CN104681639A - 一种基于柔性基底的多晶硅薄膜太阳能电池及其制备方法 - Google Patents

一种基于柔性基底的多晶硅薄膜太阳能电池及其制备方法 Download PDF

Info

Publication number
CN104681639A
CN104681639A CN201310638195.8A CN201310638195A CN104681639A CN 104681639 A CN104681639 A CN 104681639A CN 201310638195 A CN201310638195 A CN 201310638195A CN 104681639 A CN104681639 A CN 104681639A
Authority
CN
China
Prior art keywords
silicon film
solar battery
electrode
type
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310638195.8A
Other languages
English (en)
Inventor
王飞
王吉宁
刘晓鹏
蒋利军
王树茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing General Research Institute for Non Ferrous Metals
Original Assignee
Beijing General Research Institute for Non Ferrous Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing General Research Institute for Non Ferrous Metals filed Critical Beijing General Research Institute for Non Ferrous Metals
Priority to CN201310638195.8A priority Critical patent/CN104681639A/zh
Publication of CN104681639A publication Critical patent/CN104681639A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种基于柔性基底的多晶硅薄膜太阳能电池及其制备方法,该太阳能电池包括依次制备在柔性基底上的电极一、p型或n型多晶硅薄膜、本征非晶硅薄膜、n型或p型非晶硅薄膜和电极二;其中,电极一和电极二分别为正极或负极。其制备方法包括:选择柔性基底并进行表面清洗处理;制备电极一;采用PECVD或HWCVD技术制备p型或n型非晶硅层,然后采用闪光灯退火法使其晶化为多晶硅薄膜;采用PECVD或HWCVD技术制备本征非晶硅薄膜;采用PECVD或HWCVD技术制备n型或p型非晶硅薄膜;制备电极二。本发明采用独特的薄膜制备及退火工艺,克服柔性基底耐高温性能差、热膨胀系数大的困难,成功地在柔性基底上制备出一种多晶硅太阳能电池。

