretching speed of 30% / min, and a stretching ratio of 35%.
  • the longitudinally stretched sheet was stretched in the tenter type stretching machine at an air supply temperature of 130 ° C., a sheet surface temperature of 120 ° C., a stretching speed of 30% / min, and a stretching ratio of 35%.
  • the laterally stretched sheet was cut off at both ends in front of the winding part and wound up as a roll film having a length of 4000 m to obtain a long support having a thickness of 40 ⁇ m.
  • R 1 is a hydrogen atom
  • R 2 and R 3 are methyl groups.
  • the alignment film composition A was uniformly coated on the support using a bar coater, and then dried in an oven at 100 ° C. for 2 minutes to obtain a support with an alignment film having a thickness of 0.5 ⁇ m.
  • the liquid crystal composition LC-3 was applied to the alignment film using a bar coater so that the dry film thickness was 1.25 ⁇ m.
  • the film surface temperature is 95 ° C. for 60 seconds, and immediately after that, exposure is performed at 500 mJ / cm 2 using a PLA-501F exposure machine (extra-high pressure mercury lamp) manufactured by Canon Inc. in air at 25 ° C.
  • the surface of the positive C region-containing layer was bonded to the optically anisotropic layer side of the circularly polarizing plate CP1 using an adhesive, and then the support was peeled off to transfer only the positive C region-containing layer.
  • the glass substrate side of the laminate including the layer having the cholesteric liquid crystal layer pattern produced by the same method as in Comparative Example 2 was bonded to the surface of the positive C region-containing layer using an adhesive. Thereafter, the obtained laminate was bonded to the light emitting element substrate in the same procedure as in Comparative Example 2 to produce an evaluation image display device.
  • Example 2 The thickness of the layer having the cholesteric liquid crystal layer pattern is 2.08 ⁇ m (Rth (550) is 250 nm), and the Rth (550) of the positive C region-containing layer is changed to ⁇ 250 nm by changing the thickness of the coating layer.
  • An evaluation image display device was produced in the same manner as in Example 1.
  • Example 3 The thickness of the layer having the cholesteric liquid crystal layer pattern is 0.58 ⁇ m (Rth (550) is 70 nm), and the Rth (550) of the positive C region-containing layer is ⁇ 70 nm by changing the thickness of the coating layer.
  • An evaluation image display device was produced in the same manner as in Example 1.
  • Comparative Example 3 A laminate having a cholesteric liquid crystal layer (having no pattern) with a reflection center wavelength of 450 nm instead of a layer having a cholesteric liquid crystal layer pattern, in the same procedure as in Comparative Example 2 except that no photomask was used. The body was made. An image display device for evaluation was produced in the same procedure as in Example 1 except that the obtained laminate was used instead of a laminate comprising a layer having a cholesteric liquid crystal layer pattern.
  • Example 4 On the layer side having a cholesteric liquid crystal layer pattern of a laminate having a cholesteric liquid crystal layer pattern and a circularly polarizing plate prepared in Comparative Example 2, a positive C region-containing layer prepared by the same method as in Example 1 is used. Bonding was performed using an adhesive, and then the support was peeled off to transfer only the positive C region-containing layer. The obtained polarizing plate was bonded to a light emitting element substrate in the same manner as in Comparative Example 2 to produce an image display device for evaluation.
  • Example 5 The glass substrate A with alignment film was rubbed, and the cholesteric composition LC-2 was applied by spin coating so that the dry film thickness was 1.25 ⁇ m. Next, the film surface temperature was 95 ° C. for 60 seconds, and immediately thereafter, exposure was performed at 100 ° C./cm 2 using a Canon-made PLA-501F exposure machine (extra-high pressure mercury lamp) in air at 25 ° C. Then, exposure was performed through a photomask B in which the shielding portion and the transmission portion of the photomask A were inverted. Thereafter, the whole substrate is heated to 200 ° C.
  • a Canon-made PLA-501F exposure machine extra-high pressure mercury lamp
  • a layer having a cholesteric liquid crystal layer pattern fractionated into a region (C) having cholesteric reflection of 150 nm and an optically isotropic region (D) was obtained.
  • the obtained laminate including a layer having a cholesteric liquid crystal layer pattern was bonded to a circularly polarizing plate, a positive C region-containing layer, and a light emitting element substrate in the same manner as in Example 3 to produce an image display device for evaluation. .
  • Example 6 The glass substrate A with alignment film was rubbed, and the cholesteric composition LC-2 was applied by spin coating so that the dry film thickness was 1.25 ⁇ m. Next, the film surface temperature was 95 ° C. for 60 seconds, and immediately thereafter, exposure was performed at 100 ° C./cm 2 using a Canon-made PLA-501F exposure machine (extra-high pressure mercury lamp) in air at 25 ° C. Then, exposure was performed through a photomask B in which the shielding portion and the transmission portion of the photomask A were inverted. Thereafter, the whole substrate is heated to 200 ° C.
  • a Canon-made PLA-501F exposure machine extra-high pressure mercury lamp
  • a layer having a cholesteric liquid crystal layer pattern fractionated into a region (C) having cholesteric reflection of 150 nm and an optically isotropic region (D) was obtained.
  • the obtained laminate including the layer having the cholesteric liquid crystal layer pattern was bonded to the circularly polarizing plate, the positive C region-containing layer, and the light emitting element substrate in the same manner as in Example 1 to produce an evaluation image display device. .
  • Example 7 ⁇ Preparation of positive C region-containing layer having optically isotropic region>
  • the alignment film composition A was uniformly coated on the support using a bar coater, and then dried in an oven at 100 ° C. for 2 minutes to obtain a support with an alignment film having a thickness of 0.5 ⁇ m.
  • the liquid crystal composition LC-3 was applied to the alignment film using a bar coater so that the dry film thickness was 1.25 ⁇ m.
  • the film surface temperature was 95 ° C. for 60 seconds, and immediately thereafter, exposure was performed at 100 ° C./cm 2 using a Canon-made PLA-501F exposure machine (extra-high pressure mercury lamp) in air at 25 ° C. Then, exposure was performed through a photomask B.
  • the entire substrate is heated to 200 ° C. and exposed to nitrogen with an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at an exposure amount of 500 mJ / cm 2 , whereby Rth (550) is ⁇ 150 nm in vertical alignment.
  • Rth (550) is ⁇ 150 nm in vertical alignment.
  • a laminate including a positive C region-containing layer having an optically isotropic region divided into a region (E) and an optically isotropic region (D) was obtained. Evaluation was performed in the same manner as in Example 1 except that the layer (C) of the patterned cholesteric sample and the region (E) of the patterned vertical alignment sample were overlapped using this positive C region-containing layer. An image display device was produced.
  • a positive A plate and a positive C plate (positive C region-containing layer) prepared by the method shown in Example 32 of Japanese Patent Application Laid-Open No. 2015-200861 are arranged so that the polarizer, the positive A plate, and the positive C plate are in this order.
  • a circularly polarizing plate X2 was prepared by pasting together with a polarizer similar to that used in Comparative Example 1.
  • the slow axis of the positive A plate was set to 45 ° with respect to the transmission axis of the polarizer.
  • the positive A plate had Re (550) of 138 nm, Rth (550) of 69 nm, and Re (450) / Re (550) of 0.86.
  • the positive C plate had Re (550) of 0 nm, Rth (550) of ⁇ 60 nm, and Rth (450) / Rth (550) of 1.05.
  • Example 8 A circularly polarizing plate X3 was produced in the same manner as in Comparative Example 4 except that the Rth (550) of the positive C plate (positive C region-containing layer) was changed to -210 nm by changing the thickness of the coating layer.
  • the laminated optical body obtained by bonding the glass substrate side of the laminate including the layer having the cholesteric liquid crystal layer pattern produced by the same method as in Example 1 to the surface of the positive C plate using an adhesive. Were attached to the light emitting element substrate in the same procedure as in Comparative Example 2 to produce an evaluation image display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本発明は、発光素子基板および円偏光板を含む画像表示装置であって、上記発光素子基板は反射層および上記反射層上に有機電界発光層を含み、上記反射層、上記有機電界発光層、および上記円偏光板はこの順で配置されており、上記有機電界発光層と上記円偏光板との間に偏光分離層を含み、上記偏光分離層は、上記有機電界発光層が発光した光のうち、1つの偏光状態の光を反射し、かつ他方の偏光状態の光を透過する偏光分離領域と可視光透過領域とを含み、上記偏光分離領域はコレステリック液晶相を固定して形成された層からなり、上記有機電界発光層と上記円偏光板との間にポジティブC領域含有層を含む有機EL画像表示装置を提供する。本発明の有機EL画像表示装置は輝度が高く、斜め観察時の光漏れやにじみが少ない。

