WO2018199642A1 - 금속 트리아민 화합물, 이의 제조방법 및 이를 포함하는 금속 함유 박막증착용 조성물 - Google Patents

금속 트리아민 화합물, 이의 제조방법 및 이를 포함하는 금속 함유 박막증착용 조성물 Download PDF

Info

Publication number
WO2018199642A1
WO2018199642A1 PCT/KR2018/004841 KR2018004841W WO2018199642A1 WO 2018199642 A1 WO2018199642 A1 WO 2018199642A1 KR 2018004841 W KR2018004841 W KR 2018004841W WO 2018199642 A1 WO2018199642 A1 WO 2018199642A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
alkyl
formula
independently
thin film
Prior art date
Application number
PCT/KR2018/004841
Other languages
English (en)
French (fr)
Inventor
김명운
이상익
임상준
채원묵
박정현
이강용
조아라
박중진
임행돈
Original Assignee
(주)디엔에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180047876A external-priority patent/KR102033540B1/ko
Application filed by (주)디엔에프 filed Critical (주)디엔에프
Priority to US16/093,905 priority Critical patent/US11447859B2/en
Priority to JP2018556927A priority patent/JP7246929B2/ja
Priority to CN201880001773.8A priority patent/CN109153692B/zh
Priority to EP18785241.3A priority patent/EP3434683A4/en
Publication of WO2018199642A1 publication Critical patent/WO2018199642A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/003Compounds containing elements of Groups 3 or 13 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table
    • C07F11/005Compounds containing elements of Groups 6 or 16 of the Periodic Table compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges

Definitions

  • the present invention relates to a novel metal triamine compound, a method for preparing the same, and a composition for depositing a metal-containing thin film including the same, and more particularly, a novel metal triamine compound that can be usefully used as a precursor of a metal-containing thin film, and a It relates to a manufacturing method and a metal-containing thin film deposition composition comprising the same and a method for producing a metal-containing thin film using the metal-containing thin film deposition composition of the invention.
  • high dielectric materials having excellent insulation, high dielectric constant and low dielectric loss
  • high-k metal oxide materials have been proposed as alternative dielectric materials for gate or capacitor dielectrics.
  • Group 4 transition metal precursors according to the prior art are not thermally stable at high temperatures, and thus chemical vapor deposition (CVD) and atomic layer deposition (ALD) processes. There was a disadvantage of having a low deposition rate and growth rate in the city.
  • the present inventors have developed a metal-containing thin film deposition precursor having high thermal stability, high volatility, and stable vapor pressure.
  • the present invention provides a metal triamine compound having high volatility, excellent thermal stability, excellent cohesive force, which can be used as a precursor for depositing a metal-containing thin film, and capable of forming a surface-selective thin film, and a method of manufacturing the same.
  • the present invention also provides a metal-containing thin film deposition composition comprising a novel metal triamine compound of the present invention and a method for producing a metal-containing thin film using the same.
  • the present invention is to provide a metal triamine compound having a low activation energy, excellent in reactivity, high volatility, excellent thermal stability, excellent cohesive force as a precursor of metal-containing thin film deposition, and capable of surface selective thin film formation ,
  • the metal triamine compound of the present invention is represented by the following formula (1).
  • M 1 is a Group 13 metal or a lanthanide metal
  • M 2 is a Group 4 transition metal
  • M 3 is a Group 5 transition metal
  • M 4 is a Group 6 transition metal
  • R ' (C1-C7) alkyl
  • R 1 to R 5 are independently of each other hydrogen or (C1-C7) alkyl
  • a 1 is a fused ring comprising a (C 1 -C 7 ) alkyl, NR 6 R 7 , OR 8 , cyclopentadienyl ring or cyclopentadienyl ring;
  • a 2 , A 3 and A 4 are independently of each other a fused ring comprising an NR 6 R 7 , OR 8 , cyclopentadienyl ring or cyclopentadienyl ring;
  • the fused ring including the cyclopentadienyl ring or cyclopentadienyl ring of A 1 , A 2 , A 3 and A 4 may be further substituted with (C 1 -C 7) alkyl or (C 2 -C 7) alkenyl ;
  • R 6 , R 7 And R 8 is independently of each other (C1-C7) alkyl or SiR 9 R 10 R 11 ;
  • R 9 to R 11 are independently of each other (C1-C7) alkyl
  • n is an integer of 0 to 2).
  • the metal triamine compound of Chemical Formula 1 may be preferably represented by the following Chemical Formula 2 or 3.
  • M 1 is B, Al, Ga, In or La
  • R 1 to R 5 are independently of each other a hydrogen atom or (C1-C5) alkyl
  • a 1 is a (C1-C5) alkyl, NR 6 R 7 , OR 8 or cyclopentadienyl ring;
  • R 6 , R 7 And R 8 is independently of each other (C1-C5) alkyl or SiR 9 R 10 R 11 ;
  • R 9 to R 11 are independently of each other (C1-C5) alkyl.
  • the metal triamine compound of Chemical Formula 1 may be represented by the following Chemical Formula 4 or 5.
  • M 2 is Ti, Zr or Hf
  • R 1 to R 5 are independently of each other a hydrogen atom or (C1-C5) alkyl
  • a 2 and A 3 are independently of each other an NR 6 R 7 , OR 8 or cyclopentadienyl ring;
  • R 6 , R 7 And R 8 is independently of each other (C1-C5) alkyl or SiR 9 R 10 R 11 ;
  • R 9 to R 11 are independently of each other (C1-C5) alkyl.
  • Metal triamine compound according to an embodiment of the present invention may be preferably represented by the following formula (4-1) or (4-2).
  • M 2 is Ti, Zr or Hf
  • R 1 to R 3 and R 5 are independently of each other a hydrogen atom or (C1-C5) alkyl
  • a 3 is an NR 6 R 7 or cyclopentadienyl ring
  • R 6 , R 7 And R 8 is independently of each other (C1-C5) alkyl or SiR 9 R 10 R 11 ;
  • R 9 to R 11 are independently of each other (C1-C5) alkyl.
  • R 1 and R 5 are each independently (C 1 -C 3) alkyl
  • R 2 and R 3 Are independently of each other hydrogen or (C1-C3) alkyl
  • R 6 and R 7 are independently of each other (C1-C3) alkyl or SiR 9 R 10 R 11
  • R 9 to R 11 are independently of each other (C1- C3) alkyl
  • R 8 may be (C1-C4) alkyl.
  • the metal triamine compound of Chemical Formula 1 according to an embodiment of the present invention may be represented by the following Chemical Formula 6 or 7.
  • M 3 is V, Nb or Ta
  • R 1 to R 5 are independently of each other a hydrogen atom or (C1-C5) alkyl
  • a 2 , A 3 and A 4 are independently of each other an NR 6 R 7 , OR 8 or cyclopentadienyl ring;
  • R 6 , R 7 And R 8 is independently of each other (C1-C5) alkyl or SiR 9 R 10 R 11 ;
  • R 9 to R 11 are independently of each other (C1-C5) alkyl.
  • R 1 and R 5 are each independently (C1-C3) alkyl
  • R 2 to R 4 are independent of each other Is hydrogen or (C1-C3) alkyl
  • a 2 , A 3 and A 4 are independently of each other NR 6 R 7 and R 6
  • R 7 may be independently of each other (C1-C3) alkyl or SiR 9 R 10 R 11
  • R 9 to R 11 may be independently of each other (C1-C3) alkyl.
  • the metal triamine compound of Chemical Formula 1 may be preferably represented by the following Chemical Formula 8 or 9.
  • M 4 is Cr, Mo or W
  • R 1 to R 5 are independently of each other a hydrogen atom or (C1-C5) alkyl
  • R ' (C1-C5) alkyl.
  • the metal triamine compound of Chemical Formula 1 may be preferably represented by the following Chemical Formula 10 or 11.
  • M 4 is Cr, Mo or W
  • R 1 to R 5 are each independently a hydrogen atom or (C 1 -C 5) alkyl.)
  • the metal triamine compound of Chemical Formula 1 may be selected from the following compounds, but is not limited thereto.
  • M 1 is B, Al, Ga, In, Tl or La; M 2 is Ti, Zr or Hf; M 3 is V, Nb or Ta; M 4 is Cr, Mo or W.
  • the present invention provides a method for producing a metal triamine compound represented by the formula (1).
  • Method for preparing a metal triamine compound of formula (I) wherein M is M 1 (A 1 ) in the metal triamine compound of formula ( 1 ) is a dialkylene triamine compound of formula (A) and a metal of formula Reacting the precursor to produce a metal triamine compound of formula (I).
  • M 1 is a Group 13 metal or a lanthanide metal
  • R 1 to R 5 are independently of each other hydrogen or (C1-C7) alkyl
  • a 1 is a fused ring containing a (C 1 -C 5) alkyl, NR 6 R 7 , OR 8 , cyclopentadienyl ring or cyclopentadienyl ring, wherein the cyclopentadienyl ring or cyclopentadienyl of A 1
  • the fused ring containing the ring may be further substituted with (C1-C7) alkyl or (C2-C7) alkenyl;
  • R 6 , R 7 And R 8 is independently of each other (C1-C7) alkyl or SiR 9 R 10 R 11 ;
  • R 9 to R 11 are independently of each other (C1-C7) alkyl
  • n is an integer of 0 to 2).
  • a method for preparing a metal triamine compound of Formula II-1 wherein M is M 2 (A 2 ) (A 3 ) is a dialkylenetria of Formula A Reacting the min compound with a metal precursor of Formula C to produce a metal triamine compound of Formula II-1.
  • M 2 is a Group 4 transition metal
  • R 1 to R 5 are independently of each other hydrogen or (C1-C7) alkyl
  • a 2 and A 3 are each independently a fused ring including an NR 6 R 7 , a cyclopentadienyl ring, or a cyclopentadienyl ring, and the cyclopentadienyl ring or cyclopentadienyl ring of A 2 and A 3 .
  • the fused ring comprising may be further substituted with (C1-C7) alkyl or (C2-C7) alkenyl;
  • R 6 And R 7 is independently of each other (C1-C7) alkyl or SiR 9 R 10 R 11 ;
  • R 9 to R 11 are independently of each other (C1-C7) alkyl
  • n is an integer from 0 to 2;
  • x is an integer of 1 to 3.
  • M 2 is a Group 4 transition metal
  • X is halogen
  • R 1 to R 5 are independently of each other hydrogen or (C1-C7) alkyl
  • a 2 and A 3 are each independently a fused ring including an NR 6 R 7 , a cyclopentadienyl ring, or a cyclopentadienyl ring, and the cyclopentadienyl ring or cyclopentadienyl ring of A 2 and A 3 .
  • the fused ring comprising may be further substituted with (C1-C7) alkyl or (C2-C7) alkenyl;
  • R 6 And R 7 is independently of each other (C1-C7) alkyl or SiR 9 R 10 R 11 ;
  • R 9 to R 11 are independently of each other (C1-C7) alkyl
  • n is an integer of 0 to 2).
  • the dialkylenetriamine lithium salt compound of Formula D may be prepared by reacting the dialkylenetriamine compound of Formula A with (C1-C7) alkyllithium.
  • R 1 to R 5 are independently of each other hydrogen or (C1-C7) alkyl
  • n is an integer of 0 to 2).
  • M 2 is a Group 4 transition metal
  • R 1 to R 5 are independently of each other hydrogen or (C1-C7) alkyl
  • R 6 , R 7 And R 8 is independently of each other (C1-C7) alkyl
  • n is an integer of 0 to 2).
  • M 3 is a Group 5 transition metal
  • R 1 to R 5 are independently of each other hydrogen or (C1-C7) alkyl
  • a 2 , A 3 and A 4 are each independently a fused ring containing an NR 6 R 7 , OR 8 , cyclopentadienyl ring or cyclopentadienyl ring, and the cyclopenta of A 2 , A 3 and A 4 Fused rings comprising a dienyl ring or a cyclopentadienyl ring may be further substituted with (C1-C7) alkyl or (C2-C7) alkenyl;
  • R 6 , R 7 And R 8 is independently of each other (C1-C7) alkyl or SiR 9 R 10 R 11 ;
  • R 9 to R 11 are independently of each other (C1-C7) alkyl
  • n is an integer from 0 to 2;
  • a, b and c are integers of 1 or more, and a + b + c is an integer of 5.
  • M 4 is a Group 6 transition metal
  • R 1 to R 5 are independently of each other hydrogen or (C1-C7) alkyl
  • R ' (C1-C7) alkyl
  • X 1 and X 2 are each independently halogen
  • R a and R b are each independently (C 1 -C 7) alkyl
  • n is an integer of 0 to 2).
  • the compound of Formula H may be prepared by reacting Na 2 MoO 4 , an ethane compound of Formula J, triethylamine (NEt 3 ), chlorotrimethylsilane (Me 3 SiCl), and an amine compound of Formula K.
  • R a and R b are each independently (C 1 -C 7) alkyl
  • R ' (C1-C7) alkyl.
  • Method for preparing a metal triamine compound of formula (V) wherein M is M 4 (CO) 4 in the metal triamine compound of formula (1) reacts a metal hexacarbonyl precursor of formula (L) with a halogen And reacting with a dialkylenetriamine compound of Formula A to produce a metal triamine compound of Formula V.
  • M 4 is a Group 6 transition metal
  • R 1 to R 5 are independently of each other hydrogen or (C1-C7) alkyl
  • n is an integer of 0 to 2).
  • the present invention also provides a metal-containing thin film deposition composition comprising a metal triamine compound of the present invention.
  • the present invention also provides a method for producing a metal-containing thin film using the composition for metal-containing thin film deposition of the present invention.
  • the method for producing a metal-containing thin film of the present invention is atomic layer deposition (ALD), vapor deposition (CVD), organometallic chemical vapor deposition (MOCVD), low pressure vapor deposition (LPCVD), plasma enhanced vapor deposition (PECVD) or plasma enhanced atoms It can be carried out by a layer deposition method (PEALD), oxygen (O 2 ), ozone (O 3 ), distilled water (H 2 O), hydrogen peroxide (H 2 O 2 ), nitrogen monoxide (NO), nitrous oxide (N 2 O ), Nitrogen dioxide (NO 2 ), ammonia (NH 3 ), nitrogen (N 2 ), hydrazine (N 2 H 4 ), amine, diamine, carbon monoxide (CO), carbon dioxide (CO 2 ), C 1 to C 12 saturated Or by supplying any one or two or more gases selected from unsaturated hydrocarbons, hydrogen, argon and helium.
  • ALD atomic layer deposition
  • CVD vapor deposition
  • MOCVD
  • the method for producing a metal-containing thin film of the present invention is specifically
  • the novel metal triamine compound of the present invention has excellent reactivity, high volatility, excellent thermal stability and cohesion, and is very useful as a precursor of a metal-containing thin film.
  • novel metal triamine compound of the present invention has a low melting point and is mostly in a liquid state or a low melting point in a solid state at a room temperature and a temperature at which it can be handled, and thus is easy to handle, and has high thermal stability and excellent storage stability.
  • the metal triamine compound according to the present invention can form a high-purity metal-containing thin film without particle contamination or impurity contamination such as carbon due to thermal decomposition, and thus a high- k film in a semiconductor device. Applicable to
  • the metal-containing thin film deposition composition of the present invention can be applied to various thin film deposition methods by including the metal triamine compound of the present invention with high thermal stability as a precursor, by using the metal-containing thin film with high density and purity It can manufacture.
  • the metal-containing thin film deposition composition of the present invention has high volatility, excellent thermal stability and cohesion, and low melting point, so that the metal-containing thin film is formed by including the metal triamine compound of the present invention, which is mostly present as a liquid at room temperature. Even at a high temperature of 260 °C or more, more preferably 300 °C or more can have excellent step coverage (step coverage) can be obtained a high purity metal-containing thin film with high density.
  • FIG. 6-CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Zr (N (CH 3 ) 2 ) 2 Saturation graph according to the amount of source of zirconium oxide film using precursor
  • FIG. 7-CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Zr (N (CH 3 ) 2 ) 2 Linearity graph according to the deposition cycle of zirconium oxide film using precursor
  • FIG. 8-CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Zr (N (CH 3 ) 2 ) 2 ALD growth temperature window of zirconium oxide film using precursor
  • ALD window 11-ALD growth temperature window (ALD window) of titanium oxide film using CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Ti (N (CH 3 ) 2 ) 2 precursor
  • FIG. 13-CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) Linearity graph according to the deposition cycle of hafnium oxide film using 2 Hf (N (CH 3 ) 2 ) 2 precursor
  • Figure 14 -ALD growth temperature window (ALD window) of hafnium oxide using CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Hf (N (CH 3 ) 2 ) 2 precursor
  • FIG. 16 Showface selective growth comparison of hafnium oxide using CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Hf (N (CH 3 ) 2 ) 2 precursor
  • FIG. 17-CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Zr (N (CH 3 ) 2 ) 2 Crystalline X-ray Diffraction Graph of Zirconium Oxide Using Precursor
  • FIG. 18-CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Zr (N (CH 3 ) 2 ) 2 Crystalline Transmission Electron Micrograph of Zirconium Oxides Using Precursor
  • Novel metal compounds of the present invention and methods for their preparation are detailed below, but unless otherwise defined in the technical terms and scientific terms used herein, those of ordinary skill in the art generally understand In the following description, descriptions of well-known functions and configurations that may unnecessarily obscure the subject matter of the present invention will be omitted.
  • alkyl is a monovalent straight or pulverized saturated hydrocarbon radical consisting solely of carbon and hydrogen atoms, which may have from 1 to 7 carbon atoms, preferably 1 to 5, more preferably 1 to 3 carbon atoms.
  • alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl and the like.
  • alkenyl is a straight chain or branched unsaturated hydrocarbon monovalent radical comprising one or more double bonds between two or more carbon atoms, with 2 to 7 carbon atoms, preferably 2 to 5, more preferably It may have 2 to 3 carbon atoms.
  • alkenyl groups include, but are not limited to, ethenyl, propenyl, allyl, propenyl, butenyl, 4-methylbutenyl, and the like.
  • halo or “halogen” refers to a halogen group element, including, for example, fluoro, chloro, bromo and iodo.
  • the present invention provides a metal triamine compound represented by the following Chemical Formula 1 having high volatility, excellent thermal stability, excellent cohesion, and surface selective thin film formation.
  • M 1 is a Group 13 metal or a lanthanide metal
  • M 2 is a Group 4 transition metal
  • M 3 is a Group 5 transition metal
  • M 4 is a Group 6 transition metal
  • R ' (C1-C7) alkyl
  • R 1 to R 5 are independently of each other hydrogen or (C1-C7) alkyl
  • a 1 is a fused ring comprising a (C 1 -C 7 ) alkyl, NR 6 R 7 , OR 8 , cyclopentadienyl ring or cyclopentadienyl ring;
  • a 2 , A 3 and A 4 are independently of each other a fused ring comprising an NR 6 R 7 , OR 8 , cyclopentadienyl ring or cyclopentadienyl ring;
  • the fused ring including the cyclopentadienyl ring or cyclopentadienyl ring of A 1 , A 2 , A 3 and A 4 may be further substituted with (C 1 -C 7) alkyl or (C 2 -C 7) alkenyl ;
  • R 6 , R 7 And R 8 is independently of each other (C1-C7) alkyl or SiR 9 R 10 R 11 ;
  • R 9 to R 11 are independently of each other (C1-C7) alkyl
  • n is an integer of 0 to 2).
  • novel metal triamine compounds of the present invention are octahydropentalene, decahydronaphthalene or dodeca having covalently bonded nitrogen atoms at both ends of the dialkylenetriamine to the metal and coordinating intermediate nitrogen atoms.
  • the hydroheptalene (dodecahydroheptalene) structure has excellent thermal stability and excellent reactivity that does not deteriorate even with constant heating.
  • the novel metal triamine compound of the present invention has a low melting point and is easily handled because it exists in a liquid or low melting state in most cases at room temperature and a temperature at which handling is possible.
  • novel metal triamine compound of the present invention has a low melting point and is present in most liquid forms at room temperature and atmospheric pressure, and thus has high storage stability and excellent volatility, and thus contains a high-purity metal having high density by using it as a precursor for metal-containing thin film deposition. Thin films can be prepared.
  • Metal triamine compound according to an embodiment of the present invention may include a compound in a liquid state at room temperature in terms of having a high vapor pressure, but may not be limited thereto. As such, the liquid compound at room temperature does not need to be heated above the melting point, and thus may be advantageous compared to the solid compound.
  • the metal triamine compound according to the exemplary embodiment of the present invention may be a solid compound having a low melting point or liquid at room temperature and atmospheric pressure in view of having a high vapor pressure to form a thin film more easily.
  • M 1 is a trivalent Group 13 metal or a trivalent lanthanide metal, preferably B, Al, Ga , In or La
  • M 2 is a tetravalent Group 4 transition metal, preferably Ti, Zr or Hf
  • M 3 is a pentavalent Group 5 transition metal, preferably V, Nb or Ta
  • M 4 is a hexavalent Group 6 transition metal, preferably Cr, Mo or W.
  • R 1 to R 5 in accordance with one embodiment of the present invention are independently of each other hydrogen or (C1-C5) alkyl;
  • a 1 is a (C1-C7) alkyl, NR 6 R 7 , OR 8 or cyclopentadienyl ring;
  • a 2 , A 3 and A 4 are independently of each other an NR 6 R 7 , OR 8 or cyclopentadienyl ring;
  • the cyclopentadienyl ring of A 1 , A 2 , A 3 and A 4 may be further substituted with (C 1 -C 5) alkyl or (C 2 -C 5) alkenyl;
  • R 6 , R 7 And R 8 is independently of each other (C1-C5) alkyl or SiR 9 R 10 R 11 ;
  • R 9 to R 11 are, independently from each other, (C1-C5) alkyl;
  • m may be an integer of 0 or 1.
  • metal triamine compound of Formula 1 may be represented by the following formula (2) or (3).
  • M 1 is B, Al, Ga, In or La
  • R 1 to R 5 are independently of each other a hydrogen atom or (C1-C5) alkyl
  • a 1 is a (C1-C5) alkyl, NR 6 R 7 , OR 8 or cyclopentadienyl ring;
  • R 6 , R 7 And R 8 is independently of each other (C1-C5) alkyl or SiR 9 R 10 R 11 ;
  • R 9 to R 11 are independently of each other (C1-C5) alkyl.
  • Metal triamine compound according to an embodiment of the present invention is a metal-containing thin film deposition precursor in terms of having high volatility and thermal stability preferably in Formula 2 or 3
  • R 1 and R 5 are independently of each other (C1 -C 3) alkyl
  • R 2 to R 4 are independently of each other hydrogen or (C 1 -C 3) alkyl
  • a 1 is (C 1 -C 3) alkyl, NR 6 R 7 , OR 8 or cyclopentadienyl ring
  • R 6 and R 7 are independently of each other (C1-C3) alkyl or SiR 9 R 10 R 11 ;
  • R 9 to R 11 are independently of each other (C1-C3) alkyl
  • R 8 is (C1-C4) alkyl, specifically R 1 and R 5 are independently of each other methyl, ethyl, n-propyl or isopropyl
  • R 2 to R 4 are independently of each other hydrogen, methyl, ethyl, n-propyl or
  • the metal triamine compound of Chemical Formula 1 may be represented by the following Chemical Formula 4 or 5.
  • M 2 is Ti, Zr or Hf
  • R 1 to R 5 are independently of each other a hydrogen atom or (C1-C5) alkyl
  • a 2 and A 3 are independently of each other an NR 6 R 7 , OR 8 or cyclopentadienyl ring;
  • R 6 , R 7 And R 8 is independently of each other (C1-C5) alkyl or SiR 9 R 10 R 11 ;
  • R 9 to R 11 are independently of each other (C1-C5) alkyl.
  • Metal triamine compound according to an embodiment of the present invention is a metal-containing thin film deposition precursor in terms of having high volatility and thermal stability preferably in Formula 4 or 5
  • R 1 and R 5 are independently of each other (C1 -C 3) alkyl
  • R 2 to R 4 are independently of each other hydrogen or (C 1 -C 3) alkyl
  • a 2 and A 3 are independently of each other an NR 6 R 7 , OR 8 or cyclopentadienyl ring
  • R 6 and R 7 are independently of each other (C1-C3) alkyl or SiR 9 R 10 R 11 ;
  • R 9 to R 11 are independently of each other (C1-C3) alkyl
  • R 8 is (C1-C4) alkyl, specifically R 1 and R 5 are independently of each other methyl, ethyl, n-propyl or isopropyl
  • R 2 to R 4 are independently of each other hydrogen, methyl, ethyl, n-propyl or isopropy
  • Metal triamine compound according to an embodiment of the present invention may be more preferably represented by the following formula (4-1) or (4-2).
  • M 2 is Ti, Zr or Hf
  • R 1 to R 3 and R 5 are independently of each other a hydrogen atom or (C1-C5) alkyl
  • a 3 is an NR 6 R 7 or cyclopentadienyl ring
  • R 6 , R 7 And R 8 is independently of each other (C1-C5) alkyl or SiR 9 R 10 R 11 ;
  • R 9 to R 11 are independently of each other (C1-C5) alkyl.
  • R 1 and R 5 are each independently (C 1 -C 3) alkyl
  • R 2 and R 3 is independently of each other hydrogen or (C1-C3) alkyl
  • a 3 is NR 6 R 7 or a cyclopentadienyl ring
  • R 6 and R 7 are independently of each other (C1-C3) alkyl
  • R 8 is (C1-C4) alkyl.
  • R 1 and R 5 are independently of each other methyl, ethyl, n-propyl or isopropyl
  • R 2 and R 3 are independently of each other hydrogen, methyl, ethyl, n-propyl or isopropyl
  • R 6 and R 7 is independently of each other methyl, ethyl, n-propyl, or isopropyl
  • R 8 may be methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl or t-butyl.
  • At least one of R 2 and R 3 is hydrogen, the remainder is hydrogen or (C1-C3) alkyl for thin film deposition It is more preferable in terms of having excellent properties.
  • the metal triamine compound of Chemical Formula 1 may be represented by the following Chemical Formula 6 or 7.
  • M 3 is V, Nb or Ta
  • R 1 to R 5 are independently of each other a hydrogen atom or (C1-C5) alkyl
  • a 2 , A 3 and A 4 are independently of each other an NR 6 R 7 , OR 8 or cyclopentadienyl ring;
  • R 6 , R 7 And R 8 is independently of each other (C1-C5) alkyl or SiR 9 R 10 R 11 ;
  • R 9 to R 11 are independently of each other (C1-C5) alkyl.
  • Metal triamine compound according to an embodiment of the present invention is a metal-containing thin film deposition precursor in terms of having high volatility and thermal stability, preferably in Formula 6 or 7
  • R 1 and R 5 are each independently (C1 -C3) alkyl
  • R 2 to R 4 are independently of each other hydrogen or (C1-C3) alkyl
  • a 2 , A 3 and A 4 are independently of each other NR 6 R 7
  • R 6 And R 7 are independently of each other (C1-C3) alkyl or SiR 9 R 10 R 11
  • R 9 to R 11 are independently of each other (C1-C3) alkyl
  • more preferably R 1 and R 5 are each Independently are (C 1 -C 3) alkyl
  • R 2 to R 4 are independently of each other hydrogen or (C 1 -C 3) alkyl
  • R 1 and R 5 are independently of each other methyl, ethyl, n-propyl or isopropyl
  • R 2 to R 4 are independently of each other hydrogen, methyl, ethyl, n-propyl or isopropyl
  • a 2 , A 3 and A 4 are independently of each other NR 6
  • R 7 and R 6 and R 7 are independently of each other methyl, ethyl, n-propyl, isopropyl, trimethylsilyl, triethylsilyl, ethyldimethylsilyl or methylethylpropylsilylyl Can be.
  • the metal triamine compound of Chemical Formula 1 may be represented by the following Chemical Formula 8 or 9.
  • M 4 is Cr, Mo or W
  • R 1 to R 5 are independently of each other a hydrogen atom or (C1-C5) alkyl
  • R ' (C1-C5) alkyl.
  • Metal triamine compound according to an embodiment of the present invention is a metal-containing thin film deposition precursor in terms of having high volatility and thermal stability preferably in Formula 8 or 9
  • R 1 and R 5 are each independently (C1 -C3) alkyl
  • R 2 to R 4 are independently of each other hydrogen or (C1-C3) alkyl
  • R 'is (C1-C4) alkyl specifically R 1 and R 5 are independently of each other methyl, ethyl , n-propyl or isopropyl
  • R 2 to R 4 are independently of each other hydrogen, methyl, ethyl, n-propyl or isopropyl
  • the metal triamine compound of Chemical Formula 1 may be represented by the following Chemical Formula 10 or 11.
  • M 4 is Cr, Mo or W
  • R 1 to R 5 are each independently a hydrogen atom or (C 1 -C 5) alkyl.)
  • Metal triamine compound according to an embodiment of the present invention is a metal-containing thin film deposition precursor in terms of having high volatility and thermal stability preferably in Formula 10 or 11
  • R 1 and R 5 are each independently (C1 -C3) alkyl
  • R 2 to R 4 are independently of each other hydrogen or (C1-C3) alkyl
  • R 1 and R 5 are independently of each other methyl, ethyl, n-propyl or isopropyl
  • R 2 To R 4 may be independently of each other hydrogen, methyl, ethyl, n-propyl or isopropyl.
  • Metal triamine compound according to an embodiment of the present invention is octahydropentalene or decahydronaphthalene in which the nitrogen atoms of both ends of the dialkylenetriamine are covalently bonded to the metal, and the intermediate nitrogen atoms are coordinated. It may be a metal triamine compound of the formula 2 to 11 of the structure.
  • a precursor for depositing a metal-containing thin film high volatility and high thermal stability are more preferable in terms of obtaining a high-quality metal-containing thin film.
  • nitrogen atoms of both ends of the dialkylenetriamine are covalently bonded to the metal, and the intermediate nitrogen atoms Preference is further given to the metal triamine compounds of the formulas (2), (4), (6), (8) or (10) of the bonded octahydropentalene structure.
  • the metal triamine compound according to an embodiment of the present invention may be specifically selected from compounds having the following structure, but is not limited thereto.
  • M 1 is B, Al, Ga, In, Tl or La; M 2 is Ti, Zr or Hf; M 3 is V, Nb or Ta; M 4 is Cr, Mo or W.
  • the present invention provides a method for producing a metal triamine compound represented by the formula (1).
  • Method for preparing a metal triamine compound of formula (I) wherein M is M 1 (A 1 ) in the metal triamine compound of formula ( 1 ) is a dialkylene triamine compound of formula (A) and a metal of formula (B) It is prepared by reacting a precursor.
  • M 1 is a Group 13 metal or a lanthanide metal
  • R 1 to R 5 are independently of each other hydrogen or (C1-C7) alkyl
  • a 1 is a fused ring containing a (C 1 -C 5) alkyl, NR 6 R 7 , OR 8 , cyclopentadienyl ring or cyclopentadienyl ring, wherein the cyclopentadienyl ring or cyclopentadienyl of A 1
  • the fused ring containing the ring may be further substituted with (C1-C7) alkyl or (C2-C7) alkenyl;
  • R 6 , R 7 And R 8 is independently of each other (C1-C7) alkyl or SiR 9 R 10 R 11 ;
  • R 9 to R 11 are independently of each other (C1-C7) alkyl
  • n is an integer of 0 to 2).
  • the metal precursor of Formula (B) and the dialkylenetriamine compound of Formula (A) are in a molar ratio of 1: 1 to 1: 1.5, preferably 1: 1. To 1: 1.25 molar ratio, more preferably 1: 1 to 1: 1.10 molar ratio can be used.
  • the reaction of the dialkylenetriamine compound of Formula A with the metal precursor of Formula B [Scheme 1] may be performed under a solvent.
  • the solvent used in the reaction may be any organic solvent, but hexane, pentane, dichloromethane (DCM), dichloroethane (DCE), toluene, acetonitrile (MeCN), nitro methane ( Nitromethan), tetrahydrofuran (THF), N, N -dimethyl formamide (DMF) and N, N -dimethylacetamide (DMA) are preferably used.
  • the reaction temperature may be used at a temperature used in conventional organic synthesis, but may vary depending on the amount of reactants and starting materials.
  • the reaction of Scheme 1 may be performed at -10 to 80 ° C, and NMR may be used. After confirming that the starting material is completely consumed to complete the reaction. After the reaction is completed, the solvent may be distilled off under reduced pressure after the extraction process, and the desired product may be separated and purified through conventional methods such as column chromatography.
  • the metal triamine compound of Chemical Formula II-1 is a dialkylenetriamine compound of Chemical Formula A and It is prepared by reacting a metal precursor of formula C or by reacting a dialkylenetriamine lithium salt compound of formula D with a metal halide precursor of formula E.
  • M 2 is a Group 4 transition metal
  • R 1 to R 5 are independently of each other hydrogen or (C1-C7) alkyl
  • a 2 and A 3 are each independently a fused ring including an NR 6 R 7 , a cyclopentadienyl ring, or a cyclopentadienyl ring, and the cyclopentadienyl ring or cyclopentadienyl ring of A 2 and A 3 .
  • the fused ring comprising may be further substituted with (C1-C7) alkyl or (C2-C7) alkenyl;
  • R 6 And R 7 is independently of each other (C1-C7) alkyl or SiR 9 R 10 R 11 ;
  • R 9 to R 11 are independently of each other (C1-C7) alkyl
  • n is an integer from 0 to 2;
  • X is halogen
  • x is an integer of 1 to 3.
  • the dialkylenetriamine lithium salt compound of Formula D may be prepared by reacting the dialkylenetriamine compound of Formula A with (C1-C7) alkyllithium, wherein (C1-C7) alkyllithium is represented by Formula A 1.5 to 5 moles, preferably 1.5 to 2.5 moles may be used per 1 mole of the dialkylenetriamine compound, and the reaction may be performed at -10 to 30 ° C.
  • the preparation method of the metal triamine compound of Formula II-1 may be represented by the following Schemes 2 and 3.
  • M 2 , R 1 to R 5 , A 2 , A 3 and m are the same as defined in Formula II-1, X is halogen, and x is an integer of 1 to 3.
  • the metal precursor of Formula (C) and the dialkylenetriamine compound of Formula (A) have a molar ratio of 1: 1 to 1: 1.5, preferably 1: 1. To 1: 1.25 molar ratio, more preferably 1: 1 to 1: 1.10 molar ratio can be used.
  • the metal halide precursor of Formula E and the dialkylenetriamine lithium salt compound of Formula D may have a molar ratio of 1: 1 to 1: 1.5, preferably May be used in a molar ratio of 1: 1 to 1:25, more preferably in a molar ratio of 1: 1 to 1: 1.10.
  • the reaction of the dialkylenetriamine compound of Chemical Formula A and the metal precursor of Chemical Formula C [Scheme 2] may also be performed under a solvent or by neat.
  • neat is meant to carry out the reaction by mixing the dialkylenetriamine compound of formula A and the metal precursor of formula C without using an organic solvent.
  • the reaction of the dialkylenetriamine lithium salt compound of Formula D with the metal halide precursor of Formula E may be carried out under a solvent.
  • the solvent used in the reaction may be any organic solvent, but hexane, pentane, dichloromethane (DCM), dichloroethane (DCE), toluene, acetonitrile (MeCN), nitro methane ( Nitromethan), tetrahydrofuran (THF), N, N -dimethyl formamide (DMF) and N, N -dimethylacetamide (DMA) are preferably used.
  • the reaction temperature may be used at a temperature used in a conventional organic synthesis, but may vary depending on the amount of reactants and starting materials. It may be carried out at 30 °C to, after confirming that the starting material is completely consumed through NMR, etc. to complete the reaction. After the reaction is completed, the solvent may be distilled off under reduced pressure after the extraction process, and the target product may be separated and purified through conventional methods such as column chromatography.
  • the metal triamine compound of Chemical Formula II-2 is a dialkylenetriamine compound of Chemical Formula A: Prepared by reacting a metal precursor of Formula (C-1) followed by reaction with an alcohol compound of Formula (F).
  • M 2 is a Group 4 transition metal
  • R 1 to R 5 are independently of each other hydrogen or (C1-C7) alkyl
  • R 6 , R 7 And R 8 is independently of each other (C1-C7) alkyl
  • n is an integer of 0 to 2).
  • the preparation method of the metal triamine compound of Formula II-2 may be represented by the following Scheme 4.
  • the metal precursor of the general formula (C-1) and the dialkylene triamine compound of the general formula (A) has a molar ratio of 1: 1 to 1: 1.5, preferably 1 It may be used in a molar ratio of 1: 1: 1.25, more preferably 1: 1: 1: 1.10.
  • the dialkylenetriamine compound of Formula A and the alcohol compound of Formula F are in a molar ratio of 1: 2 to 1: 4, preferably 1: It may be used in a molar ratio of 2 to 1: 3, more preferably in a molar ratio of 1: 2 to 1: 2.5.
  • the reaction of the dialkylenetriamine compound of Chemical Formula A with the metal precursor of Chemical Formula C-1 may be performed under a solvent or neat.
  • neat is meant to carry out the reaction by mixing the dialkylenetriamine compound of formula A and the metal precursor of formula C-1 without using an organic solvent.
  • an intermediate compound of Formula Int-1 is prepared by reacting a dialkylenetriamine compound of Formula A with a metal precursor of Formula C-1, and separately
  • the metal triamine compound of Chemical Formula II-2 can be prepared by reacting an alcohol compound of Chemical Formula F without separating and purification.
  • the solvent used for the reaction of the dialkylenetriamine compound of Formula A with the metal precursor of Formula C-1 and subsequent reaction of the alcohol compound of Formula F may be any organic solvent, but hexane, pentane, die Chloromethane (DCM), dichloroethane (DCE), toluene, acetonitrile (MeCN), nitromethane, tetrahydrofuran (THF), N, N -dimethyl formamide (DMF) And N, N -dimethylacetamide (DMA). It is preferable to use at least one member selected from the group consisting of.
  • the reaction temperature may be used at a temperature used in conventional organic synthesis, but may vary depending on the amount of reactants and starting materials, and may be preferably performed at ⁇ 30 to 80 ° C., and the starting materials may be completely prepared through NMR. After confirming exhaustion, complete the reaction. After the reaction is completed, the solvent may be distilled off under reduced pressure after the extraction process, and the desired product may be separated and purified through conventional methods such as column chromatography.
  • the metal triamine compound of Formula III wherein M is M 3 (A 2 ) (A 3 ) (A 4 ) is a dialkylenetriamine of Formula A Prepared by reacting a compound with a metal precursor of formula G.
  • M 3 is a Group 5 transition metal
  • R 1 to R 5 are independently of each other hydrogen or (C1-C7) alkyl
  • a 2 , A 3 and A 4 are each independently a fused ring containing an NR 6 R 7 , OR 8 , cyclopentadienyl ring or cyclopentadienyl ring, and the cyclopenta of A 2 , A 3 and A 4 Fused rings comprising a dienyl ring or a cyclopentadienyl ring may be further substituted with (C1-C7) alkyl or (C2-C7) alkenyl;
  • R 6 , R 7 And R 8 is independently of each other (C1-C7) alkyl or SiR 9 R 10 R 11 ;
  • R 9 to R 11 are independently of each other (C1-C7) alkyl
  • n is an integer from 0 to 2;
  • a, b and c are integers of 1 or more, and a + b + c is an integer of 5.
  • Method for preparing a metal triamine compound of formula III can be represented by the following scheme 5.
  • M 3 , R 1 to R 5 , A 2 , A 3 , A 4 and m are the same as defined in Formula III, and a, b and c are integers of 1 or more, a + b + c is an integer of 5.
  • the metal precursor of Formula G and the dialkylenetriamine compound of Formula A are in a molar ratio of 1: 1 to 1: 1.5, preferably 1: 1. To 1: 1.25 molar ratio, more preferably 1: 1 to 1: 1.10 molar ratio can be used.
  • the reaction of the dialkylenetriamine compound of Formula A with the metal precursor of Formula G may be performed under a solvent.
  • the solvent used in the reaction may be any organic solvent, but hexane, pentane, dichloromethane (DCM), dichloroethane (DCE), toluene, acetonitrile (MeCN), nitro methane ( Nitromethan), tetrahydrofuran (THF), N, N -dimethyl formamide (DMF) and N, N -dimethylacetamide (DMA) are preferably used.