Description

一种基于柔性基底的多晶硅薄膜太阳能电池及其制备方法
技术领域
本发明涉及一种基于柔性基底的多晶硅薄膜太阳能电池及其制备方法,属于半导体制造技术领域。
背景技术
近几年来,作为未来新能源利用方式之一的光伏电池已被广泛应用于日常生产生活。晶硅太阳能电池效率较高且稳定,因此晶硅电池占有很大的市场比例,然而高质量硅片制备成本高,且质量大及易碎性又加大了其运输成本与安装难度;非晶硅薄膜电池所用材料较少,成本较低,但效率仍旧不高,同时具有效率衰减现象;多晶硅薄膜电池兼具非晶硅电池与晶硅电池的优点,没有明显的效率衰减现象,成本又较低,因此受到人们的关注。传统制备多晶硅薄膜的方法包括直接法和间接法,直接法包括高温化学气相沉积(CVD)、等离子体增强化学气相沉积(PECVD)、热丝化学气相沉积(HWCVD)等;间接法又称再结晶法,包括区熔再结晶、金属诱导晶化、激光退火、闪光灯退火、快速光热退火等。
据专利和文献报道,目前的多晶硅薄膜太阳能电池一般是基于低品质硅片、陶瓷、玻璃等硬质基底,硬质基底又可分为耐高温基底和不耐高温基底,对于硅片、陶瓷等耐高温基底,生长多晶硅薄膜比较容易,主要原因是高温提供了硅薄膜结晶的驱动力,一般采用CVD法即可制备;对于玻璃等耐中温基底,一般的CVD法很难得到大晶粒的薄膜,而间接法更为适宜,文献报道较多的是采用铝诱导晶化、激光退火等:铝诱导晶化的优势在于可在600℃以下使硅发生晶化,缺点是容易引进铝金属元素,致使电池效率降低;激光退火的方法可使材料在表面产生高温,由于退火时间很短,热量来不及传致基底,避免了基底因加热而导致变形及膨胀现象的发生,缺点是激光光斑很小,很难用以制备大面积器件,及实现产业化应用。硬质基底的另一个缺点是质量大、不易随形,对安装环境要求苛刻等。
柔性基底具有重量轻、易于携带与运输,可采用卷对卷工艺进行连续制备,易于规模化生产,并可应用于弯曲表面等优势,因此被认为是未来晶硅电池的首选替代者。文献和专利对基于柔性基底的多晶硅太阳能电池鲜有报道,主要原因是一般柔性基底耐高温性较差、热膨胀系数也较大,这些都加大了多晶硅薄膜的制备难度。
发明内容
针对现有技术中柔性基底耐高温性能差、热膨胀系数大的特点,本发明的目的在于提供一种基于柔性基底的多晶硅薄膜太阳能电池。
本发明的另一目的在于提供一种所述基于柔性基底的多晶硅薄膜太阳能电池的制备方法,成功地在柔性基底上制备出一种多晶硅薄膜太阳能电池。
为实现上述目的,本发明采用以下技术方案:
一种基于柔性基底的多晶硅薄膜太阳能电池,包括依次制备在柔性基底上的电极一、p型或n型多晶硅薄膜、本征非晶硅薄膜、n型或p型非晶硅薄膜和电极二;其中,电极一和电极二分别为正极或负极。
在本发明中,柔性基底表面具有表面修饰层,起到使基底与膜系热膨胀系数匹配,阻挡元素扩散,减小衬底表面粗糙度等作用。表面修饰层优选材料为SiO2和Si3N4,优选厚度≥2μm。
在本发明中,p型或n型多晶硅薄膜的厚度≥10μm;本征非晶硅薄膜的厚度为10nm;n型或p型非晶硅薄膜的厚度为10nm,其暗电导率不小于10-5(Ω·cm)-1量级。
在本发明中,电极一或电极二的为导电氧化物薄膜或金属薄膜;导电氧化物薄膜的材料优选为掺铟氧化锡(ITO)或掺铝氧化锌(AZO),金属薄膜的材料优选为银或铝。要求作为电极用的导电氧化物薄膜和金属薄膜在可见光范围内平均透过率不小于70%,电阻率不大于10-3Ω·cm量级。
在本发明中,作为柔性基底可以选择金属薄片或有机材质的可弯曲的柔性基底。在柔性基底的表面还可以覆有表面修饰层,如元素扩散阻挡层、表面平滑层、结合力增强层等,要求这些基底表面修饰层与基底接触性良好,在器件制备过程中不起皮,不脱落。
本发明基于柔性基底的多晶硅薄膜太阳能电池的制备方法包括以下步骤:
(1)选择柔性基底并进行表面清洗处理;
(2)制备电极一;
