WO2018207384A1 - 金属表面処理剤、金属表面処理方法及び金属材料 - Google Patents

金属表面処理剤、金属表面処理方法及び金属材料 Download PDF

Info

Publication number
WO2018207384A1
WO2018207384A1 PCT/JP2017/031230 JP2017031230W WO2018207384A1 WO 2018207384 A1 WO2018207384 A1 WO 2018207384A1 JP 2017031230 W JP2017031230 W JP 2017031230W WO 2018207384 A1 WO2018207384 A1 WO 2018207384A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
surface treatment
group
acid
metal surface
Prior art date
Application number
PCT/JP2017/031230
Other languages
English (en)
French (fr)
Inventor
普之 鈴木
智洋 猪古
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Priority to US16/612,359 priority Critical patent/US11377568B2/en
Priority to CA3063012A priority patent/CA3063012C/en
Priority to CN201780090633.8A priority patent/CN110662856A/zh
Priority to JP2019510988A priority patent/JP6552768B2/ja
Priority to EP17909495.8A priority patent/EP3623497A4/en
Priority to TW107115659A priority patent/TWI774766B/zh
Publication of WO2018207384A1 publication Critical patent/WO2018207384A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4419Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained otherwise than by polymerisation reactions only involving carbon-to-carbon unsaturated bonds
    • C09D5/4465Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Definitions