  • the reaction temperature may be used at a temperature used in conventional organic synthesis, but may vary depending on the amount of reactants and starting materials, and may be preferably performed at ⁇ 10 to 30 ° C., and the starting materials may be completely prepared through NMR. After confirming exhaustion, complete the reaction. After the reaction is completed, the solvent may be distilled off under reduced pressure after the extraction process, and the desired product may be separated and purified through conventional methods such as column chromatography.
  • M 4 is a Group 6 transition metal
  • R 1 to R 5 are independently of each other hydrogen or (C1-C7) alkyl
  • R ' (C1-C7) alkyl
  • X 1 and X 2 are each independently halogen
  • R a and R b are each independently (C 1 -C 7) alkyl
  • n is an integer of 0 to 2).
  • the compound of Formula H may be prepared by reacting Na 2 MoO 4 , an ethane compound of Formula J, triethylamine (NEt 3 ), chlorotrimethylsilane (Me 3 SiCl), and an amine compound of Formula K.
  • R a and R b are each independently (C 1 -C 7) alkyl
  • R ' (C1-C7) alkyl.
  • the preparation method of the metal triamine compound of Formula IV can be represented by the following Scheme 6.
  • the compound of Formula H and the dialkylenetriamine lithium salt compound of Formula D are in a molar ratio of 1: 1 to 1: 1.5, preferably 1: It may be used in a molar ratio of 1 to 1:25, more preferably in a molar ratio of 1: 1 to 1: 1.10.
  • the reaction of the compound of Formula H and the dialkylenetriamine lithium salt compound of Formula D may be performed under a solvent.
  • the solvent used in the reaction may be any organic solvent, but hexane, pentane, dichloromethane (DCM), dichloroethane (DCE), toluene, acetonitrile (MeCN), nitro methane ( Nitromethan), tetrahydrofuran (THF), N, N -dimethyl formamide (DMF) and N, N -dimethylacetamide (DMA) are preferably used.
  • the reaction temperature may be used at a temperature used in conventional organic synthesis, but may vary depending on the amount of reactants and starting materials, and may be preferably performed at ⁇ 10 to 30 ° C., and the starting materials may be completely prepared through NMR. After confirming exhaustion, complete the reaction. After the reaction is completed, the solvent may be distilled off under reduced pressure after the extraction process, and the desired product may be separated and purified through conventional methods such as column chromatography.
  • the metal triamine compound of Formula V wherein M is M 4 (CO) 4 may be reacted with halogen after the metal hexacarbonyl precursor of Formula L is reacted with halogen. It is prepared by reacting with a dialkylenetriamine compound.
  • M 4 is a Group 6 transition metal
  • R 1 to R 5 are independently of each other hydrogen or (C1-C7) alkyl
  • n is an integer of 0 to 2).
  • the metal hexacarbonyl precursor of the general formula (L) and the halogen are in a molar ratio of 1: 1 to 1: 1.5, preferably 1: 1 to 1: 1.25. It may be used in a molar ratio, more preferably 1: 1 to 1: 1.10, the metal tetracarbonyl bishalide precursor of the general formula (L-1) and the dialkylene triamine compound of the general formula (A) is 1: 1 to 1: It may be used in a molar ratio of 1.5, preferably in a molar ratio of 1: 1 to 1: 1.25, more preferably in a molar ratio of 1: 1 to 1: 1.10.
  • the solvent used in the reaction may be any organic solvent, but hexane, pentane, dichloromethane (DCM), dichloroethane (DCE), toluene, acetonitrile (MeCN), nitro methane ( Nitromethan), tetrahydrofuran (THF), N, N -dimethyl formamide (DMF) and N, N -dimethylacetamide (DMA) are preferably used.
  • the reaction temperature may be used at a temperature used in conventional organic synthesis, but may vary depending on the amount of reactants and starting materials, and may be preferably performed at ⁇ 78 to 120 ° C., and the starting materials may be completely prepared through NMR. After confirming exhaustion, complete the reaction. After the reaction is completed, the solvent may be distilled off under reduced pressure after the extraction process, and the desired product may be separated and purified through conventional methods such as column chromatography.
  • the present invention also provides a metal-containing thin film deposition composition comprising a metal triamine compound of the present invention.
  • the metal triamine compound of Chemical Formula 1 included in the metal-containing thin film deposition composition of the present invention is a liquid or a low melting point solid at room temperature, and has a high volatility and high thermal stability and is a very useful precursor for forming a metal-containing thin film.
  • the metal triamine compound of Formula 1 in the metal-containing thin film deposition composition of the present invention may be included in the content range that can be recognized by those skilled in the art in consideration of the film forming conditions or the thickness, characteristics, and the like of the thin film.
  • the present invention also provides a method for producing a metal-containing thin film using the metal-containing thin film deposition composition.
  • the metal-containing thin film of the present invention is prepared using a metal-containing thin film deposition composition comprising the metal triamine compound of Formula 1 as a precursor, but is not limited, for example, metal-containing oxide film, metal-containing nitride film, metal-containing It may be an oxynitride film, a metal-containing carbon nitride film, or a metal-containing silicon nitride film, may be a gate insulating film of a transistor or a dielectric film of a capacitor, and may manufacture various thin films of high quality.
  • Method for producing a metal-containing thin film of the present invention is a liquid or low melting point at room temperature using a metal-containing thin film deposition composition of the present invention comprising a metal triamine compound of Formula 1 as a precursor having high volatility and excellent thermal stability
  • a metal-containing thin film deposition composition of the present invention comprising a metal triamine compound of Formula 1 as a precursor having high volatility and excellent thermal stability
  • the method of manufacturing the metal-containing thin film of the present invention may be any method as long as it can be recognized by those skilled in the art, but preferably, atomic layer deposition (ALD), vapor deposition (CVD), and organometallic chemical vapor deposition (MOCVD), low pressure vapor deposition (LPCVD), plasma enhanced vapor deposition (PECVD) or plasma enhanced atomic layer deposition (PEALD).
  • ALD atomic layer deposition
  • CVD vapor deposition
  • MOCVD organometallic chemical vapor deposition
  • LPCVD low pressure vapor deposition
  • PECVD plasma enhanced vapor deposition
  • PEALD plasma enhanced atomic layer deposition
  • the method for producing a metal-containing thin film of the present invention is specifically
  • steps b) and c) depositing a metal-containing thin film on the substrate by injecting a reaction gas, and the steps b) and c) may be repeated several times according to the thickness of the metal-containing thin film.
  • deposition conditions may be controlled according to the structure or thermal characteristics of the desired thin film, and the deposition conditions according to an embodiment of the present invention include a metal triamine compound.
  • Input flow rate of the metal-containing thin film deposition composition containing, the reaction gas, the input flow rate of the carrier gas, pressure, RF power, substrate temperature, etc.
  • the flow rate of the composition is 10 to 1000 cc / min
  • the carrier gas is 10 to 1000 cc / min
  • the reaction gas is 1 to 1000 cc / min
  • the pressure is 0.5 to 10 torr
  • the RF power is 200 to 1000 W
  • the temperature may be adjusted in the range of 80 to 400 ° C., preferably in the range of 200 to 400 ° C., but is not limited thereto.
  • the reaction gas used in the production method of the metal-containing thin film of the present invention is not limited, but oxygen (O 2 ), ozone (O 3 ), distilled water (H 2 O), hydrogen peroxide (H 2 O 2 ), nitrogen monoxide (NO), nitrous oxide (N 2 O), nitrogen dioxide (NO 2 ), ammonia (NH 3 ), nitrogen (N 2 ), hydrazine (N 2 H 4 ), amine, diamine, carbon monoxide (CO), carbon dioxide ( CO 2 ), C 1 to C 12 It can be carried out by supplying one or more gases selected from saturated or unsaturated hydrocarbons, hydrogen (H 2 ), argon (Ar) and helium (He).
  • chemical vapor deposition includes a deposition process comprising injecting a metal triamine compound into a deposition region in which a substrate is located and injecting a reactant gas into the deposition region and each of the steps being simultaneously or Progressively, the precursor and the reactant gas react to form a thin film containing metal on the substrate.
  • the atomic layer deposition (ALD) method includes injecting a metal triamine compound into a deposition region in which a substrate is located, discharging a metal triamine compound in a deposition region, and injecting and discharging a reaction gas into the deposition region.
  • the steps are performed sequentially, and once each step is performed, a thin film monolayer containing metal is deposited. Through repeated steps of each step, a metal-containing thin film of a desired thickness can be deposited.
  • a substrate used in the method of manufacturing a metal-containing thin film according to an embodiment of the present invention includes a substrate including at least one semiconductor material of Si, Ge, SiGe, GaP, GaAs, SiC, SiGeC, InAs and InP; SOI (Silicon On Insulator) substrate; Quartz substrates; Or glass substrates for displays; Polyimide, Polyethylene Terephthalate (PET), Polyethylene Naphthalate (PEN, PolyEthylene Naphthalate), Polymethyl Methacrylate (PMMA), Polycarbonate (PC, PolyCarbonate), Polyethersulfone Flexible plastic substrates such as (PES) and polyester; It may be a tungsten substrate, but is not limited thereto.
  • a plurality of conductive layers, dielectric layers, or insulating layers may be formed between the substrate and the metal-containing thin film, in addition to forming a thin film directly on the substrate.
  • metal-containing thin film deposition composition and the method for producing a metal-containing thin film can have excellent step coverage, it is possible to produce a high purity metal-containing thin film with high density.
  • the deposited metal-containing thin films were measured for thickness through an ellipsometer (thermowave, Optiprobe 2600) and transmission electron microscope (FEI (Netherlands) Tecnai G2F30S-Twin), and X-ray photoelectron spectroscopy (X)
  • the composition was analyzed using -ray photoelectron spectroscopy, ThermoFisher Scientific, K-Alpha +).
  • Tetrakis (dimethylamino) titanium [Ti (NMe 2 ) 4 ] (100 g, 0.45 mol) was dissolved in 100 mL of hexane and then N, N ', N''-trimethyldiisopropylenetriamine [ CH 3 N (CH 2 C (CH 3 ) HN (CH 3 ) H) 2 ] (71 g, 0.45 mol) was added slowly to the reflux (70 ° C.) temperature, followed by stirring at reflux (70 ° C.) for 24 hours. After completion of the reaction, the solvent and volatile byproducts were removed under reduced pressure, and then distilled under reduced pressure (120 ° C.
  • N, N ', N''-trimethyldiisopropylenetriamine [CH 3 N (CH 2 C (CH 3 ) HN (CH 3 ) H 2 )] (34.7 g, 0.2 mol) was added to 100 mL of hexane.
  • 2.35M normal butyllithium n-BuLi, 118g, 0.4mol was slowly added at 10 ° C. and stirred at room temperature for 12 hours to prepare N, N ′, N ''-trimethyldiisopropylenetriamine di lithium salt [CH 3 N (CH 2 C (CH 3 ) HN (CH 3 ) Li) 2 ] was prepared.
  • Tetrakis (dimethylamino) zirconium [Zr (NMe 2 ) 4 ] 140 g, 0.5 mol was added to 100 mL of hexane, followed by N, N ', N''-trimethyldiisopropylenetriamine [CH] at -10 ° C. 3 N (CH 2 C (CH 3 ) HN (CH 3 ) H) 2 ] (90g, 0.5mol) was added thereto, and the temperature was slowly raised to room temperature (25 ° C.), followed by stirring at room temperature (25 ° C.) for 24 hours. .
  • N, N ', N''-trimethyldiisopropylenetriamine [CH 3 N (CH 2 C (CH 3 ) HN (CH 3 ) H 2 )] (34.7 g, 0.2 mol) was added to 100 mL of hexane.
  • 2.35M normal butyllithium n-BuLi, 118g, 0.4mol was slowly added at -10 ° C, and stirred for 12 hours at room temperature, followed by N, N ', N''-trimethyldiisopropylenetriamine di lithium salt (CH 3 N (CH 2 C (CH 3 ) HN (CH 3 ) Li) 2 ) was prepared.
  • Tetrakis (ethylmethylamino) zirconium [Zr (NMeEt) 4 ] (108 g, 0.33 mol) was added to 100 mL of hexane, followed by N, N ', N''-trimethyldiisopropylenetriamine [CH] at -10 ° C. 3 N (CH 2 C (CH 3 ) HN (CH 3 ) H) 2 ] (57.83g, 0.33mol) was slowly added to room temperature (25 °C) and stirred at room temperature (25 °C) for 24 hours. It was. Upon completion of the reaction, the solvent and volatile byproducts were removed under reduced pressure and distilled under reduced pressure (130 ° C.
  • Tetrakis (dimethylamino) hafnium [Hf (NMe 2 ) 4 ] 200 g, 0.56 mol was added to 200 mL of hexane, followed by N, N ', N''-trimethyldiisopropylenetriamine [ CH 3 N (CH 2 C (CH 3 ) HN (CH 3 ) H) 2 ] (97.7g, 0.56mol) was added slowly to raise the temperature to room temperature (25 °C) and then at room temperature (25 °C) for 24 hours. Stirred.
  • Tetrakis (dimethylamino) hafnium [Hf (NMe 2 ) 4 ] (20 g, 0.056 mol) was added to 100 mL of hexane, followed by N, N ', N''-trimethyldiethylenetriamine [CH] at -10 ° C. 3 N (CH 2 CH 2 N (CH 3 ) H) 2 ] (8.19 g, 0.056 mol) was added thereto, and the temperature was slowly raised to room temperature (25 ° C.), followed by stirring at room temperature (25 ° C.) for 24 hours.
  • Tetrakis (ethylmethylamino) hafnium [Hf (NMeEt) 4 ] (450 g, 1.1 mol) was added to 300 mL of hexane, followed by N, N ', N''-trimethyldiisopropylenetriamine [CH] at -10 ° C. 3 N (CH 2 C (CH 3 ) HN (CH 3 ) H) 2 ] (189.8g, 1.1mol) was added slowly to raise the temperature to room temperature (25 °C) and stirred at room temperature (25 °C) for 24 hours. It was.
  • Tetrakis (ethylmethylamino) hafnium [Hf (NMeEt) 4 ] (224 g, 0.55 mol) was added to 200 mL of hexane, and then N, N ', N''-trimethyldiethylenetriamine [CH 3 at -10 ° C. N (CH 2 CH 2 N (CH 3 ) H) 2 ] (79.2 g, 0.55 mol) was slowly added to room temperature (25 ° C.) and stirred at room temperature (25 ° C.) for 24 hours.
  • Tetrakis (dimethylamino) hafnium [Hf (NMe 2 ) 4 ] (20 g, 0.056 mol) was added to 100 mL of hexane, followed by N'-methyl-N, N ''-diisopropyldiiso at -10 ° C.
  • Propylene triamine [CH 3 N (CH 2 C (CH 3 ) HN (CH (CH 3 ) 2 ) H) 2 ] (12.93 g, 0.084 mol) was added slowly to room temperature (25 ° C.) and then room temperature Stir at (25 ° C.) for 24 h.
  • Tetrakis (dimethylamino) titanium [TDMAT, Tetrakis (dimethylamino) titanium; Ti (NMe 2 ) 4 ] (184 g, 0.82 mol) after addition of N, N ', N''-trimethyldiethylenetriamine [CH 3 N (CH 2 CH 2 N (CH 3 ) H) 2 ] (119 g , 0.82 mol) was slowly added at room temperature (25 ° C). After the addition was completed, the mixture was stirred at 60 ° C. for 12 hours to confirm the synthesis of CH 3 N (CH 2 CH 2 N (CH 3 )) 2 Ti (N (CH 3 ) 2 ) 2 by NMR.
  • Penta (dimethylamino) tantalum [Ta (NMe 2 ) 5 ] (30 g, 0.07 mol) was dissolved in a nucleic acid solvent and then N, N ', N''-trimethyldiethylenetriamine [CH 3 at 0 ° C. N (CH 2 CH 2 N (CH 3 ) H) 2 ] (10.86g, 0.07mol) was added thereto, followed by stirring for 8 hours at room temperature. After completion of the reaction, the solvent and the volatile byproducts were removed under reduced pressure and then sublimed under reduced pressure (120 ° C. at 0.44 torr) to give the title compound CH 3 N (CH 2 CH 2 NCH 3 ) 2 Ta (N (CH 3 ) 2 ) as a solid. 3 was obtained (21 g, 62%).
  • Tungsten hexacarbonyl (W (CO) 6 ) 300 g, 0.853 mol, 1 equiv was added to a 3000 mL flask under nitrogen atmosphere, followed by dichloromethane (2000 mL).
  • dichloromethane 2000 mL
  • diatomic bromine (Br 2 ) 149.86 g, 0.938 mol, 1.10 equiv
  • Triethylamine (0.538 mol, 2.50 equiv) was slowly added at room temperature, followed by N, N ', N''-trimethyldipropylenetriamine [CH 3 N (CH 2 CH 2 CH 2 N (CH 3 ) H) 2 ] (0.226mol, 1.05 equiv) was added and the mixture was stirred under reflux at 100 ° C for 6 hours, and then cooled to room temperature and filtered. The filtrate is removed under reduced pressure and the solvent is extracted with normal hexane. The extracted solution was removed again under reduced pressure to give the title compound CH 3 N (CH 2 CH 2 CH 2 NCH 3 ) 2 W (CO) 4 in the form of a gel (10 g, 10%).
  • Example 20 Preparation of a Zirconium Oxide (ZrO 2) Thin Film Using CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Zr (N (CH 3 ) 2 ) 2
  • a zirconium oxide thin film was produced on a silicon substrate by atomic layer deposition (ALD).
  • the silicon substrate is manufactured was maintained each in 220 °C, 240 °C, 260 °C , 280 °C, 300 °C, 320 °C, 330 °C, 340 °C, 350 °C, and 400 °C, in Example 3 CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Zr (N (CH 3 ) 2 ) 2 precursor was charged to a stainless steel bubbler vessel and maintained at 110 ° C.
  • a CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Zr (N (CH 3 ) 2 ) 2 precursor vaporized in a stainless steel bubbler vessel was transferred to argon gas (50 sccm). It was transferred to the silicon substrate so as to be adsorbed onto the silicon substrate.
  • the zirconium oxide precursor compound was removed for 15 seconds using argon gas (3000 sccm). Thereafter, ozone gas having a concentration of about 180 g / m 3 was supplied at 500 sccm for 10 seconds to form a zirconium oxide thin film.
  • the reaction by-product and the residual reaction gas were removed for 10 seconds using argon gas (3000 sccm).
  • the zirconium oxide thin film was formed by repeating 150 cycles using the above process as one cycle.
  • a titanium oxide thin film was prepared on a silicon substrate by atomic layer deposition.
  • the silicon pattern substrates were maintained at 300 ° C., respectively, and the stainless steel bubbler vessels of CH 3 N (CH 2 CH 2 N (CH 3 )) 2 Ti (O (CH (CH 3 ) 2 ) 2 ) synthesized in Example 13 were used.
  • the precursor of Example 13 vaporized in a stainless steel bubbler vessel was transferred to a silicon substrate by argon gas (50 sccm) as a transfer gas to be adsorbed onto the silicon substrate.
  • the titanium oxide precursor compound was removed using an argon gas (3000sccm) for 15 seconds, and then an ozone gas having a concentration of about 180 g / m 3 was supplied at 500 sccm for 10 seconds to form a titanium oxide thin film.
  • the reaction by-products and the residual reaction gas were removed for 10 seconds using the same method, and the titanium oxide thin film was formed by repeating 150 cycles using the above process as one cycle.
  • a titanium oxide thin film was prepared on a silicon substrate by atomic layer deposition.
  • the silicon substrate was maintained at 220 ° C., 240 ° C., 260 ° C., 280 ° C., 290 ° C., 300 ° C., 350 ° C., and 400 ° C., respectively, and the CH 3 N (CH 2 C (CH 3 ) HN synthesized in Example 1 (CH 3 )) 2 Ti (N (CH 3 ) 2 ) 2 was charged to a stainless steel bubbler vessel and maintained at 110 ° C.
  • Example 1 vaporized in a stainless steel bubbler vessel was transferred to a silicon substrate by argon gas (50 sccm) as a transfer gas to be adsorbed onto the silicon substrate.
  • argon gas 50 sccm
  • the titanium oxide precursor compound was removed for 15 seconds using argon gas (3000 sccm).
  • ozone gas having a concentration of about 180 g / m 3 was supplied at 500 sccm for 10 seconds to form a titanium oxide thin film.
  • the reaction by-product and the residual reaction gas were removed for 10 seconds using argon gas (3000 sccm). Repeating 150 cycles using the above process as one cycle, a titanium oxide thin film was formed.
  • a hafnium oxide thin film was prepared on a silicon substrate by atomic layer deposition.
  • the silicon substrates were maintained at 230 ° C., 250 ° C., 270 ° C., 290 ° C., 310 ° C., 330 ° C., 350 ° C., and 400 ° C., respectively, and CH 3 N (CH 2 C (CH 3 ) HN synthesized in Example 7 (CH 3 )) 2 Hf (N (CH 3 ) 2 ) 2 was charged to a stainless steel bubbler vessel and maintained at 110 ° C.
  • Example 7 the precursor of Example 7 vaporized in a stainless steel bubbler vessel was transferred to a silicon substrate using argon gas (50 sccm) as a transfer gas to be adsorbed onto the silicon substrate.
  • argon gas 50 sccm
  • the hafnium oxide precursor compound was removed for 15 seconds using argon gas (3000 sccm).
  • ozone gas having a concentration of about 180 g / m 3 was supplied at 500 sccm for 10 seconds to form a hafnium oxide thin film.
  • the reaction by-product and the residual reaction gas were removed for 10 seconds using argon gas (3000 sccm).
  • the hafnium oxide thin film was formed by repeating 150 cycles using the above process as one cycle.
  • a titanium nitride thin film was prepared on a silicon substrate by atomic layer deposition.
  • the silicon substrate was kept at 300 ° C., and CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Ti (N (CH 3 ) 2 ) 2 synthesized in Example 1 was placed in a stainless steel bubbler vessel. Filled and maintained at 110 ° C.
  • the precursor of Example 1 vaporized in a stainless steel bubbler vessel was transferred to a silicon substrate by argon gas (50 sccm) as a transfer gas to be adsorbed onto the silicon substrate.
  • the titanium oxide precursor compound was removed for 15 seconds using argon gas (3000 sccm).
  • the titanium nitride thin film prepared in Example 21 was heat-treated while maintaining the process temperature at 600 ° C. and NH 3 6000 sccm for 2 hours in an in-situ process under vacuum without external exposure to prepare a titanium nitride thin film having low impurities.
  • a hafnium nitride thin film was prepared on a tungsten substrate by atomic layer deposition.
  • the tungsten substrate was maintained at 300 ° C.
  • CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Hf (N (CH 3 ) 2 ) 2 synthesized in Example 7 was placed in a stainless steel bubbler vessel. Filled and maintained at 107 ° C.
  • the precursor of Example 7 vaporized in a stainless steel bubbler vessel was transferred to a tungsten substrate using nitrogen gas (25 sccm) as a transfer gas to be adsorbed onto the tungsten substrate.
  • the hafnium nitride precursor compound was removed for 15 seconds using nitrogen gas (3000 sccm).
  • hafnium nitride (HfN) thin film was formed by repeating 210 cycles using the above process as one cycle.
  • a hafnium nitride thin film was prepared on a silicon dioxide substrate by atomic layer deposition.
  • the silicon dioxide substrate was maintained at 300 ° C.
  • the stainless steel bubbler vessel was prepared by mixing CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Hf (N (CH 3 ) 2 ) 2 synthesized in Example 7. It was charged to and maintained at 107 °C.
  • the precursor of Example 7 vaporized in a stainless steel bubbler vessel was transferred to a silicon dioxide substrate using nitrogen gas (25 sccm) as a transfer gas to be adsorbed onto the silicon dioxide substrate.
  • the hafnium nitride precursor compound was removed for 15 seconds using nitrogen gas (3000 sccm).
  • hafnium nitride (HfN) thin film was formed by repeating 210 cycles using the above process as one cycle.
  • a hafnium oxide thin film was prepared on a tungsten substrate by chemical vapor deposition.
  • the tungsten substrate was maintained at 300 ° C.
  • CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Hf (N (CH 3 ) 2 ) 2 synthesized in Example 7 was placed in a stainless steel bubbler vessel. Filled and maintained at 107 ° C.
  • the precursor of Example 7 vaporized in a stainless steel bubbler vessel was transferred to a tungsten substrate for 120 minutes using argon gas (25 sccm) as a transfer gas to react with the tungsten substrate.
  • ozone gas 200 sccm
  • a hafnium oxide thin film was prepared on a silicon dioxide substrate by chemical vapor deposition.
  • the silicon dioxide substrate was maintained at 300 ° C.
  • CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Hf (N (CH 3 ) 2 ) 2 synthesized in Example 7 was filled in a stainless steel bubbler vessel and maintained at 107 ° C.
  • the precursor of Example 7 vaporized in a stainless steel bubbler vessel was transferred to a silicon dioxide substrate for 120 minutes using argon gas (25 sccm) as a transfer gas to react with the silicon dioxide substrate.
  • ozone gas 200 sccm
  • a molybdenum nitride thin film was prepared on a silicon substrate by plasma enhanced atomic layer deposition.
  • the precursor of Example 16 vaporized in a stainless steel bubbler vessel was transferred to a silicon substrate using nitrogen gas (25 sccm) as a transfer gas to be adsorbed onto the silicon substrate.
  • the molybdenum nitride film precursor compound was removed using nitrogen gas (3000 sccm) for 15 seconds.
  • molybdenum nitride (MoN) thin film was formed by repeating 210 cycles using the above process as one cycle.
  • DSC differential scanning calorimetry
  • the pyrolysis temperature of the metal triamine compound of the present invention was 290 ° C or higher as a result of comparing the pyrolysis temperature with the onset temperature of DSC, and cyclopentadienyl, an organic zirconium precursor, which was widely used in the related art.
  • Tris (dimethylamino) zirconium (CpZr (N (CH 3 ) 2 ) 3 ), tetrakis (ethylmethylamino) hafnium (Hf (N (CH 3 ) (C 2 H 5 )) 4 ), which is an organic hafnium precursor, Tetrakis (dimethylamino) titanium (Ti (N (CH 3 ) 2 ) 4 ), an organic titanium precursor, and bis (t-butylimido) bis (dimethylamido) molybdenum (((CH 3 )), an organic molybdenum precursor 2 N) 2 Mo ( NC (CH 3 ) 3 )) It was confirmed that the increase of 5 to 50 °C or more.
  • the titanium triamine compound of the present invention showed an increased pyrolysis temperature of 25 ° C. or more compared to tetrakis (dimethylamino) titanium (Ti (N (CH 3 ) 2 ) 4 ), an organic titanium precursor that has been widely used.
  • the zirconium triamine compound of the present invention exhibited an increased pyrolysis temperature of 10 ° C. or more compared to cyclopentadienyl tris (dimethylamino) zirconium (CpZr (N (CH 3 ) 2 ) 3 ), which is an organic zirconium precursor that has been widely used.
  • the hafnium triamine compound of the present invention exhibited an increased pyrolysis temperature of 20 ° C. or more compared to tetrakis (ethylmethylamino) hafnium (Hf (N (CH 3 ) (C 2 H 5 )) 4 ), an organic hafnium precursor that has been widely used. .
  • the metal triamine compound of the present invention has excellent thermal stability, can form a thin film at a higher temperature, and can lead to an increase in step coverage in a fine pattern.
  • a zirconium oxide thin film was formed on a silicon pattern substrate having a trench structure with an aspect ratio of 6: 1 using the deposition method described in Example 20, and the results are shown in FIG. 1.
  • a zirconium oxide thin film was formed on a silicon pattern substrate having a 60: 1 hole structure pattern using the deposition method described in Example 20, and the results are shown in FIG. 1.
  • a titanium oxide thin film was formed on a silicon pattern substrate having a trench structure having an aspect ratio of 6: 1 using the deposition method described in Example 21, and the results are shown in FIG. 2.
  • a titanium oxide thin film was formed on a silicon pattern substrate having a trench structure having an aspect ratio of 6: 1 using the deposition method described in Example 22, and the results are shown in FIG. 3.
  • a titanium oxide thin film was formed on a silicon pattern substrate having a 60: 1 hole structure pattern using the deposition method described in Example 22, and the results are shown in FIG. 3.
  • a hafnium oxide thin film was formed on a silicon pattern substrate having a trench structure having an aspect ratio of 6: 1 using the deposition method described in Example 23, and the results are shown in FIG. 4.
  • a hafnium oxide thin film was formed on a silicon pattern substrate having a 60: 1 hole structure pattern using the deposition method described in Example 23, and the results are shown in FIG. 4.
  • a titanium nitride thin film was formed on a silicon pattern substrate having a trench structure having an aspect ratio of 6: 1 using the deposition method described in Example 24, and the results are shown in FIG. 5.
  • Example 20 The thickness of the zirconium oxide thin film deposited in Example 20 (silicon substrate temperature 300 ° C.) analyzed by the transmission electron microscope was changed in the amount of source, and the thin film growth rate per cycle is shown in FIG. 6.
  • the CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Zr (N (CH 3 ) 2 ) 2 precursor of Example 3 was self-limiting at a silicon substrate temperature of 300 ° C. (self-limited reaction) was confirmed to proceed.
  • the linearity of the zirconium oxide thin film in the thickness of the zirconium oxide thin film deposited in each process cycle was changed only in the same process as Example 20 (silicon substrate temperature 300 ° C.) analyzed by transmission electron microscope. Shown.
  • the CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Zr (N (CH 3 ) 2 ) 2 precursor of Example 3 had a low latency at a silicon substrate temperature of 300 ° C. It was confirmed that not only good crystalline was formed at a low thickness of 16 ⁇ s, but also good crystalline was formed at a thickness of 16 ⁇ s or more.
  • Example 9 shows the thin film growth rate per cycle by varying the source amount by the thickness of the titanium oxide thin film deposited in Example 22 (silicon substrate temperature 280 ° C.) analyzed by transmission electron microscope.
  • the CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Ti (N (CH 3 ) 2 ) 2 precursor prepared in Example 1 was magnetic at a silicon substrate temperature of 280 ° C. It was confirmed that the self-limited reaction proceeds.
  • Example 22 silicon substrate temperature 280 ° C.
  • the linearity of the titanium oxide thin film was shown in FIG. 10 by the thickness of the titanium oxide thin film deposited in each process cycle. Shown.
  • the CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Ti (N (CH 3 ) 2 ) 2 precursor prepared in Example 1 was low at the silicon substrate temperature of 280 ° C. It was confirmed that not only good crystalline was formed at a low thickness of 14 ⁇ s but also good crystalline was formed at a thickness of 14 ⁇ m or more.
  • Example 22 The thickness of the titanium oxide thin film deposited in Example 22 analyzed by transmission electron microscope, and the growth rate of the thin film per cycle according to the temperature of the silicon substrate is shown in FIG. 11.
  • the CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Ti (N (CH 3 ) 2 ) 2 precursor synthesized in Example 1 was 290 at a silicon substrate temperature of 240 ° C. It was confirmed that the growth rate per cycle of the titanium oxide thin film up to °C was a significant difference period.
  • Example 12 shows the thin film growth rate per cycle according to the source amount of the hafnium oxide thin film deposited in Example 23 (silicon substrate temperature 320 ° C.) analyzed by transmission electron microscope.
  • the CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Hf (N (CH 3 ) 2 ) 2 precursor prepared in Example 7 was magnetic at a silicon substrate temperature of 320 ° C. It was confirmed that a self-limited reaction proceeds.
  • Example 23 silicon substrate temperature 320 ° C. analyzed by transmission electron microscope, the linearity of the hafnium oxide thin film was shown in FIG. 13 by the thickness of the hafnium oxide thin film deposited in each process cycle. Shown.
  • the CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Hf (N (CH 3 ) 2 ) 2 precursor prepared in Example 7 was low at a silicon substrate temperature of 320 ° C. It was confirmed that not only good crystalline was formed at a low thickness of 14 ⁇ s but also good crystalline was formed at a thickness of 14 ⁇ m or more.
  • Example 23 The thickness of the hafnium oxide thin film deposited in Example 23 analyzed by transmission electron microscope, and the growth rate of the thin film per cycle according to the temperature of the silicon substrate is shown in FIG. 14.
  • the CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Hf (N (CH 3 ) 2 ) 2 precursor synthesized in Example 7 was 330 at a silicon substrate temperature of 270 ° C. It was confirmed that the growth rate per cycle of the hafnium oxide thin film to the °C was a significant difference period.
  • the hafnium nitride films formed in Examples 26 and 27 were analyzed by transmission electron microscope, and the results are shown in FIG. 15. As shown in FIG. 15, the hafnium nitride thin film of Example 27 was deposited on the silicon dioxide substrate at 4 ⁇ thickness, while the hafnium nitride thin film of Example 26 was deposited on the tungsten substrate at 26 ⁇ thickness to give 1 (silicon dioxide). Substrate): It was confirmed that the surface selective growth ratio of 6.5 (tungsten substrate).
  • the growth rate of the thin film was different when forming the hafnium nitride thin film according to the type of substrate.
  • the hafnium oxide films formed in Examples 28 and 29 were analyzed by transmission electron microscope, and the results are shown in FIG. 16. As shown in FIG. 16, the hafnium oxide thin film of Example 29 was deposited to 3 nm thick on a silicon dioxide substrate, while the hafnium oxide thin film of Example 28 was deposited to 90 nm thick on a tungsten substrate to obtain 1 (silicon dioxide). Substrate): It was confirmed that the surface selective growth ratio of 30 (tungsten substrate).
  • the thin film growth rate is different when the hafnium oxide thin film is formed according to the type of substrate.
  • the composition of the zirconium oxide thin film deposited under the same deposition conditions as in Example 20 was analyzed by Secondary Ion Mass Spectroscopy, and the results are shown in Table 2 and shown in FIGS. 19 to 23.
  • Table 3 shows the results of analyzing the composition of the metal-containing thin film deposited in Examples 20 to 30 using an X-ray photoelectron spectroscopy.
  • Examples 20 to 23 and Examples 28 to 29 of zirconium, hafnium or titanium and oxygen have a ratio of about 1: 2, without zirconium oxide (ZrO 2), hafnium oxide (HfO 2) or titanium without carbon impurities. It can be confirmed that the oxide film TiO2 is formed with high purity.
  • oxygen is an impurity due to moisture absorption during the measurement of the composition ratio, and is independent of impurities in the thin film.
  • metal nitride thin films with little or no carbon impurities were prepared.
  • the titanium nitride thin film obtained in Example 21 was heat-treated in a vacuum process in a continuous process, and it was confirmed that the content of carbon impurities was significantly reduced by heat treatment in a continuous process.
  • the metal triamine compound according to the present invention has excellent reactivity, high volatility, excellent thermal stability and cohesiveness, and thus is very useful as a precursor of a metal-containing thin film, without causing particle contamination or impurity contamination such as carbon due to thermal decomposition.
  • a high purity metal containing thin film can be formed.
  • Example 2 280 using CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Zr (N (CH 3 ) 2 ) of Example 3 and CpZr (N (CH 3 ) 2 ) 3 of Comparative Example 1
  • the zirconium oxide thin film was deposited in the same manner as in Example 20 in the range of °C to 320 °C, and the electrical properties of the deposited zirconium oxide thin film were compared.
  • the electrical properties were measured by forming a platinum metal film on a zirconium oxide thin film to fabricate a metal-insulating film-semiconductor (MIS) structure.
  • the platinum metal film to be used as the upper electrode has a radius of about 150 ⁇ m and a thickness of about 40 nm.
  • the dielectric constant was calculated by measuring the capacitance in the region of -5V to 5V at 10kHz, the capacitance of the accumulation region, the thickness of the zirconium oxide thin film and the area of the platinum metal film, and using the dielectric constant, the equivalent oxide film thickness.
  • the leakage current density was measured in the current value in the range of -4V to 4V, and the leakage current density was calculated by taking the leakage current value at ⁇ 0.7V.
  • Example 3 [CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Zr (N (CH 3 ) 2 )] and Comparative Example 1 [CpZr (N) as precursors.
  • the leakage current characteristics of (CH 3 ) 2 ) 3 ] were similar, but the dielectric constant of Example 3 was high and the equivalent oxide film thickness was low, thereby improving the electrical characteristics.
  • a multilayer structure in the form of a zirconium oxide film / aluminum oxide film / zirconium oxide film was formed on a silicon substrate by atomic layer deposition. At this time, the silicon substrate was maintained at 300 ° C, and the zirconium oxide film was prepared using the CH 3 N (CH 2 C (CH 3 ) HN (CH 3 )) 2 Zr (N (CH 3 ) 2 ) 2 precursor synthesized in Example 3.
  • the aluminum oxide film was TMA (Trimetyl Aluminum).
  • the zirconium oxide film was formed in the same manner as in Example 20, and the aluminum oxide film was formed by the following process.
  • the TMA of the stainless steel vessel is cooled to 10 ° C. and transferred to the silicon substrate by argon gas (50 sccm) as the transfer gas to be adsorbed onto the silicon substrate.
  • the aluminum precursor compound is removed for about 15 seconds using argon gas (4000 sccm).
  • ozone gas having a concentration of about 180 g / m 3 is supplied at 500 sccm for 10 seconds to form an aluminum oxide film.
  • argon gas (4000 sccm) is used to remove reaction by-products and residual reaction gas for about 10 seconds.
  • the aluminum oxide film was formed by repeating a predetermined cycle using the above process as one cycle.
  • a multi-layer structure having a zirconium oxide film 22 ⁇ / aluminum oxide film 7 ⁇ / zirconium oxide 44 ⁇ was formed from the top, and the electrical properties were analyzed in the same manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)