(3)采用PECVD或HWCVD技术在电极一上制备p型或n型非晶硅层,然后采用闪光灯退火法使其晶化为多晶硅薄膜;
(4)采用PECVD或HWCVD技术在p型或n型多晶硅薄膜上制备本征非晶硅薄膜;
(5)采用PECVD或HWCVD技术在本征非晶硅薄膜上制备n型或p型非晶硅薄膜;
(6)制备电极二。
在该方法中,步骤(3)中多晶硅薄膜的制备很重要,首先制备一层非晶硅薄膜,然后采用特殊退火方法——闪光灯退火法使其晶化为多晶硅薄膜。闪光灯退火法的优点是可避免基底与薄膜因热膨胀系数不匹配导致薄膜发生起皮及脱落,适用于大面积器件制备。闪光灯参数的选择应保证基底的温度低于基底的耐热温度,基底的热膨胀接近硅薄膜的热膨胀,具体工艺参数依基底材料而定。
本发明的优点在于:
本发明采用独特的薄膜制备及退火工艺,克服柔性基底耐高温性能差、热膨胀系数大的困难,成功地在柔性基底上制备出一种多晶硅太阳能电池。本发明采用的多晶硅太阳能电池结构及制备工艺适用于多种柔性基底,制备过程中仅需改变部分工艺参数即可实现,应用性强。
附图说明
图1为本发明多晶硅薄膜太阳能电池的结构示意图。
图2为本发明的工艺流程图。
具体实施方式
以下结合附图和实施例对本发明作进一步说明。
如图1所示,为本发明的一种基于柔性基底的多晶硅薄膜太阳能电池的结构示意图,其中在柔性基底1上依次设置基底表面修饰层2、电极一3、p型或n型多晶硅薄膜4、本征非晶硅薄膜5、n型或p型非晶硅薄膜6和电极二7。
如图2所示,为本发明的基于柔性基底的多晶硅薄膜太阳能电池的工艺流程图,具体来说,本发明的制备工艺包括以下步骤:
(1)选择柔性基底并进行表面清洗处理。根据所选择的基底种类,进行相应的清洗处理,包括机械清洗、化学洗液清洗及等离子体清洗等。根据基底种类的不同,可以根据需要,例如:防止基底元素向器件内部扩散、减小基底表面粗糙度、提高基底与器件薄膜的结合性能等,在柔性基底表面制备元素扩散阻挡层、表面平滑层、结合力增强层或其它基底表面修饰层。
(2)制备电极一。对于不同种类的基底,器件的结构也不同,电极一可能为正极,也可能为负极。电极材料一般选择透明导电氧化物如TIO、AZO等或者金属薄膜如Ag、Al等。要求作为电极用的导电薄膜在可见光范围内平均透过率不小于70%,电阻率不大于10-3Ω·cm量级。
(3)采用PECVD或HWCVD技术在电极一上制备p型或n型非晶硅层,然后采用闪光灯退火法使其晶化为多晶硅薄膜。非晶硅层的制备优选为HWCVD技术,其特点是沉积速率较快。选择闪光灯退火法进行晶化,优点是可避免基底与薄膜因热膨胀系数不匹配导致薄膜发生起皮及脱落,且适用于大面积器件制备,退火工艺依所选基底和硅薄膜厚度而定。
(4)采用PECVD或HWCVD技术在p型或n型多晶硅薄膜上制备本征非晶硅薄膜;优选为PECVD技术。
(5)采用PECVD或HWCVD技术在本征非晶硅薄膜上制备n型或p型非晶硅薄膜;优选为PECVD技术。
(6)制备电极二。
实施例1
本实施例具体采用以下步骤制备多晶硅薄膜太阳能电池:
(1)选择厚度为100μm,表面粗糙度为3nm的镜面不锈钢带作为基板,并对其进行清洗处理。清洗处理工艺为:依次用去离子水、丙酮、乙醇超声清洗20min。
(2)将样品转移至PECVD设备中,首先对基板进行2min F离子清洗,气源为SF6+N2O,射频功率500w。然后采用PECVD法制备2μm厚的SiO2层和0.2μm厚的Si3N4层作为元素扩散阻挡层,目的是防止不锈钢带体内金属元素向器件内部扩散。制备工艺参数如下:
Si3N4 SiO2
反应气体 SiH4+NH3 SiH4+N2O
气压(mTorr) 900 900
基底温度(℃) 300 300
电功率(w) 120 90
(3)采用磁控溅射方法制备电池的负极:500nm厚的Ag层和100nm厚的AZO层,射频功率分别为100w和200w。银的可见光范围内的透过率约70%~80%,AZO电阻率为8.5×10-3Ω·cm。
