WO2018196753A1 - 一种基于lpcvd预热腔的加热装置 - Google Patents

一种基于lpcvd预热腔的加热装置 Download PDF

Info

Publication number
WO2018196753A1
WO2018196753A1 PCT/CN2018/084288 CN2018084288W WO2018196753A1 WO 2018196753 A1 WO2018196753 A1 WO 2018196753A1 CN 2018084288 W CN2018084288 W CN 2018084288W WO 2018196753 A1 WO2018196753 A1 WO 2018196753A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature control
heating
heating device
wave infrared
longitudinal
Prior art date
Application number
PCT/CN2018/084288
Other languages
English (en)
French (fr)
Inventor
马峥
Original Assignee
君泰创新(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 君泰创新(北京)科技有限公司 filed Critical 君泰创新(北京)科技有限公司
Publication of WO2018196753A1 publication Critical patent/WO2018196753A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation

Definitions

  • the utility model relates to the field of LPCVD preheating, in particular to a heating device based on an LPCVD preheating chamber.
  • Copper indium gallium selenide (CIGS) thin film solar cells have the characteristics of low production cost, low pollution, no degradation, good low light performance, etc.
  • the photoelectric conversion efficiency ranks first among various thin film solar cells, close to crystalline silicon solar cells, and the cost is One-third of crystalline silicon solar cells are internationally known as "a new type of thin-film solar cell that is very promising in the next era.”
  • the battery has a soft, uniform black appearance, which is ideal for places with high requirements for appearance, such as glass curtain walls for large buildings, and has a large market in modern high-rise buildings.
  • the glass substrate will have a certain degree of warpage after the CIGS film layer is plated.
  • the infrared heating is usually a straight tube, which will increase the temperature difference between the warped portion of the substrate and other parts. Therefore, the uniformity of the temperature of the glass substrate is affected, and even when the heating is heated too fast, the substrate is broken. Therefore, how to provide an LPCVD heating apparatus capable of uniformly heating a glass substrate having a warpage portion is a technical problem that a person skilled in the art needs to solve.
  • the present invention provides the following solutions:
  • a heating device based on an LPCVD preheating chamber the heating device being disposed in a preheating chamber for heating a glass substrate, the heating device comprising: a temperature collector, a heating module, and a controller connected to the heating module ,among them,
  • the temperature collector is connected to the controller for collecting the temperature of the heating module
  • the heating module includes a plurality of lateral temperature control zones and a plurality of longitudinal temperature control zones, wherein each of the horizontal temperature control zones and each of the longitudinal temperature control zones are respectively provided with carbon medium wave infrared lamps;
  • Each of the carbon mid-wave infrared tubes of each of the lateral temperature control regions is perpendicular to a cross section at an opening of the preheating chamber;
  • Each of the carbon mid-wave infrared tubes of each of the longitudinal temperature control regions is parallel to a cross section at an opening of the preheating chamber; and a carbon of a longitudinal temperature control region corresponding to a position of a warpage portion of the glass substrate
  • the shape of the medium wave infrared tube matches the warpage of the warped portion.
  • the carbon medium wave infrared lamp tube of the longitudinal temperature control region corresponding to the position of the warpage portion of the glass substrate has an arc shape.
  • the number of the horizontal temperature control zones is two.
  • the shape of the carbon midwave infrared lamp adjacent to the longitudinal temperature control zone of the head end and the longitudinal temperature control zone of the tail end is curved.
  • the number of the longitudinal temperature control zones is six.
  • the temperature collector is a temperature sensor.
  • the utility model discloses the following technical effects:
  • the carbon medium wave infrared lamp tube of the longitudinal temperature control zone corresponding to the position of the warpage portion of the glass substrate is set to a shape matching the warpage degree of the warpage portion, and can uniformly distribute the glass substrate having the warpage portion heating.
  • Embodiment 1 is a distribution diagram of a temperature control zone according to Embodiment 1 of the present invention.
  • Figure 2 is a side view of a curved lamp tube according to Embodiment 1 of the present invention.
  • Fig. 3 is a perspective view showing the warpage of the glass substrate of the first embodiment of the present invention.
  • the heating device based on the LPCVD preheating chamber comprises a temperature collector, a heating module and a controller connected to the heating module, wherein
  • the temperature collector is connected to the controller for collecting the temperature of the heating module
  • the heating module comprises a plurality of lateral temperature control zones and a plurality of longitudinal temperature control zones, wherein each of the horizontal temperature control zones and each of the longitudinal temperature control zones are respectively provided with carbon medium wave infrared lamps;
  • each lateral temperature control zone are perpendicular to the cross section at the opening of the preheating chamber;
  • each carbon mid-wave infrared tube in each longitudinal temperature control zone is parallel to the opening of the preheating chamber; and the shape of the carbon mid-wave infrared lamp in the longitudinal temperature control zone corresponding to the position of the warpage portion of the glass substrate The warpage of the warp is matched.
  • the shape of the carbon medium wave infrared tube corresponding to the position of the warpage portion of the glass substrate is curved; the temperature collector is a temperature sensor.
  • the heating module of this embodiment is provided with 8 temperature control zones, wherein the first temperature control zone 1, the second temperature control zone 2, the third temperature control zone 3, the fourth temperature control zone 4, the fifth temperature control zone 5, and the sixth temperature control zone 6 are longitudinal
  • the temperature control zone, the seventh temperature control zone 7 and the eighth temperature control zone 8 are lateral temperature control zones, and each temperature control zone comprises one or more carbon medium wave infrared lamps.
  • the six longitudinal temperature control zones are distributed at the center of the heating cavity, and the two lateral temperature control zones are respectively parallel to the transmission direction of the glass substrate, and are disposed on both sides of the glass substrate.
  • the second temperature control zone 2 and the fifth temperature control zone 5 are curved lamps adapted to the warpage of the glass substrate.
  • the cross section of the curved tube is shown in Fig. 2, and the warped shape of the glass substrate is shown in Fig. 3.
  • the controller in this embodiment is connected to a temperature sensor, which may be a thermocouple or an infrared sensor.
  • the controller calculates the difference according to the current temperature value collected by the temperature sensor and the actually set temperature value, that is, the process required value, and generates a control value by using a control algorithm, such as a PID algorithm, and a heating power such as a thyristor in the controller.
  • the regulating device adjusts the power of the heating module according to the control value, thereby achieving closed-loop control of the temperature.
  • This embodiment is mainly for pre-heating of a large-sized glass substrate coated with CIGS film in a copper indium gallium selenide (CIGS) thin film solar cell production line.
  • the structure of the heating device is relatively simple, and is heated by using a carbon medium wave tube. The effect is improved.
  • the glass substrate is semi-suspended in the chamber of the preheating chamber by the rollers on both sides, and the glass substrate does not move during the heating process.
  • the glass substrate can also be reciprocated back and forth in a small amount.
  • two of the six longitudinal temperature control zones in the center use curved lamps that adapt to the warpage of the glass substrate, and other temperature control zones use ordinary straight lamps.
  • the heating device is specially adapted to a large-sized glass substrate with a CIGS film and a certain warpage, and a carbon-shaped infrared tube with eight temperature control zones and a shape matching the warpage of the warp portion, heating The effect is good, the temperature of the glass substrate preheating and temperature control process is more uniform, the temperature control is accurate, the heating is rapid, the yield is high, and the maintenance is easy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Control Of Resistance Heating (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