  • the present invention relates to a metal surface treatment agent, a metal surface treatment method using the same, and a metal material having a surface treatment film layer obtained by this method.
  • Patent Document 1 proposes a technique related to a solution composition of a metal surface treatment agent mainly composed of zirconium.
  • An object of the present invention is to provide a metal material having a surface-treated film layer obtained in (1).
  • the present inventor determined that the ion (A) containing at least one metal selected from zirconium, titanium, and hafnium is 0.1 mmol / L or more in terms of metal concentration. And a water-based urethane resin (B) having a weight average molecular weight of 50,000 or more in a solid content mass concentration of 0.5 to 10 g / L, the metal-converted mass (A M ) of the ion (A) and the resin (B) After performing the surface treatment using a metal surface treatment agent having a ratio [B M / A M ] to a solid content mass (B M ) of 0.7 or more, by applying coating, etc.
  • the present inventors have found that good corrosion resistance can be obtained even at the edge portion of the present invention, and have completed the present invention.
  • the present invention provides the following (I) to (V).
  • the solid content mass concentration is 0.5 to 10 g / L
  • the ratio of the metal-converted mass (A M ) of the ion (A) to the solid content mass (B M ) of the resin (B) [B M / A M ] is 0.7 or more, a metal surface treating agent.
  • a metal surface treatment method comprising a step of bringing the metal surface treatment agent according to any one of (I) to (III) into contact with a metal surface.
  • V) A metal material having a surface treatment film layer formed on the surface of the metal material by the surface treatment method described in (IV) above.
  • a metal surface treatment agent that is used for pretreatment of coating and can provide excellent corrosion resistance to edge portions such as cut portions in a metal material when the coating is applied, and metal surface treatment using the same
  • the metal material which has a surface treatment film layer obtained by the method and the method can be provided.
  • the metal surface treatment agent (hereinafter also simply referred to as “treatment agent”) according to an embodiment of the present invention is used for pretreatment of coating.
  • a surface treatment film layer can be formed.
  • the treatment agent of this embodiment is an aqueous system in which an ion (A) containing at least one metal selected from zirconium, titanium, and hafnium is 0.1 mmol / L or more in terms of metal molar concentration and a weight average molecular weight of 50,000 or more.
  • the urethane resin (B) includes a solid content mass concentration of 0.5 to 10 g / L, and includes a metal equivalent mass (A M ) of the ion (A) and a solid content mass (B M ) of the resin (B).
  • the ratio [B M / A M ] is 0.7 or more.
  • the treatment agent of this embodiment may further contain a metal (C) selected from aluminum, magnesium, zinc, and iron.
  • the treatment agent of this embodiment may further contain at least one acid group (E) selected from nitrate group, sulfate group, formate group, acetate group and alkane sulfonate group.
  • the ion (A) is an ion containing at least one metal selected from zirconium, titanium and hafnium.
  • the metal-containing ion is not particularly limited.
  • metal ions such as zirconium ion, titanium ion, and hafnium ion; complex ions containing zirconium, titanium, or hafnium; oxides of zirconium, titanium, or hafnium An ion etc. can be mentioned.
  • the metal surface treating agent of this embodiment should just contain 1 type among these ions, but 2 or more types may be contained.
  • the ion (A) supply source is not particularly limited as long as it can form the above-mentioned various ions.
  • the content of the ion (A) is preferably 0.1 mmol / L or more, more preferably 0.4 mmol / L or more in terms of metal-converted molar concentration.
  • an upper limit is not specifically limited, From a viewpoint of cost, it is preferable that it is 100 mmol / L or less.
  • the water-based urethane resin (B) may have a weight average molecular weight of 50,000 or more, but preferably has a weight average molecular weight of 100,000 or more. More preferably, it is more preferably 1 million or more.
  • the upper limit of the weight average molecular weight is not particularly limited, but is usually 3 million or less.
  • the weight average molecular weight of the resin (B) means a value obtained by analysis by GPC (gel permeation chromatography) and obtained as a weight average molecular weight in terms of polyethylene glycol.
  • GPC gel permeation chromatography
  • Measurement model HLC-8320GPC EcoSEC manufactured by Tosoh Corporation Column: TSKgel ⁇ -M 2 linking mobile phase: dimethylformamide / 0.06M LiBr / 0.04MH 3 PO 3 Temperature: Column thermostat 40 ° C Mobile phase flow rate: 0.5 ml / min
  • Resin (B) is typically obtained by reacting a urethane prepolymer with water.
  • a urethane prepolymer with water.
  • the isocyanate group contained in the urethane prepolymer reacts with the amine generated by the reaction of the isocyanate group with water or the amino group in the polyamine compound contained as necessary to form a urea bond.
  • urethane resin is typically obtained by reacting a urethane prepolymer with water.
  • the urethane prepolymer is a component used for the production of the resin (B), and the structure thereof is not particularly limited, but the urethane prepolymer is derived from a polyisocyanate having a cyclohexane ring structure represented by the following formula (1). It preferably has a structural unit.
  • R 1 is represented by —R 2 —R 3 —R 4 —, R 2 is a single bond or an alkylene group, and R 3 is And R 4 is It is.
  • R 1 is preferably It is. In the above formula, all of R 5 , R 6 and R 7 are more preferably a hydrogen atom or a methyl group.
  • the charged amount of the polyisocyanate is 20 to 80% by mass with respect to the total amount of raw materials used in the production of the urethane prepolymer. It is preferably 30 to 70% by mass, more preferably 40 to 65% by mass, and particularly preferably 50 to 60% by mass. That is, in the resin (B), the abundance (in terms of mass) of the structural unit derived from the polyisocyanate of the formula (1) is preferably 20 to 80%, more preferably 30 to 70%. It is more preferably 40 to 65%, particularly preferably 50 to 60%.
  • the polyisocyanate is not particularly limited as long as it is a polyisocyanate represented by the formula (1) having one or more cyclohexane rings and two or more isocyanate groups.
  • a polyisocyanate having the formula (1) may be used in combination with the polyisocyanate represented by the formula (1).
  • Polyisocyanate may be used individually by 1 type and may be used together 2 or more types.
  • the urethane prepolymer has a structural unit derived from diol in addition to the structural unit derived from polyisocyanate having a cyclohexane ring structure represented by the formula (1).
  • a structural unit derived from diol the structural unit derived from diol represented by the following formula
  • the diol represented by formula (2) may be referred to as a polyol, the diol represented by formula (3) as a first diol, and the diol represented by formula (4) as a second diol.
  • R 8 is represented by —R 9 —R 10 —R 11 —, and R 9 is And R 10 is And R 11 is And R 14 is It is.
  • R 8 is preferably It is.
  • R 12 is preferably an ethylene group or an isopropylene group.
  • R 14 is preferably a hydrogen atom, a methyl group, an isopropyl group or a phenyl group.
  • R 15 is preferably a hydrogen atom, a methyl group, a trifluoromethyl group, or a phenyl group.
  • R 16 is preferably a hydrogen atom, a methyl group, an ethyl group, a trifluoromethyl group, or a phenyl group.
  • R 17 is preferably a hydrogen atom, a methyl group, an isopropyl group, or a phenyl group.
  • the urethane polymer is represented by the formula (1), in addition to the structural unit derived from the polyisocyanate having a cyclohexane ring structure, the structural unit derived from the polyol and the first diol, the structural unit derived from the polyol and the second diol. It is preferable to have a structural unit derived from the first and second diols, or a structural unit derived from the polyol and the first and second diols.
  • the first diol has a weight average molecular weight of more than 600
  • the second diol has a weight average molecular weight of 600 or less. It is preferable to use those.
  • the weight average molecular weight of the first diol may be more than 600, may be more than 600 and 10000 or less, may be more than 600 and 5000 or less, may be 800 or more and 4000 or less, and may be 1000 or more. It may be 3000 or less.
  • the weight average molecular weight of the second diol may be 600 or less, 500 or less, 400 or less, or 250 or less.
  • the weight average molecular weight of each component in the present embodiment is a value measured by GPC (gel permeation chromatography) and converted to polystyrene, similarly to the measurement of the weight average molecular weight of the resin (B). .
  • the polyol is not particularly limited as long as it is a polyol represented by the formula (2) having one or more benzene rings and two or more hydroxy groups, and having no nitrogen atom.
  • resorcinol Aromatic polyols such as 2-methylresorcinol, bisphenol A, bisphenol S, bisphenol F; bisphenol A-ethylene oxide 2 mol adduct, bisphenol A-ethylene oxide 4 mol adduct, bisphenol A-ethylene oxide 6 mol adduct, Bisphenol A-ethylene oxide 10 mol adduct, bisphenol A-propylene oxide 2 mol adduct, bisphenol A-propylene oxide 4 mol adduct, bisphenol A-propylene oxide 6 mol adduct, bisphenol A-propylene oxide 1
  • Polyether polyol having a benzene ring such as a mole adduct
  • aromatic polycarboxylic acid such as phthalic acid, isophthalic acid, terephthalic acid, trimellitic
  • Polyester polyol having; Polycarbonate polyol having a benzene ring obtained by transesterification reaction between a polyol such as ethylene carbonate and bisphenol A; and the like.
  • a polyol may be used individually by 1 type and may be used together 2 or more types.
  • polyether diol for example, polyether diol, polyester diol, polycarbonate diol and the like can be used.
  • the polyether diol include polyethylene glycol, polypropylene glycol, polybutylene glycol (polytetramethylene ether glycol), and the like.
  • the polyether diol is produced, for example, by addition polymerization of alkylene oxide such as ethylene oxide or propylene oxide under a basic catalyst.
  • the polyester diol includes, for example, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid and other unsaturated dicarboxylic acids such as malonic acid, sebacic acid and the like, and alcohol species such as ethylene glycol and propylene glycol.
  • Tetraethylene glycol 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, neopentyl glycol , 2-methyl-1,3-propanediol, 3-methyl-1,5-pentanediol, cyclohexyldimethanol, 1,3-adamantanediol, and the like.
  • the polycarbonate diol include those produced by ring-opening polymerization of cyclic esters such as ⁇ -caprolactone with glycol.
  • species quoted with diol react is mentioned.
  • These 1st diols may be used individually by 1 type, and may use 2 or more types together.
  • Examples of the second diol include ethylene glycol (62.07 g / mol), propylene glycol (76.09 g / mol), 1,5-pentanediol (104.15 g / mol), 1,6-hexanediol ( 118.17 g / mol), 1,7-heptanediol (132.2 g / mol), 1,8-octanediol (146.23 g / mol), 1,9-nonanediol (160.25 g / mol), 1 , 10-decanediol (174.28 g / mol), neopentyl glycol (104.15 g / mol), 2-methyl-1,3-propanediol (90.12 g / mol), 3-methyl-1,5- Pentanediol (118.17 g / mol), 1,4-cyclohexyldimethanol (146
  • the amount of diol charged can usually be, for example, 1 to 80% by mass with respect to the total amount of raw materials used in the production of the urethane prepolymer.
  • the content is preferably 2 to 70% by mass, more preferably 3 to 60% by mass, and still more preferably 6 to 50% by mass. That is, in the resin (B), the abundance of diol-derived structural units (in terms of mass) is preferably 1 to 80%, more preferably 2 to 70%, and more preferably 3 to 60%. More preferably, it is 6 to 50%.
  • the charged amount in the case of using a polyol can usually be, for example, 1 to 40% by mass with respect to the total amount of raw materials used in the production of the urethane prepolymer.
  • the content is preferably 1 to 30% by mass, more preferably 3 to 25% by mass, and still more preferably 6 to 20% by mass. That is, in the resin (B), the abundance (in terms of mass) of the structural unit derived from the polyol is usually 1 to 40%, preferably 1 to 30% in the resin (B). It is more preferably 25%, and further preferably 6 to 20%.
  • the amount charged when the first diol is used is usually, for example, 1 to 50% by mass with respect to the total amount of raw materials used in the production of the urethane prepolymer. However, it is preferably 3 to 40% by mass, more preferably 5 to 35% by mass, and still more preferably 10 to 30% by mass. That is, in the resin (B), the abundance (in terms of mass) of the structural unit derived from the first diol is usually 1 to 50% and preferably 3 to 40% in the resin (B). It is more preferably 5 to 35%, and further preferably 10 to 30%.
  • the amount charged when the second diol is used is usually 1 to 25% by mass with respect to the total amount of raw materials used for the production of the urethane prepolymer. However, it is preferably 1 to 20% by mass, more preferably 2 to 15% by mass, and further preferably 3 to 10% by mass. That is, in the resin (B) used in the present embodiment, the abundance (in terms of mass) of the structural unit derived from the second diol is usually 1 to 25%, preferably 1 to 20%. It is more preferably 2 to 15%, and further preferably 3 to 10%.
  • the urethane prepolymer is a tertiary amine compound represented by the following formula (5) (hereinafter simply referred to as “first” It is also preferable to have a structural unit derived from a “tertiary amine” and / or a salt thereof.
  • the aminoalkyl group for R 23 is preferably — (CH 2 ) 2 —NH 2 or — (CH 2 ) 3 —NH 2 .
  • the aminoalkyl group for R 24 is preferably — (CH 2 ) 2 —NH 2 .
  • the hydroxyalkyl group for R 23 and R 24 is preferably — (CH 2 ) 2 —OH.
  • the N-alkylaminoalkyl group for R 24 is preferably — (CH 2 ) 2 —NH—CH 3 .
  • a urethane prepolymer into which a group derived from the tertiary amine compound and / or salt thereof has been introduced is obtained.
  • the tertiary amine compound and / or salt thereof contains two or more active hydrogens, for example, two or more substituents having active hydrogen such as an amino group, a hydroxy group, and an N-alkylamino group. It is preferably included.
  • the N-alkylamino group is preferably a 2-methylamino group.
  • the charged amount of the tertiary amine compound and / or salt thereof is the total amount of raw materials used in the production of the urethane prepolymer.
  • it can usually be 1 to 20% by mass, for example, but preferably 2 to 15% by mass, more preferably 2 to 13% by mass, and more preferably 3 to 10% by mass. Further preferred. That is, in the resin (B), the abundance (in terms of mass) of the structural unit derived from the tertiary amine compound and / or salt thereof is usually 1 to 20%, preferably 2 to 15%.
  • the tertiary amine compound is not particularly limited as long as it is a tertiary amine having two or more active hydrogens.
  • N-methyldiethanolamine, N-ethyldiethanolamine, N-butyldiethanolamine, Nt-butyldiethanolamine N-aminoalkyl dialkanolamines such as N- (3-aminopropyl) diethanolamine, triethanolamine, N, N, N ′, N′-tetrakis (2-hydroxyethyl) ethylenediamine, bis (2-hydroxyethyl) Trialkanolamine which may have a substituent such as aminotris (hydroxymethyl) methane, 1- [bis (2-hydroxyethyl) amino] -2-propanol, 2,2′-diamino-N-methyldiethylamine , N, N ′, N ′′ -trimethyldiethylenetriami , Tris (2-a
  • tertiary amine compounds may be used as salts with organic acids such as formic acid and acetic acid, inorganic acids such as hydrochloric acid and sulfuric acid, and quaternary with an alkylating agent such as dimethyl sulfate, diethyl sulfate and methyl iodide. You may use what was chlorinated.
  • organic acids such as formic acid and acetic acid
  • inorganic acids such as hydrochloric acid and sulfuric acid
  • an alkylating agent such as dimethyl sulfate, diethyl sulfate and methyl iodide. You may use what was chlorinated.
  • N-aminoalkyl dialkanolamine particularly N-methyldiethanolamine is preferable.
  • the resin (B) of the present embodiment may be obtained by neutralizing a part or all of the structural portion (tertiary amine) derived from the tertiary amine compound with an acid or the like.
  • the acid used in this case include formic acid, acetic acid, propionic acid, butyric acid, lactic acid, tartaric acid, malic acid, malonic acid, and adipic acid; methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfone Organic sulfonic acids such as acids; organic acids such as hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, bromic acid, phosphoric acid, and the like.
  • the resin (B) may be a quaternized part or all of the structural portion (tertiary amine) derived from the tertiary amine compound.
  • the quaternizing agent used for quaternization include sulfuric acid esters such as dimethyl sulfate and diethyl sulfate; alkyl halides such as methyl chloride, benzyl chloride, methyl bromide, benzyl bromide and methyl iodide. Carbonic acid esters such as dimethyl carbonate and diethyl carbonate; These quaternizing agents may be used alone or in combination of two or more. Further, an acid as a neutralizing agent and a quaternizing agent may be used in combination. In the present specification, these acids and quaternizing agents are sometimes referred to as ionizing agents.
  • the “alkyl group” or the “alkyl group” contained in the halogenated alkyl group, aminoalkyl group, hydroxyalkyl group, N-alkylaminoalkyl group and the like is not particularly limited, but usually has 20 or less carbon atoms. And may be an alkyl group having 12 or less carbon atoms or an alkyl group having 6 or less carbon atoms.
  • methylpentyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, etc. are mentioned.
  • alkylene group is also not particularly limited, but is usually an alkylene group having 20 or less carbon atoms, an alkylene group having 12 or less carbon atoms, or an alkylene group having 6 or less carbon atoms.
  • the halogenated alkyl group include those in which one or more hydrogen atoms in the alkyl group are substituted with a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • components other than the above may be used for the production of the urethane prepolymer of the present embodiment.
  • examples of other components include polyisocyanates other than the above polyisocyanates, polyols other than the above polyols, polyols not containing a benzene ring and a nitrogen atom, organic solvents, polyamine compounds other than tertiary amines, ionizing agents, acids, and organic metals. Compounds and the like.
  • the polyisocyanate other than polyisocyanate is not particularly limited, and examples thereof include 1,4-tetramethylene diisocyanate, ethyl (2,6-diisocyanate) hexanoate, 1,6-hexamethylene diisocyanate, 1,12-dodecamethylene diisocyanate, Aliphatic diisocyanates such as 2,2,4- or 2,4,4-trimethylhexamethylene diisocyanate; m- or p-phenylene diisocyanate, tolylene-2,4-diisocyanate or tolylene-2,6-diisocyanate, diphenylmethane-4,4'-diisocyanate, 1,3-bis (2-isocyanate-2-propyl) benzene, naphthalene -1,5-diisocyanate, diphenyl-4,4′-diisocyanate, 4,4′-diisocyanate-3,3′-dimethyldip
  • the polyisocyanate other than the polyisocyanate may be a dimer such as a uretdione structure, a trimer such as an isocyanurate structure, or the like, and 3 or more per molecule as an adduct using a polyfunctional polyol.
  • polyols other than the above polyols polyols of triol or higher not containing a benzene ring and a nitrogen atom can be used, and examples thereof include trimethylolpropane and pentaerythritol.
  • an organic solvent may be used.
  • the organic solvent is used as a solvent for reacting each component described above.
  • examples of such organic solvents include, but are not limited to, ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ester solvents such as ethyl acetate and butyl acetate; ether solvents such as tetrahydrofuran and 1,4-dioxane.
  • Solvents such as acetonitrile and acrylonitrile; acrylate solvents such as methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate; amide solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and N-ethylpyrrolidone; And sulfoxide solvents such as dimethyl sulfoxide; These organic solvents may be removed by vacuum distillation after the production of the urethane prepolymer and the urethane resin (B) as necessary from the viewpoint of reducing the environmental load.
  • nitrile solvents such as acetonitrile and acrylonitrile
  • acrylate solvents such as methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate
  • amide solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and N
  • a known method can be applied to the production of the urethane prepolymer and the resin (B).
  • An example of the method (Production Methods 1 to 6) is shown.
  • (Manufacturing method 1) A urethane prepolymer is prepared by dissolving a polyisocyanate, a diol, and, if necessary, a tertiary amine in an organic solvent and reacting. If necessary, a part or all of the tertiary amine in the urethane prepolymer is prepared.
