WO2018205340A1 - 碳纳米管导电微球的制备方法及导电胶 - Google Patents

碳纳米管导电微球的制备方法及导电胶 Download PDF

Info

Publication number
WO2018205340A1
WO2018205340A1 PCT/CN2017/088194 CN2017088194W WO2018205340A1 WO 2018205340 A1 WO2018205340 A1 WO 2018205340A1 CN 2017088194 W CN2017088194 W CN 2017088194W WO 2018205340 A1 WO2018205340 A1 WO 2018205340A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
crosslinking agent
nanotube conductive
initiator
conductive
Prior art date
Application number
PCT/CN2017/088194
Other languages
English (en)
French (fr)
Inventor
梁宇恒
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/542,656 priority Critical patent/US10435302B2/en
Publication of WO2018205340A1 publication Critical patent/WO2018205340A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/02Monomers containing only one unsaturated aliphatic radical
    • C08F112/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F112/06Hydrocarbons
    • C08F112/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/14Organic medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F212/36Divinylbenzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/122Pulverisation by spraying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/23Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J125/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Adhesives based on derivatives of such polymers
    • C09J125/02Homopolymers or copolymers of hydrocarbons
    • C09J125/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/24Polymer with special particle form or size
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • C08K2003/3054Ammonium sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients

Definitions

  • the present invention relates to the field of display device technologies, and in particular, to a method for preparing carbon nanotube conductive microspheres and a conductive adhesive.
  • a Thin Film Transistor Liquid Crystal Display mostly uses a sealant doped with a conductive gold ball to conduct the upper and lower substrates to form a unidirectional conductive path.
  • the metal wrapped in the outer layer of the conductive gold ball can transmit electrons to conduct a conduction function, and the core of the conductive gold ball is an elastic resin or plastic, which can be deformed to alleviate the upper and lower substrates. The pressure after the fit.
  • a method for preparing a conductive gold ball used in a TFT-LCD frame glue or an anisotropic conductive film (ACF) is generally prepared by a polymerization reaction, a heat curing method, or the like.
  • the ball serves as a cue ball, and then a conductive metal is plated on the surface of the plastic or resin microsphere to form a conductive layer.
  • the material of the plastic or resin microspheres is a high molecular polymer, which has a large difference in thermal shrinkage rate with the conductive metal layer, and is easy to generate thermal stress during the preparation process, resulting in thermal mismatch between the conductive metal layer and the surface of the microsphere. Causing the conductive metal layer to peel off and affecting the conductive properties of the conductive gold ball;
  • the conductive metal is generally gold (Au), silver (Ag), aluminum (Al), copper (Cu), nickel (Ni), etc., Cu, Al, Ni is cheap, good conductivity but easy to oxidize, affect Conductivity; Ag has good electrical conductivity and chemical stability, but it is easy to appear in the humid environment.
  • the gold salt used in Au coating process is mostly cyanide, which is very toxic and easy to produce during gold plating. Heavy metal pollution, and Au is a rare precious metal, the cost is high.
  • Patent CN201510662918.7 describes a preparation method of conductive microspheres using CNT-coated resin microspheres, which is still a two-step method in essence, and the process is complicated.
  • the object of the present invention is to provide a method for preparing carbon nanotube conductive microspheres, which can be simplified Process, reduce process, save cost, reduce the impact of thermal mismatch, ensure the conductive properties of conductive microspheres, and do not pollute the environment.
  • Another object of the present invention is to provide a conductive adhesive, wherein the carbon nanotube conductive microspheres are easy to manufacture, have low cost, are less affected by thermal mismatch, have excellent electrical conductivity, and do not pollute the environment.
  • the present invention first provides a method for preparing carbon nanotube conductive microspheres, comprising the following steps:
  • Step S1 providing a styrene monomer, a crosslinking agent, and an initiator, mixing the styrene monomer, the crosslinking agent, and the initiator in proportion to obtain a first liquid;
  • Step S2 providing a dispersant, a surfactant, and a carbon nanotube, dissolving and dispersing the dispersant, the surfactant, and the carbon nanotube in ethanol to obtain a second liquid;
  • Step S3 mixing the first liquid and the second liquid in proportion to obtain a mixed liquid
  • Step S4 dissolving the mixed liquid in a polar solvent to obtain a slurry to be spray dried
  • Step S5 placing the slurry to be spray dried into a spray granulation dryer, controlling the inlet temperature, the outlet temperature, the pressure, and the rotation speed of the rotary granulator to rapidly evaporate the polar solvent.
  • the dispersing agent bonds the styrene monomer, the crosslinking agent, the initiator, and the carbon nanotube into a carbon nanotube conductive microsphere prototype;
  • step S6 the temperature is raised and kept warm, and the styrene monomer, the crosslinking agent, and the initiator in the prototype of the carbon nanotube conductive microspheres are sufficiently reacted and crosslinked to obtain carbon nanotube conductive microspheres.
  • the weight percentage of the styrene monomer, the crosslinking agent, and the initiator is: 60% ⁇ styrene monomer ⁇ 90%, 10% ⁇ crosslinking agent ⁇ 40%, initiator ⁇ 5 %;
  • the crosslinking agent is one or more of divinylbenzene, a peroxide crosslinking agent, and a silane crosslinking agent;
  • the initiator is one or more of sodium hydrogen sulfite, ammonium persulfate, potassium persulfate, dibenzoyl peroxide, tert-butyl peroxybenzoate, azobisisobutyronitrile.
  • the peroxide crosslinking agent is one or more of dicumyl peroxide, benzoyl peroxide, di-tert-butyl peroxide, and dicumyl hydrogen peroxide;