Description

有機EL画像表示装置
 本発明は、有機EL画像表示装置に関する。
 有機電界発光層の発光に基づき画像を形成する有機EL画像表示装置(「有機電界発光画像表示装置」、以下、単に「画像表示装置」ということがある。)においては、外光の映り込みの低減およびコントラスト向上のために位相差層と偏光層とからなる円偏光板を配置することが一般的である。しかし、この構成では、有機電界発光層で発光した光の半分以上が円偏光板で吸収されてしまう。
 上記問題に鑑み、特許文献1では、有機電界発光層と円偏光板との間に、偏光分離手段を設けることが提案されている。偏光分離手段で、円偏光板を透過する光は透過させ、円偏光板で吸収される偏光は反射して発光素子基板中の反射層で鏡面反射させることに基づき、光利用効率が高められ輝度が向上する。
さらに、特許文献1においては、有機電界発光層の配置に対応してブラックマトリクスで区分されたそれぞれの領域に、対応する有機電界発光層の発光波長に対応する波長選択反射性を有するコレステリック液晶層を形成して得られる偏光分離手段が具体的に開示されている。
 特許文献2では、上記構成においては、視野角の増加に伴いコレステリック液晶層で生じる不要な位相差に基づき外光の偏光状態が変化することに由来して一部の光が偏光板で吸収されず、透過して外部に漏れるという問題があることを指摘している。特許文献2では、上記問題を解決するために、面内方向には屈折率差がほとんどなく、厚み方向の屈折率が面内方向の屈折率とは異なる屈折率楕円体として機能する位相補償層をさらに含む構成とすることが提案されている。
特許第4011292号公報 特開2005-63841号公報
 特許文献1および2に記載の有機EL画像表示装置においては有機電界発光層と円偏光板との間に有機電界発光層に対応する区分を設けるためのブラックマトリクスが設けられている。可視光遮断性のブラックマトリクスにより有機電界発光層から円偏光板側に透過する光の量は低下するため、有機EL画像表示装置の輝度は低下する。一方、可視光遮断性の層を設けずにコレステリック液晶層を配置すると、画像ににじみが見られるという問題があった。
 本発明は、上記問題の解決のためになされたものであって、輝度が高く、外光反射に起因する斜め観察時の光漏れ、およびにじみの少ない有機EL画像表示装置を提供することを課題とする。
 本発明者らは、上記の斜め観察時の光漏れが、コレステリック液晶層が有する光学的性質によって生じていると考え、さらに検討を重ねて、本発明を完成させた。
 すなわち、本発明は以下の[1]~[17]を提供するものである。
[1]発光素子基板および円偏光板を含む有機EL画像表示装置であって、
上記発光素子基板は反射層および上記反射層上に有機電界発光層を含み、
上記反射層、上記有機電界発光層、および上記円偏光板はこの順で配置されており、
上記有機電界発光層と上記円偏光板との間に偏光分離層を含み、
上記偏光分離層は、上記有機電界発光層が発光した光のうち、1つの偏光状態の光を反射し、かつ他方の偏光状態の光を透過する偏光分離領域と、可視光透過領域とを含み、
上記偏光分離領域はコレステリック液晶相を固定して形成された層からなり、
上記有機電界発光層と上記円偏光板との間にポジティブC領域含有層を含む、有機EL画像表示装置。
[2]上記ポジティブC領域含有層のポジティブC領域の波長550nmにおける膜厚方向のレターデーションRth(550)が-250nm~-70nmである[1]に記載の有機EL画像表示装置。
[3]上記ポジティブC領域含有層のポジティブC領域の波長550nmにおける膜厚方向のレターデーションRth(550)が-230nm~-130nmである[1]に記載の有機EL画像表示装置。
[4]上記円偏光板が1/4波長板、1/2波長位相差板、および偏光層をこの順で含む[1]~[3]のいずれかに記載の有機EL画像表示装置。
[5]上記円偏光板が逆波長分散性のAプレート、および偏光層を含む[1]~[3]のいずれかに記載の有機EL画像表示装置。
[6]上記有機電界発光層、上記ポジティブC領域含有層、上記偏光分離層、および上記円偏光板がこの順で配置されている[1]~[5]のいずれかに記載の有機EL画像表示装置。
[7]上記可視光透過領域が上記偏光分離領域作製のための組成物と同一の組成物を用いて作製されている[1]~[6]のいずれかに記載の有機EL画像表示装置。
[8]上記可視光透過領域が光学的に等方性の領域からなる[1]~[7]のいずれかに記載の有機EL画像表示装置。
[9]上記ポジティブC領域含有層がポジティブC領域からなり、
上記ポジティブC領域の可視光領域の任意の波長Xnmでの膜厚方向のレターデーションRth(X)の絶対値が、上記偏光分離領域の波長Xにおける膜厚方向のレターデーションRth-Ch(X)の絶対値と上記可視光透過領域の波長XにおけるレターデーションRth-T(X)の絶対値との間の任意の値である[8]に記載の有機EL画像表示装置。
[10]上記可視光透過領域がコレステリック液晶相を固定して形成された層であり紫外光波長域または赤外光波長域に選択反射の中心波長を有する[7]に記載の有機EL画像表示装置。
[11]上記ポジティブC領域含有層がポジティブC領域からなり、
上記ポジティブC領域の可視光領域の任意の波長Xnmにおける膜厚方向のレターデーションRth(X)の絶対値が、上記偏光分離領域の波長Xnmにおける膜厚方向のレターデーションRth(X)の絶対値と等しい[10]に記載の有機EL画像表示装置。
[12]上記ポジティブC領域含有層がポジティブC領域に加えさらに光学的に等方性の領域を含む[8]に記載の有機EL画像表示装置。
[13]上記ポジティブC領域の可視光領域の任意の波長Xnmにおける膜厚方向のレターデーションRth(X)の絶対値が上記偏光分離領域の波長Xnmにおける膜厚方向のレターデーションRth(X)の絶対値と等しい[12]に記載の有機EL画像表示装置。
[14]上記発光素子基板は上記反射層上に上記有機電界発光層がマトリクス状に配置された有機電界発光層群を含む[1]~[13]のいずれかに記載の有機EL画像表示装置。
[15]上記偏光分離領域が上記有機電界発光層群に対応してマトリクス状に配置された偏光分離部位の集合である[14]に記載の有機EL画像表示装置。
[16]上記有機電界発光層群が2種以上の波長の光を発光する有機電界発光層を含み、
上記偏光分離部位は対応する位置に配置されている有機電界発光層が発光する波長域で1つの偏光状態の光を反射する[15]に記載の有機EL画像表示装置。
[17]上記可視光透過領域が光学的に等方性の領域からなり、
上記ポジティブC領域含有層が上記ポジティブC領域および光学的に等方性の領域を含み、上記ポジティブC領域が上記マトリクス状に配置された上記偏光分離部位に対応してマトリクス状である[15]または[16]のいずれかに記載の有機EL画像表示装置。
 本発明により、輝度が高く、斜め観察時の光漏れやにじみもない有機EL画像表示装置を提供することができる。
本発明の画像表示装置の例の概略断面図を示す図である。 偏光分離層を法線方向において画像表示側から見た平面図において、式(1)および式(2)中の、L、M、Nを示す図である。 実施例で用いたフォトマスクAの透過部(白)および遮蔽部(黒)を示す図である。 SC-04Eの発光素子基板における、青色有機電界発光層(Blue)、緑色有機電界発光層(Green)、および赤色有機電界発光層(Red)の配置を示す図である。
 以下、本発明を詳細に説明する。
 本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、数値、数値範囲、及び定性的な表現(例えば、「同一」、「同じ」、「等しい」等の表現)については、画像表示装置やそれに用いられる部材について一般的に許容される誤差を含む数値、数値範囲及び性質を示していると解釈されるものとする。
 本明細書において、例えば、「45°」、「平行」、「垂直」あるいは「直交」等の角度は、特に記載がなければ、厳密な角度との差異が5°未満の範囲内であることを意味する。厳密な角度との差異は、4°未満であることが好ましく、3°未満であることがより好ましい。
 本明細書において、「(メタ)アクリレート」は、「アクリレートおよびメタクリレートのいずれか一方または双方」の意味で使用される。
 本明細書において、円偏光につき「センス」というときは、右円偏光であるか、または左円偏光であるかを意味する。円偏光のセンスは、光が手前に向かって進んでくるように眺めた場合に電場ベクトルの先端が時間の経過に従って時計回りに回る場合が右円偏光であり、反時計回りに回る場合が左円偏光であるとして定義される。
 本明細書においては、コレステリック液晶の螺旋の捩れ方向について「センス」との用語を用いることもある。コレステリック液晶の螺旋の捩れ方向(センス)が右の場合は右円偏光を反射し、左円偏光を透過し、センスが左の場合は左円偏光を反射し、右円偏光を透過する。
 可視光線は電磁波のうち、ヒトの目で見える波長の光であり、380nm~780nmの波長域の光を示す。
 本明細書において、可視光透過率はJIS A 5759:2008に準拠して測定したものであればよい。可視光透過率の測定は、例えば、紫外可視近赤外分光機(日本分光(株)製、V-670、積分球ユニットISN-723使用)を用いて行うことができる。
 また、本明細書において、可視光反射率は、JIS A5759に記載の計算方法に基づき算出した数値を意味する。すなわち、分光光度計にて波長 380nm~780nmの反射率を測定し、CIE(国際照明委員会)昼光 D65の分光分布、CIE 明順応標準比視感度の波長分布および波長間隔から得られる重価係数を乗じて加重平均することによって光反射率を求める。
 可視光反射率を得る際には、例えば、日本分光(株)製分光光度計「V-670」を用いることができる。
 本明細書において「遅相軸」とは、面内において屈折率が最大となる方向を意味する。
 本明細書において、Re(λ)、Rth(λ)は各々、波長λにおける面内のレターデーションおよび厚さ方向のレターデーションを表す。本明細書において、Re(λ)およびRth(λ)はAxoScan OPMF-1(オプトサイエンス社製)において、波長λで測定した値である。AxoScanにて平均屈折率((Nx+Ny+Nz)/3)と膜厚(d(μm))を入力することにより、以下が算出される。
 遅相軸方向(°)
 Re(λ)=R0(λ)
 Rth(λ)=((nx+ny)/2-nz)×d
 なお、R0(λ)は、AxoScan OPMF-1で算出される数値として表示されるものであるが、Re(λ)を意味している。
<有機EL画像表示装置>
 本発明の画像表示装置は、有機電界発光層の発光に基づいて画像表示を行う有機EL画像表示装置である。有機EL画像表示装置は、自発光型の表示装置であり、CRT(Cathode Ray Tube)型の表示装置や液晶表示装置と比較して視認性が高い、視野角依存性がないなどの表示性能の利点を有し、また、軽量化、薄型化できるといった利点もある。
 有機EL画像表示装置は、有機電界発光層が設けられた発光素子基板により画像表示を行う。また、有機EL画像表示装置は、一般的に外光の映り込みの低減およびコントラスト向上のために有機電界発光層の画像表示側に円偏光板を含む。
 本発明の画像表示装置は、有機電界発光層と円偏光板との間に、偏光分離層を含む。本発明の画像表示装置においては、反射層、有機電界発光層、偏光分離層、および円偏光板がこの順に配置される。有機EL画像表示装置においては、複数の有機電界発光層が有機電界発光層群として、反射層上にマトリクス状に含まれていることが好ましい。
 本発明の画像表示装置は、さらに、有機電界発光層と円偏光板との間に、ポジティブC領域含有層を含む。本発明の画像表示装置においては、反射層、有機電界発光層、ポジティブC領域含有層、および円偏光板がこの順に配置される。
 偏光分離層およびポジティブC領域含有層の順は特に限定されない。有機電界発光層、ポジティブC領域含有層、偏光分離層および円偏光板がこの順であってもよく、有機電界発光層、偏光分離層、ポジティブC領域含有層および円偏光板がこの順であってもよい。
 本発明の画像表示装置の例の概略断面図を図1に示す。なお、図において層間に設けられている場合のある接着層は省略されている。
 図1(a)~(e)に示す構成では、いずれも偏光分離層が偏光分離部位8および光学的に等方性の可視光透過領域9を有する。図1(a)、(c)~(e)は、いずれも反射層3、有機電界発光層2、偏光分離層1、ポジティブC領域含有層12、円偏光板7をこの順に有する構成を示す。図1(b)は、反射層3、有機電界発光層2、ポジティブC領域含有層12、偏光分離層1、円偏光板7をこの順に有する構成を示す。図1(d)に示す構成では、ポジティブC領域含有層12がポジティブC領域13および光学的に等方性の領域からなる。図1(a)~(d)では、いずれも位相差層5がλ/2板およびλ/4板の二層構成であるが、図1(e)では、位相差層5としては一層構成のλ/4板(例えば逆波長分散性のAプレート)が用いられている。
[偏光分離層、偏光分離部位、偏光分離領域]
 本発明の画像表示装置における偏光分離層には、複数の有機電界発光層に対応する複数の偏光分離部位が含まれていることが好ましい。本明細書において、対応するとは、画像表示側から画像表示装置を見たときに、有機電界発光層と偏光分離部位とが同じ位置または少なくとも互いに一部が重なる位置にある状態であることを意味する。対応している有機電界発光層と偏光分離部位とにおいては、有機電界発光層からの発光(好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上)が偏光分離部位で反射または透過されている状態であればよい。
 画像表示側から画像表示装置を見たときの対応している有機電界発光層と偏光分離部位とはサイズが同じであってもよく、有機電界発光層のサイズが大きくてもよく、偏光分離部位のサイズが大きくてもよい。そのうち、偏光分離部位のサイズが大きいことが好ましい。本発明の画像表示装置は画像表示側から見たときに有機電界発光層が対応する偏光分離部位に覆われるようなサイズであることが好ましい。
 本発明の画像表示装置を画像表示側から見たとき、偏光分離層において偏光分離部位がマトリクス状に配置されていることが好ましい。本明細書において、複数の偏光分離部位が形成する領域をまとめて偏光分離領域ということがある。
 本明細書において、偏光分離部位は、対応する有機電界発光層の発光の波長域において、偏光分離を行う部位をいう。偏光分離とは、1つの偏光状態の光を反射し、かつ他方の偏光状態の光を透過することをいう。本発明の画像表示装置において、偏光分離は、一方のセンスの円偏光を反射し、かつ他方のセンスの円偏光を透過することであればよい。
 偏光分離部位は、対応する有機電界発光層の発光の波長域において選択的に偏光分離を行うことができる部位であってもよく、上記波長域以外の波長域でも偏光分離を行うことができる部位であってもよい。
 「選択的な偏光分離」は、可視光領域のうち、偏光分離部位が対応する有機電界発光層の発光の波長域に対応する波長域のみにおける偏光分離をいう。したがって、偏光分離部位は、可視光領域のうち、偏光分離部位が対応する有機電界発光層の発光の波長域に対応する波長域のみにおいて偏光分離するものであってもよく、実質的に可視光の全波長域において偏光分離するものであってもよく、赤色波長域、緑色波長域、および青色波長域などの複数の波長域で偏光分離するものであってもよい。
 偏光分離部位は、対応する有機電界発光層の発光の波長域において選択的に偏光分離を行うことができる部位であることが好ましい。
 本発明の画像表示装置においては、有機電界発光層の発光のうち、円偏光板を透過しない偏光状態の光が偏光分離部位で反射されて反射層に向かうように、偏光分離部位が配置される。
 本発明の画像表示装置において、偏光分離層はさらに可視光透過領域を含む。偏光分離層は可視光透過領域により区分されて偏光分離部位を形成していることも好ましい。偏光分離部位を可視光遮断層等ではなく可視光透過領域を用いて区分することにより、有機電界発光層から画像表示側に到達する光の量を増加させて輝度を向上させることができる。また、偏光分離部位を連続的に設けず、可視光透過領域により区分することによって、有機電界発光層の内部から斜めに円偏光板方向に進む光に由来する画像のにじみを低減させることができる。画像のにじみは、有機電界発光層の内部から斜めに円偏光板方向に向かった光が偏光分離部位で反射し、その反射光が反射層で反射されて画像表示側に出射する過程で、偏光解消した成分が多重反射した結果、生じていると考えられる。可視光透過領域を用いて区分することにより、有機電界発光層の内部から斜めに円偏光板方向に向かった光はそのまま透過して画像表示側に出やすくなるため、にじみ(画像表示装置の白色表示時に斜め方向から観察したときの色にじみなど)を低減することができる。
 可視光透過領域は可視光透過率が80%~100%であればよく、90%~100%であることが好ましい。可視光透過領域は少なくとも有機電界発光層側の面において非光反射性であることが好ましい。特に、有機電界発光層群の各発光波長域において非光反射性であることが好ましい。可視光波長域全体で非光反射性であることも好ましい。可視光透過領域の有機電界発光層側の面における可視光反射率は0%~5%であることが好ましく、0%~2%であることがより好ましい。
 可視光透過領域は、例えば、光学的に等方性の領域、紫外光波長域または赤外光波長域に選択反射の中心波長を有する領域などであればよい。これらはいずれも、例えば後述するようにいずれも偏光分離部位作製のための組成物と同一の組成物を用いて作製することができる。可視光透過領域は上記偏光分離部位作製の際に形成された塗布膜や硬化膜などをエッチングにより除去した後の部位であって発光素子基板との接着のための接着剤となっている部位であってもよい。
 本発明の画像表示装置においては、偏光分離層のマトリクスの任意の座標xyの偏光分離部位を通り、かつ反射層に垂直な任意の平面Zにおいて、下記式(1)が満たされていることが好ましい。下記式(1)を満たすように可視光透過領域で区分を設け偏光分離部位を形成することにより、上述のような多重反射と偏光解消に由来するにじみを効率良く低減することができる。
   L ≦ (M+N)/2  (1)
   L:座標xyの偏光分離部位と平面Zの交線の長さ
   M:座標xyの偏光分離部位に対応する座標xyの有機電界発光層と平面Zの交線の長さ
   N:座標xyの有機電界発光層および平面Zの交線の中心と、座標xyの有機電界発光層と同じ波長の光を発光する有機電界発光層であって平面Zに交点を有する最も近い有機電界発光層および平面Zの交線の中心との距離
 L、M、Nは、本発明の画像表示装置を発光素子基板の法線方向において画像表示側から偏光分離層を見た平面図において、決定すればよく、例えば、図2に示すように規定できる。
 本発明の画像表示装置においては、また、偏光分離層の任意の座標xyの偏光分離部位において、下記式(2)が満たされていることが好ましい。下記式(2)を満たすように可視光透過領域で区分を設け偏光分離部位を形成することにより、偏光分離部位が、偏光分離部位と有機電界発光層との距離に見合ったサイズとなるため、光利用効率を高め輝度を向上させることができる。
   L ≧ 1.25×D + M (2)
   D:座標xyの偏光分離部位と座標xyの有機電界発光層との距離
 本発明の画像表示装置においては、偏光分離部位の上記の反射の波長域(対応する有機電界発光層の発光の波長域における反射)が有機電界発光層の上記発光の波長域よりも広いことが好ましい。有機電界発光層群として異なる発光波長の有機電界発光層を含む画像表示装置においては、それぞれの有機電界発光層の発光スペクトルの半値幅は異なり得るが、対応している有機電界発光層と偏光分離部位とにおいて、上記関係が満たされていればよい。
 偏光分離部位の反射の波長域が有機電界発光層の発光の波長域よりも広い有機EL画像表示装置においては、輝度が正面だけでなく、斜め方向においても向上する。後述するように、斜め方向から入射する光に対しては、コレステリック液晶層を含む偏光分離部位の反射波長が短波長にシフトする。そのため、有機電界発光層から法線方向で入射する光を反射する偏光分離部位であっても、斜め方向からの光を反射できないことがある。斜め方向における輝度向上の効果は、偏光分離部位の反射の波長域を広帯域化することにより、反射できなかった光が反射されるようになることによると考えられる。
 偏光分離部位の反射の波長域とは、偏光分離部位の透過スペクトルの半値幅(半値全幅)を意味する。また、有機電界発光層の発光の波長域とは、有機電界発光層の発光スペクトルの半値幅を意味する。
 公知の有機電界発光層の発光スペクトルの半値幅は、通常、40~55nmであり、偏光分離部位の透過スペクトルの半値幅はこれより広い範囲で適宜設定すればよい。典型的には、70~130nmが好ましく、80~120nmがより好ましく、90~110nmが最も好ましい。反射帯域を70nm以上とすることにより上記の効果が得られ、130nm以下とすることにより、偏光分離部位に由来する消灯時の画像面からの反射率の上昇を抑えることができる。
 偏光分離層中の複数の偏光分離部位は、有機電界発光層群に対応してマトリクス状に配置されていればよい。偏光分離層は、異なる波長において、1つの偏光状態の光を反射し、かつ他方の偏光状態の光を透過する、複数種、好ましくは3種、の偏光分離部位で形成されてもよい。複数種の偏光分離部位の反射波長は、有機電界発光層群に含まれる有機電界発光層の発光波長に対応させる。
 偏光分離部位および偏光分離層は、それぞれ単層であってもよく、複数の層からなっていてもよい。偏光分離部位および偏光分離層は、コレステリック液晶層を含むことが好ましい。偏光分離部位および偏光分離層は、コレステリック液晶層に加えて、配向層、保護層(添加剤層)などを含んでいてもよい。偏光分離部位および偏光分離層は、コレステリック液晶層形成のために用いられる組成物を液晶化合物が配向していない状態で硬化して形成された光学的に等方性の層を含んでいてもよい。
 偏光分離部位は、有機電界発光層が発光した光のうち、1つの偏光状態の光を反射し、かつ他方の偏光状態の光を透過する上記性質を達成している限り特に限定されないが、コレステリック液晶層を含む部位であることが好ましい。
 コレステリック液晶層を含む偏光分離部位は、コレステリック液晶層のみからなっていてもよく、配向層や保護層(添加剤層)などの他の層を含んでいてもよい。
(コレステリック液晶層)
 本明細書において、コレステリック液晶層は、コレステリック液晶相を固定した層を意味する。
 コレステリック液晶相は、特定の波長域において右円偏光または左円偏光のいずれか一方のセンスの円偏光を選択的に反射させるとともに他方のセンスの円偏光を透過する円偏光選択反射を示すことが知られている。本明細書において、円偏光選択反射を単に選択反射ということもある。
 円偏光選択反射性を示すコレステリック液晶相を固定した層を含むフィルムとして、重合性液晶化合物を含む組成物から形成されたフィルムは従来から数多く知られており、コレステリック液晶層については、それらの従来技術を参照することができる。
 コレステリック液晶層は、コレステリック液晶相となっている液晶化合物の配向が保持されている層であればよく、典型的には、重合性液晶化合物をコレステリック液晶相の配向状態としたうえで、紫外線照射、加熱等によって重合、硬化し、流動性が無い層を形成して、同時に、また外場や外力によって配向形態に変化を生じさせることのない状態に変化した層であればよい。なお、コレステリック液晶層においては、コレステリック液晶相の光学的性質が層中において保持されていれば十分であり、層中の液晶化合物はもはや液晶性を示していなくてもよい。例えば、重合性液晶化合物は、硬化反応により高分子量化して、もはや液晶性を失っていてもよい。
