WO2018198847A1 - 運転支援装置、及び運転支援プログラム - Google Patents

運転支援装置、及び運転支援プログラム Download PDF

Info

Publication number
WO2018198847A1
WO2018198847A1 PCT/JP2018/015657 JP2018015657W WO2018198847A1 WO 2018198847 A1 WO2018198847 A1 WO 2018198847A1 JP 2018015657 W JP2018015657 W JP 2018015657W WO 2018198847 A1 WO2018198847 A1 WO 2018198847A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
risk
host vehicle
driving support
host
Prior art date
Application number
PCT/JP2018/015657
Other languages
English (en)
French (fr)
Inventor
拓弥 久米
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018198847A1 publication Critical patent/WO2018198847A1/ja
Priority to US16/653,281 priority Critical patent/US11332133B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • G08G1/163Decentralised systems, e.g. inter-vehicle communication involving continuous checking
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/143Alarm means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4042Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed

Definitions

  • the present disclosure relates to a driving support technology that supports driving of a driver who is on a vehicle.
  • Patent Document 1 as a driving support device, an inter-vehicle distance from a preceding vehicle traveling in front of the host vehicle is calculated, and when the calculated inter-vehicle distance is smaller than an alarm inter-vehicle distance, An inter-vehicle distance warning device that generates a warning is disclosed.
  • the inter-vehicle distance warning device of Patent Document 1 it is considered that the other vehicles that are subject to alarm generation are limited to other vehicles that travel on the planned course of the host vehicle. Therefore, as an example, when another vehicle that travels in the adjacent lane travels so as to interrupt the planned course of the host vehicle, the inter-vehicle distance warning device is at the timing when the other vehicle has finished moving to the lane in which the host vehicle travels. An alarm can be generated. In such a process, warnings to other vehicles that interrupt in front of the host vehicle could be abrupt.
  • This disclosure is intended to provide a driving support device and a driving support program that can smoothly implement driving support that supports driving by a driver according to the risk of other vehicles.
  • a driving support program that supports driving of a driver who rides on a vehicle acquires detection information of another vehicle that travels around the host vehicle as a vehicle, and the planned course of the host vehicle Based on the assumption that other vehicles that are not above move on the planned route, the risk of other vehicles relative to the own vehicle is calculated as a risk estimate using detection information related to the lateral position of the other vehicle relative to the own vehicle. Then, the processing unit is caused to execute a process of selecting the driving assistance content corresponding to the calculated risk estimated value.
  • the detection information related to the lateral position of the other vehicle is used on the assumption that the host vehicle moves on the planned course of the host vehicle.
  • a risk estimate is estimated. Therefore, even if the other vehicle deviates from the planned course of the own vehicle, the driving support content corresponding to the risk estimated value can be selected. Therefore, even when the other vehicle travels so as to interrupt the planned course of the host vehicle, the driving support for assisting the driver's driving is smoothly performed according to the risk of the other vehicle.
  • the driving support content corresponding to the risk estimated value can be selected. Therefore, even when the host vehicle travels so as to interrupt the scheduled route of the other vehicle, the driving support that supports the driving of the driver is smoothly performed according to the risk of the other vehicle.
  • FIG. 1 is a block diagram showing an overall image of an in-vehicle system mounted on a vehicle.
  • FIG. 2 is a diagram showing functional blocks constructed in the risk estimation device
  • FIG. 3 is a diagram illustrating an example of another vehicle that is a target of driving assistance.
  • FIG. 4 is a diagram showing an example of warning presentation using a peripheral vision device
  • FIG. 5 is a diagram illustrating an example of a warning presentation using a peripheral vision device
  • FIG. 6 is a diagram showing an example of warning presentation using the peripheral vision device
  • FIG. 1 is a block diagram showing an overall image of an in-vehicle system mounted on a vehicle.
  • FIG. 2 is a diagram showing functional blocks constructed in the risk estimation device
  • FIG. 3 is a diagram illustrating an example of another vehicle that is a target of driving assistance.
  • FIG. 4 is a diagram showing an example of warning presentation using a peripheral vision device
  • FIG. 5 is a diagram illustrating an example of a warning presentation using a peripheral vision device
  • FIG. 7 is a diagram illustrating an example of the relationship between the strength of alarm intensity and the operation of each information presentation device
  • FIG. 8 is a diagram for explaining the concept of the formula for calculating the risk inter-vehicle distance.
  • FIG. 9A is a diagram for explaining the lateral movement of another vehicle assumed by the calculation unit;
  • FIG. 9B is a diagram for explaining the lateral movement of the other vehicle assumed by the calculation unit;
  • FIG. 10 is a flowchart showing details of the driving support process based on the risk inter-vehicle distance
  • FIG. 11 is a flowchart showing details of the driving support processing based on the spare time
  • FIG. 12 is a diagram for explaining the details of a scene that needs to suppress the warning presentation.
  • FIG. 9A is a diagram for explaining the lateral movement of another vehicle assumed by the calculation unit
  • FIG. 9B is a diagram for explaining the lateral movement of the other vehicle assumed by the calculation unit
  • FIG. 10 is a flowchart showing details of the driving support process
  • FIG. 13 is a diagram for explaining the concept of calculation for contact determination.
  • FIG. 14 is a flowchart showing details of the driving support process when the contact determination is valid
  • FIG. 15 is a diagram illustrating an example of interrupt determination.
  • FIG. 16 is a diagram illustrating another example of interrupt determination.
  • FIG. 17 is a diagram showing still another example of interrupt determination.
  • FIG. 18 is a flowchart showing details of the driving support process when the interrupt determination is valid
  • FIG. 19 is a diagram illustrating an example of a scene that is determined to have an interrupt possibility.
  • FIG. 20 is a diagram illustrating another example of a scene that is determined to have an interrupt possibility.
  • FIG. 21 is a flowchart showing details of the driving support process when the interrupt determination and the interrupt possibility determination are valid, FIG.
  • FIG. 22 is a flowchart showing details of the driving support process when the interrupt determination and the approach determination are valid
  • FIG. 23 is a diagram illustrating an example of a scene that is determined to have a possibility of approach
  • FIG. 24 is a flowchart showing details of the driving support process when the accessibility determination is effective in addition to the interrupt determination and the approach determination
  • FIG. 25A is a diagram for explaining a difference between a preceding vehicle and an interruption vehicle
  • FIG. 25B is a diagram for explaining a difference between a preceding vehicle and an interruption vehicle
  • FIG. 26 is a table in the case of presenting a warning to the preceding vehicle, and is a diagram showing a correspondence relationship between the margin time and TTC and the presentation content (warning intensity)
  • FIG. 27 is a table in the case of presenting a warning to an interrupting vehicle, and is a diagram showing a correspondence relationship between the margin time and TTC and the presentation content (alarm intensity),
  • FIG. 28 is a diagram showing details of the driving support processing when the approach threshold value switching is effective
  • FIG. 29A is a diagram for explaining the concept of other vehicles in which driving assistance is given priority among a plurality of vehicles
  • FIG. 29B is a diagram for explaining the concept of other vehicles in which driving assistance is given priority among a plurality of vehicles
  • FIG. 29C is a diagram for explaining the concept of other vehicles in which driving assistance is given priority among a plurality of vehicles
  • FIG. 29D is a diagram for explaining the concept of other vehicles in which driving assistance is given priority among a plurality of vehicles
  • FIG. 29A is a diagram for explaining the concept of other vehicles in which driving assistance is given priority among a plurality of vehicles
  • FIG. 29B is a diagram for explaining the concept of other vehicles in which driving assistance is given priority among a
  • FIG. 30 is a diagram illustrating details of the driving support process when there are a plurality of other vehicles around the host vehicle.
  • FIG. 31 is a diagram for explaining the concept of the calculation formula for the risk inter-vehicle distance in a scene where the own vehicle interrupts the planned route of another vehicle.
  • FIG. 32 is a flowchart showing details of the driving support processing according to the second embodiment.
  • FIG. 33 is a diagram illustrating an example of a scene for determining that there is a possibility of interruption in the host vehicle.
  • FIG. 34 is a flowchart showing details of the driving support process when the interrupt determination or the interrupt possibility determination is valid
  • FIG. 35 is a diagram showing the driving assistance contents selected in a state where the ACC is operating.
  • the function of the driving support device according to the first embodiment of the present disclosure is realized by the risk estimation device 50 illustrated in FIGS. 1 and 2.
  • the risk estimation device 50 is mounted on a vehicle (hereinafter referred to as own vehicle As) together with an electronic control unit such as a driver state estimation device 40, a traveling environment recognition device 60, a vehicle control device 80, and an HMI control device 70, and the in-vehicle system 100 is installed. Is building.
  • the risk estimation device 50 and each of the other electronic control units are electrically connected to each other directly or indirectly, and can communicate with each other.
  • the risk estimation device 50 supports the driving of a driver (driver) who is boarding the host vehicle As in cooperation with other electronic control units.
  • the driver state estimation device 40 is an electronic control unit that estimates the state of the driver.
  • the driver state estimation device 40 is mainly configured by a computer having a processing unit such as a CPU and a memory unit such as a RAM and a flash memory.
  • the driver state estimation device 40 is directly or indirectly electrically connected to the DSM 11, the biological sensor 12, the in-vehicle LAN 13, and the like.
  • the DSM 11 includes a camera unit that captures the face of the driver, a light source unit that emits near-infrared light for imaging, a camera unit, a control unit that controls the light source unit, and the like.
  • the DSM 11 captures a face image capable of detecting the driver's line-of-sight direction, face orientation, wrinkle opening degree, and the like at a predetermined frame rate.
  • the DSM 11 sequentially outputs the image data of the face image toward the driver state estimation device 40.
  • DSM is an abbreviation for Driver Status Monitor.
  • the biosensor 12 measures biometric data such as a driver's heart rate, pulse rate, body temperature, and blood pressure.
  • the biometric sensor 12 sequentially outputs the measured biometric data toward the driver state estimation device 40.
  • the in-vehicle LAN 13 outputs measurement results of a large number of in-vehicle sensors included in the in-vehicle system 100.
  • the driver state estimation device 40 can acquire, for example, vehicle speed information indicating the traveling speed of the host vehicle As from the in-vehicle LAN 13.
  • the driver state estimation device 40 uses the information acquired from the DSM 11, the biosensor 12 and the in-vehicle LAN 13 to monitor the driver state and sequentially outputs the monitoring result to the risk estimation device 50 as driver state information.
  • the state information includes a monitoring result indicating a driver's side aside and a decrease in arousal level.
  • the traveling environment recognition device 60 is an electronic control unit that recognizes the traveling environment around the host vehicle As.
  • the travel environment recognition device 60 is mainly configured by a computer having a processing unit such as a CPU and a GPU, and a memory unit such as a RAM and a flash memory.
  • the travel environment recognition device 60 is directly or indirectly electrically connected to the camera unit 21, the millimeter wave radar 22, the locator 23, the V2X communication device 24, and the like.
  • the camera unit 21 captures the traveling direction of the host vehicle As and detects a moving object, a stationary object, and the like existing in the traveling direction from the front image.
  • the millimeter wave radar 22 emits a millimeter wave toward the traveling direction of the host vehicle As, and receives the millimeter wave reflected by a moving object and a stationary object existing in the traveling direction.
  • the millimeter wave radar 22 detects the presence and the relative position of a moving object and a stationary object from the received millimeter wave mode.
  • the camera unit 21 and the millimeter wave radar 22 detect moving objects such as pedestrians and other vehicles Ao (see FIG. 3), stationary objects such as road signs and lane markings, and the positions of the detected moving objects and stationary objects. Is sequentially output toward the traveling environment recognition device 60.
  • the locator 23 includes a GNSS receiver, an inertial sensor, a map database, and the like.
  • the GNSS receiver receives positioning signals transmitted from a plurality of artificial satellites.
  • the inertial sensor measures acceleration acting on the host vehicle As.
  • the locator 23 measures the position of the host vehicle As by combining the positioning signal received by the GNSS reception and the measurement result of the inertial sensor.
  • the locator 23 combines the positional information of the measured vehicle As with the surrounding map information and sequentially outputs the information to the traveling environment recognition device 60.
  • GNSS is an abbreviation for Global Navigation Satellite System.
  • the V2X communication device 24 transmits and receives information by wireless communication between the vehicle-mounted communication device mounted on the other vehicle Ao (see FIG. 3) and the roadside device installed beside the road.
  • the V2X communication device 24 can receive position information, speed information, and the like of the other vehicle Ao through vehicle-to-vehicle communication or road-to-vehicle communication.
  • the V2X communication device 24 sequentially outputs the various received information received toward the traveling environment recognition device 60.
  • the traveling environment recognition device 60 uses information acquired from the camera unit 21, the millimeter wave radar 22, the locator 23, and the V2X communicator 24 to determine the presence and state of the other vehicle Ao traveling around the host vehicle As.
  • the traveling environment recognition device 60 sequentially outputs the grasped information to the risk estimation device 50 as detection information.
  • the detection information includes distances between the host vehicle As and the front and rear vehicles, and TTC (Time-To-Collision) between the host vehicle As and the front and rear vehicles.
  • TTC is a division value obtained by dividing the inter-vehicle distance between the host vehicle As and the other vehicle Ao by the relative speed of the other vehicle Ao with respect to the host vehicle As.
  • the travel environment recognition device 60 sequentially outputs travel environment information indicating the shape of the road around the host vehicle As and the like to the vehicle control device 80 together with the detection information.
  • the vehicle control device 80 is an electronic control unit that controls the behavior of the host vehicle As.
  • the vehicle control device 80 is mainly configured by a computer having a processing unit such as a CPU, a memory device such as a RAM and a flash memory, and the like.
  • the vehicle control device 80 is directly or indirectly electrically connected to the electronic control throttle 81, the brake actuator 82, the steering actuator 83, and the like.
  • the vehicle control device 80 can execute acceleration / deceleration, braking, and steering of the host vehicle As by controlling each actuator.
  • the vehicle control device 80 performs functions such as the ACC function, the AEB function, and the LTC function by using the detection information and the travel environment information of the other vehicle Ao (see FIG. 3) in cooperation with the travel environment recognition device 60. .
  • the ACC Adaptive Cruise Control
  • the ACC realizes constant speed cruise of the host vehicle As at the target speed or follow-up traveling of the host vehicle to the preceding vehicle by acceleration / deceleration control.
  • the AEB Automatic Emergency Braking
  • the LTC Long Trace Control
  • ACC is an abbreviation for Adaptive Cruise Control.
  • AEB is an abbreviation of Automatic Emergency Braking.
  • LTC is an abbreviation for Lane Trace Control.
  • the HMI control device 70 is an electronic control unit that controls information presentation to the driver based on the risk information acquired from the risk estimation device 50.
  • the HMI control device 70 is mainly configured by a computer having a processing unit such as a CPU and a GPU, and a memory unit such as a RAM and a flash memory.
  • the HMI control device 70 is directly or indirectly electrically connected to an information presentation device such as a HUD 71, a monitor 72, a speaker 73, a peripheral visual field device 74, and a tactile device 75.
  • HMI is an abbreviation for Human Machine Interface.
  • HUD is an abbreviation for Head Up Display.
  • the HUD 71 projects image light toward the windshield of the host vehicle As.
  • the driver visually recognizes the light of the image reflected indoors by the windshield as a virtual image.
  • the monitor 72 is a display provided in a navigation device, a center display device, a combination meter, and the like.
  • the HUD 71 and the monitor 72 present information through vision by displaying images.
  • Speaker 73 is installed in the left and right front pillars of own vehicle As, for example.
  • the speaker 73 outputs ultrasonic waves with high directivity toward the vicinity of the headrest of the driver's seat.
  • the speaker 73 generates an audible sound due to distortion generated in the ultrasonic wave propagating in the air.
  • the speaker 73 reproduces sound that can be heard mainly by only the driver among the passengers of the host vehicle As.
  • the speaker 73 presents information through hearing by reproducing sound.
  • the peripheral visual field device 74 has a plurality of light emitting regions 74a and 74b (see FIGS. 4 to 6) formed in a linear shape.
  • the light emitting region 74a is disposed at the top of the instrument panel and extends from one to the other between the pair of front pillars along the width direction of the host vehicle As.
  • the light emitting region 74b is disposed at the top of the side door and extends along the front-rear direction of the host vehicle As.
  • a light emitting spot 74c is displayed in a light emitting manner.
  • the light emission spot 74c can move along the light emission regions 74a and 74b, and can extend along the light emission regions 74a and 74b.
  • the light emission spot 74c is perceived in the peripheral visual field of the driver facing the traveling direction, and guides the driver's line-of-sight direction toward the object to be alerted.
  • the tactile device 75 is, for example, a device that generates vibration.
  • the tactile device 75 is disposed at a location where the driver touches the driver, such as a steering wheel, an accelerator pedal, a brake pedal, a seat surface of a driver's seat, and a seat belt.
  • the tactile device 75 presents information through a tactile sense by the occurrence of vibration.
  • the HMI control device 70 determines the warning intensity and warning timing of information presentation based on the risk information.
  • the alarm intensity is set to any one of “weak”, “medium”, and “strong”.
  • the HMI control device 70 selects the information presentation device to be activated according to the alarm intensity, and changes the operation content of each information presentation device (see FIG. 7).