Abstract

본 발명은 신규한 금속 트리아민 화합물, 이의 제조방법, 이를 포함하는 금속 함유 박막증착용 조성물 및 이를 이용한 금속 함유 박막의 제조방법에 관한 것으로, 본 발명의 금속 트리아민 화합물은 반응성이 뛰어나며 열적으로 안정하고, 휘발성이 높으며, 저장안정성이 높아 금속 함유 전구체로 이용하여 고밀도 및 고순도의 금속 함유 박막을 용이하게 제조할 수 있다.

Description

금속 트리아민 화합물, 이의 제조방법 및 이를 포함하는 금속 함유 박막증착용 조성물
본 발명은 신규한 금속 트리아민 화합물, 이의 제조방법 및 이를 포함하는 금속 함유 박막증착용 조성물에 관한 것으로, 보다 상세하게는 금속 함유 박막의 전구체로 유용하게 사용될 수 있는 신규한 금속 트리아민 화합물, 이의 제조방법 및 이를 포함하는 금속 함유 박막증착용 조성물과 본 발명의 금속 함유 박막증착용 조성물을 이용한 금속 함유 박막의 제조방법에 관한 것이다.
반도체 제조 기술의 발달로 반도체 소자의 크기는 미세화되고 소자의 집적도는 빠르게 증가 되어, 제조 공정 중 화학기상증착(Chemical vapor deposition)과 원자층증착(Atomic layer deposition)의 사용이 날로 증가하고 있다. 또한 화학기상증착(Chemical vapor deposition)과 원자층증착(Atomic layer deposition)을 통한 박막 형성은 사용 목적에 따른 전구체 화합물의 물리화학적 특성에 많은 영향을 받는다.
시스템의 성능 향상뿐만 아니라 소자의 핵심부품인 transistor의 고집적화 및 초고속화가 요구됨에 따라 집적회로의 크기를 지속적으로 축소하여 스윗칭 속도를 증가시키고, 전력손실을 감소시키려는 시도가 이루어지고 있다. 이에 따라 transistor에서는 channel의 거리를 줄이고 게이트 산화막의 두께를 줄임으로써 고속화를 이루어 왔다. 그러나 기존에 사용되어 왔던 게이트 산화막인 SiO2는 80nm 이하에서는 누설전류가 커지는 문제점을 가지고 있어 이러한 한계를 극복하기 위해 절연성이 뛰어나고 유전율이 높으며 유전 손실이 적은 고유전(high-k) 물질의 적용이 필수적이게 된다.
이러한 문제점을 해결하기 위해서, 절연성이 뛰어나고 유전율이 높으며 유전 손실이 적은 고유전 물질로서, 높은-k 금속 산화물 재료가 게이트 또는 커패시터 유전체를 위한 대안적인 유전체 재료로서 제안되고 있다.
한편, 종래 기술, 예를 들어 US 8471049 등에 따른 4족 전이금속 전구체들은 고온에서 열적으로 안정하지 않으며, 이에 따라 화학기상증착(chemical vapor deposition, CVD) 및 단원자층증착(atomic layer deposition, ALD) 공정 시에 낮은 증착률 및 성장률을 갖는다는 단점이 있었다.
이에 본 발명자들은 상기와 같은 문제점들을 해결하기 위하여, 열적 안정성이 높고 휘발성이 높으며 안정한 증기압을 가지는 금속 함유 박막증착용 전구체를 개발하기에 이르렀다.
본 발명은 휘발성이 높고, 열안정성이 우수하며, 우수한 응집력을 가져 금속 함유 박막증착용 전구체로 이용가능하며 표면 선택적 박막형성이 가능한 금속 트리아민 화합물 및 이의 제조방법을 제공한다.
또한 본 발명은 본 발명의 신규한 금속 트리아민 화합물을 포함하는 금속 함유 박막증착용 조성물 및 이를 이용하는 금속 함유 박막의 제조방법을 제공한다.
본 발명은 낮은 활성화 에너지를 가져 반응성이 뛰어나고, 휘발성이 높고, 열안정성이 우수하며, 우수한 응집력을 가져 금속 함유 박막증착의 전구체로 유용하며, 표면 선택적 박막형성이 가능한 금속 트리아민 화합물을 제공하는 것으로, 본 발명의 금속 트리아민 화합물은 하기 화학식 1로 표시된다.
[화학식 1]
Figure PCTKR2018004841-appb-I000001
(상기 화학식 1에서,
M은 M1(A1), M2(A2)(A3), M3(A2)(A3)(A4), M4(=NR')2 또는 M4(CO)4이고;
M1은 13족 금속 또는 란탄족 금속이고;
M2은 4족 전이금속이고;
M3은 5족 전이금속이고;
M4은 6족 전이금속이고;
R'은 (C1-C7)알킬이고;
R1 내지 R5는 서로 독립적으로 수소 또는 (C1-C7)알킬이고;
A1는 (C1-C7)알킬, NR6R7, OR8, 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고;
A2, A3 및 A4는 서로 독립적으로 NR6R7, OR8, 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고;
상기 A1, A2, A3 및 A4의 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C7)알킬 또는 (C2-C7)알케닐로 더 치환될 수 있고;
R6, R7 및 R8은 서로 독립적으로 (C1-C7)알킬 또는 SiR9R10R11이고;
R9 내지 R11은 서로 독립적으로 (C1-C7)알킬이고;
m은 0 내지 2의 정수이다.)
본 발명의 일 실시예에 따른 상기 화학식 1의 금속 트리아민 화합물은 바람직하게 하기 화학식 2 또는 3으로 표시될 수 있다.
[화학식 2]
Figure PCTKR2018004841-appb-I000002
[화학식 3]
Figure PCTKR2018004841-appb-I000003
(상기 화학식 2 및 3에서,
M1은 B, Al, Ga, In 또는 La이고;
R1 내지 R5은 서로 독립적으로 수소원자 또는 (C1-C5)알킬이고;
A1는 (C1-C5)알킬, NR6R7, OR8 또는 시클로펜타디에닐 고리이고;
R6, R7 및 R8은 서로 독립적으로 (C1-C5)알킬 또는 SiR9R10R11이고;
R9 내지 R11은 서로 독립적으로 (C1-C5)알킬이다.)
본 발명의 일 실시예에 따른 상기 화학식 1의 금속 트리아민 화합물은 바람직하게 하기 화학식 4 또는 5로 표시될 수 있다.
[화학식 4]
Figure PCTKR2018004841-appb-I000004
[화학식 5]
Figure PCTKR2018004841-appb-I000005
(상기 화학식 4 및 5에서,
M2은 Ti, Zr 또는 Hf이고;
R1 내지 R5은 서로 독립적으로 수소원자 또는 (C1-C5)알킬이고;
A2 및 A3는 서로 독립적으로 NR6R7, OR8 또는 시클로펜타디에닐 고리이고;
R6, R7 및 R8은 서로 독립적으로 (C1-C5)알킬 또는 SiR9R10R11이고;
R9 내지 R11은 서로 독립적으로 (C1-C5)알킬이다.)
본 발명의 일 실시예에 따른 금속 트리아민 화합물은 바람직하게는 하기 화학식 4-1 또는 화학식 4-2로 표시될 수 있다.
[화학식 4-1]
Figure PCTKR2018004841-appb-I000006
[화학식 4-2]
Figure PCTKR2018004841-appb-I000007
(상기 화학식 4-1 및 4-2에서,
M2은 Ti, Zr 또는 Hf이고;
R1 내지 R3 및 R5은 서로 독립적으로 수소원자 또는 (C1-C5)알킬이고;
A3는 NR6R7 또는 시클로펜타디에닐 고리이고;
R6, R7 및 R8은 서로 독립적으로 (C1-C5)알킬 또는 SiR9R10R11이고;
R9 내지 R11은 서로 독립적으로 (C1-C5)알킬이다.)
본 발명의 일 실시예에 따른 금속 트리아민 화합물에서, 더욱 바람직하게는 상기 화학식 4-1 및 4-2에서 R1 및 R5는 각각 독립적으로 (C1-C3)알킬이고, R2 및 R3는 서로 독립적으로 수소 또는 (C1-C3)알킬이고, R6 및 R7은 서로 독립적으로 (C1-C3)알킬 또는 SiR9R10R11이고, R9 내지 R11은 서로 독립적으로 (C1-C3)알킬이고, R8은 (C1-C4)알킬일 수 있다.
본 발명의 일 실시예에 따른 상기 화학식 1의 금속 트리아민 화합물은 바람직하게 하기 화학식 6 또는 7로 표시될 수 있다.
[화학식 6]
Figure PCTKR2018004841-appb-I000008
[화학식 7]
Figure PCTKR2018004841-appb-I000009
(상기 화학식 6 및 7에서,
M3은 V, Nb 또는 Ta 이고;
R1 내지 R5은 서로 독립적으로 수소원자 또는 (C1-C5)알킬이고;
A2, A3 및 A4는 서로 독립적으로 NR6R7, OR8 또는 시클로펜타디에닐 고리이고;
R6, R7 및 R8은 서로 독립적으로 (C1-C5)알킬 또는 SiR9R10R11이고;
R9 내지 R11은 서로 독립적으로 (C1-C5)알킬이다.)
본 발명의 일 실시예에 따른 상기 화학식 6 또는 7의 금속 트리아민 화합물에서, 더욱 바람직하게는 상기 R1 및 R5는 각각 독립적으로 (C1-C3)알킬이고, R2 내지 R4는 서로 독립적으로 수소 또는 (C1-C3)알킬이고, A2, A3 및 A4는 서로 독립적으로 NR6R7이고, R6 및 R7은 서로 독립적으로 (C1-C3)알킬 또는 SiR9R10R11이고, R9 내지 R11은 서로 독립적으로 (C1-C3)알킬일 수 있다.
본 발명의 일 실시예에 따른 상기 화학식 1의 금속 트리아민 화합물은 바람직하게 하기 화학식 8 또는 9로 표시될 수 있다.
[화학식 8]
Figure PCTKR2018004841-appb-I000010
[화학식 9]
Figure PCTKR2018004841-appb-I000011
(상기 화학식 8 및 9에서,
M4은 Cr, Mo 또는 W 이고;
R1 내지 R5은 서로 독립적으로 수소원자 또는 (C1-C5)알킬이고;
R'은 (C1-C5)알킬이다.)
본 발명의 일 실시예에 따른 상기 화학식 1의 금속 트리아민 화합물은 바람직하게 하기 화학식 10 또는 11로 표시될 수 있다.
[화학식 10]
Figure PCTKR2018004841-appb-I000012
[화학식 11]
Figure PCTKR2018004841-appb-I000013
(상기 화학식 10 및 11에서,
M4은 Cr, Mo 또는 W 이고;
R1 내지 R5은 서로 독립적으로 수소원자 또는 (C1-C5)알킬이다.)
구체적으로 본 발명의 일 실시예에 따른 상기 화학식 1의 금속 트리아민 화합물은 하기 화합물로부터 선택될 수 있으나, 이에 한정이 되는 것은 아니다.
Figure PCTKR2018004841-appb-I000014
Figure PCTKR2018004841-appb-I000015
Figure PCTKR2018004841-appb-I000016
Figure PCTKR2018004841-appb-I000017
(상기에서 M1은 B, Al, Ga, In, Tl 또는 La이고; M2은 Ti, Zr 또는 Hf이고; M3은 V, Nb 또는 Ta이고; M4은 Cr, Mo 또는 W이다.)
또한, 본 발명은 상기 화학식 1로 표시되는 금속 트리아민 화합물을 제조하는 방법을 제공한다.
본 발명의 일 실시예에 있어서, 상기 화학식 1에서 M이 M1(A1)인 경우 화학식 I으로 표시하고, M이 M2(A2)(A3)인 경우 화학식 II로 표시하고, M이 M3(A2)(A3)(A4)인 경우 화학식 III로 표시하고, M이 M4(=NR')2인 경우 화학식 IV로 표시하고, M이 M4(CO)4인 경우 화학식 V로 표시한다.
본 발명의 일 실시예에 따른 화학식 1의 금속 트리아민 화합물에서 M이 M1(A1)인 화학식 I의 금속 트리아민 화합물의 제조방법은 화학식 A의 다이알킬렌트리아민 화합물과 화학식 B의 금속 전구체를 반응시켜 화학식 I의 금속 트리아민 화합물을 제조하는 단계;를 포함한다.
[화학식 I]
Figure PCTKR2018004841-appb-I000018
[화학식 A]
Figure PCTKR2018004841-appb-I000019
[화학식 B]
M1(A1)3
(상기 화학식 I, 화학식 A 및 B에서,
M1은 13족 금속 또는 란탄족 금속이고;
R1 내지 R5는 서로 독립적으로 수소 또는 (C1-C7)알킬이고;
A1는 (C1-C5)알킬, NR6R7, OR8, 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고, 상기 A1의 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C7)알킬 또는 (C2-C7)알케닐로 더 치환될 수 있고;
R6, R7 및 R8은 서로 독립적으로 (C1-C7)알킬 또는 SiR9R10R11이고;
R9 내지 R11은 서로 독립적으로 (C1-C7)알킬이고;
m은 0 내지 2의 정수이다.)
본 발명의 일 실시예에 따른 화학식 1의 금속 트리아민 화합물에서 M이 M2(A2)(A3)인 화학식 II-1의 금속 트리아민 화합물의 제조방법은 하기 화학식 A의 다이알킬렌트리아민 화합물과 화학식 C의 금속 전구체를 반응시켜 하기 화학식 II-1의 금속 트리아민 화합물을 제조하는 단계;를 포함한다.
[화학식 II-1]
Figure PCTKR2018004841-appb-I000020
[화학식 A]
Figure PCTKR2018004841-appb-I000021
[화학식 C]
M2(A2)x(A3)4 -x
(상기 화학식 II-1, 화학식 A 및 C에서,
M2은 4족 전이금속이고;
R1 내지 R5는 서로 독립적으로 수소 또는 (C1-C7)알킬이고;
A2 및 A3는 서로 독립적으로 NR6R7, 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고, 상기 A2 및 A3의 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C7)알킬 또는 (C2-C7)알케닐로 더 치환될 수 있고;
R6 및 R7은 서로 독립적으로 (C1-C7)알킬 또는 SiR9R10R11이고;
R9 내지 R11은 서로 독립적으로 (C1-C7)알킬이고;
m은 0 내지 2의 정수이고;
x는 1 내지 3의 정수이다.)
본 발명의 일 실시예에 따른 화학식 1의 금속 트리아민 화합물에서 M이 M2(A2)(A3)인 화학식 II-1의 금속 트리아민 화합물의 제조방법은 하기 화학식 D의 다이알킬렌트리아민 리튬염 화합물과 화학식 E의 금속 할라이드 전구체를 반응시켜 상기 화학식 II-1의 금속 트리아민 화합물을 제조하는 단계;를 포함한다.
[화학식 D]
Figure PCTKR2018004841-appb-I000022
[화학식 E]
Figure PCTKR2018004841-appb-I000023
(상기 화학식 D 및 E에서,
M2은 4족 전이금속이고;
X는 할로겐이고;
R1 내지 R5는 서로 독립적으로 수소 또는 (C1-C7)알킬이고;
A2 및 A3는 서로 독립적으로 NR6R7, 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고, 상기 A2 및 A3의 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C7)알킬 또는 (C2-C7)알케닐로 더 치환될 수 있고;
R6 및 R7은 서로 독립적으로 (C1-C7)알킬 또는 SiR9R10R11이고;
R9 내지 R11은 서로 독립적으로 (C1-C7)알킬이고;
m은 0 내지 2의 정수이다.)
상기 화학식 D의 다이알킬렌트리아민 리튬염 화합물은 하기 화학식 A의 다이알킬렌트리아민 화합물 및 (C1-C7)알킬리튬을 반응시켜 제조될 수 있다.
[화학식 A]
Figure PCTKR2018004841-appb-I000024
(상기 화학식 A에서,
R1 내지 R5는 서로 독립적으로 수소 또는 (C1-C7)알킬이고;
m은 0 내지 2의 정수이다.)
본 발명의 일 실시예에 따른 화학식 1의 금속 트리아민 화합물에서 M이 M2(A2)(A3)인 화학식 II-2의 금속 트리아민 화합물의 제조방법은 하기 화학식 A의 다이알킬렌트리아민 화합물과 화학식 C-1의 금속 전구체를 반응시킨 후 화학식 F의 알코올 화합물과 반응시켜 화학식 II-2의 금속 트리아민 화합물을 제조하는 단계;를 포함한다.
[화학식 II-2]
Figure PCTKR2018004841-appb-I000025
[화학식 A]
Figure PCTKR2018004841-appb-I000026
[화학식 C-1]
M2(NR6R7)4
[화학식 F]
R8-OH
(상기 화학식 II-2, 화학식 A, C-1 및 F에서,
M2은 4족 전이금속이고;
R1 내지 R5는 서로 독립적으로 수소 또는 (C1-C7)알킬이고;
R6, R7 및 R8은 서로 독립적으로 (C1-C7)알킬이고;
m은 0 내지 2의 정수이다.)
본 발명의 일 실시예에 따른 화학식 1의 금속 트리아민 화합물에서 M이 M3(A2)(A3)(A4)인 화학식 III의 금속 트리아민 화합물의 제조방법은 하기 화학식 A의 다이알킬렌트리아민 화합물과 화학식 G의 금속 전구체를 반응시켜 하기 화학식 III의 금속 트리아민 화합물을 제조하는 단계;를 포함한다.
[화학식 III]
Figure PCTKR2018004841-appb-I000027
[화학식 A]
Figure PCTKR2018004841-appb-I000028
[화학식 G]
M3(A2)a(A3)b(A4)c
(상기 화학식 III, A 및 G에서,
M3은 5족 전이금속이고;
R1 내지 R5는 서로 독립적으로 수소 또는 (C1-C7)알킬이고;
A2, A3 및 A4는 서로 독립적으로 NR6R7, OR8, 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고, 상기 A2, A3 및 A4의 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C7)알킬 또는 (C2-C7)알케닐로 더 치환될 수 있고;
R6, R7 및 R8은 서로 독립적으로 (C1-C7)알킬 또는 SiR9R10R11이고;
R9 내지 R11은 서로 독립적으로 (C1-C7)알킬이고;
m은 0 내지 2의 정수이고;
a, b 및 c는 1 이상의 정수로, a+b+c는 5의 정수이다.)
본 발명의 일 실시예에 따른 화학식 1의 금속 트리아민 화합물에서 M이 M4(=NR')2인 화학식 IV의 금속 트리아민 화합물의 제조방법은 하기 화학식 H의 화합물과 화학식 D의 다이알킬렌트리아민 리튬염 화합물을 반응시켜 하기 화학식 IV의 금속 트리아민 화합물을 제조하는 단계;를 포함한다.
[화학식 IV]
Figure PCTKR2018004841-appb-I000029
[화학식 H]
Figure PCTKR2018004841-appb-I000030
[화학식 D]
Figure PCTKR2018004841-appb-I000031
(상기 화학식 IV, D 및 H에서,
M4은 6족 전이금속이고;
R1 내지 R5는 서로 독립적으로 수소 또는 (C1-C7)알킬이고;
R'은 (C1-C7)알킬이고;
X1 및 X2는 각각 독립적으로 할로겐이고;
Ra 및 Rb는 각각 독립적으로 (C1-C7)알킬이고;
m은 0 내지 2의 정수이다.)
상기 화학식 H의 화합물은 Na2MoO4, 화학식 J의 에탄 화합물, 트리에틸아민(NEt3), 클로로트리메틸실란(Me3SiCl) 및 화학식 K의 아민 화합물을 반응시켜 제조될 수 있다.
[화학식 J]
Figure PCTKR2018004841-appb-I000032
[화학식 K]
Figure PCTKR2018004841-appb-I000033
(상기 화학식 J 및 K에서,
Ra 및 Rb는 각각 독립적으로 (C1-C7)알킬이고;
R'은 (C1-C7)알킬이다.)
본 발명의 일 실시예에 따른 화학식 1의 금속 트리아민 화합물에서 M이 M4(CO)4인 화학식 V의 금속 트리아민 화합물의 제조방법은 하기 하기 화학식 L의 금속 헥사카보닐 전구체를 할로겐과 반응시킨 후 화학식 A의 다이알킬렌트리아민 화합물과 반응시켜 하기 화학식 V의 금속 트리아민 화합물을 제조하는 단계;를 포함한다.
[화학식 V]
Figure PCTKR2018004841-appb-I000034
[화학식 A]
Figure PCTKR2018004841-appb-I000035
[화학식 L]
M4(CO)6
(상기 화학식 V, 화학식 A 및 L에서,
M4은 6족 전이금속이고;
R1 내지 R5는 서로 독립적으로 수소 또는 (C1-C7)알킬이고;
m은 0 내지 2의 정수이다.)
또한 본 발명은 본 발명의 금속 트리아민 화합물을 포함하는 금속 함유 박막증착용 조성물을 제공한다.
또한 본 발명은 본 발명의 금속 함유 박막증착용 조성물을 이용하는 금속 함유 박막의 제조방법을 제공한다.
본 발명의 금속 함유 박막의 제조방법은 원자층 증착법(ALD), 기상 증착법(CVD), 유기금속 화학기상 증착법(MOCVD), 저압 기상 증착법(LPCVD), 플라즈마 강화 기상 증착법 (PECVD) 또는 플라즈마 강화 원자층 증착법(PEALD)으로 수행될 수 있으며, 산소(O2), 오존(O3), 증류수(H2O), 과산화수소(H2O2), 일산화질소(NO), 아산화질소(N2O), 이산화질소(NO2), 암모니아(NH3), 질소(N2), 하이드라진(N2H4), 아민, 다이아민, 일산화탄소(CO), 이산화탄소(CO2), C1 내지 C12 포화 또는 불포화 탄화 수소, 수소, 아르곤 및 헬륨에서 선택되는 어느 하나 또는 둘 이상의 가스를 공급하여 수행될 수 있다.
본 발명의 금속 함유 박막의 제조방법은 구체적으로
a) 챔버 내에 장착된 기판의 온도를 80 내지 400℃로 유지하는 단계;
b) 수송가스와 상기 금속 함유 박막증착용 조성물을 주입하는 단계; 및
c) 반응가스를 주입하여 상기 기판상에 금속 함유 박막을 증착시키는 단계;를 포함할 수 있다.
본 발명의 신규한 금속 트리아민 화합물은 반응성이 우수하며, 휘발성이 높고, 열안정성 및 응집력이 우수하여 금속 함유 박막의 전구체로 매우 유용하다.
또한 본 발명의 신규한 금속 트리아민 화합물은 녹는점이 낮아 대부분 상온 및 취급이 가능한 온도 하에서 액체 또는 녹는점이 낮은 고체 상태로 존재하여 취급이 용이하며, 열안정성이 높아 저장안정성이 매우 우수하다.
즉, 본 발명에 따른 금속 트리아민 화합물은 열분해에 기인한 파티클 오염이나 탄소 등의 불순물 오염없이 고순도의 금속 함유 박막을 형성할 수 있으므로, 반도체 소자에서의 고-유전물질막(high-k film)에 응용 가능하다.
또한, 본 발명의 금속 함유 박막증착용 조성물은 열안정성이 높은 본 발명의 금속 트리아민 화합물을 전구체로 포함함으로써 다양한 박막증착방법에 적용할 수 있으며, 이를 이용하여 밀도 및 순도가 높은 금속 함유 박막을 제조할 수 있다.
본 발명의 금속 함유 박막증착용 조성물은 휘발성이 높고, 열안정성 및 응집력이 우수하며, 녹는점이 낮아 대부분 상온에서 액체로 존재하는 본 발명의 금속 트리아민 화합물을 전구체로 포함함으로써 이를 이용한 금속 함유 박막형성 시 260℃ 이상, 보다 바람직하게는 300℃이상의 고온에서도 우수한 단차피복성(step coverage)을 가질 수 있어 밀도가 높은 고순도의 금속 함유 박막을 얻을 수 있다.
도 1 - CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2 전구체를 이용한 지르코늄 산화막의 온도별 단차피복성 투과전자현미경 사진도
도 2 - CH3N(CH2CH2N(CH3))2Ti(O(CH(CH3)2)2 전구체를 이용한 티타늄 산화막의 단차피복성 투과전자현미경 사진
도 3 - CH3N(CH2C(CH3)HN(CH3))2Ti(N(CH3)2)2 전구체를 이용한 티타늄 산화막의 단차피복성 투과전자현미경 사진
도 4 - CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2 전구체를 이용한 하프늄 산화막의 단차피복성 투과전자현미경 사진
도 5 - CH3N(CH2C(CH3)HN(CH3))2Ti(N(CH3)2)2 전구체를 이용한 티타늄 질화막의 단차피복성 투과전자현미경 사진
도 6 - CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2 전구체를 이용한 지르코늄 산화막의 소스양에 따른 포화도(Saturation) 그래프
도 7 - CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2 전구체를 이용한 지르코늄 산화막의 증착 주기에 따른 선형성(Linearity) 그래프
도 8 - CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2 전구체를 이용한 지르코늄 산화막의 ALD성장온도창(ALD window)
도 9 - CH3N(CH2C(CH3)HN(CH3))2Ti(N(CH3)2)2 전구체를 이용한 티타늄 산화막의 소스양에 따른 포화도(Saturation) 그래프
도 10 - CH3N(CH2C(CH3)HN(CH3)) 2Ti(N(CH3)2)2 전구체를 이용한 티타늄 산화막의 의 증착 주기에 따른 선형성(Linearity) 그래프
도 11 - CH3N(CH2C(CH3)HN(CH3))2Ti(N(CH3)2)2 전구체를 이용한 티타늄 산화막의 ALD성장온도창(ALD window)
도 12 - CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2 전구체를 이용한 하프늄 산화막의 소스양에 따른 포화도(Saturation) 그래프
도 13 - CH3N(CH2C(CH3)HN(CH3)) 2Hf(N(CH3)2)2 전구체를 이용한 하프늄 산화막의 의 증착 주기에 따른 선형성(Linearity) 그래프
도 14 - CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2 전구체를 이용한 하프늄 산화막의 ALD성장온도창(ALD window)
도 15 - CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2 전구체를 이용한 하프늄 질화막의 표면선택적 성장비교 투과전자현미경 사진
도 16 - CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2 전구체를 이용한 하프늄 산화막의 표면선택적 성장비교 투과전자현미경 사진
도 17 - CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2 전구체를 이용한 지르코늄 산화막의 결정성 엑스선 회절 분석 그래프
도 18 - CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2 전구체를 이용한 지르코늄 산화막의 결정질 투과전자현미경 사진
도 19 내지 도 23 - CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2 전구체를 이용한 지르코늄 산화막의 이차이온질량분석(Secondary Ion Mass Spectroscopy) 그래프
도 24 - CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2 전구체를 이용한 지르코늄 산화막의 전기적 특성 그래프((a) 누설전류, (b) 유전상수, (c) 등가산화막 두께)
도 25 - CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2 / TMA / CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2 전구체를 이용한 다층구조(ZAZ) 금속 산화막의 전기적 특성 그래프((a) 누설전류, (b) 유전상수, (c) 등가산화막 두께)
본 발명의 신규한 금속 화합물 및 이의 제조방법에 대하여 이하에 상술하나, 이때 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
용어 “알킬”은 탄소 및 수소 원자만으로 구성된 1가의 직쇄 또는 분쇄 포화 탄화수소 라디칼로, 1 내지 7개의 탄소원자 바람직하게는 1 내지 5개, 보다 바람직하게는 1 내지 3개의 탄소원자를 가질 수 있다. 알킬 기의 예는 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, t-부틸, 펜틸 등을 포함하지만 이에 한정되지는 않는다.
용어 “알케닐”은 두 개 이상의 탄소 원자들 사이에 하나 이상의 이중 결합을 포함하는 직쇄 또는 분쇄의 불포화 탄화수소 1가 라디칼로, 2 내지 7개의 탄소원자 바람직하게는 2 내지 5개, 보다 바람직하게는 2 내지 3개의 탄소원자를 가질 수 있다. 알케닐 기의 예로는 에테닐, 프로페닐, 알릴, 프로페닐, 부테닐 및 4-메틸부테닐 등을 포함하지만 이에 한정되지는 않는다.
용어 “할로” 또는 “할로겐”은 할로겐족 원소를 나타내며, 예컨대, 플루오로, 클로로, 브로모 및 요오도를 포함한다.
본 발명은 휘발성이 높고, 열적 안정성이 우수할 뿐 아니라 우수한 응집력을 가지며, 표면 선택적 박막형성이 가능한 하기 화학식 1로 표시되는 금속 트리아민 화합물을 제공한다.
[화학식 1]
Figure PCTKR2018004841-appb-I000036
(상기 화학식 1에서,
M은 M1(A1), M2(A2)(A3), M3(A2)(A3)(A4), M4(=NR')2 또는 M4(CO)4이고;
M1은 13족 금속 또는 란탄족 금속이고;
M2은 4족 전이금속이고;
M3은 5족 전이금속이고;
M4은 6족 전이금속이고;
R'은 (C1-C7)알킬이고;
R1 내지 R5는 서로 독립적으로 수소 또는 (C1-C7)알킬이고;
A1는 (C1-C7)알킬, NR6R7, OR8, 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고;
A2, A3 및 A4는 서로 독립적으로 NR6R7, OR8, 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고;
상기 A1, A2, A3 및 A4의 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C7)알킬 또는 (C2-C7)알케닐로 더 치환될 수 있고;
R6, R7 및 R8은 서로 독립적으로 (C1-C7) 알킬 또는 SiR9R10R11이고;
R9 내지 R11은 서로 독립적으로 (C1-C7)알킬이고;
m은 0 내지 2의 정수이다.)
본 발명의 신규한 금속 트리아민 화합물은 금속에 디알킬렌트리아민의 양 말단의 질소 원자가 공유결합되며, 중간의 질소 원자가 배위결합된 옥타하이드로펜탈렌(octahydropentalene), 데카하이드로나프탈렌(decahydronaphthalene) 또는 도데카하이드로헵탈렌(dodecahydroheptalene) 구조로 인해 지속적인 가온에도 열화되지 않는 우수한 열적 안정성 및 뛰어난 반응성을 가진다. 또한 본 발명의 신규한 금속 트리아민 화합물은 녹는점이 낮아 대부분 상온 및 취급이 가능한 온도 하에서 액체 또는 녹는점이 낮은 고체 상태로 존재하여 취급이 용이하다. 또한 본 발명의 신규한 금속 트리아민 화합물은 녹는점이 낮아 상온 및 상압에서 대부분 액체 형태로 존재하므로, 저장안정성이 높고, 휘발성이 뛰어나 이를 금속 함유 박막증착용 전구체로 이용하여 밀도가 높은 고순도의 금속 함유 박막을 제조할 수 있다.
본 발명의 일 실시예에 따른 금속 트리아민 화합물은 높은 증기압을 가지기 위한 측면에서 상온에서 액체 상태의 화합물을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 이처럼 상온에서 액체인 화합물은 녹는점 이상으로 가열할 필요가 없으므로, 고체인 화합물에 비해 유리할 수 있다.
본 발명의 일 실시예에 따른 금속 트리아민 화합물은 높은 증기압을 가져 박막형성이 보다 용이한 측면에서 상온 및 상압에서 액체 또는 녹는점이 낮은 고체 상태의 화합물일 수 있다.
본 발명의 일 실시예에 따른 금속 M은 준금속, 금속 및 전이금속으로부터 선택되는 것으로, 구체적으로는 M1(A1), M2(A2)(A3), M3(A2)(A3)(A4), M4(=NR')2 또는 M4(CO)4으로, M1은 3가의 13족 금속 또는 3가의 란탄족 금속으로, 바람직하게는 B, Al, Ga, In 또는 La일 수 있고; M2은 4가의 4족 전이금속으로, 바람직하게는 Ti, Zr 또는 Hf 일 수 있고; M3은 5가의 5족 전이금속으로, 바람직하게는 V, Nb 또는 Ta 일 수 있고; M4은 6가의 6족 전이금속으로, 바람직하게는 Cr, Mo 또는 W 일 수 있다.
바람직하게 본 발명의 일 실시예에 따른 R1 내지 R5는 서로 독립적으로 수소 또는 (C1-C5)알킬이며; A1는 (C1-C7)알킬, NR6R7, OR8 또는 시클로펜타디에닐 고리이고; A2, A3 및 A4는 서로 독립적으로 NR6R7, OR8 또는 시클로펜타디에닐 고리이고; 상기 A1, A2, A3 및 A4의 시클로펜타디에닐 고리는 (C1-C5)알킬 또는 (C2-C5)알케닐로 더 치환될 수 있고; R6, R7 및 R8은 서로 독립적으로 (C1-C5)알킬 또는 SiR9R10R11이고; R9 내지 R11은 서로 독립적으로 (C1-C5)알킬이고; m은 0 또는 1의 정수일 수 있다.
바람직하게 본 발명의 일 실시예에 따른 상기 화학식 1의 금속 트리아민 화합물은 하기 화학식 2 또는 3으로 표시될 수 있다.
[화학식 2]
Figure PCTKR2018004841-appb-I000037
[화학식 3]
Figure PCTKR2018004841-appb-I000038
(상기 화학식 2 및 3에서,
M1은 B, Al, Ga, In 또는 La이고;
R1 내지 R5은 서로 독립적으로 수소원자 또는 (C1-C5)알킬이고;
A1는 (C1-C5)알킬, NR6R7, OR8 또는 시클로펜타디에닐 고리이고;
R6, R7 및 R8은 서로 독립적으로 (C1-C5)알킬 또는 SiR9R10R11이고;
R9 내지 R11은 서로 독립적으로 (C1-C5)알킬이다.)
본 발명의 일 실시예에 따른 금속 트리아민 화합물은 금속 함유 박막증착용 전구체로 높은 휘발성 및 열안정성을 가지기 위한 측면에서 바람직하게는 상기 화학식 2 또는 3에서 R1 및 R5은 서로 독립적으로 (C1-C3)알킬이며, R2 내지 R4는 서로 독립적으로 수소 또는 (C1-C3)알킬이며, A1는 (C1-C3)알킬, NR6R7, OR8 또는 시클로펜타디에닐 고리이고, R6 및 R7은 서로 독립적으로 (C1-C3)알킬 또는 SiR9R10R11이고; R9 내지 R11은 서로 독립적으로 (C1-C3)알킬이고, R8은 (C1-C4)알킬로, 구체적으로 R1 및 R5은 서로 독립적으로 메틸, 에틸, n-프로필 또는 이소프로필이며, R2 내지 R4는 서로 독립적으로 수소, 메틸, 에틸, n-프로필 또는 이소프로필이며, A1는 메틸, 에틸, n-프로필, 이소프로필, NR6R7, OR8 또는 시클로펜타디에닐 고리이고, R6 및 R7은 서로 독립적으로 메틸, 에틸, n-프로필, 이소프로필, 트리메틸실릴, 트리에틸실릴, 에틸디메틸실릴 또는 메틸에틸프로필실릴이고, R8은 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸 또는 t-부틸일 수 있다.