  • the silane-based crosslinking agent is a mixture of one or a combination of vinyltriethoxysilane or vinyltriethoxysilane.
  • the weight percentages of the dispersant, the surfactant, and the carbon nanotubes are: dispersant ⁇ 10%, surfactant ⁇ 10%, 80% ⁇ carbon nanotube ⁇ 100%.
  • the dispersing agent is polyvinyl alcohol
  • the surfactant is one or more of cetyltrimethylammonium bromide, sodium lauryl sulfate, sodium lauryl sulfate, and sodium dodecylbenzenesulfonate.
  • the volume ratio of the first liquid to the second liquid is: 10:1 to 1:10.
  • the polar solvent is ethanol
  • the volume ratio of the mixed liquid to the polar solvent is: 1:10 to 10:1;
  • the viscosity of the slurry to be spray dried is from 0.1 cp to 50 cp.
  • the viscosity of the slurry to be spray dried is ⁇ 10 cp.
  • the inlet temperature of the spray granulation dryer is 150 ° C ⁇ 500 ° C
  • the outlet temperature is 0 ° C ⁇ 200 ° C
  • the rotation speed of the turntable is 50 rpm ⁇ 150 rpm;
  • the temperature after the temperature rise is 75 ° C to 85 ° C, and the heat retention time is 4 h to 5 h.
  • the invention also provides a conductive adhesive, comprising the carbon nanotube conductive microspheres prepared by the method for preparing the carbon nanotube conductive microspheres.
  • the invention also provides a preparation method of carbon nanotube conductive microspheres, comprising the following steps:
  • Step S1 providing a styrene monomer, a crosslinking agent, and an initiator, mixing the styrene monomer, the crosslinking agent, and the initiator in proportion to obtain a first liquid;
  • Step S2 providing a dispersant, a surfactant, and a carbon nanotube, dissolving and dispersing the dispersant, the surfactant, and the carbon nanotube in ethanol to obtain a second liquid;
  • Step S3 mixing the first liquid and the second liquid in proportion to obtain a mixed liquid
  • Step S4 dissolving the mixed liquid in a polar solvent to obtain a slurry to be spray dried
  • Step S5 placing the slurry to be spray dried into a spray granulation dryer, controlling the inlet temperature, the outlet temperature, the pressure, and the rotation speed of the rotary granulator to rapidly evaporate the polar solvent.
  • the dispersing agent bonds the styrene monomer, the crosslinking agent, the initiator, and the carbon nanotube into a carbon nanotube conductive microsphere prototype;
  • Step S6 heating and maintaining the styrene monomer, the crosslinking agent, and the initiator in the prototype of the carbon nanotube conductive microspheres to fully react and crosslink to obtain the carbon nanotube conductive microspheres;
  • the weight percentage of the styrene monomer, the crosslinking agent, and the initiator is: 60% ⁇ styrene monomer ⁇ 90%, 10% ⁇ crosslinking agent ⁇ 40%, initiator ⁇ 5%;
  • the crosslinking agent is one or more of divinylbenzene, a peroxide crosslinking agent, and a silane crosslinking agent;
  • the initiator is one or more of sodium hydrogen sulfite, ammonium persulfate, potassium persulfate, dibenzoyl peroxide, tert-butyl peroxybenzoate, azobisisobutyronitrile;
  • the weight percentage of the dispersant, the surfactant, and the carbon nanotubes is: dispersant ⁇ 10%, surfactant ⁇ 10%, 80% ⁇ carbon nanotube ⁇ 100%.
  • the invention has the beneficial effects that the preparation method of the carbon nanotube conductive microsphere provided by the invention is compared with the existing two-step method of preparing the plastic or resin microsphere and then plating the conductive metal, and it is not necessary to separately prepare the plastic or the resin.
  • the microspheres and the conductive layer but in a spray granulation manner, the styrene monomer, the crosslinking agent, and the initiator are cross-linked to form polymer microspheres while doping the carbon nanotubes
  • carbon nanotube conductive microspheres using carbon nanotubes as a conductive medium can be prepared in one step, which can simplify the process, reduce the process, and save cost; the carbon nanotubes are doped in the polymer microspheres, The effect of thermal mismatch between carbon nanotubes and resin is alleviated, and the conductive properties of the conductive microspheres are ensured; and the whole preparation process has no heavy metal salt, which can reduce biological toxicity and not pollute the environment.
  • the conductive adhesive provided by the invention comprises the carbon nanotube conductive microspheres prepared by the method for preparing the carbon nanotube conductive microspheres, the carbon nanotube conductive microspheres are easy to manufacture, the cost is low, and the heat mismatch is The effect is small, the conductivity is excellent, and the environment is not polluted.
  • FIG. 1 is a flow chart of a method for preparing carbon nanotube conductive microspheres of the present invention.
  • the present invention firstly provides a method for preparing carbon nanotube conductive microspheres, comprising the following steps:
  • Step S1 providing a styrene monomer, a crosslinking agent, and an initiator, mixing the styrene monomer, the crosslinking agent, and the initiator in proportion to obtain a first liquid.
  • the weight percentage of the styrene monomer, the crosslinking agent, and the initiator is: 60% ⁇ styrene monomer ⁇ 90%, 10% ⁇ crosslinking agent ⁇ 40%, initiator ⁇ 5% .
  • the crosslinking agent is one or more of divinylbenzene (DVB), a peroxide crosslinking agent, and a silane crosslinking agent.
  • the peroxide crosslinking agent is dicumyl peroxide (DCP), benzoyl peroxide (BPO), di-tert-butyl peroxide (DTBP), dicumyl hydroperoxide (diisopropylbenzene) One or more of DBHP);
  • the silane-based crosslinking agent is vinyltriethoxysilane (for example, A1522 of Union Carbide Corporation), vinyltriethoxysilane (such as U.S. Union Carbide) One of the company's A151) or a mixture of the two.
  • the initiator is sodium hydrogen sulfite (NaHSO 3 ), ammonium persulfate ((NH 4 ) 2 S 2 O 8 ), potassium persulfate (K 2 S 2 O 8 ), dibenzoyl peroxide (BPO).
  • NaHSO 3 sodium hydrogen sulfite
  • ammonium persulfate (NH 4 ) 2 S 2 O 8 )
  • potassium persulfate K 2 S 2 O 8
  • BPO dibenzoyl peroxide
  • BPO dibenzoyl peroxide
  • BPO dibenzoyl peroxide
  • BPO dibenzoyl peroxide
  • BPO dibenzoyl peroxide
  • BPO dibenzoyl peroxide
  • BPO dibenzoyl peroxide
  • BPO dibenzoyl peroxide
  • BPB tert-butyl peroxybenzoate
  • AIBN azobisisobutyronitrile
  • Step S2 providing a dispersant, a surfactant, and a carbon nanotube, the dispersant, the table
