WO2018201170A1 - Procédé permettant d'étalonner un microscope à force atomique électrostatique hétérodyne - Google Patents

Procédé permettant d'étalonner un microscope à force atomique électrostatique hétérodyne Download PDF

Info

Publication number
WO2018201170A1
WO2018201170A1 PCT/AT2018/050008 AT2018050008W WO2018201170A1 WO 2018201170 A1 WO2018201170 A1 WO 2018201170A1 AT 2018050008 W AT2018050008 W AT 2018050008W WO 2018201170 A1 WO2018201170 A1 WO 2018201170A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplitude
sample
measuring probe
signal
frequency
Prior art date
Application number
PCT/AT2018/050008
Other languages
German (de)
English (en)
Inventor
Georg GRAMSE
Original Assignee
Universität Linz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universität Linz filed Critical Universität Linz
Publication of WO2018201170A1 publication Critical patent/WO2018201170A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/46SCM [Scanning Capacitance Microscopy] or apparatus therefor, e.g. SCM probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/002Details
    • G01B3/008Arrangements for controlling the measuring force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q40/00Calibration, e.g. of probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/32AC mode
    • G01Q60/34Tapping mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/04Fine scanning or positioning
    • G01Q10/06Circuits or algorithms therefor
    • G01Q10/065Feedback mechanisms, i.e. wherein the signal for driving the probe is modified by a signal coming from the probe itself
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information