 コレステリック液晶層の選択反射の中心波長λは、コレステリック液晶相における螺旋構造のピッチP(=螺旋の周期)に依存し、コレステリック液晶層の平均屈折率nとλ=n×Pの関係に従う。なお、本明細書において、コレステリック液晶層が有する選択反射の中心波長λは、コレステリック液晶層の法線方向から測定した円偏光反射スペクトルの反射ピークの重心位置にある波長を意味する。また、本明細書において、選択反射の中心波長はコレステリック液晶層の法線方向から測定した時の中心波長を意味する。
 コレステリック液晶層の選択反射中心波長と半値幅は下記のように求めることができる。
 分光光度計UV3150(島津製作所)を用いてコレステリック液晶層の透過スペクトル(コレステリック液晶層の法線方向から測定したもの)を測定すると、選択反射帯域に透過率の低下ピークがみられる。このピークの極小透過率と低下前の透過率との中間(平均)の透過率となる2つの波長のうち、短波長側の波長の値をλ(nm)、長波長側の波長の値をλ(nm)とすると、選択反射の中心波長λと半値幅Δλは下記式で表すことができる。
λ=(λ+λ)/2
Δλ=(λ-λ
 上記のように求められる選択反射中心波長はコレステリック液晶層の法線方向から測定した円偏光反射スペクトルの反射ピークの重心位置にある波長と略一致する。
 上記λ=n×Pの式から分かるように、螺旋構造のピッチを調節することによって、選択反射の中心波長を調整できる。偏光分離部位に用いられるコレステリック液晶層においては対応する有機電界発光層から入射する光(例えば、法線方向で入射する光)の反射のために必要とされる選択反射の波長において右円偏光または左円偏光のいずれか一方を選択的に反射するようにn値とP値を調節して、中心波長λを調節することができる。
 すなわち、本発明の画像表示装置においては、用いられる有機電界発光層の発光スペクトルのピーク(極大値)が対応する偏光分離部位のコレステリック液晶層が有する選択反射の中心波長と略同一となるように調整すればよい。選択反射の中心波長と画像表示装置の画像表示のための有機電界発光層の発光ピークの波長を合わせることにより、有機電界発光層が発光した光のうち、1つの偏光状態の光を反射し、かつ他方の偏光状態の光を透過することができる。
 なお、コレステリック液晶層に対して斜めに入射する光に対しては、選択反射の中心波長は短波長側にシフトする。屈折率nのコレステリック液晶層中でコレステリック液晶層の法線方向(コレステリック液晶層の螺旋軸方向)に対して光線がθの角度で通過するときの選択反射の中心波長をλとするとき、λは以下の式で表される。
λ=n×P×cosθ
 コレステリック液晶層の平均屈折率nは重合性液晶化合物の種類などにより調整することができる。
 コレステリック液晶相のピッチ(P値)は重合性液晶化合物とともに用いるキラル剤の種類、またはその添加濃度に依存するため、これらを調整することによって所望のピッチを得ることができる。なお、螺旋のセンスやピッチの測定法については「液晶化学実験入門」日本液晶学会編 シグマ出版2007年出版、46頁、および「液晶便覧」液晶便覧編集委員会 丸善 196頁に記載の方法を用いることができる。
 本発明の画像表示装置において、偏光分離部位としては、有機電界発光層群における各有機電界発光層の発光の波長に対応した選択反射の中心波長を有するコレステリック液晶層を用いればよい。例えば、有機電界発光層群は、赤色発光の有機電界発光層、緑色発光の有機電界発光層、および青色発光の有機電界発光層を含むときは、それぞれに対応した配置で赤色光の波長域(例えば580nm~700nm)に選択反射の中心波長を有するコレステリック液晶層と、緑色光の波長域(例えば500nm~580nm)に選択反射の中心波長を有するコレステリック液晶層と、青色光の波長域(例えば400nm~500nm)に選択反射の中心波長を有するコレステリック液晶層とを含んでいればよい。
 また、本発明の画像表示装置においては偏光分離層の可視光透過領域として紫外光の波長域(例えば10~380nm)に選択反射の中心波長を有するコレステリック液晶層または赤外光の波長域(例えば780nm~2500nm)に選択反射の中心波長を有するコレステリック液晶層を用いてもよい。
 各コレステリック液晶層としては、本発明の画像表示装置の円偏光板が透過する円偏光のセンスに合わせて螺旋のセンスが右または左のいずれかであるコレステリック液晶層が用いられる。具体的には円偏光板が透過する円偏光のセンスと同じセンスの円偏光を透過するコレステリック液晶相が用いられる。
 コレステリック液晶層の反射円偏光のセンスは螺旋のセンスに一致する。偏光分離層に複数種のコレステリック液晶層が含まれるとき、それらの螺旋のセンスは通常全て同じであればよい。
 上述のように、偏光分離部位の反射の波長域は対応する有機電界発光層の発光の波長域よりも広い。これは、偏光分離部位に含まれるコレステリック液晶層の選択反射の半値幅が有機電界発光層の発光スペクトルの半値幅より広いことにより達成されていればよい。
 コレステリック液晶層の選択反射の半値幅Δλ(nm)は液晶化合物の複屈折Δnと上記ピッチPに依存し、Δλ=Δn×Pの関係に従う。そのため、選択反射の半値幅の制御は、Δnを調整して行うことができる。Δnの調整は重合性液晶化合物の種類やその混合比率を調整したり、配向固定時の温度を制御したりすることで行うことができる。対応する有機電界発光層の発光の波長域よりも広い波長域の反射を示す偏光分離部位の形成のために、本発明の画像表示装置においては、後述する重合性液晶化合物または重合性液晶化合物の組み合わせを用いることも好ましい。
 選択反射の中心波長が同一の1種のコレステリック液晶層の形成のために、周期Pが同じで、同じ螺旋のセンスのコレステリック液晶層を複数積層してもよい。周期Pが同じで、同じ螺旋のセンスのコレステリック液晶層を積層することによって特定の波長で円偏光選択性を高くすることができる。
(コレステリック液晶層の作製方法)
 以下、コレステリック液晶層の作製方法について説明する。
 コレステリック液晶層の形成には重合性液晶化合物を含む液晶組成物が用いられる。液晶組成物は、さらにキラル剤(光学活性化合物)を含んでいてもよい。必要に応じてさらに界面活性剤や重合開始剤などと混合して溶剤などに溶解した上記液晶組成物を、支持体、配向膜、下層となるコレステリック液晶層などに塗布し、配向熟成後、液晶組成物の硬化により固定化してコレステリック液晶層を形成することができる。
(重合性液晶化合物)
 重合性液晶化合物としては、棒状液晶化合物であっても、円盤状液晶化合物であってもよいが、棒状液晶化合物が好ましい。
 棒状の重合性液晶化合物の例としては、棒状ネマチック液晶化合物が挙げられる。棒状ネマチック液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。かかる棒状液晶化合物は、低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。
 重合性液晶化合物は、重合性基を液晶化合物に導入することで得られる。重合性基の例には、不飽和重合性基、エポキシ基、オキセタニル基、およびアジリジニル基が含まれ、不飽和重合性基が好ましく、エチレン性不飽和重合性基が特に好ましい。重合性基は種々の方法で、液晶化合物の分子中に導入できる。重合性液晶化合物が有する重合性基の個数は、好ましくは1~6個、より好ましくは1~3個である。重合性液晶化合物の例は、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開WO95/22586、WO95/24455、WO97/00600号公報、WO98/23580、WO98/52905、特開平1-272551号公報、同6-16616号公報、同7-110469号公報、同11-80081号公報、および特開2001-328973号公報、特開2009-69793号公報、特開2010-113249号公報、および特開2011-203636号公報などに記載の化合物が含まれる。
 また、上記以外の重合性液晶化合物として、特開昭57-165480号公報に開示されているようなコレステリック液晶相を有する環式オルガノポリシロキサン化合物等を用いることができる。さらに、前述の高分子液晶化合物としては、液晶を呈するメソゲン基を主鎖もしくは側鎖、または主鎖及び側鎖の両方の位置に導入した高分子、コレステリル基を側鎖に導入した高分子コレステリック液晶、特開平9-133810号公報に開示されているような液晶性高分子、特開平11-293252号公報に開示されているような液晶性高分子等を用いることができる。
 重合性液晶化合物としては、重合条件の異なる2種類以上の反応性基を同一分子内に有する液晶化合物を用いることも好ましい。重合条件の異なる反応性基の組み合わせとしてはラジカル光重合性反応性基およびカチオン光重合性反応性基の組み合わせが挙げられる。
 上述したように、偏光分離部位の反射の波長域が有機電界発光層の発光の波長域よりも広くなるようにするためには、高い屈折率異方性Δnを示す液晶化合物を用いることが好ましい。上記の式(Δλ=Δn×P)からわかるように、高い屈折率異方性Δnを示す液晶化合物を用いることによって広い半値幅Δλを得ることができるからである。具体的には、液晶化合物の30℃におけるΔnは0.25以上が好ましく、0.3以上がより好ましく、0.35以上がさらに好ましい。上限は特に制限されないが、0.6以下の場合が多い。
 屈折率異方性Δnの測定方法としては、液晶便覧(液晶便覧編集委員会編、丸善株式会社刊)202頁に記載の楔形液晶セルを用いた方法が一般的であり、結晶化しやすい化合物の場合は、他の液晶との混合物による評価を行い、その外挿値から屈折率異方性Δnを見積もることもできる。
 高い屈折率異方性Δnを示す液晶化合物としては、例えば、米国特許6514578号公報、特許3999400号公報、特許4117832号公報、特許4517416号公報、特許4836335号公報、特許5411770号公報、特許5411771号公報、特許5510321号公報、特許5705465号公報、特許5721484号公報、および、特許5723641号公報等に記載の化合物が挙げられる。
 本発明において用いられる好ましい重合性液晶化合物として以下の一般式(I)または(II)で表される化合物が挙げられる。一般式(I)または(II)で表される化合物は高い屈折率異方性Δnを示す。
Figure JPOXMLDOC01-appb-C000001
式中、
Aは、置換基を有していてもよい2価の芳香環基を示し、
Lは単結合、-C(=O)O-、-OC(=O)-、-NH-C(=O)-、-C(=O)-NH-、-CH=CH-C(=O)O-、および-OC(=O)-CH=CH-からなる群から選択される連結基を示し、
mは2~12の整数を示し、
SpおよびSpはそれぞれ独立に、単結合、炭素数1から20の直鎖もしくは分岐のアルキレン基、および炭素数1から20の直鎖もしくは分岐のアルキレン基において1つまたは2つ以上の-CH-が-O-、-S-、-NH-、-N(CH)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基からなる群から選択される連結基を示し、
およびQはそれぞれ独立に、重合性基を示す。
 Aは、置換基を有していてもよい2価の芳香環基である。2価の芳香環基は芳香環から2つの水素原子を除いて形成される基であり、芳香環としては、ベンゼン、ナフタレン、フラン、チオフェン、ピロール、ピラゾール、イミダゾール、ピリジン、ピリダジン、ピリミジン、ピラジンなどが挙げられる。2価の芳香環基としてはフェニレン基が好ましく、1,4-フェニレン基が特に好ましい。
 m個のAおよびm-1個のLはそれぞれ同一でも異なっていてもよい。
 2価の芳香環基において、「置換基を有していてもよい」というときの置換基は、特に限定されず、例えば、アルキル基、シクロアルキル基、アルコキシ基、アルキルエーテル基、アミド基、アミノ基、およびハロゲン原子ならびに、上記の置換基を2つ以上組み合わせて構成される基からなる群から選択される置換基が挙げられる。また、置換基の例としては、-C(=O)-X-Sp-Qで表される置換基が挙げられる。ここで、Xは単結合、-O-、-S-、-NH-、もしくは-N(CH)-を示し、SpはSpと同義であり、Qは重合性基を示す。2価の芳香環基は、置換基を1~4個有していてもよい。2個以上の置換基を有するとき、2個以上の置換基は互いに同一であっても異なっていてもよい。
 本明細書において、アルキル基は直鎖状または分岐鎖状のいずれでもよい。アルキル基の炭素数は1~30が好ましく、1~10がより好ましく、1~6が特に好ましい。アルキル基の例としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、1,1-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、直鎖状または分岐鎖状のヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、またはドデシル基を挙げることができる。アルキル基に関する上記説明はアルキル基を含むアルコキシ基においても同様である。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。
 本明細書において、シクロアルキル基の炭素数は、3~20が好ましく、5~10がより好ましい。シクロアルキル基の例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基を挙げることができる。
 Lは単結合、-C(=O)O-、-OC(=O)-、-NH-C(=O)-、-C(=O)-NH-、-CH=CH-C(=O)O-、および-OC(=O)-CH=CH-からなる群から選択される連結基を示す。Lは、-C(=O)O-、-OC(=O)-、-NH-C(=O)-、または-C(=O)-NH-であることが好ましい。m個のLはそれぞれ同一でも異なっていてもよい。
 mは2~12の整数を示し、3~7であることが好ましく、3~5であることがより好ましい。
 Sp、Spはそれぞれ独立に、単結合、炭素数1から20の直鎖もしくは分岐のアルキレン基、および炭素数1から20の直鎖もしくは分岐のアルキレン基において1つまたは2つ以上の-CH-が-O-、-S-、-NH-、-N(CH)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基からなる群から選択される連結基を示す。SpおよびSpはそれぞれ独立に、両末端にそれぞれ-O-、-OC(=O)-、-C(=O)O-および-OC(=O)O-からなる群から選択される連結基が結合した炭素数1から10の直鎖のアルキレン基、-OC(=O)-、-C(=O)O-、-O-、および炭素数1から10の直鎖のアルキレン基からなる群から選択される基を1または2以上組み合わせて構成される連結基であることが好ましく、両方の末端に-O-、-OC(=O)-、-C(=O)O-、および-OC(=O)O-からなる群から選択される連結基がそれぞれ結合した炭素数1から10の直鎖のアルキレン基であることがより好ましい。
 QおよびQはそれぞれ独立に、重合性基を示し、以下の式(Q-1)~式(Q-5)で表される基からなる群から選択される重合性基を示すことが好ましい。
Figure JPOXMLDOC01-appb-C000002
 重合性基としては、アクリロイル基(式(Q-1))、メタアクリロイル基(式(Q-2))、オキセタニル基(式(Q-5))が好ましい。QおよびQの双方がアクリロイル基またはメタアクリロイル基である化合物、およびQおよびQの何れか一方がアクリロイル基またはメタアクリロイル基であり他方がオキセタニル基である化合物がより好ましい。
 一般式(I)で表される化合物は、特表平11-513019号公報(WO97/00600)に記載の方法等で合成することができる。
 以下に式(I)で示される重合性化合物の例を示すが、これらの例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 A11~A14は、それぞれ独立に、置換基を有していてもよい2価の芳香族炭素基または2価の複素環基を表す。2価の芳香族炭素基は芳香族炭素環から2つの水素原子を除いて形成される基であり、2価の複素環基は複素環から2つの水素原子を除いて形成される基である。芳香族炭素環としては、ベンゼン環およびナフタレン環が挙げられる。複素環としては、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ピラゾール環、ピラゾリン環、ピラゾリジン環、トリアゾール環、フラザン環、テトラゾール環、ピラン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環、および、トリアジン環が挙げられる。なかでも、A11~A14は、2価の芳香族炭素基であることが好ましく、フェニレン基であることがより好ましく、1,4-フェニレン基であることがさらに好ましい。
 芳香族炭素基または複素環基に置換してもよい置換基の種類は特に制限されず、例えば、ハロゲン原子、シアノ基、ニトロ基、アルキル基、ハロゲン置換アルキル基、アルコキシ基、アルキルチオ基、アシルオキシ基、アルコキシカルボニル基、カルバモイル基、アルキル置換カルバモイル基、および、炭素数が2~6のアシルアミノ基が挙げられる。
 X11およびX12は、それぞれ独立に、単結合、-COO-、-OCO-、-CONH-、-NHCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-CH=CH-COO-、-OCO-CH=CH-または-C≡C-を表す。なかでも、単結合、-COO-、-CONH-、-NHCO-または、-C≡C-が好ましい。
 Y11およびY12は、それぞれ独立に、単結合、-O-、-S-、-CO-、-COO-、-OCO-、-CONH-、-NHCO-、-CH=CH-、-CH=CH-COO-、-OCO-CH=CH-、または、-C≡C-を表す。なかでも、-O-が好ましい。
 Sp11およびSp12は、それぞれ独立に、単結合、または、炭素数1~25のアルキレン基を表す。アルキレン基は、直鎖状、分岐鎖状、および、環状のいずれでもよい。なかでも、炭素数1~10のアルキレン基がより好ましい。
 Q11およびQ12は、それぞれ独立に、水素原子または重合性基を表し、Q11およびQ12の少なくとも一方は重合性基を表す。重合性基としては、式(Q-1)~式(Q-5)で表される基からなる群から選択される重合性基が例示される。Q11またはQ12で表される重合性基としては、アクリロイル基(式(Q-1))、メタアクリロイル基(式(Q-2))が好ましい。
 n11およびn12はそれぞれ独立に0~2の整数を表し、n11またはn12が2の場合、複数あるA11、A12、X11およびX12は同じであっても異なっていてもよい。
 一般式(II)で表される化合物の具体例としては、下記式(2-1)~(2-30)に示す化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 2種類以上の重合性液晶化合物を併用してもよい。2種類以上の重合性液晶化合物を併用すると、配向温度を低下させることができる。
 また、重合条件の異なる2種類以上の反応性基を同一分子内に有する液晶化合物と、重合条件が同一である反応性基を同一分子内に2つ以上有する液晶化合物を併用すると、選択反射の反射帯域を広げることができ、より好ましい。具体的には、(メタ)アクリロイル基とオキセタニル基とを含む液晶化合物と(メタ)アクリロイル基を2つ含む液晶化合物との組み合わせが挙げられる。
 液晶組成物中の重合性液晶化合物の添加量は、液晶組成物の固形分質量(溶媒を除いた質量)に対して、80~99.9質量%であることが好ましく、85~99.5質量%であることがより好ましく、90~99質量%であることが特に好ましい。
(キラル剤:光学活性化合物)
 コレステリック液晶層の形成に用いる材料はキラル剤を含んでいることが好ましい。キラル剤はコレステリック液晶相の螺旋構造を誘起する機能を有する。キラル化合物は、化合物によって誘起する螺旋のセンスまたは螺旋ピッチが異なるため、目的に応じて選択すればよい。
 キラル剤としては、特に制限はなく、公知の化合物を用いることができる。キラル剤の例としては、液晶デバイスハンドブック(第3章4-3項、TN、STN用カイラル剤、199頁、日本学術振興会第142委員会編、1989)、特開2003-287623号、特開2002-302487号、特開2002-80478号、特開2002-80851号、特開2010-181852号または特開2014-034581号の各公報に記載の化合物が挙げられる。
 キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物あるいは面性不斉化合物もキラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。キラル剤と液晶化合物とがいずれも重合性基を有する場合は、重合性キラル剤と重合性液晶化合物との重合反応により、重合性液晶化合物から誘導される繰り返し単位と、キラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性キラル剤が有する重合性基は、重合性液晶化合物が有する重合性基と同種の基であることが好ましい。従って、キラル剤の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であることが好ましく、不飽和重合性基であることがさらに好ましく、エチレン性不飽和重合性基であることが特に好ましい。
 また、キラル剤は、液晶化合物であってもよい。
 キラル剤としては、イソソルビド誘導体、イソマンニド誘導体、またはビナフチル誘導体を好ましく用いることができる。イソソルビド誘導体としては、BASF社製のLC-756等の市販品を用いてもよい。
 液晶組成物における、キラル剤の含有量は、重合性液晶化合物の総モル量に対して0.01モル%~200モル%が好ましく、1モル%~30モル%がより好ましい。
(重合開始剤)
 液晶組成物は、重合開始剤を含有していることが好ましい。紫外線照射により重合反応を進行させる態様では、使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤であることが好ましい。光重合開始剤の例としては、ラジカル重合開始剤およびカチオン重合開始剤が挙げられる。
 ラジカル重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)、アシルフォスフィンオキシド化合物(特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報、特開平10-29997号公報、特開2001-233842号公報、特開2000-80068号公報、特開2006-342166号公報、特開2013-114249号公報、特開2014-137466号公報、特許4223071号公報、特開2010-262028号公報、特表2014-500852号公報記載)、オキシム化合物(特開2000-66385号公報、特許第4454067号明細書記載)、およびオキサジアゾール化合物(米国特許第4212970号明細書記載)等が挙げられる。例えば、特開2012-208494号公報の段落0500~0547の記載も参酌できる。