바람직하게 본 발명의 일 실시예에 따른 상기 화학식 1의 금속 트리아민 화합물은 하기 화학식 4 또는 5로 표시될 수 있다.
[화학식 4]
Figure PCTKR2018004841-appb-I000039
[화학식 5]
Figure PCTKR2018004841-appb-I000040
(상기 화학식 4 및 5에서,
M2은 Ti, Zr 또는 Hf이고;
R1 내지 R5은 서로 독립적으로 수소원자 또는 (C1-C5)알킬이고;
A2 및 A3는 서로 독립적으로 NR6R7, OR8 또는 시클로펜타디에닐 고리이고;
R6, R7 및 R8은 서로 독립적으로 (C1-C5)알킬 또는 SiR9R10R11이고;
R9 내지 R11은 서로 독립적으로 (C1-C5)알킬이다.)
본 발명의 일 실시예에 따른 금속 트리아민 화합물은 금속 함유 박막증착용 전구체로 높은 휘발성 및 열안정성을 가지기 위한 측면에서 바람직하게는 상기 화학식 4 또는 5에서 R1 및 R5은 서로 독립적으로 (C1-C3)알킬이며, R2 내지 R4는 서로 독립적으로 수소 또는 (C1-C3)알킬이며, A2 및 A3는 서로 독립적으로 NR6R7, OR8 또는 시클로펜타디에닐 고리이고, R6 및 R7은 서로 독립적으로 (C1-C3)알킬 또는 SiR9R10R11이고; R9 내지 R11은 서로 독립적으로 (C1-C3)알킬이고, R8은 (C1-C4)알킬로, 구체적으로 R1 및 R5은 서로 독립적으로 메틸, 에틸, n-프로필 또는 이소프로필이며, R2 내지 R4는 서로 독립적으로 수소, 메틸, 에틸, n-프로필 또는 이소프로필이며, A2 및 A3는 서로 독립적으로 NR6R7, OR8 또는 시클로펜타디에닐 고리이고, R6 및 R7은 서로 독립적으로 메틸, 에틸, n-프로필, 이소프로필, 트리메틸실릴, 트리에틸실릴, 에틸디메틸실릴 또는 메틸에틸프로필실릴이고, R8은 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸 또는 t-부틸일 수 있다.
본 발명의 일 실시예에 따른 금속 트리아민 화합물은 더욱 바람직하게는 하기 화학식 4-1 또는 화학식 4-2로 표시될 수 있다.
[화학식 4-1]
Figure PCTKR2018004841-appb-I000041
[화학식 4-2]
Figure PCTKR2018004841-appb-I000042
(상기 화학식 4-1 및 4-2에서,
M2은 Ti, Zr 또는 Hf이고;
R1 내지 R3 및 R5은 서로 독립적으로 수소원자 또는 (C1-C5)알킬이고;
A3는 NR6R7 또는 시클로펜타디에닐 고리이고;
R6, R7 및 R8은 서로 독립적으로 (C1-C5)알킬 또는 SiR9R10R11이고;
R9 내지 R11은 서로 독립적으로 (C1-C5)알킬이다.)
본 발명의 일 실시예에 따른 화학식 4-1 및 4-2의 금속 트리아민 화합물에서, 더욱 더 바람직하게는 상기 R1 및 R5는 각각 독립적으로 (C1-C3)알킬이고, R2 및 R3는 서로 독립적으로 수소 또는 (C1-C3)알킬이고, A3는 NR6R7 또는 시클로펜타디에닐 고리이고, R6 및 R7은 서로 독립적으로 (C1-C3)알킬이고, R8은 (C1-C4)알킬일 수 있다. 구체적으로 R1 및 R5은 서로 독립적으로 메틸, 에틸, n-프로필 또는 이소프로필이며, R2 및 R3는 서로 독립적으로 수소, 메틸, 에틸, n-프로필 또는 이소프로필이며, R6 및 R7은 서로 독립적으로 메틸, 에틸, n-프로필, 또는 이소프로필이고, R8은 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸 또는 t-부틸일 수 있다.
본 발명의 일 실시예에 따른 화학식 4-1 및 4-2의 금속 트리아민 화합물에서, R2 및 R3 중 적어도 하나는 수소이고, 나머지는 수소 또는 (C1-C3)알킬인 것이 박막증착용으로 우수한 특성을 가지기 위한 측면에서 더욱 바람직하다.
바람직하게 본 발명의 일 실시예에 따른 상기 화학식 1의 금속 트리아민 화합물은 하기 화학식 6 또는 7로 표시될 수 있다.
[화학식 6]
Figure PCTKR2018004841-appb-I000043
[화학식 7]
Figure PCTKR2018004841-appb-I000044
(상기 화학식 6 및 7에서,
M3은 V, Nb 또는 Ta 이고;
R1 내지 R5은 서로 독립적으로 수소원자 또는 (C1-C5)알킬이고;
A2, A3 및 A4는 서로 독립적으로 NR6R7, OR8 또는 시클로펜타디에닐 고리이고;
R6, R7 및 R8은 서로 독립적으로 (C1-C5) 알킬 또는 SiR9R10R11이고;
R9 내지 R11은 서로 독립적으로 (C1-C5)알킬이다.)
본 발명의 일 실시예에 따른 금속 트리아민 화합물은 금속 함유 박막증착용 전구체로 높은 휘발성 및 열안정성을 가지기 위한 측면에서 바람직하게는 상기 화학식 6 또는 7에서 R1 및 R5는 각각 독립적으로 (C1-C3)알킬이고, R2 내지 R4는 서로 독립적으로 수소 또는 (C1-C3)알킬이고, A2, A3 및 A4는 서로 독립적으로 NR6R7이고, R6 및 R7은 서로 독립적으로 (C1-C3)알킬 또는 SiR9R10R11이고, R9 내지 R11은 서로 독립적으로 (C1-C3)알킬이고, 더욱 바람직하게는 R1 및 R5는 각각 독립적으로 (C1-C3)알킬이고, R2 내지 R4는 서로 독립적으로 수소 또는 (C1-C3)알킬이고, A2, A3 및 A4는 서로 독립적으로 NR6R7이고, R6 및 R7은 서로 독립적으로 (C1-C3)알킬일 수 있다. 구체적으로 R1 및 R5은 서로 독립적으로 메틸, 에틸, n-프로필 또는 이소프로필이며, R2 내지 R4는 서로 독립적으로 수소, 메틸, 에틸, n-프로필 또는 이소프로필이며, A2, A3 및 A4는 서로 독립적으로 NR6R7이고, R6 및 R7은 서로 독립적으로 메틸, 에틸, n-프로필, 이소프로필, 트리메틸실릴, 트리에틸실릴, 에틸디메틸실릴 또는 메틸에틸프로필실릴일 수 있다.
바람직하게 본 발명의 일 실시예에 따른 상기 화학식 1의 금속 트리아민 화합물은 하기 화학식 8 또는 9로 표시될 수 있다.
[화학식 8]
Figure PCTKR2018004841-appb-I000045
[화학식 9]
Figure PCTKR2018004841-appb-I000046
(상기 화학식 8 및 9에서,
M4은 Cr, Mo 또는 W 이고;
R1 내지 R5은 서로 독립적으로 수소원자 또는 (C1-C5)알킬이고;
R'은 (C1-C5)알킬이다.)
본 발명의 일 실시예에 따른 금속 트리아민 화합물은 금속 함유 박막증착용 전구체로 높은 휘발성 및 열안정성을 가지기 위한 측면에서 바람직하게는 상기 화학식 8 또는 9에서 R1 및 R5는 각각 독립적으로 (C1-C3)알킬이고, R2 내지 R4는 서로 독립적으로 수소 또는 (C1-C3)알킬이고, R'은 (C1-C4)알킬로, 구체적으로 R1 및 R5은 서로 독립적으로 메틸, 에틸, n-프로필 또는 이소프로필이며, R2 내지 R4는 서로 독립적으로 수소, 메틸, 에틸, n-프로필 또는 이소프로필이며, R'은 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸 또는 t-부틸일 수 있다.
바람직하게 본 발명의 일 실시예에 따른 상기 화학식 1의 금속 트리아민 화합물은 하기 화학식 10 또는 11로 표시될 수 있다.
[화학식 10]
Figure PCTKR2018004841-appb-I000047
[화학식 11]
Figure PCTKR2018004841-appb-I000048
(상기 화학식 10 및 11에서,
M4은 Cr, Mo 또는 W 이고;
R1 내지 R5은 서로 독립적으로 수소원자 또는 (C1-C5)알킬이다.)
본 발명의 일 실시예에 따른 금속 트리아민 화합물은 금속 함유 박막증착용 전구체로 높은 휘발성 및 열안정성을 가지기 위한 측면에서 바람직하게는 상기 화학식 10 또는 11에서 R1 및 R5는 각각 독립적으로 (C1-C3)알킬이고, R2 내지 R4는 서로 독립적으로 수소 또는 (C1-C3)알킬로, 구체적으로 R1 및 R5은 서로 독립적으로 메틸, 에틸, n-프로필 또는 이소프로필이며, R2 내지 R4는 서로 독립적으로 수소, 메틸, 에틸, n-프로필 또는 이소프로필일 수 있다.
본 발명의 일 실시예에 따른 금속 트리아민 화합물은 금속에 디알킬렌트리아민의 양 말단의 질소 원자가 공유결합되며, 중간의 질소 원자가 배위결합된 옥타하이드로펜탈렌(octahydropentalene) 또는 데카하이드로나프탈렌(decahydronaphthalene) 구조의 상기 화학식 2 내지 11의 금속 트리아민 화합물일 수 있다. 금속 함유 박막증착용 전구체로 휘발성이 높고 열안정성이 높아 양질의 금속 함유 박막을 얻기 위한 측면에서 보다 더 바람직하게는 금속에 디알킬렌트리아민의 양 말단의 질소 원자가 공유결합되며, 중간의 질소 원자가 배위결합된 옥타하이드로펜탈렌(octahydropentalene) 구조의 상기 화학식 2, 화학식 4, 화학식 6, 화학식 8 또는 화학식 10의 금속 트리아민 화합물이 더욱 선호된다.
본 발명의 일 실시예에 따른 금속 트리아민 화합물은 구체적으로 하기 구조의 화합물에서 선택될 수 있으나, 이에 한정이 있는 것은 아니다.
Figure PCTKR2018004841-appb-I000049
Figure PCTKR2018004841-appb-I000050
Figure PCTKR2018004841-appb-I000051
Figure PCTKR2018004841-appb-I000052
(상기에서 M1은 B, Al, Ga, In, Tl 또는 La이고; M2은 Ti, Zr 또는 Hf이고; M3은 V, Nb 또는 Ta이고; M4은 Cr, Mo 또는 W이다.)
또한, 본 발명은 상기 화학식 1로 표시되는 금속 트리아민 화합물을 제조하는 방법을 제공한다.
본 발명의 일 실시예에 있어서, 상기 화학식 1에서 M이 M1(A1)인 경우 화학식 I으로 표시하고, M이 M2(A2)(A3)인 경우 화학식 II로 표시하고, M이 M3(A2)(A3)(A4)인 경우 화학식 III로 표시하고, M이 M4(=NR')2인 경우 화학식 IV로 표시하고, M이 M4(CO)4인 경우 화학식 V로 표시한다.
본 발명의 일 실시예에 따른 화학식 1의 금속 트리아민 화합물에서 M이 M1(A1)인 화학식 I의 금속 트리아민 화합물의 제조방법은 화학식 A의 다이알킬렌트리아민 화합물과 화학식 B의 금속 전구체를 반응시켜 제조된다.
[화학식 I]
Figure PCTKR2018004841-appb-I000053
[화학식 A]
Figure PCTKR2018004841-appb-I000054
[화학식 B]
M1(A1)3
(상기 화학식 I, 화학식 A 및 B에서,
M1은 13족 금속 또는 란탄족 금속이고;
R1 내지 R5는 서로 독립적으로 수소 또는 (C1-C7)알킬이고;
A1는 (C1-C5)알킬, NR6R7, OR8, 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고, 상기 A1의 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C7)알킬 또는 (C2-C7)알케닐로 더 치환될 수 있고;
R6, R7 및 R8은 서로 독립적으로 (C1-C7)알킬 또는 SiR9R10R11이고;
R9 내지 R11은 서로 독립적으로 (C1-C7)알킬이고;
m은 0 내지 2의 정수이다.)
화학식 I의 금속 트리아민 화합물의 제조방법은 하기 반응식 1로 나타낼 수 있다.
[반응식 1]
Figure PCTKR2018004841-appb-I000055
(상기 반응식 1에서 M1, R1 내지 R5, A1및 m은 상기 화학식 I에서의 정의와 동일하다.)
본 발명의 금속 트리아민 화합물의 제조방법의 일 실시예에 있어서, 상기 화학식 B의 금속 전구체와 화학식 A의 다이알킬렌트리아민 화합물은 1 : 1 내지 1 : 1.5의 몰비, 바람직하게는 1 : 1 내지 1 : 1.25의 몰비, 보다 바람직하게는 1 : 1 내지 1 : 1.10의 몰비로 사용될 수 있다.
상기 화학식 A의 다이알킬렌트리아민 화합물과 화학식 B의 금속 전구체의 반응[반응식 1]은 용매 하에서 이루어질 수 있다. 상기 반응에 사용되는 용매는 통상의 유기용매이면 모두 가능하나, 헥산, 펜탄, 다이클로로메탄(DCM), 다이클로로에탄(DCE), 톨루엔(Toluene), 아세토나이트릴(MeCN), 나이트로 메탄(Nitromethan), 테트라하이드로퓨란(THF), N,N-다이메틸 포름아마이드 (DMF) 및 N,N-다이메틸아세트아마이드(DMA)로 이루어진 군으로부터 선택되는 1종 이상을 사용하는 것이 바람직하다.
반응온도는 통상의 유기합성에서 사용되는 온도에서 사용가능하나, 반응물질 및 출발물질의 양에 따라 달라질 수 있으며, 바람직하게 반응식 1 의 반응은 -10 내지 80℃에서 수행될 수 있고, NMR 등을 통하여 출발물질이 완전히 소모됨을 확인한 후 반응을 완결시키도록 한다. 반응이 완결되면 추출과정 후 감압 하에서 용매를 증류시킨 후 관 크로마토그래피 등의 통상적인 방법을 통하여 목적물을 분리 정제할 수도 있다.
본 발명의 일 실시예에 따른 화학식 1의 금속 트리아민 화합물에서 M이 M2(A2)(A3)인 화학식 II-1의 금속 트리아민 화합물은 하기 화학식 A의 다이알킬렌트리아민 화합물과 화학식 C의 금속 전구체를 반응시키거나, 하기 화학식 D의 다이알킬렌트리아민 리튬염 화합물과 화학식 E의 금속 할라이드 전구체를 반응시켜 제조된다.
[화학식 II-1]
Figure PCTKR2018004841-appb-I000056
[화학식 A]
Figure PCTKR2018004841-appb-I000057
[화학식 C]
M2(A2)x(A3)4 -x
[화학식 D]
Figure PCTKR2018004841-appb-I000058
[화학식 E]
Figure PCTKR2018004841-appb-I000059
(상기 화학식 II-1, 화학식 A, C, D 및 E에서,
M2은 4족 전이금속이고;
R1 내지 R5는 서로 독립적으로 수소 또는 (C1-C7)알킬이고;
A2 및 A3는 서로 독립적으로 NR6R7, 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고, 상기 A2 및 A3의 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C7)알킬 또는 (C2-C7)알케닐로 더 치환될 수 있고;
R6 및 R7은 서로 독립적으로 (C1-C7)알킬 또는 SiR9R10R11이고;
R9 내지 R11은 서로 독립적으로 (C1-C7)알킬이고;
m은 0 내지 2의 정수이고;
X는 할로겐이고;
x는 1 내지 3의 정수이다.)
상기 화학식 D의 다이알킬렌트리아민 리튬염 화합물은 하기 화학식 A의 다이알킬렌트리아민 화합물 및 (C1-C7)알킬리튬을 반응시켜 제조될 수 있으며, 이때 (C1-C7)알킬리튬은 화학식 A의 다이알킬렌트리아민 화합물 1몰에 대하여 1.5 내지 5몰, 바람직하게는 1.5 내지 2.5몰 사용될 수 있고, -10 내지 30℃에서 반응이 이루어질 수 있다.
화학식 II-1의 금속 트리아민 화합물의 제조방법은 하기 반응식 2 및 3으로 나타낼 수 있다.
[반응식 2]
Figure PCTKR2018004841-appb-I000060
[반응식 3]
Figure PCTKR2018004841-appb-I000061
(상기 반응식 2 및 3에서 M2, R1 내지 R5, A2, A3 및 m은 상기 화학식 II-1에서의 정의와 동일하고, X는 할로겐이고, x는 1 내지 3의 정수이다.)
본 발명의 금속 트리아민 화합물의 제조방법의 일 실시예에 있어서, 상기 화학식 C의 금속 전구체와 화학식 A의 다이알킬렌트리아민 화합물은 1 : 1 내지 1 : 1.5의 몰비, 바람직하게는 1 : 1 내지 1 : 1.25의 몰비, 보다 바람직하게는 1 : 1 내지 1 : 1.10의 몰비로 사용될 수 있다.
본 발명의 금속 트리아민 화합물의 제조방법의 일 실시예에에 있어서, 상기 화학식 E의 금속 할라이드 전구체와 화학식 D의 다이알킬렌트리아민 리튬염 화합물은 1 : 1 내지 1 : 1.5의 몰비, 바람직하게는 1 : 1 내지 1 : 1.25의 몰비, 보다 바람직하게는 1 : 1 내지 1 : 1.10의 몰비로 사용될 수 있다.
상기 화학식 A의 다이알킬렌트리아민 화합물과 화학식 C의 금속 전구체의 반응[반응식 2]은 용매 하에서 또는 니트(neat)로도 이루어질 수 있다. 니트(neat)라 함은 유기 용매를 사용하지 않고 단지 화학식 A의 다이알킬렌트리아민 화합물과 화학식 C의 금속 전구체를 혼합하여 상기 반응을 수행하는 것을 의미한다.
상기 화학식 D의 다이알킬렌트리아민 리튬염 화합물과 화학식 E의 금속 할라이드 전구체의 반응[반응식 3]은 용매 하에서 이루어질 수 있다.
상기 반응에 사용되는 용매는 통상의 유기용매이면 모두 가능하나, 헥산, 펜탄, 다이클로로메탄(DCM), 다이클로로에탄(DCE), 톨루엔(Toluene), 아세토나이트릴(MeCN), 나이트로 메탄(Nitromethan), 테트라하이드로퓨란(THF), N,N-다이메틸 포름아마이드 (DMF) 및 N,N-다이메틸아세트아마이드(DMA)로 이루어진 군으로부터 선택되는 1종 이상을 사용하는 것이 바람직하다.
반응온도는 통상의 유기합성에서 사용되는 온도에서 사용가능하나, 반응물질 및 출발물질의 양에 따라 달라질 수 있으며, 바람직하게 반응식 2 의 반응은 -10 내지 80℃에서, 반응식 3의 반응은 -10 내지 30℃에서 수행될 수 있고, NMR 등을 통하여 출발물질이 완전히 소모됨을 확인한 후 반응을 완결시키도록 한다. 반응이 완결되면 추출과정 후 감압 하에서 용매를 증류시킨 후 관 크로마토그래피 등의 통상적인 방법을 통하여 목적물을 분리 정제할 수도 있다.
본 발명의 일 실시예에 따른 화학식 1의 금속 트리아민 화합물에서 M이 M2(A2)(A3)인 화학식 II-2의 금속 트리아민 화합물은 하기 화학식 A의 다이알킬렌트리아민 화합물과 화학식 C-1의 금속 전구체를 반응시킨 후 화학식 F의 알코올 화합물과 반응시켜 제조된다.
[화학식 II-2]
Figure PCTKR2018004841-appb-I000062
[화학식 A]
Figure PCTKR2018004841-appb-I000063
[화학식 C-1]
M2(NR6R7)4
[화학식 F]
R8-OH
(상기 화학식 II-2, 화학식 A, C-1 및 F에서,
M2은 4족 전이금속이고;
R1 내지 R5는 서로 독립적으로 수소 또는 (C1-C7)알킬이고;
R6, R7 및 R8은 서로 독립적으로 (C1-C7)알킬이고;
m은 0 내지 2의 정수이다.)
화학식 II-2의 금속 트리아민 화합물의 제조방법은 하기 반응식 4로 나타낼 수 있다.
[반응식 4]
Figure PCTKR2018004841-appb-I000064
(상기 반응식 4 에서 M2, R1 내지 R5, R8 및 m은 상기 화학식 II-2에서의 정의와 동일하고, R6 및 R7는 서로 독립적으로 (C1-C7)알킬이다.)
본 발명의 금속 트리아민 화합물의 제조방법의 일 실시예에 있어서, 상기 화학식 C-1의 금속 전구체와 화학식 A의 다이알킬렌트리아민 화합물은 1 : 1 내지 1 : 1.5의 몰비, 바람직하게는 1 : 1 내지 1 : 1.25의 몰비, 보다 바람직하게는 1 : 1 내지 1 : 1.10의 몰비로 사용될 수 있다.
본 발명의 금속 트리아민 화합물의 제조방법의 일 실시예에에 있어서, 상기 화학식 A의 다이알킬렌트리아민 화합물과 화학식 F의 알코올 화합물은 1 : 2 내지 1 : 4의 몰비, 바람직하게는 1 : 2 내지 1 : 3의 몰비, 보다 바람직하게는 1 : 2 내지 1 : 2.5의 몰비로 사용될 수 있다.
상기 화학식 A의 다이알킬렌트리아민 화합물과 화학식 C-1의 금속 전구체의 반응은 용매 하에서 또는 니트(neat)로도 이루어질 수 있다. 니트(neat)라 함은 유기 용매를 사용하지 않고 단지 화학식 A의 다이알킬렌트리아민 화합물과 화학식 C-1의 금속 전구체를 혼합하여 상기 반응을 수행하는 것을 의미한다.
본 발명의 금속 트리아민 화합물의 제조방법의 일 실시예에에 있어서, 화학식 A의 다이알킬렌트리아민 화합물과 화학식 C-1의 금속 전구체를 반응시켜 화학식 Int-1의 중간체 화합물이 제조되며, 별도의 분리 정제 없이 화학식 F의 알코올 화합물을 반응시켜 화학식 II-2의 금속 트리아민 화합물을 제조할 수 있다.
상기 화학식 A의 다이알킬렌트리아민 화합물과 화학식 C-1의 금속 전구체와의 반응 및 연이은 화학식 F의 알코올 화합물과의 반응에 사용되는 용매는 통상의 유기용매이면 모두 가능하나, 헥산, 펜탄, 다이클로로메탄(DCM), 다이클로로에탄(DCE), 톨루엔(Toluene), 아세토나이트릴(MeCN), 나이트로 메탄(Nitromethan), 테트라하이드로퓨란(THF), N,N-다이메틸 포름아마이드 (DMF) 및 N,N-다이메틸아세트아마이드(DMA)로 이루어진 군으로부터 선택되는 1종 이상을 사용하는 것이 바람직하다.
반응온도는 통상의 유기합성에서 사용되는 온도에서 사용가능하나, 반응물질 및 출발물질의 양에 따라 달라질 수 있으며, 바람직하게 -30 내지 80℃에서 수행될 수 있고, NMR 등을 통하여 출발물질이 완전히 소모됨을 확인한 후 반응을 완결시키도록 한다. 반응이 완결되면 추출과정 후 감압 하에서 용매를 증류시킨 후 관 크로마토그래피 등의 통상적인 방법을 통하여 목적물을 분리 정제할 수도 있다.
본 발명의 일 실시예에 따른 화학식 1의 금속 트리아민 화합물에서 M이 M3(A2)(A3)(A4)인 화학식 III의 금속 트리아민 화합물은 하기 화학식 A의 다이알킬렌트리아민 화합물과 화학식 G의 금속 전구체를 반응시켜 제조된다.
[화학식 III]
Figure PCTKR2018004841-appb-I000065
[화학식 A]
Figure PCTKR2018004841-appb-I000066
[화학식 G]
M3(A2)a(A3)b(A4)c
(상기 화학식 III, A 및 G에서,
M3은 5족 전이금속이고;
R1 내지 R5는 서로 독립적으로 수소 또는 (C1-C7)알킬이고;
A2, A3 및 A4는 서로 독립적으로 NR6R7, OR8, 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고, 상기 A2, A3 및 A4의 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C7)알킬 또는 (C2-C7)알케닐로 더 치환될 수 있고;
R6, R7 및 R8은 서로 독립적으로 (C1-C7)알킬 또는 SiR9R10R11이고;
R9 내지 R11은 서로 독립적으로 (C1-C7)알킬이고;
m은 0 내지 2의 정수이고;
a, b 및 c는 1 이상의 정수로, a+b+c는 5의 정수이다.)
화학식 III 의 금속 트리아민 화합물의 제조방법은 하기 반응식 5로 나타낼 수 있다.
[반응식 5]
Figure PCTKR2018004841-appb-I000067
(상기 반응식 5 에서 M3, R1 내지 R5, A2, A3, A4 및 m은 상기 화학식 III 에서의 정의와 동일하고, a, b 및 c는 1 이상의 정수로, a+b+c는 5의 정수이다.)
본 발명의 금속 트리아민 화합물의 제조방법의 일 실시예에 있어서, 상기 화학식 G의 금속 전구체와 화학식 A의 다이알킬렌트리아민 화합물은 1 : 1 내지 1 : 1.5의 몰비, 바람직하게는 1 : 1 내지 1 : 1.25의 몰비, 보다 바람직하게는 1 : 1 내지 1 : 1.10의 몰비로 사용될 수 있다.
상기 화학식 A의 다이알킬렌트리아민 화합물과 화학식 G의 금속 전구체의 반응은 용매 하에서 이루어질 수 있다. 상기 반응에 사용되는 용매는 통상의 유기용매이면 모두 가능하나, 헥산, 펜탄, 다이클로로메탄(DCM), 다이클로로에탄(DCE), 톨루엔(Toluene), 아세토나이트릴(MeCN), 나이트로 메탄(Nitromethan), 테트라하이드로퓨란(THF), N,N-다이메틸 포름아마이드 (DMF) 및 N,N-다이메틸아세트아마이드(DMA)로 이루어진 군으로부터 선택되는 1종 이상을 사용하는 것이 바람직하다.
반응온도는 통상의 유기합성에서 사용되는 온도에서 사용가능하나, 반응물질 및 출발물질의 양에 따라 달라질 수 있으며, 바람직하게 -10 내지 30℃에서 수행될 수 있고, NMR 등을 통하여 출발물질이 완전히 소모됨을 확인한 후 반응을 완결시키도록 한다. 반응이 완결되면 추출과정 후 감압 하에서 용매를 증류시킨 후 관 크로마토그래피 등의 통상적인 방법을 통하여 목적물을 분리 정제할 수도 있다.
본 발명의 일 실시예에 따른 화학식 1의 금속 트리아민 화합물에서 M이 M4(=NR')2인 화학식 IV의 금속 트리아민 화합물은 하기 화학식 H의 화합물과 화학식 D의 다이알킬렌트리아민 리튬염 화합물을 반응시켜 제조된다.
[화학식 IV]
Figure PCTKR2018004841-appb-I000068
[화학식 H]
Figure PCTKR2018004841-appb-I000069
[화학식 D]
Figure PCTKR2018004841-appb-I000070
(상기 화학식 IV, D 및 H에서,
M4은6족 전이금속이고;
R1 내지 R5는 서로 독립적으로 수소 또는 (C1-C7)알킬이고;
R'은 (C1-C7)알킬이고;
X1 및 X2는 각각 독립적으로 할로겐이고;
Ra 및 Rb는 각각 독립적으로 (C1-C7)알킬이고;
m은 0 내지 2의 정수이다.)
상기 화학식 H의 화합물은 Na2MoO4, 화학식 J의 에탄 화합물, 트리에틸아민(NEt3), 클로로트리메틸실란(Me3SiCl) 및 화학식 K의 아민 화합물을 반응시켜 제조될 수 있다.
[화학식 J]
Figure PCTKR2018004841-appb-I000071
[화학식 K]
Figure PCTKR2018004841-appb-I000072
(상기 화학식 J 및 K에서,
Ra 및 Rb는 각각 독립적으로 (C1-C7)알킬이고;
R'은 (C1-C7)알킬이다.)
화학식 IV 의 금속 트리아민 화합물의 제조방법은 하기 반응식 6으로 나타낼 수 있다.
[반응식 6]
Figure PCTKR2018004841-appb-I000073
(상기 반응식 6 에서 M4, R1 내지 R5, R' 및 m은 상기 화학식 IV 에서의 정의와 동일하고, X1 및 X2는 각각 독립적으로 할로겐이고, Ra 및 Rb는 각각 독립적으로 (C1-C7)알킬이다.)
본 발명의 금속 트리아민 화합물의 제조방법의 일 실시예에 있어서, 상기 화학식 H의 화합물과 화학식 D의 다이알킬렌트리아민 리튬염 화합물은 1 : 1 내지 1 : 1.5의 몰비, 바람직하게는 1 : 1 내지 1 : 1.25의 몰비, 보다 바람직하게는 1 : 1 내지 1 : 1.10의 몰비로 사용될 수 있다.
상기 화학식 H의 화합물과 화학식 D의 다이알킬렌트리아민 리튬염 화합물의 반응은 용매 하에서 이루어질 수 있다. 상기 반응에 사용되는 용매는 통상의 유기용매이면 모두 가능하나, 헥산, 펜탄, 다이클로로메탄(DCM), 다이클로로에탄(DCE), 톨루엔(Toluene), 아세토나이트릴(MeCN), 나이트로 메탄(Nitromethan), 테트라하이드로퓨란(THF), N,N-다이메틸 포름아마이드 (DMF) 및 N,N-다이메틸아세트아마이드(DMA)로 이루어진 군으로부터 선택되는 1종 이상을 사용하는 것이 바람직하다.
반응온도는 통상의 유기합성에서 사용되는 온도에서 사용가능하나, 반응물질 및 출발물질의 양에 따라 달라질 수 있으며, 바람직하게 -10 내지 30℃에서 수행될 수 있고, NMR 등을 통하여 출발물질이 완전히 소모됨을 확인한 후 반응을 완결시키도록 한다. 반응이 완결되면 추출과정 후 감압 하에서 용매를 증류시킨 후 관 크로마토그래피 등의 통상적인 방법을 통하여 목적물을 분리 정제할 수도 있다.
본 발명의 일 실시예에 따른 화학식 1의 금속 트리아민 화합물에서 M이 M4(CO)4인 화학식 V의 금속 트리아민 화합물은 하기 화학식 L의 금속 헥사카보닐 전구체를 할로겐과 반응시킨 후 화학식 A의 다이알킬렌트리아민 화합물과 반응시켜 제조된다.
[화학식 V]
Figure PCTKR2018004841-appb-I000074
[화학식 A]
Figure PCTKR2018004841-appb-I000075
[화학식 L]
M4(CO)6
(상기 화학식 V, 화학식 A 및 L에서,
M4은6족 전이금속이고;
R1 내지 R5는 서로 독립적으로 수소 또는 (C1-C7)알킬이고;
m은 0 내지 2의 정수이다.)
화학식 V 의 금속 트리아민 화합물의 제조방법은 하기 반응식 7로 나타낼 수 있다.
[반응식 7]
Figure PCTKR2018004841-appb-I000076
(상기 반응식 7 에서 M4, R1 내지 R5 및 m은 상기 화학식 V 에서의 정의와 동일하고, X는 할로겐이다.)
본 발명의 금속 트리아민 화합물의 제조방법의 일 실시예에 있어서, 상기 화학식 L의 금속 헥사카보닐 전구체와 할로겐은 1 : 1 내지 1 : 1.5의 몰비, 바람직하게는 1 : 1 내지 1 : 1.25의 몰비, 보다 바람직하게는 1 : 1 내지 1 : 1.10의 몰비로 사용될 수 있고, 상기 화학식 L-1의 금속 테트라카보닐 비스할라이드 전구체와 화학식 A의 다이알킬렌트리아민 화합물은 1 : 1 내지 1 : 1.5의 몰비, 바람직하게는 1 : 1 내지 1 : 1.25의 몰비, 보다 바람직하게는 1 : 1 내지 1 : 1.10의 몰비로 사용될 수 있다.
상기 반응에 사용되는 용매는 통상의 유기용매이면 모두 가능하나, 헥산, 펜탄, 다이클로로메탄(DCM), 다이클로로에탄(DCE), 톨루엔(Toluene), 아세토나이트릴(MeCN), 나이트로 메탄(Nitromethan), 테트라하이드로퓨란(THF), N,N-다이메틸 포름아마이드 (DMF) 및 N,N-다이메틸아세트아마이드(DMA)로 이루어진 군으로부터 선택되는 1종 이상을 사용하는 것이 바람직하다.
반응온도는 통상의 유기합성에서 사용되는 온도에서 사용가능하나, 반응물질 및 출발물질의 양에 따라 달라질 수 있으며, 바람직하게 -78 내지 120℃에서 수행될 수 있고, NMR 등을 통하여 출발물질이 완전히 소모됨을 확인한 후 반응을 완결시키도록 한다. 반응이 완결되면 추출과정 후 감압 하에서 용매를 증류시킨 후 관 크로마토그래피 등의 통상적인 방법을 통하여 목적물을 분리 정제할 수도 있다.
또한 본 발명은 본 발명의 금속 트리아민 화합물을 포함하는 금속 함유 박막증착용 조성물을 제공한다.
본 발명의 금속 함유 박막증착용 조성물에 포함되는 상기 화학식 1의 금속 트리아민 화합물은 상온에서 액체 혹은 녹는점이 낮은 고체이며, 휘발성이 높고 열적 안정성이 높아 금속 함유 박막형성에 매우 유용한 전구체로, 본 발명의 금속 함유 박막증착용 조성물은 상기 화학식 1의 금속 트리아민 화합물을 적어도 하나 포함한다.
또한, 본 발명의 금속 함유 박막증착용 조성물 내 상기 화학식 1의 금속 트리아민 화합물은 박막의 성막조건 또는 박막의 두께, 특성 등을 고려하여 당업자가 인식할 수 있는 함량 범위 내로 포함될 수 있다.
또한 본 발명은 상기 금속 함유 박막증착용 조성물을 이용하는 금속 함유 박막의 제조방법을 제공한다.
본 발명의 금속 함유 박막은 상기 화학식 1의 금속 트리아민 화합물을 전구체로 포함하는 금속 함유 박막증착용 조성물을 이용하여 제조되며, 한정이 있는 것은 아니나, 일례로 금속 함유 산화막, 금속 함유 질화막, 금속 함유 산질화(oxynitride)막, 금속 함유 탄소질화막 또는 금속 함유 규소질화막일 수 있으며, 트랜지스터의 게이트 절연막 또는 캐패시터의 유전막일 수 있으며, 고품질의 다양한 박막을 제조할 수 있다.
본 발명의 금속 함유 박막의 제조방법은 상온에서 액체 혹은 녹는점이 낮은 고체이며 휘발성이 높고 열적 안정성이 우수한 상기 화학식 1의 금속 트리아민 화합물을 전구체로 포함하는 본 발명의 금속 함유 박막증착용 조성물을 이용함으로써 취급이 용이하고, 다양한 박막의 제조가 가능할 뿐만 아니라 고밀도 및 고순도의 금속 함유 박막을 제조할 수 있다. 나아가 본 발명의 제조방법으로 제조된 금속 함유 박막은 내구성 및 전기적 특성이 우수하고 단차피복성이 우수하다.
본 발명의 금속 함유 박막의 제조방법은 본 기술분야에서 당업자가 인식할 수 있는 범위 내에서 가능한 방법이라면 모두 가능하나, 바람직하게 원자층 증착법(ALD), 기상 증착법(CVD), 유기금속 화학기상 증착법(MOCVD), 저압 기상 증착법(LPCVD), 플라즈마 강화 기상 증착법 (PECVD) 또는 플라즈마 강화 원자층 증착법(PEALD)으로 수행될 수 있다.
본 발명의 금속 함유 박막의 제조방법은 구체적으로
a) 챔버 내에 장착된 기판의 온도를 80 내지 400℃로 유지하는 단계;
b) 수송가스와 상기 금속 함유 박막증착용 조성물을 주입하는 단계; 및
c) 반응가스를 주입하여 상기 기판상에 금속 함유 박막을 증착시키는 단계;를 포함할 수 있으며, 금속 함유 박막의 두께에 따라 b) 및 c)단계를 수회 반복할 수 있다.
본 발명의 일 실시예에 따른 금속 함유 박막의 제조방법은 목적하는 박막의 구조 또는 열적 특성에 따라 증착 조건이 조절될 수 있으며, 본 발명의 일 실시예에 따른 증착 조건으로는 금속 트리아민 화합물을 포함하는 금속 함유 박막증착용 조성물의 투입 유량, 반응가스, 운반 가스의 투입 유량, 압력, RF 파워, 기판 온도 등이 예시될 수 있으며, 이러한 증착 조건의 비한정적인 일예로는 금속 함유 박막증착용 조성물의 투입 유량은 10 내지 1000 cc/min, 운반가스는 10 내지 1000 cc/min, 반응가스의 유량은 1 내지 1000 cc/min, 압력은 0.5 내지 10 torr, RF 파워는 200 내지 1000 W 및 기판 온도는 80 내지 400 ℃ 범위, 바람직하게는 200 내지 400 ℃ 범위에서 조절될 수 있으나 이에 한정이 있는 것은 아니다.
본 발명의 금속 함유 박막의 제조방법에서 사용되는 반응가스는 한정이 있는 것은 아니나, 산소(O2), 오존(O3), 증류수(H2O), 과산화수소(H2O2), 일산화질소(NO), 아산화질소(N2O), 이산화질소(NO2), 암모니아(NH3), 질소(N2), 하이드라진(N2H4), 아민, 다이아민, 일산화탄소(CO), 이산화탄소(CO2), C1 내지 C12 포화 또는 불포화 탄화 수소, 수소(H2), 아르곤(Ar) 및 헬륨(He)에서 선택되는 하나 또는 둘 이상의 가스를 공급하여 수행될 수 있다.