  • the surfactant and the carbon nanotubes are dissolved and dispersed in ethanol to obtain a second liquid.
  • Step S3 mixing the first liquid and the second liquid in proportion to obtain a mixed liquid.
  • the volume ratio of the first liquid to the second liquid is: 10:1 to 1:10, and the ratio of the polystyrene resin microspheres to the carbon nanotubes formed in the subsequent step is adjusted by this ratio to adjust The mechanical properties and electrical properties of the finally obtained carbon nanotube conductive microspheres.
  • the weight percentage of the dispersant, the surfactant, and the carbon nanotubes is: dispersant ⁇ 10%, surfactant ⁇ 10%, 80% ⁇ carbon nanotube ⁇ 100%.
  • the dispersing agent is polyvinyl alcohol (PVA);
  • the surfactant is cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), sodium lauryl sulfate ( SLS), one or more of sodium dodecylbenzene sulfonate (SDBS).
  • CTAB cetyltrimethylammonium bromide
  • SDS sodium dodecyl sulfate
  • SLS sodium lauryl sulfate
  • SDBS sodium dodecylbenzene sulfonate
  • Step S4 dissolving the mixed liquid in a polar solvent such as ethanol to obtain a slurry to be spray dried.
  • the volume ratio of the mixed liquid to the polar solvent is 1:10 to 10:1, and the viscosity of the slurry to be spray-dried is adjusted by this ratio so that the viscosity of the slurry to be spray-dried is From 0.1 cp to 50 cp, the viscosity of the slurry to be spray dried is preferably ⁇ 10 cp.
  • Step S5 placing the slurry to be spray dried into a spray granulation dryer, controlling the inlet temperature of the spray granulation dryer to be 150 ° C to 500 ° C, the outlet temperature at 0 ° C to 200 ° C, and the rotation speed of the turntable at 50 rpm. ⁇ 150 rpm, and pressure, 90% or more of the polar solvent is rapidly evaporated in 20 seconds, the slurry is initially dried, and the dispersing agent acts as a binder to styrene monomer, a crosslinking agent, The initiator and the carbon nanotubes are bonded and formed into a carbon nanotube conductive microsphere prototype.
  • the step S5 is spray granulated by a spray granulation dryer, and the slurry to be spray dried is sprayed into a granulation tower of a spray granulation dryer, and the slurry to be spray dried is sprayed under the action of spray hot air.
  • the material is dried and agglomerated to obtain a spherical agglomerate, that is, a carbon nanotube conductive microsphere prototype, and in the carbon nanotube conductive microsphere prototype, the styrene monomer, the crosslinking agent, the initiator, and the carbon nanotube are mixed with each other. Miscellaneous.
  • the advantage of using a spray granulation dryer is that the drying speed is fast, and can be adjusted by adjusting the viscosity of the slurry to be spray dried, the inlet temperature of the spray granulator, the outlet temperature, the rotation speed of the turntable, the pressure, the fan speed and the like.
  • the particle size and particle size distribution of the carbon nanotube conductive microspheres have better process adjustability.
  • Step S6 heating to 75 ° C ⁇ 85 ° C and holding for 4 h ⁇ 5 h, the styrene monomer, the crosslinking agent, and the initiator in the prototype of the carbon nanotube conductive microspheres are fully reacted and crosslinked to obtain conductive carbon nanotubes. Microspheres and improve the cohesion and mechanical strength of carbon nanotube conductive microspheres.
  • the above method allows the styrene monomer, the crosslinking agent, and the initiator to crosslink to form polymer microspheres while doping the carbon nanotubes into the polymer microspheres instead of the prior art.
  • the two-step method is firstly used to prepare plastic or resin microspheres and then plated with conductive metal, so it can be called “one-step method", which can simplify the process, reduce the process, and save cost; the carbon nanotubes act as a conductive medium to conduct electricity,
  • the polymer microspheres play a supporting role and are deformed when subjected to hot pressing.
  • the carbon nanotubes are doped in the polymer microspheres, the influence of the thermal mismatch between the carbon nanotubes and the resin can be alleviated, and the conductive microspheres are electrically conductive. Performance; In addition, the entire preparation process without heavy metal salts can reduce biological toxicity and not pollute the environment.
  • the present invention also provides a conductive adhesive, comprising a rubber material, and carbon nanotube conductive microspheres dispersed in the rubber material.
  • the rubber material may be selected from ACF conductive rubber materials; the carbon nanotube conductive microspheres are prepared by the above method, that is, the carbon nanotubes are doped in the polymer microspheres, and the carbon nanotube conductive microspheres are easy to manufacture, and the cost is relatively high. Low, less affected by thermal mismatch, excellent electrical conductivity, and does not pollute the environment.
  • the method for preparing the carbon nanotube conductive microsphere of the present invention does not need to separately prepare plastic or resin microspheres and conductive, compared with the existing two-step method of preparing plastic or resin microspheres and then plating conductive metal.
  • Layer but in a spray granulation manner, the styrene monomer, the crosslinking agent, and the initiator are cross-linked to form polymer microspheres while doping the carbon nanotubes into the polymer microspheres, only one step
  • Carbon nanotube conductive microspheres using carbon nanotubes as a conductive medium can be prepared, which can simplify the process, reduce the process, and save cost; the carbon nanotubes are doped in the polymer microspheres, which can alleviate the thermal mismatch between the carbon nanotubes and the resin.
  • the effect of ensuring the electrical conductivity of the conductive microspheres; and the entire preparation process without heavy metal salts, can reduce biological toxicity, and does not pollute the environment.
  • the conductive adhesive of the present invention comprises the carbon nanotube conductive microspheres prepared by the method for preparing the carbon nanotube conductive microspheres, and the carbon nanotube conductive microspheres are easy to manufacture, the cost is low, and the influence of the thermal mismatch is small. It has excellent electrical conductivity and does not pollute the environment.