 ラジカル重合開始剤としては、アシルフォスフィンオキシド化合物またはオキシム化合物を用いることが好ましい。 
 アシルフォスフィンオキシド化合物としては、例えば、市販品のBASFジャパン(株)製のIRGACURE819(化合物名:ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド)を用いることができる。オキシム化合物としては、IRGACURE OXE01(BASF社製)、IRGACURE OXE02(BASF社製)、TR-PBG-304(常州強力電子新材料有限公司製)、アデカアークルズNCI-831、アデカアークルズNCI-930(ADEKA社製)、アデカアークルズNCI-831(ADEKA社製)等の市販品を用いることができる。
 カチオン重合開始剤としては、有機スルフォニウム塩系、ヨードニウム塩系、フォスフォニウム塩系等を例示することができ、有機スルフォニウム塩系が好ましく、トリフェニルスルフォニウム塩が特に好ましい。これら化合物の対イオンとしては、ヘキサフルオロアンチモネート、ヘキサフルオロフォスフェートなどが好ましく用いられる。
 重合開始剤は、1種のみ用いてもよいし、2種以上を併用してもよい。
 液晶組成物中の光重合開始剤の含有量は、重合性液晶化合物の含有量に対して0.1~20質量%であることが好ましく、0.5質量%~5質量%であることがさらに好ましい。
(架橋剤)
 液晶組成物は、硬化後の膜強度向上、耐久性向上のため、任意に架橋剤を含有していてもよい。架橋剤としては、紫外線、熱、湿気等で硬化するものが好適に使用できる。
 架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネート、ビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン等のアルコキシシラン化合物などが挙げられる。これらのうち、多官能アクリレート化合物が好ましい。多官能アクリレート化合物としては、3~6官能アクリレート化合物が好ましく、4~6官能アクリレート化合物がより好ましい。また、架橋剤の反応性に応じて公知の触媒を用いることができ、膜強度および耐久性向上に加えて生産性を向上させることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 液晶組成物中の架橋剤の含有量は、液晶組成物中の重合性液晶化合物100質量部に対し、0質量部~8.0質量部が好ましく、0.1質量部~7.0質量部がより好ましく、0.2質量部~5.5質量部がさらに好ましい。
(配向制御剤)
 液晶組成物中には、安定的にまたは迅速にプレーナー配向するために寄与する配向制御剤を添加してもよい。配向制御剤の例としては特開2007-272185号公報の段落〔0018〕~〔0043〕等に記載のフッ素(メタ)アクリレート系ポリマー、特開2012-203237号公報の段落〔0031〕~〔0034〕等に記載の式(I)~(IV)で表される化合物などが挙げられる。
 なお、配向制御剤としては1種を単独で用いてもよいし、2種以上を併用してもよい。
 液晶組成物中における、配向制御剤の添加量は、重合性液晶化合物の全質量に対して0.01質量%~10質量%が好ましく、0.01質量%~5.0質量%がより好ましく、0.02質量%~1.0質量%が特に好ましい。
(その他の添加剤)
 その他、液晶組成物は、塗膜の表面張力を調整し厚みを均一にするための界面活性剤、および重合性モノマー等の種々の添加剤から選ばれる少なくとも1種を含有していてもよい。また、液晶組成物中には、必要に応じて、さらに重合禁止剤、酸化防止剤、紫外線吸収剤、光安定化剤、色材、金属酸化物微粒子等を、光学的性能を低下させない範囲で添加することができる。
(溶媒)
 液晶組成物の調製に使用する溶媒としては、特に制限はなく、目的に応じて適宜選択することができるが、有機溶媒が好ましく用いられる。
 有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えばケトン類、アルキルハライド類、アミド類、スルホキシド類、ヘテロ環化合物、炭化水素類、エステル類、エーテル類などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、環境への負荷を考慮した場合にはケトン類が特に好ましい。
(塗布、配向、重合)
 支持体、配向膜、1/4波長板、下層となるコレステリック液晶層などへの液晶組成物の塗布方法は、特に制限はなく、目的に応じて適宜選択することができ、例えば、ワイヤーバーコーティング法、カーテンコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、スピンコーティング法、ディップコーティング法、スプレーコーティング法、スライドコーティング法などが挙げられる。また、別途支持体上に塗設した液晶組成物を転写することによっても実施できる。塗布した液晶組成物を加熱することにより、液晶分子を配向させる。コレステリック液晶層形成の際はコレステリック配向させればよく、1/4波長板形成の際は、ネマチック配向させることが好ましい。コレステリック配向の際、加熱温度は200℃以下が好ましく、130℃以下がより好ましい。この配向処理により、重合性液晶化合物がフィルム面に対して実質的に垂直な方向に螺旋軸を有するようにねじれ配向している光学薄膜が得られる。ネマチック配向の際、加熱温度は50℃~120℃が好ましく、60℃~100℃がより好ましい。
 配向させた液晶化合物は、更に重合させ、液晶組成物を硬化することができる。重合は、熱重合、光照射を利用する光重合のいずれでもよいが、光重合が好ましい。光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm~50J/cmが好ましく、100mJ/cm~1,500mJ/cmがより好ましい。光重合反応を促進するため、加熱条件下または窒素雰囲気下で光照射を実施してもよい。照射紫外線波長は350nm~430nmが好ましい。重合反応率は安定性の観点から高いことが好ましく、70%以上が好ましく、80%以上がより好ましい。重合反応率は、重合性の官能基の消費割合をIR吸収スペクトルを用いて測定することにより、決定することができる。
 個々のコレステリック液晶層の厚みは、上記特性を示す範囲であれば、特に限定はされないが、好ましくは1.0μm以上20μm以下の範囲、より好ましくは2.0μm以上10μm以下の範囲である。
(支持体)
 液晶組成物は、支持体または支持体表面に形成された配向層の表面に塗布され層形成されていてもよい。支持体または支持体および配向層は、層形成後に剥離してもよい。例えば、層を発光素子基板に接着後に剥離してもよい。支持体の例としては、ポリエチレンテレフタレート(PET)などのポリエステル、ポリカーボネート、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、セルロース誘導体、シリコーン、またはガラス板などが挙げられる。
 支持体の厚みは5μm~1000μm程度であればよく、好ましくは10μm~250μm、より好ましくは15μm~120μmであればよい。
(配向層)
 コレステリック液晶層を形成する際、支持体上に直接もしくはその上に設けた配向層で液晶組成物の配向状態を規制することが好ましい。配向層は、光学異方性層に配向性を付与できるものであれば、どのような層でもよい。配向層の好ましい例としては、ポリマーなどの有機化合物(ポリイミド、ポリビニルアルコール、ポリエステル、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、ポリアミド、変性ポリアミドなどの樹脂)のラビング処理された層、アゾベンゼンポリマーやシンナメートポリマーに代表される偏光照射により液晶の配向性を発現する光配向層、無機化合物の斜方蒸着層、およびマイクログルーブを有する層、さらにω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライドおよびステアリル酸メチル等のラングミュア・ブロジェット法(LB膜)により形成される累積膜、あるいは電場あるいは磁場の付与により誘電体を配向させた層を挙げることができる。配向層としてはラビングの態様ではポリビニルアルコールを含むことが好ましく、配向層の上または下の少なくともいずれか1層と架橋できることが特に好ましい。具体的には、特開2009-69793号公報、特開2010-113249号公報、および特開2011-203636号公報に記載の配向層を利用することができる。また、光配向層も、好適に用いることができる。光配向層を用いると、微小異物による配向欠陥の発生が抑えられ、微細な形状であっても高い光学的性能でコレステリック液晶層を形成することができるからである。例えば、特開2015-26050号公報に記載の液晶配向剤(例えば、エポキシ含有ポリオルガノシロキサンを含む液晶配向剤)を用いることができる。配向層の配向規制力を十分に発揮させるために、塗布した液晶組成物の温度を制御して、所望の相を発現させる処理(配向処理)を行ってもよい。
 配向層の厚みは0.01μm~5.0μmであることが好ましく、0.05μm~2.0μmであることがさらに好ましい。
(パターニング方法)
 異なる波長において偏光分離を示す複数種の偏光分離部位を含む偏光分離層の形成のために、コレステリック液晶層をパターニングにより形成することができる。発光素子基板の各有機電界発光層の発光波長に対応して、選択反射波長を調整したパターン状のコレステリック液晶層を用いることで、光利用効率をより高めることができる。パターニング方法によってコレステリック液晶層を形成することにより、偏光分離層における偏光分離部位および可視光透過領域の形成、およびマトリクス状に配置された偏光分離部位の形成も行なうことができる。
 パターニング方法としては、溶剤現像による方法や光異性化キラル剤を用いる方法(特開2001-159706号公報)、予め配向固定し、コレステリック液晶層をレーザーやサーマルヘッドを用いて転写する方法(特開2001-4822号公報、特開2001-4824公報)、インクジェット法(特開2001-159709号公報)、コレステリックの螺旋ピッチの温度依存性を利用する方法(特開2001-159708号公報)、領域間で液晶組成物の硬化の際の紫外線照射量を段階的に変化させる方法などが挙げられる。
 一例として、光異性化キラル剤を用いる方法は以下のように行なうことができる。光異性化キラル剤を含む液晶組成物を用いて、まず、紫外光波長域に選択反射の中心波長を有するコレステリック液晶層を全面形成する。その後、パターン露光(紫外線照射)により、コレステリック液晶層の一部を、紫外光波長域または赤外光波長域に選択反射の中心波長を有する状態で固定化し、可視光透過領域を形成する。続いて形成したい選択反射の中心波長を有する領域それぞれに応じて適切な光量でキラル剤の吸収波長の光を各領域に選択的に照射する。これにより、キラル剤を異性化し、それぞれの領域に応じた螺旋構造のピッチを得る。最後に全面に紫外線照射することにより、各領域の配向を固定化し、ひとつの層内に可視光透過領域と、所望の波長域に選択反射の中心波長を有するコレステリック液晶層のパターンを有する偏光分離層を形成することができる。
 パターニング方法においては、上述のようにパターン露光を行なうことができる。
 パターン露光の手法としてはマスクを用いたコンタクト露光、プロキシ露光、投影露光などが挙げられる。上記露光の光源の照射波長としては250~450nmにピークを有することが好ましく、300~410nmにピークを有することがさらに好ましい。具体的には、超高圧水銀灯、高圧水銀灯、メタルハライドランプ、青色レーザー等が挙げられる。好ましい露光量としては通常3~2000mJ/cm程度であり、より好ましくは5~1000mJ/cm程度、さらに好ましくは10~500mJ/cm程度、最も好ましくは10~100mJ/cm程度である。
 用いる材料に応じて、パターン露光の代わりにまたはパターン加熱を行なってもよい。パターン加熱の手法としては加温したパターニングプレートを用いたコンタクト加熱、赤外レーザーによる加熱などを用いることができる。
 また、この両方を組み合わせてもよい。
 パターン露光を用い、以下のように複数層で構成される偏光分離層を形成することもできる。
 すなわち、第一の液晶組成物から形成された層にパターン露光を行った後、その上に新たな第二の液晶組成物から形成された層を形成または転写し、その後に別のパターン露光を行うことができる。さらに、その上に新たな第三の液晶組成物から形成された層を形成または転写し、その後に別のパターン露光を行うことができる。
 第一の液晶組成物、第二の液晶組成物、および第三の液晶組成物は同一の組成物に由来するものであってもよいし、異なる組成物に由来するものであってもよい。キラル剤の濃度のみが異なる3種の液晶組成物を用いることも好ましい。
 パターン露光された液晶組成物の層に対して50℃以上400℃以下、好ましくは80℃以上200℃以下で加熱を行うことにより未露光部を光学的に等方性にすることができる。このようにすることによりパターン状にコレステリック液晶層を有する層を形成することができる。光学的に等方性となる領域を偏光分離部位を区分するように形成し、可視光透過領域としてもよい。赤色光の波長域に選択反射の中心波長を有するコレステリック液晶層と、緑色光の波長域に選択反射の中心波長を有するコレステリック液晶層と、青色光の波長域に選択反射の中心波長を有するコレステリック液晶層とにつき、発光素子基板の有機電界発光層の発色の色に応じた波長域となるように、それぞれパターン状にコレステリック液晶層を有する層を形成し、それらを複数積層することにより、偏光分離層を形成することができる。
 パターン露光、およびパターン状のコレステリック液晶層(光学異方性層)の形成については、特開2009-69793号公報、特開2010-113249号公報、および特開2011-203636号公報の記載を参照することができる。
(保護層(添加剤層))
 特に、液晶組成物を用いてパターン状に偏光分離部位を有する偏光分離層を形成する場合などにおいて、保護層を用いてもよい。保護層は液晶組成物を仮硬化した後に残る未反応の反応性基による重合反応を開始させる機能を有する重合開始剤を少なくとも一種以上含んでいればよい。コレステリック液晶層と保護層は直接接していることが好ましい。重合開始剤を含む保護層の構成としては特に限定は無いが、重合開始剤以外に少なくとも1種のポリマーを含むことが好ましい。
 ポリマー(本発明においては別名として「バインダ」と呼ぶことがある。)としては、特に限定は無いがポリメチル(メタ)アクリレート、(メタ)アクリル酸とその各種エステルの共重合体、ポリスチレン、スチレンと(メタ)アクリル酸あるいは各種(メタ)アクリル酸エステルの共重合体、ポリビニルトルエン、ビニルトルエンと(メタ)アクリル酸あるいは各種(メタ)アクリル酸エステルの共重合体、スチレン/ビニルトルエン共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、酢酸ビニル/エチレン共重合体、酢酸ビニル/塩化ビニル共重合体、ポリエステル、ポリイミド、カルボキシメチルセルロース、ポリエチレン、ポリプロピレンおよびポリカーボネート等を挙げることができる。好ましい例としてはメチル(メタ)アクリレートと(メタ)アクリル酸との共重合体、アリル(メタ)アクリレートと(メタ)アクリル酸の共重合体、ベンジル(メタ)アクリレートと(メタ)アクリル酸と他のモノマーとの多元共重合体などを挙げることができる。これらのポリマーは単独で用いてもよく、複数種を組み合わせて使用してもよい。全固形分に対するポリマーの含有量は20~99質量%が一般的であり、40~99質量%が好ましく、60~98質量%がより好ましい。
(偏光分離層の作製方法)
 コレステリック液晶層を含む偏光分離層は有機電界発光層上で形成してもよく、別途形成した偏光分離層または偏光分離層を含む積層体を有機電界発光層上に積層してもよい。典型的には、有機電界発光層群を含む発光素子基板上に偏光分離層を形成し、さらにその上に円偏光板を形成するか、または、上記偏光分離層および円偏光板の積層体を作製し、その後この積層体を有機電界発光層群を含む発光素子基板上に設けることが好ましく、後者がより好ましい。
[ポジティブC領域含有層]
 本発明の有機EL画像表示装置はポジティブC領域含有層を含む。本明細書において、ポジティブC領域とは、光学的にポジティブC性能となる領域のことであり、層の厚み方向をz軸とし、層の面内方向をxy平面としたときのそれぞれの屈折率Nx、NyおよびNzが、Nz>Nx=Nyの関係で示される屈折率楕円体で表現される光学特性を持つ領域である。ポジティブC領域含有層は、ポジティブC領域からなる層、すなわち、単一のポジティブCプレートであってもよく、xy平面内に、ポジティブC領域と光学的に等方性の領域との両方を含む層であってもよく、さらにその他の光学特性を持つ領域を含む層であってもよい。
 偏光分離層にコレステリック液晶層を含む有機EL画像表示装置において、さらにポジティブC領域含有層を設けることにより、斜め観察時の光漏れを低減することができる。選択反射波長域に該当しない可視光領域の波長において正のRthを示すコレステリック液晶層を負のRthを示すポジティブC領域が光学補償するためと考えられる。
 本発明者らは、さらにコレステリック液晶相を固定して形成された偏光分離領域と光学的に等方性である領域とを含む偏光分離層を含む本発明の有機EL画像表示装置において、ポジティブC領域含有層がポジティブC領域からなる層からなる層である場合、ポジティブC領域の波長Xにおける膜厚方向のレターデーションRth(X)の絶対値が、偏光分離領域の波長Xにおける膜厚方向のレターデーションRth-Ch(X)の絶対値と可視光透過領域の波長XにおけるレターデーションRth-T(X)の絶対値との間の任意の値とすることにより、斜め観察時の光漏れや色付きが低減することを見出した。ここで、Xは可視光領域の任意の波長である(例えば550nm)。
 Rth-Ch(X)とRth-T(X)とが異なる場合、それぞれ光学補償に必要とされるポジティブC領域のRth(X)が異なるため、絶対値を両者の絶対値の間に挟まれる値に設定することで、両領域の光漏れが低減できるためと考えられる。このとき、ポジティブC領域のRth(X)の絶対値は、上記Rth-Ch(X)の絶対値とRth-T(X)の絶対値との間の任意の値であればよいが、上記Rth-Ch(X)の絶対値とRth-T(X)の絶対値の平均値±20nmであることが好ましく、平均値±10nmであることがより好ましい。
 可視光透過領域が偏光分離領域作製のための組成物と同一の組成物を用いて作製されており、かつ、紫外光波長域または赤外光波長域に選択反射帯域を有するコレステリック液晶層である場合、Rth-Ch(X)とRth-T(X)とは略等しいため、Rth-Ch(X)の絶対値とRth-T(X)の絶対値との中間の値もそれらと等しくなる。したがって、ポジティブC領域のRth(X)の絶対値はRth-Ch(X)の絶対値(およびRth-T(X)の絶対値)と等しいことが好ましい。この構成で、最も効果的に光漏れを低減することが可能となるからである。
 さらに、本発明の画像表示装置において、偏光分離層が光学的に等方性の可視光透過領域を含むとき、ポジティブC領域含有層は、ポジティブC領域とともに、偏光分離層の可視光透過領域に対応して光学的に等方性の領域を含むことが好ましい。このような構成により、上記光学補償を必要な領域のみで行なうことができ、反射率等に影響を与えることなく斜め観察時の光漏れや色付きの低減の効果が得られる。このときのポジティブC領域のRth(X)の絶対値は、Rth-Ch(X)の絶対値と等しいことが好ましい。この構成で、特に効果的に光漏れを低減することが可能となるからである。また、特に偏光分離層がマトリクス状に配置された偏光分離部位を含み、可視光透過領域が光学的に等方性であるとき、これに対応して、ポジティブC領域含有層において、ポジティブC領域がマトリクス状であることがより好ましい。