一种基于LPCVD预热腔的加热装置,该加热装置设置在预热腔内,用于加热玻璃基板,加热装置包括:温度采集器、加热模块及与加热模块连接的控制器,其中,温度采集器与控制器连接,用于采集加热模块的温度,加热模块包括若干横向控温区和若干纵向控温区,各横向控温区和各纵向控温区分别设置有碳中波红外灯管;各横向控温区的各碳中波红外灯管与预热腔的开口处的横截面垂直;各纵向控温区的各碳中波红外灯管与预热腔的开口处的横截面平行;且与玻璃基板的翘曲部位置对应的纵向控温区的碳中波红外灯管的形状与翘曲部的翘曲度匹配,从而能够给存在翘曲部的玻璃基板均匀加热。

Description

一种基于LPCVD预热腔的加热装置
本申请基于申请号为CN201720434689.8、申请日为2017年4月24日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此通过援引纳入本申请
技术领域
本实用新型涉及LPCVD预热领域,特别是涉及一种基于LPCVD预热腔的加热装置。
背景技术
随着环境污染引起的温室效应问题日益严重,人们也越来越认识到环境保护的重要性,同时人们对能源的需求也在逐年递增,能源危机也在日益临近,使用清洁能源已被各国政府和组织提上了议事日程。现在各国都在大力发展清洁能源,光伏应用作为新能源应用的一个重要组成部分,正逐渐被人们所重视,这就为光伏应用提供了非常广阔的市场前景和机遇。
目前光伏产业的发展,关键取决于如何降低太阳能电池的生产成本。铜铟镓硒(CIGS)薄膜太阳电池具有生产成本低、污染小、不衰退、弱光性能好等特点,光电转换效率居各种薄膜太阳能电池之首,接近晶体硅太阳能电池,而成本则是晶体硅太阳能电池的三分之一,被国际上称为“下一时代非常有前途的新型薄膜太阳能电池”。此外,该电池具有柔和、均匀的黑色外观,是对外观有较高要求场所的理想选择,如大型建筑物的玻璃幕墙等,在现代化高层建筑等领域有很大市场。
玻璃基板在镀完CIGS膜层后会产生一定程度的翘曲变形,但是现有的LPCVD加热设备中,红外加热所采用是普通直形灯管,会使基板翘曲部分与其他部分温差加大,从而影响玻璃基板温度的均匀性,甚至在加热升温过快时导致基板碎裂。因此,如何提供一种LPCVD加热装置,能够给存在翘曲部的玻璃基板均匀加热,成为本领域技术人员亟需解决的技术问题。
实用新型内容
本实用新型的目的是提供一种基于LPCVD预热腔的加热装置,能够给存在翘曲部的玻璃基板均匀加热。
为实现上述目的,本实用新型提供了如下方案:
一种基于LPCVD预热腔的加热装置,所述加热装置设置在预热腔内,用于加热玻璃基板,所述加热装置包括:温度采集器、加热模块及与所述加热模块连接的控制器,其中,
所述温度采集器与所述控制器连接,用于采集所述加热模块的温度;
所述加热模块包括若干横向控温区和若干纵向控温区,各所述横向控温区和各所述纵向控温区分别设置有碳中波红外灯管;
各所述横向控温区的各所述碳中波红外灯管与所述预热腔的开口处的横截面垂直;
各所述纵向控温区的各所述碳中波红外灯管与所述预热腔的开口处的横截面平行;且与所述玻璃基板的翘曲部位置对应的纵向控温区的碳中波红外灯管的形状与所述翘曲部的翘曲度匹配。
可选的,所述与所述玻璃基板的翘曲部位置对应的纵向控温区的碳中波红外灯管的形状为弧形。
可选的,所述横向控温区的数量为两个。
可选的,各所述纵向控温区中,分别与首端的纵向控温区和尾端的纵向控温区相邻的纵向控温区的碳中波红外灯管的形状为弧形。
可选的,所述纵向控温区的数量为六个。
可选的,所述温度采集器为温度传感器。
根据本实用新型提供的具体实施例,本实用新型公开了以下技术效果:
本实用新型将与玻璃基板的翘曲部位置对应的纵向控温区的碳中波红外灯管,设置为与翘曲部的翘曲度匹配的形状,能够给存在翘曲部的玻璃基板均匀加热。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本实用新型实施例1控温区分布图;
图2为本实用新型实施例1弧形灯管侧视图;
图3为本实用新型实施例1玻璃基板翘曲形态图。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
本实用新型的目的是提供一种基于LPCVD预热腔的加热装置,能够给存在翘曲部的玻璃基板均匀加热。
为使本实用新型的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本实用新型作进一步详细的说明。
实施例1:
基于LPCVD预热腔的加热装置包括温度采集器、加热模块及与加热模块连接的控制器,其中,
温度采集器与控制器连接,用于采集加热模块的温度;
加热模块包括若干横向控温区和若干纵向控温区,各横向控温区和各纵向控温区分别设置有碳中波红外灯管;
各横向控温区的各碳中波红外灯管与预热腔的开口处的横截面垂直;
各纵向控温区的各碳中波红外灯管与预热腔的开口处的横截面平行;且与玻璃基板的翘曲部位置对应的纵向控温区的碳中波红外灯管的形状与翘曲部的翘曲度匹配。
可选地,与玻璃基板的翘曲部位置对应的纵向控温区的碳中波红外灯管的形状为弧形;温度采集器为温度传感器。
如图1所示,针对CIGS太阳能电池使用近似方形的大尺寸基片,预热腔室也相应变大,周围环境对加热温度的影响变得进一步复杂的问题,本实施例的加热模块设置有8个控温区,其中第一控温区1、第二控温区2、第三控温区3、第四控温区4、第五控温区5和第六控温区6为纵向控温区,第七控温区7和第八控温区8为横向控温区,每个控温区包括一根或多根碳中波红外灯管。其中六个纵向控温区分布在加热腔的中心位置,两个横向控温区分别与玻璃基板的传输方向平行,且设置在玻璃基板的两侧。位于中心的六个纵向控温区中,第二控温区2和第五控温区5采用适应玻璃基板翘曲度的弧形灯管。弧形灯管的截面如图2所示,玻璃基板的翘曲形态如图3所示。
本实施例中的控制器与温度传感器连接,温度传感器可为热电偶或红外传感器。控制器根据温度传感器采集的当前温度值及实际设定的温度值,即工艺需要值进行差值计算,并利用控制算法,如PID算法来生成控制值,控制器中的可控硅等加热功率调节装置根据控制值调节加热模块的功率,从而实现对温度的闭环控制。
本实施例主要针对铜铟镓硒(CIGS)薄膜太阳能电池生产线中对镀完CIGS薄膜的大尺寸玻璃基板进行工艺前的预加热,加热装置结构相对简单,通过采用碳中波灯管加热,加热效果得到提高。玻璃基板被两边的滚轮支撑半悬空在预热腔的腔室中,加热过程中玻璃基板不动。为了有效改善玻璃基板的加热效果,也可使玻璃基板进行小幅度的前后往复移动。同时,位于中心的六个纵向控温区中有两个控温区采用适应玻璃基板翘曲度的弧形灯管,其他控温区采用普通直型灯管。该加热装置专门适用于带有CIGS薄膜并有一定翘曲的大尺寸玻璃基板,设置有八个控温区,且形状与翘曲部的翘曲度匹配的异形碳中波红外灯管,加热效果好,能够使玻璃基板预热控温过程的温度更加均匀,控温准确,加热迅速,成品率高,且易于维护。
本文中应用了具体个例对本实用新型的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本实用新型的方法及其核心思想;同时,对于本领域的一般技术人员,依据本实用新型的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说 明书内容不应理解为对本实用新型的限制。