Abstract

一种碳纳米管导电微球的制备方法及导电胶,该碳纳米管导电微球的制备方法与现有的先制备塑料或树脂微球再镀导电金属的两步法相比较,不需要分别制备塑料或树脂微球与导电层,而是以喷雾造粒的方式使得苯乙烯单体、交联剂、及引发剂发生交联反应形成聚合物微球的同时将碳纳米管掺杂在聚合物微球内,仅需一步便制备出以碳纳米管作为导电介质的碳纳米管导电微球,能够简化工艺,减少工序,节约成本;碳纳米管掺杂于聚合物微球内,能够减轻碳纳米管与树脂热失配的影响,保证导电微球的导电性能;且整个制备过程无重金属盐,能够降低生物毒性,不污染环境。

Description

碳纳米管导电微球的制备方法及导电胶 技术领域
本发明涉及显示器件技术领域,尤其涉及一种碳纳米管导电微球的制备方法及导电胶。
背景技术
目前,薄膜晶体管液晶显示器(Thin Film Transistor Liquid Crystal Display,TFT-LCD)多采用掺杂有导电金球的框胶来导通上、下基板,形成单向导电通路。当上、下基板贴合后,包裹在导电金球外层的金属,能够传输电子起到导通作用,导电金球的内核为具有弹性的树脂或塑料,能够发生形变,缓和上、下基板贴合后的压力。
在现有技术中,应用于TFT-LCD框胶或异方性导电胶(Anisotropic Conductive Film,ACF)内的导电金球的制备方法一般先通过聚合反应、热固化等方法制备出塑料或树脂微球作为母球,再在塑料或树脂微球表面镀导电金属形成导电层。此类制备方法存在几点不足:
(1)、需要先制备塑料或树脂微球再镀导电金属,业内通常称为“两步法”,涉及到微球的制备与粒径控制、以及导电金属的电镀沉积工艺等,工艺比较繁琐、复杂;
(2)、塑料或树脂微球的材料为高分子聚合物,与导电金属层的热收缩率相差较大,容易在制备过程中产生热应力,导致导电金属层和微球表面热失配,造成导电金属层脱离剥落而影响导电金球的导电性能;
(3)、导电金属一般为金(Au)、银(Ag)、铝(Al)、铜(Cu)、镍(Ni)等,Cu、Al、Ni价格便宜,导电性好但容易氧化,影响导电性;Ag具有良好导电性以及化学稳定性,但容易在潮湿环境下出现电子迁出的现象;Au在镀膜工艺时所使用的金盐大多为氰化物,毒性非常大,镀金过程中容易产生重金属污染,并且Au为稀有贵金属,成本很高。
随着显示技术的发展,出现了以碳纳米管(Carbon nanotube,CNT)作为导电介质的导电球。专利CN201510662918.7介绍了一种利用CNT包覆树脂微球的导电微球的制备方法,该方法本质上仍为两步法,工艺较复杂。
发明内容
本发明的目的在于提供一种碳纳米管导电微球的制备方法,能够简化 工艺,减少工序,节约成本,减轻热失配的影响,保证导电微球的导电性能,且不污染环境。
本发明的另一目的在于提供一种导电胶,其内的碳纳米管导电微球易于制作,成本较低,受热失配的影响较小,导电性能优良,且不污染环境。
为实现上述目的,本发明首先提供一种碳纳米管导电微球的制备方法,包括如下步骤:
步骤S1、提供苯乙烯单体、交联剂、及引发剂,将所述苯乙烯单体、交联剂、及引发剂按比例混合,得到第一种液体;
步骤S2、提供分散剂、表面活性剂、及碳纳米管,将所述分散剂、表面活性剂、及碳纳米管溶解、分散在乙醇中,得到第二种液体;
步骤S3、将第一种液体与第二种液体按比例混合,得到混合液体;
步骤S4、将所述混合液体溶于极性溶剂中,得到待喷雾干燥的浆料;
步骤S5、将所述待喷雾干燥的浆料放入喷雾造粒干燥机中,控制喷雾造粒干燥机的入口温度、出口温度、压力、及转盘转速,使所述极性溶剂快速蒸发,所述分散剂将苯乙烯单体、交联剂、引发剂、及碳纳米管粘结成型为碳纳米管导电微球雏形;
步骤S6、升温并保温,使所述碳纳米管导电微球雏形内的苯乙烯单体、交联剂、及引发剂充分反应交联,得到碳纳米管导电微球。
所述步骤S1中,苯乙烯单体、交联剂、及引发剂三者的重量百分比为:60%≤苯乙烯单体≤90%,10%≤交联剂≤40%,引发剂≤5%;
所述交联剂为二乙烯基苯、过氧化物交联剂、硅烷类交联剂中的一种或多种;
所述引发剂为亚硫酸氢钠、过硫酸铵、过硫酸钾、过氧化二苯甲酰、过氧化苯甲酸叔丁酯、偶氮二异丁氰中的一种或多种。
所述过氧化物交联剂为过氧化二异丙苯、过氧化苯甲酰、二叔丁基过氧化物、过氧化氢二异丙苯中的一种或多种;