 ポジティブC領域含有層の膜厚は、0.3~3.0μmが好ましく、0.5~2.8μmがより好ましく、0.9~2.5μmがさらに好ましく、1.0~1.5μmが最も好ましい。
 ポジティブC領域においては、液晶化合物がホメオトロピック配向をしている。ホメオトロピック配向とは、液晶化合物の分子長軸が膜面に対して垂直方向に配向している状態を意味する。ポジティブC領域は、スメクチック相またはネマチック相を示すことが好ましく、スメクチック相を示すことがより好ましい。スメクチック相であると液晶分子の重心位置が揃った高秩序のレイヤー構造を取るためホメオトロピック配向を取り易く、基材の層形成面(下地面)の配向規制力が弱い場合であっても良好なホメオトロピック配向の液晶層を得ることができる。
 また、ポジティブC領域は、-5≦Re(550)≦5(|Re(550)|≦5)を満たすことが好ましく、-3≦Re(550)≦3(|Re(550)|≦3)を満たすことがより好ましい。
 また、ポジティブC領域は、-250≦Rth(550)≦-70を満たすことが好ましく、-230≦Rth(550)≦-130を満たすことがより好ましい。
[ポジティブC領域含有層形成用組成物]
 ポジティブC領域含有層は液晶化合物Cを含むポジティブC領域含有層形成用組成物の硬化物からなる。本明細書において、液晶化合物CはポジティブC領域含有層形成用組成物に含まれる全ての液晶化合物を示し、1つの液晶化合物からなるものであっても2種以上の液晶化合物の混合物であってもよい。
 ポジティブC領域含有層形成用組成物は、液晶化合物Cを含み、さらに、必要に応じて、重合開始剤、溶剤等が配合される。ポジティブC領域含有層形成用組成物は、さらに、後述の垂直配向剤を含むことが好ましい。
(液晶化合物C)
 液晶化合物Cとしては、棒状液晶化合物が好ましい。液晶化合物Cは、スメクチック相またはネマチック相の液晶状態を呈する液晶化合物が好ましく、製造条件等の観点からネマチック相の液晶状態を呈する液晶化合物を用いてもよく、前述の観点からスメクチック相の液晶状態を呈する液晶化合物を用いてもよい。
 液晶化合物Cとしては、従来公知のいずれの液晶化合物を用いてもよく、上記のコレステリック液晶層形成用の液晶化合物と同様の液晶化合物を用いることもできる。
 また、液晶化合物Cは、下記一般式(IA)で表される化合物および下記一般式(IIA)で表される化合物からなる群より選択される少なくとも1種の化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000013
 一般式(IA)および一般式(IIA)中、R101~R104は、各々独立に、-(CH-OOC-CH=CHを表し、nは2~8の整数を表す。X101およびY101は各々独立に、水素原子またはメチル基を表す。
 結晶析出を抑止する観点から、一般式(IA)または(IIA)において、X101およびY101がメチル基を表すことが好ましい。液晶としての性質を示す観点から、nは4~8の整数であることが好ましい。
 ポジティブC領域含有層形成用組成物における液晶化合物Cの量は、全固形分の50~98質量%が好ましく、70~95質量%がより好ましい。
(垂直配向剤)
 ポジティブC領域含有層形成用組成物は、垂直配向剤を含んでいることが好ましい。垂直配向剤は、ボロン酸化合物および/またはオニウム塩を用いることが好ましい。
 ボロン酸化合物の具体例としては、下記式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 式中、R51およびR52はそれぞれ独立に、水素原子、置換もしくは無置換の、脂肪族炭化水素基、アリール基、またはヘテロ環基を表す。R53は、(メタ)アクリル基と結合し得る官能基を含む置換基を表す。
 ボロン酸化合物の具体例としては、特開2008-225281号公報の段落番号0023~0032に記載の一般式(I)で表されるボロン酸化合物を用いることができる。また、下記に示すボロン酸化合物も好ましく用いられる。
Figure JPOXMLDOC01-appb-C000015
 オニウム塩の具体例としては、下記式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 式中、環Aは含窒素複素環からなる第4級アンモニウムイオンを表し、X51はアニオンを表し;L51は二価の連結基を表し;L52は単結合または二価の連結基を表し;Y51は5または6員環を部分構造として有する2価の連結基を表し;Zは2~20のアルキレン基を部分構造として有する2価の連結基を表し;P51およびP52はそれぞれ独立に重合性エチレン性不飽和基を有する一価の置換基を表す。
 オニウム塩の例の具体例としては、特開2012-208397号公報の段落番号0052~0058に記載のオニウム塩、特開2008-026730号公報の段落番号0024~0055に記載のオニウム塩、特開2002-37777号公報に記載のオニウム塩が挙げられる。
 垂直配向剤は、ポジティブC領域含有層形成用組成物に含まれる液晶化合物の総質量に対し、0.1~5質量%が好ましく、0.5~3質量%がより好ましい。垂直配向剤は、1種類のみ含んでいてもよく、2種類以上含んでいてもよい。2種類以上含む場合、その合計量が上記範囲となる。
 さらに、ポジティブC領域含有層形成用組成物は、重合開始剤、非液晶性の重合性化合物、溶剤、その他の添加剤等を含んでいてもよい。これらの詳細は、コレステリック液晶層形成用の液晶組成物に関する記載を参酌できる。ただし、ポジティブC領域含有層形成用組成物はキラル剤を含まないことが好ましい。
(ポジティブC領域含有層の製造方法)
 ポジティブC領域含有層は、支持体または支持体上に設けられた配向膜表面に、ポジティブC含有層形成用組成物を塗布することによって形成することができる。ポジティブC領域含有層は公知の方法によって製造することができる。
 また、光学的に等方性の領域を含むポジティブC領域含有層、特にポジティブC領域と可視光透過領域とがマトリクス状に配置されているポジティブC領域含有層の形成については、上述のパターニング方法を参酌できる。このようなポジティブC領域含有層は、例えば、パターン露光されたポジティブC領域含有層形成用組成物の層に対して、上述のように50℃以上400℃以下、好ましくは80℃以上200℃以下で加熱を行うことにより未露光部を光学的に等方性にする方法で形成することができる。
[円偏光板]
 円偏光板は、有機EL画像表示装置における、外光の映り込みの低減およびコントラスト向上のために有機電界発光層の画像表示側に設けられるものである。円偏光板としては、有機EL画像表示装置において用いられる円偏光板として公知の円偏光板を用いることができる。
 円偏光板は、位相差層と偏光層を含む。円偏光板は、接着層、表面保護層などの他の層を有していてもよい。本発明の画像表示装置において、円偏光板は、偏光分離層、位相差層および偏光層がこの順となるように配置される。円偏光板は、位相差層と偏光層からなっていてもよい。位相差層は、1/4波長板からなることが好ましく、偏光層は直線偏光板からなることが好ましい。
(偏光層)
 直線偏光板はこれを通過する光のうち特定の直線偏光は透過し、これと直交する直線偏光は吸収するものである。直線偏光板としては、例えばポリビニルアルコールにヨウ素を吸収させて延伸させ、偏光機能を付与した膜の両面にトリアセチルセルロースの保護層を施したもの、あるいは、ポリビニルアルコールにAg等の金属ナノロッドを添加し、延伸させたものなどを用いることができる。
(位相差層)
 有機EL画像表示装置において用いられる円偏光板中の位相差層は、可視光領域において1/4波長板として機能する位相差層であればよい。本明細書において、1/4波長板をλ/4板ということもある。
 1/4波長板の例としては、一層型の1/4波長板、1/4波長板と1/2波長位相差板とを積層した広帯域1/4波長板などが挙げられる。
 前者の1/4波長板の正面レターデーションは画像表示装置の発光波長の1/4の長さであればよい。それゆえに、例えば画像表示装置の発光波長が450nm、530nm、640nmの場合は、450nmの波長で112.5nm±10nm、好ましくは112.5nm±5nm、より好ましくは112.5nm、530nmの波長で132.5nm±10nm、好ましくは132.5nm±5nm、より好ましくは132.5nm、640nmの波長で160nm±10nm、好ましくは160nm±5nm、より好ましくは160nmの位相差であるような逆波長分散性の位相差層が1/4波長板として最も好ましいが、正面レターデーションの波長分散性の小さい位相差板や順波長分散性の位相差板も用いることができる。なお、逆波長分散性とは長波長になるほど正面レターデーションの絶対値が大きくなる性質を意味し、順波長分散性とは短波長になるほど正面レターデーションの絶対値が大きくなる性質を意味する。
 積層型の1/4波長板は、1/4波長板と1/2波長位相差板とをその遅相軸を60°の角度で貼り合わせ、1/2波長位相差板側を直線偏光の入射側に配置して、かつ1/2波長位相差板の遅相軸を入射直線偏光の偏光面に対して15°または75°に交差して使用するもので、位相差の逆波長分散性が良好なため好適に用いることができる。
 1/4波長板としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、石英板、延伸されたポリカーボネートフィルム、延伸されたノルボルネン系ポリマーフィルム、炭酸ストロンチウムのような複屈折を示す無機粒子を含有して配向させた透明フィルム、支持体上に無機誘電体を斜め蒸着した薄膜などが挙げられる。
 1/4波長板としては、例えば、(1)特開平5-27118号公報、および特開平5-27119号公報に記載された、正面レターデーションが大きい複屈折性フィルムと、正面レターデーションが小さい複屈折性フィルムとを、それらの光軸が直交するように積層させた位相差板、(2)特開平10-68816号公報に記載された、特定波長においてλ/4波長となっているポリマーフィルムと、それと同一材料からなり同じ波長においてλ/2波長となっているポリマーフィルムとを積層させて、広い波長域でλ/4波長が得られる位相差板、(3)特開平10-90521号公報に記載された、二枚のポリマーフィルムを積層することにより広い波長域でλ/4波長を達成できる位相差板、(4)国際公開第00/26705号パンフレットに記載された変性ポリカーボネートフィルムを用いた広い波長域でλ/4波長を達成できる位相差板、(5)国際公開第00/65384号パンフレットに記載されたセルロースアセテートフィルムを用いた広い波長域でλ/4波長を達成できる位相差板などが挙げられる。
 1/4波長板としては、市販品を用いることもでき、市販品としては、例えば商品名:ピュアエース(登録商標)WR(帝人株式会社製、ポリカーボネートフィルム)などが挙げられる。
 1/4波長板としては、重合性液晶化合物、高分子液晶化合物を配列させて固定して形成したものも好ましい。例えば、1/4波長板は、支持体、または配向膜に液晶組成物を塗布し、そこで液晶組成物中の重合性液晶化合物を液晶状態においてネマチック配向に形成後、光架橋や熱架橋によって固定化して、形成することができる。1/4波長板は、高分子液晶化合物を含む組成物を、支持体、または配向膜表面に液晶組成物を塗布して液晶状態においてネマチック配向に形成後、冷却することによって配向を固定化して得られる層であってもよい。
 1/4波長板形成のための重合性液晶化合物としては、上記ポジティブC領域含有層の作製に用いられるものと同様の棒状液晶化合物、あるいはWO2014/073616に記載の円盤状液晶化合物を用いることができる。
 1/4波長板は、液晶化合物がホモジニアス配向をしているAプレートを含むことも好ましい。ホモジニアス配向とは、液晶化合物の分子長軸が膜面に対し水平方向に配向している状態を意味する。ポジティブAプレートは、スメクチック相を示すことが好ましい。なお、本明細書において、スメクチック相とは、一方向にそろった分子が層構造を有している状態をいう。また、ネマチック相とは、その構成分子が配向秩序を持つが、三次元的な位置秩序を持たない状態をいう。
 一層型の1/4波長板として、逆波長分散性のAプレートを用いることも好ましい。
[発光素子基板]
 発光素子基板は少なくとも、反射層および有機電界発光層を含む。通常、発光素子基板は、ガラスなどの表面に薄膜トランジスタ(TFT)などにより形成された画素構造を有するTFT基板上に反射層および有機電界発光層を含むものであればよい。有機電界発光層は通常TFT基板上にマトリクス状に配置された有機電界発光層群として含まれることが好ましい。
 単色発光の画像表示装置においては、有機電界発光層群に含まれる有機電界発光層はいずれも同じ波長の光を発光していればよい。一方、通常は、有機電界発光層群は、互いに異なる波長の光を発光する有機電界発光層を含むことが好ましく、2種以上の有機電界発光層、特に3種以上の有機電界発光層を含むことがより好ましい。有機電界発光層群は、赤色発光の有機電界発光層、緑色発光の有機電界発光層、および青色発光の有機電界発光層を含むことが好ましい。
 有機電界発光層は、少なくとも発光層を有し、さらに発光層以外の機能層として、正孔輸送層、電子輸送層、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層等の各層を含んでいてもよい層を意味する。有機電界発光層は特開2016-139372号公報に記載のマイクロキャビティ構造の有機電界発光層を用いてもよい。
 発光素子基板において、TFT基板、反射層および有機電界発光層がこの順に配置されているとき、画像表示装置はトップエミッション方式で光を取り出して画像表示できる。発光素子基板において、TFT基板、有機電界発光層および反射層がこの順に配置されているとき、画像表示装置はボトムエミッション方式で光を取り出して画像表示できる。本発明の画像表示装置はトップエミッション方式でもボトムエミッション方式でもよいがトップエミッション方式であることが好ましい。
 反射層は例えば反射電極であればよい。反射電極としては、有機電界発光装置に一般的に用いられているアルミニウム電極を用いることができる。発光素子基板はさらにITO(Indium Tin Oxide)電極などの透明電極を含む。発光素子基板における層構成の例としては、以下が挙げられる。
TFT基板/反射電極/有機電界発光層/透明電極
TFT基板/透明電極/有機電界発光層/反射電極
 発光素子基板はさらに有機電界発光層の封止のためのバリア層、光取り出し層などを含んでいてもよい。
 有機電界発光層、有機電界発光層中の各層、透明電極と反射電極の作製材料や構成、積層順、および発光素子基板の構成については、特開2012-155177号公報の段落0081~0122の記載、特許第4011292号公報、特開2016-139372号公報を参照することができる。
[接着層]
 本発明の画像表示装置は、各層の接着のための接着層を含んでいてもよい。接着層形成に用いられる接着剤または粘着剤としては硬化方式の観点からホットメルトタイプ、熱硬化タイプ、光硬化タイプ、反応硬化タイプ、硬化の不要な感圧接着タイプがあり、それぞれ素材としてアクリレート系、ウレタン系、ウレタンアクリレート系、エポキシ系、エポキシアクリレート系、ポリオレフィン系、変性オレフィン系、ポリプロピレン系、エチレンビニルアルコール系、塩化ビニル系、クロロプレンゴム系、シアノアクリレート系、ポリアミド系、ポリイミド系、ポリスチレン系、ポリビニルブチラール系などの化合物を使用することができる。作業性、生産性の観点から、硬化方式として光硬化タイプ、特に紫外線硬化タイプが好ましく、光学的な透明性、耐熱性の観点から、素材はアクリレート系、ウレタンアクリレート系、エポキシアクリレート系などを使用することが好ましい。
 接着層は、高透明性接着剤転写テープ(OCAテープ)であってもよい。特に有機電界発光素子基板とその上に設けられるフィルム(偏光分離層を含む積層体など)との接着には、OCAテープを用いることが好ましい。高透明性接着剤転写テープとしては、画像表示装置用の市販品、特に画像表示装置の画像表示部表面用の市販品を用いればよい。市販品の例としては、パナック株式会社製の粘着シート(PD-S1など)、日栄化工株式会社のMHMシリーズの粘着シートなどが挙げられる。
 接着層の厚みは、0.1μm~10μmであることが好ましく、0.5μm~5.0μmであることがより好ましい。
<有機EL画像表示装置の作製方法>
 有機EL画像表示装置は、発光素子基板上に、ポジティブC領域含有層および偏光分離層をいずれかの順で設け、その上に別途形成した円偏光板を位相差層側の面で接着することにより製造してもよく、または、円偏光板上の位相差層側にポジティブC領域含有層および偏光分離層をいずれかの順で設け、その面で、発光素子基板に接着することにより、作製してもよい。ポジティブC領域含有層および偏光分離層のいずれか一方を発光素子基板上に、他方を円偏光板上に設けて、その後両者を接着してもよい。発光素子基板として反射層上に有機電界発光層がマトリクス状に配置された有機電界発光層群を含むものを用いるとき、偏光分離部位が有機電界発光層に対応してマトリクス状に配置されている偏光分離層を用いることが好ましい。有機電界発光層群および偏光分離領域は、各有機電界発光層および偏光分離部位が対応するように位置合わせを行なって、積層、接着等を行なえばよい。さらにマトリクス状に配置されている偏光分離部位を含む偏光分離層に対応してポジティブC領域がマトリクス状に配置されているポジティブC領域含有層を用いる場合は、各偏光分離部位およびポジティブC領域が対応するように位置合わせを行なって、積層、接着等を行なえばよい。
 有機電界発光層群が2種以上の波長の光を発光する有機電界発光層を含むとき、各有機電界発光層に対応する偏光分離部位が、それぞれ対応する位置に配置されている有機電界発光層が発光する波長域で1つの偏光状態の光を反射するように、偏光分離部位を配置した偏光分離層を用意して接着すればよい。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の実施例に限定されるものではない。
 なお、実施例において、有機電界発光層の発光帯域を数値で示すとき、有機電界発光層の発光スペクトルピークの半値幅を意味する。
 また、実施例において、粘着剤としては、SK-2057(綜研化学株式会社製)を用いた。
<評価用画像表示装置の作製>
[発光素子基板の調製]
 青色有機電界発光層、緑色有機電界発光層、および赤色有機電界発光層を含む市販の有機EL画像表示装置(サムスン社製SC-04E)を用意した。この有機EL画像表示装置から、偏光板および光学フィルムを剥離し、発光素子を保護するバリア層の表面を露出させたものを発光素子基板として用いた。
 用いた発光素子基板の青色有機電界発光層の発光スペクトルは、中心波長450nm、発光帯域40nm、緑色有機電界発光層の発光スペクトルは、中心波長550nm、発光帯域45nm、赤色有機電界発光層のスペクトルは、中心波長650nm、発光帯域50nmであった。また、発光素子基板における、青色有機電界発光層(Blue)、緑色有機電界発光層(Green)、および赤色有機電界発光層(Red)の配置は図4に示すとおりである。
[各層作製用組成物の調製]
(配向膜組成物Aの調製)
 下記に示す各成分の混合物を、80℃に保温された容器中にて攪拌、溶解させ、配向膜組成物Aを調製した。
----------------------------------
配向膜組成物A(質量部)
----------------------------------
純水                            97.2
PVA-103(クラレ社製ポリビニルアルコール)       2.8
----------------------------------
(コレステリック組成物LC-1の調製)
  下記の各成分を混合した後、孔径0.2μmのポリプロピレン製フィルタでろ過して、コレステリック組成物LC-1として用いた。
 