일예로, 화학기상 증착법(MOCVD)은 기판이 위치하는 증착 영역에 금속 트리아민 화합물을 주입하는 단계 및 증착 영역에 반응 가스를 주입하는 단계를 포함하는 증착 과정을 포함하고 각 단계들은 동시적으로 또는 순차적으로 진행되며, 전구체와 반응 가스는 반응하여 기판상에서 금속이 함유된 박막을 형성한다.
일예로, 원자층 증착법(ALD)은 기판이 위치하는 증착 영역에 금속 트리아민 화합물을 주입하는 단계, 증착 영역에서 금속 트리아민 화합물을 배출하는 단계 및 증착 영역에 반응 가스를 주입하는 단계와 배출하는 단계가 순차적으로 수행되며, 상기의 각 단계가 1회 진행되면 금속이 함유된 박막 단층이 증착된다. 각 단계의 반복적인 과정을 거쳐 원하는 두께의 금속 함유 박막을 증착할 수 있다.
본 발명의 일 실시예에 따른 금속 함유 박막의 제조방법에 사용되는 기판은 Si, Ge, SiGe, GaP, GaAs, SiC, SiGeC, InAs 및 InP 중 하나 이상의 반도체 재료를 포함하는 기판; SOI(Silicon On Insulator)기판; 석영 기판; 또는 디스플레이용 유리 기판; 폴리이미드(polyimide), 폴리에틸렌 테레프탈레이트(PET, PolyEthylene Terephthalate), 폴리에틸렌 나프탈레이트(PEN, PolyEthylene Naphthalate), 폴리 메틸메타크릴레이트(PMMA, Poly Methyl MethAcrylate), 폴리카보네이트(PC, PolyCarbonate), 폴리에테르술폰(PES), 폴리에스테르(Polyester) 등의 가요성 플라스틱 기판; 텅스텐 기판 일 수 있으나 이에 한정되는 것은 아니다.
또한 상기 금속 함유 박막은 상기 기판에 직접 박막을 형성하는 것 이외, 상기 기판과 상기 금속 함유 박막 사이에 다수의 도전층, 유전층 또는 절연층 등이 형성될 수 있다.
상기 금속 함유 박막증착용 조성물 및 금속 함유 박막의 제조방법을 이용하여 우수한 단차피복성을 가질 수 있으며, 밀도가 높은 고순도의 금속 함유 박막을 제조할 수 있다.
이하, 본 발명을 하기 실시예에 의해 더욱 구체적으로 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시 예에 불과할 뿐이고 본 발명의 기술적인 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있음을 이해하여야 한다.
또한 이하 모든 실시예는 상용화된 샤워헤드 방식의 200 mm 매엽식(single wafer type) ALD 장비(CN1, Atomic Premium)를 사용하여 공지된 원자층 증착법(ALD)을 이용하여 수행하였다.
증착된 금속 함유 박막은 엘립소미터(Ellipsometer, Thermowave, Optiprobe 2600) 및 투과 전자 현미경 (Transmission Electron Microscope, FEI (Netherlands) Tecnai G²F30S-Twin)을 통하여 두께를 측정하고, X-선 광전자 분광분석기(X-ray photoelectron spectroscopy, ThermoFisher Scientific, K-Alpha+)를 이용하여 그 조성을 분석하였다.
[실시예 1] CH3N(CH2C(CH3)HN(CH3))2Ti(N(CH3)2)2의 합성 - 반응식 2
Figure PCTKR2018004841-appb-I000077
헥산 100mL에 테트라키스(다이메틸아미노)티타늄[Ti(NMe2)4] (100g, 0.45mol)을 녹여준 후, -10℃에서 N,N',N''-트리메틸다이이소프로필렌트리아민[CH3N(CH2C(CH3)HN(CH3)H)2] (71g, 0.45mol)을 투입하여 환류(70℃)온도까지 천천히 올린 후 24시간동안 환류(70℃) 교반하였다. 반응이 종료된 후 감압 하에서 용매 및 휘발성 부생성물을 제거한 뒤 감압 증류(반응기 하부 온도 기준 120℃, 0.3torr)하여 액체 상태의 표제 화합물 CH3N(CH2C(CH3)HN(CH3))2Ti(N(CH3)2)2을 얻었다(80g, 54.8%).
1H-NMR (C6D6, ppm) δ 3.46(2H, m, N(CH2C)), 3.33(6H, s, Ti(NCH3)2), 3.29(3H, s, (N(CH3))2Ti), 3.27(3H, s, (N(CH3))2Ti), 3.17(6H, s, Ti(NCH3)2), 3.00(1H, m, CH), 2.91(2H, m, N(CH2C)), 2.74(1H, m, CH), 1.94(3H, s, CH3N), 0.82(3H, d, C(CH3)), 0.74(3H, d, C(CH3)).
[실시예 2] CH3N(CH2C(CH3)HN(CH3))2Ti(N(CH3)2)2의 합성 - 반응식 3
헥산 100mL에 N,N',N''-트리메틸다이이소프로필렌트리아민[CH3N(CH2C(CH3)HN(CH3)H2)] (34.7g, 0.2mol)을 투입 후 -10℃에서 2.35M 노말부틸리튬(n-BuLi, 118g, 0.4mol)을 천천히 투입하고 상온에서 12시간 교반하여 N,N',N''-트리메틸다이이소프로필렌트리아민 다이 리튬 염 [CH3N(CH2C(CH3)HN(CH3)Li)2]을 제조하였다. 그런 다음, -10℃에서 비스 다이메틸아미노 티타늄 다이클로라이드[Cl2Ti(NMe2)2] (41.4g, 0.2mol)을 투입하여 상온(25℃)까지 온도를 천천히 올린 후 상온(25℃)에서 24시간동안 교반하였다. 반응이 완료되면 감압 하에서 용매 및 휘발성 부생성물을 제거하여 실시예 1과 동일한 NMR을 확인함으로서 실시예 1과 동일한 액체 상태의 표제 화합물 CH3N(CH2C(CH3)HN(CH3))2Ti(N(CH3)2)2을 얻었다(35g, 57%).
[실시예 3] CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2의 합성 - 반응식 2
Figure PCTKR2018004841-appb-I000078
헥산 100mL에 테트라키스(다이메틸아미노)지르코늄[Zr(NMe2)4] (140g, 0.5mol)을 투입 후, -10℃에서 N,N',N''-트리메틸다이이소프로필렌트리아민[CH3N(CH2C(CH3)HN(CH3)H)2] (90g, 0.5mol)을 투입하여 상온(25℃)까지 온도를 천천히 올린 후 상온(25℃)에서 24시간동안 교반하였다. 반응이 완료되면 감압 하에서 용매 및 휘발성 부생성물을 제거하고 감압 증류(반응기 하부 온도 기준 125℃, 0.2torr)하여 액체 상태의 표제 화합물 CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2을 얻었다(100g, 54.5%).
1H-NMR (C6D6, ppm) δ 3.37(1H, m, CH), 3.21(6H, s, Zr(NCH3)2), 3.18(3H, s, (N(CH3))2Zr), 3.15(3H, s, (N(CH3))2Zr), 3.10(1H, m, CH2), 3.06(6H, s, Zr(NCH3)2), 2.97(2H, m, CH2), 2.81(1H, m, CH2), 2.74(1H, m, CH), 2.01(3H, s, CH3N), 0.93(3H, d, C(CH3)), 0.61(3H, d, C(CH3)).
[실시예 4] CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2의 합성 - 반응식 3
헥산 100mL에 N,N',N''-트리메틸다이이소프로필렌트리아민[CH3N(CH2C(CH3)HN(CH3)H2)] (34.7g, 0.2mol)을 투입한 후 -10℃에서 2.35M 노말부틸리튬(n-BuLi, 118g, 0.4mol)을 천천히 투입하고 상온에서 12시간 교반하여 N,N',N''-트리메틸다이이소프로필렌트리아민 다이 리튬 염 (CH3N(CH2C(CH3)HN(CH3)Li)2)을 제조하였다. 그런 다음, -10℃로 냉각시킨 후 비스(다이메틸아미노)지르코늄 다이클로라이드[Cl2Zr(NMe2)2] (50g, 0.2mol)을 투입하고 상온(25℃까지 온도를 천천히 올린 후 상온(25℃에서 24시간동안 교반하였다. 반응이 완료되면 감압 하에서 용매 및 휘발성 부생성물을 제거하여 실시예 3과 동일한 NMR을 확인함으로서 실시예 3과 동일한 액체 상태의 표제 화합물 CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2을 얻었다(40g, 57%).
[실시예 5] CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)(C2H5))2의 합성
Figure PCTKR2018004841-appb-I000079
헥산 100mL에 테트라키스(에틸메틸아미노)지르코늄[Zr(NMeEt)4] (108g, 0.33mol)을 투입한 후, -10℃에서 N,N',N''-트리메틸다이이소프로필렌트리아민[CH3N(CH2C(CH3)HN(CH3)H)2] (57.83g, 0.33mol)을 투입하여 상온(25℃)까지 온도를 천천히 올린 후 상온(25℃)에서 24시간동안 교반하였다. 반응이 완료되면 감압 하에서 용매 및 휘발성 부생성물을 제거하고 감압 증류(반응기 하부 온도 기준 130℃, 0.1torr)하여 액체 상태의 표제 화합물 CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)(C2H5))2을 얻었다(94g, 74%).
1H-NMR (C6D6, ppm) δ 3.50(2H, m, NCH2), 3.44(2H, m, NCH2), 3.21(2H, m, CH2), 3.19(6H, s, Zr(NCH3)), 3.14(3H, s, (N(CH3))2Zr), 3.08(3H, s, (N(CH3))2Zr), 3.00(2H, m, CH2), 2.82(1H, m, CH2), 2.74(1H, m, CH), 2.03(3H, s, CH3N), 1.27(6H, q, C(CH3)), 0.96(3H, d, C(CH3)), 0.63(3H, d, C(CH3)).
[실시예 6] CH3N(CH2CH2HN(CH3))2Zr(N(CH3)(C2H5))2의 합성
Figure PCTKR2018004841-appb-I000080
헥산 300mL에 테트라키스(에틸메틸아미노)지르코늄[Zr(NMeEt)4] (295g, 0.91mol)을 투입한 후, -10℃에서 N,N',N''-트리메틸다이에틸렌트리아민[CH3NCH2CH2N(CH3)H)2] (132.4g, 0.91mol)을 투입하여 상온(25℃)까지 온도를 천천히 올린 후 상온(25℃)에서 24시간동안 교반하였다. 반응이 완료되면 감압 하에서 용매 및 휘발성 부생성물을 제거하고 감압 증류(반응기 하부 온도 기준 130℃, 0.13torr)하여 액체 상태의 표제 화합물 CH3N(CH2CH2HN(CH3))2Zr(N(CH3)(C2H5))2을 얻었다(210g, 65%).
1H-NMR (C6D6, ppm) δ 3.48(2H, m, NCH2), 3.21(6H, s, Zr(NCH3)), 3.18(3H, s, (N(CH3))2Zr), 3.13(2H, m, NCH2), 3.11(2H, m, CH2), 3.03(3H, s, (N(CH3))2Zr), 2.94(2H, m, CH2), 2.66(2H, m, CH2), 2.22(2H, m, CH2), 1.99(3H, s, CH3N), 1.29(6H, q, C(CH3)).
[실시예 7] CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2의 합성
Figure PCTKR2018004841-appb-I000081
헥산 200mL에 테트라키스(다이메틸아미노)하프늄[Hf(NMe2)4] (200g, 0.56mol)을 투입한 후, -10℃에서 N,N',N''-트리메틸다이이소프로필렌트리아민[CH3N(CH2C(CH3)HN(CH3)H)2] (97.7g, 0.56mol)을 투입하여 상온(25℃)까지 온도를 천천히 올린 후 상온(25℃)에서 24시간동안 교반하였다. 반응이 완료되면 감압 하에서 용매 및 휘발성 부생성물을 제거하고 감압 증류(반응기 하부 온도 기준 130℃, 0.21torr)하여 액체 상태의 표제 화합물 CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2을 얻었다(100g, 40%).
1H-NMR (C6D6, ppm) δ 3.31(1H, m, CH), 3.23(6H, s, Hf(NCH3)2), 3.19(3H, s, (N(CH3))2Hf), 3.14(3H, s, (N(CH3))2Hf), 3.08(1H, m, CH2), 3.05(6H, s, Hf(NCH3)2), 2.97(2H, m, CH2), 2.83(1H, m, CH2), 2.81(1H, m, CH), 1.97(3H, s, CH3N), 0.87(3H, d, C(CH3)), 0.63(3H, d, C(CH3)).
[실시예 8] CH3N(CH2CH2HN(CH3))2Hf(N(CH3)2)2의 합성
Figure PCTKR2018004841-appb-I000082
헥산 100mL에 테트라키스(다이메틸아미노)하프늄[Hf(NMe2)4] (20g, 0.056mol)을 투입한 후, -10℃에서 N,N',N''-트리메틸다이에틸렌트리아민[CH3N(CH2CH2N(CH3)H)2] (8.19g, 0.056mol)을 투입하여 상온(25℃)까지 온도를 천천히 올린 후 상온(25℃)에서 24시간동안 교반하였다. 반응이 완료되면 감압 하에서 용매 및 휘발성 부생성물을 제거하고 감압 승화(반응기 하부 온도 기준 63℃, 0.82torr)하여 녹는점 60℃를 가지는 고체 상태 표제 화합물 CH3N(CH2CH2HN(CH3))2Hf(N(CH3)2)2 을 얻었다(5g, 22%).
1H-NMR (C6D6, ppm) δ 3.27(6H, s, Hf(NCH3)2), 3.24(6H, s, Hf(NCH3)2), 3.15(4H, m, CH2), 3.03(6H, s, Hf(NCH3)2), 2.56(2H, m, CH2), 2.12(2H, m, CH2), 1.92(3H, s, CH3N).
[실시예 9] CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)(C2H5))2의 합성
Figure PCTKR2018004841-appb-I000083
헥산 300mL에 테트라키스(에틸메틸아미노)하프늄[Hf(NMeEt)4] (450g, 1.1mol)을 투입한 후, -10℃에서 N,N',N''-트리메틸다이이소프로필렌트리아민[CH3N(CH2C(CH3)HN(CH3)H)2] (189.8g, 1.1mol)을 투입하여 상온(25℃)까지 온도를 천천히 올린 후 상온(25℃)에서 24시간동안 교반하였다. 반응이 완료되면 감압 하에서 용매 및 휘발성 부생성물을 제거하고 감압 증류(반응기 하부 온도 기준 132℃, 0.56torr)하여 액체 상태의 표제 화합물 CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)(C2H5))2을 얻었다(270g, 53%).
1H-NMR (C6D6, ppm) δ 3.53(2H, m, NCH2), 3.33(1H, m, NCH2), 3.26(2H, m, CH2), 3.25(1H, m, CH2), 3.21(3H, s, Hf(NCH3)), 3.20(3H, s, Hf(NCH3)), 3.16(3H, s, (N(CH3))2Hf), 3.12(1H, m, CH2), 3.07(3H, s, (N(CH3))2Hf), 3.00(1H, m, CH2), 2.93(1H, m, CH2), 2.82(1H, m, CH), 2.00(3H, s, CH3N), 1.27(6H, q, C(CH3)), 0.90(3H, d, C(CH3)), 0.64(3H, d, C(CH3)).
[실시예 10] CH3N(CH2CH2HN(CH3))2Hf(N(CH3)(C2H5))2의 합성
Figure PCTKR2018004841-appb-I000084
헥산 200mL에 테트라키스(에틸메틸아미노)하프늄[Hf(NMeEt)4] (224g, 0.55mol)을 투입한 후, -10℃에서 N,N',N''-트리메틸다이에틸렌트리아민[CH3N(CH2CH2N(CH3)H)2] (79.2g, 0.55mol)을 투입하여 상온(25℃)까지 온도를 천천히 올린 후 상온(25℃)에서 24시간동안 교반하였다. 반응이 완료되면 감압 하에서 용매 및 휘발성 부생성물을 제거하고 감압 정제(반응기 하부 온도 기준 130℃, 0.25torr)하여 액체 상태의 표제 화합물 CH3N(CH2CH2HN(CH3))2Hf(N(CH3)(C2H5))2을 얻었다(100g, 42%).
1H-NMR (C6D6, ppm) δ 3.53(2H, m, NCH2), 3.23(6H, s, Hf(NCH3)), 3.21(2H, m, NCH2), 3.17(3H, s, (N(CH3))2Hf), 3.16(2H, m, CH2), 3.03(3H, s, (N(CH3))2Hf), 3.01(2H, m, CH2), 2.60(2H, m, CH2), 2.16(2H, m, CH2), 1.97(3H, s, CH3N), 1.28(6H, m, C(CH3)).
[실시예 11] CH3N(CH2C(CH3)HN(CH(CH3)2))2Hf(N(CH3)2)2의 합성
Figure PCTKR2018004841-appb-I000085
헥산 100mL에 테트라키스(다이메틸아미노)하프늄[Hf(NMe2)4] (20g, 0.056mol)을 투입한 후, -10℃에서 N'-메틸-N,N''-다이이소프로필다이이소프로필렌트리아민[CH3N(CH2C(CH3)HN(CH(CH3)2)H)2] (12.93g, 0.084mol)을 투입하여 상온(25℃)까지 온도를 천천히 올린 후 상온(25℃)에서 24시간동안 교반하였다. 반응이 완료되면 감압 하에서 용매 및 휘발성 부생성물을 제거하고 감압 정제(반응기 하부 온도 기준 139℃, 0.2torr)하여 액체 상태의 표제 화합물 CH3N(CH2C(CH3)HN(CH(CH3)2))2Hf(N(CH3)2)2을 얻었다(7g, 26%).
1H-NMR (C6D6, ppm) δ 4.10(1H, m, NCH), 4.03(1H, m, NCH), 3.33(2H, m, NCH), 3.22(1H, m, CH2), 3.19(6H, s, Hf(NCH3)2), 3.15(1H, m, CH2), 3.08(6H, s, Hf(NCH3)2), 2.95(1H, m, CH2), 2.83(1H, m, CH2), 2.00(3H, s, CH3N), 1.25(6H, m, C(CH3)), 1.19(6H, m, C(CH3)), 0.86(3H, d, C(CH3)), 0.68(3H, d, C(CH3)).
[실시예 12] CH3N(CH2CH2N(CH(CH3)2))2Hf(N(CH3)2)2의 합성
Figure PCTKR2018004841-appb-I000086
헥산 100mL에 테트라키스(다이메틸아미노)하프늄[Hf(NMe2)4] (20g, 0.056mol)을 투입한 후, -10℃에서 N'-메틸-N,N''-다이이소프로필다이에틸렌트리아민[CH3N(CH2CH2N(CH(CH3)2)H)2] (17.3g, 0.056mol)을 투입하여 상온(25℃)까지 온도를 천천히 올린 후 상온(25℃)에서 24시간동안 교반하였다. 반응이 완료되면 감압 하에서 용매 및 휘발성 부생성물을 제거하고 감압 정제(반응기 하부 온도 기준 140℃, 0.1torr)하여 녹는점 50℃를 가지는 고체 상태의 표제 화합물 CH3N(CH2CH2N(CH(CH3)2))2Hf(N(CH3)2)2을 얻었다(10g, 37%).
1H-NMR (C6D6, ppm) δ 4.10(2H, m, NCH), 3.22(2H, m, CH2), 3.16(6H, s, Hf(NCH3)2), 3.07(6H, s, Hf(NCH3)2), 3.04(2H, m, CH2), 2.61(2H, m, CH2), 2.12(2H, m, CH2), 1.97(3H, s, CH3N), 1.24(6H, m, C(CH3)), 1.18(6H, m, C(CH3)).
[실시예 13] CH3N(CH2CH2N(CH3))2Ti(O(CH(CH3)2)2의 합성
Figure PCTKR2018004841-appb-I000087
플라스크에 테트라키스(다이메틸아미노)티타늄[TDMAT, Tetrakis(dimethylamino)titanium; Ti(NMe2)4] (184g, 0.82mol) 첨가 후 N,N',N''-트리메틸다이에틸렌트리아민[CH3N(CH2CH2N(CH3)H)2] (119 g, 0.82 mol)을 상온(25℃)에서 천천히 투입하였다. 투입 완료 후 60℃에서 12시간 교반하여 CH3N(CH2CH2N(CH3))2Ti(N(CH3)2)2 합성을 NMR로 확인한다. CH3N(CH2CH2N(CH3))2Ti(N(CH3)2)2의 합성을 확인한 후 헥산 300mL를 첨가한 후 플라스크 내 온도를 -30℃까지 냉각하고 이소프로판올[HOCH(CH3)2] (98.6g 1.64mol)을 플라스크 내 온도가 -20℃ 이상 증가하지 않도록 천천히 투입하였다. 투입 종료 후 상온(25℃)까지 천천히 온도를 올린 후 6시간동안 교반을 실시한 후 NMR 확인을 통하여 합성을 확인한 후 용매 및 휘발성 부 생성물을 감압하여 제거하고, 감압 증류(반응기 하부 온도 기준 80℃, 0.1torr)하여 액체 상태의 표제 화합물 CH3N(CH2CH2N(CH3))2Ti(O(CH(CH3)2)2을 얻었다(126g, 50%).
1H-NMR (C6D6, ppm) δ 4.79(1H, m, OCH), 4.67(1H, m, OCH), 3.36(6H, s, Ti(N(CH3)), 3.15(2H, m, Ti(N(CH2)), 2.97(2H, m, Ti(N(CH3)), 2.77(2H, m, N(CH2)), 2.44(2H, m, N(CH2)), 2.30(3H, s, N(CH3)), 1.40(6H, d, C(CH3)2), 1.28(6H, d, C(CH3)2).
[실시예 14] CH3N(CH2CH2N(CH3))2Hf(O(CH(CH3)2)2의 합성
Figure PCTKR2018004841-appb-I000088
플라스크에 헥산 100mL를 투입한 다음, 테트라키스(에틸메틸아미노)하프늄[TEMAH, Tetrakis(ethylmethylamino)hafnium; Hf(NMeEt)4] (63g, 0.153mol)을 첨가하였다. 상기 플라스크 내 온도를 -30℃까지 냉각한 후 N,N',N''-트리메틸다이에틸렌트리아민[CH3N(CH2CH2N(CH3)H)2] (22.3 g, 0.153mol)을 천천히 투입하였다. 투입 완료 후 상온에서 12시간 교반하여 CH3N(CH2CH2N(CH3))2Hf(N(CH3)(CH2CH3))2의 합성을 NMR로 확인한다. CH3N(CH2CH2N(CH3))2Hf(N(CH3)(CH2CH3))2의 합성을 확인한 후 플라스크 내 온도를 -30℃까지 냉각하고 이소프로판올[HOCH(CH3)2] (18.4g 0.307mol)을 플라스크 내 온도가 -20℃ 이상 증가하지 않도록 천천히 투입하였다. 투입 종료 후 상온(25℃)까지 천천히 온도를 올린 후 6시간동안 교반을 실시한 후 NMR 확인을 통하여 합성을 확인한 후 용매 및 휘발성 부 생성물을 감압하여 제거하고, 감압 증류(반응기 하부 온도 기준 140℃, 0.26torr)하여 액체 상태의 표제 화합물 CH3N(CH2CH2N(CH3))2Hf(O(CH(CH3)2)2을 얻었다(30g, 44.5%).
1H-NMR (C6D6, ppm) δ 4.59(1H, m, OCH), 4.45(1H, m, OCH), 3.23(6H, s, Hf(N(CH3)), 3.02(2H, m, Hf(N(CH2)), 2.91(2H, m, Hf(N(CH3)), 2.60(2H, m, N(CH2)), 2.29(2H, m, N(CH2)), 2.19(3H, s, N(CH3)), 1.36(6H, d, OC(CH3)2), 1.28(6H, d, OC(CH3)2).
[실시예 15] CH3N(CH2CH(CH3)N(CH3))2Hf(O(CH(CH3)2)2의 합성
Figure PCTKR2018004841-appb-I000089
플라스크에 헥산 100mL를 투입한 다음, 테트라키스(에틸메틸아미노)하프늄[TEMAH, Tetrakis(ethylmethylamino)hafnium; Hf(NMeEt)4] (49g, 0.119mol)을 첨가하였다. 플라스크 내 온도를 -30℃까지 냉각하고 N,N',N''-트리메틸다이이소프로필렌트리아민[CH3N(CH2CH(CH3)N(CH3)H)2] (20.7 g, 0.119mol)을 천천히 투입하였다. 투입 완료 후 상온에서 12시간 환류 교반하여 CH3N(CH2CH(CH3)N(CH3))2Hf(N(CH3)(CH2CH3))2합성을 NMR로 확인하였다. CH3N(CH2CH(CH3)N(CH3))2Hf(N(CH3)(CH2CH3))2의 합성을 확인한 후 플라스크 내 온도를 -30℃까지 냉각하고 이소프로판올[HOCH(CH3)2] (14.3g 0.239mol)을 플라스크 내 온도가 -20℃ 이상 증가하지 않도록 천천히 투입하였다. 투입 종료 후 상온(25℃)까지 천천히 온도를 올린 후 6시간동안 교반을 실시한 후 NMR 확인을 통하여 합성을 확인한 후 용매 및 휘발성 부 생성물을 감압하여 제거하고, 감압 증류(반응기 하부 온도 기준 140℃, 0.16torr)하여 액체 상태의 표제 화합물 CH3N(CH2CH(CH3)N(CH3))2Hf(O(CH(CH3)2)2을 얻었다(25g, 45%).
1H-NMR (C6D6, ppm) δ 4.59(1H, m, OCH), 4.56(1H, m, OCH), 3.41(1H, m, Hf(N(CH)), 3.40(3H, s, Hf(N(CH3)), 3.2(1H, m, N(CH2)), 3.15(3H, s, Hf(N(CH3)), 2.98(1H, m, Hf(N(CH)), 2.44((1H, m, Hf(N(CH)), 2.22(3H, s, N(CH3)), 1.37(6H, d, OC(CH3)2), 1.29(6H, d, OC(CH3)2), 0.75(3H, d, C(CH3)), 0.69(3H, d, C(CH3)).
[실시예 16] CH3N(CH2CH(CH3)NCH3)2Mo(=NC(CH3)3)2의 합성
Figure PCTKR2018004841-appb-I000090
((CH3)3CN)2MoCl2(DME)의 합성
Figure PCTKR2018004841-appb-I000091
플라스크에 소듐몰리브데이트[Na2MoO4] (160g, 0.777mol)와 1,2-다이메톡시에탄 2L를 투입한다. 상온에서 트리에틸아민 (314.5g, 3.108mol), 클로로트리메틸실란 (759.72g, 6.993mol), 터트부틸아민 (119.3g, 1.632mol)을 순서대로 천천히 투입한다. 투입 종료 후 80℃까지 천천히 승온 후 18시간 환류를 진행한다. 환류 종료 후 감압여과하여 여과액을 40℃에서 감압하여 용매를 80% 제거 후 헥산을 투입한다. 헥산 현탁액을 감압여과하여 갈색고체의 화합물 ((CH3)3CN)2MoCl2(DME)를 수득하였다(146g, 49%).
Figure PCTKR2018004841-appb-I000092
CH3N(CH2CH(CH3)NCH3)2Mo(=NC(CH3)3)2의 합성
플라스크에 ((CH3)3CN)2MoCl2(DME) (100g, 0.26mol)와 헥산 1L를 투입 후 N,N',N''-트리메틸다이이소프로필렌트리아민 다이 리튬 염 [CH3N(CH2C(CH3)HN(CH3)Li)2] (52.88g, 0.286mol)의 헥산 현탁액을 10℃ 유지하며 천천히 투입한다. 그 후 상온에서 18시간 교반 후, 감압여과 하여 여과액을 상온에서 감압하여 용매를 완전히 제거한다. 순도를 높이기 위해 감압 하에서 증류(62℃, 0.4torr)하여 액체의 표제 화합물 CH3N(CH2CH(CH3)NCH3)2Mo(=NC(CH3)3)2을 수득하였다(75.4g, 수율 71%).
Figure PCTKR2018004841-appb-I000093
[실시예 17] CH3N(CH2CH2NCH3)2Ta(N(CH3)2)3의 합성
Figure PCTKR2018004841-appb-I000094
펜타(다이메틸아미노)탄탈럼[Ta(NMe2)5] (30g, 0.07mol)을 핵산 용매에 녹여준 후, 0℃에서 N,N',N''-트리메틸다이에틸렌트리아민[CH3N(CH2CH2N(CH3)H)2] (10.86g, 0.07mol) 투입하여 상온 8 시간동안 교반하였다. 반응이 종료된 후 감압 하에서 용매 및 휘발성 부생성물을 제거한 뒤 감압 승화(120℃@0.44torr)하여 고체의 표제 화합물 CH3N(CH2CH2NCH3)2Ta(N(CH3)2)3을 얻었다(21g, 62%).
Figure PCTKR2018004841-appb-I000095
[실시예 18] CH3N(CH2CH(CH3)NCH3)2La(N(Si(CH3)3)2)의 합성
Figure PCTKR2018004841-appb-I000096
트리스(N,N-비스(트리메틸실릴)아마이드)란탄[La(N(Si(CH3)3)2)3] (20g, 0.03mol)을 헥산 용매에 녹여준 후, 0℃에서 N,N',N''-트리메틸다이이소프로필렌트리아민[CH3N(CH2CH(CH3)N(CH3)H)2] (5.59 g, 0.03mol) 투입하여 상온까지 온도를 올린 후 68℃에서 8시간동안 교반하였다. 반응이 종료된 후 감압 하에서 용매 및 휘발성 부생성물을 제거하여 고체의 표제 화합물 CH3N(CH2CH(CH3)NCH3)2La(N(Si(CH3)3)2)을 얻었다(5g, 33%).
1H-NMR (C6D6, ppm) δ 3.33(1H, m, CH), 3.19(3H, s, (N(CH3))2Hf), 3.15(3H, s, (N(CH3))2Hf), 3.08(1H, m, CH2), 3.00(2H, m, CH2), 2.83(1H, m, CH2), 2.81(1H, m, CH), 1.95(3H, s, CH3N), 0.86(3H, d, C(CH3)), 0.62(3H, d, C(CH3)), 0.36(18H, s, N(Si(CH3)3)2).
[실시예 19] CH3N(CH2CH2CH2NCH3)2W(CO)4의 합성
Figure PCTKR2018004841-appb-I000097
3000 mL 플라스크에 질소 분위기 하에서 텅스텐 헥사카보닐(tungsten hexacarbonyl; W(CO)6) (300g, 0.853mol, 1당량)을 넣고, 디클로로메탄 (2000 mL)를 넣는다. 이 용액을 -78℃하에서 교반시키면서 다이아토믹 브롬(diatomic bromine; Br2) (149.86g, 0.938mol, 1.10당량)을 천천히 넣는다. 이 혼합 반응 용액을 -78℃에서 1시간 교반 후, 상온으로 승온시켜 진한 적갈색의 서스팬션이 될 때까지 교반한다. 이 용액을 여과하고 감압하여 침전이 생길 때까지 용매를 제거한다. 이 침전이 생긴 용액을 다시 여과하여 얻어진 고체 화합물을 노말 헥산으로 씻어내고 감압상태 하에서 건조하였다. 완전히 건조 후 적갈색의 고체로 W(CO)4Br2 화합물(98g, 수율 25%)를 수득하였다. 다음 단계로써 불꽃 건조된 1000ml 슐렝크 플라스크에 질소 분위기하에서 용매가 완전 제거된 W(CO)4Br2 (98g, 0.215mol, 1.00당량)을 넣고 톨루엔 (500mL)를 넣는다. 상온에서 트리에틸아민(0.538mol, 2.50당량)을 천천히 넣은 후에 N,N',N''-트리메틸다이프로필렌트리아민[CH3N(CH2CH2CH2N(CH3)H)2] (0.226mol, 1.05당량)을 투입한 후 100℃에서 6 시간 환류교반 후 상온으로 식혀 여과한다. 여과액을 감압하에서 용매를 제거하고 노말 헥산으로 추출한다. 추출한 용액을 감압하에서 다시 용매제거를 하여 겔 형태의 연갈색의 표제 화합물 CH3N(CH2CH2CH2NCH3)2W(CO)4을 수득하였다(10g, 10%).
1H-NMR (C6D6, ppm) δ 3.13(H, m, CH2), 2.64(6H, s, NCH3), 2.19(4H, m, CH2), 1.89(3H, s, NCH3), 1.35(4H, m, CH2).
[실시예 20] CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2를 이용한 지르코늄 산화(ZrO2) 박막의 제조
원자층 증착법(Atomic Layer Deposition, ALD)에 의해, 실리콘 기판에 지르코늄 산화 박막을 제조하였다. 실리콘 기판은 220℃, 240℃, 260℃, 280℃, 300℃, 320℃, 330℃, 340℃, 350℃, 그리고 400℃로 각각 유지하였고, 실시예 3에서 제조된 CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2 전구체를 스테인레스 스틸 버블러 용기에 충진하여 110℃로 유지하였다. 먼저, 스테인레스 스틸 버블러 용기 내에서 증기화된 CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2 전구체를 아르곤 가스(50sccm)를 이송 가스로 하여 실리콘 기판으로 이송되어 실리콘 기판에 흡착되도록 하였다. 다음으로 아르곤 가스(3000sccm)를 이용하여 15초간 지르코늄 산화물 전구체 화합물을 제거하였다. 이후, 약 180g/㎥의 농도의 오존 가스를 500sccm으로 10초간 공급하여 지르코늄 산화 박막을 형성하였다. 마지막으로 아르곤 가스(3000sccm)을 이용하여 10초간 반응 부산물 및 잔류 반응 가스를 제거하였다. 위와 같은 공정을 1주기로 하여 150주기를 반복하여 지르코늄 산화 박막을 형성하였다.
[실시예 21] CH3N(CH2CH2N(CH3))2Ti(O(CH(CH3)2)2 이용한 티타늄 산화(TiO2) 박막의 제조
원자층 증착법(Atomic Layer Deposition)에 의해 실리콘 기판에 티타늄 산화 박막을 제조하였다. 실리콘 패턴 기판은 300℃로 각각 유지하였고, 실시예 13에서 합성된 CH3N(CH2CH2N(CH3))2Ti(O(CH(CH3)2)2를 스테인레스 스틸 버블러 용기에 충진하여 104℃로 유지하였다. 먼저, 스테인레스 스틸 버블러 용기내에서 증기화된 실시예 13의 전구체를 아르곤 가스(50sccm)를 이송 가스로 하여 실리콘 기판으로 이송되어 실리콘 기판에 흡착되도록 하였다. 다음으로 아르곤 가스(3000sccm)를 이용하여 15초간 티타늄 산화물 전구체 화합물을 제거하였다. 이후, 약 180g/㎥의 농도의 오존 가스를 500sccm으로 10초간 공급하여 티타늄 산화 박막을 형성하였다. 마지막으로 아르곤 가스(3000sccm)을 이용하여 10초간 반응 부산물 및 잔류 반응 가스를 제거하였다. 위와 같은 공정을 1주기로 하여 150주기 반복하여 티타늄 산화 박막을 형성하였다.