  • a urethane prepolymer is prepared by dissolving a polyisocyanate, a diol, and, if necessary, a tertiary amine in an organic solvent and reacting. If necessary, a part or all of the tertiary amine in the urethane prepolymer is prepared.
  • a urethane prepolymer is prepared by reacting a polyisocyanate, a diol, and a tertiary amine, if necessary, without using an organic solvent (bulk polymerization method).
  • a urethane prepolymer is prepared by adding polyisocyanate, diol or the like to react, and if necessary, part of the tertiary amine in the urethane prepolymer Or the method of emulsifying all by ionizing with an ionizing agent and adding water
  • Manufacturing method 5 After reacting polyisocyanate, diol, etc. with an organic solvent, a tertiary amine is added as necessary to prepare a urethane prepolymer having a tertiary amine structure at the terminal site.
  • a method in which a part or all of a tertiary amine in a polymer is ionized with an ionizing agent and emulsified by adding water (Production Method 6) After reacting polyisocyanate, diol, etc. with an organic solvent, a tertiary amine is added as necessary to prepare a urethane prepolymer having a tertiary amine structure at the terminal site.
  • the emulsifier may be used.
  • polyamine compound used as a chain extender examples include ethylenediamine, 1,2-propanediamine, 1,6-hexamethylenediamine, piperazine, 2,5-dimethylpiperazine, isophoronediamine, 4,4′-dicyclohexylmethanediamine, 3,3′-dimethyl-4,4′-dicyclohexylmethanediamine, 1,4-cyclohexanediamine, 1,3-bisaminomethylcyclohexane, 2-aminoethylaminopropyltrimethoxysilane, N-hydroxymethylaminoethylamine, N -Hydroxyethylaminoethylamine, N-hydroxypropylaminopropylamine, N-ethylaminoethylamine, N-methylaminopropylamine, diethylenetriamine, dipropylenetriamine, triethylenetet Mineral, hydrazine, 1,6-hexamethylenebishydrazine,
  • the amount of the polyamine compound charged is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 5 parts by mass with respect to 100 parts by mass of the urethane prepolymer. .
  • the resin (B) obtained as described above preferably has an amine value of 5 to 60 mgKOH / g from the viewpoint of corrosion resistance, and more preferably 8 to 30 mgKOH / g.
  • the content of the resin (B) is 0.5 to 10 g / L as solid content mass concentration.
  • the content of the resin (B) is preferably 0.5 to 5 g / L in terms of solid content mass concentration from the viewpoint of corrosion resistance.
  • the ratio [B M / A M ] of the metal equivalent mass (A M ) of the ion (A) and the solid content mass (B M ) of the resin (B) is 0.00. It is preferable that it is 7 or more. Although an upper limit is not specifically limited, Usually, it is 100 or less.
  • the metal surface treatment agent of this embodiment preferably further contains at least one metal (C) selected from aluminum, magnesium, zinc and iron.
  • the form of the metal (C) may be any form such as a compound, ion, complex ion and the like. Although it does not restrict
  • the said metal (C) may be intentionally contained in a metal surface treating agent, and may be mixed unavoidable.
  • the content of the metal (C) is preferably 20 mmol / L or less, more preferably 10 mmol / L or less in terms of metal-converted molar concentration. Although the minimum of content of a metal (C) is not specifically limited, Usually, it is 0.1 mmol / L or more.
  • the metal surface treatment agent of the present embodiment preferably further contains at least one acid group (E) selected from a nitrate group, a sulfate group, a formate group, an acetate group and an alkanesulfonic acid group.
  • the content of the acid radical (E) is preferably 10 to 2000 mmol / L.
  • Examples of the alkanesulfonic acid radical include R—SO 3 — (wherein R is an alkyl group or a hydroxyalkyl group).
  • the alkyl group is not particularly limited, but is preferably a C 1-20 alkyl group, and more preferably a C 1-4 alkyl group.
  • the alkane sulfonate ion is not particularly limited, and examples thereof include methane sulfonate ion and ethane sulfonate ion.
  • the source of nitrate group, sulfate group, formate group, acetate group and alkane sulfonate group [acid component capable of forming acid group (E)] is any one that can provide these acid groups when mixed in an aqueous solvent. It is not particularly limited, and known ones such as nitric acid, nitrate, sulfuric acid, sulfate, formic acid, formate, acetic acid, acetate, alkane sulfonic acid, alkane sulfonate can be appropriately used.
  • the salt include metal salts and ammonium salts.
  • the metal surface treatment agent of this embodiment may further contain other components.
  • Other components are not particularly limited, and examples thereof include fluorine compounds, metal components other than the metal (C) listed above, pH adjusters, additives such as resins, and the like.
  • fluorine compound examples include hydrofluoric acid, ammonium fluoride, ammonium hydrogen fluoride, germanium fluoride, potassium fluoride, potassium hydrogen fluoride, iron fluoride, sodium fluoride, sodium hydrogen fluoride, and the like. These may be used alone or in combination of two or more. Moreover, it is preferable that content of a fluorine is 4 times mol or more and 30 times mol or less in metal conversion molar concentration with respect to content of ion (A).
  • metal components other than the metal (C) listed above include, but are not limited to, cobalt, nickel, manganese, trivalent chromium, tin, and tungsten.
  • alkaline components such as sodium hydroxide aqueous solution, potassium hydroxide aqueous solution and aqueous ammonia solution are used.
  • carbon dioxide, nitric acid aqueous solution, sulfuric acid aqueous solution are used.
  • Acid components such as formic acid aqueous solution, acetic acid aqueous solution and alkanesulfonic acid aqueous solution can be used, but are not limited thereto.
  • additives such as resins include, but are not limited to, N-containing basic compounds and other resins.
  • the N-containing basic compound is not particularly limited as long as it is a basic compound containing an N atom in the molecule.
  • ammonia hydrazine compound
  • hydroxylamine monobutylamine, dibutylamine, tributylamine
  • Aliphatic amines such as monoethylamine, diethylamine, triethylamine, monomethylamine, dimethylamine, trimethylamine, propylamine, isopropylamine, hexylamine, 2-ethylhexylamine, ethylenediamine, diethylenetriamine, octylamine, naphthylamine, polyallylamine; monoethanolamine, Diethanolamine, triethanolamine, methylethanolamine, dimethylethanolamine, diethylethanolamine, monoisopropanolamine Amine having an alicyclic and / or aromatic ring; diisopropanol
  • the metal surface treating agent of this embodiment is an acid component capable of forming an ion (A) supply source, a resin (B), and, if necessary, a metal (C) supply source and an acid radical (E) in an aqueous solvent.
  • A ion
  • B resin
  • C metal
  • E acid radical
  • other components and the like can be prepared by appropriately mixing so that the above-mentioned specified concentration is obtained.
  • the aqueous solvent is not particularly limited as long as it contains 50% by mass or more of water based on the mass of all the solvents.
  • solvents other than water contained in the aqueous solvent include alkane solvents such as hexane and pentane; aromatic solvents such as benzene and toluene; alcohol solvents such as methanol, ethanol, 1-butanol and ethyl cellosolve; tetrahydrofuran Ether solvents such as dioxane, ester solvents such as ethyl acetate and butoxyethyl acetate; amide solvents such as dimethylformamide and N-methylpyrrolidone; sulfoxide solvents such as dimethyl sulfoxide; phosphoric acids such as hexamethylphosphoric triamide Amide solvents; and the like.
  • These solvents other than water may be mixed alone or in combination of two or more. In addition, it is preferable to use only water from an environmental and economic viewpoint
  • the pH of the metal surface treatment agent of this embodiment is not particularly limited, but is preferably in the range of 2.5 to 5.0, and preferably in the range of 3.5 to 4.5. Is more preferable.
  • the value of pH described in this specification indicates a value obtained by measuring the pH of the treatment agent at 45 ° C. using a commercially available pH meter.
  • the surface treatment method of this embodiment includes a metal surface treatment step in which the metal surface treatment agent is brought into contact with the metal surface.
  • a metal material having a surface treatment film layer can be produced.
  • the contact of the metal surface treatment agent with the metal material can be performed by a conventional contact method such as a spray method, a dip method, or a combination thereof, but is not limited thereto.
  • the metal surface treatment agent is brought into contact with the metal material for a certain period of time within a predetermined temperature range.
  • the contact temperature is preferably in the range of 20 ° C. or higher and 60 ° C. or lower, and more preferably in the range of 35 ° C. or higher and 45 ° C. or lower.
  • the contact time may be appropriately adjusted depending on the concentration of the metal surface treatment agent, and is in the range of 30 seconds to 600 seconds, and preferably in the range of 90 seconds to 180 seconds.
  • the surface treatment method may perform a degreasing process for removing oil and deposits on the surface of the metal material called degreasing before the metal surface treatment process, or after the metal surface treatment process. You may perform the coating process process which forms a coating film on the surface. In addition, the water washing process or the water washing process and the drying process may or may not be performed after each process.
  • the method of the degreasing process in a degreasing process process is not specifically limited, A well-known method is applicable.
  • the coating treatment process is performed using a known coating composition by a coating method such as anion electrodeposition coating, cation electrodeposition coating, powder coating, solvent coating, or water-based coating.
  • the coating treatment process may be performed by one coating method, or may be performed by combining two or more coating methods.
  • the surface of the metal material which performed the metal surface treatment process before the coating treatment process may be washed with water, and may not be washed with water.
  • the surface in the metal material after washing with water or before washing with water may be heat-dried before the coating treatment step, or may not be heat-dried.
  • a cationic electrodeposition coating composition containing an amine-added epoxy resin as a coating and a blocked polyisocyanate curing agent as a curing component, and a method of immersing a metal material subjected to a metal surface treatment step in this coating Is mentioned.
  • Cationic electrodeposition coating is performed, for example, by applying a voltage to the object to be coated in the cathode direction using a rectifier while keeping the temperature of the paint at a predetermined temperature and stirring the paint.
  • the metal material obtained by coating the surface is washed with water and baked to form a coating film. For example, baking is performed at 170 ° C. for 20 minutes.
  • the sodium ion concentration in the treatment agent used in the degreasing step or various chemical film forming steps described later is the mass. It is preferable to control to less than 500 ppm on the basis.
  • a chemical conversion film forming step may be performed between the degreasing treatment step and the metal surface treatment step and / or between the metal surface treatment step and the coating treatment step.
  • the chemical conversion treatment process include a phosphate chemical film forming process for forming a phosphate chemical film such as zinc phosphate, a zirconium chemical film forming process for forming a zirconium chemical film, and a titanium chemical film for forming a titanium chemical film.
  • examples thereof include a film forming process, a hafnium chemical conversion film forming process for forming a hafnium chemical conversion film, and a vanadium chemical conversion film forming process for forming a vanadium chemical conversion film.
  • the surface treatment method includes a phosphate chemical conversion film forming step for forming a phosphoric acid conversion film on the surface of the metal material subjected to each treatment process, and another chemical conversion film on the obtained phosphate chemical conversion film. And a predetermined chemical conversion treatment step for forming the film.
  • the chemical conversion treatment process for forming a chemical conversion film other than the phosphate chemical film include various chemical film formation processes such as a zirconium chemical film formation process, a titanium chemical film formation process, a hafnium chemical film formation process, and a vanadium chemical film formation process. Is mentioned.
  • the corrosion resistance of a metal material can further be improved by performing one various chemical conversion film formation process or two different chemical conversion film formation processes.
  • a known chemical conversion treatment with phosphate can be used. More specifically, a phosphate treatment solution having a pH of 3.0 to 6.0 containing phosphate ions (0.1 to 50 g / L) and zinc ions (0.01 to 3.0 g / L).
  • the immersion treatment and / or the spray treatment is performed at 25 to 55 ° C. for 10 to 300 seconds by applying to the surface of the metal material subjected to each treatment step.
  • this surface conditioning treatment method a known method can be used.
  • zirconium chemical conversion film forming treatment a known chemical conversion treatment with a zirconium chemical conversion treatment agent can be used.
  • titanium chemical conversion film formation process the well-known chemical conversion process by a titanium chemical conversion treatment agent can be used.
  • hafnium chemical conversion film forming treatment a known chemical conversion treatment with a hafnium chemical conversion treatment agent can be used.
  • vanadium chemical conversion film forming treatment a known chemical conversion treatment with a vanadium chemical conversion treatment agent can be used. These chemical conversion treatments are performed at 25 to 55 ° C.
  • the immersion treatment and / or the spray treatment are performed for 10 to 300 seconds on the surface of the metal material subjected to each treatment step.
  • the surface treatment method of the present embodiment includes the above degreasing step; one various chemical film forming steps or two different chemical film forming steps; the coating step; the degreasing step and one various chemical film forming steps or two different types.
  • a water washing step may be included after each step, or a water washing step may be included in part.
  • Examples of the metal material used include carbon steel sheets, alloy steel sheets, and plated steel sheets, and more specifically, cold-rolled steel sheets, hot-rolled steel sheets, hot-dip galvanized steel sheets, aluminum-containing galvanized steel sheets, electrogalvanized steel sheets, and alloys.
  • Known metal materials such as zinc-plated steel sheet, zinc-nickel-plated steel sheet, zinc-cobalt-plated steel sheet, vapor-deposited galvanized steel sheet, nickel-plated steel sheet, tin-plated steel sheet, and magnesium sheet can be used.
  • the coating film adhesion after coating is improved by applying this treatment to metal materials having relatively good corrosion resistance, such as stainless steel plates, aluminum plates, copper plates, and titanium plates.
  • the throwing power of the shape is often lowered during the subsequent cationic electrodeposition coating.
  • the electrodeposition coating is applied to the shaped product brought into contact with the metal surface treatment agent of the present embodiment, good throwing power can be obtained, and good corrosion resistance can be obtained even after coating.
  • a metal material having a surface treatment film layer can be produced by the above surface treatment method.
  • the metal material having a surface treatment film layer has, in addition to the surface treatment film layer, one or two chemical conversion films obtained by one or two kinds of chemical film formation processes and / or one or more coating films. You may do it.
  • the coating amount of the surface treatment coating layer is preferably in the range of 5 mg / m 2 or more and 500 mg / m 2 or less in terms of metal of zirconium, titanium or hafnium, and is in the range of 10 mg / m 2 or more and 200 mg / m 2 or less. Although it is more preferable to be within, it is not limited within this range. When using 2 or more types of metals, it is preferable that the total amount is in the said range.
  • the metal-converted mass of zirconium, titanium, or hafnium in the surface treatment film layer can be obtained by, for example, measuring the mass of each metal in the surface treatment film layer using a fluorescent X-ray analyzer.
  • metal material a cold-rolled mild steel plate (SPCC: thickness 0.8 mm) specified by JIS G3141 or a hot-dip galvanized steel plate (SGCC: thickness 0.8 mm) specified by JIS G3302 was used.
  • SPCC cold-rolled mild steel plate
  • SGCC hot-dip galvanized steel plate
  • Various metal materials were cut into a size of 70 mm long ⁇ 150 mm wide.
  • the evaluation of the test piece described later was performed on a surface where burrs generated when cut were present. The height of the burr was about 100 ⁇ m.
  • reaction solution contained 3% by mass or less of an isocyanate group, and 8 g of formic acid (an ionizing agent b6-1 described later) was further added (urethane).
  • the isocyanate group content was determined according to JIS K7301: 1995 by dissolving 2 g of the reaction solution in dimethylformamide, adding 10 ml of n-dibutylamine-toluene solution, and then using bromophenol blue as an indicator. It can be titrated with a 5 mol / L hydrochloric acid solution and calculated using the following formula.
  • the volume of the hydrochloric acid solution required for titration with respect to the solution, f means “1”
  • N means the molar concentration of the hydrochloric acid standard solution
  • S means the mass of the reaction solution.
  • 1000 g of deionized water was added to prepare a urethane emulsion.
  • Methyl ethyl ketone was removed from the obtained urethane emulsion by a vacuum distillation method to prepare a urethane resin having a urethane resin concentration of 25% by mass.
  • Synthesis Examples 2 to 18 As shown in Table 1, urethane resins of Synthesis Examples 2 to 18 were prepared by the same synthesis method as that of Synthesis Example 1 by using various components to adjust to a predetermined charge amount (% by mass).
  • each component described in Table 1 is as follows.
  • the charged amount (% by mass) of each component shown in Table 1 represents the mass ratio of each component to the total amount of components (b1) to (b5).
  • all the urethane prepolymers obtained by each synthesis example contained an isocyanate group.
  • b1 Dicyclohexylmethane 4,4′-diisocyanate (Desmodur W, manufactured by Bayer)
  • b1-2 Hexamethylene diisocyanate (50M-HDI, manufactured by Asahi Kasei Corporation)
  • b2-2 cyclohexanedimethanol (Tokyo Chemical Industry Co., Ltd.)
  • b2-3 Bisphenol A (Mitsubishi Chemical Corporation)
  • b3-1 Polyethylene glycol (PEG1000, Mw1000, manufactured by Sanyo Chemical Industries)
  • b3-2 Polyester polyol (Nipporan 4040, Mw2000, manufactured by Tos
  • metal surface treatment agents of Examples 1 to 264 and Comparative Examples 1 to 10 were prepared by adding various components to water so that each component had a predetermined concentration.
  • the ion (A) supply source hexafluorozirconic acid, hexafluorotitanic acid, or hexafluorohafnium acid is used in Examples 1 to 66 and Comparative Examples 1 to 10, and oxysulfuric acid is used in Examples 67 to 132.
  • Zirconium, titanium oxysulfate, or hexafluorohafnium acid is used in Examples 133 to 198.
  • Zirconium oxynitrate, titanium oxynitrate, or hexafluorohafnium acid is used in Examples 133 to 198, and zirconium hydroxide (first rare element in Examples 199 to 264). Chemical Industries, R zirconium hydroxide), titanium (IV) oxide, or hexafluorohafnium acid was used.
  • the metal compound containing aluminum aluminum nitrate nonahydrate is used, and as the source of nitrate radical, the above zirconium oxynitrate, the above titanium oxynitrate, the above aluminum nitrate nonahydrate, nitric acid, etc. are supplied as the alkanesulfonic acid radical.
  • Methanesulfonic acid (denoted as MSA in the table) was used as a source.
  • Examples 19, 52, 85, 118, 151, 184, 217, and 250 aluminum oxide was used instead of aluminum nitrate nonahydrate.
  • Examples 29, 62, 95, 128, 161, 194, 227, 260 are allylamine polymers (Nitto Bo Medical Co., Ltd., PAA-03), and Examples 30, 63, 96, 129, 162, 195, 228, 261 is an allylamine hydrochloride / diallylamine hydrochloride copolymer (Nittobo Medical Co., Ltd., PAA-D11-HCL), and Examples 31, 64, 97, 130, 163, 196, 229, and 262 are diallylamine hydrochloride heavy compounds.
  • metal surface treatment agents of Examples 1 to 264 and Comparative Examples 1 to 10.
  • electrodeposition paint (GT-100, manufactured by Kansai Paint Co., Ltd.) was used for constant voltage cathodic electrolysis for 180 seconds.
  • the coating component was deposited on the entire surface of the film. Thereafter, it was washed with water and baked at 170 ° C. (PMT: maximum temperature of the metal material during baking) for 20 minutes to prepare a test piece, and the following evaluation was performed.
  • the coating thickness was adjusted to 20 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