----------------------------------
コレステリック組成物LC-1(質量部)
----------------------------------
棒状液晶化合物(L-1)                   100
光反応性右旋回性キラル剤(C-1)             6.00
水平配向剤(L-2)                     0.1
重合開始剤IRGACURE819(BASF社製)       4.0
重合制御剤IRGANOX1010(BASF社製)       1.0
溶剤(クロロホルム)                   330.3
----------------------------------
Figure JPOXMLDOC01-appb-C000017
 (コレステリック組成物LC-2の調製)
 下記の各成分を混合した後、孔径0.2μmのポリプロピレン製フィルタでろ過して、コレステリック組成物LC-2として用いた。
 
----------------------------------
コレステリック組成物LC-2(質量部)
----------------------------------
棒状液晶化合物(L-1)                 19.57
水平配向剤(L-2)                   0.015
キラル剤(C-2)                     1.49
重合開始剤(Irgacure 907、BASF社製)    0.587
光増感剤(KAYACURE DETX-S、日本化薬株式会社製)
                             0.916
重合制御剤(IRGANOX1076、BASF社製)    0.078
メチルエチルケトン                     80.0
----------------------------------
Figure JPOXMLDOC01-appb-C000018
(ポジティブC領域含有層用液晶組成物LC-3の調製)
 下記の各成分を混合した後、孔径0.2μmのポリプロピレン製フィルタでろ過して、液晶組成物LC-3として用いた。
 