Claims (6)

  1. 一种基于LPCVD预热腔的加热装置,所述加热装置设置在预热腔内,用于加热玻璃基板,其特征在于,所述加热装置包括:温度采集器、加热模块及与所述加热模块连接的控制器,其中,
    所述温度采集器与所述控制器连接,用于采集所述加热模块的温度;
    所述加热模块包括若干横向控温区和若干纵向控温区,各所述横向控温区和各所述纵向控温区分别设置有碳中波红外灯管;
    各所述横向控温区的各所述碳中波红外灯管与所述预热腔的开口处的横截面垂直;
    各所述纵向控温区的各所述碳中波红外灯管与所述预热腔的开口处的横截面平行;且与所述玻璃基板的翘曲部位置对应的纵向控温区的碳中波红外灯管的形状与所述翘曲部的翘曲度匹配。
  2. 根据权利要求1所述的加热装置,其特征在于,所述与所述玻璃基板的翘曲部位置对应的纵向控温区的碳中波红外灯管的形状为弧形。
  3. 根据权利要求1所述的加热装置,其特征在于,所述横向控温区的数量为两个。
  4. 根据权利要求1所述的加热装置,其特征在于,各所述纵向控温区中,分别与首端的纵向控温区和尾端的纵向控温区相邻的纵向控温区的碳中波红外灯管的形状为弧形。
  5. 根据权利要求4所述的加热装置,其特征在于,所述纵向控温区的数量为六个。
  6. 根据权利要求1所述的加热装置,其特征在于,所述温度采集器为温度传感器。
PCT/CN2018/084288 2017-04-24 2018-04-24 一种基于lpcvd预热腔的加热装置 WO2018196753A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720434689.8 2017-04-24
CN201720434689.8U CN206902234U (zh) 2017-04-24 2017-04-24 一种基于lpcvd预热腔的加热装置

Publications (1)

Publication Number Publication Date
WO2018196753A1 true WO2018196753A1 (zh) 2018-11-01

Family

ID=61291184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084288 WO2018196753A1 (zh) 2017-04-24 2018-04-24 一种基于lpcvd预热腔的加热装置

Country Status (2)

Country Link
CN (1) CN206902234U (zh)
WO (1) WO2018196753A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206902234U (zh) * 2017-04-24 2018-01-19 君泰创新(北京)科技有限公司 一种基于lpcvd预热腔的加热装置
CN110872688A (zh) * 2018-08-29 2020-03-10 北京铂阳顶荣光伏科技有限公司 一种加热装置、镀膜设备、温度控制方法及系统
CN111367328A (zh) * 2018-12-26 2020-07-03 北京铂阳顶荣光伏科技有限公司 共蒸发设备和温度监控方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660330B2 (en) * 2001-04-10 2003-12-09 International Business Machines Corporation Method for depositing metal films onto substrate surfaces utilizing a chamfered ring support
CN202543323U (zh) * 2012-04-26 2012-11-21 汉能科技有限公司 一种lpcvd预热腔控温系统
CN103866283A (zh) * 2012-12-14 2014-06-18 汉能新材料科技有限公司 一种lpcvd系统及其工艺
CN106191818A (zh) * 2016-09-08 2016-12-07 北京精诚铂阳光电设备有限公司 一种lpcvd镀膜工艺后期基板冷却系统
CN106567042A (zh) * 2015-10-09 2017-04-19 北京北方微电子基地设备工艺研究中心有限责任公司 加热模块、物理气相沉积腔室以及沉积设备
CN206902234U (zh) * 2017-04-24 2018-01-19 君泰创新(北京)科技有限公司 一种基于lpcvd预热腔的加热装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660330B2 (en) * 2001-04-10 2003-12-09 International Business Machines Corporation Method for depositing metal films onto substrate surfaces utilizing a chamfered ring support
CN202543323U (zh) * 2012-04-26 2012-11-21 汉能科技有限公司 一种lpcvd预热腔控温系统
CN103866283A (zh) * 2012-12-14 2014-06-18 汉能新材料科技有限公司 一种lpcvd系统及其工艺
CN106567042A (zh) * 2015-10-09 2017-04-19 北京北方微电子基地设备工艺研究中心有限责任公司 加热模块、物理气相沉积腔室以及沉积设备
CN106191818A (zh) * 2016-09-08 2016-12-07 北京精诚铂阳光电设备有限公司 一种lpcvd镀膜工艺后期基板冷却系统
CN206902234U (zh) * 2017-04-24 2018-01-19 君泰创新(北京)科技有限公司 一种基于lpcvd预热腔的加热装置

Also Published As

Publication number Publication date
CN206902234U (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
JP5246839B2 (ja) 半導体薄膜の製造方法、半導体薄膜の製造装置、光電変換素子の製造方法及び光電変換素子
WO2018196753A1 (zh) 一种基于lpcvd预热腔的加热装置
US10784389B2 (en) Full-laser scribing method for flexible stainless steel substrate solar cell module
CN103898450A (zh) 一种铜铟镓硒共蒸发线性源装置及其使用方法
CN103973216A (zh) 光伏、光热及采光能量综合利用装置
WO2019114599A1 (zh) 一种薄膜太阳能电池透光组件的制备方法
CN104617183A (zh) 一种cigs基薄膜太阳电池及其制备方法
KR100995394B1 (ko) 박막 태양전지의 박막 형성장치
CN102130202A (zh) 非真空形成铜铟镓硫硒吸收层及硫化镉缓冲层的方法及系统
Zhu et al. Optimal design and photoelectric performance study of micro-lens light trapping structure for CIGS thin film solar cell in BIPV
KR101734362B1 (ko) Acigs 박막의 저온 형성방법과 이를 이용한 태양전지의 제조방법
CN204669308U (zh) 一种高效光热电一体化光伏组件
CN103311372A (zh) 用于太阳能电池片钝化的晶体硅氧化处理设备
CN103872179B (zh) 一种提高薄膜太阳能电池效率的制备方法
CN108987494B (zh) 用于减少柵线遮挡损失光伏玻璃的太阳电池栅线设计方法
CN203325957U (zh) 用于太阳能电池片钝化的晶体硅氧化处理设备
CN207068888U (zh) 一种具有恒温功能的太阳能光伏镀膜玻璃
CN113594300B (zh) 一种透光发电玻璃的激光刻划方法
CN109817751A (zh) 一种碲化镉薄膜太阳能电池及其优化后处理方法
CN106968561A (zh) 一种改进的太阳能窗户
CN204332974U (zh) 一种太阳能电池用金属电极
CN104681639A (zh) 一种基于柔性基底的多晶硅薄膜太阳能电池及其制备方法
CN207610519U (zh) 烘干炉风箱结构
CN203589047U (zh) 一种非晶硅薄膜太阳能电池芯板
TW201621068A (zh) 銅銦鎵硒之表面硫化的製程方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790327

Country of ref document: EP

Kind code of ref document: A1