[실시예 22] CH3N(CH2C(CH3)HN(CH3))2Ti(N(CH3)2)2 이용한 티타늄 산화(TiO2) 박막의 제조
원자층 증착법(Atomic Layer Deposition)에 의해 실리콘 기판에 티타늄 산화 박막을 제조하였다. 실리콘 기판은 220℃, 240℃, 260℃, 280℃, 290℃, 300℃, 350℃, 그리고 400℃로 각각 유지하였고, 실시예 1에서 합성된 CH3N(CH2C(CH3)HN(CH3))2Ti(N(CH3)2)2를 스테인레스 스틸 버블러 용기에 충진하여 110℃로 유지하였다. 먼저, 스테인레스 스틸 버블러 용기내에서 증기화된 실시예 1의 전구체를 아르곤 가스(50sccm)를 이송 가스로 하여 실리콘 기판으로 이송되어 실리콘 기판에 흡착되도록 하였다. 다음으로 아르곤 가스(3000sccm)를 이용하여 15초간 티타늄 산화물 전구체 화합물을 제거하였다. 이후, 약 180g/㎥의 농도의 오존 가스를 500sccm으로 10초간 공급하여 티타늄 산화 박막을 형성하였다. 마지막으로 아르곤 가스(3000sccm)을 이용하여 10초간 반응 부산물 및 잔류 반응 가스를 제거하였다. 위와 같은 공정을 1주기로 하여 150주기 반복하여 티타늄 산화 박막을 형성하였다.
[실시예 23] CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2 이용한 하프늄 산화(HfO2) 박막의 제조
원자층 증착법(Atomic Layer Deposition)에 의해 실리콘 기판에 하프늄 산화 박막을 제조하였다. 실리콘 기판은 230℃, 250℃, 270℃, 290℃, 310℃, 330℃, 350℃, 그리고 400℃로 각각 유지하였고, 실시예 7에서 합성된 CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2를 스테인레스 스틸 버블러 용기에 충진하여 110℃로 유지하였다. 먼저, 스테인레스 스틸 버블러 용기내에서 증기화된 실시예 7의 전구체를 아르곤 가스(50sccm)를 이송 가스로 하여 실리콘 기판으로 이송되어 실리콘 기판에 흡착되도록 하였다. 다음으로 아르곤 가스(3000sccm)를 이용하여 15초간 하프늄 산화물 전구체 화합물을 제거하였다. 이후, 약 180g/㎥의 농도의 오존 가스를 500sccm으로 10초간 공급하여 하프늄 산화 박막을 형성하였다. 마지막으로 아르곤 가스(3000sccm)을 이용하여 10초간 반응 부산물 및 잔류 반응 가스를 제거하였다. 위와 같은 공정을 1주기로 하여 150주기 반복하여 하프늄 산화 박막을 형성하였다.
[실시예 24] CH3N(CH2C(CH3)HN(CH3))2Ti(N(CH3)2)2 이용한 티타늄 질화(TiN) 박막의 제조
원자층 증착법(Atomic Layer Deposition)에 의해 실리콘 기판에 티타늄 질화 박막을 제조하였다. 실리콘 기판은 300℃로 유지하였고, 실시예 1에서 합성된 CH3N(CH2C(CH3)HN(CH3))2Ti(N(CH3)2)2를 스테인레스 스틸 버블러 용기에 충진하여 110℃로 유지하였다. 먼저, 스테인레스 스틸 버블러 용기내에서 증기화된 실시예 1의 전구체를 아르곤 가스(50sccm)를 이송 가스로 하여 실리콘 기판으로 이송되어 실리콘 기판에 흡착되도록 하였다. 다음으로 아르곤 가스(3000sccm)를 이용하여 15초간 티타늄 산화물 전구체 화합물을 제거하였다. 이후, 암모니아(NH3) 가스를 2000sccm으로 20초간 공급하여 티타늄 질화(TiN) 박막을 형성하였다. 마지막으로 아르곤 가스(3000sccm)을 이용하여 10초간 반응 부산물 및 잔류 반응 가스를 제거하였다. 위와 같은 공정을 1주기로 하여 300주기 반복하여 티타늄 질화 박막을 형성하였다.
[실시예 25] CH3N(CH2C(CH3)HN(CH3))2Ti(N(CH3)2)2 이용한 티타늄 질화 박막의 열처리 평가
실시예 21에서 제조된 티타늄 질화 박막을 외부 노출없이 진공상태에서 연속(in-situ) 공정으로 공정온도600℃, NH3 6000sccm으로 2시간 유지하면서 열처리하여 불순물이 낮은 티타늄 질화 박막을 제조하였다.
[실시예 26] CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2 이용한 하프늄 질화(HfN) 박막의 제조
원자층 증착법(Atomic Layer Deposition)에 의해 텅스텐 기판에 하프늄 질화 박막을 제조하였다. 텅스텐 기판은 300℃로 유지하였고, 실시예 7에서 합성된 CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2를 스테인레스 스틸 버블러 용기에 충진하여 107℃로 유지하였다. 먼저, 스테인레스 스틸 버블러 용기내에서 증기화된 실시예 7의 전구체를 질소 가스(25sccm)를 이송 가스로 하여 텅스텐 기판으로 이송되어 텅스텐 기판에 흡착되도록 하였다. 다음으로 질소 가스(3000sccm)를 이용하여 15초간 하프늄 질화물 전구체 화합물을 제거하였다. 이후, 암모니아(NH3) 가스를 2000sccm으로 20초간 공급하여 하프늄 질화(HfN) 박막을 형성하였다. 마지막으로 질소가스(3000sccm)을 이용하여 10초간 반응 부산물 및 잔류 반응 가스를 제거하였다. 위와 같은 공정을 1주기로 하여 210주기 반복하여 하프늄 질화 박막을 형성하였다.
[실시예 27] CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2 이용한 하프늄 질화(HfN) 박막의 제조
원자층 증착법(Atomic Layer Deposition)에 의해 실리콘 다이옥사이드 기판에 하프늄 질화 박막을 제조하였다. 실리콘 다이옥사이드 기판은 300℃로 유지하였고, 실시예 7에서 합성된 CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2를 스테인레스 스틸 버블러 용기에 충진하여 107℃로 유지하였다. 먼저, 스테인레스 스틸 버블러 용기내에서 증기화된 실시예 7의 전구체를 질소 가스(25sccm)를 이송 가스로 하여 실리콘 다이옥사이드 기판으로 이송되어 실리콘 다이옥사이드 기판에 흡착되도록 하였다. 다음으로 질소 가스(3000sccm)를 이용하여 15초간 하프늄 질화물 전구체 화합물을 제거하였다. 이후, 암모니아(NH3) 가스를 2000sccm으로 20초간 공급하여 하프늄 질화(HfN) 박막을 형성하였다. 마지막으로 질소가스(3000sccm)을 이용하여 10초간 반응 부산물 및 잔류 반응 가스를 제거하였다. 위와 같은 공정을 1주기로 하여 210주기 반복하여 하프늄 질화 박막을 형성하였다.
[실시예 28] CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2 이용한 하프늄 산화막(HfO2) 박막의 제조
화학 기상증착법(Chemical Vapor Deposition)에 의해 텅스텐 기판에 하프늄 산화박막을 제조하였다. 텅스텐 기판은 300℃로 유지하였고, 실시예 7에서 합성된 CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2 를 스테인레스 스틸 버블러 용기에 충진하여 107℃로 유지하였다. 먼저, 스테인레스 스틸 버블러 용기내에서 증기화된 실시예 7의 전구체를 아르곤 가스(25sccm)를 이송 가스로 하여 120분 동안 텅스텐 기판으로 이송되어 텅스텐 기판에 반응하도록 하였다. 다음으로 오존 가스(200sccm)로 5분 동안 반응시켜 하프늄 산화 박막을 형성하였다.
[실시예 29] CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2 이용한 하프늄 산화막(HfO2) 박막의 제조
화학 기상증착법(Chemical Vapor Deposition)에 의해 실리콘 다이옥사이드 기판에 하프늄 산화박막을 제조하였다. 실리콘 다이옥사이드 기판은 300℃로 유지하였고, 실시예 7에서 합성된 CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2 를 스테인레스 스틸 버블러 용기에 충진하여 107℃로 유지하였다. 먼저, 스테인레스 스틸 버블러 용기내에서 증기화된 실시예 7의 전구체를 아르곤 가스(25sccm)를 이송 가스로 하여 120분 동안 실리콘 다이옥사이드 기판으로 이송되어 실리콘 다이옥사이드 기판에 반응하도록 하였다. 다음으로 오존 가스(200sccm)로 5분 동안 반응시켜 하프늄 산화 박막을 형성하였다.
[실시예 30] CH3N(CH2CH(CH3)NCH3)2Mo(=NC(CH3)3)2 이용한 몰리브데넘 질화(MoN) 박막의 제조
플라즈마 원자층 증착법(Plasma Enhanced Atomic Layer Deposition)에 의해 실리콘 기판에 몰리브데넘 질화 박막을 제조하였다. 실리콘 기판은 300℃로 유지하였고, 실시예 16에서 합성된 CH3N(CH2CH(CH3)NCH3)2Mo(=NC(CH3)3)2를 스테인레스 스틸 버블러 용기에 충진하여 100℃로 유지하였다. 먼저, 스테인레스 스틸 버블러 용기내에서 증기화된 실시예 16의 전구체를 질소 가스(25sccm)를 이송 가스로 하여 실리콘 기판으로 이송되어 실리콘 기판에 흡착되도록 하였다. 다음으로 질소 가스(3000sccm)를 이용하여 15초간 몰리브데넘 질화막 전구체 화합물을 제거하였다. 이후, 암모니아(NH3) 가스를 2000sccm으로 20초간 공급하면서 동시에 RF플라즈마 파워를 400W 인가하여 몰리브데넘 질화(MoN) 박막을 형성하였다. 마지막으로 질소가스(3000sccm)을 이용하여 10초간 반응 부산물 및 잔류 반응 가스를 제거하였다. 위와 같은 공정을 1주기로 하여 210주기 반복하여 몰리브데넘 질화 박막을 형성하였다.
[실험예 1] 금속 트리아민 화합물의 열적 안정성 평가
상기 실시예에서 제조된 금속 트리아민 화합물의 열적 안정성을 알아보기 위해, 시차주사열량계(Differential scanning calorimetry, DSC(DSC3, 메틀러토레도)) 실험을 수행하여 열분해가 발생되는 온도를 측정하였다. 이때, 각 샘플의 무게를 약 1~5 mg 취하여 시료용기에 넣은 후 10 ℃/min의 승온 속도로 500℃까지 측정하였고, 측정된 결과를 표 1에 기재하였다.
화합물 구조 열분해 온도
실시예 1 및 2 CH3N(CH2C(CH3)HN(CH3))2Ti(N(CH3)2)2 305℃
실시예 3 및 4 CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2 307℃
실시예 5 CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)(C2H5))2 300℃
실시예 6 CH3N(CH2CH2HN(CH3))2Zr(N(CH3)(C2H5))2 295℃
실시예 7 CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2 315℃
실시예 8 CH3N(CH2CH2HN(CH3))2Hf(N(CH3)2)2 315℃
실시예 9 CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)(C2H5))2 320℃
실시예 10 CH3N(CH2CH2HN(CH3))2Hf(N(CH3)(C2H5))2 290℃
실시예 11 CH3N(CH2C(CH3)HN(CH(CH3)2))2Hf(N(CH3)2)2 320℃
실시예 12 CH3N(CH2CH2N(CH(CH3)2))2Hf(N(CH3)2)2 315℃
실시예 13 CH3N(CH2CH2N(CH3))2Ti(O(CH(CH3)2)2 295℃
실시예 16 CH3N(CH2CH(CH3)NCH3)2Mo(=NC(CH3)3)2 240℃
비교예 1 CpZr(N(CH3)2)3 (Cp = cyclopentadienyl) 285℃
비교예 2 Hf(N(CH3)(C2H5))4 270℃
비교예 3 Ti(NMe2)4 270℃
비교예 4 ((CH3) 2N)2Mo(=NC(CH3)3) 230℃
표 1에 기재된 바와 같이, 열분해 온도를 DSC의 발열 시점(onset temperature)으로 비교한 결과 본 발명의 금속 트리아민 화합물의 열분해온도는 290℃ 이상으로, 종래 널리 사용되던 유기 지르코늄 전구체인 시클로펜타디에닐 트리스(다이메틸아미노)지르코늄(CpZr(N(CH3)2)3), 유기 하프늄 전구체인 테트라키스(에틸메틸아미노)하프늄(Hf(N(CH3)(C2H5))4), 유기 티타늄 전구체인 테트라키스(다이메틸아미노)티타늄(Ti(N(CH3)2)4) 및 유기 몰리브덴 전구체인 비스(t-부틸이미도)비스(디메틸아미도)몰리브덴(((CH3)2N)2Mo(=NC(CH3)3)) 대비 5 내지 50℃ 이상 증가한 것을 확인할 수 있었다.
특히, 본 발명의 티타늄 트리아민 화합물은 종래 널리 사용되던 유기 티타늄 전구체인 테트라키스(다이메틸아미노)티타늄 (Ti(N(CH3)2)4) 대비 25℃ 이상 증가된 열분해 온도를 보였고, 본 발명의 지르코늄 트리아민 화합물은 종래 널리 사용되던 유기 지르코늄 전구체인 시클로펜타디에닐 트리스(다이메틸아미노)지르코늄(CpZr(N(CH3)2)3) 대비 10℃ 이상 증가된 열분해 온도를 보였고, 본 발명의 하프늄 트리아민 화합물은 종래 널리 사용되던 유기 하프늄 전구체인 테트라키스(에틸메틸아미노)하프늄(Hf(N(CH3)(C2H5))4) 대비 20℃ 이상 증가된 열분해 온도를 보였다.
이로부터 본 발명의 금속 트리아민 화합물은 열안정성이 우수함을 알 수 있으며, 보다 높은 온도에서 박막형성이 가능하며, 미세패턴에서의 계단피복성 증가로 이어질 수 있음을 알 수 있다.
[실험예 2] 보관 안정성 평가
상기 실시예 1 내지 19에서 제조된 금속 트리아민 화합물의 보관 안정성을 확인하기 의하여 SUS(Steel Use Stainless) 재질의 바이알에 각각 투입한 후 150℃에서 1시간동안 보관하는 가혹테스트를 실시하였으며, 그 결과 NMR의 변화 없이 안정한 것을 확인하였다.
[실험예 3] CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2를 이용한 지르코늄 산화(ZrO2) 박막의 단차 피복 특성 평가
단차 피복 특성을 확인하기 위하여 실시예 20에 기술되어 있는 증착방법을 이용하여 종횡비 6:1의 트렌치 구조를 갖는 실리콘 패턴 기판에 지르코늄 산화 박막을 형성하였으며, 그 결과를 도 1에 나타내었다.
도 1에서 보이는 바와 같이, 100%의 매우 높은 단차 피복 특성을 확인할 수 있다.
[실험예 4] CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2를 이용한 지르코늄 산화(ZrO2) 박막의 단차 피복 특성 평가
단차 피복 특성을 확인하기 위하여 실시예 20에 기술되어 있는 증착방법을 이용하여 60:1 홀구조 패턴을 갖는 실리콘 패턴 기판에 지르코늄 산화 박막을 형성하였으며, 그 결과를 도 1에 나타내었다.
도 1에서 보이는 바와 같이, 99% 이상의 매우 높은 단차 피복 특성을 확인할 수 있다.
[실험예 5] CH3N(CH2CH2N(CH3))2Ti(O(CH(CH3)2)2 이용한 티타늄 산화(TiO2) 박막의 단차 피복 특성 평가
단차 피복 특성을 확인하기 위하여 실시예 21에 기술되어 있는 증착방법을 이용하여 종횡비 6:1의 트렌치 구조를 갖는 실리콘 패턴 기판에 티타늄 산화 박막을 형성하였으며, 그 결과를 도 2에 나타내었다.
도 2에서 보이는 바와 같이, 100%의 매우 높은 단차 피복 특성을 확인할 수 있다.
[실험예 6] CH3N(CH2C(CH3)HN(CH3))2Ti(N(CH3)2)2를 이용한 티타늄 산화(TiO2) 박막의 단차 피복 특성 평가
단차 피복 특성을 확인하기 위하여 실시예 22에 기술되어 있는 증착방법을 이용하여 종횡비 6:1의 트렌치 구조를 갖는 실리콘 패턴 기판에 티타늄 산화 박막을 형성하였으며, 그 결과를 도 3에 나타내었다.
도 3에서 보이는 바와 같이, 100%의 매우 높은 단차 피복 특성을 확인할 수 있다.
[실험예 7] CH3N(CH2C(CH3)HN(CH3))2Ti(N(CH3)2)2를 이용한 티타늄 산화(TiO2) 박막의 단차 피복 특성 평가
단차 피복 특성을 확인하기 위하여 실시예 22에 기술되어 있는 증착방법을 이용하여 60:1 홀구조 패턴을 갖는 실리콘 패턴 기판에 티타늄 산화 박막을 형성하였으며, 그 결과를 도 3에 나타내었다.
도 3에서 보이는 바와 같이, 99% 이상의 매우 높은 단차 피복 특성을 확인할 수 있다.
[실험예 8] CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2를 이용한 하프늄 산화(HfO2) 박막의 단차 피복 특성 평가
단차 피복 특성을 확인하기 위하여 실시예 23에 기술되어 있는 증착방법을 이용하여 종횡비 6:1의 트렌치 구조를 갖는 실리콘 패턴 기판에 하프늄 산화 박막을 형성하였으며, 그 결과를 도 4에 나타내었다.
도 4에서 보이는 바와 같이, 100%의 매우 높은 단차 피복 특성을 확인할 수 있다.
[실험예 9] CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2를 이용한 하프늄 산화(HfO2) 박막의 단차 피복 특성 평가
단차 피복 특성을 확인하기 위하여 실시예 23에 기술되어 있는 증착방법을 이용하여 60:1 홀구조 패턴을 갖는 실리콘 패턴 기판에 하프늄 산화 박막을 형성하였으며, 그 결과를 도 4에 나타내었다.
도 4에서 보이는 바와 같이, 99% 이상의 매우 높은 단차 피복 특성을 확인할 수 있다.
[실험예 10] CH3N(CH2C(CH3)HN(CH3))2Ti(N(CH3)2)2를 이용한 티타늄 질화(TiN) 박막의 단차 피복 특성 평가
단차 피복 특성을 확인하기 위하여 실시예 24에 기술되어 있는 증착방법을 이용하여 종횡비 6:1의 트렌치 구조를 갖는 실리콘 패턴 기판에 티타늄 질화 박막을 형성하였으며, 그 결과를 도 5에 나타내었다.
도 5에서 보이는 바와 같이, 100%의 매우 높은 단차 피복 특성을 확인할 수 있다.
[실험예 11] 지르코늄 산화 박막의 소스양에 따른 성장률 분석
투과전자현미경으로 분석된 상기 실시예 20(실리콘 기판 온도 300℃)에서 증착된 지르코늄 산화 박막의 두께로 소스양을 변화하여 이에 따른 1주기 당 박막 성장률을 도 6에 도시하였다.
도 6에서 보이는 바와 같이, 실시예 3의 CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2 전구체는 실리콘 기판 온도 300℃에서 자기 제한적 반응(self-limited reaction)이 진행됨을 확인하였다.
[실험예 12] 지르코늄 산화 박막의 선형성(Linearity)
투과전자현미경으로 분석된 상기 실시예 20(실리콘 기판 온도 300℃)과 동일한 공정에서 공정 주기만 변화하여 각각의 공정 주기에서 증착된 지르코늄 산화 박막의 두께로 지르코늄 산화 박막의 선형성(Linearity)를 도 7에 도시하였다.
도 7에서 보이는 바와 같이, 실시예 3의 CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2 전구체는 실리콘 기판 온도 300℃에서 낮은 잠복(incubation) 시간을 가지며, 16Å의 낮은 두께에서도 좋은 결정질이 형성되었을 뿐만 아니라 16Å 이상의 두께에서도 좋은 결정질이 형성되는 것을 확인하였다.
[실험예 13] 지르코늄 산화 박막의 실리콘 기판의 온도에 따른 성장률 분석
투과전자현미경으로 분석된 상기 실시예 20에서 증착된 지르코늄 산화 박막의 두께로 박막의 실리콘 기판의 온도에 따른 1주기 당 박막 성장률 및 비교예 1의 CpZr(N(CH3)2)3 (Cp = cyclopentadienyl) 를 스테인레스 스틸 버블러 용기의 온도를 100℃로 유지하는 조건 외에는 실시예 20과 동일한 증착 조건에서 증착된 지르코늄 산화 박막 성장률을 비교하여 도 8에 도시하였다.
도 8에서 보이는 바와 같이, 실시예 3의 CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2 전구체는 실리콘 기판 온도 260℃에서 320℃까지 지르코늄 산화 박막의 1주기당 성장률이 유의차 구간임을 확인할 수 있으며, 비교예 1의 CpZr(N(CH3)2)3 (Cp = cyclopentadienyl) 보다 20℃ 이상 증가한 것을 확인할 수 있었다.
[실험예 14] 티타늄 산화 박막의 소스양에 따른 성장률 분석
투과전자현미경으로 분석된 상기 실시예 22(실리콘 기판 온도 280℃)에서 증착된 티타늄 산화 박막의 두께로 소스양을 변화하여 이에 따른 1주기 당 박막 성장률을 도 9에 도시하였다.
도 9에서 보이는 바와 같이, 실시예 1에서 제조된 CH3N(CH2C(CH3)HN(CH3))2Ti(N(CH3)2)2 전구체는 실리콘 기판 온도 280℃에서 자기 제한적 반응(self-limited reaction이 진행됨을 확인하였다.
[실험예 15] 티타늄 산화 박막의 선형성(Linearity)
투과전자현미경으로 분석된 상기 실시예 22(실리콘 기판 온도 280℃)과 동일한 공정에서 공정 주기만 변화하여 각각의 공정 주기에서 증착된 티타늄 산화 박막의 두께로 티타늄 산화 박막의 선형성(Linearity)를 도 10에 도시하였다.
도 10에서 보이는 바와 같이, 실시예 1에서 제조된 CH3N(CH2C(CH3)HN(CH3))2Ti(N(CH3)2)2 전구체는 실리콘 기판 온도 280℃에서 낮은 잠복 (incubation) 시간을 가지며, 14Å의 낮은 두께에서도 좋은 결정질이 형성되었을 뿐만 아니라 14Å 이상의 두께에서도 좋은 결정질이 형성되는 것을 확인하였다.
[실험예 16] 티타늄 산화 박막의 실리콘 기판의 온도에 따른 성장률 분석
투과전자현미경으로 분석된 상기 실시예 22에서 증착된 티타늄 산화 박막의 두께로, 실리콘 기판의 온도에 따른 1주기 당 박막 성장률을 도 11에 도시하였다.
도 11에서 보이는 바와 같이, 실시예 1에서 합성된 CH3N(CH2C(CH3)HN(CH3))2Ti(N(CH3)2)2전구체는 실리콘 기판 온도 240℃에서 290℃까지 티타늄 산화 박막의 1주기당 성장률이 유의차 구간임을 확인할 수 있었다.
[실험예 17] 하프늄 산화 박막의 소스양에 따른 성장률 분석
투과전자현미경으로 분석된 상기 실시예 23(실리콘 기판 온도 320℃)에서 증착된 하프늄 산화 박막의 두께로 소스양을 변화하여 이에 따른 1주기 당 박막 성장률을 도 12에 도시하였다.
도 12에서 보이는 바와 같이, 실시예 7에서 제조된 CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2 전구체는 실리콘 기판 온도 320℃에서 자기 제한적 반응(self-limited reaction)이 진행됨을 확인하였다.
[실험예 18] 하프늄 산화 박막의 선형성(Linearity)
투과전자현미경으로 분석된 상기 실시예 23(실리콘 기판 온도 320℃)과 동일한 공정에서 공정 주기만 변화하여 각각의 공정 주기에서 증착된 하프늄 산화 박막의 두께로 하프늄 산화 박막의 선형성(Linearity)를 도 13에 도시하였다.
도 13에서 보이는 바와 같이, 실시예 7에서 제조된 CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2 전구체는 실리콘 기판 온도 320℃에서 낮은 잠복 (incubation) 시간을 가지며, 14Å의 낮은 두께에서도 좋은 결정질이 형성되었을 뿐만 아니라 14Å 이상의 두께에서도 좋은 결정질이 형성되는 것을 확인하였다.
[실험예 19] 하프늄 산화 박막의 실리콘 기판의 온도에 따른 성장률 분석
투과전자현미경으로 분석된 상기 실시예 23에서 증착된 하프늄 산화 박막의 두께로, 실리콘 기판의 온도에 따른 1주기 당 박막 성장률을 도 14에 도시하였다
도 14에서 보이는 바와 같이, 실시예 7에서 합성된 CH3N(CH2C(CH3)HN(CH3))2Hf(N(CH3)2)2전구체는 실리콘 기판 온도 270℃에서 330℃까지 하프늄 산화 박막의 1주기당 성장률이 유의차 구간임을 확인할 수 있었다.
[실험예 20] 하프늄 질화 박막의 표면선택적 성장 비교
하프늄 질화 박막의 표면 선택적 성장비를 알아보기 위하여, 실시예 26과 실시예 27에서 형성된 하프늄 질화막을 투과전자현미경으로 분석하였으면, 그 결과를 도 15에 도시하였다. 도 15에 도시된 바와 같이, 실시예 27의 하프늄 질화 박막은 실리콘 다이옥사이드 기판 상에 4Å 두께로 증착된 반면, 실시예 26의 하프늄 질화 박막은 텅스텐 기판 상에 26 Å 두께로 증착되어 1 (실리콘 다이옥사이드 기판) : 6.5 (텅스텐 기판)의 표면 선택적 성장비를 나타냄을 확인하였다.
즉, 기판의 종류에 따라 하프늄 질화 박막 형성시 박막 성장율이 상이함을 알 수 있었다.
[실험예 21] 하프늄 산화 박막의 표면선택적 성장 비교
하프늄 산화 박막의 표면 선택적 성장비를 알아보기 위하여, 실시예 28과 실시예 29에서 형성된 하프늄 산화막을 투과전자현미경으로 분석하였으며, 그 결과를 도 16에 도시하였다. 도 16에 도시된 바와 같이, 실시예 29의 하프늄 산화 박막은 실리콘 다이옥사이드 기판 상에 3Å 두께로 증착된 반면, 실시예 28의 하프늄 산화 박막은 텅스텐 기판 상에 90 Å 두께로 증착되어 1 (실리콘 다이옥사이드 기판) : 30 (텅스텐 기판)의 표면 선택적 성장비를 나타냄을 확인하였다.
즉, 기판의 종류에 따라 하프늄 산화 박막 형성시 박막 성장율이 상이함을 알 수 있었다.
[실험예 22] 지르코늄 산화 박막의 결정성 분석
상기 실시예 20의 기판 온도 300℃에서 증착된 지르코늄 산화 박막의 결정성 및 비교예 1 의 CpZr(N(CH3)2)3 (Cp = cyclopentadienyl)를 스테인레스 스틸 버블러 용기의 온도를 100℃로 유지하는 조건 외에는 실시예 20과 동일한 증착 조건에서 증착된 지르코늄 산화 박막의 결정성을 엑스선 회절 분석법으로 분석하였으며, 그 결과를 도 17에 도시하였다.
도 17에서 보이는 바와 같이, 실시예 3의 CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2 전구체는 실리콘 기판 온도 300℃에서 비교예 1의 CpZr(N(CH3)2)3 (Cp = cyclopentadienyl) 보다 높은 결정성을 가짐을 확인할 수 있었다.
[실험예 23] 지르코늄 산화 박막의 결정질 분석
상기 실시예 20의 기판 온도 300℃에서 증착된 지르코늄 산화 박막의 결정질 및 비교예 1 의 CpZr(N(CH3)2)3 (Cp = cyclopentadienyl)를 스테인레스 스틸 버블러 용기의 온도를 100℃로 유지하는 조건 외에는 실시예 20과 동일한 증착 조건에서 증착된 지르코늄 산화 박막의 결정질을 투과전자현미경으로 분석하였으며, 그 결과를 도 18에 도시하였다.
도 18에서 보이는 바와 같이, 실시예 3의 CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2 전구체는 실리콘 기판 온도 300℃에서 비교예 1의 CpZr(N(CH3)2)3 (Cp = cyclopentadienyl) 보다 뚜렷한 결정질을 확인할 수 있었다.
[실험예 24] 지르코늄 산화 박막의 조성 분석
상기 실시예 20의 기판 온도 300℃에서 증착된 지르코늄 산화 박막의 조성 및 비교예 1 의 CpZr(N(CH3)2)3 (Cp = cyclopentadienyl) 를 스테인레스 스틸 버블러 용기의 온도를 100℃로 유지하는 조건 외에는 실시예 20과 동일한 증착 조건에서 증착된 지르코늄 산화 박막의 조성을 이차이온질량분석법(Secondary Ion Mass Spectroscopy)으로 분석하였으며, 그 결과를 표 2에 기재 및 도 19 내지 도 23에 도시하였다.
표 2 및 도 19 내지 도 23에서 보이는 바와 같이, 실시예 3의 CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2 전구체는 실리콘 기판 온도 300℃에서 비교예 1의 CpZr(N(CH3)2)3 (Cp = cyclopentadienyl) 보다 고순도 지르코늄 산화막이 형성된 것을 확인할 수 있었다.
전구체 박막 조성비 Counts (by SIMS)
Zr O C N H
실시예3 ZrO2 29007 4114 4 1 70
비교예 1 ZrO2 28500 3466 30 2 204
[실험예 25] 금속 함유 박막의 조성 분석
실시예 20 내지 실시예 30에서 증착된 금속 함유 박막을 X-선 광전자 분광분석기(X-ray photoelectron spectroscopy) 를 이용하여 그 조성을 분석한 결과를 하기 표 3에 기재하였다.
구분 박막 조성비 % (by XPS)
Zr Ti Hf Mo O N C
실시예 20 ZrO2 33.8 - - - 66.2 0 0
실시예 21 TiO2 - 36.7 - - 63.3 0 0
실시예 22 TiO2 - 35.1 - - 64.9 0 0
실시예 23 HfO2 - 34.5 - - 65.5 0 0
실시예 24 TiN - 40.4 - - 7.8 37.7 14.1
실시예 25 TiN - 47 - - 7.1 42.7 3.2
실시예 26 HfN - - 45 - 8 47 0
실시예 27 HfN - - 39 - 22 39 0
실시예 28 HfO2 - - 34 - 66 - 0
실시예 29 HfO2 - - 33 - 67 - 0
실시예 30 MoN - - - 57 6 37 0
상기 표 3에 기재된 바와 같이, 실시예 20 내지 23 및 실시예 28 내지 29 지르코늄, 하프늄 또는 티타늄 및 산소의 비율이 약 1 : 2로 탄소 불순물 없이 지르코늄 산화막 (ZrO2), 하프늄 산화막 (HfO2) 또는 티타늄 산화막 (TiO2)가 높은 순도로 형성되었음을 확인할 수 있다.
실시예 24 내지 27 및 30의 박막 조성에서 산소는 조성비의 측정 중 흡습에 의한 불순물로 박막 내의 불순물과는 무관하다. 실시예 24 내지 27 및 30의 경우 탄소 불순물이 적거나 없는 금속 질화 박막을 제조하였다. 또한, 실시예 25의 경우 실시예 21의 티타늄 질화 박막을 진공상태에서 연속 공정으로 열처리시켜 얻어진 티타늄 질화 박막으로, 연속 공정으로 열처리시킴에 따라 탄소 불순물의 함량이 현저하게 감소됨을 확인하였다.
즉, 본 발명에 따른 금속 트리아민 화합물은 반응성이 우수하며, 휘발성이 높고, 열안정성 및 응집력이 우수하여 금속 함유 박막의 전구체로 매우 유용하기 때문에 열분해에 기인한 파티클 오염이나 탄소 등의 불순물 오염없이 고순도의 금속 함유 박막을 형성할 수 있다.
[실험예 26] 금속 산화막의 전기적 특성 분석
실시예 3의 CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2) 및 비교예 1의 CpZr(N(CH3)2)3을 이용하여 280℃ 내지 320℃ 영역에서 실시예 20의 공정조건과 동일하게 지르코늄 산화 박막을 증착하고, 증착된 지르코늄 산화 박막의 전기적 특성을 비교하였다.
전기적 특성은 지르코늄 산화 박막 위에 백금 금속막을 형성하여 금속-절연막-반도체(MIS)구조를 제작하여 측정되었다. 이때 상부전극으로 사용될 백금 금속막은 반지름이 약 150μm의 원형으로, 두께는 약 40nm로 제작되었다.
유전상수는 10kHz 조건에서 -5V 내지 5V 영역에서 캐패시턴스를 측정하고, 축적영역(Accumulation region)의 캐패시턴스, 지르코늄 산화 박막의 두께 및 백금 금속막의 면적을 이용하여 계산되었으며 이 유전상수를 이용하여 등가산화막 두께를 얻었다.
또한 누설전류밀도는 -4V 내지 4V 영역에서 전류값을 측정하고, ±0.7V에서의 누설 전류 값을 취하여 누설전류밀도를 계산하였다.
도 24에 도시된 바와 같이, 전구체로 실시예 3[CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)]과 비교예 1[CpZr(N(CH3)2)3]을 이용한 경우의 누설전류 특성은 유사하였으나, 실시예 3을 이용한 경우 유전상수는 높았으며 등가산화막 두께는 낮아 전기적 특성이 개선되었음을 확인하였다.
[실험예 19] 다층구조(ZrO2/Al2O3/ZrO2, ZAZ)의 금속 산화막의 전기적 특성 분석
원자층 증착법(Atomic layer deposition)에 의해 실리콘 기판에 지르코늄 산화막/알루미늄 산화막/지르코늄 산화막 형태의 다층구조를 형성하였다. 이때 실리콘 기판은 300℃로 유지하였고, 지르코늄 산화막은 실시예 3에서 합성된 CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2 전구체를 사용하였고 알루미늄 산화막은 TMA(Trimetyl Aluminium)을 사용하였다.
지르코늄 산화막은 실시예 20과 동일한 방법으로 형성하였으며 알루미늄 산화막은 다음과 같은 공정으로 형성하였다. 첫째로, 스테인레스 스틸 용기의 TMA는 10℃로 냉각하고 아르곤 가스(50sccm)를 이송 가스로 하여 실리콘 기판으로 이송되어 실리콘 기판에 흡착되도록 한다. 둘째로, 아르곤 가스(4000sccm)을 이용하여 약 15초간 알루미늄 전구체 화합물을 제거한다. 셋째로, 약 180g/m3 의 농도의 오존 가스를 500sccm으로 10초간 공급하여 알루미늄 산화막을 형성한다. 마지막으로 아르곤 가스(4000sccm)을 이용하여 약 10초간 반응 부산물 및 잔류 반응 가스를 제거한다. 위와 같은 공정을 1주기로 하여 일정주기를 반복하여 알루미늄 산화막을 형성하였다.
위와 같은 방법을 사용하여 상부에서부터 지르코늄 산화막 22Å/ 알루미늄 산화막 7Å/ 지르코늄 산화막 44Å두께를 갖는 다층구조를 형성하고 위와 같은 방법으로 전기적 특성을 분석하였다.
다층구조의 금속 산화막(ZrO2/Al2O3/ZrO2, ZAZ)과 상기 실험예 26에서 사용된 실시예 3의 CH3N(CH2C(CH3)HN(CH3))2Zr(N(CH3)2)2 전구체를 이용해 만들어진 지르코늄 산화막을 실험예 26과 동일한 방법으로 전기적 특성을 평가하였으며, 그 결과를 도 25에 도시하였다.
도 25에 도시된 바와 같이, 다층구조의 금속 산화막(ZrO2/Al2O3/ZrO2, ZAZ)의 경우 단일구조의 지르코늄 산화막(ZrO2 Single)보다 누설전류 특성이 개선된 것을 확인할 수 있었다. 다층구조의 금속 산화막(ZrO2/Al2O3/ZrO2, ZAZ)의 경우 알루미늄 산화막의 특성이 반영되어 단일구조의 지르코늄 산화막(ZrO2 Single)에 비해 유전상수는 낮았으며, 등가산화막 두께는 높아짐을 확인하였다.