----------------------------------
液晶組成物LC-3(質量部)
----------------------------------
棒状液晶化合物(L-1)                   100
レベリング剤(T-1)                    0.4
レベリング剤(T-2)                    0.2
化合物(L-3)                       1.0
化合物(L-4)                       2.5
重合開始剤(Irgacure 907、BASF社製)    0.587
光増感剤(KAYACURE DETX-S、日本化薬株式会社製)
                             0.916
重合制御剤(IRGANOX1076、BASF社製)    0.078
溶剤(メチルエチルケトン)                330.3
----------------------------------
Figure JPOXMLDOC01-appb-C000019
[評価用画像表示装置の作製]
(比較例1)
 WO2016/194801の実施例1に示された手順により作製した偏光子、光学異方性層A(λ/2板)、および、光学異方性層B(λ/4板)を、偏光子、光学異方性層A(λ/2板)、および、光学異方性層B(λ/4板)の順に配置し、円偏光板CP1を作製した。なお、偏光子側から観察して、偏光子の透過軸を基準(0°)に反時計回りを正の値で表したとき、λ/2板の遅相軸の角度を-72.5°、λ/4板の遅相軸の角度は-12.5°とした。続いて、発光素子基板のバリア層の表面と、CP1の光学異方性層Bとを粘着剤を用いて貼り合わせ、評価用画像表示装置を作製した。
(比較例2)
 配向膜組成物Aを、厚さ0.5mmのガラス基板(コーニング製、イーグルXG)上にスリットコーターを用いて均一塗布した後、100℃のオーブン内で2分乾燥し、膜厚0.5μmの配向膜付きガラス基板Aを得た。この配向膜に塗布方向と平行方向にラビング処理を施した。ラビング処理面上に上記コレステリック組成物LC-1を、乾燥膜厚が1.25μmとなるようにスピンコート塗布した。塗布膜が配置された配向膜付きガラス基板を80℃のホットプレート上で1分間加熱し、溶媒を乾燥除去するとともにコレステリック配向状態を形成した後、HOYA-SCHOTT社製EXECURE3000-Wを用いて、室温、窒素雰囲気下、図3に示すフォトマスクAを介して、照度30mW/cmのUV(ultraviolet)光を10秒間照射し、露光部(透過部に対応)(A)の配向を固定化した。図3において、白は透過部、黒は遮蔽部である。次いで、フォトマスクを除去し、空気下で照度3mW/cmのUV光を8秒間照射した後、80℃のホットプレート上で1分間加熱することで、固定化されていない部分の反射波長を長波長側に変換した後に、再度、室温、窒素雰囲気下で、照度30mW/cmのUV光を10秒間照射し、残りの部分(遮蔽部に対応)(B)の配向を固定化することで、コレステリック液晶層パターンを有する層を作製した。露光部における反射中心波長は350nm以下、残りのBの部分における反射中心波長は450nmであった。Rth(550)はいずれにおいても150nmであった。
 得られたコレステリック液晶層パターンを有する層を含む積層体のガラス基板側に、比較例1と同様の円偏光板CP1の光学異方性層B側の面を貼り合わせ、積層体を作製した。得られた積層体のコレステリック液晶層パターンを有する層側と発光素子基板のバリア層とを、粘着剤を用いて図4に示す青色有機電界発光層の中央とコレステリック液晶層(個々の露光部)の中央が一致するように貼り合わせ、評価用画像表示装置を作製した。
(実施例1)
<ポジティブC領域含有層の作製>
 下記一般式(II)で表されるラクトン環構造を有するアクリル系樹脂{共重合モノマー質量比=メタクリル酸メチル/2-(ヒドロキシメチル)アクリル酸メチル=8/2、ラクトン環化率約100%、ラクトン環構造の含有割合19.4%、重量平均分子量133000、メルトフローレート6.5g/10分(240℃、98N(10kgf))、Tg131℃}90質量部と、アクリロニトリル-スチレン(AS)樹脂{トーヨーAS AS20、東洋スチレン社製}10質量部との混合物(Tg127℃)のペレットを二軸押出機に供給し、約280℃でシート状に溶融押出しした。その後、溶融押出しされたシートを、縦一軸延伸機において、給気温度130℃、シート面温度120℃、延伸速度30%/分、延伸倍率35%で縦延伸した。その後、縦延伸されたシートを、テンター式延伸機において、給気温度130℃、シート面温度120℃、延伸速度30%/分、延伸倍率35%で横延伸した。その後、横延伸されたシートを、巻取り部前で両端部を切り落とし、長さ4000mのロールフィルムとして巻き取りして、厚み40μmの長尺状の支持体を得た。
Figure JPOXMLDOC01-appb-C000020
 上記一般式(II)中、R1は水素原子であり、R2およびR3はメチル基である。
 配向膜組成物Aを、上記支持体上に、バーコーターを用いて均一塗布した後、100℃のオーブン内で2分乾燥し、膜厚0.5μmの配向膜付き支持体を得た。この配向膜に上記液晶組成物LC-3を、乾燥膜厚が1.25μmとなるようにバーコーターを用いて塗布した。次いで、膜面温度95℃で60秒間加熱熟成し、その後ただちに、25℃空気下にて、キヤノン(株)製PLA-501F露光機(超高圧水銀ランプ)を用い、500mJ/cmの露光量で露光し、Rth(550)が-150nmのポジティブC領域含有層を含む積層体を得た。
 円偏光板CP1の光学異方性層側に、上記ポジティブC領域含有層の表面を粘着剤を用いて貼りあわせ、続いて支持体を剥離し、ポジティブC領域含有層のみを転写した。ポジティブC領域含有層の表面に、比較例2と同様の方法で作製したコレステリック液晶層パターンを有する層を含む積層体のガラス基板側を粘着剤を用いて貼りあわせた。その後、得られた積層体を比較例2と同様の手順で発光素子基板と貼りあわせ、評価用画像表示装置を作製した。
(実施例2)
 コレステリック液晶層パターンを有する層の厚みを2.08μmとして(Rth(550)を250nmとし、塗布層の厚みを変更することでポジティブC領域含有層のRth(550)を-250nmとしたこと以外は、実施例1と同様の方法で、評価用画像表示装置を作製した。
(実施例3)
 コレステリック液晶層パターンを有する層の厚みを0.58μmとして(Rth(550)を70nmとし、塗布層の厚みを変更することでポジティブC領域含有層のRth(550)を-70nmとしたこと以外は、実施例1と同様の方法で、評価用画像表示装置を作製した。
(比較例3)
 フォトマスクを用いなかった以外は比較例2と同様の手順で、コレステリック液晶層パターンを有する層の代わりに全面が反射中心波長が450nmのコレステリック液晶層(パターンを有していないもの)を有する積層体を作製した。得られた積層体をコレステリック液晶層パターンを有する層を含む積層体の代わりに用いる以外は、実施例1と同様の手順で、評価用画像表示装置を作製した。
(実施例4)
 比較例2で作製したコレステリック液晶層パターンを有する層と円偏光板とを有する積層体のコレステリック液晶層パターンを有する層側に、実施例1と同様の方法で作製したポジティブC領域含有層を、粘着剤を用いて貼りあわせ、続いて支持体を剥離し、ポジティブC領域含有層のみを転写した。得られた偏光板を、比較例2と同様に、発光素子基板と貼りあわせ、評価用画像表示装置を作製した。
(実施例5)
 配向膜つきガラス基板Aにラビング処理を施し、上記コレステリック組成物LC-2を、乾燥膜厚が1.25μmとなるようにスピンコート塗布した。次いで、膜面温度95℃で60秒間加熱熟成し、その後ただちに、25℃空気下にて、キヤノン(株)製PLA-501F露光機(超高圧水銀ランプ)を用い、100mJ/cmの露光量で、フォトマスクAの遮蔽部と透過部を反転させたフォトマスクBを介し露光した。その後、基板全体を200℃に加熱しながら500mJ/cmの露光量で空冷メタルハライドランプ(アイグラフィックス(株)製)にて窒素下露光することにより、反射中心波長450nm、反射帯域89nm、Rth(550)150nmのコレステリック反射を持つ領域(C)と、光学的に等方性の領域(D)とに分画されたコレステリック液晶層パターンを有する層を得た。得られたコレステリック液晶層パターンを有する層を含む積層体を、実施例3と同様の方法で、円偏光板、ポジティブC領域含有層、発光素子基板と貼りあわせ、評価用画像表示装置を作製した。
(実施例6)
 配向膜つきガラス基板Aにラビング処理を施し、上記コレステリック組成物LC-2を、乾燥膜厚が1.25μmとなるようにスピンコート塗布した。次いで、膜面温度95℃で60秒間加熱熟成し、その後ただちに、25℃空気下にて、キヤノン(株)製PLA-501F露光機(超高圧水銀ランプ)を用い、100mJ/cmの露光量で、フォトマスクAの遮蔽部と透過部を反転させたフォトマスクBを介し露光した。その後、基板全体を200℃に加熱しながら500mJ/cmの露光量で空冷メタルハライドランプ(アイグラフィックス(株)製)にて窒素下露光することにより、反射中心波長450nm、反射帯域89nm、Rth(550)150nmのコレステリック反射を持つ領域(C)と、光学的に等方性の領域(D)とに分画されたコレステリック液晶層パターンを有する層を得た。得られたコレステリック液晶層パターンを有する層を含む積層体を、実施例1と同様の方法で、円偏光板、ポジティブC領域含有層、発光素子基板と貼りあわせ、評価用画像表示装置を作製した。
(実施例7)
<光学的に等方性の領域を有するポジティブC領域含有層の作製>
 配向膜組成物Aを、上記支持体上に、バーコーターを用いて均一塗布した後、100℃のオーブン内で2分乾燥し、膜厚0.5μmの配向膜付き支持体を得た。この配向膜に上記液晶組成物LC-3を、乾燥膜厚が1.25μmとなるようにバーコーターを用いて塗布した。次いで、膜面温度95℃で60秒間加熱熟成し、その後ただちに、25℃空気下にて、キヤノン(株)製PLA-501F露光機(超高圧水銀ランプ)を用い、100mJ/cmの露光量で、フォトマスクBを介し露光した。その後、基板全体を200℃に加熱しながら500mJ/cmの露光量で空冷メタルハライドランプ(アイグラフィックス(株)製)にて窒素下露光することにより、Rth(550) が-150nmの垂直配向領域(E)と光学的に等方性の領域(D)とに分画された光学的に等方性の領域を有するポジティブC領域含有層を含む積層体を得た。
 このポジティブC領域含有層を用い、パターン化コレステリックサンプルの領域(C)とパターン化垂直配向サンプルの領域(E)が重なるように貼りあわせたこと以外は、実施例1と同様の手順で、評価用画像表示装置を作製した。
(比較例4)
 特開2015-200861号公報の実施例32に示す方法で作製したポジティブAプレートおよびポジティブCプレート(ポジティブC領域含有層)を、偏光子、ポジティブAプレートおよびポジティブCプレートがこの順となるように比較例1で用いたものと同様の偏光子と貼りあわせ、円偏光板X2を作製した。ポジティブAプレートの遅相軸は、偏光子の透過軸に対し、45°に設定した。ポジティブAプレートはRe(550)が138nm、Rth(550)が69nm、Re(450)/Re(550)が0.86であった。ポジティブCプレートはRe(550)が0nm、Rth(550)が-60nm、Rth(450)/Rth(550)が1.05であった。
(実施例8)
 塗布層の厚みを変更することでポジティブCプレート(ポジティブC領域含有層)のRth(550)を-210nmに変更した以外は比較例4と同様の方法で、円偏光板X3を作製した。次いで、ポジティブCプレートの表面に、実施例1と同様の方法で作製したコレステリック液晶層パターンを有する層を含む積層体のガラス基板側を、粘着剤を用いて貼りあわせ、得られた積層光学体を、比較例2と同様の手順で、発光素子基板と貼りあわせ、評価用画像表示装置を作製した。
[評価用画像表示装置の評価]
(発光輝度評価)
 評価用パネルを点灯し、全面に単色の青を表示させた後、架台に設置し、2m先に分光放射計SR-3((株)トプコン社製)を配置して輝度評価を行った。比較例1のコレステリック材料がない画像表示装置の輝度に対して、各実施例、比較例の画像表示装置の輝度の向上率を評価した。
  A:輝度向上率が40%以上
  B:輝度向上率が40%より小さく、20%以上
  C:輝度向上率が20%より小さく、5%以上
  D:輝度向上率が5%より小さい
(斜め観察時の光漏れの評価)
 斜め観察時の光漏れは、測色計(コニカミノルタ製、CM-2022)を用い、SCEモードで積層体の法線方向から8度の方向から測定して得られたY値を用い、比較例2のY値との差をΔYとし、以下の基準に従って評価した。
 