Definitions

  • the invention relates to a method for calibrating a heterodyne electrostatic force microscope with a sample holder and a probe opposite the sample receiver, which is subjected to an amplitude-modulated, high-frequency alternating voltage, wherein the vibration of the probe is detected by a laser detector and its output signal in amplifier is supplied to provide a dependent of the capacitance gradient between the sample and the probe signal component.
  • Amplitude and fcamer mean the carrier frequency of the AC voltage of the signal generator and fmod mean the frequency of the amplitude modulation.
  • Probe in the applied alternating electric field cause a vibration of the probe.
  • These force-dependent oscillations of the probe are detected by a laser detector and converted into an electrical signal which is fed to a lock-in amplifier to filter out signal components dependent on specific force effects, in particular those in the direction z of the distance between probe and sample electrostatic see force components that are proportional to the capacitance gradient dC / dz at the carrier frequency feamer.
  • the signal supply to the probe in high-frequency measurements presents difficulties, because increasing with increasing frequency losses and reflections in the field of signal supply to the probe lasting influence the vibration excitation of the probe and thus the measurement result, especially in high-frequency measurements.
  • the object of the invention is thus to calibrate a heterodyne electrostatic force microscope with the aid of a comparatively simple method such that losses and reflections of the amplitude-modulated, high-frequency voltage signal provided for acting on the measuring probe are largely compensated.
  • the invention solves the problem set by the fact that the amplitude of the capacitance gradient duen between sample and probe dependent signal component is controlled by controlling the amplitude of the high frequency AC voltage of the signal generator to a constant value.
  • the amplitude Vo of the modulated, high-frequency AC voltage of the signal generator can be used as a manipulated variable in a simple manner, so that the amplitude of its high-frequency output voltage in response to the respective voltage frequency is changed such that this amplitude changes the high-frequency output voltage, the frequency at a corresponding control of the signal generator - largely compensate for the conditional influences on the excitation signal for the measuring probe in the area of the signal feed to the measuring probe.
  • the signal generator for measuring a calibration sample with a uniform, planar surface the signal generator is operated with different frequencies for acting on the measuring probe that the Amplitude of the dependent of the capacitance gradient between calibration and probe signal component of the lock-in amplifier is set by the amplitude of the AC voltage of the signal generator as a manipulated variable to a predetermined value, that these individual frequencies assigned manipulated variables are stored and that the signal generator for measuring samples frequency-dependent is operated with the stored manipulated variables.
  • the capacitance gradient, and thus the electrostatic force, dependent on the distance of the probe tip from the surface of the calibration sample must be constant, the differences in the capacitance gradient or the effective electrostatic force measured at different measurement frequencies can Force can only be attributed to the influence of the losses and reflections of the excitation signal in the region of the signal feed to the measuring probe.
  • the signal generator is merely to be controlled such that the amplitude of its output voltage corresponds to the manipulated variable Vo stored at the associated measuring frequency. This procedure will allow adaptation of the sensory sensitivity to all measuring frequencies fcamer and thus achieved a first-order calibration.
  • the probe can be approximated to the calibration sample to change the capacitance between the probe and the calibration probe to tune the fcamer frequencies during the probe approach, using the capacitance gradient dC / dz, which depends on the distance z between the probe and the calibration sample and the carrier frequency fcamer the amplitude of the capacity gradient dependent signal component to measure.
  • the comparison of the measured capacitance gap curve at a low reference frequency fref and at all other frequencies f i results in a transfer function Hi (f) representing the dependence between the capacitance gradient dC / dz at the reference frequency fref and the respective measurement frequency fi.
  • Hi (f) a quadratic dependence of the capacitance gradients related to the reference frequency and the respective measurement frequency fi results in the simplest case, but this dependence on the phase of the measured capacitance gradients can also be higher order or complex.
  • the transfer function Hi (f) determined in each case from the calibration measurements is then used as the basis for the actual measurement in order to extract the calibrated measurement signal.
  • the amplitude of the signal component of the lock-in amplifier dependent on the capacitance gradient between the sample and the measuring probe is fed to a regulator as a controlled variable, which controls the signal generator as a manipulated variable controls.
  • the influence of the losses and reflections of the excitation signal for the measuring probe in the region of the signal supply can be largely compensated for as a function of the amplitude of the signal component of the lock-in amplifier proportional to the capacitance gradient.
  • the heterodynamic electrostatic force microscope comprises a sample receptacle 1 for a sample 2 and a measuring probe 3 which has a probe tip 4, which lies opposite the sample receptacle 1, on a resilient lever 5.
  • the measuring probe 3 is acted upon by a signal generator 6, whose high-frequency alternating voltage is subjected to an amplitude modulation, by means of a modulation stage 7.
  • the signal supply to the measuring probe for example a coaxial cable, is designated by 8.
  • the measuring probe 3 is excited to oscillations, which are detected by a laser detector 9, essentially by a laser transmitter and a photodiode for receiving the laser beam reflected at the measuring probe 3 is formed.
  • an electrically uniform calibration sample for example, highly doped silicon, measured with a flat surface with different measurement frequencies using the signal generator 6, the high-frequency AC voltage is subjected to a low-frequency amplitude modulation, we obtain at the output 12 of the lock-in amplifier 10, a signal component 13, whose course according to FIG. 2 does not have, as would be expected, an electrostatic force F which remains constant over the different measuring frequencies according to the signal curve 14 indicated by dot-dashed lines, but has a course deviating greatly in the higher frequency range thereof. These deviations are based on the losses and reflections of the excitation signal in the region of the signal feed 8 to the measuring probe 3 and must be compensated by a calibration.
  • the amplitude of the AC voltage of the signal generator 6 can be changed at each measurement frequency when measuring a calibration sample with a uniform, planar surface so that the signal component 13 at the output 12 of the lock-in amplifier 10 a predetermined Amplitude value according to the course 14 assumes, so that the losses and reflections of the excitation signal in the signal supply 8 are compensated by the change in the amplitude of the AC voltage of the signal generator 6 as a manipulated variable.
  • the respectively required change in the amplitude of the AC voltage of the signal generator 6 can be stored as a manipulated variable for the respective frequency to the Signal generator 6 to be able to control for a subsequent sample measurement at the selected measurement frequency so that it is operated at the stored to this frequency amplitude of the AC voltage.
  • FIG. 3 shows the curve 1 5 of the amplitude of the alternating voltage V of the signal generator 6 for a constant electrostatic force F, to compensate for the influences resulting from FIG. 2 by losses and reflections of the excitation signal in the region of the signal feed 8 at an excitation with a constant alternating voltage amplitude 1 6 of the signal generator 6, which is shown in phantom.
  • the signal generator 6 can thus be controlled via a control device 17 such that the signal generator 6 is operated for each measuring frequency with the amplitude of the alternating voltage stored at this measuring frequency, which largely compensates for the losses and reflections the excitation signal in the signal supply 8 conditional influences on the measurement result is connected.
  • a higher-order calibration due to the nonlinear dependence of the measured capacitance gradient on the disturbing influences is required by taking into account, in an evaluation of the measurement signals, a transfer function Hi (f) which determines the nonlinear dependence between the capacitance gradient measured at a low reference frequency and reflects the capacitance gradient measured at different measurement frequencies fi.
  • the calibration based on a such transfer function Hi (f) leads to a measurement curve 21 whose deviation from the desired course 1 8 very low.
  • Another way to calibrate is to calibrate while measuring a Sample 2.
  • the signal component directly dependent on the capacitance gradient at the output 1 2 of the lock-in amplifier 10 is fed to a controller 22, with the aid of which the signal generator 6 is controlled as a manipulated variable in order to change the amplitude of its AC voltage Amplitude of the proportional to the capacitance gradient signal component to keep constant at a predetermined value, which in turn compensation of the losses and reflections in the signal supply 8 conditional influences on the excitation signal can be compensated.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

