WO2018205420A1 - 激发光强度控制系统、方法及投影系统 - Google Patents

激发光强度控制系统、方法及投影系统 Download PDF

Info

Publication number
WO2018205420A1
WO2018205420A1 PCT/CN2017/094802 CN2017094802W WO2018205420A1 WO 2018205420 A1 WO2018205420 A1 WO 2018205420A1 CN 2017094802 W CN2017094802 W CN 2017094802W WO 2018205420 A1 WO2018205420 A1 WO 2018205420A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
excitation light
pixel
control system
modulator
Prior art date
Application number
PCT/CN2017/094802
Other languages
English (en)
French (fr)
Inventor
郭祖强
胡飞
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Priority to US16/612,725 priority Critical patent/US11630381B2/en
Publication of WO2018205420A1 publication Critical patent/WO2018205420A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/006Projectors using an electronic spatial light modulator but not peculiar thereto using LCD's
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • H04N9/3108Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators by using a single electronic spatial light modulator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3152Modulator illumination systems for shaping the light beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3167Modulator illumination systems for polarizing the light beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam

Definitions

  • the present invention relates to the field of projection display, and more particularly to a system and method for controlling intensity of excitation light and a projection system using the excitation light intensity control system.
  • DMD or LCD is mainly used as a light modulator to modulate illumination light to obtain image light.
  • display devices using DMD or LCD as a light modulator generally have low efficiency.
  • a display device that uses a laser to excite a fluorescent material to generate polychromatic light as a light source
  • light emitted from the laser light emitting element reaches an optical material through an optical element such as a light combining device, a beam shaping device, etc., and has an efficiency of about 90%, and is fluorescent.
  • the illumination light is obtained, and then coupled to the optical system (such as 3DMD optical system, 3LCD optical system), the efficiency is about 94%, and the light is modulated into image light by the optical system, and the efficiency is about 30% to 40%.
  • the optomechanical system is inefficient, making the corresponding display device inefficient.
  • the present invention provides an excitation light intensity control system and a projection system having high utilization of light energy.
  • the present invention provides an excitation light intensity control system including an illumination portion, an imaging portion, and a control portion, the illumination portion including a light source, the imaging portion including a light modulator, and excitation light emitted from the light source is introduced Modulating the light modulator, the imaging portion further comprising a color conversion element excited by the excitation light modulated by the light modulator The color conversion element generates a multi-color received laser light, and the illumination portion further includes a light recovery system for recoupling a portion of the excitation light from the two portions of the excitation light emitted from the light modulator Injecting into the light modulator, another portion entering the color conversion element, the control portion is configured to receive raw image data and control excitation light intensity emitted by the light modulator and/or excitation light intensity emitted by the light source .
  • the present invention provides an excitation light intensity control method, which can be applied to an excitation light intensity control system including a light source, a light modulator, a color conversion element, and a controller.
  • the method includes: calculating, on the controller, a signal value of the optical modulator according to an image signal value of a frame image and a response curve parameter of a specific fluorescent material coated on the color conversion element; Calculating, on the controller, the intensity of the excitation light required to be emitted by the light source according to a calculated ratio of a signal value of the optical modulator and a maximum signal value of the optical modulator; transmitting a signal to the controller to
  • the light source controls the intensity of the excitation light required to exit the light source; and transmits a signal to the light modulator on the controller to control the intensity of the excitation light emitted by the light modulator.
  • the present invention provides a projection system including the above-described excitation light intensity control system and a projection lens, and excitation light emitted from the excitation light intensity control system is projected onto a screen through the projection lens, Render a color image.
  • the excitation light intensity control system and the projection system provided by the embodiments of the present invention have the advantages that the excitation light is recovered and reused by setting the light recovery system, thereby improving the recovery and utilization ratio of the excitation light, and on the other hand, recovering and recycling the excitation light.
  • the intensity of the excitation light emitted by the light modulator and/or the light source is controlled correspondingly in a specific manner, which not only ensures that the image emitted to the screen is not distorted, and further reduces the intensity of the light source, thereby further reducing Energy consumption has increased the utilization of light energy.
  • FIG. 1 is a system block diagram of an excitation light intensity control system according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view showing an optical path diagram of an illumination portion and a front portion of an imaging portion of the excitation light intensity control system shown in FIG. 1.
  • Fig. 3 is a schematic view showing a rear portion of the optical path of the image forming portion of the excitation light intensity control system shown in Fig. 1.
  • FIG. 4 is a schematic diagram showing the pixel distribution of a fluorescent chip of the excitation light intensity control system shown in FIG. 1.
  • Fig. 5 is a schematic view showing the optical path of the imaged portion of the excitation light intensity control system in the second embodiment of the present invention.
  • Fig. 6 is a graph showing the response curves of red, green and blue fluorescent materials/scattering materials to excitation light when the excitation light is a blue laser.
  • Fig. 7 is a graph showing the response curves of red, green and blue fluorescent materials to excitation light when the excitation light is UV light.
  • Fig. 8 is a flow chart showing a method of controlling excitation light intensity according to an embodiment of the present invention.
  • FIG. 1 is a block schematic diagram of an excitation light intensity control system 1 according to an embodiment of the present invention.
  • the excitation light intensity control system 1 can be applied to In projection system 2.
  • the excitation light intensity control system 1 includes an illumination portion, an imaging portion, and a control portion.
  • the illumination portion includes a light source 10
  • the imaging portion includes a light modulator 11 and a color conversion element 12
  • the control unit includes a controller 13.
  • the controller 13 receives the original image data to be displayed, and adjusts the intensity of the excitation light at the light source 10 and/or the light modulator 11 according to the original image data.
  • the light source 10 emits a certain intensity of excitation light
  • the light modulator 11 further adjusts the intensity of the excitation light for each pixel (or sub-pixel) to enter the color conversion element 12 via the adjusted excitation light.
  • the excitation color conversion element 12 generates a multi-color laser light, such as R (red), G (green), and B (blue), to form a frame of color image.
  • the excitation light intensity control system is applied to a projection system, and the color image generated by the color conversion element 12 is finally output to a screen (not shown) via the projection lens 20 of the projection system 2.
  • the excitation light intensity control system 1 further includes a relay system 14 disposed between the light source 10 and the light modulator 11, and light recovery disposed between the light modulator 11 and the relay system 14.
  • the excitation light intensity control system 1 has two parts, a forward optical path and a reverse optical path.
  • the forward optical path means that the light enters from the upstream component of the excitation light intensity control system 1.
  • the optical path of the downstream component such as the optical path leading from the source 10 into the optical modulator 11, belongs to the forward optical path.
  • the reverse optical path refers to an optical path from which the light is returned to the upstream element by the downstream element in the excitation light intensity control system 1, for example, the optical path returned to the relay system 14 through the light recovery system 15 belongs to the reverse optical path.
  • the light source 10 is a laser light source and is a blue laser light source. Therefore, in the present embodiment, a blue laser light is used as the excitation light.
  • the relay system 14 includes a fly-eye lens array 141, a convex lens 142, and a mirror 143.
  • the fly-eye lens array 141, the convex lens 142 and the mirror 143 are sequentially arranged, and the blue laser light emitted from the light source 10 enters the fly-eye lens array 141, passes through the fly-eye lens array 141 to improve uniformity and brightness, and then enters the convex lens 142.
  • the convex lens 142 shapes the incoming blue laser to form a spot suitable for the size of the light modulator 11, and the spot is reflected by the mirror 143 and enters the light modulator 11.
  • the fly-eye lens array 141 is a double-row fly-eye lens array.
  • the fly-eye lens array 141 is disposed substantially parallel to the convex lens 142, and the optical axis direction thereof is substantially coincident.
  • the light modulator 11 is disposed substantially perpendicular to the fly-eye lens array 141 and the convex lens 142, and the mirror 143 and the convex lens 142 are disposed.
  • the light modulator 11 is disposed at an angle of substantially 45 degrees to the convex lens 142 and the light modulator 11, and the reflective surface 1431 is simultaneously inclined to face the convex lens 142 and the light modulator 11 to be the convex lens 142.
  • the emitted blue laser light is reflected to the light modulator 11.
  • the relay system can also be constructed by using other optical components or by different arrangement modes, as long as it can properly introduce the excitation light emitted by the light source and the light returned from the light recovery system to the light modulator 11. can.
  • the light modulator 11 is the LCD light modulator 11a in the present embodiment.
  • the LCD light modulator 11a is only an example.
  • the light modulator 11 may also be a DMD light modulation. Or LCOS light modulators, etc.
  • the LCD light modulator 11a modulates the blue laser light emitted from the mirror 143 to the LCD light modulator 11a under the control of the controller 13 to carry the image information for the image data of each frame image.
  • the modulated two-part blue laser enters a Polarization Beam Splitter (hereinafter referred to as PBS) 16.
  • PBS 16 divides the modulated two-part blue laser into first polarized light and second polarized light.
  • the first polarized light is a P-polarized light (hereinafter referred to as P light)
  • the second polarized light is S-polarized light (hereinafter referred to as S-light), in which S-light enters the color conversion element 12.
  • P light enters the light recovery system 15 for light recovery.
  • the PBS 16 is disposed in the light emitting direction of the LCD light modulator 11a, and includes the first surface 161 and the second surface 162 opposite to each other.
  • the PBS 16 is disposed obliquely to the LCD light modulator 11a, such as at an angle of 45 degrees, with the first surface 161 facing the LCD light modulator 11a and the second surface facing away from the LCD light modulator 11a.
  • the PBS separates P light and S light, wherein P light is transmitted from the second surface 162 through transmission, and S light is reflected from the first surface 161 through reflection.
  • the light recovery system 15 couples P light to the fly-eye lens array 141, re-enters the forward optical path through the fly-eye lens array 141, and re-uses the LCD through the forward optical path.
  • the light recovery system 15 includes three mirrors 151 and a convex lens 152 interposed between each two adjacent mirrors 151. The three mirrors combine to change the optical path of the P light to be coupled to the fly-eye lens array 141, wherein the first mirror 151a is disposed on the outgoing light path of the PBS 16 and is substantially parallel to the second surface 162 of the PBS 16.
  • the second mirror 151b is disposed on the outgoing light path of the first mirror 151a, and is disposed substantially perpendicular to the first mirror 151a, and the third mirror 151c is disposed on the outgoing light path of the second mirror 151b.
  • the second mirror 151b is disposed substantially vertically, and the third mirror 151c is further disposed obliquely to the fly-eye lens array 141, such as at an angle of 45 degrees.
  • a convex lens 152 is disposed between the first mirror 151a and the second mirror 151b, and the second mirror 151b and the third mirror 151c. The convex lens 152 prevents P light from diverging.
  • a phase retarder may be provided in the light recovery system 15 to change the polarization state of the light beam so that The polarization state of the light beam is the same as the polarization state of the excitation light emitted by the light source 10.
  • the light source 10 emits the excitation light as the S light
  • the light beam recovered by the light recovery system 15 is the P light
  • it can be set in the light recovery system 15. a half-wave plate, converting P light into S light and coupling S light into the relay system 14.
  • the above phase retarder need not be provided.
  • the solution of the light recovery system 15 is not limited thereto.
  • the number, the distance, and the arrangement of the mirrors can be changed to form various schemes, and the mirrors can be added between the mirrors.
  • the optical element is reduced, and even some or all of the mirrors are replaced by other optical devices.
  • the arrangement of the light recovery system 15 is also related to the arrangement of the relay system 14 and the LCD light modulator 11a, changing the relay system 14 and the LCD light.
  • the arrangement of the modulator 11a may also affect the arrangement of the light recovery system 15, but in any event, any solution that enables partial optical coupling from the LCD light modulator 11a to re-enter the LCD light modulator 11a does not deviate from the present invention.
  • any solution that enables partial optical coupling from the LCD light modulator 11a to re-enter the LCD light modulator 11a does not deviate from the present invention.
  • the scope of the disclosure is not be applied to the LCD light recovery system 15, but in any event, any solution that enables partial optical coupling from the LCD light modulator 11a to re-enter the LCD light modulator 11a does not deviate from the present invention.
  • FIG. 3 it is a schematic diagram of a rear portion of the optical path of the imaging portion of the excitation light intensity control system 1 shown in FIG. 1.
  • the rear portion of the optical path of the imaging portion shows the color conversion.
  • the element 12, the 1/4 wave plate 17, and the dichroic film 18 are the fluorescent chip 12a and the reflective fluorescent chip in this embodiment.
  • the 1/4 wave plate 17 is disposed substantially in parallel with the fluorescent chip 12a, and the dichroic color film 18 faces the S light incident direction and the 1/4 wave plate 17 simultaneously with the S blue light incident direction and
  • the 1/4 wave plate 17 is disposed obliquely, such as at an angle of 45 degrees to both the S light incident direction and the 1/4 wave plate 17.
  • the fluorescent chip 12a can be formed by coating a plurality of pixel points by coating a fluorescent material and/or a scattering material on a substrate, each pixel point being red, green, and blue.
  • the seed pixel is composed of a corresponding fluorescent material and/or a scattering material, and each sub-pixel of the fluorescent chip 12a is respectively subjected to laser or scattering by red, green and blue. The light is excited so that the fluorescent chip 12a emits color image light.
  • the sub-pixel spot types, numbers, and colors of the fluorescent chip can be changed as needed, for example, each pixel point. Only two sub-pixel points or more seed pixels are included, and the number of each seed pixel is one or more, and each pixel point includes other color sub-pixel points different from the three colors of red, green and blue.
  • FIG. 4 is a schematic diagram of the distribution of pixel points on the fluorescent chip 12 a in the embodiment.
  • the fluorescent chip 12 a generates R, G, and B lasers or generates R and G under the excitation of the excitation light.
  • the laser beam and the excitation light are scattered to form a color image.
  • the fluorescent chip 12 includes a plurality of pixel points S, the pixel points S are arranged in a matrix, each pixel point S includes at least two kinds of sub-pixel points, and each seed pixel point is formed by coating a corresponding fluorescent material, or A corresponding scattering material is disposed.
  • each pixel point S includes at least one red sub-pixel point R, at least one green sub-pixel point G, and at least one blue sub-pixel point B.
  • Each pixel point S includes one red sub-pixel point R, two green sub-pixel points G, and one blue sub-pixel point B.
  • the red sub-pixel R is coated with a red fluorescent material
  • the green sub-pixel G is coated with a green fluorescent material
  • the blue sub-pixel B is coated with a blue fluorescent material or coated with a scattering powder to act as an excitation light.
  • the red sub-pixel point R generates red light
  • the green sub-pixel point G produces green light
  • the blue sub-pixel point B generates blue light or scatters incident blue laser light
  • each pixel point presents according to the respective light intensity of each sub-pixel point.
  • the desired color is such that the image that the fluorescent chip 12a emits through the projection lens 20 to the screen is a frame of color image.
  • the pixel points S can be arranged according to other rules.
  • the pixel points are not necessarily arranged into a matrix at the end, and may be arranged into other required shapes, such as a circular shape.
  • Each pixel point S only needs to include two kinds of sub-pixels at the same time.
  • the pixel points or three sub-pixel points of red, green and blue are included at the same time, and the number and proportion of the pixels per seed can be selected according to actual needs.
  • the dichroic sheet 18 reflects S light, transmitted P light, and R (red) and G (green) light.
  • the S light emitted by the PBS 16 reaches the dichroic film 18, is reflected by the dichroic film 18 to the 1/4 wave plate 17, and the S light passes through the 1/4 wave plate 17 and becomes circularly polarized.
  • Light, after the circularly polarized light reaches the fluorescent chip 12a, The corresponding red and green sub-pixels R, G generate red and green light, and the red and green light are transmitted through the dichroic film 18 via the quarter-wave plate 17.
  • the blue sub-pixel point B on the fluorescent chip 12a is coated with a polarization maintaining, that is, a scattering powder having a constant polarization direction. Therefore, the circularly polarized light reaches the corresponding blue sub-pixel point B on the fluorescent chip 12a.
  • the polarization-preserving scattering is again transmitted to the P-light after passing through the 1/4-wave plate 17, and the P-light is transmitted by the dichroic film 18.
  • the dichroic sheet 18 may also be a transmission excitation light, a reflection-received laser light, that is, a light emitted from the PBS 16 and a reflection light emitted from the fluorescent chip 12a, depending on the arrangement of the optical path directions.
  • the number of the fluorescent chips 12a is not limited to one piece, and may be two or more pieces, and arranged by a certain rule.
  • two fluorescent chips 12 can be arranged side by side.
  • the optical path in the rear portion of the imaging portion in the above embodiment is incident S light, P light and red and green light are finally emitted.
  • the P light may be incident, and the S light and the red and green light may be finally emitted.
  • other primary colors of light there may be different choices based on their polarization states.
  • a transmissive fluorescent chip can also be used.
  • the excitation light is incident from one side of the transmissive fluorescent chip and is emitted by the laser from the other side of the transmissive fluorescent chip. At this time, the use of the dichroic color plate and the wave plate can be omitted.
  • UV light sources in addition to the red, green, and blue lasers, other suitable light sources, such as ultraviolet (UV) light sources, can also be used.
  • UV light sources such as ultraviolet (UV) light sources
  • FIG. 5 is a schematic diagram of a rear portion of an optical path of an imaging portion using a UV light source in a second embodiment of the present invention.
  • the rear portion of the image path shows the dichroic sheet 31 and the fluorescent chip 32.
  • the dichroic sheet 31 faces the UV light incident direction and the fluorescent chip 32 at the same time, and is in the direction of the UV light incident and the fluorescent chip 32. Tilt setting.
  • the dichroic sheet 31 reflects UV light and transmits red, green, and blue light. From a UV source After being modulated by the optical modulator to carry the image information, the UV light is reflected by the dichroic film 31 into the fluorescent chip 32, and the red, green and blue sub-pixel points R, G, and B on the fluorescent chip 32 are respectively coated with red.
  • the fluorescent material, the green fluorescent material and the blue fluorescent material under the excitation of the UV excitation light, the corresponding red, green and blue sub-pixel points R, G, B on the fluorescent chip 32 respectively generate red, green and blue laser light,
  • the red, green, and blue laser light is transmitted from the dichroic film 31 and is emitted to the screen through the projection lens to form a frame of color image.
  • the controller 13 can control the intensity of the excitation light emitted from the light source 10 and control the intensity of the excitation light emitted from the light modulator 11. Still taking the LCD light modulator 11a as an example, the controller 13 can control the signal value of the LCD light modulator 11a corresponding to each R, G, B image signal value (ie, sub-pixel value) of each frame of image data, thereby controlling The intensity of the excitation light emitted from the LCD light modulator 11a.
  • the LCD signal value is proportional to the voltage value (or current value, etc.) applied to the corresponding light valve of the LCD light modulator 11a for each image signal value of each frame image. How the controller 13 controls the light source 10 and the LCD light modulator 11a will be specifically described below.
  • the LCD signal value is determined by the controller 13 based on the response of the image signal value to a particular fluorescent material (e.g., yellow, green, red, blue fluorescent material) or scattering material coated on the fluorescent chip 12a.
  • a particular fluorescent material e.g., yellow, green, red, blue fluorescent material
  • the response curve to different excitation light is affected by factors such as thermal saturation and light saturation. Please refer to Figure 6 and Figure 7, respectively, for red, green and blue fluorescent materials or scattering.
  • the response of the material to the excitation light is blue laser and UV light, respectively.
  • the lines x and x1 represent the response curves of the blue scattering material and the blue fluorescent material, respectively, y and y1 represent the response curves of the green fluorescent materials, and z and z1 represent the response curves of the red fluorescent materials, and it can be seen that the same excitation light intensity
  • the corresponding red, green, and blue fluorescent materials or scattering materials produce different laser intensities, which may result in different brightness values of the emitted images.
  • fluorescent materials and scattering materials are used under the excitation of different excitation lights.
  • the response curves are also different. As shown in Fig. 6, the response curve of the polarization-preserving scattering powder using blue laser is generally linearly increasing.
  • the blue fluorescent material is excited by UV light, and the blue fluorescent material generates heat, so the corresponding curve of the blue fluorescent material is saturated and nonlinearly increasing.
  • the response curve data of the corresponding fluorescent material/scattering material can be stored in other devices available to the controller 13 or the controller 13, and will involve LCD signal values and image signal values as well as fluorescent material/scattering.
  • the equations related to the response curve parameters of the material are also stored in other devices that can be acquired by the controller 13 or the controller 13, so that when the values of the R, G, and B image signals are different, the corresponding red can be calculated by the controller 13.
  • the LCD signal values of the green and blue sub-pixels control the intensity of the excitation light emitted by the LCD light modulator 11a.
  • the controller 13 may calculate the LCD signal value of the corresponding red sub-pixel point according to the corresponding curve parameter of the red fluorescent material and the specific R image signal value; for the specific G image The signal value can be calculated by the controller 13 according to the corresponding curve parameter of the green fluorescent material and the specific G image signal value to obtain the LCD signal value of the corresponding green sub-pixel point; and so on, the desired LCD signal value can be obtained. .
  • the value of the LCD signal of the red sub-pixel corresponding to the value, and the maximum signal value of the LCD of the red sub-pixel, b' and B respectively represent the LCD signal of the green sub-pixel corresponding to the largest pixel value of all the green sub-pixels in one frame.
  • the maximum signal value of the LCD of the green sub-pixel, c' and C respectively represent the LCD signal value of the blue sub-pixel corresponding to the largest pixel value among all the blue sub-pixels in one frame image, and the LCD maximum signal of the blue sub-pixel point value.
  • the signal value required for each sub-pixel point controls the light of the LCD light modulator 11a corresponding to the sub-pixel point according to the image signal value.
  • the threshold of the valve is such that the intensity of the excitation light of each sub-pixel point is consistent with the intensity of the light to be displayed.
  • the signal value corresponding to the red sub-pixel point is a'
  • the LCD light modulator 11a will be The threshold of the light valve of the red sub-pixel should be adjusted to the maximum, so that the LCD light modulator 11a can transmit all the excitation light at the red sub-pixel point; when some red sub-pixels in the frame image are displayed Is the non-maximum value of the red sub-pixels in the frame image.
  • the signal values corresponding to the red sub-pixels are smaller than a', and the threshold of the light valve of the LCD light modulator 11a corresponding to the red sub-pixels is based on The corresponding image signal values are proportionally controlled such that the LCD light modulator 11a passes the excitation light at the points of the red sub-pixels in proportions instead of all.
  • the LCD signal value calculated by the controller 13 corresponds to R, G, and B sub-pixels are respectively 400, 768, and 500
  • the LCD corresponds to red, green, and blue.
  • control modes of the light source 10 and the LCD light modulator 11a described in the above embodiments are applicable to both the timing output and the non-timing output. .
  • FIG. 8 a flowchart of a method for controlling excitation light intensity according to an embodiment of the present invention is shown. The method can be performed in combination with the excitation light intensity control system 1 described above, including the following steps:
  • Step S801 the controller 13 calculates the obtained light modulator 11 according to the image signal value (ie, the sub-pixel value) of each frame image and the response curve parameter of the specific fluorescent material.
  • Signal value ie, the sub-pixel value
  • Step S802 the controller 13 calculates the intensity of the excitation light that the light source 10 needs to emit according to the ratio of the signal value of the optical modulator 11 obtained by the calculation to the maximum signal value of the light modulator 11;
  • Step S803 the controller 13 sends a signal to the light source 10 according to the calculated excitation light intensity to control the intensity of the excitation light required for the light source to exit;
  • step S804 the controller 13 transmits a signal to the light modulator 11 based on the calculated signal value of the optical modulator 11 to adjust the intensity of the excitation light emitted from the light modulator 11.
  • the LCD signal value of the sub-pixel point, the LCD maximum signal value of the red sub-pixel point, b', B respectively represent the LCD signal value of the green sub-pixel point corresponding to the largest pixel value among all the green sub-pixels in one frame image, and the green sub-
  • the maximum signal value of the LCD of the pixel, c' and C respectively represent the LCD signal value of the blue sub-pixel corresponding to the largest pixel value among all the blue sub-pixels in one frame image, and the maximum LCD signal value of the blue sub-pixel point.
  • the method may further include: controlling, at the light source 10, an intensity of excitation light required for the light source 10 to exit; and controlling the light modulator 11 to exit at the light modulator 11 Excitation light intensity.
  • the method may further include: splitting the excitation light emitted by the light modulator into two paths; re-coupling one of the paths to the light modulator through a light recovery system; and injecting the other path To the color conversion element to excite the color conversion element to generate a multi-color laser.
  • the excitation light intensity control system and the projection system provided by the embodiments of the present invention have a light recovery system and an excitation light. The recovery and reuse of the excitation light is improved, and on the other hand, on the basis of the recovery and reuse of the excitation light, the embodiment of the present invention performs the excitation light intensity emitted by the light modulator and/or the light source in a specific manner. Control not only ensures that the image that is emitted to the screen is not distorted, but also reduces the energy consumption and further reduces the utilization of light energy.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种激发光强度控制系统(1),包括照明部、成像部与控制部。照明部包括光源(10),成像部包括光调制器(11)和色彩转换元件(12),从光源(10)出射的激发光被导入光调制器(11)进行调制,经过调制的激发光激发色彩转换元件(12)产生多色受激光,照明部还包括光回收系统(15),光回收系统(15)用于将从光调制器(11)出射的部分激发光重新耦合入射至光调制器(11),控制部包括控制器(13),控制器(13)用于接收原始图像数据及控制光调制器(11)及/或光源(10)出射的激发光强度。激发光强度控制系统(1)能够提高光能利用效率。还提供一种应用激发光强度控制系统(1)的投影系统(2)。

Description

激发光强度控制系统、方法及投影系统 技术领域
本发明涉及投影显示领域,尤其涉及一种带激发光强度控制的系统、方法及应用所述激发光强度控制系统的投影系统。
背景技术
在目前的显示领域,主要是利用DMD或LCD做为光调制器,对照明光进行调制从而得到图像光,然目前采用DMD或LCD作为光调制器的显示设备普遍存在效率偏低的问题。
具体地,在以激光激发荧光材料产生多色光作为光源的显示设备中,激光发光元件发出的光经光学元件,如合光器件、光束整形器件等到达荧光材料,效率约为90%,经荧光材料转换后得到照明光,再耦合到光机系统(如3DMD光机系统、3LCD光机系统),效率约为94%,经光机系统调制成图像光,效率约为30%~40%,然后经由投影镜头投影到屏幕上,可以看出,光机系统效率低,使相应的显示设备效率低下。
发明内容
鉴于上述状况,本发明提供一种光能利用率高的激发光强度控制系统及投影系统。
一方面,本发明提供一种激发光强度控制系统,包括照明部、成像部与控制部,所述照明部包括光源,所述成像部包括光调制器,从所述光源出射的激发光被导入所述光调制器进行调制,所述成像部还包括色彩转换元件,经过所述光调制器调制的所述激发光激发 所述色彩转换元件产生多色受激光,所述照明部还包括一光回收系统,所述光回收系统用于将从所述光调制器出射的两部分激发光中的其中一部分激发光重新耦合入射至所述光调制器,另一部分进入所述色彩转换元件,所述控制部用于接收原始图像数据及控制所述光调制器出射的激发光强度及/或所述光源出射的激发光强度。
另一方面,本发明提供一种激发光强度控制方法,所述方法能够应用于一激发光强度控制系统中,所述激发光强度控制系统包括光源、光调制器、色彩转换元件及控制器,所述方法包括:在所述控制器上根据一帧图像的图像信号值以及涂布于所述色彩转换元件上的特定荧光材料的响应曲线参数,计算获得所述光调制器的信号值;在所述控制器上根据计算获得的所述光调制器的信号值与所述光调制器的最大信号值的比值计算所述光源所需出射的激发光强度;在所述控制器上发送信号至所述光源以控制所述光源出射所需的激发光强度;及在所述控制器上发送信号至所述光调制器以控制所述光调制器出射的激发光强度。
再一方面,本发明提供一种投影系统,所述投影系统包括上述的激发光强度控制系统及投影镜头,从所述激发光强度控制系统出射的激发光经所述投影镜头投射至屏幕,以呈现彩色图像。
本发明实施例提供的激发光强度控制系统及投影系统的优点在于:通过设置光回收系统对激发光进行回收再利用,提高了激发光的回收利用率,另一方面,在激发光回收再利用的基础上,本发明实施例还通过特定方式对光调制器及/或光源出射的激发光强度进行相应控制,不仅保证了出射至屏幕的图像不失真,且由于降低了光源的强度,进一步降低了能耗,提高了光能利用率。
附图说明
图1为本发明第一种实施方式的激发光强度控制系统的系统框图。
图2为图1所示激发光强度控制系统的照明部与成像部前部分的光路图的示意图。
图3为图1所示激发光强度控制系统的成像部的后部分光路图的示意图。
图4为图1所示激发光强度控制系统的荧光芯片的像素分布示意图。
图5为本发明第二种实施方式中的激发光强度控制系统的成像后部分的光路图示意图。
图6为激发光为蓝激光时,红、绿、蓝荧光材料/散射材料对激发光的响应曲线示意图。
图7为激发光为UV光时,红、绿、蓝荧光材料对激发光的响应曲线示意图。
图8为本发明一实施方式中的激发光强度控制方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1所示,图1是本发明一种实施方式中的激发光强度控制系统1的方框示意图,所述激发光强度控制系统1能够应用于 投影系统2中。所述激发光强度控制系统1包括照明部、成像部以及控制部,具体地,在本实施方式中,所述照明部包括光源10,所述成像部包括光调制器11与色彩转换元件12,所述控制部包括控制器13。所述控制器13接收待显示的原始图像数据,根据原始图像数据调节光源10处及/或光调制器11处的激发光强度,在本实施方式中,在所述控制器13的控制下,针对每一帧图像,所述光源10发出一定强度的激发光,所述光调制器11进一步调节针对每一像素(或子像素)的激发光强度,经由调节后的激发光进入色彩转换元件12,激发色彩转换元件12产生多色受激光,如R(红)、G(绿)、B(蓝)受激光,形成一帧彩色图像。在本实施方式中,所述激发光强度控制系统应用于一投影系统中,经过色彩转换元件12产生的彩色图像经由投影系统2的投影镜头20最终出射至屏幕(图未示)。在本实施方式中,所述激发光强度控制系统1还包括设置于光源10与光调制器11之间的中继系统14、以及设置于光调制器11与中继系统14之间的光回收系统15。
请参阅图2所示,为图1所示激发光强度控制系统1的照明部的光路图与成像部的前部分光路图的示意图,即为激发光出射至色彩转换元件12之前的光路部分,在本实施方式中,所述激发光强度控制系统1具有正向光路与逆向光路两部分,在本实施方式中,所述正向光路是指光线由激发光强度控制系统1中上游元件出发进入下游元件的光路路径,例如由光源10出发进入光调制器11的光路路径便属于正向光路。所述逆向光路是指光线由激发光强度控制系统1中的下游元件出发返回上游元件的光路路径,例如在通过光回收系统15返回至中继系统14的光路路径属于逆向光路。
在本实施方式中,所述光源10采用激光光源,且为蓝激光光源。因此,在本实施方式中,采用蓝激光为激发光。在本实施方式 中,所述中继系统14包括复眼透镜阵列141、凸透镜142以及反光镜143。所述复眼透镜阵列141、凸透镜142与反光镜143依序排列,从所述光源10出射的蓝激光进入复眼透镜阵列141,经过复眼透镜阵列141提高均匀性与亮度后,进入凸透镜142。所述凸透镜142对进入的蓝激光进行整形形成适合光调制器11大小形状的光斑,所述光斑经反光镜143反射后进入所述光调制器11。在本实施方式中,所述复眼透镜阵列141为双排复眼透镜阵列。所述复眼透镜阵列141与凸透镜142大致平行设置,其光轴方向大致重合,所述光调制器11与所述复眼透镜阵列141、凸透镜142大致垂直设置,所述反光镜143与所述凸透镜142、光调制器11呈倾斜设置,如与所述凸透镜142、光调制器11均大致呈45度角设置,其反射面1431同时倾斜面向所述凸透镜142与光调制器11、以将从凸透镜142出射的蓝激光反射至光调制器11。
可以理解,中继系统也可采用其他光学元器件构成,或者采用不同的排布方式,只需其能将光源发出的激发光以及从光回收系统返回的光合适地导入至光调制器11即可。
所述光调制器11在本实施方式中为LCD光调制器11a,当然,所述LCD光调制器11a仅是举例而已,在其他实施方式中,所述光调制器11也可以是DMD光调制器或LCOS光调制器等。所述LCD光调制器11a在控制器13的控制下,针对每一帧图像的图像数据,对从反光镜143出射至LCD光调制器11a的蓝激光进行调制,从而使之携带图像信息,经过调制的两部分蓝激光进入一偏极化分光镜(Polarization Beam Splitter,下称PBS)16。所述PBS 16将经过调制的两部分蓝激光分成第一偏振光与第二偏振光,在本实施方式中第一偏振光为P偏振态的光(以下简称P光)、第二偏振光为S偏振态的光(以下简称S光),其中S光进入色彩转换元件 12,P光进入光回收系统15进行光回收。在本实施方式中,所述PBS 16设置于LCD光调制器11a的出光方向,包括相对的第一表面161与第二表面162。所述PBS 16与LCD光调制器11a呈倾斜设置,如呈45度角设置,第一表面161面向LCD光调制器11a,第二表面背向LCD光调制器11a。所述PBS分离P光与S光,其中P光经透射从第二表面162出射、S光经反射从第一表面161出射。
在本实施方式中,所述光回收系统15将P光耦合到复眼透镜阵列141,使之通过复眼透镜阵列141重新进入正向光路,通过正向光路进入LCD重新利用。具体在本实施方式中,所述光回收系统15包括三个反光镜151与置于每两相邻反光镜151之间的凸透镜152。所述三个反光镜合力改变P光的光路走向,使之耦合至复眼透镜阵列141,其中,第一反光镜151a设置于所述PBS 16的出射光路上,与PBS 16的第二表面162大致垂直设置,第二反光镜151b设置于所述第一反光镜151a的出射光路上,与第一反光镜151a大致垂直设置,第三反光镜151c设置于第二反光镜151b的出射光路上,与第二反光镜151b大致垂直设置,第三反光镜151c另还与复眼透镜阵列141呈倾斜设置,如呈45度角设置。第一反光镜151a与第二反光镜151b、及第二反光镜151b与第三反光镜151c之间均设置一凸透镜152,所述凸透镜152避免P光发散。
此外,若由光回收系统15进行回收的光束的偏振态与光源10出射激发光的偏振态不同时,还可在光回收系统15中设置一相位延迟器改变所述光束的偏振态,以使所述光束的偏振态与光源10出射激发光的偏振态相同,例如,若光源10出射激发光为S光,在光回收系统15回收的光束为P光时,可在光回收系统15中设置一二分之一波片,将P光转换成S光再将S光耦合入射至中继系统 14。在光回收系统15回收的光束的偏振态与光源10出射激发光的偏振态相同的情况下,以上相位延迟器无需设置。
以上例举了光回收系统15的一种方案,然光回收系统15的方案并不限于此,例如可以改变反光镜的数量、距离以及排布形成多种方案,也可以在反光镜之间增减光学元件,甚至采用其他光学器件取代部分或全部反光镜,此外,光回收系统15的设置跟中继系统14以及LCD光调制器11a的排布亦有关系,改变中继系统14与LCD光调制器11a的设置亦可能影响光回收系统15的设置方案,然无论如何,任何能实现将从LCD光调制器11a出射的部分光耦合至重新进入LCD光调制器11a的方案均不脱离本发明揭露的范围。
请参阅图3所示,为图1所示激发光强度控制系统1的成像部的后部分光路图示意图,在本实施方式中,所述成像部的后部分光路图示出了所述色彩转换元件12、1/4波片17以及二向色片18,在本实施例中所述色彩转换元件12为荧光芯片12a,且为反射式荧光芯片。所述1/4波片17与所述荧光芯片12a大致平行设置,所述二向色片18同时面向所述S光入射方向与所述1/4波片17、且与S蓝光入射方向以及1/4波片17呈倾斜设置,如与S光入射方向以及1/4波片17均成45度角设置。
在本实施方式中,需说明的是,可通过在一基板上涂布荧光材料及/或散射材料形成多个像素点,从而制成所述荧光芯片12a,每个像素点由红绿蓝三种子像素点构成,每种子像素点上分别涂布相应的荧光材料及/或散射材料,因此,在激发光激发下,荧光芯片12a的每个子像素点分别产生红、绿、蓝受激光或散射激发光,从而使荧光芯片12a出射彩色图像光。在其他实施方式中,荧光芯片的子像素点种类、数量与颜色可根据需要更改,例如,每个像素点 只包括两种子像素点或更多种子像素点,每种子像素的数量为一个或多个,每个像素点包括不同于红绿蓝三色的其他颜色子像素点。
请参阅图4所示,为本实施方式中的荧光芯片12a上的像素点分布示意图,所述荧光芯片12a在所述激发光的激发下,产生R、G、B受激光或者产生R、G受激光以及散射所述激发光,形成彩色图像。所述荧光芯片12上包括多个像素点S,所述像素点S按矩阵排列,每一像素点S包括至少两种子像素点,每种子像素点由相应的荧光材料涂布形成,或者,涂布有相应的散射材料,在本实施方式中,每一像素点S包括至少一个红子像素点R、至少一个绿子像素点G、以及至少一个蓝子像素点B,在本实施方式中,每一像素点S包括一个红子像素点R、两个绿子像素点G以及一个蓝子像素点B。红子像素点R上涂布了红荧光材料、绿子像素点G上涂布了绿荧光材料、蓝子像素点B上涂布了蓝荧光材料或涂布了散射粉,在激发光的作用,红子像素点R产生红光,绿子像素点G产生绿光,而蓝子像素点B产生蓝光或散射入射的蓝激光,根据每个子像素点各自的光亮强度,每个像素点呈现所需的色彩,从而使荧光芯片12a通过投影镜头20出射至屏幕的图像为一帧彩色图像。
可以理解,所述像素点S可以按其他规则排列,例如,像素点最终并不一定排列成为矩阵,还可以排列成为其他需要的形状,例如圆形,每一像素点S仅需同时包括两种子像素点或者同时包括红、绿、蓝三种子像素点,至于每种子像素点的数量和比例可根据实际需要选取。
请再参阅图3所示,所述二向色片18反射S光、透射P光以及R(红)、G(绿)光。由PBS 16出射的所述S光到达二向色片18后,被二向色片18反射至所述1/4波片17,所述S光经过1/4波片17后变成圆偏振光,所述圆偏振光到达荧光芯片12a后,激 发对应的红、绿子像素点R、G产生红光和绿光,所述红光和绿光经1/4波片17后由所述二向色片18透射。另在本实施方式中,荧光芯片12a上的蓝子像素点B涂布保偏、即保证偏振方向不变的散射粉,因此圆偏振光到达荧光芯片12a上对应的蓝子像素点B后,被保偏散射,再次经1/4波片17后变成P光,所述P光由所述二向色片18透射。
可以理解,根据光路方向布置的不同,所述二向色片18也可以是透射激发光、反射受激光,即透射由PBS 16出射的光与反射由荧光芯片12a出射的光。
可以理解,荧光芯片12a的数量也不限于一片,也可以是两片或多片,通过一定的规则进行排列。如,可将两片荧光芯片12并排排列。
可以理解,虽然上述实施方式中的成像部后部分光路是入射S光,最终出射P光与红、绿光,然,也可以是入射P光,最终出射S光与红、绿光。另,在采用其他基色光作为激发光时,基于其偏振态也可有不同的选择。
可以理解,也可采用透射式荧光芯片,激发光从透射式荧光芯片的一面入射,受激光从透射式荧光芯片的另一侧出射,此时,可以省略二向色片与波片的使用。
可以理解,除红、绿、蓝激光外,还可以是其他合适光源,例如,紫外(UV)光源。
请参阅图5所示,为本发明第二种实施方式中利用UV光源的成像部的后部分光路示意图。所述成像部后部分光路图示出了二向色片31与荧光芯片32,所述二向色片31同时面向UV光入射方向及荧光芯片32、且与UV光入射方向及荧光芯片32呈倾斜设置。所述二向色片31反射UV光,透射红、绿、蓝光。UV光源发出的 UV光在经过光调制器调制成携带图像信息后,由二向色片31反射进入荧光芯片32,所述荧光芯片32上的红、绿、蓝子像素点R、G、B分别涂布红荧光材料、绿荧光材料及蓝荧光材料,在UV激发光的激发下,荧光芯片32上对应的红、绿、蓝子像素点R、G、B分别产生红、绿、蓝受激光,所述红、绿、蓝受激光由所述二向色片31透射,并通过投影镜头出射至屏幕从而形成一帧彩色图像。
在本发明实施方式中,所述控制器13可控制光源10出射的激发光强度及控制从光调制器11出射的激发光强度。仍以LCD光调制器11a为例,对应每一帧图像数据的每一个R、G、B图像信号值(即子像素值),控制器13可控制LCD光调制器11a的信号值,从而控制从LCD光调制器11a出射的激发光强度。其中,对应每一帧图像的每一图像信号值,所述LCD信号值正比于加于LCD光调制器11a对应光阀上的电压值(或电流值等)。以下具体描述控制器13如何控制光源10与LCD光调制器11a。
所述LCD信号值由控制器13根据图像信号值与荧光芯片12a上涂布的具体荧光材料(如黄、绿、红、蓝荧光材料)或散射材料的响应曲线来确定。针对不同的荧光材料与散射材料,其对不同激发光的响应曲线受其热饱和与光饱和等因素的影响,请参阅图6与图7所示,分别为红、绿、蓝荧光材料或散射材料对激发光分别为蓝激光与UV光的响应曲线图。其中线x与x1分别代表蓝散射材料与蓝荧光材料的响应曲线,y与y1代表绿荧光材料的响应曲线,z与z1代表红荧光材料的响应曲线,可以看出,在同样的激发光强度下,对应的红、绿、蓝荧光材料或散射材料产生的受激光强度不同,从而导致出射的图像亮度值亦会不同,另外,在不同的激发光的激发下,采用荧光材料与采用散射材料的响应曲线亦不同,如图6为采用蓝激光为激发光保偏散射粉的响应曲线大致呈线性递增, 而图7中采用UV光激发蓝色荧光材料,蓝色荧光材料产生热量,因此蓝色荧光材料的相应曲线呈饱和的趋势、非线性递增。
在一种实施方式中,可将对应的荧光材料/散射材料的响应曲线数据存入控制器13或控制器13可获取的其他装置内,将涉及LCD信号值与图像信号值以及荧光材料/散射材料的响应曲线参数相关的公式亦存入控制器13或控制器13可获取的其他装置内,从而在针对不同的R、G、B图像信号值时,可以由控制器13计算获得相应的红、绿、蓝子像素点的LCD信号值,控制LCD光调制器11a出射的激发光强度。例如,针对具体的R图像信号值时,可以由控制器13根据红色荧光材料的相应曲线参数与该具体的R图像信号值计算获得相应的红子像素点的LCD信号值;针对具体的G图像信号值时,可以由控制器13根据绿色荧光材料的相应曲线参数与该具体的G图像信号值计算获得相应的绿子像素点的LCD信号值;以此类推,可获得所需要的LCD信号值。
在本发明实施方式中,所述控制器13对光源10出射的激发光强度的控制根据如下公式进行:I=IMAX*(a’+b’+c’)/(A+B+C),其中I代表控制器13对光源10进行控制后光源出射的激发光强度,IMAX代表光源可出射的激发光最大强度,a’、A分别表示一帧图像中所有红子像素点中最大像素值对应的红子像素点的LCD信号值、红子像素点的LCD最大信号值,b’、B分别表示一帧图像中所有绿子像素点中最大像素值对应的绿子像素点的LCD信号值、绿子像素点的LCD最大信号值,c’与C分别表示一帧图像中所有蓝子像素点中最大像素值对应的蓝子像素点的LCD信号值、蓝子像素点的LCD最大信号值。在对一帧图像进行显示时,由于光源出射的激发光强度已根据上述公式调整得到,各个子像素点所需要信号值再根据图像信号值去控制LCD光调制器11a对应该子像素点的光阀的 阀值,使得各个子像素点的激发光强度与需要显示的光强一致。例如,当该帧图像中某一个红子像素点显示的是该帧图像中红子像素点的最大值,此时该红子像素点对应的信号值为a’,LCD光调制器11a将对应该红子像素点的光阀的阀值调到最大,如此能使LCD光调制器11a对应该红子像素点处的激发光全部透过;当该帧图像中某些红子像素点显示的是该帧图像中红子像素点的非最大值,此时该些红子像素点对应的信号值比a’小,LCD光调制器11a对应该些红子像素点的光阀的阀值根据相应的图像信号值按比例进行控制,如此使LCD光调制器11a对应该些红子像素点处的激发光按相应比例通过,而非全部通过。
以白光像素点R、G、B值均为255为例,若控制器13计算获得的LCD信号值对应R、G、B子像素分别为400、768、500,LCD对应红、绿、蓝子像素点的最大信号值均为768,则光源出射的激发光强度可调至其最大值IMAX的(400+768+500)/(768*3)=73%。再以白光像素点R、G、B值均为20为例,针对同一激发光强度控制系统,若控制器13计算获得的LCD信号值对应红、绿、蓝子像素点分别为30、50、30,则光源出射的激发光强度可调至其最大值IMAX的(30+50+30)/(768*3)=5%。
需说明的是,针对任一帧图像的红、绿、蓝子像素点,以上实施方式中介绍的对光源10与LCD光调制器11a的控制方式同时适用于时序出光与非时序出光两种方案。
参阅图8所示,为本发明一实施方式中的激发光强度控制方法的流程图。所述方法可结合上述介绍的激发光强度控制系统1进行,包括如下步骤:
步骤S801,控制器13根据每一帧图像的图像信号值(即子像素值)以及特定荧光材料的响应曲线参数,计算获得光调制器11 的信号值;
步骤S802,控制器13根据计算获得的光调制器11的信号值与光调制器11的最大信号值的比值计算光源10所需出射的激发光强度;
步骤S803,控制器13根据计算获得的激发光强度发送信号至光源10,以控制光源出射所需的激发光强度;
步骤S804,控制器13根据计算获得的光调制器11的信号值发送信号至光调制器11,以调节光调制器11上出射的激发光强度。
在上述步骤S802中,所述光源10所需出射的激发光强度根据如下公式:I=IMAX*(a’+b’+c’)/(A+B+C)计算获得,其中I代表控制器13对光源10进行控制后光源出射的激发光强度,IMAX代表光源可出射的激发光最大强度,a’、A分别表示一帧图像中所有红子像素点中最大像素值对应的红子像素点的LCD信号值、红子像素点的LCD最大信号值,b’、B分别表示一帧图像中所有绿子像素点中最大像素值对应的绿子像素点的LCD信号值、绿子像素点的LCD最大信号值,c’与C分别表示一帧图像中所有蓝子像素点中最大像素值对应的蓝子像素点的LCD信号值、蓝子像素点的LCD最大信号值。
在一实施方式中,所述方法还可以包括:在所述光源10处控制所述光源10出射所需的激发光强度;以及在所述光调制器11处控制所述光调制器11出射的激发光强度。
在一实施方式中,所述方法还可以包括:将所述光调制器出射的激发光分成两路;将其中一路通过一光回收系统重新耦合入射至所述光调制器;以及将另一路入射至所述色彩转换元件以激发所述色彩转换元件产生多色受激光。综上所述,本发明实施例提供的激发光强度控制系统及投影系统,由于设置了光回收系统,对激发光 进行回收再利用,提高了激发光的回收利用率,另一方面,在激发光回收再利用的基础上,本发明实施例还通过特定方式对光调制器及/或光源出射的激发光强度进行控制,不仅保证了出射至屏幕的图像不失真,且由于降低了光源的强度,进一步降低了能耗,提高了光能利用率。
以上实施方式仅用以说明本发明的技术方案而非限制,尽管参照以上较佳实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换都不应脱离本发明技术方案的精神和范围。

Claims (20)

  1. 一种激发光强度控制系统,包括照明部、成像部与控制部,所述照明部包括光源,所述成像部包括光调制器,从所述光源出射的激发光被导入所述光调制器进行调制,其特征在于,所述成像部还包括色彩转换元件,经过所述光调制器调制的所述激发光激发所述色彩转换元件产生多色受激光,所述照明部还包括一光回收系统,所述光回收系统用于将从所述光调制器出射的两部分激发光中的其中一部分激发光重新耦合入射至所述光调制器,另一部分进入所述色彩转换元件,所述控制部用于接收原始图像数据及控制所述光调制器出射的激发光强度及/或所述光源出射的激发光强度。
  2. 如权利要求1所述的激发光强度控制系统,其特征在于,所述色彩转换元件上排列设置多个像素点,每个像素点包括至少两种子像素点,每种子像素点由相应的荧光材料或散射材料涂布形成。
  3. 如权利要求2所述的激发光强度控制系统,其特征在于,所述照明部还包括一中继系统,所述中继系统置于所述光源与所述光调制器之间。
  4. 如权利要求3所述的激发光强度控制系统,其特征在于,所述光回收系统用于将所述部分激发光耦合至所述中继系统,经由所述中继系统重新入射至所述光调制器。
  5. 如权利要求4所述的激发光强度控制系统,其特征在于,所述成像部还包括偏极化分光镜,所述偏极化分光镜用于将从所述光调制器出来的两部分激发光分离成第一偏振光与第二偏振光,其中第一偏振光进入所述光回收系统,所述 第二偏振光在所述成像部被转换成第一偏振光后从所述成像部出射。
  6. 如权利要求5所述的激发光强度控制系统,其特征在于,所述成像部还包括二向色片,所述二向色片设置于所述偏极化分光镜与所述色彩转换元件之间,用于透射由所述偏极化分光镜进入的第二偏振光使之进入色彩转换元件及反射由所述色彩转换元件出射的受激光,或者反射由所述偏极化分光镜进入的第二偏振光使之进入色彩转换元件及透射由所述色彩转换元件出射的受激光。
  7. 如权利要求6所述的激发光强度控制系统,其特征在于,所述光源出射蓝激光,所述蓝激光经所述偏极化分光镜后获得的第二偏振光被所述成像部转换成第一偏振光,所述成像部出射所述第一偏振光以及至少一种其他色光。
  8. 如权利要求7所述的激发光强度控制系统,其特征在于,所述成像部还包括设置于所述二向色片与所述色彩转换元件之间的1/4波片。
  9. 如权利要求5所述的激发光强度控制系统,其特征在于,所述光源出射蓝激光,所述成像部出射由所述第二偏振光转换获得的所述第一偏振光以及至少一种其他色光。
  10. 如权利要求7或9所述的激发光强度控制系统,其特征在于,所述色彩转换元件上的每一像素点包括蓝子像素点,其中所述蓝子像素点采用保偏散射粉涂布形成。
  11. 如权利要求1所述的激发光强度控制系统,其特征在于,所述光源出射UV光。
  12. 如权利要求2所述的激发光强度控制系统,其特征在于,所述控制部根据所述原始图像数据以及涂布于所述色彩转 换元件上的所述荧光材料及/或散射材料的响应曲线参数控制所述光调制器出射的激发光强度。
  13. 如权利要求12所述的激发光强度控制系统,其特征在于,所述控制器根据所述原始图像数据的图像信号值以及涂布于所述色彩转换元件上的所述荧光材料及/或散射材料的响应曲线参数计算所述光调制器的信号值,并进一步根据所述信号值控制所述光源出射的激发光强度。
  14. 如权利要求13所述的激发光强度控制系统,其特征在于,所述控制器对光源出射的激发光强度的控制根据公式I=IMAX*(a’+b’+c’)/(A+B+C)进行,其中I代表所述光源所需要出射的激发光强度,IMAX代表所述光源可出射的激发光最大强度,其中,a’、A分别表示一帧图像中所有红子像素点中最大像素值对应的红子像素点的LCD信号值、红子像素点的LCD最大信号值,b’、B分别表示一帧图像中所有绿子像素点中最大像素值对应的绿子像素点的LCD信号值、绿子像素点的LCD最大信号值,c’与C分别表示一帧图像中所有蓝子像素点中最大像素值对应的蓝子像素点的LCD信号值、蓝子像素点的LCD最大信号值。
  15. 如权利要求14所述的激发光强度控制系统,其特征在于,所述光调制器为LCD光调制器。
  16. 一种激发光强度控制方法,能够应用于一激发光强度控制系统中,所述激发光强度控制系统包括光源、光调制器、色彩转换元件及控制器,其特征在于,所述方法包括:
    在所述控制器上根据一帧图像的图像信号值以及涂布于所述色彩转换元件上的特定荧光材料的响应曲线参数,计算获得所述光调制器的信号值;
    在所述控制器上根据计算获得的所述光调制器的信号值与所述光调制器的最大信号值的比值计算所述光源所需出射的激发光强度;
    在所述控制器上发送信号至所述光源以控制所述光源出射所需的激发光强度;及
    在所述控制器上发送信号至所述光调制器以控制所述光调制器出射的激发光强度。
  17. 如权利要求16所述的激发光强度控制方法,其特征在于,所述方法还包括:在所述光源处控制所述光源出射所需的激发光强度;以及在所述光调制器处控制所述光调制器出射的激发光强度。
  18. 如权利要求16所述的激发光强度控制方法,其特征在于,所述方法还包括:
    将所述光调制器出射的两部分激发光分离成两路;
    将其中一路通过一光回收系统重新耦合入射至所述光调制器;以及
    将另一路入射至所述色彩转换元件以激发所述色彩转换换件产生多色受激光。
  19. 如权利要求16所述的激发光强度控制系统,其特征在于,在所述控制器上根据公式I=IMAX*(a’+b’+c’)/(A+B+C)计算所述光源所需出射的激发光强度,其中,a’、A分别表示一帧图像中所有红子像素点中最大像素值对应的红子像素点的LCD信号值、红子像素点的LCD最大信号值,b’、B分别表示一帧图像中所有绿子像素点中最大像素值对应的绿子像素点的LCD信号值、绿子像素点的LCD最大信号值,c’与C分别表示一帧图像中所有蓝子像素点中最大像素值 对应的蓝子像素点的LCD信号值、蓝子像素点的LCD最大信号值。
  20. 一种投影系统,其特征在于,所述投影系统包括如权利要求1-15任一所述的激发光强度控制系统、及投影镜头,从所述激发光强度控制系统出射的受激光经所述投影镜头投射至屏幕,以呈现彩色图像。
PCT/CN2017/094802 2017-05-12 2017-07-28 激发光强度控制系统、方法及投影系统 WO2018205420A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/612,725 US11630381B2 (en) 2017-05-17 2017-07-28 Excitation light intensity control system and method, and projection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710349596.X 2017-05-12
CN201710349596.XA CN108957923B (zh) 2017-05-17 2017-05-17 激发光强度控制系统、方法及投影系统

Publications (1)

Publication Number Publication Date
WO2018205420A1 true WO2018205420A1 (zh) 2018-11-15

Family

ID=64104835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094802 WO2018205420A1 (zh) 2017-05-12 2017-07-28 激发光强度控制系统、方法及投影系统

Country Status (3)

Country Link
US (1) US11630381B2 (zh)
CN (2) CN108957923B (zh)
WO (1) WO2018205420A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008299258A (ja) * 2007-06-04 2008-12-11 Citizen Holdings Co Ltd プロジェクション装置
CN101702072A (zh) * 2008-11-06 2010-05-05 唐德明 光投影引擎设备
CN102023464A (zh) * 2009-09-09 2011-04-20 孙润文 一种投影显示装置及制作方法
CN102279507A (zh) * 2010-06-12 2011-12-14 江苏丽恒电子有限公司 投影显示装置
CN106162116A (zh) * 2015-04-09 2016-11-23 深圳市光峰光电技术有限公司 投影显示系统及其控制方法
CN106353956A (zh) * 2015-07-13 2017-01-25 深圳市光峰光电技术有限公司 投影显示系统的控制方法及投影显示系统
CN106444242A (zh) * 2015-08-04 2017-02-22 深圳市绎立锐光科技开发有限公司 投影系统

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101192A (ja) * 1987-10-14 1989-04-19 Canon Inc 記録方法
JPH02187742A (ja) * 1989-01-17 1990-07-23 Pioneer Electron Corp 蛍光体スクリーン
TWM252024U (en) * 2004-02-12 2004-12-01 Benq Corp Image display apparatus
CN1667494A (zh) * 2004-03-08 2005-09-14 明基电通股份有限公司 图像显示装置
JP2008507725A (ja) * 2004-07-22 2008-03-13 トムソン ライセンシング 単一イメージャマイクロディスプレイのための離散的高切換速度照明幾何
US8000005B2 (en) * 2006-03-31 2011-08-16 Prysm, Inc. Multilayered fluorescent screens for scanning beam display systems
US7956878B2 (en) * 2007-04-03 2011-06-07 Texas Instruments Incorporated Pulse width modulation algorithm
US7934837B2 (en) * 2007-09-28 2011-05-03 Sanyo Electric Co., Ltd. Projection display device
US8529071B2 (en) * 2008-01-15 2013-09-10 Texas Instruments Incorporated Illuminating spatial light modulators using an anamorphic prism assembly
US20100214282A1 (en) * 2009-02-24 2010-08-26 Dolby Laboratories Licensing Corporation Apparatus for providing light source modulation in dual modulator displays
TWI392954B (zh) * 2009-05-11 2013-04-11 Coretronic Corp 照明系統及照明控制方法
US20120154681A1 (en) * 2009-07-17 2012-06-21 Takeshi Morimoto Diaphragm control circuit, projector device, diaphragm control program and diaphragm control method
JP2011048044A (ja) * 2009-08-26 2011-03-10 Seiko Epson Corp プロジェクター
JP5656265B2 (ja) * 2010-01-29 2015-01-21 Necディスプレイソリューションズ株式会社 プロジェクタおよびその照明装置
CN201616861U (zh) * 2010-03-23 2010-10-27 华南理工大学 Ccd光源强度自适应调节系统
JP5750572B2 (ja) * 2010-03-30 2015-07-22 パナソニックIpマネジメント株式会社 投写型画像表示装置
JP5672949B2 (ja) * 2010-10-25 2015-02-18 セイコーエプソン株式会社 光源装置及びプロジェクター
JP5699568B2 (ja) * 2010-11-29 2015-04-15 セイコーエプソン株式会社 光源装置、プロジェクター
JP6241086B2 (ja) * 2012-09-20 2017-12-06 カシオ計算機株式会社 表示装置、投影装置、表示補助装置及びシステム
CN103792767B (zh) * 2012-10-31 2015-10-07 深圳市绎立锐光科技开发有限公司 波长转换器件、其制造方法以及相关波长转换装置
CN105159020B (zh) * 2012-10-31 2017-07-11 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统
CN103838068B (zh) * 2012-11-23 2016-12-28 深圳市光峰光电技术有限公司 发光装置及其相关投影系统
WO2014162590A1 (ja) * 2013-04-05 2014-10-09 Necディスプレイソリューションズ株式会社 プロジェクタおよびその制御方法
JP6501451B2 (ja) * 2014-03-31 2019-04-17 キヤノン株式会社 光源装置およびそれを用いた情報取得装置
US10036938B2 (en) * 2014-06-27 2018-07-31 Dolby Laboratories Licensing Corporation Light recycling for projectors with high dynamic range
CN104560038A (zh) * 2014-12-10 2015-04-29 浙江工业大学 一种双钨酸盐基红色荧光粉及其制备方法
CN105991980B (zh) * 2015-02-06 2019-05-03 深圳光峰科技股份有限公司 投影系统及其控制方法
CN105988272B (zh) * 2015-02-15 2019-03-01 深圳光峰科技股份有限公司 投影系统及其控制方法
CN106169282B (zh) * 2015-05-18 2021-02-09 三星电子株式会社 显示面板、显示设备及其控制方法
KR20170008358A (ko) * 2015-07-13 2017-01-24 삼성디스플레이 주식회사 유기 발광 표시 장치
JP6569440B2 (ja) * 2015-09-30 2019-09-04 株式会社Jvcケンウッド 検出方法、検出装置および投射装置
CN204994014U (zh) * 2015-10-09 2016-01-20 江苏新安电器有限公司 基于空间光调制的智能车灯控制系统
CN105573033B (zh) * 2015-12-21 2017-06-23 中国科学院长春光学精密机械与物理研究所 投影光学系统
CN105785700B (zh) * 2016-01-14 2018-05-04 四川长虹电器股份有限公司 激光显示系统
US10659669B2 (en) * 2016-04-18 2020-05-19 Sony Corporation Projection display unit
WO2017205857A1 (en) * 2016-05-27 2017-11-30 Verily Life Sciences Llc Systems and methods for 4-d hyperspectrial imaging
CN105911807B (zh) * 2016-06-03 2019-03-22 青岛海信电器股份有限公司 激光投影方法及激光投影机
CN205721048U (zh) * 2016-06-07 2016-11-23 无锡视美乐激光显示科技有限公司 一种荧光轮装置及光源系统
CN108227355B (zh) * 2016-12-15 2019-10-25 深圳光峰科技股份有限公司 光源系统及投影装置
CN206863464U (zh) * 2017-05-17 2018-01-09 深圳市光峰光电技术有限公司 激发光强度控制系统及投影系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008299258A (ja) * 2007-06-04 2008-12-11 Citizen Holdings Co Ltd プロジェクション装置
CN101702072A (zh) * 2008-11-06 2010-05-05 唐德明 光投影引擎设备
CN102023464A (zh) * 2009-09-09 2011-04-20 孙润文 一种投影显示装置及制作方法
CN102279507A (zh) * 2010-06-12 2011-12-14 江苏丽恒电子有限公司 投影显示装置
CN106162116A (zh) * 2015-04-09 2016-11-23 深圳市光峰光电技术有限公司 投影显示系统及其控制方法
CN106353956A (zh) * 2015-07-13 2017-01-25 深圳市光峰光电技术有限公司 投影显示系统的控制方法及投影显示系统
CN106444242A (zh) * 2015-08-04 2017-02-22 深圳市绎立锐光科技开发有限公司 投影系统

Also Published As

Publication number Publication date
CN113406849A (zh) 2021-09-17
CN113406849B (zh) 2022-04-15
CN108957923B (zh) 2021-07-23
US11630381B2 (en) 2023-04-18
CN108957923A (zh) 2018-12-07
US20200310235A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US6561654B2 (en) Image display device
US10819961B2 (en) Light source apparatus for use in projection three-dimensional display apparatus, with dynamic diffusion plate
CN108279548B (zh) 投影系统
US8593579B2 (en) Projection display
US10291887B2 (en) Projection system and control method therefor
JP2008003125A (ja) 照明装置及びプロジェクタ
WO2019064985A1 (ja) 表示装置
WO2020057150A1 (zh) 投影系统及投影显示方法
US11669001B2 (en) Projection display system
JP2000221499A (ja) 画像表示装置用光源および画像表示装置
US10104352B2 (en) Projector and image display method
EP4155818A1 (en) Display system
JP2002107818A (ja) プロジェクタ装置
JP2004264512A (ja) 照明装置、プロジェクタ及び光学装置
WO2021132059A1 (ja) 照明装置、および表示装置
CN108345160B (zh) 一种投影显示系统
WO2020088163A1 (zh) 投影系统及投影控制方法
US7616266B2 (en) Liquid crystal projection system
WO2018205420A1 (zh) 激发光强度控制系统、方法及投影系统
CN108957922B (zh) 激发光强度控制系统及投影系统
JP6503816B2 (ja) プロジェクター
CN108957921B (zh) 激发光强度控制系统及投影系统
KR100698752B1 (ko) 프로젝션 디스플레이의 광학계
JP2018124389A (ja) プロジェクター及びプロジェクターの制御方法
JP2005031249A (ja) 液晶ライトバルブおよび画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909300

Country of ref document: EP

Kind code of ref document: A1