塗装後金属材料における切断箇所などのエッジ部に対して良好な耐食性を示す皮膜を形成することができる金属表面処理剤等を提供することを課題とする。 ジルコニウム、チタン及びハフニウムから選択される少なくとも1種の金属を含むイオン(A)を金属換算モル濃度で0.1mmol/L以上と、重量平均分子量5万以上の水系ウレタン樹脂(B)を固形分質量濃度で0.5~10g/Lと、を含み、前記イオン(A)の金属換算質量(AM)と樹脂(B)の固形分質量(BM)との比[BM/AM]が0.7以上である金属表面処理剤により、課題を解決する。

Description

金属表面処理剤、金属表面処理方法及び金属材料
 本発明は、金属表面処理剤およびそれを用いた金属表面処理方法、ならびに、この方法で得られる、表面処理皮膜層を有する金属材料に関する。
 従来、塗装後金属材料の耐食性を向上させるために、塗装の前処理として用いる化成処理剤や下地処理剤が種々開発されている。例えば、特許文献1では、ジルコニウムを主成分とする金属表面処理剤の溶液組成物に関する技術が提案されている。
特開2009-41077号公報
 しかしながら、特許文献1に記載の溶液組成物で金属材料の表面を処理した後に、塗装しても、金属材料のエッジ部において十分な耐食性を示さない場合がある。そこで本発明は、塗装の前処理に用いられ、塗装を施した場合に金属材料のエッジ部に優れた耐食性をもたらすことができる、金属表面処理剤、それを用いた金属表面処理方法及びその方法で得られる、表面処理皮膜層を有する金属材料を提供することを目的とする。
 本発明者は、上記課題を解決するために鋭意検討した結果、ジルコニウム、チタン及びハフニウムから選択される少なくとも1種の金属を含むイオン(A)を金属換算モル濃度で0.1mmol/L以上と、重量平均分子量5万以上の水系ウレタン樹脂(B)を固形分質量濃度で0.5~10g/Lと、を含み、イオン(A)の金属換算質量(A)と樹脂(B)の固形分質量(B)との比[B/A]が0.7以上である金属表面処理剤を用いて表面処理を行った後、塗装を施すことにより、金属材料における切断箇所などのエッジ部においても良好な耐食性が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の(I)~(V)を提供するものである。
(I)ジルコニウム、チタン及びハフニウムから選択される少なくとも1種の金属を含むイオン(A)を金属換算モル濃度で0.1mmol/L以上と、重量平均分子量5万以上の水系ウレタン樹脂(B)を固形分質量濃度で0.5~10g/Lと、を含み、前記イオン(A)の金属換算質量(A)と樹脂(B)の固形分質量(B)との比[B/A]が0.7以上である、金属表面処理剤。
(II)更に、アルミニウム、マグネシウム、亜鉛及び鉄から選択される少なくとも1種の金属(C)を含む、上記(I)に記載の金属表面処理剤。
(III)更に、硝酸根、硫酸根、ギ酸根、酢酸根及びアルカンスルホン酸根から選択される少なくとも1種の酸根(E)を含む、上記(I)または(II)に記載の金属表面処理剤。
(IV)上記(I)~(III)のいずれかに記載の金属表面処理剤を金属表面に接触させる工程を含む金属表面処理方法。
(V)金属材料表面に上記(IV)に記載の表面処理方法によって形成された表面処理皮膜層を有する金属材料。
 本発明によれば、塗装の前処理に用いられ、塗装を施した場合に金属材料における切断箇所などのエッジ部に優れた耐食性をもたらすことができる金属表面処理剤、それを用いた金属表面処理方法及びその方法で得られる、表面処理皮膜層を有する金属材料を提供することができる。
 以下、本発明の実施形態に係る金属表面処理剤、それを用いた金属表面処理方法及びその方法により得られる、表面処理皮膜層を有する金属材料について詳細に説明する。なお、本発明は、その要旨を含む範囲で任意に変更可能であり、下記の実施形態のみに限定されない。
[金属表面処理剤]
 本発明の実施形態に係る金属表面処理剤(以下、単に「処理剤」ともいう。)は、塗装の前処理に用いられる。この金属表面処理剤を用いて金属表面処理を行うことにより、表面処理皮膜層を形成することができる。この表面処理皮膜層の上に塗装を施すことにより、金属材料における切断箇所や打ち抜き箇所などのエッジ部においても良好な耐食性が得られる。
 本実施形態の処理剤は、ジルコニウム、チタン及びハフニウムから選択される少なくとも1種の金属を含むイオン(A)を金属換算モル濃度で0.1mmol/L以上と、重量平均分子量5万以上の水系ウレタン樹脂(B)を固形分質量濃度で0.5~10g/Lと、を含み、イオン(A)の金属換算質量(A)と樹脂(B)の固形分質量(B)との比[B/A]が0.7以上である。
 本実施形態の処理剤は、更に、アルミニウム、マグネシウム、亜鉛及び鉄から選択される金属(C)を含んでいてもよい。
 本実施形態の処理剤は、更に、硝酸根、硫酸根、ギ酸根、酢酸根及びアルカンスルホン酸根から選択される少なくとも1種の酸根(E)を含んでいてもよい。
 上記イオン(A)は、ジルコニウム、チタン及びハフニウムから選択される少なくとも1種の金属を含有するイオンである。金属を含有するイオンとしては、特に制限されるものではないが、例えば、ジルコニウムイオン、チタンイオン、ハフニウムイオン等の金属イオン;ジルコニウム、チタンまたはハフニウムを含む錯体イオン;ジルコニウム、チタンまたはハフニウムの酸化物イオン等を挙げることができる。本実施形態の金属表面処理剤は、これらのイオンのうち1種が含まれていればよいが、2種以上が含まれていてもよい。なお、イオン(A)の供給源としては、上記各種イオンを形成し得るものであれば特に制限されるものではないが、例えば、ジルコニウム、チタン、ハフニウム;硫酸ジルコニウム、オキシ硫酸ジルコニウム、硫酸ジルコニウムアンモニウム、オキシ硝酸ジルコニウム、硝酸ジルコニウムアンモニウム、ヘキサフルオロジルコニウム酸、ヘキサフルオロジルコニウム錯塩;硫酸チタン、オキシ硫酸チタン、硫酸チタンアンモニウム、硝酸チタン、オキシ硝酸チタン、硝酸チタンアンモニウム、ヘキサフルオロチタン酸、ヘキサフルオロチタン錯塩;ヘキサフルオロハフニウム酸、ヘキサフルオロハフニウム酸塩;などが挙げられる。
 また、本実施形態の処理剤において、上記イオン(A)の含有量は、金属換算モル濃度で0.1mmol/L以上であることが好ましく、0.4mmol/L以上であることがより好ましい。上限は特段限定されないが、コストの観点から、100mmol/L以下であることが好ましい。
 水系ウレタン樹脂(B)(以下、単に「樹脂(B)」と称する。)は、重量平均分子量が5万以上であればよいが、重量平均分子量が10万以上であることが好ましく、50万以上であることがより好ましく、100万以上であることが更に好ましい。重量平均分子量の上限は特段限定されないが、通常300万以下である。ここで樹脂(B)の重量平均分子量はGPC(ゲル浸透クロマトグラフィー)により分析し、ポリエチレングリコール換算重量平均分子量として求めた値を意味する。GPCの分析条件は次のとおりである。
測定機種:東ソー(株)製HLC-8320GPC EcoSEC
カラム:TSKgelα-Mを2本連結
移動相:ジメチルホルムアミド/0.06M LiBr/0.04M HPO
温度:カラム恒温槽40℃
移動相の流速:0.5ml/分
 樹脂(B)は、典型的にはウレタンプレポリマーと、水と、を反応させて得られる。この際、反応を促進するため、必要に応じ鎖伸長剤である、第3級アミン化合物以外のポリアミン化合物を含有させてもよい。具体的には、ウレタンプレポリマー中に含まれるイソシアネート基と、該イソシアネート基が水と反応して生成したアミン又は必要に応じ含有した上記ポリアミン化合物におけるアミノ基と、が反応してウレア結合を形成し、ウレタン樹脂となる。
 ウレタンプレポリマーは、樹脂(B)の製造に用いられる成分であり、その構造は特段限定されないが、ウレタンプレポリマーは以下の式(1)で表される、シクロヘキサン環構造を有するポリイソシアネート由来の構造単位を有することが好ましい。
式(1):O=C=N-R-N=C=O 
 式(1)中Rは、-R-R-R-で表され、Rは単結合又はアルキレン基であり、R
Figure JPOXMLDOC01-appb-C000001
で表され、R
Figure JPOXMLDOC01-appb-C000002
である。
 Rは好ましくは、
Figure JPOXMLDOC01-appb-C000003
である。なお、上記式中R、RおよびRの全ては水素原子またはメチル基であることがより好ましい。
 ウレタンプレポリマーの製造において上記式(1)で表されるポリイソシアネートを用いる場合、ポリイソシアネートの仕込み量は、ウレタンプレポリマーの製造に使用される原料の合計量に対して、20~80質量%であることが好ましく、30~70質量%であることがより好ましく、40~65質量%であることがさらに好ましく、50~60質量%であることが特に好ましい。すなわち、樹脂(B)中において、式(1)のポリイソシアネート由来の構造単位の存在量(質量換算)は、20~80%であることが好ましく、30~70%であることがより好ましく、40~65%であることが更に好ましく、50~60%であることが特に好ましい。
 ポリイソシアネートとしては、1個以上のシクロヘキサン環と、2個以上のイソシアネート基と、を有している式(1)で表されるポリイソシアネートであれば特に限定されるものではないが、例えば、イソホロンジイソシアネート、1,3-または1,4-ビス(イソシアネートメチル)シクロヘキサン、1,3-または1,4-ジイソシアネートシクロヘキサン、3-イソシアネート-メチル-3,5,5-トリメチルシクロヘキシルイソシアネート、ジシクロヘキシルメタン4,4’-ジイソシアネート等が挙げられる。
 式(1)に含まれないポリイソシアネートであるウレトジオン構造のような2量体、イソシアヌレート構造のような3量体、多官能ポリオールを用いたアダクト体として1分子中に3個以上のイソシアネート基を持つポリイソシアネートなどを、式(1)で表されるポリイソシアネートと併用してもよい。
 ポリイソシアネートは、1種単独で用いてもよいし、2種以上併用してもよい。
 また、ウレタンプレポリマーは、式(1)で表される、シクロヘキサン環構造を有するポリイソシアネート由来の構造単位以外に、ジオール由来の構造単位を有する。ジオール由来の構造単位としては、例えば、以下の式(2)、式(3)、式(4)等で表されるジオール由来の構造単位を挙げることができる。なお、式(2)で表されるジオールをポリオール、式(3)で表されるジオールを第1のジオール、式(4)で表されるジオールを第2のジオール、と称することもある。
式(2):
Figure JPOXMLDOC01-appb-C000004
 式(2)中、Rは、-R-R10-R11-で表され、R
Figure JPOXMLDOC01-appb-C000005
であり、
10
Figure JPOXMLDOC01-appb-C000006
であり、
11は、
Figure JPOXMLDOC01-appb-C000007
であり、
14は、
Figure JPOXMLDOC01-appb-C000008
である。
 Rは、好ましくは
Figure JPOXMLDOC01-appb-C000009
である。R12は、好ましくは、エチレン基又はイソプロピレン基である。R14は、好ましくは、水素原子、メチル基、イソプロピル基又はフェニル基である。R15は、好ましくは、水素原子、メチル基、トリフルオロメチル基又はフェニル基である。R16は、好ましくは、水素原子、メチル基、エチル基、トリフルオロメチル基又はフェニル基である。R17は、好ましくは、水素原子、メチル基、イソプロピル基又はフェニル基である。
式(3):HO-R19-H   (3)
 式(3)中R19は、
Figure JPOXMLDOC01-appb-C000010
である。
式(4):HO-R22-OH
 式(4)中R22は、
Figure JPOXMLDOC01-appb-C000011
である。
 なお、ウレタンポリマーは、式(1)で表される、シクロヘキサン環構造を有するポリイソシアネート由来の構造単位以外に、ポリオール及び第1のジオール由来の構造単位、ポリオール及び第2のジオール由来の構造単位、第1及び第2のジオール由来の構造単位、又は、ポリオール並びに第1及び第2のジオール由来の構造単位、を有するものであることが好ましい。
 ウレタンプレポリマーの製造において、第1のジオール及び第2のジオールを併用する場合には、第1のジオールは、重量平均分子量が600超のものを、第2のジオールは重量平均分子量が600以下のものを用いることが好ましい。第1のジオールの重量平均分子量は、600超であってもよく、600超10000以下であってもよく、600超5000以下であってもよく、800以上4000以下であってもよく、1000以上3000以下であってもよい。また、第2のジオールの重量平均分子量は、600以下であってもよく、500以下であってもよく、400以下であってもよく、250以下であってもよい。また、下限値は、60以上であってもよく、100以上であってもよい。
 本実施形態における各成分の重量平均分子量は、特に断りのない限り、樹脂(B)の重量平均分子量の測定と同様に、GPC(ゲル浸透クロマトグラフィー)により測定し、ポリスチレンで換算した値である。
 ポリオールは、1個以上のベンゼン環と、2個以上のヒドロキシ基と、を有し、窒素原子を有さない、式(2)で表されるポリオールであれば特に限定されず、例えば、レゾルシノール、2-メチルレゾルシノール、ビスフェノールA、ビスフェノールS、ビスフェノールF等の芳香族ポリオール;ビスフェノールA-エチレンオキサイド2モル付加体、ビスフェノールA-エチレンオキサイド4モル付加体、ビスフェノールA-エチレンオキサイド6モル付加体、ビスフェノールA-エチレンオキサイド10モル付加体、ビスフェノールA-プロピレンオキサイド2モル付加体、ビスフェノールA-プロピレンオキサイド4モル付加体、ビスフェノールA-プロピレンオキサイド6モル付加体、ビスフェノールA-プロピレンオキサイド10モル付加体等のベンゼン環を有するポリエーテルポリオール;フタル酸、イソフタル酸、テレフタル酸、トリメリット酸等の芳香族ポリカルボン酸と、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、2-メチルプロパンジオール、ネオペンチルグリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチルペンタンジオール等のポリオール類との重縮合により得られるベンゼン環を有するポリエステルポリオール;エチレンカーボネートとビスフェノールAなどのポリオールとのエステル交換反応から得られるベンゼン環を有するポリカーボネートポリオール;等が挙げられる。
 ポリオールは、1種単独で用いてもよいし、2種以上併用してもよい。
 第1のジオールとしては、例えば、ポリエーテルジオール、ポリエステルジオール、ポリカーボネートジオールなどを用いることができる。
 上記ポリエーテルジオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール(ポリテトラメチレンエーテルグリコール)等が挙げられる。ポリエーテルジオールは、例えば、塩基性触媒下でエチレンオキサイドやプロピレンオキサイド等のアルキレンオキサイドを付加重合させて製造される。
 上記ポリエステルジオールは、例えば、酸種としてマロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸等の脂肪族ジカルボン酸、セバシン酸等の不飽和カルボン酸等と、アルコール種としてエチレングリコール、プロピレングリコール、テトラエチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、ネオペンチルグリコール、2-メチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、シクロヘキシルジメタノール、1,3-アダマンタンジオール等と、のエステル化反応によって製造されたものが挙げられる。
 上記ポリカーボネートジオールとしては、例えば、ε-カプロラクトン等の環状エステルをグリコールによって開環重合して製造されたものが挙げられ、具体的には、ジメチルカーボネート、ジエチルカーボネート、ジフェニルカーボネート等と、上記のポリエステルジオールで挙げたアルコール種と、を反応させて製造されたものが挙げられる。
 これらの第1のジオールは、1種を単独で用いてもよいし、2種以上を併用してもよい。
 第2のジオールとしては、例えば、エチレングリコール(62.07g/mol)、プロピレングリコール(76.09g/mol)、1,5-ペンタンジオール(104.15g/mol)、1,6-ヘキサンジオール(118.17g/mol)、1,7-ヘプタンジオール(132.2g/mol)、1,8-オクタンジオール(146.23g/mol)、1,9-ノナンジオール(160.25g/mol)、1,10-デカンジオール(174.28g/mol)、ネオペンチルグリコール(104.15g/mol)、2-メチル-1,3-プロパンジオール(90.12g/mol)、3-メチル-1,5-ペンタンジオール(118.17g/mol)、1,4-シクロヘキシルジメタノール(146.14g/mol)、1,3-アダマンタンジオール(168.23g/mol)等のアルキルジオール、ジエチレングリコール(106.12g/mol)、トリエチレングリコール(150.17g/mol)、テトラエチレングリコール(194.23g/mol)、ペンタエチレングリコール(238.28g/mol)、ヘキサエチレングリコール(282.33g/mol)、ヘプタエチレングリコール(323.28g/mol)、ジプロピレングリコール(134.17g/mol)等のポリアルキレングリコール、ジメチロールプロピオン酸(134g/mol)などが挙げられる。これらの第2のジオールは1種を単独で用いてもよいし、2種以上を併用してもよい。
 ウレタンプレポリマーの製造において、ジオールの仕込み量(ポリオールを含む)は、ウレタンプレポリマーの製造に使用される原料の合計量に対して、通常は例えば1~80質量%とすることができるが、2~70質量%であることが好ましく、3~60質量%であることがより好ましく、6~50質量%であることがさらに好ましい。すなわち、樹脂(B)中において、ジオール由来の構造単位の存在量(質量換算)は、1~80%であることが好ましく、2~70%であることがより好ましく、3~60%であることが更に好ましく、6~50%であることが特に好ましい。
 なお、ウレタンプレポリマーの製造において、ポリオールを用いる場合の仕込み量は、ウレタンプレポリマーの製造に使用される原料の合計量に対して、通常は例えば1~40質量%とすることができるが、1~30質量%であることが好ましく、3~25質量%であることがより好ましく、6~20質量%であることがさらに好ましい。すなわち、樹脂(B)中において、ポリオール由来の構造単位の存在量(質量換算)は、樹脂(B)中に、通常1~40%であり、1~30%であることが好ましく、3~25%であることがより好ましく、6~20%であることがさらに好ましい。
 また、ウレタンプレポリマーの製造において、第1のジオールを用いる場合の仕込み量は、ウレタンプレポリマーの製造に使用される原料の合計量に対して、通常は例えば1~50質量%とすることができるが、3~40質量%であることが好ましく、5~35質量%であることがより好ましく、10~30質量%であることがさらに好ましい。すなわち、樹脂(B)中において、第1のジオール由来の構造単位の存在量(質量換算)は、樹脂(B)中に、通常1~50%であり、3~40%であることが好ましく、5~35%であることがより好ましく、10~30%であることがさらに好ましい。
 さらに、ウレタンプレポリマーの製造において、第2のジオールを用いる場合の仕込み量は、ウレタンプレポリマーの製造に使用される原料の合計量に対して、通常は例えば1~25質量%とすることができるが、1~20質量%であることが好ましく、2~15質量%であることがより好ましく、3~10質量%であることがさらに好ましい。すなわち、本実施形態で用いられる樹脂(B)中において、第2のジオール由来の構造単位の存在量(質量換算)は、通常1~25%であり、1~20%であることが好ましく、2~15%であることがより好ましく、3~10%であることがさらに好ましい。
 また、ウレタンプレポリマーは、シクロヘキサン環構造を有するポリイソシアネート由来の構造単位、及び上記ジオール由来の構造単位以外に、以下の式(5)で表される第3級アミン化合物(以下、単に「第3級アミン」ともいう。)及び/又はその塩由来の構造単位を有することが好ましい。
式(5):
Figure JPOXMLDOC01-appb-C000012
 
 R23におけるアミノアルキル基は、好ましくは-(CH-NH又は-(CH-NHである。R24におけるアミノアルキル基は、好ましくは-(CH-NHである。R23及びR24におけるヒドロキシアルキル基は、好ましくは-(CH-OHである。R24におけるN-アルキルアミノアルキル基は、好ましくは-(CH-NH-CHである。
 第3級アミン化合物及び/又はその塩の活性水素が上記のポリイソシアネートと反応することで、第3級アミン化合物及び/又はその塩に由来する基が導入されたウレタンプレポリマー(ウレタン樹脂)が得られる。なお、第3級アミン化合物及び/又はその塩には活性水素が2個以上含まれており、例えば、アミノ基、ヒドロキシ基、N-アルキルアミノ基等の活性水素を有する置換基が2個以上含まれていることが好ましい。また、N-アルキルアミノ基としては、2-メチルアミノ基が好ましい。
 ウレタンプレポリマーの製造において、第3級アミン化合物及び/又はその塩を用いる場合、第3級アミン化合物及び/又はその塩の仕込み量は、ウレタンプレポリマーの製造に使用される原料の合計量に対して、通常は例えば1~20質量%とすることができるが、2~15質量%であることが好ましく、2~13質量%であることがより好ましく、3~10質量%であることがさらに好ましい。すなわち、樹脂(B)中において、第3級アミン化合物及び/又はその塩由来の構造単位の存在量(質量換算)は、通常1~20%であり、2~15%であることが好ましく、2~13%であることがより好ましく、3~10%であることがさらに好ましい。
 第3級アミン化合物及び/又はその塩の仕込み量が上記範囲内にあることで、ウレタン樹脂の皮膜の耐アルカリ性がより向上する傾向にある。
(第3級アミン化合物の種類)
 第3級アミン化合物としては、活性水素を2個以上有する第3級アミンであれば特に限定されず、例えば、N-メチルジエタノールアミン、N-エチルジエタノールアミン、N-ブチルジエタノールアミン、N-t-ブチルジエタノールアミン、N-(3-アミノプロピル)ジエタノールアミン等のN-アミノアルキルジアルカノールアミン、トリエタノールアミン、N,N,N’,N’-テトラキス(2-ヒドロキシエチル)エチレンジアミン、ビス(2-ヒドロキシエチル)アミノトリス(ヒドロキシメチル)メタン、1-[ビス(2-ヒドロキシエチル)アミノ]-2-プロパノール等の置換基を有していてもよいトリアルカノールアミン、2,2’-ジアミノ-N-メチルジエチルアミン、N,N’,N’’-トリメチルジエチレントリアミン、トリス(2-アミノエチル)アミン等の第3級アミン化合物が挙げられる。これら第3級アミン化合物は、ギ酸、酢酸等の有機酸、塩酸、硫酸等の無機酸との塩として用いてもよいし、硫酸ジメチル、硫酸ジエチル、ヨウ化メチル等のアルキル化剤により4級塩化したものを用いてもよい。第3級アミン化合物としては、N-アミノアルキルジアルカノールアミン、特に、N-メチルジエタノールアミンが好ましい。
 本実施形態の樹脂(B)は、第3級アミン化合物に由来する構造部分(第3級アミン)の一部または全部を酸などで中和したものであってもよい。この場合に使用される酸としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、乳酸、酒石酸、リンゴ酸、マロン酸、アジピン酸等の有機カルボン酸;メタンスルホン酸、エタンスルホン酸、トリフルオロメタンスルホン酸等の有機スルホン酸;等の有機酸、塩酸、硫酸、硝酸、フッ酸、臭素酸、リン酸等の無機酸が挙げられる。これらの酸は、1種単独を使用してもよいし、2種以上を併用してもよい。
 また、樹脂(B)は、第3級アミン化合物に由来する構造部分(第3級アミン)の一部または全部は4級化されたものであってもよい。4級化する場合に使用される4級化剤としては、具体的には、硫酸ジメチル、硫酸ジエチル等の硫酸エステル;メチルクロライド、ベンジルクロライド、メチルブロマイド、ベンジルブロマイド、メチルアイオダイド等のアルキルハライド;炭酸ジメチル、炭酸ジエチル等の炭酸エステル;等が挙げられる。これらの4級化剤は、1種単独で使用してもよいし、2種以上を併用してもよい。また、中和剤としての酸と4級化剤を併用してもよい。
 なお、本明細書において、これらの酸および4級化剤をイオン化剤という場合がある。
 本明細書において、「アルキル基」、あるいは、ハロゲン化アルキル基、アミノアルキル基、ヒドロキシアルキル基、N-アルキルアミノアルキル基等に含まれる「アルキル基」は特に限定されないが、通常炭素数20以下のアルキル基であり、炭素数12以下のアルキル基であってよく、炭素数6以下のアルキル基であってよい。典型的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、イソヘキシル基、3-メチルペンチル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基などが挙げられる。
 また、「アルキレン基」も特に限定されないが、通常炭素数20以下のアルキレン基であり、炭素数12以下のアルキレン基であってよく、炭素数6以下のアルキレン基であってよい。典型的には、エチレン基、プロピレン基、ブチレン基、イソブチレン基、tert-ブチレン基、sec-ブチレン基、ペンチレン基、イソペンチレン基、ネオペンチレン基、ヘキシレン基、イソへキシレン基、3-メチルペンチレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基などが挙げられる。
 なお、ハロゲン化アルキル基は、上記アルキル基における1以上の水素原子が、フッ素原子、塩素原子、臭素原子、またはヨウ素原子に置換されたものが挙げられる。
 本実施形態のウレタンプレポリマーの製造には、上記以外のその他の成分を用いてもよい。その他の成分としては、例えば、上記ポリイソシアネート以外のポリイソシアネート、上記ポリオール以外の、ベンゼン環および窒素原子を含まないポリオール、有機溶剤、第3級アミン以外のポリアミン化合物、イオン化剤、酸、有機金属化合物等が挙げられる。
 ポリイソシアネート以外のポリイソシアネートとしては、特に限定されないが、例えば、1,4-テトラメチレンジイソシアネート、エチル(2,6-ジイソシアネート)ヘキサノエート、1,6-ヘキサメチレンジイソシアネート、1,12-ドデカメチレンジイソシアネート、2,2,4-または2,4,4-トリメチルヘキサメチレンジイソシアネートなどの脂肪族ジイソシアネート;
 m-またはp-フェニレンジイソシアネート、トリレン-2,4-ジイソシアネートまたはトリレン-2,6-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、1,3-ビス(2-イソシアネート-2-プロピル)ベンゼン、ナフタレン-1,5-ジイソシアネート、ジフェニル-4,4’-ジイソシアネート、4,4’-ジイソシアネート-3,3’-ジメチルジフェニル、3-メチル-ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルエーテル-4,4’-ジイソシアネート、テトラメチルキシリレンジイソシアネートなどの芳香族ジイソシアネート;
 1,3,6-ヘキサメチレントリイソシアネート、1,8-ジイソシアネート-4-イソシアネートメチルオクタン、2-イソシアネートエチル(2,6-ジイソシアネート)ヘキサノエートなどの脂肪族トリイソシアネート;
 トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオホスフェートなどの芳香族トリイソシアネート;
等が挙げられる。上記ポリイソシアネート以外のポリイソシアネートは、ウレトジオン構造のような2量体、イソシアヌレート構造のような3量体等であってもよく、多官能ポリオールを用いたアダクト体として1分子中に3個以上のイソシアネート基を持つポリイソシアネートであってもよい。
 上記ポリオール以外のポリオールとしては、ベンゼン環および窒素原子を含まないトリオール以上のポリオールを用いることができ、例えば、トリメチロールプロパン、ペンタエリスリトールなどが挙げられる。
 ウレタンプレポリマーの製造、及び/又はウレタン樹脂(B)の製造において、有機溶剤を用いてよい。有機溶剤は、上述した各成分を反応させるための溶媒として使用される。このような有機溶剤としては、特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶剤;アセトニトリル、アクリルニトリル等のニトリル系溶剤;メチルアクリレート、エチルアクリレート、メチルメタクリレート、エチルメタクリレート等のアクリレート系溶剤;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン等のアミド系溶剤;ジメチルスルホキシド等のスルホキシド系溶剤;等が挙げられる。これら有機溶剤は、ウレタンプレポリマーやウレタン樹脂(B)の製造後に、環境への負荷低減の観点から必要に応じて減圧蒸留法によって除いても構わない。
 ウレタンプレポリマーおよび樹脂(B)の製造は既知の方法を適用できる。その方法の一例(製造方法1~6)を示す。
(製造方法1)
 ポリイソシアネート、ジオール、必要に応じて第3級アミンを有機溶剤に溶解させて反応させることによってウレタンプレポリマーを調製し、必要に応じてウレタンプレポリマー中の第3級アミンの一部または全てをイオン化剤によってイオン化し、水を加えることによって乳化する方法
(製造方法2)
 ポリイソシアネート、ジオール、必要に応じて第3級アミンを有機溶剤に溶解させて反応させることによってウレタンプレポリマーを調製し、必要に応じてウレタンプレポリマー中の第3級アミンの一部または全てをイオン化剤によってイオン化し、ポリアミン化合物等の鎖伸長剤によって鎖伸長させながら水を加えることによって乳化する方法
(製造方法3)
 ポリイソシアネート、ジオール、必要に応じて第3級アミン等を、有機溶剤を使用することなく、反応させること(バルク重合法)によってウレタンプレポリマーを調製し、必要に応じてウレタンプレポリマー中の第3級アミンの一部または全てをイオン化剤によって4級化し、水を加えることによって乳化する方法
(製造方法4)
 第3級アミンを酸或いはアルキル化剤でイオン化した後に、ポリイソシアネート、ジオール等を加えて反応させることによってウレタンプレポリマーを調製し、必要に応じてウレタンプレポリマー中の第3級アミンの一部または全てをイオン化剤によってイオン化し、水を加えることによって乳化する方法
(製造方法5)
 ポリイソシアネート、ジオール等を有機溶剤に加え反応させた後、さらに必要に応じて第3級アミンを加え、末端部位に第3級アミン構造を持つウレタンプレポリマーを調製し、必要に応じてウレタンプレポリマー中の第3級アミンの一部または全てをイオン化剤によってイオン化し、水を加えることによって乳化する方法
(製造方法6)
 ポリイソシアネート、ジオール等を有機溶剤に加え反応させた後、さらに必要に応じて第3級アミンを加え、末端部位に第3級アミン構造を持つウレタンプレポリマーを調製し、必要に応じてウレタンプレポリマー中の第3級アミンの一部または全てをイオン化剤によってイオン化し、ポリアミン化合物等の鎖伸長剤によって鎖伸長させながら水を加えることによって乳化する方法
 なお、上記製造方法1~6において、公知の乳化剤を用いてもよい。
 鎖伸長剤として用いるポリアミン化合物としては、例えば、エチレンジアミン、1,2-プロパンジアミン、1,6-ヘキサメチレンジアミン、ピペラジン、2,5-ジメチルピペラジン、イソホロンジアミン、4,4’-ジシクロヘキシルメタンジアミン、3,3’-ジメチル-4,4’-ジシクロヘキシルメタンジアミン、1,4-シクロヘキサンジアミン、1,3-ビスアミノメチルシクロヘキサン、2-アミノエチルアミノプロピルトリメトキシシラン、N-ヒドロキシメチルアミノエチルアミン、N-ヒドロキシエチルアミノエチルアミン、N-ヒドロキシプロピルアミノプロピルアミン、N-エチルアミノエチルアミン、N-メチルアミノプロピルアミン、ジエチレントリアミン、ジプロピレントリアミン、トリエチレンテトラミン、ヒドラジン、1,6-ヘキサメチレンビスヒドラジン、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、グルタル酸ジヒドラジド、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、β-セミカルバジドプロピオン酸ヒドラジド、3-セミカルバジドプロピルカルバジン酸エステル、セミカルバジド-3-セミカルバジドメチル-3,5,5-トリメチルシクロヘキサン等を使用することができる。この中でも、ヒドラジンまたはエチレンジアミンを使用することが好ましい。
 鎖伸長剤を用いる場合、ポリアミン化合物の仕込み量は、ウレタンプレポリマー100質量部に対して、0.1~10質量部であることが好ましく、0.2~5質量部であることがより好ましい。
 上述のようにして得られる樹脂(B)は、アミン価が5~60mgKOH/gであることが耐食性の観点から好ましく、8~30mgKOH/gであることがより好ましい。
 また、本実施形態の金属表面処理剤において、上記樹脂(B)の含有量は、固形分質量濃度として0.5~10g/Lである。樹脂(B)の含有量は、固形分質量濃度として0.5~5g/Lであることが、耐食性の観点から好ましい。
 本実施形態の金属表面処理剤において、上記イオン(A)の金属換算質量(A)と樹脂(B)の固形分質量(B)との比[B/A]は、0.7以上であることが好ましい。上限は特段限定されないが、通常100以下である。
 本実施形態の金属表面処理剤は、更にアルミニウム、マグネシウム、亜鉛及び鉄から選択される少なくとも1種の金属(C)が含まれていることが好ましい。この金属(C)の形態としては、化合物、イオン、錯体イオンなど、いずれの形態であってもかまわない。金属(C)の供給源としては、特に制限されるものではないが、例えば、硝酸アルミニウム、硫酸アルミニウム、フッ化アルミニウム、酸化アルミニウム、硝酸マグネシウム、硫酸マグネシウム、フッ化マグネシウム、酸化亜鉛、硝酸亜鉛、硫酸亜鉛、塩化亜鉛、硝酸鉄、硫酸鉄、塩化鉄等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。なお、上記金属(C)は、金属表面処理剤に、意図的に含有させてもよいし、不可避的に混入されてもよい。
 金属(C)の含有量としては、金属換算モル濃度で20mmol/L以下であることが好ましく、10mmol/L以下であることがより好ましい。金属(C)の含有量の下限は特段限定されないが、通常0.1mmol/L以上である。
 本実施形態の金属表面処理剤は、更に硝酸根、硫酸根、ギ酸根、酢酸根及びアルカンスルホン酸根から選択される少なくとも1種の酸根(E)を含有することが好ましい。酸根(E)の含有量としては、10~2000mmol/Lであることが好ましい。アルカンスルホン酸根としては、例えば、R-SO (但し、Rはアルキル基又はヒドロキシアルキル基である)などが挙げられる。アルキル基としては、特に限定されるものではないが、好ましくは、C1-20のアルキル基、更に好ましくはC1-4のアルキル基である。アルカンスルホン酸イオンとしては、特に限定されるものはないが、例えば、メタンスルホン酸イオン、エタンスルホン酸イオン等が挙げられる。硝酸根、硫酸根、ギ酸根、酢酸根及びアルカンスルホン酸根の供給源[酸根(E)を形成し得る酸成分]としては、水性溶媒に混合した際にこれらの酸根を提供できるものであれば特に制限されるものではなく、例えば、硝酸、硝酸塩、硫酸、硫酸塩、ギ酸、ギ酸塩、酢酸、酢酸塩、アルカンスルホン酸、アルカンスルホン酸塩等、既知のものを適宜用いることができる。塩としては、例えば、金属塩、アンモニウム塩等を挙げることができる。
 本実施形態の金属表面処理剤において、他の成分をさらに含むものであってもよい。他の成分としては、特に制限されるものではなく、例えば、フッ素化合物、上記で列挙した金属(C)以外の金属成分、pH調整剤、樹脂等の添加剤等を挙げることができる。
 フッ素化合物としては、例えば、フッ化水素酸、フッ化アンモニウム、フッ化水素アンモニウム、フッ化ゲルマニウム、フッ化カリウム、フッ化水素カリウム、フッ化鉄、フッ化ナトリウム、フッ化水素ナトリウム等が挙げられ、これらを1種単独で用いてもよいし、2種以上を併用してもよい。
 また、フッ素の含有量は、イオン(A)の含有量に対して、金属換算モル濃度で4倍モル以上30倍モル以下であることが好ましい。
 上記で列挙した金属(C)以外の金属成分としては、例えばコバルト、ニッケル、マンガン、三価クロム、スズ及びタングステンなどを挙げることができるが、これらに限定されるものではない。
 上記pH調整剤としては、pHを上げる際には、水酸化ナトリウム水溶液、水酸化カリウム水溶液、アンモニア水溶液、等のアルカリ成分を、また、pHを下げる際には、炭酸ガス、硝酸水溶液、硫酸水溶液、ギ酸水溶液、酢酸水溶液、アルカンスルホン酸水溶液等の酸成分を用いることができるが、これらに限定されるものではない。
 樹脂等の添加剤としては、N含有塩基性化合物やその他樹脂等を挙げることができるが、これらに限定されるものではない。N含有塩基性化合物としては、分子中にN原子を含有する塩基性化合物であれば特に制限されるものではないが、例えば、アンモニア;ヒドラジン化合物;ヒドロキシルアミン;モノブチルアミン、ジブチルアミン、トリブチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、モノメチルアミン、ジメチルアミン、トリメチルアミン、プロピルアミン、イソプロピルアミン、ヘキシルアミン、2-エチルヘキシルアミン、エチレンジアミン、ジエチレントリアミン、オクチルアミン、ナフチルアミン、ポリアリルアミン等の脂肪族アミン;モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、メチルエタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、ジアリルアミン樹脂等のアルカノールアミン;脂環および/または芳香環を有するアミン;亜硝酸アンモニウム、亜硝酸ソーダ等の亜硝酸塩;等が挙げられる。
 本実施形態の金属表面処理剤は、水性溶媒に、イオン(A)の供給源、樹脂(B)、必要に応じて、金属(C)の供給源、酸根(E)を形成し得る酸成分、その他の成分等を、上記の規定濃度となるように、適宜混合することにより調製することができる。
 水性溶媒としては、全溶媒の質量を基準とした際、水を50質量%以上含有するものであれば特に制限されるものではない。水性溶媒に含まれる水以外の溶剤としては、例えば、ヘキサン、ペンタン等のアルカン系溶剤;ベンゼン、トルエン等の芳香族系溶剤;メタノール、エタノール、1-ブタノール、エチルセロソルブ等のアルコール系溶剤;テトラヒドロフラン、ジオキサン等のエーテル系溶剤;酢酸エチル、酢酸ブトキシエチル等のエステル系溶剤;ジメチルホルムアミド、N-メチルピロリドン等のアミド系溶剤;ジメチルスルホキシド等のスルホキシド系溶剤;ヘキサメチルリン酸トリアミド等のリン酸アミド系溶剤;等を挙げることができる。これらの水以外の溶剤は、1種を混合してもよいが、2種以上を組み合わせて混合してもよい。なお、環境上及び経済上の観点から、水のみを用いることが好ましい。
 本実施形態の金属表面処理剤におけるpHは、特に制限されるものではないが、2.5~5.0の範囲内であることが好ましく、3.5~4.5の範囲内であることがより好ましい。ここで、本明細書で記載するpHの値は、45℃における処理剤のpHを、市販のpHメーターを用いて測定した値を示す。
 以下、本発明の別の実施形態における金属材料の表面処理方法を詳細に説明する。
 本実施形態の表面処理方法は、上記金属表面処理剤を金属表面に接触させる金属表面処理工程を含む。このような表面処理方法を行うことにより、表面処理皮膜層を有する金属材料を製造することができる。金属表面処理剤の金属材料への接触は、従来の接触方法、例えば、スプレー法、ディップ法、又はこれらの組み合わせ等の方法によって行うことができるが、これらに限定されるものではない。
 金属表面処理剤の金属材料への接触は、所定の温度範囲で一定時間行うことが好ましい。接触温度は、20℃以上60℃以下の範囲内であることが好ましく、35℃以上45℃以下の範囲内であることがより好ましい。なお、接触時間は、金属表面処理剤の濃度によって適宜調整すればよく、30秒以上600秒以下の範囲内であり、好ましくは90秒以上180秒以下の範囲内である。
 表面処理方法は、金属表面処理工程前に、脱脂と称される金属材料の表面上の油分及び付着物の除去を行う脱脂処理工程を行ってもよいし、金属表面処理工程後に、金属材料の表面上に塗膜を形成する塗装処理工程を行ってもよい。なお、各工程の後に水洗工程、または水洗処理及び乾燥工程を行ってもよいし、行わなくてもよい。脱脂処理工程における脱脂処理の方法は特に限定されず、公知の方法を適用することができる。
 塗装処理工程は、公知の塗料組成物を用いて、例えば、アニオン電着塗装、カチオン電着塗装、粉体塗装、溶剤塗装、水系塗装などの塗装方法によって行われる。なお、塗装処理工程は、1の塗装方法によって行ってもよいし、2以上の塗装方法を組み合わせて行ってもよい。また、塗装処理工程前に、金属表面処理工程を行った金属材料の表面を、水洗してもよいし、水洗しなくてもよい。また、塗装処理工程前に、水洗後の、或いは、未水洗の、金属材料における表面を加熱乾燥してもよいし、加熱乾燥しなくてもよい。
 上記カチオン電着塗装としては、公知の方法を適用できる。例えば、塗料として、アミン付加エポキシ樹脂と、硬化成分としてブロック化ポリイソシアネート硬化剤とを含有するカチオン電着塗料組成物を用い、この塗料中に金属表面処理工程を行った金属材料を浸漬する方法が挙げられる。カチオン電着塗装は、例えば、塗料の温度を所定の温度に保持し、塗料を攪拌した状態で、整流器を用いて被塗物に電圧を陰極方向に印加して行う。このようにして得られた、表面を塗装した金属材料に対して、水洗及び焼き付けを実施して塗膜を形成させる。焼き付けは、例えば、170℃で20分間行われる。尚、カチオン電着塗料を用いたカチオン電着塗装方法を適用する場合には、その前工程である、脱脂工程、或いは、後述の各種化成皮膜形成工程で用いる処理剤中のナトリウムイオン濃度を質量基準で500ppm未満に制御することが好ましい。
 本実施形態の表面処理方法は、脱脂処理工程と金属表面処理工程との間、及び/又は、金属表面処理工程と塗装処理工程との間に、化成皮膜形成工程を行ってもよい。化成処理工程としては、例えば、リン酸亜鉛等のリン酸塩の化成皮膜を形成するリン酸塩化成皮膜形成工程、ジルコニウム化成皮膜を形成するジルコニウム化成皮膜形成工程、チタン化成皮膜を形成するチタン化成皮膜形成工程、ハフニウム化成皮膜を形成するハフニウム化成皮膜形成工程、バナジウム化成皮膜を形成するバナジウム化成皮膜形成工程等が挙げられる。また、表面処理方法は、各処理工程を行った金属材料の表面に対してリン酸化成皮膜を形成するリン酸塩化成皮膜形成工程と、得られたリン酸塩化成皮膜上に別の化成皮膜を形成する所定の化成処理工程とを含んでもよい。リン酸塩化成皮膜以外の化成皮膜を形成する化成処理工程としては、例えば、ジルコニウム化成皮膜形成工程、チタン化成皮膜形成工程、ハフニウム化成皮膜形成工程、バナジウム化成皮膜形成工程等の各種化成皮膜形成工程が挙げられる。このように、1の各種化成皮膜形成工程又は2種の異なる化成皮膜形成工程を行うことにより、金属材料の耐食性を更に向上させることができる。
 リン酸塩化成皮膜形成処理としては、リン酸塩による公知の化成処理を用いることができる。より具体的には、リン酸イオン(0.1~50g/L)と、亜鉛イオン(0.01~3.0g/L)とを含むpH3.0~6.0のリン酸塩処理液を用いて、25~55℃で10~300秒間、浸漬処理及び/又はスプレー処理を、各処理工程を行った金属材料の表面に対して施すことにより行われる。なお、表面処理方法は、リン酸塩化成皮膜形成処理工程の前に、リン酸塩化成処理の反応性向上を目的とした表面調整処理工程を、金属材料に対して施してもよい。この表面調整処理方法としては、公知の方法を用いることができる。
 ジルコニウム化成皮膜形成処理としては、ジルコニウム化成処理剤による公知の化成処理を用いることができる。また、チタン化成皮膜形成処理としては、チタン化成処理剤による公知の化成処理を用いることができる。ハフニウム化成皮膜形成処理としては、ハフニウム化成処理剤による公知の化成処理を用いることができる。バナジウム化成皮膜形成処理としては、バナジウム化成処理剤による公知の化成処理を用いることができる。これらの化成処理は、例えば、ジルコニウムイオン、チタンイオン、ハフニウムイオン又はバナジウムイオンを0.005~5.0g/Lで含むpH3.0~6.0の処理液を用いて、25~55℃で10~300秒間、浸漬処理及び/又はスプレー処理を、各処理工程を行った金属材料の表面に対して施すことにより行われる。
 本実施形態の表面処理方法は、上記脱脂工程;1の各種化成皮膜形成工程若しくは2種の異なる化成皮膜形成工程;上記塗装工程;上記脱脂工程及び1の各種化成皮膜形成工程若しくは2種の異なる化成皮膜形成工程;上記脱脂工程及び上記塗装工程;1の各種化成皮膜形成工程若しくは2種の異なる化成皮膜形成工程、及び上記塗装工程;又は、上記脱脂工程、1の各種化成皮膜形成工程若しくは2種の異なる化成皮膜形成工程、及び上記塗装工程、を含む場合には、各工程後にそれぞれ水洗工程を含んでいてもよいし、一部に水洗工程を含んでいてもよい。
 用いられる金属材料としては、例えば、炭素鋼板、合金鋼板及びめっき鋼板等、より具体的には、冷延鋼板、熱延鋼板、溶融亜鉛めっき鋼板、アルミニウム含有亜鉛めっき鋼板、電気亜鉛めっき鋼板、合金化亜鉛めっき鋼板、亜鉛ニッケルめっき鋼板、亜鉛コバルトめっき鋼板、蒸着亜鉛めっき鋼板、ニッケルめっき鋼板、スズめっき鋼板、マグネシウム板などの公知の金属材料を用いることができる。また、ステンレス鋼板、アルミニウム板、銅板、チタン板等の比較的耐食性が良好な金属材料についても、本処理を適用することにより塗装後の塗膜密着性が向上する。
 一般に耐食性を向上させる目的で化成処理剤に樹脂を添加する場合、その後のカチオン電着塗装時において形状物の付き廻り性が低下することが多い。しかしながら、本実施形態の金属表面処理剤に接触させた形状物に対し、カチオン電着塗装を施すと良好な付き廻り性を得ることができ、且つ塗装後にも良好な耐食性を得ることができる。
 上記の表面処理方法によって、表面処理皮膜層を有する金属材料を製造することができる。表面処理皮膜層を有する金属材料は、表面処理皮膜層以外に、1若しくは2種の化成皮膜形成工程によって得られる1若しくは2層の化成皮膜、及び/又は、1若しくは2以上の塗膜を有していてもよい。
 表面処理皮膜層の皮膜量は、ジルコニウム、チタン又はハフニウムの金属換算質量で5mg/m以上500mg/m以下の範囲内であることが好ましく、10mg/m以上200mg/m以下の範囲内であることがより好ましいが、この範囲内に制限されるものではない。2種以上の金属を用いる場合は、その合計量が前記範囲内であることが好ましい。
 上記表面処理皮膜層におけるジルコニウム、チタン、又はハフニウムの金属換算質量は、例えば、蛍光X線分析装置を用いて表面処理皮膜層における各金属の質量を測定したりすることにより求めることができる。
 以下、実施例及び比較例により、本発明を更に詳しく説明する。なお、本発明は以下の実施例により限定されるものではない。
[試験片の作製]
<金属材料>
 金属材料として、JIS G3141で規格された冷間圧延軟鋼板(SPCC:厚さ0.8mm)または、JIS G3302で規定された溶融亜鉛めっき鋼板(SGCC:厚さ0.8mm)を用いた。各種金属材料は、縦70mm×横150mmのサイズに切断した。なお、後述における試験片の評価は、切断したときに生じたバリが存在する面に対して行った。なお、バリの高さは凡そ100μmであった。
<樹脂の合成>
合成例1
 ビスフェノールA-ポリオキシエチレン2モル付加体(ニューポールBPE-20T、三洋化成工業社製)(後述のb2-1)100g、ポリエチレングリコール(PEG1000、第一工業製薬社製)(後述のb3-1)105g、トリメチロールプロパン(TMP、Perstorp社製)(後述のb4-1)15g、N-メチルジエタノールアミン(アミノアルコールMDA、日本乳化剤社製)(後述のb5-1)30g、及びジシクロヘキシルメタン4,4’-ジイソシアネート(デスモジュールW、バイエル社製)(後述のb1-1)250g、をメチルエチルケトン400gに加え、十分に溶解させた。この混合溶液を80℃で約2時間反応させた後、反応溶液に3質量%以下のイソシアネート基が含まれることを確認し、ギ酸(後述のイオン化剤b6-1)8gをさらに加えた(ウレタンプレポリマーの製造)。なお、イソシアネート基の含有率は、JIS K7301:1995に則り、反応溶液2gをジメチルホルムアミドに溶解させ、n-ジブチルアミン-トルエン溶液10mlを加えた後、ブロモフェノールブルーを指示薬に用いて、0.5mol/Lの塩酸液で滴定し、以下の式を用いて算出することができる。
Figure JPOXMLDOC01-appb-M000013
(式中、Aは所定量(=S)の反応溶液を調製する際に使用したイソシアネート量(質量)に対して滴定に要した塩酸液の体積を、Bは所定量(=S)の反応溶液に対して滴定に要した塩酸液の体積を、fは「1」を、Nは塩酸標準溶液のモル濃度を、Sは反応溶液の質量をそれぞれ意味する。)
 次いで、脱イオン水を1000g加えウレタンエマルションを調製した。得られたウレタンエマルションから減圧蒸留法によってメチルエチルケトンを除去し、ウレタン樹脂の濃度が25質量%のウレタン樹脂を調製した。
合成例2~18
 表1に示すように、各種成分を用いて所定の仕込み量(質量%)となるように調整し、合成例1と同様の合成方法で、合成例2~18のウレタン樹脂を調製した。
Figure JPOXMLDOC01-appb-T000014
 表1に記載の各成分は、次の通りである。なお、表1に記載の各成分の仕込み量(質量%)は、(b1)~(b5)成分の合計量に対する各成分の質量割合を示す。なお、各合成例により得られたウレタンプレポリマーはいずれも、イソシアネート基を含んでいた。
<ポリイソシアネート(b1;以下の一部が、シクロヘキサン環構造を有するポリイソシアネートである)>
b1-1:ジシクロヘキシルメタン4,4’-ジイソシアネート(デスモジュールW、バイエル社製)
b1-2:ヘキサメチレンジイソシアネート(50M-HDI、旭化成社製)
<ポリオール(b2)>
b2-1:ビスフェノールA-ポリオキシエチレン2モル付加体(ニューポールBPE20T、三洋化成工業社製)
b2-2:シクロヘキサンジメタノール(東京化成工業社製)
b2-3:ビスフェノールA(三菱化学社製)
<ジオール(b3)>
b3-1:ポリエチレングリコール(PEG1000、Mw1000、三洋化成工業社製)
b3-2:ポリエステルポリオール(ニッポラン4040、Mw2000、東ソー社製)
<ジオール(b4)>
b4-1:トリメチロールプロパン(TMP、Perstorp社製)
b4-2:ポリエチレングリコール(PEG400、Mw400、三洋化成工業社製)
b4-3:ジエチレングリコール(日本触媒社製)
<第3級アミン化合物(b5)>
b5-1:N-メチルジエタノールアミン(アミノアルコールMDA、日本乳化剤社製)
b5-2:DMPA(ジメチロールプロピオン酸、パーストープ社製)
<イオン化剤(b6)>
イオン化剤b6-1:ギ酸(朝日化学工業所社製)
イオン化剤b6-2:メタンスルホン酸(東ソー社製)
イオン化剤b6-3:硫酸ジメチル(辻本化学社製)
<金属表面処理剤の調製>
 表2-1~表2-5に示すように、各成分が所定濃度となるように、水に各種成分を加えて実施例1~264及び比較例1~10の金属表面処理剤を調製した。なお、イオン(A)の供給源として、実施例1~66及び比較例1~10では、ヘキサフルオロジルコニウム酸、ヘキサフルオロチタン酸、又はヘキサフルオロハフニウム酸を、実施例67~132では、オキシ硫酸ジルコニウム、オキシ硫酸チタン、又はヘキサフルオロハフニウム酸を、実施例133~198では、オキシ硝酸ジルコニウム、オキシ硝酸チタン、又はヘキサフルオロハフニウム酸を、実施例199~264では、水酸化ジルコニウム(第一稀元素化学工業製、R水酸化ジルコニウム)、酸化チタン(IV)、又はヘキサフルオロハフニウム酸を、それぞれ用いた。アルミニウムを含む金属化合物としては硝酸アルミニウム9水和物を、硝酸根の供給源としては、上記オキシ硝酸ジルコニウム、上記オキシ硝酸チタン、上記硝酸アルミニウム9水和物、硝酸等を、アルカンスルホン酸根の供給源としてはメタンスルホン酸(表中でMSAと示した)をそれぞれ用いた。なお、実施例19、52、85、118、151、184、217、250では、硝酸アルミニウム9水和物の代わりに酸化アルミニウムを用いた。実施例29、62、95、128、161、194、227、260は、アリルアミン重合体(ニットーボーメディカル株式会社、PAA-03)を、実施例30、63、96、129、162、195、228、261は、アリルアミン塩酸塩・ジアリルアミン塩酸塩共重合体(ニットーボーメディカル株式会社、PAA-D11-HCL)を、実施例31、64、97、130、163、196、229、262は、ジアリルアミン塩酸塩重合体(ニットーボーメディカル株式会社、PAS-21CL)を、実施例32、65、98、131、164、197、230、263は、ジアリルアミン塩酸塩・二酸化硫黄共重合体(ニットーボーメディカル株式会社、PAS-92)を、実施例33、66、99、132、165、198、231、264は、メチルジアリルアミン塩酸塩重合体(ニットーボーメディカル株式会社、PAS-M-1)を、それぞれ0.1g/Lとなるように更に添加した。また、樹脂(B)としては、合成例1~18で合成した樹脂を用いた。pHは硝酸または水酸化ナトリウムの水溶液を用いてpHを調整した。なお、実施例19、52、85、118、151、184、217、250については、メタンスルホン酸または水酸化ナトリウムの水溶液を用いてpHを調整した。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
<金属材料に対する前処理>
 各種金属材料(SPCC:冷間圧延鋼板、SGCC:溶融亜鉛めっき鋼板)を、アルカリ脱脂剤[ファインクリーナーE2093(日本パーカライジング株式会社製)の、A剤を13g/L、B剤を11g/Lとそれぞれなるように水に混合した溶液]に45℃で2分間浸漬し、金属材料の表面上における油分や汚れを取り除いた。その後、金属材料の表面を水洗した。
 次に、水洗した各種金属材料を金属表面処理剤(実施例1~264及び比較例1~10の金属表面処理剤)に40℃で2分間、浸漬した。
 各金属表面処理剤に浸漬した各種金属材料を水洗した後、各種金属材料を陰極とし、電着塗料(GT-100、関西ペイント社製)を用いて、180秒間定電圧陰極電解して金属板の全表面に塗膜成分を析出させた。その後、水洗し、170℃(PMT:焼付け時の金属材料の最高温度)で20分間焼き付けて試験片を作製し、以下の評価を実施した。なお、塗膜厚は20μmとなるように調整した。
[試験片の評価]
<耐食性能>
 各種試験片(No.1~274の試験片)のエッジ部における耐食性能を確認するため、各試験片を、複合サイクル試験機に入れ、JASO-M609-91に則り複合サイクル試験を100サイクル実施した。100サイクル実施後、切断時に生じたバリからの最大膨れ幅を測定し、以下に示す評価基準に従って耐食性を評価した。結果を表3-1~表3-5に示す。
(評価基準)
 S:最大膨れ幅が1.5mm未満
 A:最大膨れ幅が1.5mm以上2.5mm未満
 B:最大膨れ幅が2.5mm以上5.0mm未満
 C:最大膨れ幅が5.0mm以上
<密着性能>
 各種試験片(No.1~274の試験片)の塗膜密着性を確認するため、各試験片に1mm間隔(10×10=100個)で碁盤目状のカット傷を施した後、沸騰水に1時間浸漬した。続いて、表面上の水分を拭き取り、碁盤目状のカット傷に対してセロハンテープを貼り付けた後、セロハンテープを剥がし、剥離しなかった碁盤目の塗膜数を計測し、以下に示す評価基準に従って密着性を評価した。結果を表3-1~表3-5に示す。
(評価基準)
 A:塗膜数が100個
 B:塗膜数が80~99個
 C:塗膜数が79個以下
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 なお、本発明については、具体的な実施形態及び実施例を参照して詳細に説明されるが、本発明の趣旨及び範囲から離れることなく、種々の変更、改変を施すことができることは当業者には明らかである。

Claims (5)

  1.  ジルコニウム、チタン及びハフニウムから選択される少なくとも1種の金属を含むイオン(A)を金属換算モル濃度で0.1mmol/L以上と、重量平均分子量5万以上の水系ウレタン樹脂(B)を固形分質量濃度で0.5~10g/Lと、を含み、前記イオン(A)の金属換算質量(A)と樹脂(B)の固形分質量(B)との比[B/A]が0.7以上である、金属表面処理剤。
  2.  更に、アルミニウム、マグネシウム、亜鉛及び鉄から選択される少なくとも1種の金属(C)を含む、請求項1に記載の金属表面処理剤。
  3.  更に、硝酸根、硫酸根、ギ酸根、酢酸根及びアルカンスルホン酸根から選択される少なくとも1種の酸根(E)を含む、請求項1または2に記載の金属表面処理剤。
  4.  請求項1~3のいずれか1項に記載の金属表面処理剤を金属表面に接触させる工程を含む金属表面処理方法。
  5.  金属材料表面に請求項4に記載の表面処理方法によって形成された表面処理皮膜層を有する金属材料。
PCT/JP2017/031230 2017-05-11 2017-08-30 金属表面処理剤、金属表面処理方法及び金属材料 WO2018207384A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/612,359 US11377568B2 (en) 2017-05-11 2017-08-30 Metal surface treatment agent, metal surface treatment method, and metal material
CA3063012A CA3063012C (en) 2017-05-11 2017-08-30 Metal surface treatment agent, metal surface treatment method, and metal material
CN201780090633.8A CN110662856A (zh) 2017-05-11 2017-08-30 金属表面处理剂、金属表面处理方法和金属材料
JP2019510988A JP6552768B2 (ja) 2017-05-11 2017-08-30 金属表面処理剤、金属表面処理方法及び金属材料
EP17909495.8A EP3623497A4 (en) 2017-05-11 2017-08-30 AGENT AND PROCESS FOR THE TREATMENT OF METAL SURFACE, AND METAL MATERIAL
TW107115659A TWI774766B (zh) 2017-05-11 2018-05-09 金屬表面處理劑、金屬表面處理方法及金屬材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017095093 2017-05-11
JP2017-095093 2017-05-11