L'invention concerne un procédé permettant d'étalonner un microscope à force atomique électrostatique hétérodyne comprenant un porte-échantillon (1) et une sonde de mesure (3) en regard du porte-échantillon (1), laquelle est soumise à une tension alternative haute fréquence modulée en amplitude, les vibrations de la sonde de mesure (3) étant détectées par un détecteur laser (9) et le signal de sortie de celui-ci étant acheminé à un amplificateur à détection synchrone (10) pour produire une composante de signal dépendante de gradients de capacité entre l'échantillon (2) et la sonde de mesure (3). L'invention vise à simplifier les conditions d'étalonnage. À cet effet, l'amplitude de la composante de signal dépendante de gradients de capacité entre l'échantillon (2) et la sonde de mesure (3) est réglée à une valeur constante par une commande de l'amplitude de la tension alternative haute fréquence du générateur de signaux (6).
PCT/AT2018/050008 2017-05-03 2018-05-02 Procédé permettant d'étalonner un microscope à force atomique électrostatique hétérodyne WO2018201170A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50358/2017A AT519893B1 (de) 2017-05-03 2017-05-03 Verfahren zum Kalibrieren eines heterodynen elektrostatischen Kraftmikroskops
ATA50358/2017 2017-05-03

Publications (1)

Publication Number Publication Date
WO2018201170A1 true WO2018201170A1 (fr) 2018-11-08

Family

ID=62245100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2018/050008 WO2018201170A1 (fr) 2017-05-03 2018-05-02 Procédé permettant d'étalonner un microscope à force atomique électrostatique hétérodyne

Country Status (2)

Country Link
AT (1) AT519893B1 (fr)
WO (1) WO2018201170A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112748153A (zh) * 2021-01-07 2021-05-04 中国人民大学 振幅调制静电力显微术测量电学特性的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10293137A (ja) * 1997-04-18 1998-11-04 Nikon Corp 走査型静電容量顕微鏡および静電容量測定装置
JP2002195928A (ja) * 2000-10-18 2002-07-10 Nec Corp 走査型プローブ顕微鏡、走査用プローブ及び走査型プローブ顕微鏡を用いた測定方法
JP2013053877A (ja) * 2011-09-01 2013-03-21 Shimadzu Corp 原子間力顕微鏡におけるカンチレバー励振方法及び原子間力顕微鏡