Claims (15)

  1. 하기 화학식 1로 표시되는 금속 트리아민 화합물.
    [화학식 1]
    Figure PCTKR2018004841-appb-I000098
    (상기 화학식 1에서,
    M은 M1(A1), M2(A2)(A3), M3(A2)(A3)(A4), M4(=NR')2 또는 M4(CO)4이고;
    M1은 13족 금속 또는 란탄족 금속이고;
    M2은 4족 전이금속이고;
    M3은 5족 전이금속이고;
    M4은 6족 전이금속이고;
    R'은 (C1-C7)알킬이고;
    R1 내지 R5는 서로 독립적으로 수소 또는 (C1-C7)알킬이고;
    A1는 (C1-C7)알킬, NR6R7, OR8, 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고;
    A2, A3 및 A4는 서로 독립적으로 NR6R7, OR8, 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고;
    상기 A1, A2, A3 및 A4의 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C7)알킬 또는 (C2-C7)알케닐로 더 치환될 수 있고;
    R6, R7 및 R8은 서로 독립적으로 (C1-C7)알킬 또는 SiR9R10R11이고;
    R9 내지 R11은 서로 독립적으로 (C1-C7)알킬이고;
    m은 0 내지 2의 정수이다.)
  2. 제 1항에 있어서,
    상기 금속 트리아민 화합물은 하기 화학식 2 또는 3으로 표시되는 것인 금속 트리아민 화합물.
    [화학식 2]
    Figure PCTKR2018004841-appb-I000099
    [화학식 3]
    Figure PCTKR2018004841-appb-I000100
    (상기 화학식 2 및 3에서,
    M1은 B, Al, Ga, In 또는 La이고;
    R1 내지 R5은 서로 독립적으로 수소원자 또는 (C1-C5)알킬이고;
    A1는 (C1-C5)알킬, NR6R7, OR8 또는 시클로펜타디에닐 고리이고;
    R6, R7 및 R8은 서로 독립적으로 (C1-C5)알킬 또는 SiR9R10R11이고;
    R9 내지 R11은 서로 독립적으로 (C1-C5)알킬이다.)
  3. 제 1항에 있어서,
    상기 금속 트리아민 화합물은 하기 화학식 4 또는 5로 표시되는 것인 금속 트리아민 화합물.
    [화학식 4]
    Figure PCTKR2018004841-appb-I000101
    [화학식 5]
    Figure PCTKR2018004841-appb-I000102
    (상기 화학식 4 및 5에서,
    M2은 Ti, Zr 또는 Hf이고;
    R1 내지 R5은 서로 독립적으로 수소원자 또는 (C1-C5)알킬이고;
    A2 및 A3는 서로 독립적으로 NR6R7, OR8 또는 시클로펜타디에닐 고리이고;
    R6, R7 및 R8은 서로 독립적으로 (C1-C5)알킬 또는 SiR9R10R11이고;
    R9 내지 R11은 서로 독립적으로 (C1-C5)알킬이다.)
  4. 제 3항에 있어서,
    상기 금속 트리아민 화합물은 하기 화학식 4-1 또는 화학식 4-2로 표시되는 것인 금속 트리아민 화합물.
    [화학식 4-1]
    Figure PCTKR2018004841-appb-I000103
    [화학식 4-2]
    Figure PCTKR2018004841-appb-I000104
    (상기 화학식 4-1 및 4-2에서,
    M2은 Ti, Zr 또는 Hf이고;
    R1 내지 R3 및 R5은 서로 독립적으로 수소원자 또는 (C1-C5)알킬이고;
    A3는 NR6R7 또는 시클로펜타디에닐 고리이고;
    R6, R7 및 R8은 서로 독립적으로 (C1-C5)알킬 또는 SiR9R10R11이고;
    R9 내지 R11은 서로 독립적으로 (C1-C5)알킬이다.)
  5. 제 4항에 있어서,
    상기 R1 및 R5는 각각 독립적으로 (C1-C3)알킬이고, R2 및 R3는 서로 독립적으로 수소 또는 (C1-C3)알킬이고, A3는 NR6R7 또는 시클로펜타디에닐 고리이고, R6 및 R7은 서로 독립적으로 (C1-C3)알킬이고, R8은 (C1-C4)알킬인 금속 트리아민 화합물.
  6. 제 1항에 있어서,
    상기 금속 트리아민 화합물은 하기 화학식 6 또는 7로 표시되는 것인 금속 트리아민 화합물.
    [화학식 6]
    Figure PCTKR2018004841-appb-I000105
    [화학식 7]
    Figure PCTKR2018004841-appb-I000106
    (상기 화학식 6 및 7에서,
    M3은 V, Nb 또는 Ta 이고;
    R1 내지 R5은 서로 독립적으로 수소원자 또는 (C1-C5)알킬이고;
    A2, A3 및 A4는 서로 독립적으로 NR6R7, OR8 또는 시클로펜타디에닐 고리이고;
    R6, R7 및 R8은 서로 독립적으로 (C1-C5)알킬 또는 SiR9R10R11이고;
    R9 내지 R11은 서로 독립적으로 (C1-C5)알킬이다.)
  7. 제 6항에 있어서,
    상기 R1 및 R5는 각각 독립적으로 (C1-C3)알킬이고, R2 내지 R4는 서로 독립적으로 수소 또는 (C1-C3)알킬이고, A2, A3 및 A4는 서로 독립적으로 NR6R7이고, R6 및 R7은 서로 독립적으로 (C1-C3)알킬 또는 SiR9R10R11이고, R9 내지 R11은 서로 독립적으로 (C1-C3)알킬인 금속 트리아민 화합물.
  8. 제 1항에 있어서,
    상기 금속 트리아민 화합물은 하기 화학식 8 또는 9로 표시되는 것인 금속 트리아민 화합물.
    [화학식 8]
    Figure PCTKR2018004841-appb-I000107
    [화학식 9]
    Figure PCTKR2018004841-appb-I000108
    (상기 화학식 8 및 9에서,
    M4은 Cr, Mo 또는 W 이고;
    R1 내지 R5은 서로 독립적으로 수소원자 또는 (C1-C5)알킬이고;
    R'은 (C1-C5)알킬이다.)
  9. 제 1항에 있어서,
    상기 금속 트리아민 화합물은 하기 화학식 10 또는 11로 표시되는 것인 금속 트리아민 화합물.
    [화학식 10]
    Figure PCTKR2018004841-appb-I000109
    [화학식 11]
    Figure PCTKR2018004841-appb-I000110
    (상기 화학식 10 및 11에서,
    M4은 Cr, Mo 또는 W 이고;
    R1 내지 R5은 서로 독립적으로 수소원자 또는 (C1-C5)알킬이다.)
  10. 제 1항에 있어서,
    상기 금속 트리아민 화합물은 하기 구조로부터 선택되는 것인 금속 트리아민 화합물.
    Figure PCTKR2018004841-appb-I000111
    Figure PCTKR2018004841-appb-I000112
    Figure PCTKR2018004841-appb-I000113
    Figure PCTKR2018004841-appb-I000114
    (상기에서 M1은 B, Al, Ga, In, Tl 또는 La이고; M2은 Ti, Zr 또는 Hf이고; M3은 V, Nb 또는 Ta이고; M4은 Cr, Mo 또는 W이다.)
  11. 제 1항 내지 제 10항에서 선택되는 어느 한 항에 따른 금속 트리아민 화합물을 포함하는 금속 함유 박막증착용 조성물.
  12. 제 11항의 금속 함유 박막증착용 조성물을 이용하는 금속 함유 박막의 제조방법.
  13. 제 12항에 있어서,
    상기 제조방법은 금속 함유 박막증착용 조성물을 원자층 증착법(ALD), 기상 증착법(CVD), 유기금속 화학기상 증착법(MOCVD), 저압 기상 증착법(LPCVD), 플라즈마 강화 기상 증착법 (PECVD) 또는 플라즈마 강화 원자층 증착법(PEALD)으로 수행되는 금속 함유 박막의 제조방법.
  14. 제 12항에 있어서,
    상기 제조방법은,
    a) 챔버 내에 장착된 기판의 온도를 80 내지 400℃로 유지하는 단계;
    b) 수송가스와 제 11항의 금속 함유 박막증착용 조성물을 주입하는 단계; 및
    c) 반응가스를 주입하여 상기 기판상에 금속 함유 박막을 증착시키는 단계;를 포함하는 금속 함유 박막의 제조방법.
  15. 제 14항에 있어서,
    상기 제조방법은 산소(O2), 오존(O3), 증류수(H2O), 과산화수소(H2O2), 일산화질소(NO), 아산화질소(N2O), 이산화질소(NO2), 암모니아(NH3), 질소(N2), 하이드라진(N2H4), 아민, 다이아민, 일산화탄소(CO), 이산화탄소(CO2), C1 내지 C12 포화 또는 불포화 탄화 수소, 수소(H2), 아르곤(Ar) 및 헬륨(He)에서 선택되는 어느 하나 또는 둘 이상의 가스를 공급하여 수행되는 금속 함유 박막의 제조방법.
PCT/KR2018/004841 2017-04-27 2018-04-26 금속 트리아민 화합물, 이의 제조방법 및 이를 포함하는 금속 함유 박막증착용 조성물 WO2018199642A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/093,905 US11447859B2 (en) 2017-04-27 2018-04-26 Metal triamine compound, method for preparing the same, and composition for depositing metal-containing thin film including the same
JP2018556927A JP7246929B2 (ja) 2017-04-27 2018-04-26 金属トリアミン化合物、その製造方法およびこれを含む金属含有薄膜蒸着用組成物
CN201880001773.8A CN109153692B (zh) 2017-04-27 2018-04-26 金属三胺化合物、用于制备其方法及包含其的用于沉积含金属薄膜的组合物
EP18785241.3A EP3434683A4 (en) 2017-04-27 2018-04-26 METAL TRIAMINE COMPOUND, PROCESS FOR PREPARING THE SAME, AND COMPOSITION CONTAINING SAID METAL CONTAINING METAL-CONTAINING COMPOUND

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20170054290 2017-04-27
KR10-2017-0054290 2017-04-27
KR10-2017-0062801 2017-05-22
KR20170062801 2017-05-22
KR10-2017-0063332 2017-05-23
KR20170063332 2017-05-23
KR10-2018-0047876 2018-04-25
KR1020180047876A KR102033540B1 (ko) 2017-04-27 2018-04-25 금속 트리아민 화합물, 이의 제조방법 및 이를 포함하는 금속 함유 박막증착용 조성물

Publications (1)

Publication Number Publication Date
WO2018199642A1 true WO2018199642A1 (ko) 2018-11-01

Family

ID=63920299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004841 WO2018199642A1 (ko) 2017-04-27 2018-04-26 금속 트리아민 화합물, 이의 제조방법 및 이를 포함하는 금속 함유 박막증착용 조성물

Country Status (1)

Country Link
WO (1) WO2018199642A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8471049B2 (en) 2008-12-10 2013-06-25 Air Product And Chemicals, Inc. Precursors for depositing group 4 metal-containing films
KR101485520B1 (ko) * 2013-04-25 2015-01-28 한국화학연구원 아미노싸이올레이트를 이용한 텅스텐 전구체, 이의 제조방법, 및 이를 이용하여 박막을 형성하는 방법
KR20150105747A (ko) * 2014-03-10 2015-09-18 삼성전자주식회사 유기 금속 전구체 및 이를 이용한 박막 형성 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8471049B2 (en) 2008-12-10 2013-06-25 Air Product And Chemicals, Inc. Precursors for depositing group 4 metal-containing films
KR101485520B1 (ko) * 2013-04-25 2015-01-28 한국화학연구원 아미노싸이올레이트를 이용한 텅스텐 전구체, 이의 제조방법, 및 이를 이용하여 박막을 형성하는 방법
KR20150105747A (ko) * 2014-03-10 2015-09-18 삼성전자주식회사 유기 금속 전구체 및 이를 이용한 박막 형성 방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CLARK. H. C. S. ET AL.: "Titanium(IV) Complexes Incorporating the Aminodiamide Ligand [(SiMe3)N{ CH 2 CH 2N(SiMe3))2]2-(L); the X-ray Crystal Structures of [TiMe2(L)] and [TiCl{ CH (SiMe3)2}(L", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 501, no. 1-2, October 1995 (1995-10-01), pages 333 - 340, XP004023769, Retrieved from the Internet <URL:https://doi.org/10.1016/0022-328X(95)05708-W> *
POHL, L. ET AL.: "Physical Properties of Non-pyrophoric Group III Precursors for MOVPE", JOURNAL OF CRYSTAL GROWTH, vol. 107, no. 1-4, January 1991 (1991-01-01), pages 309 - 313, XP055559874, Retrieved from the Internet <URL:https://doi.org/10.1016/0022-0248(91)90475-K> *
See also references of EP3434683A4 *
WARD, B. D. ET AL.: "Group 6 Imido Complexes Supported by Diamido-Donor Ligands", INORG. CHEM., vol. 42, no. 16, 12 July 2003 (2003-07-12), pages 4961 - 4969, XP055559881, Retrieved from the Internet <URL:DOI:10.1021/ic034377s> *

Similar Documents

Publication Publication Date Title
WO2012067439A2 (ko) 다이아자다이엔계 금속 화합물, 이의 제조 방법 및 이를 이용한 박막 형성 방법
WO2015190900A1 (ko) 성막용 전구체 화합물 및 이를 이용한 박막 형성 방법
WO2019156451A1 (ko) 4 족 금속 원소-함유 화합물, 이의 제조 방법, 이를 포함하는 막 형성용 전구체 조성물, 및 이를 이용하는 막의 형성 방법
WO2015105350A1 (en) Novel cyclodisilazane derivative, method for preparing the same and silicon-containing thin film using the same
WO2018048124A1 (ko) 5족 금속 화합물, 이의 제조 방법, 이를 포함하는 막 증착용 전구체 조성물, 및 이를 이용하는 막의 증착 방법
WO2018088820A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2014109530A1 (ko) 2-(페닐에티닐)티에노[3,4-b]피라진 유도체 및 이를 포함하는 암의 예방 또는 치료용 약학적 조성물
WO2015190871A1 (en) Liquid precursor compositions, preparation methods thereof, and methods for forming layer using the composition
WO2020101437A1 (ko) 실리콘 전구체 화합물, 제조 방법, 및 이를 이용하는 실리콘-함유 막 형성 방법
WO2021187923A1 (ko) 다환 방향족 유도체 화합물을 이용한 유기발광소자
WO2017146397A1 (ko) 신규한 아민 화합물 및 이를 포함하는 유기 발광 소자
WO2023200154A1 (ko) 루테늄 전구체 조성물, 이의 제조방법, 및 이를 이용한 루테늄-함유 막의 형성 방법
WO2022045838A1 (ko) 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물
WO2018199642A1 (ko) 금속 트리아민 화합물, 이의 제조방법 및 이를 포함하는 금속 함유 박막증착용 조성물
WO2020116770A1 (ko) 4족 전이금속 화합물, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
WO2023068629A1 (ko) 3족 금속 전구체, 이의 제조방법 및 이를 이용하는 박막의 제조방법
WO2018182309A1 (en) Composition for depositing silicon-containing thin film containing bis(aminosilyl)alkylamine compound and method for manufacturing silicon-containing thin film using the same
WO2016108398A1 (ko) 유기 13족 전구체 및 이를 이용한 박막 증착 방법
WO2017179857A1 (ko) 전이금속 화합물, 이의 제조방법 및 이를 포함하는 전이금속함유 박막증착용 조성물
WO2021153986A1 (ko) 실리콘 전구체 화합물, 이를 포함하는 실리콘-함유 막 형성용 조성물 및 실리콘-함유 막 형성 방법
WO2023282615A1 (ko) 몰리브데늄 전구체 화합물, 이의 제조방법, 및 이를 이용한 몰리브데늄-함유 박막의 증착 방법
WO2022045825A1 (ko) 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물
WO2023287192A1 (ko) 실리콘 전구체 화합물, 이를 포함하는 실리콘-함유 막 형성용 조성물, 및 실리콘-함유 막 형성용 조성물을 이용한 막 형성 방법
WO2021172867A1 (ko) 알루미늄 전구체 화합물 및 이의 제조 방법, 이를 이용한 알루미늄 함유 막 형성 방법
WO2023219446A1 (ko) 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물, 및 이를 이용한 막 형성 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018785241

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018556927

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018785241

Country of ref document: EP

Effective date: 20181022

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18785241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE