WO2018205979A1 - 轨道车及隧道检测车 - Google Patents

轨道车及隧道检测车 Download PDF

Info

Publication number
WO2018205979A1
WO2018205979A1 PCT/CN2018/086362 CN2018086362W WO2018205979A1 WO 2018205979 A1 WO2018205979 A1 WO 2018205979A1 CN 2018086362 W CN2018086362 W CN 2018086362W WO 2018205979 A1 WO2018205979 A1 WO 2018205979A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
track
wheels
railcar
positioning wheel
Prior art date
Application number
PCT/CN2018/086362
Other languages
English (en)
French (fr)
Inventor
秦军
秦悦
Original Assignee
成都中信华瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都中信华瑞科技有限公司 filed Critical 成都中信华瑞科技有限公司
Publication of WO2018205979A1 publication Critical patent/WO2018205979A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B17/00Wheels characterised by rail-engaging elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D15/00Other railway vehicles, e.g. scaffold cars; Adaptations of vehicles for use on railways
    • B61D15/08Railway inspection trolleys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F13/00Rail vehicles characterised by wheel arrangements, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/08Measuring installations for surveying permanent way

Definitions

  • the present disclosure relates to the field of rail transit, and in particular to railcars and tunnel inspection vehicles.
  • the trajectories of various types of rail cars used in the detection of rail transit buildings such as railways and subways are all meandering trajectories. Therefore, in the case of detecting a positional accuracy requirement, it is usually measured at a standstill on a track and then moved to the next measurement point. Since the railcar moves or moves, the railcar moves in a random serpentine trajectory and its position moves horizontally. Many measurement and detection techniques based on precise position need to re-measure the position of the railcar or the detecting equipment. This results in a significant reduction in detection efficiency.
  • Objects of the present disclosure include, for example, a railcar that avoids the serpentine motion of the railcar as it travels, ensuring that the railcar can be accurately positioned in a direction perpendicular to the advancement direction.
  • Another object of the present disclosure is to provide a tunnel detecting vehicle capable of preventing a tunnel detecting vehicle from exhibiting a serpentine motion while traveling, and ensuring that the tunnel detecting vehicle can be accurately positioned in a direction perpendicular to the forward direction.
  • Embodiments of the present disclosure provide a railcar configured to be rollingly coupled to a rail, the railcar including a vehicle body and a wheel, the wheel being rotatably coupled to the vehicle body, and the wheel configured to Rolling connection with the track.
  • the railcar further includes two sets of lateral positioning wheel sets, each set of the lateral positioning wheel sets including a positioning wheel and a return wheel, the positioning wheel being configured to be in rolling contact with the same side of the track, the return wheel being opposite to the return wheel
  • the positioning wheel is configured to be in rolling contact with the other side of the track, the positioning wheel is fixedly coupled to the vehicle body, the return wheel is elastically coupled to the vehicle body, and the positioning wheel is The minimum adjustable distance between the return wheels is less than the distance between the laterally opposite sides of the track.
  • the rail car further includes a longitudinal distance positioning device and a posture detection recording device, wherein the longitudinal distance positioning device and the posture detection recording device are both disposed on the vehicle body.
  • two sets of the lateral positioning wheel sets are respectively connected to the front and the rear of the same side of the vehicle body, and two sets of the horizontal positioning wheel sets are connected to the rail car having a plurality of the wheels. One side.
  • the rail car further includes a camera and an image processing module, the camera is configured to image a track, a sleeper, a track board and a road base, and the camera and the image processing module are fixedly connected to the vehicle body And the camera and the image processing module are electrically connected, and the vehicle body is further provided with an auxiliary light source configured to face the imaging area.
  • the positioning wheel has a first rotating shaft, and the positioning wheel rotates around the first rotating shaft to be capable of rolling connection with a track, the wheel has a second rotating shaft, and the wheel surrounds the wheel
  • the second axis of rotation is rotatable to be capable of rolling connection with the track, wherein the first axis of rotation is perpendicular to the second axis of rotation.
  • the positioning wheel has a V-shaped cross section, and a V-shaped tip end is in contact with the inner side of the rail.
  • the number of the positioning wheels in the same group of the lateral positioning wheel sets is multiple, and the plurality of positioning wheels are connected by a rigid structure, and the plurality of positioning wheels are configured to be arranged back and forth along the track direction.
  • the rim outer tangents of the plurality of positioning wheels are always parallel to the track side and are in rolling contact with the sides of the track, and the number of the return wheels is plural.
  • the rail car further includes a gauge detection unit, the gauge detection unit includes a distance measuring device, a gauge change detecting device, and a calculation control device, and the ranging device is connected to the gauge change detecting device.
  • the distance measuring device is configured to measure a gauge change amount
  • the gauge change detecting device is configured to detect and amplify the gauge change amount
  • the calculation control device is electrically connected to the gauge change detecting device
  • the computing control device is configured to collect and calculate data.
  • the distance measuring device is a laser distance measuring device
  • the gauge change detecting device is a lever structure
  • one end of the lever structure is provided with a detecting wheel
  • the detecting wheel is always in rolling contact with the lateral direction. Locating the inner side of the track of the wheel set, the other end of the lever structure is provided with a reflector, the lever structure has a fulcrum, the fulcrum is fixedly connected to the vehicle body, and the lever structure is rotatable around a fulcrum, the laser The distance measuring device is fixedly connected to the vehicle body, the distance measuring laser beam of the laser distance measuring device is opposite to the reflector, the distance from the reflector to the fulcrum is greater than the distance from the detecting wheel to the fulcrum distance.
  • Embodiments of the present disclosure also provide a tunnel inspection vehicle including a tunnel detecting device and the above mentioned rail car, the tunnel detecting device being coupled to the rail car.
  • the number of the rail cars is multiple, and the plurality of rail cars are connected in series, and the tunnel detecting device comprises a grating encoder integrated on a wheel of the rail car.
  • the railcar can make the railcar not move in a serpentine shape when traveling on the rail through the lateral positioning wheel set provided on the vehicle body.
  • the positioning wheel in the lateral positioning wheel set is in rolling contact with one side of the track, and the positioning wheel is fixedly connected with the vehicle body, and in addition, the return wheel in the lateral positioning wheel set is opposite to the positioning wheel and the track.
  • the side rolling contact, and the return wheel adopts the elastic connection with the vehicle body, and the elastic force provided by the return wheel makes the positioning wheel always fit on one side of the track, that is, the rail car always moves in a straight line, avoiding the rail car Serpentine movement.
  • the tunnel detection device can be accurately positioned in continuous motion without having to reach a new detection point. re-locate.
  • the image obtained by using the push-broom camera has no image distortion caused by the camera on the track car following the original technology, which is beneficial to the image-based track, sleeper, track plate and roadbed disease. Correct analysis and reduced image processing time.
  • the distance measuring device When the rail car moves linearly along the rail, based on the rigid structural relationship between the distance measuring device and the vehicle body, and the rigid structure of the positioning wheel and the vehicle body, the distance measuring device always has a fixed correspondence with the inner position of the rail on one side of the positioning wheel, and the lever is enlarged.
  • the fulcrum in the structure is also connected to the vehicle body in a rigid structure.
  • the detecting wheel whose one end of the lever is in contact with the inner side of the other rail moves around the fulcrum as the gauge changes, and the change of the gauge represented by the movement is amplified by the lever to make the reflector With a larger displacement, the distance measuring device detects the change of the distance from the reflector is the enlarged gauge change.
  • the actual length obtained by the proportional conversion plus the base is the gauge.
  • the advantage of this scheme is that it can be used.
  • a lower precision ranging device achieves a higher precision gauge, and the second is a continuous measurement of the gauge distance and higher detection efficiency.
  • a railcar with plane accurate positioning and attitude measurement can provide a platform for other work that needs to work along the track and must be accurately positioned.
  • the embodiments of the present disclosure also provide a tunnel inspection vehicle capable of laterally accurate positioning, which overcomes the defect that the detection of data inaccuracies caused by the serpentine trajectory operation of the railcar in the prior art.
  • Embodiments of the present disclosure provide a tunnel inspection vehicle including a frame and a lateral positioning wheel set, the frame including a plurality of rail cars, the plurality of rail cars being beaded, the plurality of rail cars
  • the insulated wheel is integrated with a grating encoder configured to record wheel travel information, wherein the lateral positioning wheel set is mounted only on one track, and the lateral positioning wheel set is two in a rail car installation group
  • the transverse positioning wheel set is composed of two single wheels, two single wheels are respectively located on two sides of one track, the single wheel is in rolling contact with the side of the track, and the axis of the single wheel is perpendicular to the track plane.
  • the number of insulated wheels of the railcar is 2n or 2n+1, where n is a natural number that is not zero, the tread of the insulated wheel of the railcar is flat, and no rim restricts the lateral positioning.
  • the two sets of the lateral positioning wheel sets are respectively installed on the front and the rear of the lower surface of the body of a rail car;
  • the two sets of lateral positioning wheel sets are respectively installed on the left and right sides of the lower surface of the rail car and the corresponding rails;
  • the two sets of lateral positioning wheel sets are installed on the same side of the n+1 insulated wheels on the lower surface of the railcar body.
  • the single-wheel support frame located on the inner side of the track of the two single wheels of the lateral positioning wheel set is rigidly connected with the rail car in the traveling direction and the vertical direction of the traveling direction, and the two positioning wheels of the lateral positioning wheel set
  • the single wheel located outside the track in the wheel is rigidly connected to the railcar in the direction of travel, and is elastically connected in a direction perpendicular to the direction of travel, wherein the inside of the rail refers to the inside of the two rails.
  • the side of the lower surface of the railcar body that is not equipped with the lateral positioning wheel set is not provided with a lateral restraining structure that conflicts with the lateral positioning wheel set.
  • the single wheel section of the lateral positioning wheel set is “V” shaped, “U” shaped or “L” shaped.
  • FIG. 1 is a schematic structural view of a first perspective view of a rail car according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural view of a second perspective view of a rail car according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural view of a third perspective view of a rail car according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a gauge detection unit according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a tunnel detecting vehicle according to an embodiment of the present disclosure.
  • Icons 10-track car; 100-car body; 200-wheel; 210-second rotating shaft; 220-tread; 300-transverse positioning wheel set; 310-positioning wheel; 311-first rotating shaft; 320-return Wheel; 400-gauge detecting unit; 410-laser ranging device; 421-reflector; 422-lever structure; 423-pivot; 424-probing wheel.
  • connection may be a fixed connection or may be The connection is disassembled or connected integrally; it may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediate medium, and may be internal communication between the two elements.
  • connection may be a fixed connection or may be The connection is disassembled or connected integrally; it may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediate medium, and may be internal communication between the two elements.
  • the present embodiment provides a railcar 10 that can prevent the railcar 10 from exhibiting a serpentine motion while traveling, and ensures that the railcar 10 can be accurately positioned in a direction perpendicular to the forward direction.
  • the railcar 10 is configured to be connected to a track (not shown).
  • the railcar 10 includes a vehicle body 100, a wheel 200, and a lateral positioning wheel set 300 (shown in FIG. 5) that is rollingly coupled to the vehicle body 100 and that is configured to be coupled to the track.
  • the lateral positioning wheel set 300 is coupled to the vehicle body 100, and the lateral positioning wheel set 300 is configured to be in rolling contact with the track, which enables the rail car 10 to avoid the occurrence of serpentine motion of the rail car 10 while traveling, and can ensure that the rail car 10 does not Produces a horizontal random deviation.
  • the direction perpendicular to the traveling direction is the lateral direction.
  • the railcar 10 provided in this embodiment can eliminate the serpentine motion generated when the railcar 10 travels, and ensure that the railcar 10 does not change laterally relative to the rail.
  • the rail car 10 includes two sets of lateral positioning wheel sets 300, and two sets of lateral positioning wheel sets 300 are respectively connected to the same side of the rail car 10, so that the two sets of lateral positioning wheel sets 300 can be simultaneously connected to The same track ensures that the railcar 10 does not have a serpentine motion.
  • a precise moving platform is provided for the precise positioning of the track direction and the precise tilt angle of the two directions for precision measurement and detection along the track direction.
  • the rail car 10 is further provided with a longitudinal distance positioning device (not shown) and a posture detecting and recording device (not shown), and the longitudinal distance positioning device and the posture detecting and recording device are both disposed on the vehicle body 100.
  • the longitudinal distance positioning device is configured to ensure that the railcar 10 ensures absolute positioning and relative positioning of the position of the railcar 10 in a longitudinal direction with respect to the lateral direction.
  • the attitude detection recording device is configured to detect a three-dimensional attitude angle of the railcar 10 when the railcar 10 is in operation.
  • a camera along the track direction (not shown) is installed, which is configured to image the track, the sleeper, the track plate and the roadbed, and is configured to detect the geometric shape of the track. , the state of the fastening components and the damage of the sleeper and the track plate.
  • the rail car 10 further includes a camera control module and an image processing module (not shown).
  • the camera is fixedly coupled to the vehicle body 100, and the camera is electrically connected to the image processing module and the camera control module.
  • the lens of the camera is configured to face the track and the track plate, and the vehicle body 100 is further provided with an auxiliary light source (not shown) configured to face the track imaging area.
  • the camera control module controls the auxiliary light source to illuminate the imaging target area, and controls the rail vehicle 10 to continuously collect the image information of the track and the track board at an appropriate matching frame rate, and sends the image information to the image processing module through the image.
  • the processing module processes the image information in the form of an image.
  • the camera uses a push-broom camera.
  • any camera or related device capable of realizing the photographing function can be used.
  • the lateral positioning wheel set 300 includes a positioning wheel 310 and a return wheel 320.
  • the two positioning wheels 310 are configured to be rollingly coupled to the same side of the track
  • the two return wheels 320 are configured to be in rolling contact with the other side of the track with respect to the two positioning wheels 310.
  • the positioning wheel 310 is fixedly coupled to the vehicle body 100
  • the return wheel 320 is elastically coupled to the vehicle body 100
  • the distance between the positioning wheel 310 and the return wheel 320 is less than or equal to the distance between the laterally opposite sides of the track. That is, the distance between the positioning wheel 310 and the return wheel 320 is adapted to the distance between the two sides of the track laterally opposite.
  • the return wheel 320 is hingedly coupled to the vehicle body 100, and a spring is coupled between the return wheel 320 and the vehicle body 100 to achieve an elastic connection.
  • the hinge movement direction is perpendicular to the track direction, and the positioning wheel 310 and the return wheel 320 are elastically connected in the hinge movement direction.
  • the distance between the positioning wheel 310 and the return wheel 320 is adjusted accordingly such that when the two clamp the track and move, the axis of the return wheel 320 and the positioning wheel 310 are perpendicular to the track plane.
  • the positioning wheel 310 and the return wheel 320 are both single wheels, that is, the same group of lateral positioning wheel sets 300 includes a positioning wheel 310 and a return wheel 320. It should be understood that in other embodiments, the number of the positioning wheels 310 in the same group of lateral positioning wheel sets 300 may also be multiple, and the outer common tangent of the rim of the plurality of positioning wheels 310 is always parallel with the side of the track, and simultaneously with the track. Contact, and wherein the distance between each two adjacent positioning wheels 310 should be greater than the width of the seam of the track. In addition, in other embodiments, the same set of lateral positioning wheel sets 300 may also include a plurality of return wheels 320. The plurality of return wheels 320 simultaneously provide elastic force to the positioning wheels 310, so that the positioning wheels 310 are in contact with one side of the track. .
  • the positioning wheel 310 and the return wheel 320 of the present embodiment are symmetrically distributed on both sides of the track.
  • the return wheel 320 on the other side of the track may not be symmetrically distributed with the positioning wheel 310, and only the force of the orbit is generated in the lateral direction of the track through the return wheel 320.
  • the positioning wheel 310 can be kept in close connection with the side of the track.
  • the distance between the laterally opposite sides of the track refers to the distance between the two opposite sides of one track.
  • the two lateral positioning wheel sets 300 are configured to be connected to the same track, that is, the two positioning wheels 310 and the two returning wheels 320 are clamped on the same track, so that the positioning wheel 310 can pass back.
  • the elastic force of the wheel 320 enables the positioning wheel 310 to always conform to the side of the track, ensuring that the railcar 10 travels in a straight line, avoiding the occurrence of serpentine motion.
  • the direction of the connection of the two return wheels 320 is the first direction
  • the direction of the connection of the positioning wheel 310 and the return wheel 320 in the same set of lateral positioning wheel sets 300 is the second direction. direction.
  • the rotating shaft of the returning wheel 320 is hinged with the vehicle body 100
  • the axial direction of the hinge shaft is in the same direction as the track direction
  • the returning wheel 320 is rigidly connected with the vehicle body 100 in the first direction
  • the rotating shaft of the returning wheel 320 is hinged.
  • the shaft rotates, and the return wheel 320 is elastically coupled to the vehicle body 100 in the second direction.
  • the position of the return wheel 320 can be elastically displaced in the second direction such that the return wheel 320 is selectively remote from or adjacent to the positioning wheel 310.
  • the remote positioning wheel 310 is convenient for embedding the track between the positioning wheel 310 and the return wheel 320.
  • the positioning wheel 310 is relied on by the elastic force.
  • the return wheel 320 maintains a normal contact state with both sides of the track.
  • the return wheel 320 can be biased away from the positioning wheel 310. Moving a certain distance, that is, the return wheel 320 has a tendency to move toward the positioning wheel 310, so that the positioning wheel 310 and the return wheel 320 clamp the track, ensuring that the positioning wheel 310 is always in rolling contact with the track, ensuring that the rail car 10 does not travel while traveling. Produce a serpentine movement.
  • the distance between the positioning wheel 310 and the return wheel 320 can be adjusted according to the track width such that the rotational axis of the positioning wheel 310 and the rotational axis of the return wheel 320 are in a nearly perpendicular relationship with the track level.
  • the contact point of the positioning wheel 310 with the track can be adjusted with respect to the height below the track plane of the track, and the contact point of the positioning wheel 310 with the track can be configured to an arbitrary designated position.
  • the first direction mentioned above is the direction in which the rail extends, that is, the traveling direction when the rail car 10 is connected to the rail.
  • the second direction is the lateral direction of the track mentioned above perpendicular to the direction of travel.
  • the positioning wheel 310 has a first rotating shaft 311, and the positioning wheel 310 is rotatable about the first rotating shaft 311 so as to be able to rollably connect to the side of the track.
  • the wheel 200 has a second axis of rotation 210 and the wheel 200 is rotatable about a second axis of rotation 210 to enable a rolling connection with the rail surface of the track.
  • the first rotating shaft 311 is perpendicular to the second rotating shaft 210, that is, the positioning wheel 310 and the wheel 200 respectively perform their respective operations without mutual interference.
  • the positioning wheel 310 can be positioned in a lateral plane such that the lateral positioning effect produced by the positioning wheel 310 is better.
  • the thickness of the positioning wheel 310 is gradually increased from the outer edge of the positioning wheel 310 to the axis of the positioning wheel 310.
  • the cross section of the positioning wheel 310 from the rim to the center of the axle is a "V" shape, that is, the cross section of the positioning wheel 310 passing through the first rotating shaft 311 and located on one side of the first rotating shaft 311 is "V" shaped.
  • the thickness of the return wheel 320 is gradually increased from the outer edge of the return wheel 320 to the axis of the return wheel 320.
  • the cross section of the return wheel 320 is "V" shaped, that is, the return wheel 320 passes.
  • the section of the axis and the section on one side of the axis is "V" shaped.
  • the locating wheel 310 in the lateral positioning wheel set 300 remains in close contact with the side plane of the track.
  • the return wheel 320 can be other shapes, such as a cylindrical shape or the like.
  • the wheel 200 and the lateral positioning wheel set 300 each adopt an insulating material or an additional insulating structure to ensure that there is no connected electrical circuit between the two tracks, and at the same time, no electrical interference is generated to the equipment on the rail car. .
  • the two sets of lateral positioning wheel sets 300 are respectively connected to the front and rear portions on the same side of the vehicle body 100, so that the distance between the two sets of lateral positioning wheel sets 300 is sufficiently long to maintain the railcar 10 Stability of the driving direction angle.
  • the two sets of lateral positioning wheel sets 300 can be installed in accordance with the layout and number of the wheels 200 of the railcar 10.
  • the two sets of lateral positioning wheel sets 300 are connected to the left side or the right side of the rail car 10. That is, the two sets of lateral positioning wheel sets 300 can only be installed on the same side of the rail car 10 at the same time, so as to ensure that the two sets of lateral positioning wheel sets 300 can be in rolling contact with the same side track at the same time, so as to ensure that the rail car 10 does not have a serpentine motion. .
  • the number of the wheels 200 is four, and the two sets of lateral positioning wheel sets 300 are connected to the left side of the rail car 10.
  • the two sets of lateral positioning wheel sets 300 can also be connected to the railcar 10 On the right side.
  • the lateral positioning wheel set 300 cannot be mounted on both sides.
  • the two sets of the lateral positioning wheel sets 300 are coupled to the side on which the wheel 200 is mounted on the vehicle body 100.
  • the two sets of the lateral positioning wheel sets 300 are coupled to the side of the vehicle body 100 on which the plurality of wheels 200 are mounted.
  • the railcar 10 adopting an odd number of wheels 200 is mostly three wheels 200, and the two sets of lateral positioning wheel sets 300 are mounted on one side of the vehicle body 100 on which the two wheels 200 are mounted.
  • the lateral positioning wheel set 300 can be optionally installed on one side.
  • the railcar 10 is equipped with a gauge detection unit 400 having an enlarged gauge change.
  • the railcar 10 further includes a gauge detecting unit 400 and an amplifying mechanism.
  • the gauge detecting unit 400 is configured to detect a gauge
  • the amplifying mechanism is configured to amplify a variation of the gauge.
  • the track gauge unit 400 detects the current gauge distance of the track.
  • the gauge distance changes, and since the magnitude of the change is relatively small, the zoom mechanism is small. The variation is magnified to improve the detection accuracy, and even higher precision can be measured with an instrument with less precision.
  • the gauge detection unit 400 includes a distance measuring device (not shown), a gauge change detecting device (not shown), and a calculation control device (not shown).
  • the distance measuring device is coupled to the gauge change detecting device, wherein the distance measuring device is configured to measure a gauge change amount, and the gauge change detecting device is configured to detect and amplify the gauge change amount.
  • the computing control device is electrically coupled to the gauge change detecting device, and the computing control device is configured to collect and calculate data.
  • the gauge change is measured by the distance measuring device, and the measured gauge change amount is amplified by the gauge change detecting device, so as to improve the measurement accuracy of the gauge change amount, and the accuracy can be measured by using an instrument with low precision. Higher value.
  • the distance measuring device is a laser ranging device 410.
  • the trajectory change detecting device is a lever structure 422.
  • One end of the lever structure 422 is provided with a detecting wheel 424.
  • the detecting wheel 424 is always in rolling contact with the track away from the lateral positioning wheel set 300.
  • On the inner side the other end of the lever structure 422 is provided with a reflector 421.
  • the lever structure 422 has a fulcrum 423, the fulcrum 423 is fixedly coupled to the vehicle body 100, and the lever structure 422 is rotatable about the fulcrum 423.
  • the ranging laser beam (not shown) of the laser ranging device 410 is directed to the reflecting plate 421.
  • the distance from the reflector 421 to the fulcrum 423 is greater than the distance from the detecting wheel 424 to the fulcrum 423.
  • the contact point of the detecting wheel 424 and the inner side of the track can be adjusted in a direction perpendicular to the plane of the track to adjust to a position specified under the plane of the track so that the positioning wheel 310 can simultaneously adjust the height.
  • the height of the detecting wheel 424 is adjusted such that the detecting wheel 424 corresponds to the height of the positioning wheel 310.
  • the cross-sectional shape of the detecting wheel 424 is the same as that of the positioning wheel 310, so that the detecting wheel 424 can be in close contact with the inner side of the rail when it encounters an attachment such as dirt or oil when moving.
  • the laser ranging device 410 can also use a highly accurate instrument such as a laser displacement sensor.
  • the wheel 200 has a tread surface 220 , and the tread surface 220 is a plane so that the wheel 200 does not change its circumference due to the difference with the contact point of the rail.
  • the wheel 200 provided in this embodiment adopts a flat tread 220. Whether the trajectory of the wheel 200 is serpentine ensures that the circumference of the wheel 200 is constant. It is guaranteed to have an accurate value when calculating the distance based on the rotation angle of the wheel 200 and the circumference of the wheel 200. That is, the precise walking distance value can be calculated by the precise rotation angle and the precise wheel circumference.
  • the wheel 200 on the other side of the railcar 10 that does not have the lateral positioning wheel set 300 cannot have a lateral restraint structure that collides with the lateral positioning wheel set 300 to ensure smooth operation of the lateral positioning wheel set 300. .
  • the railcar 10 provided in this embodiment can prevent the railcar 10 from moving in a serpentine motion when traveling on the rail by the lateral positioning wheel set 300 disposed on the vehicle body 100.
  • the positioning wheel 310 in the lateral positioning wheel set 300 is in rolling contact with one side of the track, and the positioning wheel 310 is fixedly connected to the vehicle body 100.
  • the return wheel 320 in the lateral positioning wheel set 300 is positioned relative to the positioning wheel 300.
  • the wheel 310 is in rolling contact with the other side of the track, and the rotating shaft of the returning wheel 320 is hinged with the vehicle body 100.
  • the axial direction of the hinge shaft is in the same direction as the track direction, and the return wheel 320 is rigidly connected to the vehicle body 100 in the track direction.
  • the return wheel 320 is elastically coupled to the vehicle body 100 in a direction perpendicular to the track.
  • the elastic force provided by the return wheel 320 causes the positioning wheel 310 to always fit to one side of the track, that is, the rail car 10 always moves in a straight line.
  • the serpentine motion of the railcar 10 is avoided.
  • the embodiment further provides a tunnel detecting vehicle (not shown), wherein the tunnel detecting vehicle comprises a grating encoder (not shown) and a plurality of rail cars 10 provided in the above embodiments, and a plurality of rail cars 10 beaded
  • the grating is integrated on the wheel 200.
  • the tunnel inspection vehicle can avoid the serpentine motion of the tunnel inspection vehicle while traveling, and ensure that the tunnel inspection vehicle can be accurately positioned in the direction perpendicular to the forward direction.
  • the rail car 10 serves as a carrying platform for the tunnel detecting unit, and the rail car 10 and the tunnel detecting unit constitute a tunnel detecting vehicle.
  • the tunnel detecting device (which may also be referred to as a tunnel detecting unit, a tunnel detecting device, etc.) installed on the rail car 10 in this embodiment is mainly an image detecting device and an auxiliary device thereof.
  • any other device capable of detecting related data can be installed correspondingly.
  • the raster encoder can also be understood as a type of tunnel detecting device.
  • the image information in the tunnel is acquired by the detecting device installed on the tunnel detecting vehicle.
  • the precise distance value obtained by obtaining the traveling speed of the railcar 10 can be calculated by the circumference of the wheel 200 and the angle of the turning.
  • the tread surface 220 of the wheel 200 used by the tunnel detecting vehicle provided by the present disclosure is a plane, and the circumference of the wheel 200 does not resemble a tapered tread.
  • the circumference of the 220 or the curved tread 220 is different because the wheel and the track contact point are different. Since the tread surface 220 is a flat wheel 200, the circumference of the wheel 200 can be ensured to be constant irrespective of whether the track is serpent or not. That is, as long as the rotation angle of the wheel 200 is ensured, a relatively accurate walking distance value can be obtained.
  • the tunnel detecting vehicle since the tunnel detecting vehicle has the presence of the lateral positioning wheel set 300, the relative position in the lateral direction of the track during traveling and when the traveling is stopped is invariable, and the error of data in the later tunnel image and tunnel section data processing is reduced.
  • the tunnel detecting vehicle further includes an attitude sensor (not shown), an imaging detecting unit (not shown), and a ranging unit (not shown), wherein the attitude sensor, the imaging detecting unit, and the ranging unit are both It is disposed on the vehicle body 100.
  • the railcar 10 can also be used as a carrier platform for other equipment that needs to be accurately positioned on the track.
  • the embodiment further provides a tunnel detecting vehicle.
  • the vehicle includes a frame and a lateral positioning wheel set 300.
  • the frame includes a plurality of rail cars 10, and a plurality of rail cars 10 are beaded and connected.
  • the wheel 200 on the vehicle 10 is integrated with a grating encoder, wherein the lateral positioning wheel set 300 is only mounted on one track, the lateral positioning wheel set 300 is installed in two groups of one railcar 10, and the lateral positioning wheel set 300 is composed of two.
  • the single wheel is composed of two single wheels respectively located on two sides of one track, the single wheel is in rolling contact with the side of the track, and the axis of the single wheel is perpendicular to the plane of the track, ensuring that the single wheel always contacts the side of the track when the rail car 10 moves.
  • the number of wheels of the railcar 10 is 2n or 2n+1, where n is a natural number that is not zero, the wheel 200 of the railcar 10 is flat, and no rim restricts the lateral positioning, passing the wheel circumference and the turned
  • the angular multiplication allows the precise distance value of the railcar 10 to travel.
  • the wheel 200 is an insulated wheel or a wheel having an insulating structure.
  • wheels of other materials may also be used.
  • the single wheel section of the transverse positioning wheel set 300 has a "V" shape, and when the side of the track is oily and muddy, the lateral positioning wheel set 300 is still in close contact with the side plane of the track.
  • the single wheel section of the lateral positioning wheel set 300 can also be "U” shaped or “L” shaped as long as the wheel can be in close contact with the side of the track and the rim does not limit the lateral positioning of the positioning wheel.
  • Two sets of lateral positioning wheel sets 300 are respectively installed at the front and the rear of the lower surface of the body 100 of a rail car 10. If the number of wheels of the rail car 10 is 2n, the two sets of lateral positioning wheel sets 300 are respectively installed on the rail car. 10 left and right sides of the lower surface of the body.
  • the lower surface of the vehicle body 100 can be considered as the bottom of the vehicle body 100.
  • the two sets of lateral positioning wheel sets 300 are mounted on the same side of the lower surface of the body of the railcar 10 having n+1 wheels 200.
  • the single wheel support frame located inside the track is rigidly connected with the rail car 10 in the traveling direction and the vertical direction of the traveling direction, and the two single wheels of the lateral positioning wheel set 300 are located outside the track.
  • the single wheel and the railcar 10 are rigidly connected in the direction of travel, and are elastically connected in a direction perpendicular to the direction of travel, wherein the inside of the rail refers to the inside of the two rails. If the number of wheels of the railcar 10 is 2n+1, the side of the lower side of the body 100 of the railcar 10 that is not mounted with the lateral positioning wheel set 300 is not provided with a lateral restraining structure that collides with the lateral positioning wheel set 300.
  • the image information in the tunnel is acquired by the detecting device installed on the tunnel detecting vehicle.
  • the precise distance value of the rail car can be obtained by multiplying the circumference of the wheel and the angle of the turning.
  • the wheel tread used by the tunnel detecting vehicle provided by the present disclosure is a plane, and the circumference of the wheel is not like that of a tapered tread or a curved tread.
  • the rail contact points are different and the circumference changes. Because the wheel tread is a flat wheel, the circumference is always constant regardless of whether the trajectory is serpent or not. That is, as long as the wheel rotation angle is ensured, a relatively accurate walking distance value can be obtained.
  • the positioning wheel set is composed of an inner wheel which is rigidly connected with the two-dimensional direction of the vehicle body and an outer wheel which is rigidly connected with the vehicle body along the rail and which is perpendicularly connected with the rail.
  • the inner wheel tread surface is always in contact with the inner side of the rail by the elastic force of the outer wheel pointing toward the inner wheel.
  • the inner and outer wheels are in rolling frictional contact with the rail. The rotation of the inner and outer wheels themselves passes through the bearing system.
  • the tunnel detecting vehicle Due to the existence of the positioning wheel set, the tunnel detecting vehicle has invariance with the relative position of the track lateral direction during traveling and when traveling stops, reducing the complexity of data in the later tunnel image processing.
  • FIG. 1 shows a schematic structural view of the rail car 10.
  • the railcar 10 includes a vehicle body 100, a wheel 200 coupled to the vehicle body 100, and two sets of lateral positioning wheel sets 300 (shown in FIG. 5).
  • the tread of the wheel 200 is a plane
  • the wheel 200 is configured to be rollingly coupled to the track
  • the wheel 200 has a second axis of rotation 210 that is rotatable about the second axis of rotation 210.
  • Each set of lateral positioning wheel sets 300 includes a positioning wheel 310 and a return wheel 320.
  • the positioning wheel 310 is rotatably coupled to the vehicle body 100 and is in rolling contact with the inner side of the track.
  • the positioning wheel 310 has a first rotating shaft 311, and a first rotating shaft.
  • the 311 is disposed perpendicular to the second rotating shaft 210, and the positioning wheel 310 is relatively fixed to the position of the vehicle body 100 (it can be understood that the positioning wheel 310 is coupled to the vehicle body 100 by a rigid structure).
  • the return wheel 320 is rigidly connected to the vehicle body 100 in the track direction.
  • the return wheel 320 In the direction perpendicular to the track direction, the return wheel 320 is elastically coupled to the vehicle body 100, and the return wheel 320 is elastically and rollingly contacts the outer side of the track. 2, the return wheel 320 is rotatably coupled to a lever member, one end of the lever member is coupled to the return wheel 320, and the other end of the lever member is rotatably coupled to the vehicle body 100.
  • the lever member is opposite to the vehicle body 100.
  • the rotating pivot axis coincides with the direction in which the vehicle body 100 runs.
  • the return wheel 320 approaches or moves away from the track during rotation of the lever relative to the vehicle body 100, and the link between the lever and the first rotating shaft 311 is connected.
  • the spring causes the returning wheel 320 to have a tendency to move close to and abut against the rail (that is, to return
  • the position wheel 320 is elastically contacted to the track).
  • the number of wheels 200 of a railcar 10 is four, and two sets of lateral positioning wheel sets 300 are located on the left side of the railcar 10. There is no lateral positioning wheel set 300 on the right side of the railcar 10.
  • the railcar 10 is equipped with a gauge detecting unit 400 having an enlarged gauge change.
  • the gauge detecting unit 400 includes a laser ranging device 410, a gauge change detecting device, and a calculation control device.
  • the laser ranging device 410 is connected to the gauge change detecting device, wherein the laser ranging device 410 is configured to measure the gauge change amount, and the gauge change detecting device is configured to detect and amplify the gauge change amount.
  • the computing control device is electrically coupled to the gauge change detecting device, and the computing control device is configured to collect and calculate data.
  • the gauge change amount is measured by the laser ranging device 410, and the measured gauge change amount is amplified by the gauge change detecting device, so as to improve the measurement accuracy of the gauge change amount, so that the instrument with low accuracy can also measure Get a higher precision value.
  • the gauge change detecting device is a lever structure 422.
  • One end of the lever structure 422 is provided with a detecting wheel 424.
  • the detecting wheel 424 is always in rolling contact with the inner side of another track in which the lateral positioning wheel set 300 is not installed, and the lever structure 422 is further One end is provided with a reflector 421.
  • the lever structure 422 has a fulcrum 423, the fulcrum 423 is fixedly coupled to the vehicle body 100, and the lever structure 422 is rotatable about the fulcrum 423.
  • the ranging laser beam of the laser ranging device 410 is directed to the reflector 421.
  • the distance from the reflector 421 to the fulcrum 423 is greater than the distance from the detecting wheel 424 to the fulcrum 423.
  • the contact point of the detecting wheel 424 and the inner side of the track can be adjusted in a direction perpendicular to the plane of the track to adjust to a specified position under the plane of the track so that the positioning wheel 310 can simultaneously adjust the height of the detecting wheel 424 when performing height adjustment.
  • the probe wheel 424 is made to correspond to the height of the positioning wheel 310.
  • the cross-sectional shape of the detecting wheel 424 is the same as the sectional shape of the positioning wheel 310, so that the detecting wheel 424 can also interfere with the inner side of the rail when it encounters an attachment such as dirt or oil when moving.
  • the bottom of the railcar 10 is provided with a wheel 200 and a lateral positioning wheel set 300.
  • Two of the lateral positioning wheel sets 300 are respectively located on both sides of the wheel 200 on the left side of the bottom of the rail car 10.
  • the present disclosure provides a rail car and a tunnel inspection vehicle, which has a simple structure, low manufacturing cost, low energy consumption, and low failure rate.
  • the rail car and the tunnel inspection vehicle can prevent the rail car from appearing as a snake during traveling.
  • the shape movement ensures that the rail car can be accurately positioned perpendicular to the forward direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

一种轨道车(10)及隧道检测车,该轨道车(10)配置成滚动连接于轨道,轨道车(10)包括车体(100)和车轮(200),车轮(200)连接于车体(100),并且车轮(200)配置成与轨道滚动连接。轨道车(10)还包括两组横向定位轮组(300),横向定位轮组(300)包括定位轮(310)和回位轮(320),定位轮(310)配置成与轨道的同一侧滚动接触,回位轮(320)相对于定位轮(310)配置成与轨道的另一侧滚动接触,定位轮(310)固定连接于车体(100),回位轮(320)弹性连接于车体(100),并且定位轮(310)与回位轮(320)之间的最小可调节距离小于轨道横向相对的两侧之间的距离。一种隧道检测车,其采用了上述的轨道车(10)。该轨道车(10)及隧道检测车能避免在行进时出现蛇形运动,保证轨道车(10)在垂直于前进方向上能精确定位。

Description

轨道车及隧道检测车
相关申请的交叉引用
本公开要求于2017年05月11日提交中国专利局的申请号为201710328452.6、名称为“一种隧道检测车”的中国专利申请的优先权;
以及于2017年10月11日提交中国专利局的申请号为2017109452525、名称为“轨道车及隧道检测车”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及轨道交通领域,具体而言,涉及轨道车及隧道检测车。
背景技术
目前在铁道和地铁等轨道交通建筑物检测中使用的各种类型的轨道车在轨道上的行驶轨迹都是蛇行轨迹。因此,在对位置精度要求高的检测场合,通常都采用停在轨道上处于静止状态下测量,然后移动到下一个测量点。由于轨道车在运动或移动后,轨道车以随机蛇行轨迹前进后其位置发生了横向的随机移动,很多基于精密位置的测量检测技术,需要重新测量轨道车或检测设备的位置。这样导致检测效率大幅度降低。
发明内容
本公开的目的包括,例如,提供了一种轨道车,其能避免轨道车在行进时出现蛇形运动,保证轨道车在垂直于前进方向上的方向能精确定位。
本公开的另一目的在于提供了一种隧道检测车,其能够避免隧道检测车在行进时出现蛇形运动,保证隧道检测车在垂直于前进方向上的方向能精确定位。
本公开的实施例是这样实现的:
本公开的实施例提供了一种轨道车,所述轨道车配置成滚动连接于轨道,所述轨道车包括车体和车轮,所述车轮转动连接于所述车体,并且所述车轮配置成与所述轨道滚动连接。所述轨道车还包括两组横向定位轮组,每组所述横向定位轮组包括定位轮和回位轮,所述定位轮配置成与轨道的同一侧滚动接触,所述回位轮相对于所述定位轮配置成与所述轨道的另一侧滚动接触,所述定位轮固定连接于所述车体,所述回位轮弹性连接于所述车体,并且所述定位轮与所述回位轮之间的最小可调节距离小于所述轨道横向相对的两侧之间的距离。
可选的,两个所述定位轮连线所在方向为第一方向,与所述第一方向垂直的方向为第二方向,所述回位轮于所述第一方向上与所述车体刚性连接,所述回位轮于所述第二方向上与所述车体弹性连接。
可选的,所述轨道车还包括纵向距离定位装置和姿态检测记录装置,所述纵向距离定位装置和所述姿态检测记录装置均设置于所述车体上。
可选的,两组所述横向定位轮组分别连接于所述车体的同一侧的前部和后部,两组所述横向定位轮组连接于所述轨道车具有多个所述车轮的一侧。
可选的,所述轨道车还包括相机和图像处理模块,所述相机配置成对轨道、轨枕、轨道板和路基进行成像,所述相机和所述图像处理模块均固定连接于所述车体,并且所述相机和所述图像处理模块电连接,所述车体上还设置有配置成朝向成像区域的辅助光源。
可选的,所述定位轮具有第一旋转轴,且所述定位轮绕所述第一旋转轴旋转以能与轨道滚动连接,所述车轮具有第二旋转轴,且所述车轮绕所述第二旋转轴旋转以能与轨道滚动连接,其中,所述第一旋转轴垂直于所述第二旋转轴。
可选的,所述定位轮的截面呈V字形,与所述轨道内侧接触的为V字形的尖端。
可选的,同一组所述横向定位轮组中的所述定位轮的数量为多个,并且多 个所述定位轮通过刚性结构连接,多个所述定位轮配置成沿轨道方向前后布置,多个所述定位轮的轮缘外公切线与轨道侧面始终平行,且与所述轨道的侧面同时滚动接触,所述回位轮的数量为多个。
可选的,所述轨道车还包括轨距检测单元,所述轨距检测单元包括测距装置、轨距变化探测装置和计算控制装置,所述测距装置于所述轨距变化探测装置连接,所述测距装置配置成测量轨距变化量,所述轨距变化探测装置配置成探测并放大所述轨距变化量,所述计算控制装置与所述轨距变化探测装置电连接,并且所述计算控制装置配置成数据的采集与计算。
可选的,所述测距装置为激光测距装置,所述轨距变化探测装置为一个杠杆结构,所述杠杆结构的一端设置有探测轮,所述探测轮始终滚动接触于远离所述横向定位轮组的轨道的内侧,所述杠杆结构的另一端设置有反光板,所述杠杆结构具有支点,所述支点固定连接于所述车体,所述杠杆结构能绕支点转动,所述激光测距装置固定连接于所述车体上,所述激光测距装置的测距激光束正对于所述反光板,所述反光板至所述支点的距离大于所述探测轮至所述支点的距离。
本公开的实施例还提供了一种隧道检测车,其包括隧道检测设备和上述提到的轨道车,所述隧道检测设备与所述轨道车连接。
可选的,所述轨道车的数量为多个,多个所述轨道车串联式连接,所述隧道检测设备包括光栅编码器,所述光栅编码器集成于所述轨道车的车轮上。
相比现有技术,本公开的实施例提供的轨道车及隧道检测车的有益效果包括,例如:
轨道车通过设置于车体上的横向定位轮组能使得轨道车在轨道上行驶时不出现蛇形运动。其中,横向定位轮组中的定位轮与轨道的一侧滚动接触,并且定位轮采用与车体固定连接的方式,另外,横向定位轮组中的回位轮相对于定位轮与轨道的另一侧滚动接触,并且回位轮采用与车体弹性连接的方式,通过回位轮提供的弹性力使得定位轮始终贴合于轨道的一侧,即使得轨道车始终 沿直线运动,避免了轨道车的蛇形运动。
另外,基于一个没有横向随机移位的轨道车与设置了精密距离定位与姿态测量的轨道车平台,可以保证隧道检测装置在连续运动中的准确定位而不需要每到达一个新的检测点都要重新定位。
轨道车沿轨直线匀速运动时,使用推扫相机所得到的图像没有原有技术轨道车上相机跟随车体蛇行带来的图像扭曲变形,有利于基于图像对轨道、轨枕、轨道板和路基病害的正确分析,并且减少了图像处理的时间。
轨道车沿轨直线运动时,基于测距装置与车体的刚性结构关系,以及定位轮与车体的刚性结构,测距装置始终与定位轮一侧的轨道内侧位置呈固定对应关系,杠杆放大结构中的支点与车体也是刚性结构连接关系,杠杆一端与另一条轨道内侧接触的探测轮会随着轨距变化而绕支点运动,并且这种运动代表的轨距变化通过杠杆放大使反光板具有更大的位移,测距装置检测到与反光板之间的距离变化就是放大了的轨距变化,通过比例换算得到的实际长度加上基数就是轨距,这种方案其优点一是可以使用较低精度的测距装置获得较高精度的轨距,其二是可以连续测量轨距并且具有更高的检测效率。
具有平面准确定位和姿态量测功能的轨道车,可以为其它需要沿轨道作业而且必须准确定位的工作提供设备平台。
本公开的的实施例还提供了一种能进行横向精确定位的隧道检测车,克服现有技术中的轨道车蛇形轨迹运行导致检测数据不精确的缺陷。
本公开的实施例是这样实现的:
本公开的实施例提供了一种隧道检测车,包括车架和横向定位轮组,所述车架包括多个轨道车,所述多个轨道车串珠状连接,所述多个轨道车上的绝缘车轮集成有光栅编码器,所述光栅编码器配置成记录车轮行进信息,其中,所述横向定位轮组只安装于一条轨道上,所述横向定位轮组在一个轨道车安装组数为两组,所述横向定位轮组由两个单轮组成,两个单轮分别位于一条轨道的两侧,所述单轮与轨道的侧面滚动接触,所述单轮的轴与轨道平面垂直,所述 轨道车的绝缘车轮数为2n或者2n+1,其中,n为不为零的自然数,所述轨道车的绝缘车轮的踏面为平面,没有轮缘对横向定位进行约束。
可选的,两组所述横向定位轮组分别安装在一个轨道车的车体下表面的前部和后部;
若轨道车绝缘车轮数为2n,则两组横向定位轮组分别安装在轨道车的车体下表面与轨道对应的左右两侧;
若轨道车绝缘车轮数为2n+1,则两组横向定位轮组安装在轨道车的车体下表面有n+1个绝缘车轮的同一侧。
可选的,所述横向定位轮组的两个单轮中位于轨道内侧的单轮支撑架与轨道车在行进方向以及行进方向的垂直方向进行刚性连接,所述横向定位轮组的两个单轮中位于轨道外侧的单轮与轨道车在行进方向为刚性连接,在与行进方向垂直的方向为弹性连接,其中,所述轨道内侧指两条轨道的内侧。
可选的,若轨道车绝缘车轮数为2n+1,则所述轨道车车体下表面未安装横向定位轮组的一侧不设置与横向定位轮组冲突的横向约束结构。
可选的,所述横向定位轮组的单轮断面为“V”形、“U”形或“L”形。
本公开实施例的有益效果包括,例如:
本公开的实施例所提供的隧道检测车结构简单,便于批量生产,解决了因为轨道检测车蛇行造成的检测基准点误差问题。同时,本公开的轨道检测车制造成本低,能耗低,故障发生率低。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定。对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开的实施例提供的轨道车第一视角的结构示意图;
图2为本公开的实施例提供的轨道车第二视角的结构示意图;
图3为本公开的实施例提供的轨道车第三视角的结构示意图;
图4为本公开的实施例提供的轨距检测单元的结构示意图;
图5为本公开的实施例提供的隧道检测车的结构示意图。
图标:10-轨道车;100-车体;200-车轮;210-第二旋转轴;220-踏面;300-横向定位轮组;310-定位轮;311-第一旋转轴;320-回位轮;400-轨距检测单元;410-激光测距装置;421-反光板;422-杠杆结构;423-支点;424-探测轮。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本公开的描述中,需要理解的是,术语“上”、“下”、“内”、“外”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,或者是本领域技术人员惯常理解的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗 示相对重要性。
在本公开的描述中,还需要说明的是,除非另有明确的规定和限定,“设置”、“连接”等术语应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接连接,也可以通过中间媒介间接连接,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
下面结合附图,对本公开的具体实施方式进行详细说明。
请参阅图1,本实施例提供了一种轨道车10,其能够避免轨道车10在行进时出现蛇形运动,保证轨道车10在垂直于前进方向上的方向能精确定位。
请参阅图2,其中,轨道车10配置成滚动连接于轨道(图未标)。轨道车10包括车体100、车轮200和横向定位轮组300(图5中示出),车轮200滚动连接于车体100,并且车轮200配置成与轨道连接。横向定位轮组300连接于车体100,并且横向定位轮组300配置成与轨道滚动接触,其能使轨道车10在行进时避免轨道车10出现蛇形运动的情况,能保证轨道车10不产生横向的随机偏差。
需要说明的是,在本实施例中,当轨道车10与轨道上行进时,垂直于行进方向的方向为横向。本实施例提供的轨道车10能消除轨道车10行进时产生的蛇形运动,保证轨道车10不与轨道产生横向相对位置变化。
其中,在本实施例中,轨道车10包括两组横向定位轮组300,两组横向定位轮组300分别连接于轨道车10的同一侧,以使两组横向定位轮组300能同时连接于同一条轨道,保证轨道车10不出现蛇形运动的情况。
基于所述的轨道车10垂直于轨道方向的精确定位,结合轨道方向的精确定位和两个方向的精确倾角角度值为沿轨道方向进行精密测量和检测的仪器提供了一个精密移动平台。
轨道车10上还设置有纵向距离定位装置(图未示)和姿态检测记录装置 (图未示),纵向距离定位装置和姿态检测记录装置均设置在车体100上。其中,纵向距离定位装置配置成保证轨道车10在相对于横向的纵向上保证轨道车10的位置的绝对定位与相对定位。姿态检测记录装置配置成检测在轨道车10运行时轨道车10的三维姿态角。
基于所述轨道车10动态运动下没有蛇行横向误差,安装了沿轨道方向的相机(图未示),其配置成对轨道、轨枕、轨道板和路基进行成像,并且配置成成像检测轨道几何形态、紧固部件状态和轨枕、轨道板的破损。
其中,轨道车10还包括相机控制模块和图像处理模块(图未示),具体的,相机固定连接于车体100,并且相机和图像处理模块、相机控制模块电连接。相机的镜头配置成朝向轨道和轨道板,并且车体100上还设置有配置成朝向轨道成像区域的辅助光源(图未示)。
相机控制模块控制辅助光源将成像目标区照亮,控制轨道车10匀速运动下相机以恰当的匹配帧率持续地采集轨道和轨道板的图像信息,并将图像信息发送至图像处理模块,通过图像处理模块处理图像信息以图像形式呈现。
本实施例中相机选用推扫式相机,当然了,其他实施例中,只要能够实现拍照功能的相机、相关设备均可。
横向定位轮组300包括定位轮310和回位轮320。在同一个轨道车10中,两个定位轮310配置成与轨道的同一侧滚动连接,两个回位轮320则相对于两个定位轮310配置成与轨道的另一侧滚动接触。其中,定位轮310固定连接于车体100,回位轮320弹性连接于车体100,并且定位轮310与回位轮320之间的距离小于或等于轨道横向相对的两侧之间的距离,即定位轮310与回位轮320之间的距离与轨道横向相对的两侧之间的距离相适配。
具体的,回位轮320以铰链方式连接于车体100,并且回位轮320与车体100之间连接有弹簧,从而实现弹性连接。铰链活动方向垂直于轨道方向,在铰链活动方向,定位轮310与回位轮320之间弹性连接。
当轨道规格发生变化时,定位轮310与回位轮320之间的距离做相应的调 节,使得当两者夹紧轨道并运动时,回位轮320与定位轮310的轴与轨道平面垂直。
在本实施例中,定位轮310和回位轮320均为单轮,即同一组横向定位轮组300中包括一个定位轮310和一个回位轮320。应当理解,在其他实施例中,同一组横向定位轮组300中的定位轮310的数量也可以是多个,多个定位轮310的轮缘的外公切线与轨道侧面始终平行,并与轨道同时接触,并且其中每两个相邻的定位轮310之间的距离应大于轨道的接缝的宽度。另外,在其他实施例中,同一组横向定位轮组300中也可以包括多个回位轮320,多个回位轮320同时向定位轮310提供弹力,使得定位轮310与轨道一侧保持接触。
本实施例的定位轮310与回位轮320是对称分布在轨道两侧的结构。可选的,定位轮在两个或两个以上时,轨道另一侧的回位轮320也可以不与定位轮310对称分布,只需要通过回位轮320在轨道横向产生向轨道的力,使定位轮310与轨道侧面保持紧密连接即可。
需要说明的是,上述轨道的横向相对的两侧的距离指的是一条轨道横向上相对的两个侧面之间的距离。
在本实施例中,两个横向定位轮组300配置成与同一条轨道相连,即使得两个定位轮310和两个回位轮320夹持于同一条轨道,使得定位轮310能通过回位轮320的弹性力使得定位轮310能始终贴合轨道的侧面,保证轨道车10沿直线行驶,避免出现蛇形运动的情况。
进一步地,同一个轨道车10中,两个回位轮320的连线所在方向为第一方向,同一组横向定位轮组300中的定位轮310和回位轮320连线所在方向为第二方向。其中,回位轮320转动轴与车体100铰接,铰接轴的轴向与轨道方向同向,回位轮320于第一方向上与车体100刚性连接,回位轮320的转动轴绕铰接轴转动,回位轮320于第二方向上与车体100弹性连接。即,回位轮320的位置能沿第二方向上产生弹性位移,使得回位轮320选择性地远离定位轮310或者靠近定位轮310。远离定位轮310是便于将轨道嵌入到定位轮310 与回位轮320之间,靠近定位轮310是便于将轨道嵌入到定位轮310与回位轮320之间后,依靠弹性力使定位轮310和回位轮320与轨道两侧面保持常接触状态。
在本实施例中,由于定位轮310与回位轮320之间的距离小于轨道横向上相对两侧的距离,使得横向定位轮组300连接于轨道时能使回位轮320远离定位轮310偏移一定距离,即使得回位轮320具有朝向定位轮310运动的趋势,使得定位轮310和回位轮320夹持轨道,保证定位轮310始终与轨道滚动接触,保证轨道车10在行进时不产生蛇形运动。
在其他实施例中,可以根据轨道宽度调整定位轮310与回位轮320之间的距离,使得定位轮310的转动轴和回位轮320的转动轴与轨道水平面呈近于垂直的关系。
定位轮310与轨道的接触点相对于轨道的轨道平面之下的高度可以进行调节,定位轮310与轨道的接触点可以配置成任意的指定位置。
需要说明的是,上述所提到的第一方向为轨道延伸的方向,即轨道车10连接于轨道时的行进方向。第二方向即为上述所提到的垂直于行进方向的轨道的横向。
另外,定位轮310具有第一旋转轴311,并且定位轮310能绕第一旋转轴311旋转,以能滚动连接于轨道的侧面。车轮200具有第二旋转轴210,并且车轮200能绕第二旋转轴210旋转,以能与轨道的轨面滚动连接。其中,第一旋转轴311垂直于第二旋转轴210,即使得定位轮310与车轮200在相互不产生干扰的情况下各自完成各自的工作。并且,能使得定位轮310位于横向的平面,使得定位轮310产生的横向定位效果更好。
进一步地,定位轮310的厚度由定位轮310的外缘至定位轮310的轴心逐渐增大。在本实施例中,定位轮310从轮缘到轮轴中心的剖面为“V”字形,即定位轮310经过第一旋转轴311并位于第一旋转轴311其中一侧的截面为“V”字形。回位轮320的厚度由回位轮320的外缘至回位轮320的轴心逐渐 增大,在本实施例中,回位轮320的断面为“V”字形,即回位轮320经过轴线的截面并位于轴线的其中一侧的截面为“V”字形。以确保轨道侧面有油污和泥土的时候,横向定位轮组300中的定位轮310依然与轨道的侧平面紧密接触。应当理解,在其他实施例中,回位轮320也可以是其他形状的,例如柱形等。
本实施例中,车轮200及横向定位轮组300均采取绝缘材料或附加绝缘结构,以保证两条轨道之间不会有连通的电回路,同时也不会对轨道车上的设备产生电干扰。
在本实施例中,两组横向定位轮组300分别连接于车体100同一侧的前部和后部,以使得两组横向定位轮组300之间的距离足够的长,以保持轨道车10行驶方向角的稳定性。
另外,在本实施例中,两组横向定位轮组300可以根据轨道车10的车轮200的布局与数量相应的安装。
其中,车轮200的数量为大于2的偶数时,两组横向定位轮组300连接于轨道车10的左侧或者右侧。即两组横向定位轮组300只能同时安装于轨道车10的同一侧,以保证两组横向定位轮组300能同时与同一边轨道滚动接触,保证轨道车10不会出现蛇形运动的情况。
在本实施例中,如图3,车轮200的数量为四个,两组横向定位轮组300连接于轨道车10的左侧,当然,两组横向定位轮组300也可以连接于轨道车10的右侧。一般的,不能在两侧都安装横向定位轮组300。
另外,车轮200为两个时,两组横向定位轮组300连接于车体100上安装车轮200的一侧。
车轮200的数量为奇数时,两组横向定位轮组300连接于车体100安装较多车轮200的一侧。其中,采用奇数数量的车轮200的轨道车10大多为三个车轮200,此时两组横向定位轮组300则安装于车体100上安装两个车轮200的一侧。对于车轮总数为奇数,但是每一侧车轮数量均大于两个时,可以任选 一侧安装横向定位轮组300。
基于所述轨道车10动态运动下的精确定位和与单侧轨道相对位置不变,轨道车10安装了具有放大轨距变化的轨距检测单元400。请参阅图4,轨道车10还包括轨距检测单元400和放大机构,轨距检测单元400配置成检测轨距,放大机构配置成放大轨距的变化量。当轨道车10在轨道上行进时,通过轨距检测单元400检测轨道当前的轨距,当轨道车10前行,轨距发生改变,由于该改变的量值比较微小,所以通过放大机构将微小的变化放大以提高检测精度,即使采用精度不高的仪器也能测得较高的精度。
轨距检测单元400包括测距装置(图未标)、轨距变化探测装置(图未标)和计算控制装置(图未示)。测距装置和轨距变化探测装置连接,其中,测距装置配置成测量轨距变化量,轨距变化探测装置配置成探测并放大轨距变化量。另外,计算控制装置与轨距变化探测装置电连接,并且计算控制装置配置成数据的采集与计算。通过测距装置测量轨距变化量,并通过轨距变化探测装置将测得的轨距变化量放大,以便于提高轨距变化量的测量精度,使得采用精度不高的仪器也能测得精度较高的值。
进一步地,测距装置为激光测距装置410,轨迹变化探测装置为一个杠杆结构422,杠杆结构422的一端设置有探测轮424,探测轮424始终滚动接触于远离横向定位轮组300的轨道的内侧,杠杆结构422的另一端设置有反光板421,另外,杠杆结构422具有支点423,支点423固定连接于车体100,并且杠杆结构422能绕支点423转动。激光测距装置410的测距激光束(图未标)正对于反光板421。另外,在本实施例中,反光板421至支点423的距离大于探测轮424至支点423的距离。
另外,在本实施例中,探测轮424与轨道内侧的接触点在垂直于轨道平面的方向上可以进行调整,以调整到轨道平面下指定的位置以便于定位轮310在进行高度调节时能同时对探测轮424进行高度调节,以使探测轮424与定位轮310高度相对应。并且探测轮424的截面形状与定位轮310的截面形状相同, 以使探测轮424在移动时遇到泥土或油污等附着物时也能紧密接触于轨道的内侧。
其他实施例中,该激光测距装置410也可以采用激光位移传感器等精确度较高的仪器。
另外,请继续参阅图1,车轮200具有踏面220,踏面220为平面,以使车轮200不会因为与钢轨接触点不同而周长发生变化,本实施例提供的车轮200采用平面的踏面220使得车轮200的轨迹是否为蛇形均能保证车轮200转过的周长为常数。保证基于车轮200转动角度和车轮200周长计算距离时,具有精确的值。即能通过精确的转动角度和精确的轮周长计算出精确的行走距离值。
另外,需要说明的是,轨道车10没有安装横向定位轮组300的另一侧的车轮200不能有与横向定位轮组300相冲突的横向约束结构,以保证横向定位轮组300能顺利的工作。
本实施例提供的轨道车10通过设置于车体100上的横向定位轮组300能使得轨道车10在轨道上行驶时不出现蛇形运动。其中,横向定位轮组300中的定位轮310与轨道的一侧滚动接触,并且定位轮310采用与车体100固定连接的方式,另外,横向定位轮组300中的回位轮320相对于定位轮310与轨道的另一侧滚动接触,并且回位轮320的转动轴与车体100铰接,铰接轴的轴向与轨道方向同向,回位轮320于轨道方向上与车体100刚性连接,回位轮320于垂直于轨道方向上与车体100弹性连接,通过回位轮320提供的弹性力使得定位轮310始终贴合于轨道的一侧,即使得轨道车10始终沿直线运动,避免了轨道车10的蛇形运动。
本实施例还提供了一种隧道检测车(图未示),其中,隧道检测车包括光栅编码器(图未示)和多个上述实施例中提供的轨道车10,多个轨道车10串珠式连接,光栅编码器集成于车轮200上。隧道检测车能够避免隧道检测车在行进时出现蛇形运动,保证隧道检测车在垂直于前进方向上的方向能精确定 位。
可以理解的,轨道车10作为隧道检测单元的运载平台,轨道车10与隧道检测单元组成了隧道检测车。
本实施例中的轨道车10上安装的隧道检测设备(也可以称为隧道检测单元,隧道检测装置等)主要是成像检测装置及其辅助装置。当然了,其他实施例中,其包括但不限于成像检测装置,其他任何能够实现检测相关数据的设备均可以对应安装。
一般的,该光栅编码器也可以理解为隧道检测设备的一种。
隧道检测车在隧道内行进过程中,通过安装在隧道检测车上的检测装置获取隧道内的图像信息。通过车轮200的周长和转过的角度可以计算获得轨道车10走行的精确距离值,本公开提供的隧道检测车使用的车轮200的踏面220为平面,车轮200周长不会像锥形踏面220或曲面踏面220那样因为车轮与轨道接触点不同而周长变化,因为踏面220为平面的车轮200,不论其轨迹蛇行与否均能保证车轮200转过的周长为常数。即只要保证车轮200转动角度即可以获得一个相对精确的行走距离值。
另外,隧道检测车由于有横向定位轮组300的存在,在行进中和行进停止时与轨道横向的相对位置具有不变性,降低在后期的隧道图像和隧道断面数据处理中数据的误差。
在本实施例中,隧道检测车还包括姿态传感器(图未示)、成像检测单元(图未示)和测距单元(图未示),其中,姿态传感器、成像检测单元和测距单元均设置于车体100上。
应当理解,在其他实施例中,轨道车10还能作为需要在轨道上准确定位的其它设备的运载平台使用。
本实施例还提供了一种隧道检测车,如图5所示,其包括车架和横向定位轮组300,车架包括多个轨道车10,多个轨道车10串珠状连接,多个轨道车10上的车轮200集成有光栅编码器,其中,横向定位轮组300只安装于一条 轨道上,横向定位轮组300在一个轨道车10安装组数为两组,横向定位轮组300由两个单轮组成,两个单轮分别位于一条轨道的两侧,单轮与轨道的侧面滚动接触,单轮的轴与轨道平面垂直,确保轨道车10运动时单轮始终与轨道的侧面接触,轨道车10的车轮数为2n或者2n+1,其中,n为不为零的自然数,轨道车10的车轮200踏面为平面,没有轮缘对横向定位进行约束,通过车轮周长和转过的角度相乘可以获得轨道车10走行的精确距离值。
本实施例中,该车轮200为绝缘车轮或具有绝缘结构的车轮,当然,也可以选用其他材料的车轮,一般的,需要按照使用的场合对设备的有关规定决定是否使用具有绝缘性能的车轮。
横向定位轮组300的单轮断面为“V”形,确保轨道侧面有油污和泥土的时候,横向定位轮组300依然与轨道的侧平面紧密接触。
当然了,横向定位轮组300的单轮断面还可以为“U”形或“L”形,只要该轮能够与轨道侧面紧密接触,并且该轮缘不对定位轮的横向定位形成限制即可。
两组横向定位轮组300分别安装在一个轨道车10的车体100下表面的前部和后部,若轨道车10的车轮数为2n,则两组横向定位轮组300分别安装在轨道车10的车体下表面的左右两侧。
可以理解的,车体100的下表面可以认为是车体100的底部。
若轨道车10的车轮数为2n+1,则两组横向定位轮组300安装在轨道车10的车体下表面有n+1个车轮200的同一侧。
横向定位轮组300的两个单轮中位于轨道内侧的单轮支撑架与轨道车10在行进方向以及行进方向的垂直方向进行刚性连接,横向定位轮组300的两个单轮中位于轨道外侧的单轮与轨道车10在行进方向为刚性连接,在与行进方向垂直的方向为弹性连接,其中,轨道内侧指两条轨道的内侧。若轨道车10的车轮数为2n+1,则轨道车10的车体100下表面未安装横向定位轮组300的一侧不设置与横向定位轮组300冲突的横向约束结构。
隧道检测车在隧道内行进过程中,通过安装在隧道检测车上的检测装置获取隧道内的图像信息。通过车轮周长和转过的角度相乘可以获得轨道车走行的精确距离值,本公开提供的隧道检测车使用的车轮踏面为平面,车轮周长不会像锥形踏面或曲面踏面那样因为与钢轨接触点不同而周长变化,因为车轮踏面为平面的车轮,不论其轨迹蛇行与否,周长始终为常数。即只要保证车轮转动角度即可以获得一个相对精确的行走距离值。
隧道检测车行进过程中,在横向的定位误差主要来自隧道检测车随机蛇行轨迹的变化,因此,本公开用定位轮组来消除蛇行。定位轮组由一个与车体二维方向均为刚性连接的内侧轮和一个与车体沿轨前进向刚性连接,与轨道垂直的横向弹性连接的外侧轮组成。通过外侧轮指向内侧轮的弹力使内侧轮踏面始终与钢轨内侧面接触。内侧轮和外侧轮与钢轨之间均为滚动摩擦接触。内侧轮和外侧轮自身的转动通过轴承系统。
隧道检测车由于定位轮组的存在,在行进中和行进停止时与轨道横向的相对位置具有不变性,降低在后期的隧道图像处理中数据的复杂性。
在一个实施例中:
请参考图1:图1示出了轨道车10的结构示意图。
请参考图2,图2中,轨道车10包括车体100、与车体100连接的车轮200和两组横向定位轮组300(在图5中示出)。
其中,车轮200的踏面为平面,该车轮200配置成与轨道滚动连接,车轮200具有第二旋转轴210,其能够绕第二旋转轴210旋转。
每组横向定位轮组300包括一个定位轮310和一个回位轮320,定位轮310与车体100转动连接且与轨道的内侧滚动接触,定位轮310具有第一旋转轴311,第一旋转轴311与第二旋转轴210垂直设置,定位轮310与车体100的位置相对固定(可以理解为定位轮310通过刚性结构连接在车体100上)。回位轮320在轨道方向上与车体100刚性连接,在垂直于轨道方向的方向上,回 位轮320与车体100弹性连接,回位轮320弹性且滚动的接触到轨道的外侧,具体的结合图2,回位轮320与一根杆件转动连接,该杆件的一端与回位轮320连接,该杆件的另一端与车体100转动连接,该杆件相对于车体100转动的转动轴心线与车体100运行的方向一致,该回位轮320在杆件相对于车体100转动的过程中靠近或远离轨道,该杆件和第一旋转轴311之间连接有弹簧,该弹簧的一端与杆件的中部连接,该弹簧的另一端与第一旋转轴311的中部连接,该弹簧令回位轮320具有靠近、抵紧轨道的运动趋势(也就是说使回位轮320弹性接触到轨道上)。
请参考图3,一个轨道车10的车轮200的数量为四个,两组横向定位轮组300位于轨道车10的左侧。轨道车10的右侧没有横向定位轮组300。
请参考图4,轨道车10安装了具有放大轨距变化的轨距检测单元400,具体的,轨距检测单元400包括激光测距装置410、轨距变化探测装置和计算控制装置。
其中,激光测距装置410和轨距变化探测装置连接,其中,激光测距装置410配置成测量轨距变化量,轨距变化探测装置配置成探测并放大轨距变化量。另外,计算控制装置与轨距变化探测装置电连接,并且计算控制装置配置成数据的采集与计算。通过激光测距装置410测量轨距变化量,并通过轨距变化探测装置将测得的轨距变化量放大,以便于提高轨距变化量的测量精度,使得采用精度不高的仪器也能测得精度较高的值。
其中,轨距变化探测装置为一个杠杆结构422,杠杆结构422的一端设置有探测轮424,探测轮424始终滚动接触于另一条未安装横向定位轮组300的轨道的内侧,杠杆结构422的另一端设置有反光板421,另外,杠杆结构422具有支点423,支点423固定连接于车体100,并且杠杆结构422能绕支点423转动。激光测距装置410的测距激光束正对于反光板421。反光板421至支点423的距离大于探测轮424至支点423的距离。
探测轮424与轨道内侧的接触点在垂直于轨道平面的方向上可以进行调整,以调整到轨道平面下指定的位置以便于定位轮310在进行高度调节时能同时对探测轮424进行高度调节,以使探测轮424与定位轮310高度相对应。并且探测轮424的截面形状与定位轮310的截面形状相同,以使探测轮424在移动时遇到泥土或油污等附着物时也能抵触于轨道的内侧。
请参考图5,轨道车10的底部设置有车轮200和横向定位轮组300,横向定位轮组300中的两个单轮分别位于轨道车10底部左侧的车轮200的两侧。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性:
综上所述,本公开提供了一种轨道车及隧道检测车,其结构简单、制造成本低、能耗低、故障发生率低,轨道车及隧道检测车能避免轨道车在行进时出现蛇形运动,保证轨道车在垂直于前进方向上能精确定位。

Claims (17)

  1. 一种轨道车,所述轨道车配置成滚动连接于轨道,其特征在于,所述轨道车包括车体和车轮,所述车轮转动连接于所述车体,并且所述车轮配置成与所述轨道滚动连接;
    所述轨道车还包括两组横向定位轮组,每组所述横向定位轮组包括定位轮和回位轮,所述定位轮配置成与轨道的同一侧滚动接触,所述回位轮相对于所述定位轮配置成与所述轨道的另一侧滚动接触,所述定位轮固定连接于所述车体,所述回位轮弹性连接于所述车体,并且所述定位轮与所述回位轮之间的最小可调节距离小于所述轨道横向相对的两侧之间的距离。
  2. 根据权利要求1所述的轨道车,其特征在于,两个所述定位轮连线所在方向为第一方向,与所述第一方向垂直的方向为第二方向,所述回位轮于所述第一方向上与所述车体刚性连接,所述回位轮于所述第二方向上与所述车体弹性连接。
  3. 根据权利要求1所述的轨道车,其特征在于,所述轨道车还包括纵向距离定位装置和姿态检测记录装置,所述纵向距离定位装置和所述姿态检测记录装置均设置于所述车体上。
  4. 根据权利要求1-3中任意一项所述的轨道车,其特征在于,两组所述横向定位轮组分别连接于所述车体的同一侧的前部和后部,两组所述横向定位轮组连接于所述轨道车具有多个所述车轮的一侧。
  5. 根据权利要求1-4中任意一项所述的轨道车,其特征在于,所述轨道车还包括相机、相机控制模块和图像处理模块,所述相机配置成对轨道、轨枕、轨道板和路基进行成像,所述相机连接于所述车体,并且所述相机与相机控制模块和所述图像处理模块电连接,所述车体上还设置有配置成朝向成像区域的辅助光源。
  6. 根据权利要求1-5中任意一项所述的轨道车,其特征在于,所述定位轮具有第一旋转轴,且所述定位轮绕所述第一旋转轴旋转以能与轨道滚动连接, 所述车轮具有第二旋转轴,且所述车轮绕所述第二旋转轴旋转以能与轨道滚动连接,其中,所述第一旋转轴垂直于所述第二旋转轴。
  7. 根据权利要求1-6中任意一项所述的轨道车,其特征在于,所述定位轮的截面呈V字形,与所述轨道内侧接触的轮缘为V字形的尖端。
  8. 根据权利要求1-7中任意一项所述的轨道车,其特征在于,同一组所述横向定位轮组中的所述定位轮的数量为多个,并且多个所述定位轮通过刚性结构连接,多个所述定位轮配置成沿轨道方向前后布置,多个所述定位轮的轮缘外公切线与轨道侧面始终平行,且与所述轨道的侧面同时滚动接触,所述回位轮的数量为多个。
  9. 根据权利要求1-8中任意一项所述的轨道车,其特征在于,所述轨道车还包括轨距检测单元,所述轨距检测单元包括测距装置、轨距变化探测装置和计算控制装置,所述测距装置与所述轨距变化探测装置连接,所述测距装置配置成测量轨距变化量,所述轨距变化探测装置配置成探测并放大所述轨距变化量,所述计算控制装置与所述轨距变化探测装置电连接,并且所述计算控制装置配置成数据的采集与计算。
  10. 根据权利要求9所述的轨道车,其特征在于,所述测距装置为激光测距装置,所述轨距变化探测装置为一个杠杆结构,所述杠杆结构的一端设置有探测轮,所述探测轮始终滚动接触于远离所述横向定位轮组的轨道的内侧,所述杠杆结构的另一端设置有反光板,所述杠杆结构具有支点,所述支点固定连接于所述车体,所述杠杆结构能绕支点转动,所述激光测距装置固定连接于所述车体上,所述激光测距装置的测距激光束正对于所述反光板,所述反光板至所述支点的距离大于所述探测轮至所述支点的距离。
  11. 一种隧道检测车,其特征在于,包括隧道检测设备和如权利要求1-10任意一项所述的轨道车,所述隧道检测设备与所述轨道车连接。
  12. 根据权利要求11所述的隧道检测车,其特征在于,所述轨道车的数量为多个,多个所述轨道车串联式连接,所述隧道检测设备包括光栅编码器,所 述光栅编码器集成于所述轨道车的车轮上。
  13. 一种隧道检测车,包括车架和横向定位轮组,所述车架包括多个轨道车,所述多个轨道车串珠状连接,所述多个轨道车上的绝缘车轮集成有光栅编码器,所述光栅编码器配置成记录车轮行进信息,其特征在于,所述横向定位轮组只安装于一条轨道上,所述横向定位轮组在一个轨道车安装组数为两组,所述横向定位轮组由两个单轮组成,两个单轮分别位于一条轨道的两侧,所述单轮与轨道的侧面滚动接触,所述单轮的轴与轨道平面垂直,所述轨道车的绝缘车轮数为2n或者2n+1,其中,n为不为零的自然数,所述轨道车的绝缘车轮的踏面为平面,没有轮缘对横向定位进行约束。
  14. 根据权利要求13所述的隧道检测车,其特征在于:两组所述横向定位轮组分别安装在一个轨道车的车体下表面的前部和后部;
    若轨道车绝缘车轮数为2n,则两组横向定位轮组分别安装在轨道车的车体下表面与轨道对应的左右两侧;
    若轨道车绝缘车轮数为2n+1,则两组横向定位轮组安装在轨道车的车体下表面有n+1个绝缘车轮的同一侧。
  15. 根据权利要求13所述的隧道检测车,其特征在于:所述横向定位轮组的两个单轮中位于轨道内侧的单轮支撑架与轨道车在行进方向以及行进方向的垂直方向进行刚性连接,所述横向定位轮组的两个单轮中位于轨道外侧的单轮与轨道车在行进方向为刚性连接,在与行进方向垂直的方向为弹性连接,其中,所述轨道内侧指两条轨道的内侧。
  16. 根据权利要求15所述的隧道检测车,其特征在于:若轨道车绝缘车轮数为2n+1,则所述轨道车车体下表面未安装横向定位轮组的一侧不设置与横向定位轮组冲突的横向约束结构。
  17. 根据权利要求13-16中任意一项所述的隧道检测车,其特征在于:所述横向定位轮组的单轮断面为“V”形、“U”形或“L”形。
PCT/CN2018/086362 2017-05-11 2018-05-10 轨道车及隧道检测车 WO2018205979A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710328452.6A CN107161164A (zh) 2017-05-11 2017-05-11 一种隧道检测车
CN201710328452.6 2017-05-11
CN201710945252.5A CN107697084B (zh) 2017-05-11 2017-10-11 轨道车及隧道检测车
CN201710945252.5 2017-10-11

Publications (1)

Publication Number Publication Date
WO2018205979A1 true WO2018205979A1 (zh) 2018-11-15

Family

ID=59814879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086362 WO2018205979A1 (zh) 2017-05-11 2018-05-10 轨道车及隧道检测车

Country Status (2)

Country Link
CN (2) CN107161164A (zh)
WO (1) WO2018205979A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107161164A (zh) * 2017-05-11 2017-09-15 成都中信华瑞科技有限公司 一种隧道检测车
CN108132341B (zh) * 2018-03-02 2024-04-23 四川曜诚无损检测技术有限公司 用于钢轨轨头踏面检测的探头探伤控制装置
CN109353371B (zh) * 2018-12-12 2023-11-10 湖南高创海捷工程技术有限公司 一种全自动钢轨非接触式轮廓检测装置
CN109879169B (zh) * 2019-01-08 2021-04-06 上海海事大学 起重机轨道检测小车
CN110017752A (zh) * 2019-05-06 2019-07-16 中国铁建电气化局集团第一工程有限公司 一种防掉道轨行测距装置
CN116353644B (zh) * 2023-05-31 2023-08-04 成都理工大学 一种适用于轨道检测的单轨检测车
CN116358492B (zh) * 2023-06-01 2023-08-04 辽宁省交通规划设计院有限责任公司 一种隧道智能检测装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2662983A1 (fr) * 1990-06-08 1991-12-13 Nobileau Philippe Systeme de transport pour vehicule automobile pouvant circuler sur une infrastructure routiere classique et sur un reseau de guidage.
CN102066180A (zh) * 2008-04-28 2011-05-18 庞巴迪运输有限公司 一种具有改进的横摇行为的单轨转向架
CN202508115U (zh) * 2012-05-02 2012-10-31 武汉汉宁科技有限公司 高速铁路轨道综合检测小车
CN102951179A (zh) * 2012-11-15 2013-03-06 西南交通大学 移动式钢轨内廓检测小车
CN203396366U (zh) * 2013-08-20 2014-01-15 中国人民解放军63602部队 一种大跨距钢轨轨距测量装置
CN104724138A (zh) * 2014-08-08 2015-06-24 毛守玠 一种路线里程测距仪
CN206049709U (zh) * 2016-08-31 2017-03-29 许志林 一种铁路测量轨距测量检测装置
CN107161164A (zh) * 2017-05-11 2017-09-15 成都中信华瑞科技有限公司 一种隧道检测车

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20011704U1 (de) * 2000-07-07 2000-10-26 Kleinebenne, Jochen, 33818 Leopoldshöhe Draisine
CN103171458B (zh) * 2012-12-26 2016-08-17 陈星树 轨道车设备
CN103205920A (zh) * 2013-04-03 2013-07-17 中铁第四勘察设计院集团有限公司 铁路轨道几何形态检测方法
KR20150060251A (ko) * 2013-11-26 2015-06-03 한국철도공사 전차선로 레이저 측정장치
JP2016014601A (ja) * 2014-07-02 2016-01-28 東日本旅客鉄道株式会社 距離測定装置
CN204325833U (zh) * 2014-12-21 2015-05-13 苏州路云机电设备有限公司 一种行走稳定的激光长弦轨道检查仪
CN205839498U (zh) * 2016-07-07 2016-12-28 深圳大铁检测装备技术有限公司 一种基于a‑ins的铁路轨道检测仪

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2662983A1 (fr) * 1990-06-08 1991-12-13 Nobileau Philippe Systeme de transport pour vehicule automobile pouvant circuler sur une infrastructure routiere classique et sur un reseau de guidage.
CN102066180A (zh) * 2008-04-28 2011-05-18 庞巴迪运输有限公司 一种具有改进的横摇行为的单轨转向架
CN202508115U (zh) * 2012-05-02 2012-10-31 武汉汉宁科技有限公司 高速铁路轨道综合检测小车
CN102951179A (zh) * 2012-11-15 2013-03-06 西南交通大学 移动式钢轨内廓检测小车
CN203396366U (zh) * 2013-08-20 2014-01-15 中国人民解放军63602部队 一种大跨距钢轨轨距测量装置
CN104724138A (zh) * 2014-08-08 2015-06-24 毛守玠 一种路线里程测距仪
CN206049709U (zh) * 2016-08-31 2017-03-29 许志林 一种铁路测量轨距测量检测装置
CN107161164A (zh) * 2017-05-11 2017-09-15 成都中信华瑞科技有限公司 一种隧道检测车
CN107697084A (zh) * 2017-05-11 2018-02-16 成都中信华瑞科技有限公司 轨道车及隧道检测车

Also Published As

Publication number Publication date
CN107697084B (zh) 2020-02-04
CN107697084A (zh) 2018-02-16
CN107161164A (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
WO2018205979A1 (zh) 轨道车及隧道检测车
ES2870777T3 (es) Método y vehículo ferroviario para la detección sin contacto de una geometría de una vía
CN100376444C (zh) 用来测量火车车轮圆度的测量装置
AU2005265414B2 (en) Apparatus for detecting hunting and angle of attack of a rail vehicle wheelset
CN101666716B (zh) 铁路机车车辆运行姿态测量方法
CN103115581B (zh) 多功能轨道测量系统及方法
JP7247206B2 (ja) 鉄道車両および軌道区間を検測する方法
US20140253908A1 (en) Method, system and apparatus for assessing wheel condition on a vehicle
ES2773314T3 (es) Dispositivo y procedimiento para determinar como mínimo una propiedad de una vía para un vehículo ferroviario, así como un vehículo ferroviario
JP6445383B2 (ja) 軌道検測方法及びその装置
US10871368B2 (en) Method and device for wheel alignment measurement
JP4968625B2 (ja) 軌道検測装置
KR20160126137A (ko) 철도차량용 능동 조향 제어를 위한 곡률반경 센싱을 위한 센서 시스템
JP4067761B2 (ja) 簡易型軌道検測車
JP4886566B2 (ja) レール高さ検出方法、レール高さ検出機構およびレール高さ変位量測定装置
ES2225800T3 (es) Procedimiento de medida y dispositivo para registrar la compresibilidad de una via.
CN109238149A (zh) 车体姿态检测装置和接触线动态偏移量检测系统
JP5809091B2 (ja) 台車姿勢検出方法
JP2003246266A (ja) 鉄道車両の曲線通過時のアタック角測定装置
JP2019189158A (ja) 軌道狂い測定装置
EA041026B1 (ru) Способ непрерывной бесконтактной регистрации геометрии рельсового пути и устройство для непрерывной бесконтактной регистрации геометрии рельсового пути
JP5931535B2 (ja) 検測車動揺状態補正方法及び装置、並びに検測方法及び装置
JPH0726819B2 (ja) 内空断面形状狂い測定法及びその測定法を用いた測定装置
KR100999652B1 (ko) 노면 요철 측정장치
JPH10167055A (ja) 簡易検測車のレール継目落込み防止方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/06/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18798003

Country of ref document: EP

Kind code of ref document: A1