  • the HMI control device 70 causes the light emitting spot 74c to emit light before the other vehicle Ao enters the front of the host vehicle As from the adjacent lane, and alerts the driver. By presenting such information, the driver who is driving manually can perform the defense operation without overlooking the other vehicle Ao that is interrupted.
  • the peripheral vision device 74 emits light in the moving direction of the other vehicle Ao in the light emitting area 74a of the instrument panel when the other vehicle Ao starts to move in front of the host vehicle As. The operation of moving or extending the spot 74c is repeated. Further, as shown in FIG. 6, when the other vehicle Ao is approaching from the rear side, the peripheral vision device 74 moves the light emitting spot 74 c in the moving direction of the other vehicle Ao in the side door light emitting region 74 b. Repeat the operation to extend or extend.
  • the risk estimation device 50 is mainly configured by a computer having a processing unit 151 such as a CPU, a memory unit 152 such as a RAM and a flash memory, and the like. Various programs including a driving support program are stored in the memory unit 152 so as to be readable by the processing unit 151.
  • the risk estimation device 50 has a plurality of functional blocks by executing the driving support program stored in the memory unit 152 by the processing unit 151. Specifically, functional blocks such as an information acquisition unit 51, a calculation unit 53, a selection unit 54, a contact determination unit 55, an interrupt determination unit 56, and an approach determination unit 57 are constructed in the risk estimation device 50.
  • the coordinate system shown in FIG. 8 is a spatial coordinate system defined by the traveling environment recognition device 60 and is based on the position of the host vehicle As.
  • the x-axis is defined along the lateral direction of the host vehicle As
  • the y-axis is defined along the front-rear direction of the host vehicle As.
  • the xy plane is parallel to the road surface.
  • the broken line in FIG. 8 is a virtual line Lo that is parallel to the y-axis and passes through the other vehicle Ao. In the following calculation process, it is assumed that the front-rear direction of the other vehicle Ao is along the virtual line Lo, and the lateral direction of the other vehicle Ao is along the x-axis.
  • the information acquisition unit 51 acquires the state information of the driver who gets on the host vehicle As from the driver state estimation device 40.
  • the information acquisition unit 51 acquires detection information of the other vehicle Ao traveling around the host vehicle As from the traveling environment recognition device 60.
  • the information acquisition unit 51 acquires, as detection information, the lateral relative position x 0 of the other vehicle Ao, the relative position y 0 of the other vehicle Ao in the front-rear direction, and the traveling speed v py of the other vehicle Ao.
  • the information acquisition unit 51 acquires the traveling speed v f of the host vehicle As.
  • the relative positions x 0 and y 0 and the traveling speeds v py and v f described above are actually measured values used for risk estimation.
  • the calculation unit 53 calculates the risk of the other vehicle Ao with respect to the host vehicle As as a risk estimated value.
  • the risk estimated value is a value indicating the level of risk that the other vehicle Ao contacts the host vehicle As.
  • the calculation unit 53 calculates a risk estimated value on the assumption that another vehicle Ao that is not on the planned route P of the host vehicle As moves on the planned route P.
  • the calculation unit 53 calculates the risk inter-vehicle distance as an example of the risk estimated value.
  • the risk inter-vehicle distance is an inter-vehicle distance at which the host vehicle As can stop without contacting another vehicle Ao that has moved on the planned route P.
  • the calculation unit 53 sets a plurality of assumed values for calculating the risk estimated value.
  • the calculation unit 53 calculates the risk estimated value using both the actual measurement value and the assumed value.
  • the assumed values include acceleration a f generated in the host vehicle As and accelerations a p and ⁇ p generated in the other vehicle Ao.
  • the calculation unit 53 sets the idle running time k assumed by the driver as an assumed value based on the driver state information.
  • the calculation unit 53 calculates the risk inter-vehicle distance D using the calculation formula shown in Equation 1 based on the actual measurement value and the assumed value.
  • the angle ⁇ is an angle formed by the speed vector [v f ] of the host vehicle As and the speed vector [v p ] of the other vehicle Ao.
  • the angle theta the angle between the longitudinal direction of the velocity vector of the other vehicle Ao [v py] defined along a virtual line Lo, the velocity vector of the other vehicle Ao [v p].
  • d pj is the movement distance in the front-rear direction of the other vehicle Ao during the lateral movement
  • d ps is the movement distance in the front-rear direction of the other vehicle Ao after the lateral movement.
  • Equation 3 Each moving distance is represented by a mathematical formula shown as Equation 3.
  • the idle running time k is the sum of the response time RT of the reference driver and the reaction delay time RDT caused by the state change, as in the mathematical formula shown as Equation 4.
  • the reaction time RT is a fixed value set in association with individual differences of drivers.
  • the individual differences employed here include driving skills and motor nerves. These individual differences are set based on estimation results such as the age and sex of the driver using, for example, the DSM 11 (see FIG. 1). That is, the reaction time RT is set in association with the detection result of the DSM 11.
  • the reaction delay time RDT is a response delay time that occurs when the driver's state changes, and is an assumed value that is assumed based on the state information.
  • the reaction delay time RDT is sequentially updated based on the line-of-sight direction indicated by the state information, the degree of arousal, the degree of ambiguity, the degree of fatigue, etc., and changes over time.
  • the calculation unit 53 can set the reaction delay time RDT based on a mathematical expression representing a correlation between each value indicated by the state information and the reaction delay time RDT.
  • the reaction delay time RDT is set to a larger value when the driver is looking aside than when facing the front.
  • the reaction delay time RDT is set to a larger value as the degree of arousal becomes lower or as the level of ambiguity and fatigue becomes higher.
  • the calculation unit 53 assumes the lateral movement of the other vehicle Ao (see FIGS. 9A and 9B). From this assumption, the time j (see FIG. 8) during which the lateral movement is continued can be calculated. As a result, the traveling speeds vp, vp ′ and cos ⁇ of the other vehicle Ao can be expressed as follows using the above measured values and assumed values. Therefore, the risk inter-vehicle distance D is calculated from each actually measured value and each assumed value.
  • the calculation unit 53 calculates a margin time RA as the risk estimated value instead of the risk inter-vehicle distance D or together with the risk inter-vehicle distance D.
  • the allowance time RA is a time during which the host vehicle As can stop without contacting the other vehicle Ao that has moved on the planned route P.
  • the calculation unit 53 calculates the margin time RA using the following calculation formula using the actual measurement value and the assumed value that are substantially the same as the risk inter-vehicle distance.
  • the selection unit 54 selects the driving support content corresponding to the risk estimated value calculated by the calculation unit 53.
  • the selection unit 54 performs driving support that presents a warning to the driver about the approach of the other vehicle Ao. For example, when the risk inter-vehicle distance D is calculated by the calculation unit 53, the selection unit 54 selects the driving support content based on the comparison between the risk inter-vehicle distance D and the actual inter-vehicle distance. As the inter-vehicle distance becomes shorter with respect to the risk inter-vehicle distance D, the selection unit 54 performs selection to increase the warning intensity to the driver (see FIG. 7).
  • the driving support process is started by the risk estimation device 50 based on, for example, the ignition of the host vehicle As being switched on, and is repeatedly performed until the ignition is switched off.
  • S101 information necessary for risk estimation, that is, information necessary for calculating the risk inter-vehicle distance D is acquired, and the process proceeds to S102.
  • the current inter-vehicle distance between the current host vehicle As and the other vehicle Ao is also acquired.
  • the risk inter-vehicle distance D is calculated based on the information acquired in S101, and the process proceeds to S103.
  • the current inter-vehicle distance acquired in S101 is compared with the risk inter-vehicle distance D calculated in S102. If the current inter-vehicle distance is longer than the risk inter-vehicle distance D, it is determined that the driving assistance to the driver is unnecessary, and the driving assistance processing is temporarily terminated. On the other hand, if it is determined that the current inter-vehicle distance is shorter than the risk inter-vehicle distance D, it is determined that driving assistance to the driver is necessary, and the process proceeds from S103 to S104.
  • the driving support content is selected based on the comparison result in S103 and the acquired information in S101, and the process proceeds to S105.
  • a control signal to be output to at least one of the HMI control device 70 and the vehicle control device 80 is generated so that the driving assistance selected in S104 is performed. And the produced
  • S111 information necessary for risk estimation, that is, information necessary for calculating the margin time RA is acquired, and the process proceeds to S112.
  • S112 an allowance time RA is calculated based on the information acquired in S111, and the process proceeds to S113.
  • S113 it is determined whether the value of the margin time RA calculated in S112 is positive or negative.
  • the margin time RA is a positive value, it is determined that driving support to the driver is unnecessary, and the driving support process is temporarily terminated.
  • the margin time RA is less than or equal to zero, it is determined that driving assistance to the driver is necessary, and the process proceeds from S113 to S114.
  • the driving assistance content is selected based on the length of the surplus time RA calculated in S113, and the process proceeds to S115.
  • a control signal for instructing execution of the driving support selected in S114 is generated and output to at least one of the HMI control device 70 and the vehicle control device 80, and the driving support processing is terminated.
  • the contact determination unit 55 determines whether or not the other vehicle Ao contacts the host vehicle As that travels while maintaining the current travel speed.
  • Shoki as shown in FIG. 12, it is assumed that the vehicle As, while assuming continues traveling at a traveling speed v f, another vehicle Ao is laterally moving at a velocity v px. If the host vehicle As that has continued the constant speed travel can pass the side of the other vehicle Ao, the other vehicle Ao is not a risk target. In this case, if the host vehicle As decelerates, the other vehicle Ao can contact the host vehicle As.
  • the contact determination unit 55 assumes such a scene and calculates whether or not an intersection point can exist between the host vehicle As and the other vehicle Ao.
  • Equation 5 j and v p which are neither measured values nor assumed values can be described as follows from the relational expression shown in Equation 5.
  • the solution for ap is obtained. If the specific range th 1 ⁇ ap ⁇ th 2 is satisfied with respect to the solution in which the discriminant of the mathematical formula 10 is 0 or more, the contact determination unit 55 determines that there is a possibility of contact.
  • the selection unit 54 stops the driving assistance for the other vehicle Ao.
  • details of the driving support process when the contact determination by the contact determination unit 55 is valid will be described based on FIG. 14 and with reference to FIG. 12.
  • the processing contents of S101 to S105 are substantially the same as the driving support process of FIG.
  • S121 based on the information acquired in S101, a calculation process for contact determination is performed, and the process proceeds to S122.
  • S122 the presence or absence of the possibility of contact with the other vehicle Ao is determined based on the value of the solution of the acceleration ap of the other vehicle Ao. If it is determined in S122 that there is no possibility of contact, it is estimated that the scene cannot be subjected to a warning or the like, and the driving support process is terminated. On the other hand, if it is determined in S122 that there is a possibility of contact, the process proceeds to S102. Then, through the processing of S102 to S105, driving support based on a comparison between the risk inter-vehicle distance D and the current inter-vehicle distance is performed.
  • the interrupt determination unit 56 determines whether or not the other vehicle Ao traveling in the adjacent lane interrupts the planned route P of the host vehicle As.
  • the interrupt determination unit 56 determines whether or not the other vehicle Ao traveling in the adjacent lane and the other vehicle Ao traveling ahead of the host vehicle As corresponds to the interrupted vehicle Ai that interrupts the scheduled route P. judge.
  • the interrupt determination unit 56 determines the other vehicle Ao when the lateral speed v px of the other vehicle Ao moving laterally toward the planned route P of the host vehicle As exceeds a predetermined interrupt threshold thi. It determines with the interruption car Ai (refer FIG. 15). When the other vehicle Ao straddles the lane marking that divides the lane in which the vehicle is traveling and the adjacent lane, and the lap amount ⁇ x L of the other vehicle Ao becomes a positive value, the interrupt determination unit 56 determines the other vehicle Ao. It determines with the interruption car Ai (refer FIG. 16). The interruption determination unit 56 determines the other vehicle Ao as the interruption vehicle Ai based on the fact that the direction indicator of the other vehicle Ao has started blinking (see FIG. 17).
  • the selection unit 54 stops presenting the warning of the other vehicle Ao that is not recognized as the interrupting vehicle Ai. If the warning is issued to all the other vehicles Ao that are closer to the host vehicle As than the risk inter-vehicle distance D, the driver may feel annoying the warning.
  • the details of the driving support process when the interrupt determination by the interrupt determination unit 56 is valid will be described based on FIG. 18 and with reference to FIG. 15.
  • the processing contents of S101 to S105 are substantially the same as the driving support process of FIG.
  • S131 it is determined in S103 that the current inter-vehicle distance is less than the risk inter-vehicle distance D, and an arithmetic process for determining whether or not the other vehicle Ao is an interrupted vehicle Ai is performed, and the process proceeds to S132.
  • S132 with reference to the calculation result of S131, it is determined whether or not the other vehicle Ao is the interrupted vehicle Ai. If it is determined in S132 that the other vehicle Ao is not the interrupt vehicle Ai, the driving support process is terminated. As a result, the warning operation as driving assistance is stopped.
  • S104 and S105 are implemented. As described above, a presentation for warning the interruption car Ai is performed.
  • the interrupt determination unit 56 shown in FIG. 2 determines whether or not the other vehicle Ao has a possibility of interrupting in front of the host vehicle As before performing the interrupt determination. When there is a high possibility that the other vehicle Ao will be the interrupting vehicle Ai, driving assistance such as warning presentation is started before it is determined as the interrupting vehicle Ai. A scene that is determined by the interrupt determination unit 56 to be interruptible will be described below.
  • the interrupt determination unit 56 determines that there is a possibility that the rear vehicle may become the interrupt vehicle Ai based on the inter-vehicle distance between the parallel running vehicle Ap and the rear vehicle. Specifically, the interrupt determination unit 56 recognizes the rear vehicle as an interrupted vehicle Ai that may be interrupted based on the fact that the inter-vehicle distance is less than the inter-vehicle threshold thd.
  • the interrupt determination unit 56 may further use the relative speed of the rear vehicle with respect to the parallel running vehicle Ap to determine the possibility of interrupt. Specifically, the interrupt determination unit 56 indicates that there is a possibility of interrupting the rear vehicle when the relative speed of the rear vehicle with respect to the parallel running vehicle Ap exceeds the speed threshold thv in addition to the fact that the inter-vehicle distance is clogged. Authorized as a certain interrupt car Ai.
  • the interrupt determination unit 56 determines that there is a possibility of interrupting the other vehicle Ao when the adjacent lane on which the other vehicle Ao travels joins.
  • S141 it is determined in S103 that the current inter-vehicle distance is less than the risk inter-vehicle distance D, and an arithmetic process for determining whether or not there is a possibility that the other vehicle Ao becomes the interrupted vehicle Ai is performed. Proceed to In S142, with reference to the calculation result of S141, it is determined whether there is a possibility that the other vehicle Ao is interrupted. If it is determined in S142 that the other vehicle Ao may be interrupted, S143 and S144 are skipped, and the process proceeds to S104. And the presentation which warns other vehicle Ao is implemented by the process of S104 and S105.
  • the approach determination part 57 shown in FIG. 2 determines the approach of the other vehicle Ao to the own vehicle As. Based on the TTC between the host vehicle As and the other vehicle Ao calculated by the traveling environment recognition device 60, the approach determination unit 57 approaches the host vehicle As when the other vehicle Ao is less than the approach threshold. It is determined that In other words, the approach determination unit 57 selects a vehicle away from the host vehicle As among the other vehicles Ao.
  • the selection unit 54 stops presenting the other vehicle Ao moving away from the host vehicle As.
  • the details of the driving support processing when the approach determination is effective together with the interrupt determination will be described based on FIG. 22 and referring to FIG. 3.
  • the processing contents of S101 to S105, S131, and S132 are substantially the same as the driving support process of FIG.
  • S133 calculation processing for approach determination is performed on the other vehicle Ao determined as the interrupted vehicle Ai in S132, and the process proceeds to S134.
  • S133 a process of simply obtaining the TTC for the other vehicle Ao from the traveling environment recognition device 60 may be performed.
  • the TTC acquired in S133 is compared with a preset approach threshold. If the TTC is greater than or equal to the approach threshold value in S134, it is determined that the interrupted vehicle Ai is moving away from the host vehicle As, and the driving support process is terminated. For example, when the traveling speed of the interrupt vehicle Ai is higher than the traveling speed of the host vehicle As, the warning can be stopped. On the other hand, when TTC is less than the approach threshold, it is determined in S134 that the other vehicle Ao approaches the host vehicle As. And based on the process of S104 and S105, the presentation which warns of the interruption vehicle Ai is implemented.
  • the approach determination unit 57 shown in FIG. 2 determines whether or not the other vehicle Ao may approach the host vehicle As before the execution of the approach determination. Even if the other vehicle Ao is not approaching the host vehicle As by the approach possibility determination, if there is a possibility of approaching the host vehicle As, driving support such as warning presentation is started.
  • driving support such as warning presentation
  • the approach determination unit 57 determines the possibility of the parallel vehicle Ap approaching the host vehicle As based on the inter-vehicle distance between the preceding vehicle Af and the parallel vehicle Ap (interrupt vehicle Ai). Specifically, the approach determination unit 57 determines that the parallel running vehicle Ap in the adjacent lane is likely to approach the host vehicle As based on the fact that the inter-vehicle distance is less than the inter-vehicle threshold thd.
  • the approach determination unit 57 may further use the relative speed of the parallel running vehicle Ap with respect to the preceding vehicle Af in determining the accessibility. Specifically, in the approach determination unit 57, in addition to the fact that the inter-vehicle distance between the preceding vehicle Af and the parallel running vehicle Ap is clogged, the relative speed of the parallel running vehicle Ap with respect to the preceding vehicle Af exceeds the speed threshold thv. In this case, the parallel running vehicle Ap is recognized as the interrupting vehicle Ai having the possibility of interrupting.
  • the details of the driving support processing when the accessibility determination as well as the interrupt determination and the approach determination are effective will be described based on FIG. 24 and with reference to FIG. Note that the processing contents of S101 to S105 and S131 to S134 are substantially the same as the driving support process of FIG.
  • S151 a calculation process for determining accessibility is performed on the other vehicle Ao determined as the interrupted vehicle Ai in S132, and the process proceeds to S152.
  • S152 with reference to the calculation result in S151, it is determined whether or not the interrupting vehicle Ai (parallel running vehicle Ap) is approachable.
  • S152 when it cannot be determined that there is a possibility of approach to the interrupting vehicle Ai, the process proceeds to S133 for approach determination.
  • S133 and S134 are skipped, and S104 and S105 are performed. As described above, the presentation for warning the interrupting vehicle Ai whose possibility of approach is estimated is performed.
  • the approach determination unit 57 shown in FIG. 2 sets the approach threshold used for the approach determination as the relative position of the other vehicle Ao with respect to the own vehicle As, that is, the lateral shift amount x 0 between the own vehicle As and the other vehicle Ao (FIG. 25A, see FIG. 25B).
  • there is no displacement amount x 0 (zero) the other vehicle Ao i.e., the other vehicle Ao that at laterally overlaps the vehicle As the preceding vehicle Af. (See FIG. 25B).
  • the shift amount x 0 to the right side or the left side that is, the other vehicle Ao in which the absolute value of the shift amount x 0 is a positive value is set as the interrupt vehicle Ai (see FIG. 25A).
  • the risk estimation device 50 determines the necessity of warning presentation and the warning intensity at the time of warning presentation based on the margin time RA and TTC. Set.
  • the warning is presented based on the setting of the table shown in FIG.
  • the other vehicle Ao is the interruption vehicle Ai
  • the warning is presented based on the setting of the table shown in FIG.
  • the approach determination unit 57 determines that the other vehicle Ao is approaching based on the fact that TTC is less than the approach threshold.
  • the approach threshold is set to be longer for the interrupting vehicle Ai than for the preceding vehicle Af.
  • the approach determination timing is earlier for the interrupted vehicle Ai than for the preceding vehicle Af.
  • the weak presentation that warns the interrupting vehicle Ai starts with a longer TTC than the presentation that warns the preceding car Af (see regions 2 and 3 in FIG. 27).
  • S161 it determines the other vehicle Ao it is determined that Warikomisha Ai at S132, the absolute value of the lateral deviation amount x 0 is whether a positive value.
  • the process proceeds to S162.
  • a relaxed approach threshold for the interrupting vehicle Ai is set, and the process proceeds to S164.
  • the process proceeds to S163.
  • the normal approach threshold value for the preceding vehicle Af is selected, and the process proceeds to S164.
  • S164 based on the approach threshold set in S162 or S163, it is determined whether the other vehicle Ao is approaching the host vehicle As. If it is determined in S164 that the other vehicle Ao is not approaching, driving support is omitted by skipping S114 and S115. On the other hand, when it determines with other vehicle Ao approaching in S164, the presentation which warns other vehicle Ao based on the process of S114 and S115 is implemented.
  • the selection unit 54 illustrated in FIG. 2 selects the driving assistance content for the other vehicle Ao having the shortest TTC when the risk estimation value of the plurality of other vehicles Ao is calculated by the calculation unit 53.
  • the selection unit 54 selects the driving assistance content for the other vehicle Ao closest to the host vehicle As. Specifically, in each scene shown in FIG. 29A to FIG. 29D, the selection unit 54 selects the driving support content for “A” among “A” and “B” which are the other vehicles Ao.
  • the allowance time RA is calculated in S112, and it is determined in S113 whether or not the target number of the other vehicle Ao in which the allowance time RA is a negative value exceeds 1.
  • a presentation for warning the other vehicle Ao is performed based on the processing of S114 and S115.
  • the process proceeds to S172.
  • the TTC of each other vehicle Ao is compared to determine whether there is a target with the same TTC.
  • the process proceeds to S173.
  • the target having the smallest margin time RA is selected as the risk target, and the process proceeds to S114.
  • a target having a maximum value obtained by subtracting the current inter-vehicle distance from the risk inter-vehicle distance D may be selected as the risk target.
  • the other vehicle Ao that is closest to the host vehicle As is selected as the subject of presentation.
  • the process proceeds to S174.
  • the target having the smallest TTC is selected as the risk target, and the process proceeds to S114.
  • the driving assistance content for the target (other vehicle Ao) set in S173 or S174 is selected, and the process proceeds to S115. Based on the process of S115, the presentation which warns other vehicle Ao is implemented.
  • the risk estimation value for the other vehicle Ao traveling on the planned route P and the risk estimation value for the other vehicle Ao not on the planned route P are the same calculation formula, It is calculated using each mathematical expression shown in FIG. Therefore, the calculation unit 53 can continuously calculate the risk estimated value without switching the calculation formula in the process in which the other vehicle Ao moves on the planned route P. As a result, the risk estimated value calculated for the other vehicle Ao that interrupts the planned route P shows a change that continuously increases. As a result, the implementation of sudden driving assistance can be suppressed. In addition, if the same calculation formula is used, the process of calculating the risk estimated value can be simplified. Therefore, the driving support process can be executed while reducing the processing load of the processing unit 151.
  • the acceleration of the other vehicle Ao is set as an assumed value, and the risk estimated value is calculated using both the actually measured value based on the detection information and the assumed value.
  • the acceleration of the other vehicle Ao that is moving laterally is considered to be a value that hardly varies. Therefore, it is possible to set a probable assumption value. And according to the setting of a reasonable assumed value, it becomes possible to implement driving support at an appropriate timing.
  • the vehicle-mounted system 100 can implement the driving assistance which prevents the approach of the other vehicle Ao exceeding the risk inter-vehicle distance D and margin time RA at an appropriate timing. According to the above, the driver can maintain the positional relationship with the other vehicle Ao in a low risk state. It should be noted that the in-vehicle system 100 can start driving support at substantially the same timing regardless of which of the risk inter-vehicle distance and the allowance time is used.
  • the driving support for the other vehicle Ao which is estimated not to contact the host vehicle As, is stopped.
  • the driving assistance that warns the other vehicle Ao that should not be considered as a risk is suppressed, the occurrence of a situation where the implementation of the driving assistance raises the risk can be prevented.
  • the implementation of the driving support targeting the other vehicle Ao that does not interrupt is stopped. According to such selection, even when a risk estimated value that can be a target of driving assistance is calculated for the other vehicle Ao traveling in the adjacent lane, a warning or the like is not performed. According to the above, driving assistance is performed by selecting a subject in which the driver feels uneasy. Therefore, it is possible to implement driving support that is difficult for the driver to feel troublesome.
  • the interrupt possibility determination is performed before the interrupt determination is performed.
  • the driving assistance according to a risk estimated value is implemented without implementing interruption judgment with respect to the other vehicle Ao with possibility of interruption.
  • the process for determining the interrupt possibility is performed before the interrupt determination, the driving support in which the future movement of the other vehicle Ao is prefetched becomes possible.
  • the interrupt determination unit 56 determines that there is a possibility of interrupt. According to such a determination method for the possibility of interruption, the risk estimation device 50 can prefetch the future behavior of the other vehicle Ao with high accuracy, and can execute defensive driving support at a timing with a margin.
  • the driving support for the interrupted vehicle Ai as a risk target is not performed.
  • driving support for the other vehicle Ao that should not be considered as a risk target can be suppressed.
  • the accessibility determination is performed before the access determination is performed.
  • the driving assistance according to a risk estimated value is implemented without implementing approach determination with respect to the other vehicle Ao with the possibility of approach.
  • the process for determining the accessibility is performed before the determination of the approach, it is possible to provide driving support that prefetches the future movement of the other vehicle Ao.
  • the inter-vehicle distance between the preceding vehicle Af traveling in the same lane as the host vehicle As and the parallel vehicle Ap in the adjacent lane is measured, and the inter-vehicle distance becomes less than the threshold value.
  • the approach determination unit 57 determines that there is a possibility of approach. According to this approachability determination method, the risk estimation device 50, even for an interrupting vehicle Ai that once moves away from the host vehicle As after the interruption, for an interrupting vehicle Ai that approaches the host vehicle As after that, Can be identified as a risk target. Therefore, it is possible to pre-read the future behavior of the other vehicle Ao with high accuracy, and the driving support can be executed with a sufficient timing.
  • the driving support start timing for the interruption vehicle Ai is different from the driving support start timing for the preceding vehicle Af.
  • the warning presentation to the interruption car Ai is performed at an earlier timing than the preceding car Af having the same TTC.
  • the driver feels the risk of the interrupted vehicle Ai higher than the preceding vehicle Af that is continuously ahead. Therefore, if the adjustment for starting the warning presentation of the interrupted vehicle Ai with a long TTC is performed, driving assistance that matches the driver's risk sense becomes possible.
  • the selection unit 54 selects the driving assistance content for the other vehicle Ao having the shortest TTC. Furthermore, in a scene in which the TTCs of a plurality of other vehicles Ao are the same, the selection unit 54 selects the driving support content for the other vehicle Ao that is closest to the host vehicle As.
  • the risk estimation device 50 appropriately selects the other vehicle Ao that the driver feels most risky, and preferentially supports driving. obtain. Therefore, it is possible to provide driving assistance with a sense of security that is close to the driver's sense of risk.
  • the risk estimation device 50 corresponds to a driving support device.
  • the second embodiment of the present disclosure shown in FIGS. 31 to 34 is a modification of the first embodiment.
  • the risk estimation apparatus 50 of the second embodiment calculates a risk estimated value for the rear vehicle Ab. Specifically, in a scene in which the host vehicle As travels away from the scheduled route P of the other vehicle Ao, the calculation unit 53 moves the host vehicle As on the scheduled route P of the rear vehicle Ab that is the other vehicle Ao. Based on the premise, the risk estimated value of the rear vehicle Ab with respect to the host vehicle As is calculated.
  • the calculation unit 53 uses detection information related to the lateral position of the rear vehicle Ab with respect to the host vehicle As to calculate the risk estimated value.
  • the calculation unit 53 also calculates the risk inter-vehicle distance D or the margin time RA for the rear vehicle Ab based on the calculation formulas shown in Equations 1 and 7 even in the scene where the host vehicle As interrupts the planned route P.
  • the parameters assigned to the terms of the calculation formula are interchanged between the host vehicle As and the other vehicle Ao.
  • v f is the traveling speed of the rear vehicle Ab
  • v p is the traveling speed of the other vehicle Ao
  • ap is the acceleration generated in the host vehicle As.
  • Af is an acceleration generated in the rear vehicle Ab.
  • d fp is the inter-vehicle distance between the host vehicle As and the rear vehicle Ab
  • d pb is the braking distance of the host vehicle
  • d fi and d fb are the free running distance and the braking distance of the rear vehicle Ab.
  • K is the idle time of the driver of the other vehicle.
  • the relative positions x 0 and y 0 and the traveling speeds v py and v f of the other vehicle Ao are actually measured values as in the first embodiment.
  • accelerations a f , a p , ⁇ p , and k are assumed values. The specific value of the assumed value is different from that of the first embodiment.
  • Each hypothetical value applied to the rear vehicle Ab is adjusted to a value that causes warning presentation to start at a later timing or weakens the alarm intensity with respect to each hypothetical value applied to the front vehicle.
  • the value of the idle running time k related to the driver state of the other vehicle Ao may be a constant value.
  • the idle running time k can be set based on the acquired state information.
  • the selection unit 54 selects the driving support content corresponding to the risk estimated value of the other vehicle Ao calculated by the calculation unit 53.
  • the details of the basic driving support processing of the second embodiment will be described based on FIG. 32 with reference to FIG.
  • S201 information necessary for risk estimation is acquired, and the process proceeds to S202.
  • S202 the relative position of the other vehicle Ao in the front-rear (y) direction is determined based on the information acquired in S201. If it is determined in S202 that the value indicating the relative position in the y direction of the other vehicle Ao is negative, the other vehicle Ao is determined to be the rear vehicle Ab, and the process proceeds to S203. In S203, an assumed value for the rear vehicle Ab is set, and the process proceeds to S205.
  • the other vehicle Ao is determined to be a preceding vehicle, and the process proceeds to S204.
  • an assumed value for the preceding vehicle is set, and the process proceeds to S205.
  • the specific value of the assumed value set in S204 may be substantially the same as each assumed value in the first embodiment.
  • the risk inter-vehicle distance D is calculated based on the actually measured value acquired in S201 and the assumed value set in S203 or S204, and the process proceeds to S206.
  • the current inter-vehicle distance acquired in S201 is compared with the risk inter-vehicle distance D calculated in S205.
  • the current inter-vehicle distance is longer than the risk inter-vehicle distance D, it is determined that the driving support to the driver is unnecessary, and the driving support process is terminated.
  • the process proceeds from S206 to S207.
  • S211 calculation for interrupt determination or interrupt possibility determination for the host vehicle As or the other vehicle Ao (front vehicle) is performed, and the process proceeds to S212.
  • the interrupt determination for the host vehicle As is similar to the case of performing the interrupt determination for the other vehicle Ao, whether the lateral speed of the host vehicle As exceeds the interrupt threshold thi, straddles the lane marking, and the direction indicator The determination can be made based on whether the blinking has started (see FIGS. 15 to 17).
  • necessity of driving support is determined based on the determination result in S211.
  • the driving support process is terminated.
  • a presentation for warning the other vehicle Ao is performed by the processing of S207 and S208.
  • the side of the rear vehicle Ab is assumed to move on the planned route P of the rear vehicle Ab.
  • a risk estimate is estimated using detection information related to the position of the direction. Therefore, even if the host vehicle As deviates from the planned route P of the rear vehicle Ab, the driving support content corresponding to the risk estimated value can be selected. As a result, even when the host vehicle As travels so as to interrupt the planned path of the rear vehicle Ab, the driving support that supports the driving of the driver is smoothly performed according to the risk of the rear vehicle Ab.
  • the assumed value used for calculating the risk estimation value is changed between the case where the host vehicle As interrupts ahead of the rear vehicle Ab and the case where the front vehicle interrupts ahead of the host vehicle As. .
  • the warning presentation in case the own vehicle As interrupts ahead of the back vehicle Ab can be adjusted late
  • the warning presentation as the driving assistance can have a content corresponding to the sense of risk that the driver feels in the other vehicle Ao.
  • the specific content of driving assistance may be changed as appropriate.
  • the selected driving assistance is performed before the interruption of the preceding vehicle (another vehicle Ao) traveling in the adjacent lane.
  • Speed control that secures the inter-vehicle distance may be used.
  • the risk estimation device 50 and the vehicle control device 80 function as a driving support device in cooperation.
  • each determination is also effective for the rear vehicle Ab.
  • the calculation formula for calculating the risk estimated value of the interrupted vehicle not on the planned course of the host vehicle may be different from the formula for calculating the risk estimated value of the preceding vehicle on the planned path of the host vehicle.
  • the function of the driving support device may be realized by a configuration different from the risk estimation device 50 of the above embodiment.
  • the selection unit may be provided in the HMI control device 70.
  • information such as the risk inter-vehicle distance D, margin time R A , and TTC is output from the risk estimation device 50 to the HMI control device 70.
  • the HMI control device 70 selects driving support contents based on each information acquired from the risk estimation device 50, and controls each information presentation device.
  • the risk estimation device 50 and the HMI control device 70 function as a driving support device in cooperation.
  • the electronic control unit which integrated the function of the risk estimation apparatus 50 and the HMI control apparatus 70 may be provided as a structure corresponded to a driving assistance device.
  • the process part of the various electronic control units provided in the vehicle-mounted system may be the structure which implement
  • various non-transitory tangible storage media such as a flash memory and a hard disk can be used as the storage configuration of the driving support program in the memory unit of each electronic control unit.
  • each step is expressed as S101, for example. Further, each step can be divided into a plurality of sub-steps, while a plurality of steps can be combined into one step.
  • the embodiment, configuration, and aspect of the driving support device and the driving support program according to one aspect of the present disclosure include the above-described embodiments, configurations, and configurations, It is not limited to each aspect.
  • embodiments, configurations, and aspects obtained by appropriately combining technical sections disclosed in different embodiments, configurations, and aspects are also included in the scope of the embodiments, configurations, and aspects according to the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

車両に搭乗する運転者の運転を支援する運転支援装置は、車両としての自車両(As)の周囲を走行する他車両(Ao)の検出情報を取得する情報取得部(51)と、自車両の予定進路(P)上にいない他車両が当該予定進路上に移動する前提のもと、自車両に対する他車両の横方向の位置に関連する検出情報を用いて、自車両に対する他車両のリスクをリスク推定値として算出する算出部(53)と、算出部にて算出されたリスク推定値に対応した運転支援内容を選択する選択部(54)と、を備える。

Description

運転支援装置、及び運転支援プログラム 関連出願の相互参照
 本出願は、2017年4月26日に出願された日本国特許出願2017-87363号に基づくものであり、ここにその記載内容を参照により援用する。
 本開示は、車両に搭乗する運転者の運転を支援する運転支援の技術に関する。
 例えば特許文献1には、運転支援装置として、自車両の前方を走行する先行車との車間距離を算出し、算出した車間距離が警報車間距離よりも小さくなった場合には、運転者へ向けた警報を発生させる車間距離警報装置が開示されている。
JP 2803514 B
 特許文献1の車間距離警報装置において、警報発生の対象とされる他車両は、自車両の予定進路上を走行する他車両に限定されると考えられる。故に、一例として、隣接車線を走行する他車両が自車両の予定進路上に割り込むような走行をした場合、車間距離警報装置は、自車両の走行する車線まで他車両が移動し終えたタイミングで、警報の発生が可能になる。こうした処理では、自車両の前方に割り込む他車両への警報が唐突となり得た。
 自車両の前方に割り込む他車両への警報を円滑に実施すべく、隣接車線を走行する他車両を、警報発生の対象に含むことが想到され得る。しかし、自車両の予定進路上から外れて走行する他車両まで、自車両の予定進路上を走行する他車両と同様に警報の対象としてしまうと、他車両に対する不要な警報が頻発し得る。このように、隣接車線を走行する他車両を警報発生の対象に単に含んだとしても、運転支援の円滑な実施は困難であった。
 本開示は、運転者の運転を支援する運転支援を他車両のリスクに応じて円滑に実施可能な運転支援装置及び運転支援プログラムを提供することを目的とする。
 本開示の一つの態様によれば、車両に搭乗する運転者の運転を支援する運転支援装置は、車両としての自車両の周囲を走行する他車両の検出情報を取得する情報取得部と、自車両の予定進路上にいない他車両が当該予定進路上に移動する前提のもと、自車両に対する他車両の横方向の位置に関連する検出情報を用いて、自車両に対する他車両のリスクをリスク推定値として算出する算出部と、算出部にて算出されたリスク推定値に対応した運転支援内容を選択する選択部と、を備える。
 本開示の別の態様によれば、車両に搭乗する運転者の運転を支援する運転支援プログラムは、車両としての自車両の周囲を走行する他車両の検出情報を取得し、自車両の予定進路上にいない他車両が当該予定進路上に移動する前提のもと、自車両に対する他車両の横方向の位置に関連する検出情報を用いて、自車両に対する他車両のリスクをリスク推定値として算出し、算出されたリスク推定値に対応した運転支援内容を選択する処理を処理部に実行させる。
 これら態様によれば、自車両の予定進路上にいない他車両であっても、自車両の予定進路上に移動する前提のもとで、他車両の横方向の位置に関連する検出情報を用いて、リスク推定値が推定される。故に、他車両が自車両の予定進路上から外れていても、リスク推定値に対応した運転支援内容が選択され得る。したがって、他車両が自車両の予定進路上に割り込むような走行を行った場合でも、運転者の運転を支援する運転支援は、他車両のリスクに応じて円滑に実施される。
 本開示のさらに別の態様によれば、車両に搭乗する運転者の運転を支援する運転支援装置は、車両としての自車両の周囲を走行する他車両の検出情報を取得する情報取得部と、他車両の予定進路上から外れて走行する自車両が当該予定進路上に移動する前提のもと、自車両に対する他車両の横方向の位置に関連する検出情報を用いて、自車両に対する他車両のリスクをリスク推定値として算出する算出部と、算出部にて算出されたリスク推定値に対応した運転支援内容を選択する選択部と、を備える。
 この態様によれば、自車両が他車両の予定進路上へ移動するシーンにおいても、他車両の予定進路上に移動する前提のもとで、他車両の横方向の位置に関連する検出情報を用いて、リスク推定値が推定される。故に、自車両が他車両の予定進路上から外れていても、リスク推定値に対応した運転支援内容が選択され得る。したがって、自車両が他車両の予定進路上に割り込むような走行を行った場合でも、運転者の運転を支援する運転支援は、他車両のリスクに応じて円滑に実施される。
 本開示についての上記および他の目的、特徴や利点は、添付図面を参照した下記詳細な説明から、より明確になる。添付図面において、
図1は、車両に搭載された車載システムの全体像を示すブロック図であり、 図2は、リスク推定装置に構築される機能ブロックを示す図であり、 図3は、運転支援の対象となる他車両の一例を示す図であり、 図4は、周辺視野デバイスを用いた警告提示の一例を示す図であり、 図5は、周辺視野デバイスを用いた警告提示の一例を示す図であり、 図6は、周辺視野デバイスを用いた警告提示の一例を示す図であり、 図7は、警報強度の強さと各情報提示装置の作動との関係の一例を示す図であり、 図8は、リスク車間距離の算出式の考え方を説明する図であり、 図9Aは、算出部の仮定する他車両の横方向の動きを説明する図であり、 図9Bは、算出部の仮定する他車両の横方向の動きを説明する図であり、 図10は、リスク車間距離に基づく運転支援処理の詳細を示すフローチャートであり、 図11は、余裕時間に基づく運転支援処理の詳細を示すフローチャートであり、 図12は、警告提示の抑制が必要なシーンの詳細を説明する図であり、 図13は、接触判定のための演算の考え方を説明する図であり、 図14は、接触判定が有効な場合の運転支援処理の詳細を示すフローチャートであり、 図15は、割込判定の一例を示す図であり、 図16は、割込判定の別の一例を示す図であり、 図17は、割込判定のさらに別の一例を示す図であり、 図18は、割込判定が有効な場合の運転支援処理の詳細を示すフローチャートであり、 図19は、割り込みの可能性があると判定されるシーンの一例を示す図であり、 図20は、割り込みの可能性があると判定されるシーンの別の一例を示す図であり、 図21は、割込判定及び割込可能性判定が有効な場合の運転支援処理の詳細を示すフローチャートであり、 図22は、割込判定及び接近判定が有効な場合の運転支援処理の詳細を示すフローチャートであり、 図23は、接近の可能性があると判定されるシーンの一例を示す図であり、 図24は、割込判定及び接近判定に加えて接近可能性判定が有効な場合の運転支援処理の詳細を示すフローチャートであり、 図25Aは、先行車及び割込車の違いを説明する図であり、 図25Bは、先行車及び割込車の違いを説明する図であり、 図26は、先行車に対して警告提示を行う場合のテーブルであって、余裕時間及びTTCと提示内容(警報強度)との対応関係を示す図であり、 図27は、割込車に対して警告提示を行う場合のテーブルであって、余裕時間及びTTCと提示内容(警報強度)との対応関係を示す図であり、 図28は、接近閾値の切り替えが有効な場合の運転支援処理の詳細を示す図であり、 図29Aは、複数のうちで運転支援が優先される他車両の考え方を説明する図であり、 図29Bは、複数のうちで運転支援が優先される他車両の考え方を説明する図であり、 図29Cは、複数のうちで運転支援が優先される他車両の考え方を説明する図であり、 図29Dは、複数のうちで運転支援が優先される他車両の考え方を説明する図であり、 図30は、自車両の周囲に複数の他車両がいる場合の運転支援処理の詳細を示す図であり、 図31は、自車両が他車両の予定進路に割り込むシーンにて、リスク車間距離の算出式の考え方を説明する図であり、 図32は、第二実施形態による運転支援処理の詳細を示すフローチャートであり、 図33は、自車両に割り込みの可能性があると判定するシーンの一例を示す図であり、 図34は、割込判定又は割込可能性判定が有効な場合の運転支援処理の詳細を示すフローチャートであり、 図35は、ACCが作動している状態にて選択される運転支援内容を示す図である。
 以下、本開示の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。そして、複数の実施形態及び変形例に記述された構成同士の明示されていない組み合わせも、以下の説明によって開示されているものとする。
 (第一実施形態)
 本開示の第一実施形態による運転支援装置の機能は、図1及び図2に示すリスク推定装置50によって実現されている。リスク推定装置50は、ドライバ状態推定装置40、走行環境認識装置60、車両制御装置80、及びHMI制御装置70等の電子制御ユニットと共に車両(以下、自車両As)に搭載され、車載システム100を構築している。リスク推定装置50及び他の各電子制御ユニットは、直接的又は間接的に互い電気接続されており、相互に通信可能である。リスク推定装置50は、他の各電子制御ユニットと連携して、自車両Asに搭乗する運転者(ドライバ)の運転を支援する。
 ドライバ状態推定装置40は、ドライバの状態を推定する電子制御ユニットである。ドライバ状態推定装置40は、CPU等の処理部、RAM、フラッシュメモリ等のメモリ部を有するコンピュータを主体に構成されている。ドライバ状態推定装置40は、DSM11、生体センサ12、及び車内LAN13等と直接的又は間接的に電気接続されている。
 DSM11は、ドライバの顔を撮影するカメラ部、撮影のための近赤外光を放射する光源部、カメラ部及び光源部を制御する制御部等によって構成されている。DSM11は、ドライバの視線方向、顔向き、瞼の開度等を検出可能な顔画像を所定のフレームレートで撮影する。DSM11は、顔画像の撮像データを、ドライバ状態推定装置40へ向けて逐次出力する。DSMはDriver Status Monitorの略称である。
 生体センサ12は、ドライバの心拍数、脈拍数、体温及び血圧等の生体データを計測する。生体センサ12は、計測した生体データを、ドライバ状態推定装置40へ向けて逐次出力する。車内LAN13には、車載システム100に含まれる多数の車載センサの計測結果が出力されている。ドライバ状態推定装置40は、例えば自車両Asの走行速度を示す車速情報等を、車内LAN13から取得可能である。
 ドライバ状態推定装置40は、DSM11、生体センサ12及び車内LAN13から取得する情報を用いて、ドライバの状態を監視し、監視結果をドライバの状態情報としてリスク推定装置50に逐次出力する。一例として、状態情報には、ドライバの脇見及び覚醒度の低下等を示す監視結果が含まれる。
 走行環境認識装置60は、自車両Asの周囲の走行環境を認識する電子制御ユニットである。走行環境認識装置60は、CPU及びGPU等の処理部、RAM、フラッシュメモリ等のメモリ部等を有するコンピュータを主体に構成されている。走行環境認識装置60は、カメラユニット21、ミリ波レーダ22、ロケータ23、及びV2X通信器24等と直接的又は間接的に電気接続されている。
 カメラユニット21は、自車両Asの進行方向を撮影し、進行方向に存在する移動物体及び静止物体等を前方画像から検出する。ミリ波レーダ22は、自車両Asの進行方向へ向けてミリ波を照射し、進行方向に存在する移動物体及び静止物体等で反射されたミリ波を受信する。ミリ波レーダ22は、受信したミリ波の態様から、移動物体及び静止物体の有無及び相対位置を検出する。カメラユニット21及びミリ波レーダ22は、歩行者及び他車両Ao(図3参照)等の移動物体、並び道路標識及び区画線等の静止物体を検出し、検出した移動物体及び静止物体の位置等を示す検出物情報を、走行環境認識装置60へ向けて逐次出力する。
 ロケータ23は、GNSS受信器、慣性センサ、及び地図データベース等を含む構成である。GNSS受信器は、複数の人工衛星から送信された測位信号を受信する。慣性センサは、自車両Asに作用する加速度を計測する。ロケータ23は、GNSS受信で受信した測位信号と、慣性センサの計測結果とを組み合わせることにより、自車両Asの位置を測位する。ロケータ23は、測位した自車両Asの位置情報を周辺の地図情報と組み合わせ、走行環境認識装置60へ向けて逐次出力する。GNSSは、Global Navigation Satellite Systemの略称である。
 V2X通信器24は、他車両Ao(図3参照)に搭載された車載通信器及び道路脇に設置された路側器との間で、無線通信によって情報を送受信する。V2X通信器24は、車車間通信又は路車間通信によって、他車両Aoの位置情報及び速度情報等を受信可能である。V2X通信器24は、受信した種々の受信情報を、走行環境認識装置60へ向けて逐次出力する。
 走行環境認識装置60は、カメラユニット21、ミリ波レーダ22、ロケータ23及びV2X通信器24から取得する情報を用いて、自車両Asの周囲を走行する他車両Aoの有無及び状態を把握する。走行環境認識装置60は、把握した情報を検出情報としてリスク推定装置50に逐次出力する。一例として、検出情報には、自車両Asと前方車及び後方車との間の各車間距離、自車両Asと前方車及び後方車との間のTTC(Time-To-Collision)等が含まれる。TTCは、自車両Asと他車両Aoとの間の車間距離を、自車両Asに対する他車両Aoの相対速度で除した除算値である。走行環境認識装置60は、自車両Asの周囲の道路形状等を示す走行環境情報を、検出情報と共に車両制御装置80へ向けて逐次出力する。
 車両制御装置80は、自車両Asの挙動を制御する電子制御ユニットである。車両制御装置80は、CPU等の処理部、RAM、フラッシュメモリ等のメモリ装置等を有するコンピュータを主体に構成されている。車両制御装置80は、電子制御スロットル81、ブレーキアクチュエータ82及び操舵アクチュエータ83等と直接的又は間接的に電気接続されている。車両制御装置80は、各アクチュエータの制御により、自車両Asの加減速、制動及び操舵を実行可能である。車両制御装置80は、走行環境認識装置60と連携し、他車両Ao(図3参照)の検出情報及び走行環境情報を用いることで、ACC機能、AEB機能、及びLTC機能等の機能を発揮する。
 ACC(Adaptive Cruise Control)機能は、加減速の制御により、目標速度での自車両Asの定速巡航又は先行車への自車両Asの追従走行を実現させる。AEB(Automatic Emergency Braking)機能は、衝突回避のための急制動を可能にする。LTC(Lane Trace Control)機能は、加減速制御及び操舵制御の連携により、走行中の車線に沿った自車両Asの走行を可能にする。ACCはAdaptive Cruise Controlの略称である。AEBはAutomatic Emergency Brakingの略称である。LTCはLane Trace Controlの略称である。
 HMI制御装置70は、リスク推定装置50から取得するリスク情報に基づき、ドライバへ向けた情報提示を制御する電子制御ユニットである。HMI制御装置70は、CPU及びGPU等の処理部、RAM、フラッシュメモリ等のメモリ部を有するコンピュータを主体に構成されている。HMI制御装置70は、HUD71、モニタ72、スピーカ73、周辺視野デバイス74、及び触覚デバイス75等の情報提示装置と直接的又は間接的に電気接続されている。HMIはHuman Machine Interfaceの略称である。HUDはHead Up Displayの略称である。
 HUD71は、自車両Asのウインドシールドへ向けて画像の光を投影する。ドライバは、ウインドシールドにて室内側に反射された画像の光を、虚像として視認する。モニタ72は、ナビゲーション装置、センタディスプレイ装置、及びコンビネーションメータ等に設けられた表示器である。HUD71及びモニタ72は、画像の表示により、視覚を通じた情報提示を行う。
 スピーカ73は、例えば自車両Asの左右のフロントピラーに設置されている。スピーカ73は、運転席のヘッドレスト付近へ向けて、指向性の高い超音波を出力する。スピーカ73は、空気中を伝搬する超音波に生じる歪みにより、可聴音を発生させる。スピーカ73は、自車両Asの乗員のうちで、主にドライバのみによって聞き取り可能な音声を再生する。スピーカ73は、音声の再生により、聴覚を通じた情報提示を行う。
 周辺視野デバイス74は、線状に形成された複数の発光領域74a,74b(図4~図6参照)を有している。発光領域74aは、インスツルメントパネルの頂部に配置され、自車両Asの幅方向に沿って、一対のフロントピラーの間を一方から他方まで延伸している。発光領域74bは、サイドドアの頂部に配置され、自車両Asの前後方向に沿って延伸している。各発光領域74a,74bには、発光スポット74cが発光表示される。発光スポット74cは、各発光領域74a,74bを移動可能であり、且つ、各発光領域74a,74bに沿って伸張可能である。発光スポット74cは、進行方向を向くドライバの周辺視野にて知覚され、ドライバの視線方向を、注意喚起すべき対象物の方向に誘導する。
 触覚デバイス75は、例えば振動を発生させる機器である。触覚デバイス75は、例えばステアリングホイール、アクセルペダル、ブレーキペダル、運転席の座面、シートベルト等のドライバに接触する箇所に配置されている。触覚デバイス75は、振動の発生により、触覚を通じた情報提示を行う。
 HMI制御装置70は、リスク情報に基づき、情報提示の警報強度及び警報タイミングを決定する。一例として、警報強度は、「弱」、「中」、「強」のいずれかに設定される。HMI制御装置70は、警報強度に応じて、作動させる情報提示装置を選択すると共に、各情報提示装置の作動内容を変更する(図7参照)。
 例えば図4に示すように、HMI制御装置70は、自車両Asの前方に隣接車線から他車両Aoが割り込んでくる前に発光スポット74cを発光させ、ドライバに注意喚起する。こうした情報提示により、手動運転中のドライバは、割り込んでくる他車両Aoを見落とすことなく、防衛運転を行い得る。
 また周辺視野デバイス74は、図5に示すように、他車両Aoが自車両Asの前方に割り込む移動を開始した場合、インスツルメントパネルの発光領域74aにて、他車両Aoの移動方向に発光スポット74cを移動させる作動又は伸ばす作動を繰り返す。さらに周辺視野デバイス74は、図6に示すように、他車両Aoが後側方から接近してきている場合に、サイドドアの発光領域74bにて、他車両Aoの移動方向に発光スポット74cを移動させる作動又は伸ばす作動を繰り返す。
 図1及び図2に示すリスク推定装置50は、自車両Asに対する他車両Aoのリスクを算出し、情報提示及び車両制御の要否及び内容を決定する電子制御ユニットである。リスク推定装置50は、CPU等の処理部151、RAM、フラッシュメモリ等のメモリ部152等を有するコンピュータを主体に構成されている。メモリ部152には、運転支援プログラムを含む種々のプログラムが処理部151によって読み取り可能に格納されている。リスク推定装置50は、メモリ部152に記憶された運転支援プログラムを処理部151によって実行することで、複数の機能ブロックを有する。具体的に、リスク推定装置50には、情報取得部51、算出部53、選択部54、接触判定部55、割込判定部56、及び接近判定部57等の機能ブロックが構築される。
 尚、以下の説明では、自車両Asと他車両Aoとの相対的な関係を、図8を参照しつつ説明する。図8に示す座標系は、走行環境認識装置60にて規定される空間座標系であり、自車両Asの位置を基準としている。x軸は自車両Asの横方向に沿って規定されており、y軸は自車両Asの前後方向に沿って規定されている。xy平面は、路面に平行となる。図8の破線は、y軸に平行であり且つ他車両Aoを通過する仮想線Loである。下記の演算処理では、他車両Aoの前後方向は仮想線Loに沿っていると仮定され、他車両Aoの横方向はx軸に沿っていると仮定される。
 情報取得部51は、自車両Asに搭乗するドライバの状態情報を、ドライバ状態推定装置40から取得する。情報取得部51は、自車両Asの周囲を走行する他車両Aoの検出情報を、走行環境認識装置60から取得する。情報取得部51は、検出情報として、他車両Aoの横方向の相対位置x、他車両Aoの前後方向の相対位置y、及び他車両Aoの走行速度vpyを取得する。情報取得部51は、自車両Asの走行速度vを取得する。以上の相対位置x,y及び走行速度vpy,vがリスク推定に用いられる実測値となる。
 算出部53は、自車両Asに対する他車両Aoのリスクをリスク推定値として算出する。リスク推定値は、他車両Aoが自車両Asに接触するリスクの高さを示す値である。算出部53は、自車両Asの予定進路P上にいない他車両Aoが当該予定進路P上に移動する前提のもと、リスク推定値を算出する。算出部53は、リスク推定値の一例として、リスク車間距離を算出する。リスク車間距離は、予定進路P上に移動した他車両Aoに接触することなく自車両Asが停止可能な車間距離である。
 算出部53は、リスク推定値の算出のために、複数の仮定値を設定する。算出部53は、実測値及び仮定値を共に用いて、リスク推定値を演算する。仮定値には、自車両Asに発生する加速度a、及び他車両Aoに発生する加速度a,βが含まれる。算出部53は、ドライバの状態情報に基づき、ドライバに想定される空走時間kを仮定値として設定する。算出部53は、実測値及び仮定値に基づき、数1に示す算出式を用いてリスク車間距離Dを算出する。尚、下記の算出式における角度θは、自車両Asの速度ベクトル[v]と他車両Aoの速度ベクトル[v]とがなす角度である。換言すれば、角度θは、仮想線Loに沿って規定される他車両Aoの前後方向の速度ベクトル[vpy]と、他車両Aoの速度ベクトル[v]との間の角度である。
Figure JPOXMLDOC01-appb-M000003
 上記の算出式は、他車両Aoが加速度aで減速しながら予定進路Pに横加速度βで進入する一方で、自車両Asが加速度aで減速し、リスク対象である他車両Aoを回避することを想定した算出式である。詳記すると、自車両Asの空走距離dfi及び制動距離dfbの合計が車間距離dfp及び他車両Aoの制動距離dpbの合計を下回っていれば、自車両Asの他車両Aoへの接触は、生じ得ない(図8及び数2参照)。
Figure JPOXMLDOC01-appb-M000004
 上記の数式にて、dpjは横移動時における他車両Aoの前後方向の移動距離であり、dpsは横移動後における他車両Aoの前後方向の移動距離である。各移動距離は、数3として示す数式によって表される。
Figure JPOXMLDOC01-appb-M000005
 ここで、空走時間kは、数4として示す数式のように、基準となるドライバの反応時間RTと、状態変化に起因した反応遅れ時間RDTとの合計である。反応時間RTは、ドライバの個人差と関連付けられて設定される一定の値である。ここで採用される個人差としては、運転スキル及び運動神経が挙げられる。これらの個人差は、例えばDSM11(図1参照)を用いたドライバの年齢及び性別等の推定結果に基づいて設定される。即ち、反応時間RTは、DSM11の検出結果と関連付けられて設定される。
 一方で、反応遅れ時間RDTは、ドライバの状態が変化した場合に発生する反応の遅れ時間であって、状態情報に基づき仮定される仮定値である。反応遅れ時間RDTは、状態情報の示す視線方向、覚醒度、漫然度及び疲労度等に基づき逐次更新され、経時変化する。算出部53は、状態情報の示す各値と、反応遅れ時間RDTとの相関を表す数式等に基づき、反応遅れ時間RDTを設定できる。反応遅れ時間RDTは、ドライバが脇見をしている場合に、正面を向いている場合よりも大きい値に設定される。反応遅れ時間RDTは、覚醒度が低い状態となるほど、又は漫然度及び疲労度が高い状態となるほど、大きい値に設定される。
Figure JPOXMLDOC01-appb-M000006
 さらに、算出部53は、他車両Aoの横方向の動きを仮定する(図9A、図9B参照)。こうした仮定から、横移動を継続した時間j(図8参照)が算出可能となる。その結果、他車両Aoの走行速度vp,vp´及びcosθは、上記の実測値及び仮定値を用いて、下記のように表現できる。故に、各実測値及び各仮定値から、リスク車間距離Dが算出される。
Figure JPOXMLDOC01-appb-M000007
 算出部53は、予定進路P上を走行する他車両Aoに対するリスク推定値と、予定進路P上にいない他車両Aoに対するリスク推定値とを、同一の算出式(数1参照)を用いて算出する。即ち、x=0とすると、数1に示すリスク車間距離Dの算出式は、数6に示すようになる。故に、数1の算出式は、同一車線を走行する他車両Aoに対しても適用可能なのである。
Figure JPOXMLDOC01-appb-M000008
 算出部53は、リスク推定値として、リスク車間距離Dに替えて、又はリスク車間距離Dと共に、余裕時間Rを算出する。余裕時間Rは、予定進路P上に移動した他車両Aoに接触することなく自車両Asが停止可能な時間である。算出部53は、リスク車間距離と実質同一の実測値及び仮定値を用いて、余裕時間Rを下記の算出式を用いて算出する。
Figure JPOXMLDOC01-appb-M000009
 選択部54は、算出部53にて算出されたリスク推定値に対応した運転支援内容を選択する。ACC機能及びLTC機能が停止している場合、選択部54は、他車両Aoの接近をドライバに警告提示する運転支援を実施する。一例として選択部54は、算出部53にてリスク車間距離Dが算出されている場合、リスク車間距離Dと実際の車間距離との比較に基づき、運転支援内容を選択する。リスク車間距離Dに対して車間距離が短くなるほど、選択部54は、ドライバへの警報強度(図7参照)を強める選択を実施する。
 以下、算出部53にてリスク車間距離Dを算出する態様での基本的な運転支援処理の詳細を、図10に基づき、図1及び図3を参照しつつ説明する。尚、運転支援処理は、例えば自車両Asのイグニッションがオン状態に切り替えられたことに基づきリスク推定装置50によって開始され、イグニッションがオフ状態に切り替えられるまで繰り返し実施される。
 S101では、リスク推定に必要な情報、即ち、リスク車間距離Dの算出に必要な情報を取得し、S102に進む。S101では、現在の自車両As及び他車両Aoの間の車間距離も取得する。S102では、S101にて取得した情報に基づき、リスク車間距離Dを算出し、S103に進む。
 S103では、S101にて取得した現在の車間距離と、S102にて算出したリスク車間距離Dとを比較する。リスク車間距離Dよりも現在の車間距離が長い場合、ドライバへの運転支援を不要と判断し、運転支援処理を一旦終了する。一方で、リスク車間距離Dよりも現在の車間距離が短いと判定した場合、ドライバへの運転支援が必要と判断し、S103からS104に進む。
 S104では、S103での比較結果及びS101での取得情報に基づき、運転支援内容を選択し、S105に進む。S105では、S104にて選択された運転支援が実施されるよう、HMI制御装置70及び車両制御装置80の少なくとも一方に出力する制御信号を生成する。そして、生成した制御信号を出力し、運転支援処理を終了する。
 次に、算出部53にて余裕時間Rを算出する態様での基本的な運転支援処理の詳細を、図11に基づき、図1を参照しつつ説明する。
 S111では、リスク推定に必要な情報、即ち、余裕時間Rの算出に必要な情報を取得し、S112に進む。S112では、S111にて取得した情報に基づき、余裕時間Rを算出し、S113に進む。
 S113では、S112にて算出した余裕時間Rの値の正負を判定する。余裕時間Rが正の値である場合、ドライバへの運転支援を不要と判断し、運転支援処理を一旦終了する。一方で、余裕時間Rがゼロ以下である場合、ドライバへの運転支援が必要と判断し、S113からS114に進む。
 S114では、S113にて算出した余裕時間Rの長さに基づき、運転支援内容を選択し、S115に進む。余裕時間Rが小さい値であるほど、ドライバへの警報強度(図7参照)が強められる。S115では、S114にて選択された運転支援の実施を指示する制御信号を生成し、HMI制御装置70及び車両制御装置80の少なくとも一方へ向けて出力し、運転支援処理を終了する。
 (接触判定)
 接触判定部55(図1参照)は、現在の走行速度を維持して走行する自車両Asに他車両Aoが接触するか否かを判定する。詳記すると、図12に示すように、自車両Asは、走行速度vでの走行を継続すると仮定する一方で、他車両Aoは、速度vpxで横移動すると仮定する。定速走行を継続した自車両Asが他車両Aoの側方を通過可能であれば、他車両Aoは、リスク対象とはならない。この場合、仮に自車両Asが減速してしまうと、他車両Aoは、自車両Asに接触可能となる。接触判定部55は、こうしたシーンを想定し、自車両Asと他車両Aoとの間に交錯点が存在し得るか否かを演算する。
 図13に示すように、他車両Aoの想定割込点x,yとすると、自車両As及び他車両Aoのそれぞれについて、下記の関係式が成立する。
Figure JPOXMLDOC01-appb-M000010
 ここで、vfx=0,x=0であり、且つ、cosθ=vpy/vである。その結果、数8のyについての二つの関係式から、下記の数式が導き出される。
Figure JPOXMLDOC01-appb-M000011
 さらに、数9にて示される数式の両辺を二乗し、aについて整理すると、下記の数式が導き出される。
Figure JPOXMLDOC01-appb-M000012
 上記の数式にて、実測値及び仮定値のいずれでもないj,vは、数5にて示す関係式から、下記のように記載できる。
Figure JPOXMLDOC01-appb-M000013
 数10の数式に、数11の数式を当てはめることにより、aについての解が得られる。そして、数10の数式の判別式が0以上となる解について、特定範囲th<a<thであれば、接触判定部55は、接触可能性があると判定する。特定範囲は、例えば±0.4G程度の範囲に予め規定される。尚、他車両Aoが自車両Asと同一車線を走行していれば、x=0となり、判別式=0が常に成立する。
 以上の演算に基づき、他車両Aoが自車両Asに接触しないと判定された場合、選択部54は、他車両Aoを対象とした運転支援の実施を中止する。以下、接触判定部55による接触判定が有効である場合の運転支援処理の詳細を、図14に基づき、図12を参照しつつ説明する。尚、S101~S105の処理内容は、図10の運転支援処理と実質的に同一である。
 S121では、S101にて取得した情報に基づき、接触判定のための演算処理を実施し、S122に進む。S122では、他車両Aoの加速度aの解の値に基づき、他車両Aoとの接触可能性の有無を判定する。S122にて、接触可能性が無いと判定した場合、警告等が実施不可なシーンと推定し、運転支援処理を終了する。一方、S122にて、接触可能性があると判定した場合、S102に進む。そして、S102~S105の処理により、リスク車間距離Dと現在の車間距離との比較に基づく運転支援が実施される。
 (割込判定及び割込可能性判定)
 割込判定部56(図2参照)は、隣接車線を走行する他車両Aoが自車両Asの予定進路P上に割り込むか否かを判定する。割込判定部56は、隣接車線を走行する他車両Aoであって、自車両Asよりも前方を走行する他車両Aoについて、予定進路P上に割り込む割込車Aiに該当するか否かを判定する。
 具体的に、割込判定部56は、自車両Asの予定進路Pへ向けて横移動する他車両Aoの横速度vpxが所定の割込閾値thiを超えた場合に、この他車両Aoを割込車Aiと判定する(図15参照)。割込判定部56は、走行中の車線と隣接車線とを区分けする区画線を他車両Aoが跨ぎ、他車両Aoのラップ量Δxが正の値になった場合に、この他車両Aoを割込車Aiと判定する(図16参照)。割込判定部56は、他車両Aoの方向指示器が点滅を開始したことに基づき、この他車両Aoを割込車Aiと判定する(図17参照)。
 選択部54(図2参照)は、割込車Aiとして認定されない他車両Aoを警告する提示を中止する。仮にリスク車間距離Dよりも自車両Asに接近した他車両Aoすべてに対して警告が行われてしまうと、ドライバは、警告を煩わしく感じてしまう虞がある。以下、割込判定部56による割込判定が有効である場合の運転支援処理の詳細を、図18に基づき、図15を参照しつつ説明する。尚、S101~S105の処理内容は、図10の運転支援処理と実質的に同一である。
 S131では、S103にて現在の車間距離がリスク車間距離D未満であると判定され他車両Aoについて、割込車Aiか否かを判定するための演算処理を行い、S132に進む。S132では、S131の演算結果を参照し、他車両Aoが割込車Aiであるか否かを判定する。S132にて、他車両Aoが割込車Aiでないと判定した場合、運転支援処理を終了する。これにより、運転支援としての警告実施が中止される。一方、S132にて、他車両Aoが割込車Aiであると判定した場合、S104及びS105を実施する。以上により、割込車Aiを警告する提示が実施される。
 次に、割込可能性判定の詳細を説明する。
 図2に示す割込判定部56は、割込判定の実施前に、他車両Aoが自車両Asの前方に割り込む可能性のあるシーンか否かをシーン判定する。他車両Aoが割込車Aiとなる可能性が高い場合、割込車Aiと判定される以前に、警告提示等の運転支援が開始される。割込判定部56にて割込可能性があると判定されるシーンを、以下説明する。
 図19に示すように、自車両Asと並走する隣接車線の並走車Apに、並走車Apよりも高速で走行する後方車が接近していた場合、この後方車は、並走車Apに詰まり、自車両Asの予定進路Pに割り込んでくる可能性が高い。故に、割込判定部56は、並走車Ap及び後方車の間の車間距離に基づき、後方車に対し割込車Aiとなる可能性があると判定する。具体的に、割込判定部56は、車間距離が車間閾値thd未満となったことに基づき、後方車を割込可能性のある割込車Aiと認定する。
 尚、割込判定部56は、割込可能性の判定に、並走車Apに対する後方車の相対速度をさらに用いてもよい。具体的に、割込判定部56は、車間距離が詰まったことに加えて、並走車Apに対する後方車の相対速度が速度閾値thvを超えていた場合に、後方車を割込可能性のある割込車Aiと認定する。
 また図20に示すように、自車両Asの走行する車線に隣接車線が合流する合流部において、隣接車線を走行している他車両Aoは、自車両Asの予定進路Pに割り込んでくる割込車Aiとなる可能性が高い。故に、割込判定部56は、走行環境情報の示す道路形状に基づき、他車両Aoの走行する隣接車線が合流している場合に、他車両Aoに対し割込可能性があると判定する。
 図2に示す選択部54は、割込判定部56にて他車両Aoに割り込みの可能性があると判定された場合に、他車両Aoを警告する提示を実施させる。以下、割込判定と共に割込可能性判定も有効である場合の運転支援処理の詳細を、図21に基づき、図19を参照しつつ説明する。尚、S101~S105の処理内容は、図10の運転支援処理と実質的に同一である。
 S141では、S103にて現在の車間距離がリスク車間距離D未満であると判定され他車両Aoについて、割込車Aiとなる可能性があるか否かを判定するための演算処理を行い、S142に進む。S142では、S141の演算結果を参照し、他車両Aoに割込可能性があるか否かを判定する。S142にて、他車両Aoに割り込みの可能性があると判定した場合、S143及びS144をスキップし、S104に進む。そして、S104及びS105の処理により、他車両Aoを警告する提示が実施される。
 一方、S142にて、割り込みの可能性があると判定できなかった場合、S143に進む。そして、S143及びS144の処理により、他車両Aoが割込車Aiか否かを判定する。他車両Aoが割込車Aiであると判定した場合、S104及びS105の処理により、割込車Aiを警告する提示が実施される。
 (接近判定及び接近可能性判定)
 図2に示す接近判定部57は、他車両Aoの自車両Asへの接近を判定する。接近判定部57は、走行環境認識装置60にて算出される自車両Asと他車両Aoの間のTTCに基づき、TTCが接近閾値未満となった場合に、他車両Aoが自車両Asに接近していると判定する。換言すれば、接近判定部57は、他車両Aoのうちで、自車両Asから遠ざかる車両を選別する。
 選択部54は、接近判定部57の判定に基づき、自車両Asから遠ざかる他車両Aoを警告する提示を中止する。以下、割込判定と共に接近判定が有効である場合の運転支援処理の詳細を、図22に基づき、図3を参照しつつ説明する。尚、S101~S105,S131,S132の処理内容は、図18の運転支援処理と実質的に同一である。
 S133では、S132にて割込車Aiと判定された他車両Aoに対し、接近判定のための演算処理を行い、S134に進む。S133では、他車両Aoに対するTTCを走行環境認識装置60から単に取得する処理を行ってもよい。
 S134では、S133にて取得したTTCと予め設定された接近閾値とを比較する。S134にて、TTCが接近閾値以上である場合、割込車Aiが自車両Asから遠ざかると判定し、運転支援処理を終了する。例えば割込車Aiの走行速度が自車両Asの走行速度よりも速い場合、警告実施は中止され得る。一方、TTCが接近閾値未満である場合、S134にて、他車両Aoが自車両Asに接近すると判定する。そして、S104及びS105の処理に基づき、割込車Aiを警告する提示が実施される。
 次に、接近可能性判定の詳細を説明する。
 図2に示す接近判定部57は、接近判定の実施前に、他車両Aoが自車両Asに接近してくる可能性の有無を判定する。接近可能性判定により、他車両Aoが自車両Asに接近していなくても、自車両Asに接近する可能性がある場合には、警告提示等の運転支援が開始される。以下、接近判定部57にて接近可能性があると判定されるシーンを説明する。
 図23に示すように、自車両Asと先行車Afとの間に割込車Aiが割り込みを行った場合、この割込車Aiは、先行車Afに詰まり、自車両Asに接近してくる可能性が高い。故に、接近判定部57は、先行車Af及び並走車Ap(割込車Ai)の間の車間距離に基づき、並走車Apの自車両Asへの接近の可能性を判定する。具体的に、接近判定部57は、車間距離が車間閾値thd未満となったことに基づき、隣接車線の並走車Apに自車両Asへの接近可能性があると判定する。
 尚、接近判定部57は、接近可能性の判定に、先行車Afに対する並走車Apの相対速度をさらに用いてもよい。具体的に、接近判定部57は、先行車Af及び並走車Apの間の車間距離が詰まったことに加えて、先行車Afに対する並走車Apの相対速度が速度閾値thvを超えていた場合に、並走車Apを割込可能性のある割込車Aiと認定する。
 図2に示す選択部54は、接近判定部57にて接近可能性があると判定された場合に、並走車Apを警告する提示を実施させる。以下、割込判定及び接近判定と共に、接近可能性判定も有効である場合の運転支援処理の詳細を、図24に基づき、図23を参照しつつ説明する。尚、S101~S105,S131~S134の処理内容は、図22の運転支援処理と実質的に同一である。
 S151では、S132にて割込車Aiと判定された他車両Aoに対し、接近可能性判定のための演算処理を行い、S152に進む。S152では、S151の演算結果を参照し、割込車Ai(並走車Ap)の接近可能性の有無を判定する。S152にて、割込車Aiに接近の可能性があると判定できない場合、接近判定のためのS133に進む。一方で、S152にて、割込車Aiに接近の可能性があると判定した場合、S133及びS134をスキップし、S104及びS105を実施する。以上により、接近可能性を推定された割込車Aiを警告する提示が実施される。
 (接近閾値の切り替え)
 図2に示す接近判定部57は、接近判定に用いる接近閾値を、自車両Asに対する他車両Aoの相対位置、即ち、自車両As及び他車両Aoの間の横方向のずれ量x(図25A、図25B参照)に基づいて切り替える。以下の説明では、ずれ量xがない(ゼロである)他車両Ao、即ち、横方向にて自車両Asと重なっている他車両Aoを先行車Afとする。(図25B参照)。一方で、右側又は左側へのずれ量x、即ち、ずれ量xの絶対値が正の値となる他車両Aoを割込車Aiとする(図25A参照)。
 図26及び図27に示すように、運転支援としての警告提示を実施する場合、リスク推定装置50は、警告提示の要否及び警告提示の際の警報強度を、余裕時間R及びTTCに基づき設定する。他車両Aoが先行車Afである場合、図26に示すテーブルの設定に基づき、警告提示が実施される。一方、他車両Aoが割込車Aiである場合、図27に示すテーブルの設定に基づき、警告提示が実施される。
 上述したように、接近判定部57は、TTCが接近閾値未満となったことに基づき、他車両Aoが接近していると判定する。接近閾値は、先行車Afよりも割込車Aiの方が長い時間に設定されている。これにより、先行車Afよりも割込車Aiの方が接近判定のタイミングが早められる。その結果、割込車Aiを警告する弱い提示は、先行車Afを警告する提示よりも、TTCが長い状態で開始される(図27 領域2,3参照)。
 以下、接近閾値の切り替えが有効である場合の運転支援処理の詳細を、図28に基づき、図3を参照しつつ説明する。尚、S111~S115の処理内容は、図11の運転支援処理と実質的に同一であり、S131,S132の処理内容は、図18の運転支援処理と実質的に同一である。
 S161では、S132にて割込車Aiと判定された他車両Aoについて、横方向のずれ量xの絶対値が正の値であるか否かを判定する。S161にて、横方向のずれ量xがあると判定した場合、S162に進む。S162では、割込車Aiのための緩和された接近閾値を設定し、S164に進む。一方、S161にて、横方向のずれ量xがないと判定した場合、S163に進む。S163では、先行車Afのための通常の接近閾値を選択し、S164に進む。
 S164では、S162又はS163にて設定された接近閾値に基づき、他車両Aoが自車両Asに接近してきているか否かを判定する。S164にて、他車両Aoが接近していなと判定した場合、S114及びS115のスキップにより、運転支援を省略する。一方で、S164にて、他車両Aoが接近していると判定した場合、S114及びS115の処理に基づき、他車両Aoを警告する提示が実施される。
 (複数リスクに対する運転支援)
 図2に示す選択部54は、算出部53にて複数の他車両Aoのリスク推定値が算出されている場合に、TTCが最も短い他車両Aoに対する運転支援内容を選択する。加えて選択部54は、実質的にTTCが同一である複数の他車両Aoがいる場合、自車両Asに最も近い他車両Aoに対する運転支援内容を選択する。具体的に、図29Aから図29Dに示す各シーンにおいて、選択部54は、他車両Aoである「A」及び「B」のうちで、「A」に対する運転支援内容を選択する。
 以下、複数の他車両Aoから対象となる一つを選択する処理を含んだ運転支援処理の詳細を、図30に基づき、図3を参照しつつ説明する。尚、S111~S115の処理内容は、図11の運転支援処理と実質的に同一である。
 S171では、S112にて余裕時間RAを算出し、S113にて余裕時間RAが負の値となる他車両Aoの物標数が1を超えているか否かを判定する。S171にて、余裕時間RAが負の値となる他車両Aoが一台のみであると判定した場合、S114及びS115の処理に基づき、当該他車両Aoを警告する提示が実施される。
 一方、S171にて、複数台の他車両Aoに対し余裕時間RAを算出しおいる判定した場合、S172に進む。S172では、各他車両AoのTTCを比較し、TTCが同一となる物標があるか否かを判定する。S172にて、TTCの等しい物標があると判定した場合、S173に進む。S173では、余裕時間RAが最小である物標をリスク対象として選択し、S114に進む。尚、S173では、リスク車間距離Dから現在の車間距離を差し引いた値が最大となる物標をリスク対象として選択してもよい。いずれの場合も、自車両Asに最も接近している他車両Aoが、提示の対象として選択される。
 一方、S172にて、TTCの等しい物標がないと判定した場合、S174に進む。S174では、TTCが最小となる物標をリスク対象として選択し、S114に進む。S114では、S173又はS174にて設定された物標(他車両Ao)に対する運転支援内容を選択し、S115に進む。S115の処理に基づき、他車両Aoを警告する提示が実施される。
 ここまで説明した第一実施形態では、自車両Asの予定進路P上にいない他車両Aoであっても、自車両Asの予定進路P上に移動する前提のもとで、他車両Aoの横方向の位置に関連する検出情報を用いて、リスク推定値が推定される。故に、他車両Aoが自車両の予定進路P上から外れていても、リスク推定値に対応した運転支援内容が選択され得る。したがって、他車両Aoが自車両Asの予定進路P上に割り込むような走行を行った場合でも、運転支援は、他車両Aoのリスクに応じて円滑に実施される。
 加えて第一実施形態では、予定進路P上を走行する他車両Aoに対するリスク推定値と、予定進路P上にいない他車両Aoに対するリスク推定値とが、同一の算出式、即ち、数1,7にて示す各数式を用いて算出される。故に、算出部53は、他車両Aoが予定進路P上に移動する過程において、算出式の切り替えを実施しなくても、リスク推定値を継続的に算出し得る。その結果、予定進路Pに割り込む他車両Aoに対して算出されるリスク推定値は、連続的に上昇するような変化を示す。その結果、唐突な運転支援の実施は、抑制され得る。加えて、同一の算定式を用いれば、リスク推定値を演算する処理が簡素化され得る。したがって、処理部151の処理負荷を抑えつつ、運転支援処理が実行可能となる。
 また第一実施形態では、他車両Aoの加速度等が仮定値として設定され、検出情報に基づく実測値と仮定値とを共に用いてリスク推定値が算出される。例えば、横移動中の他車両Aoの加速度は、大きくばらつき難い値と考えられる。故に、確からしい仮定値の設定が可能となる。そして、妥当な仮定値の設定によれば、適切なタイミングでの運転支援の実施が可能になる。
 さらに第一実施形態では、リスク車間距離D及び余裕時間Rの少なくとも一方がリスク推定値として算出される。こうした形態であれば、車載システム100は、リスク車間距離D及び余裕時間Rを超えるような他車両Aoの接近を阻む運転支援を、適切なタイミングで実施し得る。以上によれば、ドライバは、他車両Aoとの位置関係を、リスクの低い状態に維持できる。尚、リスク車間距離及び余裕時間のいずれを使用した場合でも、車載システム100は、実質的に同一のタイミングで、運転支援を開始できる。
 加えて第一実施形態では、接触判定部55による接触判定に基づき、自車両Asと接触しないと推定される他車両Aoをリスク対象とした運転支援の実施が中止される。このように、リスクとして考慮すべきでない他車両Aoを警告する運転支援が抑制されれば、運転支援の実施がリスクを引き上げるような事態の発生は、防止され得る。
 また第一実施形態では、割込判定部56による割込判定に基づき、割り込みをしない他車両Aoをリスク対象とする運転支援の実施は、中止される。こうした選別によれば、隣接車線を走行する他車両Aoに対して運転支援の対象となり得るリスク推定値が算出された場合でも、警告等は実施されない。以上によれば、運転支援は、ドライバが不安を感じる対象を選別して、行われるようになる。したがって、ドライバにとって煩わしく感じられ難い運転支援が実施可能となる。
 さらに第一実施形態では、割込判定の実施前に、割込可能性の判定が実施される。そして、割込可能性のある他車両Aoに対しては、割込判定を実施することなく、リスク推定値に応じた運転支援が実施される。以上のように、割込判定以前に割込可能性を判定する処理を行えば、他車両Aoの将来的な動きを先読みした運転支援が可能になる。
 具体的に、第一実施形態では、隣接車線にて先行車Afとその後方車との間の車間距離が詰まった場合、及び道路形状から並走車Apの合流が想定される場合等に、割込判定部56は、割込可能性があると判定する。こうした割込可能性の判定手法によれば、リスク推定装置50は、他車両Aoの将来挙動を精度良く先読みして、余裕を持ったタイミングで防衛的な運転支援を実行できる。
 加えて第一実施形態では、接近判定部57による接近判定に基づき、割込車Aiが自車両Asから遠ざかるようなシーンにおいては、割込車Aiをリスク対象とした運転支援が実施されない。このように、自車両Asから遠ざかる他車両Aoを選別すれば、リスク対象として考慮すべきでない他車両Aoに対する運転支援は、抑制され得る。その結果、ドライバに煩わしく感じられ難い運転支援が可能になる。
 また第一実施形態では、接近判定の実施前に、接近可能性の判定が実施される。そして、接近可能性のある他車両Aoに対しては、接近判定を実施することなく、リスク推定値に応じた運転支援が実施される。以上のように、接近判定以前に接近可能性を判定する処理を行えば、他車両Aoの将来的な動きを先読みした運転支援が可能になる。
 具体的に、第一実施形態では、自車両Asと同一車線を走行する先行車Afと隣接車線の並走車Apとの間の車間距離が計測され、当該車間距離が閾値未満となった場合に、接近判定部57は、接近可能性があると判定する。こうした接近可能性の判定手法によれば、リスク推定装置50は、割り込み後に一旦は自車両Asから遠ざかる割込車Aiであっても、その後に自車両Asに接近する割込車Aiに対し、リスク対象であると判別できる。故に、他車両Aoの将来挙動の高精度な先読みが可能となり、運転支援は、余裕を持ったタイミングで実行され得る。
 さらに第一実施形態では、割込車Aiに対する運転支援の開始タイミングと、先行車Afに対する運転支援の開始タイミングとが異なっている。具体的に、割込車Aiに対する警告提示は、同一のTTCを有する先行車Afよりも、早いタイミングで実施される。ドライバは、継続的に前方にいる先行車Afよりも、割込車Aiのリスクを高く感じる。故に、割込車Aiの警告提示をTTCの長い状態で開始する調整が行われれば、ドライバのリスク感覚に一致した運転支援が可能になる。
 加えて第一実施形態では、複数の他車両Aoが自車両Asの周囲に存在するシーンにおいて、選択部54は、TTCが最短となる他車両Aoを対象とした運転支援内容を選択する。さらに、複数の他車両AoのTTCが同一となったシーンでは、選択部54は、自車両Asに最も近接した他車両Aoを対象とした運転支援内容を選択する。このように、TTCや接近度合いに基づく順位づけが実施されれば、リスク推定装置50は、ドライバが最もリスクと感じている他車両Aoを適確に選択し、優先的に運転支援を実施し得る。故に、ドライバのリスク感覚に寄り添った安心感のある運転支援が可能になる。尚、第一実施形態では、リスク推定装置50が運転支援装置に相当する。
 (第二実施形態)
 図31~図34に示す本開示の第二実施形態は、第一実施形態の変形例である。第二実施形態のリスク推定装置50は、後方車Abに対してもリスク推定値を算出する。詳記すると、自車両Asが他車両Aoの予定進路P上から外れて走行するシーンにて、算出部53は、他車両Aoである後方車Abの予定進路P上に自車両Asが移動する前提のもと、自車両Asに対する後方車Abのリスク推定値を算出する。
 算出部53は、リスク推定値の算出に、自車両Asに対する後方車Abの横方向の位置に関連する検出情報を用いる。算出部53は、の予定進路Pに自車両Asが割り込むシーンにおいても、数1及び数7にて示す算出式に基づき、後方車Abに対するリスク車間距離D又は余裕時間Rを算出する。但し、後方車Abに対するリスク車間距離D及び余裕時間Rを算出する場合、算出式の各項に代入されるパラメータが、自車両As及び他車両Aoの間で入れ替えられる。
 具体的に、数1及び数7に示す算出式にて、vは後方車Abの走行速度とされ、vは他車両Aoの走行速度とされ、aは自車両Asに発生する加速度とされ、aは後方車Abに発生する加速度とされる。加えて、dfpは自車両Asと後方車Abとの間の車間距離とされ、dpbは自車の制動距離とされ、dfi,dfbは後方車Abの空走距離及び制動距離とされ、kは他車両のドライバの空走時間とされる。
 ここで、他車両Aoの相対位置x,y及び走行速度vpy,vは、第一実施形態と同様に実測値である。一方、加速度a,a,β,kは、仮定値である。仮定値の具体的な値は、第一実施形態と異なっている。後方車Abに適用される各仮定値は、前方車に適用される各仮定値に対して、遅いタイミングで警告提示を開始させるか又は警報強度を弱くするような値に調整されている。さらに、他車両Aoのドライバ状態に関連する空走時間kの値は、一定の値であってもよい。或いは、車車間通信を用いて他車両Aoから状態情報を取得できる場合、空走時間kは、取得した状態情報に基づいて設定可能である。
 選択部54は、算出部53にて算出された他車両Aoのリスク推定値に対応した運転支援内容を選択する。以下、第二実施形態の基本的な運転支援処理の詳細を、図32に基づき、図33を参照しつつ説明する。
 S201では、リスク推定に必要な情報を取得し、S202に進む。S202では、S201にて取得した情報に基づき、他車両Aoの前後(y)方向の相対位置を判定する。S202にて、他車両Aoのy方向の相対位置を示す値がマイナスであると判定した場合、他車両Aoを後方車Abと判断し、S203に進む。S203では、後方車Abのための仮定値を設定し、S205に進む。
 一方、S202にて、他車両Aoのy方向の相対位置を示す値が0以上であると判定した場合、他車両Aoを前方車と判断し、S204に進む。S204では、前方車のための仮定値を設定し、S205に進む。S204にて設定される仮定値の具体的な値は、第一実施形態の各仮定値と実質的に同一であってよい。S205では、S201にて取得した実測値と、S203又はS204にて設定した仮定値とに基づき、リスク車間距離Dを算出し、S206に進む。
 S206では、S201にて取得した現在の車間距離と、S205にて算出したリスク車間距離Dとを比較する。リスク車間距離Dよりも現在の車間距離が長い場合、ドライバへの運転支援を不要と判断し、運転支援処理を終了する。一方で、リスク車間距離Dよりも現在の車間距離が短いと判定した場合、ドライバへの運転支援が必要と判断し、S206からS207に進む。S207及びS208の処理により、他車両Aoを警告する提示が実施される。
 次に、第二実施形態にて、割込判定又は割込可能性判定が有効とされた場合の運転支援処理の詳細を、図33及び図34に基づき説明する。
 S211では、自車両As又は他車両Ao(前方車)についての割込判定又は割込可能性判定のための演算を行い、S212に進む。自車両Asについての割込判定は、他車両Aoの割込判定を行う場合と同様に、自車両Asの横速度が割込閾値thiを超えたか、区画線を跨いだか、及び方向指示器の点滅を開始したか等に基づき判定可能である(図15~図17参照)。
 S212では、S211の判定結果に基づき、運転支援の要否を決定する。自車両As又は他車両Aoについて割り込みが無いと判定した場合、或いは自車両As又は他車両Aoについて割り込みの可能性が無いと判定した場合、運転支援処理を終了する。一方で、割り込みがある又は割り込みの可能性があると判定した場合、S207及びS208の処理により、他車両Aoを警告する提示が実施される。
 ここまで説明した第二実施形態では、自車両Asが後方車Abの予定進路P上へ移動するシーンにおいても、後方車Abの予定進路P上に移動する前提のもと、後方車Abの横方向の位置に関連する検出情報を用いて、リスク推定値が推定される。故に、自車両Asが後方車Abの予定進路P上から外れていても、リスク推定値に対応した運転支援内容が選択され得る。その結果、自車両Asが後方車Abの予定進路上に割り込むような走行を行った場合でも、ドライバの運転を支援する運転支援は、後方車Abのリスクに応じて円滑に実施される。
 加えて第二実施形態では、自車両Asが後方車Abの前方に割り込む場合と、前方車が自車両Asの前方に割り込む場合とで、リスク推定値の算出に用いられる仮定値が変更される。そして、自車両Asが後方車Abの前方に割り込む場合の警告提示は、自車両Asが割り込まれる場合の警告提示に対して、遅く又は弱く調整され得る。以上の調整によれば、運転支援としての警告提示は、ドライバが他車両Aoに感じるリスク感に相応な内容となり得る。
 (他の実施形態)
 以上、本開示の複数の実施形態について説明したが、本開示は、上記実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
 上記実施形態では、手動運転中における運転支援の一例として、他車両を注意喚起する警告提示を実施する例を説明した。しかし、運転支援の具体的な内容は、適宜変更されてよい。例えば、図35に示すように、ACC機能によって車両が定速走行している場合、選択される運転支援は、隣接車線を走行する前方車(他車両Ao)の割り込み前に、前方車との間の車間距離を確保する速度制御であってもよい。以上の形態では、リスク推定装置50及び車両制御装置80が協働で運転支援装置として機能する。
 上記第一実施形態にて説明した接触判定、割込判定、割込可能性判定、接近判定、及び接近可能性判定は、第二実施形態にも適用可能である。第一実施形態の各運転支援処理にて、自車両As及び後方車Abのパラメータの入れ替えることによれば、各判定は、後方車Abに対しても有効となる。尚、自車両の予定進路上にいない割込車のリスク推定値を算出する算出式は、自車両の予定進路上にいる先行車のリスク推定値を算出する算出式と異なっていてもよい。
 運転支援装置の機能は、上記実施形態のリスク推定装置50とは異なる構成によって実現されてよい。例えば、選択部は、HMI制御装置70に設けられていてもよい。こうした形態では、リスク車間距離D、余裕時間R、及びTTC等の情報が、リスク推定装置50からHMI制御装置70に出力される。HMI制御装置70は、リスク推定装置50から取得した各情報に基づき、運転支援内容を選択し、各情報提示装置を制御する。以上の形態では、リスク推定装置50及びHMI制御装置70が協働で運転支援装置として機能する。さらに、リスク推定装置50及びHMI制御装置70の機能を統合した電子制御ユニットが、運転支援装置に相当する構成として設けられていてもよい。
 そして、車載システムに設けられた種々の電子制御ユニットの処理部が、本開示による運転支援プログラムを実行し、上述の運転支援方法を実現する構成であってよい。また各電子制御ユニットのメモリ部には、フラッシュメモリ及びハードディスク等の種々の非遷移的実体的記憶媒体(non-transitory tangible storage medium)が運転支援プログラムの格納構成として採用可能である。
 ここで、この出願に記載されるフローチャート、あるいは、フローチャートの処理は、複数のステップ(あるいはセクションと言及される)から構成され、各ステップは、たとえば、S101と表現される。さらに、各ステップは、複数のサブステップに分割されることができる、一方、複数のステップが合わさって一つのステップにすることも可能である。
 以上、本開示の一態様に係る運転支援装置、及び運転支援プログラムの実施形態、構成、態様を例示したが、本開示に係る実施形態、構成、態様は、上述した各実施形態、各構成、各態様に限定されるものではない。例えば、異なる実施形態、構成、態様にそれぞれ開示された技術的部を適宜組み合わせて得られる実施形態、構成、態様についても本開示に係る実施形態、構成、態様の範囲に含まれる。

 

Claims (18)

  1.  車両に搭乗する運転者の運転を支援する運転支援装置であって、
     前記車両としての自車両(As)の周囲を走行する他車両(Ao)の検出情報を取得する情報取得部(51)と、
     前記自車両の予定進路(P)上にいない前記他車両が当該予定進路上に移動する前提のもと、前記自車両に対する前記他車両の横方向の位置に関連する前記検出情報を用いて、前記自車両に対する前記他車両のリスクをリスク推定値として算出する算出部(53)と、
     前記算出部にて算出された前記リスク推定値に対応した運転支援内容を選択する選択部(54)と、を備える運転支援装置。
  2.  前記算出部は、前記予定進路上を走行する前記他車両に対する前記リスク推定値と、前記予定進路上にいない前記他車両に対する前記リスク推定値とを、同一の算出式を用いて算出する請求項1に記載の運転支援装置。
  3.  前記情報取得部は、前記他車両の横方向の相対位置に加えて、前記他車両の前後方向の相対位置及び前記他車両の走行速度を、前記リスク推定値の算出に用いる前記検出情報とし取得し、
     前記算出部は、前記予定進路上へ移動する前記他車両の加速度を仮定値として設定し、前記検出情報及び前記仮定値を共に用いて前記リスク推定値を算出する請求項1又は2に記載の運転支援装置。
  4.  前記算出部は、前記予定進路上に移動した前記他車両に接触することなく前記自車両が停止可能なリスク車間距離を、前記リスク推定値として算出する請求項1~3のいずれか一項に記載の運転支援装置。
  5.  前記リスク車間距離をDとし、前記運転者に想定される空走時間をkとし、前記自車両の走行速度をvとし、前記予定進路上に移動中の前記他車両の走行速度をvとし、前記予定進路上に移動後の前記他車両の走行速度をv´とし、前記自車両の加速度をaとし、前記他車両の加速度をaとし、前記他車両の速度ベクトルと前記自車両の速度ベクトルがなす角度をθとすると、
     前記算出部は、
    Figure JPOXMLDOC01-appb-M000001
    で表される算出式により、前記リスク車間距離を算出する請求項4に記載の運転支援装置。
  6.  前記算出部は、前記予定進路上に移動した前記他車両に接触することなく前記自車両が停止可能な余裕時間を、前記リスク推定値として算出する請求項1~5のいずれか一項に記載の運転支援装置。
  7.  前記余裕時間をRとし、前記運転者に想定される空走時間をkとし、前記自車両の走行速度をvとし、前記予定進路上に移動中の前記他車両の走行速度をvとし、前記予定進路上に移動後の前記他車両の走行速度をv´とし、前記自車両の加速度をaとし、前記他車両の加速度をaとし、前記自車両に対する前記他車両の前後方向のずれ量をyとし、前記他車両の速度ベクトルと前記自車両の速度ベクトルがなす角度をθとすると、
     前記算出部は、
    Figure JPOXMLDOC01-appb-M000002
    で表される算出式により、前記余裕時間を算出する請求項6に記載の運転支援装置。
  8.  前記他車両が前記自車両と接触するか否かを判定する接触判定部(55)、をさらに備え、
     前記選択部は、前記接触判定部にて前記他車両が前記自車両に接触しないと判定された場合に、運転支援の実施を中止する請求項1~7のいずれか一項に記載の運転支援装置。
  9.  前記他車両が前記予定進路上に割り込むか否かを判定する割込判定部(56)、さらに備え、
     前記選択部は、前記割込判定部の割込判定にて、前記他車両が割り込みを実施しないと判定された場合に、運転支援の実施を中止する請求項1~8のいずれか一項に記載の運転支援装置。
  10.  前記割込判定部は、前記割込判定の実施前に、前記他車両が前記自車両の前方に割り込む可能性のあるシーンか否かを判定し、
     前記選択部は、前記割込判定部にて前記他車両に割り込みの可能性があると判定された場合に、前記他車両の前記リスク推定値に対応した運転支援内容を選択する請求項9に記載の運転支援装置。
  11.  前記他車両の前記自車両への接近を判定する接近判定部(57)、をさらに備え、
     前記選択部は、前記他車両の前記リスク推定値が運転支援の対象となる値であっても、前記接近判定部にて前記自車両に接近していないと判定された場合には、運転支援の実施を中止する請求項1~10のいずれか一項に記載の運転支援装置。
  12.  前記接近判定部は、前記他車両が前記自車両に接近する可能性のあるシーンか否かを判定し、
     前記選択部は、前記他車両が前記自車両から遠ざかっていても、前記接近判定部にて前記自車両に接近する可能性があると判定された場合には、前記他車両の前記リスク推定値に対応した運転支援内容を選択する請求項11に記載の運転支援装置。
  13.  前記自車両の前記予定進路上を走行する前記他車両を先行車とし、前記自車両の前記予定進路上へ向けて横移動する前記他車両を割込車とすると、
     前記接近判定部は、接近閾値に基づき前記他車両が前記自車両に接近していると判定し、
     前記割込車に適用される前記接近閾値は、前記先行車に適用される前記接近閾値よりも緩和されている請求項11又は12に記載の運転支援装置。
  14.  前記選択部は、前記算出部にて複数の前記他車両の前記リスク推定値が算出されている場合、前記自車両に対する車間距離を相対速度で除した除算値が最も小さい前記他車両に対する運転支援内容を選択する請求項1~13のいずれか一項に記載の運転支援装置。
  15.  前記選択部は、実質的に同一となる前記除算値を算出される複数の前記他車両が存在する場合、複数のうちで最も前記自車両に近接している前記他車両に対する運転支援内容を選択する請求項14に記載の運転支援装置。
  16.  車両に搭乗する運転者の運転を支援する運転支援装置であって、
     前記車両としての自車両(As)の周囲を走行する他車両の検出情報を取得する情報取得部(51)と、
     前記他車両の予定進路上から外れて走行する前記自車両が当該予定進路上に移動する前提のもと、前記自車両に対する前記他車両の横方向の位置に関連する前記検出情報を用いて、前記自車両に対する前記他車両のリスクをリスク推定値として算出する算出部(53)と、
     前記算出部にて算出された前記リスク推定値に対応した運転支援内容を選択する選択部(54)と、を備える運転支援装置。
  17.  車両に搭乗する運転者の運転を支援する運転支援プログラムであって、
     前記車両としての自車両(As)の周囲を走行する他車両(Ao)の検出情報を取得し(S101,S111)、
     前記自車両の予定進路上にいない前記他車両が当該予定進路上に移動する前提のもと、前記自車両に対する前記他車両の横方向の位置に関連する前記検出情報を用いて、前記自車両に対する前記他車両のリスクをリスク推定値として算出し(S102,S112)、
     算出されたリスク推定値に対応した運転支援内容を選択する(S104,S114)処理を処理部(151)に実行させる運転支援プログラム。
  18.  請求項17に記載の運転支援プログラムを記憶する、コンピュータ読み取り可能な非遷移的実体的記憶媒体。
PCT/JP2018/015657 2017-04-26 2018-04-16 運転支援装置、及び運転支援プログラム WO2018198847A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/653,281 US11332133B2 (en) 2017-04-26 2019-10-15 Driver assist apparatus and driver assist program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017087363A JP6838479B2 (ja) 2017-04-26 2017-04-26 運転支援装置、及び運転支援プログラム
JP2017-087363 2017-04-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/653,281 Continuation US11332133B2 (en) 2017-04-26 2019-10-15 Driver assist apparatus and driver assist program

Publications (1)

Publication Number Publication Date
WO2018198847A1 true WO2018198847A1 (ja) 2018-11-01

Family

ID=63918277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015657 WO2018198847A1 (ja) 2017-04-26 2018-04-16 運転支援装置、及び運転支援プログラム

Country Status (3)

Country Link
US (1) US11332133B2 (ja)
JP (1) JP6838479B2 (ja)
WO (1) WO2018198847A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10850732B2 (en) * 2017-09-05 2020-12-01 Aptiv Technologies Limited Automated speed control system
JP2019073078A (ja) * 2017-10-12 2019-05-16 矢崎総業株式会社 自動運転時情報伝達方法および車載情報提示装置
US11059421B2 (en) * 2018-03-29 2021-07-13 Honda Motor Co., Ltd. Vehicle proximity system using heads-up display augmented reality graphics elements
CN109733391A (zh) * 2018-12-10 2019-05-10 北京百度网讯科技有限公司 车辆的控制方法、装置、设备、车辆及存储介质
JP7085973B2 (ja) * 2018-12-12 2022-06-17 本田技研工業株式会社 運転支援装置、車両、運転支援装置の制御方法および運転支援プログラム
JP7120077B2 (ja) * 2019-02-27 2022-08-17 トヨタ自動車株式会社 運転支援システム
JP7388116B2 (ja) * 2019-10-15 2023-11-29 マツダ株式会社 運転支援装置
DE102020204078A1 (de) * 2019-11-27 2021-05-27 Robert Bosch Gesellschaft mit beschränkter Haftung Fahrerassistenzsystem für Kraftfahrzeuge
US11400930B2 (en) * 2020-02-14 2022-08-02 GM Global Technology Operations LLC Simultaneous lane change situational awareness
CN111645682B (zh) * 2020-04-20 2021-12-28 长城汽车股份有限公司 一种巡航控制方法、系统及车辆
US11644835B2 (en) * 2020-07-29 2023-05-09 Toyota Research Institute, Inc. Game-theoretic planning for risk-aware interactive agents
JP2022149840A (ja) * 2021-03-25 2022-10-07 トヨタ自動車株式会社 降車支援装置
JP7191179B1 (ja) * 2021-10-27 2022-12-16 三菱電機株式会社 車両制御装置、車両制御システム、車両制御方法および車両制御プログラム
WO2024089780A1 (ja) * 2022-10-25 2024-05-02 株式会社Subaru 車両の制御装置及び記録媒体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10181487A (ja) * 1996-12-27 1998-07-07 Fuji Heavy Ind Ltd 車両の衝突防止装置
JP2008006922A (ja) * 2006-06-28 2008-01-17 Nissan Motor Co Ltd 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
WO2010140215A1 (ja) * 2009-06-02 2010-12-09 トヨタ自動車株式会社 車両用周辺監視装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2803514B2 (ja) 1993-02-25 1998-09-24 三菱自動車工業株式会社 車間距離警報装置
JP3928277B2 (ja) * 1998-11-04 2007-06-13 株式会社デンソー 先行車選択装置、車間制御装置、車間警報装置及び記録媒体
JP3750644B2 (ja) * 2002-09-27 2006-03-01 日産自動車株式会社 車両用運転操作補助装置、車両用運転操作補助方法、およびその方法を適用した車両
JP4421450B2 (ja) * 2004-11-22 2010-02-24 本田技研工業株式会社 車両の逸脱判定装置
US8355842B2 (en) * 2005-09-15 2013-01-15 Continental Teves Ag & Co. Ohg Method and device for steering a motor vehicle
JP2007253723A (ja) * 2006-03-22 2007-10-04 Toyota Motor Corp 車両制御装置
US7548805B2 (en) * 2006-03-27 2009-06-16 Fujitsu Ten Limited Vehicle control apparatus, vehicle control method and vehicle slip suppressing apparatus
JP5268038B2 (ja) * 2009-11-27 2013-08-21 トヨタ自動車株式会社 衝突防止装置
US9047778B1 (en) * 2010-06-25 2015-06-02 Cellco Partnership Collision avoidance system using telematics unit
KR101361360B1 (ko) * 2011-12-26 2014-02-11 현대자동차주식회사 측후방 감지센서를 이용한 차간거리 제어 시스템 및 그 제어 방법
JP5977047B2 (ja) * 2012-02-29 2016-08-24 株式会社日本自動車部品総合研究所 車両走行制御装置
US20140176714A1 (en) * 2012-12-26 2014-06-26 Automotive Research & Test Center Collision prevention warning method and device capable of tracking moving object
JP6285303B2 (ja) * 2014-07-11 2018-02-28 株式会社デンソー 車両制御装置
US10510256B2 (en) * 2014-10-20 2019-12-17 Robert Brandriff Vehicle collision avoidance system and method
JP6430907B2 (ja) * 2015-07-17 2018-11-28 株式会社Soken 運転支援システム
JP6447465B2 (ja) 2015-11-09 2019-01-09 株式会社デンソー 運転支援装置
US9896096B2 (en) * 2016-04-11 2018-02-20 David E. Newman Systems and methods for hazard mitigation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10181487A (ja) * 1996-12-27 1998-07-07 Fuji Heavy Ind Ltd 車両の衝突防止装置
JP2008006922A (ja) * 2006-06-28 2008-01-17 Nissan Motor Co Ltd 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
WO2010140215A1 (ja) * 2009-06-02 2010-12-09 トヨタ自動車株式会社 車両用周辺監視装置

Also Published As

Publication number Publication date
JP6838479B2 (ja) 2021-03-03
US11332133B2 (en) 2022-05-17
US20200039510A1 (en) 2020-02-06
JP2018185673A (ja) 2018-11-22

Similar Documents

Publication Publication Date Title
WO2018198847A1 (ja) 運転支援装置、及び運転支援プログラム
JP6237685B2 (ja) 車両制御装置
CN108238048B (zh) 驾驶辅助装置
JP6686873B2 (ja) 運転支援装置
JP6565893B2 (ja) 運転支援装置
US11059482B2 (en) Travelling support apparatus
US9415774B2 (en) Vehicle control apparatus including an obstacle detection device
EP2687407B1 (en) Apparatus and method for localizing sound image for vehicle's driver
JP2018180908A (ja) 注意喚起装置
US20170240183A1 (en) Autonomous driving apparatus
WO2018193765A1 (ja) 提示制御装置、自動運転制御装置、提示制御方法及び自動運転制御方法
US11281224B2 (en) Vehicle control device
US11008012B2 (en) Driving consciousness estimation device
CN111497831A (zh) 碰撞前控制装置
JP2023181338A (ja) 車両用表示制御装置、車両用表示制御方法及びプログラム
US9177040B2 (en) Information processing device for vehicle and database
JP2012116403A (ja) 車両の制御装置
JPH11321379A (ja) 車両走行制御装置
JP2005199930A (ja) 車両走行制御装置
JP7263962B2 (ja) 車両用表示制御装置および車両用表示制御方法
US20230249679A1 (en) Driver assistance device, method, non-transitory storage medium, and vehicle
CN117141498A (zh) 视线推定装置、视线推定方法及存储介质
CN117141492A (zh) 驾驶支援装置、驾驶支援方法及存储介质
CN115179955A (zh) 清醒状态判断系统及自动驾驶装置
JP2024057232A (ja) ドライバ監視装置及び、ドライバ監視方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791631

Country of ref document: EP

Kind code of ref document: A1