所述硅烷类交联剂为乙烯基三乙氧基硅烧、乙烯基三乙氧基硅烷中的一种或二者的混合。
所述步骤S2中,分散剂、表面活性剂、及碳纳米管三者的重量百分比为:分散剂≤10%、表面活性剂≤10%、80%≤碳纳米管<100%。
所述分散剂为聚乙烯醇;
所述表面活性剂为十六烷基三甲基溴化铵、十二烷基硫酸钠、月桂基硫酸钠、十二烷基苯磺酸钠中的一种或多种。
所述步骤S3中,第一种液体与第二种液体的体积比为:10:1~1:10。
所述步骤S4中,所述极性溶剂为乙醇;
所述混合液体与极性溶剂的体积比为:1:10~10:1;
待喷雾干燥的浆料的粘度为:0.1cp~50cp。
所述待喷雾干燥的浆料的粘度≤10cp。
所述步骤S5中,喷雾造粒干燥机的入口温度为150℃~500℃,出口温度为0℃~200℃,转盘转速为50rpm~150rpm;
所述步骤S6中,升温后的温度为75℃~85℃,保温的时间为4h~5h。
本发明还提供一种导电胶,包括经上述碳纳米管导电微球的制备方法所制备出的碳纳米管导电微球。
本发明还提供一种碳纳米管导电微球的制备方法,包括如下步骤:
步骤S1、提供苯乙烯单体、交联剂、及引发剂,将所述苯乙烯单体、交联剂、及引发剂按比例混合,得到第一种液体;
步骤S2、提供分散剂、表面活性剂、及碳纳米管,将所述分散剂、表面活性剂、及碳纳米管溶解、分散在乙醇中,得到第二种液体;
步骤S3、将第一种液体与第二种液体按比例混合,得到混合液体;
步骤S4、将所述混合液体溶于极性溶剂中,得到待喷雾干燥的浆料;
步骤S5、将所述待喷雾干燥的浆料放入喷雾造粒干燥机中,控制喷雾造粒干燥机的入口温度、出口温度、压力、及转盘转速,使所述极性溶剂快速蒸发,所述分散剂将苯乙烯单体、交联剂、引发剂、及碳纳米管粘结成型为碳纳米管导电微球雏形;
步骤S6、升温并保温,使所述碳纳米管导电微球雏形内的苯乙烯单体、交联剂、及引发剂充分反应交联,得到碳纳米管导电微球;
其中,所述步骤S1中,苯乙烯单体、交联剂、及引发剂三者的重量百分比为:60%≤苯乙烯单体≤90%,10%≤交联剂≤40%,引发剂≤5%;
所述交联剂为二乙烯基苯、过氧化物交联剂、硅烷类交联剂中的一种或多种;
所述引发剂为亚硫酸氢钠、过硫酸铵、过硫酸钾、过氧化二苯甲酰、过氧化苯甲酸叔丁酯、偶氮二异丁氰中的一种或多种;
其中,所述步骤S2中,分散剂、表面活性剂、及碳纳米管三者的重量百分比为:分散剂≤10%、表面活性剂≤10%、80%≤碳纳米管<100%。
本发明的有益效果:本发明提供的一种碳纳米管导电微球的制备方法,与现有的先制备塑料或树脂微球再镀导电金属的两步法相比较,不需要分别制备塑料或树脂微球与导电层,而是以喷雾造粒的方式使得苯乙烯单体、交联剂、及引发剂发生交联反应形成聚合物微球的同时将碳纳米管掺杂在 聚合物微球内,仅需一步便制备出以碳纳米管作为导电介质的碳纳米管导电微球,能够简化工艺,减少工序,节约成本;碳纳米管掺杂于聚合物微球内,能够减轻碳纳米管与树脂热失配的影响,保证导电微球的导电性能;且整个制备过程无重金属盐,能够降低生物毒性,不污染环境。本发明提供的一种导电胶,包括经上述碳纳米管导电微球的制备方法所制备出的碳纳米管导电微球,该碳纳米管导电微球易于制作,成本较低,受热失配的影响较小,导电性能优良,且不污染环境。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为本发明的碳纳米管导电微球的制备方法的流程图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅1,本发明首先提供一种碳纳米管导电微球的制备方法,包括如下步骤:
步骤S1、提供苯乙烯单体、交联剂、及引发剂,将所述苯乙烯单体、交联剂、及引发剂按比例混合,得到第一种液体。
具体地,所述苯乙烯单体、交联剂、及引发剂三者的重量百分比为:60%≤苯乙烯单体≤90%,10%≤交联剂≤40%,引发剂≤5%。
所述交联剂为二乙烯基苯(DVB)、过氧化物交联剂、硅烷类交联剂中的一种或多种。进一步地,所述过氧化物交联剂为过氧化二异丙苯(DCP)、过氧化苯甲酰(BPO)、二叔丁基过氧化物(DTBP)、过氧化氢二异丙苯(DBHP)中的一种或多种;所述硅烷类交联剂为乙烯基三乙氧基硅烧(例如美国联合碳化物公司的A1522)、乙烯基三乙氧基硅烷(例如美国联合碳化物公司的A151)中的一种或二者的混合。
所述引发剂为亚硫酸氢钠(NaHSO3)、过硫酸铵((NH4)2S2O8)、过硫酸钾(K2S2O8)、过氧化二苯甲酰(BPO)、过氧化苯甲酸叔丁酯(BPB)、偶氮二异丁氰(AIBN)中的一种或多种。
步骤S2、提供分散剂、表面活性剂、及碳纳米管,将所述分散剂、表 面活性剂、及碳纳米管溶解、分散在乙醇中,得到第二种液体。
步骤S3、将第一种液体与第二种液体按比例混合,得到混合液体。
具体地,第一种液体与第二种液体的体积比为:10:1~1:10,通过这个比例来调节后续步骤中所形成的聚苯乙烯树脂微球与碳纳米管的比例以调节最终制得的碳纳米管导电微球的力学性能和电学性能。
所述分散剂、表面活性剂、及碳纳米管三者的重量百分比为:分散剂≤10%、表面活性剂≤10%、80%≤碳纳米管<100%。
进一步地,所述分散剂为聚乙烯醇(PVA);所述表面活性剂为十六烷基三甲基溴化铵(CTAB)、十二烷基硫酸钠(SDS)、月桂基硫酸钠(SLS)、十二烷基苯磺酸钠(SDBS)中的一种或多种。
步骤S4、将所述混合液体溶于乙醇等极性溶剂中,得到待喷雾干燥的浆料。
具体地,所述混合液体与极性溶剂的体积比为:1:10~10:1,通过这个比例来调节所述待喷雾干燥的浆料的粘度,使得待喷雾干燥的浆料的粘度为:0.1cp~50cp,优选待喷雾干燥的浆料的粘度≤10cp。
步骤S5、将所述待喷雾干燥的浆料放入喷雾造粒干燥机中,控制喷雾造粒干燥机的入口温度在150℃~500℃、出口温度在0℃~200℃、转盘转速在50rpm~150rpm、及压力,使90%以上的极性溶剂在20秒内快速蒸发,所述浆料初步干燥,所述分散剂起到粘结剂的作用而将苯乙烯单体、交联剂、引发剂、及碳纳米管粘结成型为碳纳米管导电微球雏形。
该步骤S5通过喷雾造粒干燥机来进行喷雾造粒,将所述待喷雾干燥的浆料喷入喷雾造粒干燥机的造粒塔,在喷雾热风的作用下,所述待喷雾干燥的浆料干燥、团聚,从而得到球状团粒,即碳纳米管导电微球雏形,且在碳纳米管导电微球雏形中,苯乙烯单体、交联剂、引发剂、及碳纳米管是相互混合掺杂的。
使用喷雾造粒干燥机的优势在于干燥速度快,可通过调节所述待喷雾干燥的浆料的粘度、喷雾造粒干燥机的入口温度、出口温度、转盘转速、压力、风机速度等参数来调节碳纳米管导电微球雏形的粒径大小、粒径分布等,工艺可调节性能较好。
步骤S6、升温至75℃~85℃并保温4h~5h,使所述碳纳米管导电微球雏形内的苯乙烯单体、交联剂、及引发剂充分反应交联,得到碳纳米管导电微球,并提高碳纳米管导电微球的内聚力及机械强度。
上述方法使得苯乙烯单体、交联剂、及引发剂发生交联反应形成聚合物微球的同时将碳纳米管掺杂在聚合物微球内,而不是像现有技术那样应 用两步法先制备塑料或树脂微球再镀导电金属,因此可以称为“一步法”,能够简化工艺,减少工序,节约成本;所述碳纳米管作为导电介质起到导电作用,所述聚合物微球起到支撑作用并在受热压时产生变形,由于碳纳米管是掺杂在聚合物微球内,能够减轻碳纳米管与树脂热失配的影响,保证导电微球的导电性能;另外,整个制备过程无重金属盐,能够降低生物毒性,不污染环境。
基于同一发明构思,本发明还提供一种导电胶,包括胶材、及分散在所述胶材内的碳纳米管导电微球。所述胶材可选择ACF导电胶胶材;所述碳纳米管导电微球经上述方法制备,即碳纳米管掺杂在聚合物微球内,该碳纳米管导电微球易于制作,成本较低,受热失配的影响较小,导电性能优良,且不污染环境。
综上所述,本发明的碳纳米管导电微球的制备方法,与现有的先制备塑料或树脂微球再镀导电金属的两步法相比较,不需要分别制备塑料或树脂微球与导电层,而是以喷雾造粒的方式使得苯乙烯单体、交联剂、及引发剂发生交联反应形成聚合物微球的同时将碳纳米管掺杂在聚合物微球内,仅需一步便制备出以碳纳米管作为导电介质的碳纳米管导电微球,能够简化工艺,减少工序,节约成本;碳纳米管掺杂于聚合物微球内,能够减轻碳纳米管与树脂热失配的影响,保证导电微球的导电性能;且整个制备过程无重金属盐,能够降低生物毒性,不污染环境。本发明的导电胶,包括经上述碳纳米管导电微球的制备方法所制备出的碳纳米管导电微球,该碳纳米管导电微球易于制作,成本较低,受热失配的影响较小,导电性能优良,且不污染环境。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (17)

  1. 一种碳纳米管导电微球的制备方法,包括如下步骤:
    步骤S1、提供苯乙烯单体、交联剂、及引发剂,将所述苯乙烯单体、交联剂、及引发剂按比例混合,得到第一种液体;
    步骤S2、提供分散剂、表面活性剂、及碳纳米管,将所述分散剂、表面活性剂、及碳纳米管溶解、分散在乙醇中,得到第二种液体;
    步骤S3、将第一种液体与第二种液体按比例混合,得到混合液体;
    步骤S4、将所述混合液体溶于极性溶剂中,得到待喷雾干燥的浆料;
    步骤S5、将所述待喷雾干燥的浆料放入喷雾造粒干燥机中,控制喷雾造粒干燥机的入口温度、出口温度、压力、及转盘转速,使所述极性溶剂快速蒸发,所述分散剂将苯乙烯单体、交联剂、引发剂、及碳纳米管粘结成型为碳纳米管导电微球雏形;
    步骤S6、升温并保温,使所述碳纳米管导电微球雏形内的苯乙烯单体、交联剂、及引发剂充分反应交联,得到碳纳米管导电微球。
  2. 如权利要求1所述的碳纳米管导电微球的制备方法,其中,所述步骤S1中,苯乙烯单体、交联剂、及引发剂三者的重量百分比为:60%≤苯乙烯单体≤90%,10%≤交联剂≤40%,引发剂≤5%;
    所述交联剂为二乙烯基苯、过氧化物交联剂、硅烷类交联剂中的一种或多种;
    所述引发剂为亚硫酸氢钠、过硫酸铵、过硫酸钾、过氧化二苯甲酰、过氧化苯甲酸叔丁酯、偶氮二异丁氰中的一种或多种。
  3. 如权利要求2所述的碳纳米管导电微球的制备方法,其中,所述过氧化物交联剂为过氧化二异丙苯、过氧化苯甲酰、二叔丁基过氧化物、过氧化氢二异丙苯中的一种或多种;
    所述硅烷类交联剂为乙烯基三乙氧基硅烧、乙烯基三乙氧基硅烷中的一种或二者的混合。
  4. 如权利要求1所述的碳纳米管导电微球的制备方法,其中,所述步骤S2中,分散剂、表面活性剂、及碳纳米管三者的重量百分比为:分散剂≤10%、表面活性剂≤10%、80%≤碳纳米管<100%。
  5. 如权利要求4所述的碳纳米管导电微球的制备方法,其中,所述分散剂为聚乙烯醇;
    所述表面活性剂为十六烷基三甲基溴化铵、十二烷基硫酸钠、月桂基 硫酸钠、十二烷基苯磺酸钠中的一种或多种。
  6. 如权利要求1所述的碳纳米管导电微球的制备方法,其中,所述步骤S3中,第一种液体与第二种液体的体积比为:10:1~1:10。
  7. 如权利要求1所述的碳纳米管导电微球的制备方法,其中,所述步骤S4中,所述极性溶剂为乙醇;
    所述混合液体与极性溶剂的体积比为:1:10~10:1;
    待喷雾干燥的浆料的粘度为:0.1cp~50cp。
  8. 如权利要求7所述的碳纳米管导电微球的制备方法,其中,所述待喷雾干燥的浆料的粘度≤10cp。
  9. 如权利要求1所述的碳纳米管导电微球的制备方法,其中,所述步骤S5中,喷雾造粒干燥机的入口温度为150℃~500℃,出口温度为0℃~200℃,转盘转速为50rpm~150rpm;
    所述步骤S6中,升温后的温度为75℃~85℃,保温的时间为4h~5h。
  10. 一种导电胶,包括经权利要求1所述的碳纳米管导电微球的制备方法所制备出的碳纳米管导电微球。
  11. 一种碳纳米管导电微球的制备方法,包括如下步骤:
    步骤S1、提供苯乙烯单体、交联剂、及引发剂,将所述苯乙烯单体、交联剂、及引发剂按比例混合,得到第一种液体;
    步骤S2、提供分散剂、表面活性剂、及碳纳米管,将所述分散剂、表面活性剂、及碳纳米管溶解、分散在乙醇中,得到第二种液体;
    步骤S3、将第一种液体与第二种液体按比例混合,得到混合液体;
    步骤S4、将所述混合液体溶于极性溶剂中,得到待喷雾干燥的浆料;
    步骤S5、将所述待喷雾干燥的浆料放入喷雾造粒干燥机中,控制喷雾造粒干燥机的入口温度、出口温度、压力、及转盘转速,使所述极性溶剂快速蒸发,所述分散剂将苯乙烯单体、交联剂、引发剂、及碳纳米管粘结成型为碳纳米管导电微球雏形;
    步骤S6、升温并保温,使所述碳纳米管导电微球雏形内的苯乙烯单体、交联剂、及引发剂充分反应交联,得到碳纳米管导电微球;
    其中,所述步骤S1中,苯乙烯单体、交联剂、及引发剂三者的重量百分比为:60%≤苯乙烯单体≤90%,10%≤交联剂≤40%,引发剂≤5%;
    所述交联剂为二乙烯基苯、过氧化物交联剂、硅烷类交联剂中的一种或多种;
    所述引发剂为亚硫酸氢钠、过硫酸铵、过硫酸钾、过氧化二苯甲酰、过氧化苯甲酸叔丁酯、偶氮二异丁氰中的一种或多种;
    其中,所述步骤S2中,分散剂、表面活性剂、及碳纳米管三者的重量百分比为:分散剂≤10%、表面活性剂≤10%、80%≤碳纳米管<100%。
  12. 如权利要求11所述的碳纳米管导电微球的制备方法,其中,所述过氧化物交联剂为过氧化二异丙苯、过氧化苯甲酰、二叔丁基过氧化物、过氧化氢二异丙苯中的一种或多种;
    所述硅烷类交联剂为乙烯基三乙氧基硅烧、乙烯基三乙氧基硅烷中的一种或二者的混合。
  13. 如权利要求11所述的碳纳米管导电微球的制备方法,其中,所述分散剂为聚乙烯醇;
    所述表面活性剂为十六烷基三甲基溴化铵、十二烷基硫酸钠、月桂基硫酸钠、十二烷基苯磺酸钠中的一种或多种。
  14. 如权利要求11所述的碳纳米管导电微球的制备方法,其中,所述步骤S3中,第一种液体与第二种液体的体积比为:10:1~1:10。
  15. 如权利要求11所述的碳纳米管导电微球的制备方法,其中,所述步骤S4中,所述极性溶剂为乙醇;
    所述混合液体与极性溶剂的体积比为:1:10~10:1;
    待喷雾干燥的浆料的粘度为:0.1cp~50cp。
  16. 如权利要求15所述的碳纳米管导电微球的制备方法,其中,所述待喷雾干燥的浆料的粘度≤10cp。
  17. 如权利要求11所述的碳纳米管导电微球的制备方法,其中,所述步骤S5中,喷雾造粒干燥机的入口温度为150℃~500℃,出口温度为0℃~200℃,转盘转速为50rpm~150rpm;
    所述步骤S6中,升温后的温度为75℃~85℃,保温的时间为4h~5h。
PCT/CN2017/088194 2017-05-09 2017-06-14 碳纳米管导电微球的制备方法及导电胶 WO2018205340A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/542,656 US10435302B2 (en) 2017-05-09 2017-06-14 Manufacturing method of carbon nanotube conductive microspheres and conductive glue

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710322106.7A CN107082836B (zh) 2017-05-09 2017-05-09 碳纳米管导电微球的制备方法及导电胶
CN201710322106.7 2017-05-09

Publications (1)

Publication Number Publication Date
WO2018205340A1 true WO2018205340A1 (zh) 2018-11-15

Family

ID=59612733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088194 WO2018205340A1 (zh) 2017-05-09 2017-06-14 碳纳米管导电微球的制备方法及导电胶

Country Status (3)

Country Link
US (2) US10435302B2 (zh)
CN (1) CN107082836B (zh)
WO (1) WO2018205340A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109847664B (zh) * 2019-04-09 2021-11-12 贵州师范大学 一种导电热膨胀型微胶囊及其制备方法
CN114736476B (zh) * 2022-03-27 2023-06-23 宁波大学 一种聚乙烯醇导电微孔发泡材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080131685A1 (en) * 2006-11-16 2008-06-05 Korea Institute Of Science And Technology Microcapsule-conductive particle complex, preparation method thereof and anisotropic conductive adhesive film using the same
CN101850242A (zh) * 2010-06-17 2010-10-06 浙江大学 苯乙烯-二乙烯基苯-碳纳米管共聚色谱填料的制备方法
CN105199641A (zh) * 2015-10-14 2015-12-30 深圳市华星光电技术有限公司 碳纳米管导电球的制备方法与碳纳米管球导电胶的制备方法
CN105585728A (zh) * 2015-11-26 2016-05-18 中国科学院金属研究所 一种碳纳米管包覆聚合物微球的方法
CN106520008A (zh) * 2016-10-11 2017-03-22 深圳市华星光电技术有限公司 碳纳米管导电球及其制备方法与导电胶及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6916536B1 (en) * 2001-09-20 2005-07-12 Christopher R. Hammen Composites incorporating covalently bonded interstitial polymer resins
US7153903B1 (en) * 2002-06-19 2006-12-26 The Board Of Regents Of The University Of Oklahoma Carbon nanotube-filled composites prepared by in-situ polymerization
US20060100368A1 (en) * 2004-11-08 2006-05-11 Park Edward H Elastomer gum polymer systems
CN101245148B (zh) * 2007-02-13 2012-05-23 镇江爱邦电子科技有限公司 单分散性高性能导电银颗粒
CN101245120B (zh) * 2008-03-17 2010-09-22 烟台大学 粒径均一的交联聚合物微球的制备方法
CN104925778B (zh) * 2014-03-21 2017-05-03 中国科学院苏州纳米技术与纳米仿生研究所 碳纳米管微球及其制备方法与应用
CN105060268B (zh) * 2015-07-09 2017-06-16 河海大学 一种碳纳米管微球的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080131685A1 (en) * 2006-11-16 2008-06-05 Korea Institute Of Science And Technology Microcapsule-conductive particle complex, preparation method thereof and anisotropic conductive adhesive film using the same
CN101850242A (zh) * 2010-06-17 2010-10-06 浙江大学 苯乙烯-二乙烯基苯-碳纳米管共聚色谱填料的制备方法
CN105199641A (zh) * 2015-10-14 2015-12-30 深圳市华星光电技术有限公司 碳纳米管导电球的制备方法与碳纳米管球导电胶的制备方法
CN105585728A (zh) * 2015-11-26 2016-05-18 中国科学院金属研究所 一种碳纳米管包覆聚合物微球的方法
CN106520008A (zh) * 2016-10-11 2017-03-22 深圳市华星光电技术有限公司 碳纳米管导电球及其制备方法与导电胶及其制备方法

Also Published As

Publication number Publication date
CN107082836B (zh) 2019-12-24
US20180327267A1 (en) 2018-11-15
CN107082836A (zh) 2017-08-22
US20200002173A1 (en) 2020-01-02
US10435302B2 (en) 2019-10-08

Similar Documents

Publication Publication Date Title
US11024873B2 (en) Lithium-ion battery conductive bonding agent and production method thereof, lithium-ion battery electrode plate and production method thereof, and lithium-ion battery
KR102105380B1 (ko) 리튬이온전지용 수성 바인더, 제조방법 및 그 용도
JP5563232B2 (ja) コアシェル型有機無機複合体粒子の製造方法、コアシェル型有機無機複合体粒子、および導電性微粒子
CN102658071B (zh) 一种用于各向异性导电胶膜的导电金球的制备方法
KR102050199B1 (ko) 그래핀볼 전도성 접착제의 제조방법 및 상기 그래핀 볼 전도성 접착제
KR100787381B1 (ko) 미세 캡슐-도전성 입자 복합체, 이의 제조 방법 및 이를이용한 이방 도전성 접착 필름
CN110408255B (zh) 一种高拉伸强度吸波材料及其制造方法
WO2020143162A1 (zh) 鞋底用超轻石墨烯橡胶发泡胶粒及其制备方法
TW525193B (en) Conductive, multilayer-structured resin particles and anisotropic conductive adhesives using the same
WO2018205340A1 (zh) 碳纳米管导电微球的制备方法及导电胶
WO2016169190A1 (zh) 导电胶组合物及其制备方法、封框胶、以及显示面板
CN107342117B (zh) 各向异性导电膜及其制作方法
JP2013084351A (ja) 電気化学素子電極用複合粒子、電気化学素子電極材料、及び電気化学素子電極
CN113555558A (zh) 一种乳液型粘结剂和包括该粘结剂的锂离子电池
CN106520008A (zh) 碳纳米管导电球及其制备方法与导电胶及其制备方法
KR101713015B1 (ko) 그래핀이 코팅된 도전입자 및 이를 포함하는 도전 재료
US20210340333A1 (en) Anisotropic conductive film, display panel, and manufacturing method thereof
JP2006216388A (ja) 導電性微粒子及び異方性導電材料
CN108962438B (zh) 一种导电球及其制作方法、液晶显示装置
CN111564236B (zh) 导电浆料、制备方法及导电薄膜制备方法
JP5535507B2 (ja) 導電性粒子、及びその製造方法
WO2022002278A1 (zh) 一种用于异方性导电胶膜的导电微球及其制备方法
JP2006196411A (ja) 導電性微粒子及び異方性導電材料
JP4957871B2 (ja) 架橋ポリマー粒子及びその製造方法
JP2006107881A (ja) 導電性微粒子及び異方性導電材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15542656

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908797

Country of ref document: EP

Kind code of ref document: A1