Publications (1)

Publication Number Publication Date
WO2018207384A1 true WO2018207384A1 (ja) 2018-11-15

Family

ID=64105510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031230 WO2018207384A1 (ja) 2017-05-11 2017-08-30 金属表面処理剤、金属表面処理方法及び金属材料

Country Status (7)

Country Link
US (1) US11377568B2 (ja)
EP (1) EP3623497A4 (ja)
JP (1) JP6552768B2 (ja)
CN (1) CN110662856A (ja)
CA (1) CA3063012C (ja)
TW (1) TWI774766B (ja)
WO (1) WO2018207384A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114438483A (zh) * 2021-12-31 2022-05-06 奎克化学(中国)有限公司 用于热镀铝锌金属材料的多金属复合无铬钝化液

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069783A1 (ja) * 2005-12-15 2007-06-21 Nihon Parkerizing Co., Ltd. 金属材料用表面処理剤、表面処理方法及び表面処理金属材料
JP2009041077A (ja) 2007-08-09 2009-02-26 Chemicoat & Co Ltd ジルコニウムを主成分とする金属表面処理剤の溶液組成物および表面処理方法
JP2011219832A (ja) * 2010-04-13 2011-11-04 Jfe Steel Corp 塗装鋼板およびその製造方法、並びに化成処理液
JP2012077368A (ja) * 2010-10-06 2012-04-19 Jfe Steel Corp 高耐食性表面処理鋼板
WO2013161621A1 (ja) * 2012-04-27 2013-10-31 日本パーカライジング株式会社 傷部及び端面耐食性に優れた表面処理亜鉛系めっき鋼板及びその製造方法
WO2014175194A1 (ja) * 2013-04-22 2014-10-30 日本パーカライジング株式会社 塗装鋼板用下地処理組成物、並びに下地処理されためっき鋼板およびその製造方法、塗装めっき鋼板およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615257B2 (en) 2000-10-11 2009-11-10 Chemetall Gmbh Method for pretreating and/or coating metallic surfaces with a paint-like coating prior to forming and use of substrates coated in this way
JP4078044B2 (ja) * 2001-06-26 2008-04-23 日本パーカライジング株式会社 金属表面処理剤、金属材料の表面処理方法及び表面処理金属材料
JP2006118012A (ja) * 2004-10-22 2006-05-11 Nippon Parkerizing Co Ltd 金属表面処理剤、金属材料の表面処理方法及び表面処理金属材料
JP2006213958A (ja) * 2005-02-02 2006-08-17 Nippon Parkerizing Co Ltd 金属材料表面処理用組成物及び処理方法
JP2007239017A (ja) * 2006-03-08 2007-09-20 Nippon Paint Co Ltd アルミニウム系金属材料の表面処理方法
KR101121338B1 (ko) * 2006-12-20 2012-03-09 신닛뽄세이테쯔 카부시키카이샤 표면 처리 강판
JP5860583B2 (ja) * 2010-01-29 2016-02-16 日本パーカライジング株式会社 金属表面処理剤及び金属表面処理方法
JP2012233243A (ja) * 2011-05-09 2012-11-29 Nippon Paint Co Ltd 金属基材を表面処理するための化成処理剤及びそれを用いた金属基材の表面処理方法
JP6315750B2 (ja) * 2013-06-10 2018-04-25 関西ペイント株式会社 水性金属表面処理剤
JP6526950B2 (ja) * 2013-12-18 2019-06-05 日本パーカライジング株式会社 水系金属表面処理剤、金属表面処理皮膜及び金属表面処理皮膜付き金属材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069783A1 (ja) * 2005-12-15 2007-06-21 Nihon Parkerizing Co., Ltd. 金属材料用表面処理剤、表面処理方法及び表面処理金属材料
JP2009041077A (ja) 2007-08-09 2009-02-26 Chemicoat & Co Ltd ジルコニウムを主成分とする金属表面処理剤の溶液組成物および表面処理方法
JP2011219832A (ja) * 2010-04-13 2011-11-04 Jfe Steel Corp 塗装鋼板およびその製造方法、並びに化成処理液
JP2012077368A (ja) * 2010-10-06 2012-04-19 Jfe Steel Corp 高耐食性表面処理鋼板
WO2013161621A1 (ja) * 2012-04-27 2013-10-31 日本パーカライジング株式会社 傷部及び端面耐食性に優れた表面処理亜鉛系めっき鋼板及びその製造方法
WO2014175194A1 (ja) * 2013-04-22 2014-10-30 日本パーカライジング株式会社 塗装鋼板用下地処理組成物、並びに下地処理されためっき鋼板およびその製造方法、塗装めっき鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3623497A4

Also Published As

Publication number Publication date
TWI774766B (zh) 2022-08-21
EP3623497A4 (en) 2021-03-10
JP6552768B2 (ja) 2019-07-31
EP3623497A1 (en) 2020-03-18
US20210155810A1 (en) 2021-05-27
CA3063012A1 (en) 2019-12-03
TW201900926A (zh) 2019-01-01
CA3063012C (en) 2021-08-17
JPWO2018207384A1 (ja) 2019-06-27
US11377568B2 (en) 2022-07-05
CN110662856A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
KR102388433B1 (ko) 수계 금속 표면 처리제 그리고 피막을 갖는 금속 재료 및 그 제조 방법
CN108603070B (zh) 阳离子电沉积涂料组合物的制备方法
US20080119628A1 (en) Water-Based Coating Composition for Surface Treatment of Metallic Material
CN108864920B (zh) 水系金属表面处理剂以及具有底材处理层的金属材料及其制造方法
JP2009127057A (ja) 金属表面処理組成物
EP3315631B1 (en) Steel sheet surface treatment agent and steel sheet with coating film thereof
KR101924768B1 (ko) 금속 표면 처리 조성물, 금속 재료의 제조 방법
JP6552768B2 (ja) 金属表面処理剤、金属表面処理方法及び金属材料
JP7230356B2 (ja) 表面処理鋼板及び表面処理鋼板の製造方法
JP5563359B2 (ja) 金属表面処理剤
JP5518398B2 (ja) 金属表面の自己析出被膜用後処理液及び後処理された自己析出被膜が形成された金属材料の製造方法
EP4305112A1 (en) Aqueous dispersions containing cationic polyvinyl alcohol modified polymer particles and aqueous electrocoating materials containing said dispersions
CN107109111B (zh) 热浸镀熔融锌镀敷钢板用涂料、钢板的处理方法、表面处理钢板的制造方法和表面处理钢板
CN108864919B (zh) 复合体、水性树脂组合物及涂料
CN116490576A (zh) 阳离子电沉积涂料组合物
JPS62225569A (ja) 金属素材用プライマ−組成物及び塗装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510988

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017909495

Country of ref document: EP

Effective date: 20191211