  A:ΔYが比較例2のΔYの20%以下である場合
  B:ΔYが比較例2のΔYの20%超40%以下である場合
  C:ΔYが比較例2のΔYの40%超60%以下である場合
  D:ΔYが比較例2のΔYの60%超である場合
(にじみ評価)
 評価用画像表示装置を点灯し、青を2ピクセル、黒が5ピクセルの繰り返しで、青と黒のストライプを表示させ、にじみの有無を目視評価した。
Figure JPOXMLDOC01-appb-T000021
 1 偏光分離層
 2 有機電界発光層
 3 反射層
 4 発光素子基板
 5 位相差層
 6 偏光層
 7 円偏光板
 8 偏光分離領域(偏光分離部位)
 9 可視光透過領域
11 バリア層
12 ポジティブC領域含有層
13 ポジティブC領域
14 光学的に等方性の領域

Claims (17)

  1. 発光素子基板および円偏光板を含む有機EL画像表示装置であって、
    前記発光素子基板は反射層および前記反射層上に有機電界発光層を含み、
    前記反射層、前記有機電界発光層、および前記円偏光板はこの順で配置されており、
    前記有機電界発光層と前記円偏光板との間に偏光分離層を含み、
    前記偏光分離層は、前記有機電界発光層が発光した光のうち、1つの偏光状態の光を反射し、かつ他方の偏光状態の光を透過する偏光分離領域と、可視光透過領域とを含み、
    前記偏光分離領域はコレステリック液晶相を固定して形成された層からなり、
    前記有機電界発光層と前記円偏光板との間にポジティブC領域含有層を含む、有機EL画像表示装置。
  2. 前記ポジティブC領域含有層のポジティブC領域の波長550nmにおける膜厚方向のレターデーションRth(550)が-250nm~-70nmである請求項1に記載の有機EL画像表示装置。
  3. 前記ポジティブC領域含有層のポジティブC領域の波長550nmにおける膜厚方向のレターデーションRth(550)が-230nm~-130nmである請求項1に記載の有機EL画像表示装置。
  4. 前記円偏光板が1/4波長板、1/2波長位相差板、および偏光層をこの順で含む請求項1~3のいずれか一項に記載の有機EL画像表示装置。
  5. 前記円偏光板が逆波長分散性のAプレート、および偏光層を含む請求項1~3のいずれか一項に記載の有機EL画像表示装置。
  6. 前記有機電界発光層、前記ポジティブC領域含有層、前記偏光分離層、および前記円偏光板がこの順で配置されている請求項1~5のいずれか一項に記載の有機EL画像表示装置。
  7. 前記可視光透過領域が前記偏光分離領域作製のための組成物と同一の組成物を用いて作製されている請求項1~6のいずれか一項に記載の有機EL画像表示装置。
  8. 前記可視光透過領域が光学的に等方性の領域からなる請求項1~7のいずれか一項に記載の有機EL画像表示装置。
  9. 前記ポジティブC領域含有層がポジティブC領域からなり、
    前記ポジティブC領域の可視光領域の任意の波長Xnmでの膜厚方向のレターデーションRth(X)の絶対値が、前記偏光分離領域の波長Xにおける膜厚方向のレターデーションRth-Ch(X)の絶対値と前記可視光透過領域の波長XにおけるレターデーションRth-T(X)の絶対値との間の任意の値である請求項8に記載の有機EL画像表示装置。
  10. 前記可視光透過領域がコレステリック液晶相を固定して形成された層であり紫外光波長域または赤外光波長域に選択反射の中心波長を有する請求項7に記載の有機EL画像表示装置。
  11. 前記ポジティブC領域含有層がポジティブC領域からなり、
    前記ポジティブC領域の可視光領域の任意の波長Xnmにおける膜厚方向のレターデーションRth(X)の絶対値が、前記偏光分離領域の波長Xnmにおける膜厚方向のレターデーションRth(X)の絶対値と等しい請求項10に記載の有機EL画像表示装置。
  12. 前記ポジティブC領域含有層がポジティブC領域に加えさらに光学的に等方性の領域を含む請求項8に記載の有機EL画像表示装置。
  13. 前記ポジティブC領域の可視光領域の任意の波長Xnmにおける膜厚方向のレターデーションRth(X)の絶対値が前記偏光分離領域の波長Xnmにおける膜厚方向のレターデーションRth(X)の絶対値と等しい請求項12に記載の有機EL画像表示装置。
  14. 前記発光素子基板は前記反射層上に前記有機電界発光層がマトリクス状に配置された有機電界発光層群を含む請求項1~13のいずれか一項に記載の有機EL画像表示装置。
  15. 前記偏光分離領域が前記有機電界発光層群に対応してマトリクス状に配置された偏光分離部位の集合である請求項14に記載の有機EL画像表示装置。
  16. 前記有機電界発光層群が2種以上の波長の光を発光する有機電界発光層を含み、
    前記偏光分離部位は対応する位置に配置されている有機電界発光層が発光する波長域で1つの偏光状態の光を反射する請求項15に記載の有機EL画像表示装置。
  17. 前記可視光透過領域が光学的に等方性の領域からなり、
    前記ポジティブC領域含有層が前記ポジティブC領域および光学的に等方性の領域を含み、前記ポジティブC領域が前記マトリクス状に配置された前記偏光分離部位に対応してマトリクス状である請求項15または16のいずれか一項に記載の有機EL画像表示装置。
PCT/JP2018/018030 2017-05-11 2018-05-10 有機el画像表示装置 WO2018207851A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019517681A JP6830155B2 (ja) 2017-05-11 2018-05-10 有機el画像表示装置
US16/678,821 US10854852B2 (en) 2017-05-11 2019-11-08 Organic EL image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017094791 2017-05-11
JP2017-094791 2017-05-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/678,821 Continuation US10854852B2 (en) 2017-05-11 2019-11-08 Organic EL image display device

Publications (1)

Publication Number Publication Date
WO2018207851A1 true WO2018207851A1 (ja) 2018-11-15

Family

ID=64104683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018030 WO2018207851A1 (ja) 2017-05-11 2018-05-10 有機el画像表示装置

Country Status (3)

Country Link
US (1) US10854852B2 (ja)
JP (1) JP6830155B2 (ja)
WO (1) WO2018207851A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124964A1 (ko) * 2017-12-22 2019-06-27 주식회사 엘지화학 액정 조성물 및 이의 용도
KR20230080146A (ko) * 2021-11-29 2023-06-07 엘지디스플레이 주식회사 표시장치 및 그 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004030955A (ja) * 2002-06-21 2004-01-29 Hitachi Ltd 表示装置
JP2004296162A (ja) * 2003-03-26 2004-10-21 Toshiba Corp 発光表示装置
JP2005063841A (ja) * 2003-08-13 2005-03-10 Hitachi Ltd 発光型表示装置
JP2009283246A (ja) * 2008-05-21 2009-12-03 Dainippon Printing Co Ltd エレクトロルミネッセント素子に用いられる光学部材およびそれを備えたエレクトロルミネッセント素子
JP2014038713A (ja) * 2012-08-10 2014-02-27 Samsung Electronics Co Ltd 表示装置
JP2016053709A (ja) * 2014-03-31 2016-04-14 富士フイルム株式会社 光学フィルム、偏光板、および光学フィルムの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4011292B2 (ja) 2001-01-15 2007-11-21 株式会社日立製作所 発光素子、及び表示装置
JP5011444B2 (ja) * 2010-09-03 2012-08-29 日東電工株式会社 粘着型光学フィルム、その製造方法および画像表示装置
TWI686874B (zh) * 2014-12-26 2020-03-01 日商半導體能源研究所股份有限公司 半導體裝置、顯示裝置、顯示模組、電子裝置、氧化物及氧化物的製造方法
KR102391754B1 (ko) * 2016-05-20 2022-04-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 또는 이를 포함하는 표시 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004030955A (ja) * 2002-06-21 2004-01-29 Hitachi Ltd 表示装置
JP2004296162A (ja) * 2003-03-26 2004-10-21 Toshiba Corp 発光表示装置
JP2005063841A (ja) * 2003-08-13 2005-03-10 Hitachi Ltd 発光型表示装置
JP2009283246A (ja) * 2008-05-21 2009-12-03 Dainippon Printing Co Ltd エレクトロルミネッセント素子に用いられる光学部材およびそれを備えたエレクトロルミネッセント素子
JP2014038713A (ja) * 2012-08-10 2014-02-27 Samsung Electronics Co Ltd 表示装置
JP2016053709A (ja) * 2014-03-31 2016-04-14 富士フイルム株式会社 光学フィルム、偏光板、および光学フィルムの製造方法

Also Published As

Publication number Publication date
JP6830155B2 (ja) 2021-02-17
US20200075896A1 (en) 2020-03-05
JPWO2018207851A1 (ja) 2020-05-14
US10854852B2 (en) 2020-12-01

Similar Documents

Publication Publication Date Title
JP6808021B2 (ja) 有機el画像表示装置
US10175399B2 (en) Mirror with image display function
WO2016194890A1 (ja) 画像表示装置の画像表示部表面に用いられるハーフミラーの製造方法、ハーフミラー、および画像表示機能付きミラー
WO2017006787A1 (ja) 画像表示機能付きミラー
WO2018186500A1 (ja) 偏光素子、円偏光板および画像表示装置
JP6479699B2 (ja) 車両用画像表示機能付きミラーおよびその製造方法
US10126474B2 (en) Mirror with image display function
JP2011008205A (ja) 二軸性光学異方性膜を作製するための組成物
JP2019204086A (ja) 光学積層体、表示パネル及び表示装置
JP2017068111A (ja) 偏光板および液晶表示装置
US10854852B2 (en) Organic EL image display device
US20170336555A1 (en) Optical member, optical element, liquid crystal display device, and near-to-eye optical member
JP7109485B2 (ja) 積層体、積層体の製造方法および画像表示装置
JP7062770B2 (ja) 積層体および画像表示装置
JP6739390B2 (ja) 有機el画像表示装置の製造方法
JP6891269B2 (ja) 有機el画像表示装置
JP2020115170A (ja) 偏光子を備えた面光源及びそれを用いた液晶表示装置
WO2011013492A1 (ja) 輝度向上フィルム、複合偏光板及び液晶表示装置
WO2020179803A1 (ja) 有機el画像表示装置およびその製造方法
WO2024090308A1 (ja) 加飾シート、表示装置及び自動車車内用内装
JP2019204084A (ja) 光学積層体、表示パネル及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18797920

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517681

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18797920

Country of ref document: EP

Kind code of ref document: A1