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3246987B2 (ja) * 1992-09-10 2002-01-15 キヤノン株式会社 マルチプローブ制御回路を具備する情報処理装置
US5948972A (en) * 1994-12-22 1999-09-07 Kla-Tencor Corporation Dual stage instrument for scanning a specimen
DE19718799A1 (de) * 1997-05-03 1998-11-05 Peter Heiland Abbildende und/oder in einem Rastermodus abtastende Vorrichtung mit einer Einrichtung zur Kompensation von Abbildungsverschlechterungen, die durch Umgebungseinflüsse verursacht werden
US6185991B1 (en) * 1998-02-17 2001-02-13 Psia Corporation Method and apparatus for measuring mechanical and electrical characteristics of a surface using electrostatic force modulation microscopy which operates in contact mode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10293137A (ja) * 1997-04-18 1998-11-04 Nikon Corp 走査型静電容量顕微鏡および静電容量測定装置
JP2002195928A (ja) * 2000-10-18 2002-07-10 Nec Corp 走査型プローブ顕微鏡、走査用プローブ及び走査型プローブ顕微鏡を用いた測定方法
JP2013053877A (ja) * 2011-09-01 2013-03-21 Shimadzu Corp 原子間力顕微鏡におけるカンチレバー励振方法及び原子間力顕微鏡

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112748153A (zh) * 2021-01-07 2021-05-04 中国人民大学 振幅调制静电力显微术测量电学特性的方法及装置
CN112748153B (zh) * 2021-01-07 2023-01-10 中国人民大学 振幅调制静电力显微术测量电学特性的方法及装置

Also Published As

Publication number Publication date
AT519893B1 (de) 2020-01-15
AT519893A1 (de) 2018-11-15

Similar Documents

Publication Publication Date Title
EP0272244B1 (fr) Procédé et dispositif pour déterminer les caractéristiques des vibrations et pour alimenter un transducteur piézoélectrique
DE102006033819A1 (de) Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums
DE102006017183A1 (de) Kalibrierungsvorrichtung und Verfahren, wobei ein Impuls für Frequenz-, Phase- und Verzögerungs-Eigenschaften verwendet wird
CH699753A1 (de) Vorrichtung und verfahren zum ausmessen einer kapazität.
DE3200362A1 (de) Pruefeinrichtung zur bestimmung von schwingungseigenschaften
DE3815009C2 (fr)
EP1079203B1 (fr) Surveillance capacitive d'application de colle sur un substrat avec la permittivité imaginaire
EP3521777A1 (fr) Capteur d'impédance et son procédé de fonctionnement
WO2018201170A1 (fr) Procédé permettant d'étalonner un microscope à force atomique électrostatique hétérodyne
DE69222000T2 (de) Instrumente zur Messung der Frequenz und der Stärke von einem Mikrowellensignal
DE2903688A1 (de) Kapazitaetsdifferenz-messer
DE60220431T2 (de) Verfahren zur messung der halbwellenspannung eines optischen modulators des mach-zehnder-typs
DE2521687C3 (de) Meßwertwandler zur kapazitiven Füllstandsmessung
DE2556181C3 (de) Verfahren und Schaltungsanordnung zum Messen der Ganggenauigkeit einer elektronischen Uhr
DE1273680B (de) Messgeraet mit Abtastschaltung
DE2428871A1 (de) Beruehrungsfreie messapparatur
EP1846774B1 (fr) Procede et dispositif pour corriger la reaction de transformateur de mesure sur l'objet a mesurer
DE102010042875A1 (de) Verfahren zur Regelung einer Vorspannung für einen kapazitiven mikromechanischen Ultraschallwandler
WO2020099357A1 (fr) Procédé et unité de commande de démodulation
EP3167551A1 (fr) Dispositif de commande et procédé pour rendre minimales les erreurs de facteur d'échelle d'un capteur de vitesse de rotation
DE941322C (de) Messverfahren zur Dicken- bzw. Abstandsmessung unter Verwendung eines Kondensators, insbesondere eines Plattenkondensators mit beweglichen Platten
DE970798C (de) Anordnung zur Messung von vorzugsweise sehr kleinen Kapazitaeten bzw. Kapazitaetsaenderungen
DE1095525B (de) Verfahren und Vorrichtung zum kontinuierlichen Messen von Querschnittsaenderungen von Strangmaterial, insbesondere von Kunststoffrohren
DE1448372A1 (de) Elektrisches Messinstrument
DE1281564B (de) Verfahren zur Messung des Reflexionsfaktors eines Messobjekts im Mikrowellengebiet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18727130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18727130

Country of ref document: EP

Kind code of ref document: A1