(4)采用HWCVD方法制备厚度约10μm的掺磷(n型)非晶硅层,掺杂气源为PH3,磷与硅的原子摩尔比为1%,沉积速率约为100nm/min,热丝电流为17A,电压为29.2V,热丝与基底间距为3cm,氢气和硅烷流量分别为16sccm和6sccm。
(5)采用闪光灯退火法使非晶硅薄膜发生晶化,闪光灯为高压氙灯,闪光灯脉宽为5ms,能量为10J/cm2,每个样品仅退火一次,得到的硅薄膜晶粒尺寸在百纳米-微米量级。
(6)采用PECVD法制备一层厚度约10nm的非晶硅层。
(7)采用PECVD法制备一层厚度约10nm的p型非晶硅薄膜。掺杂气源为B2H6,硼与硅的原子摩尔比为1%。得到的薄膜暗电导率为3×10-5(Ω·cm)-1
(8)采用磁控溅射法制备200nm厚的ITO正极。基板温度200℃,溅射功率150w。薄膜电阻率约8.4×10-4Ω·cm。
在AM1.5,光照强度为100mw/cm2的模拟太阳光照射下,面积为1cm×1cm电池的短路电流为19.5cmA/cm2,开路电压为0.61V,填充因子0.70,光电转换效率为8.3%。
实施例2
本实施例具体采用以下步骤制备多晶硅薄膜太阳能电池:
(1)选择厚度为2mm,表面粗糙度约为20nm的透明聚乙烯塑料作为基板,并对其作清洗处理。清洗处理工艺为:依次用去离子水、乙醇超声清洗20min。
(2)采用常温磁控溅射方法制备电池的正极:500nm厚的ITO层,射频功率分别为150w。之后对ITO进行一次闪光灯退火处理,以增加其电导率,闪光灯为高压氙灯,闪光灯脉宽为1ms,能量为3J/cm2,最终得到的ITO薄膜在可见光范围内的透过率约70%~80%,电阻率为9.2×10-4Ω·cm。
(3)采用HWCVD方法制备厚度约10μm的掺硼(p型)非晶硅层,掺杂气源为B2H6,硼与硅的原子摩尔比为1%,沉积速率约为60nm/min,热丝电流为17A,电压为29.2V,热丝与基底间距为10cm,以降低热丝在基底因热辐射导致基底升温幅度,氢气和硅烷流量分别为30sccm和10sccm。制备样品时基底底部采用循环水冷却,以保证聚乙烯不受热变形。
(4)采用闪光灯退火法使非晶硅薄膜发生晶化,闪光灯为高压氙灯,闪光灯脉宽为3ms,能量为10J/cm2,每个样品仅退火一次,得到的硅薄膜晶粒尺寸在百纳米量级。
(5)采用PECVD法制备一层厚度约10nm的非晶硅层。
(6)采用PECVD法制备一层厚度约10nm的n型非晶硅薄膜。掺杂气源为PH3,硼与硅的原子摩尔比为1%。得到的薄膜暗电导率为2×10-5(Ω·cm)-1
(7)采用磁控溅射法制备100nm厚的AZO层和500nm厚的Ag层作为电池负极。
在AM1.5,光照强度为100mw/cm2的模拟太阳光照射下,面积为1cm×1cm电池的短路电流为19.2cmA/cm2,开路电压为0.59V,填充因子0.71,光电转换效率为8.0%。

Claims (10)

1.一种基于柔性基底的多晶硅薄膜太阳能电池,其特征在于,包括依次制备在柔性基底上的电极一、p型或n型多晶硅薄膜、本征非晶硅薄膜、n型或p型非晶硅薄膜和电极二;其中,电极一和电极二分别为正极或负极。
2.根据权利要求1所述的基于柔性基底的多晶硅薄膜太阳能电池,其特征在于,所述柔性基底表面具有表面修饰层。
3.根据权利要求1所述的基于柔性基底的多晶硅薄膜太阳能电池,其特征在于,所述表面修饰层的材料为SiO2和Si3N4,表面修饰层的厚度≥2μm。
4.根据权利要求1所述的基于柔性基底的多晶硅薄膜太阳能电池,其特征在于,所述p型或n型多晶硅薄膜的厚度≥10μm。
5.根据权利要求1所述的基于柔性基底的多晶硅薄膜太阳能电池,其特征在于,所述本征非晶硅薄膜的厚度为10nm。
6.根据权利要求1所述的基于柔性基底的多晶硅薄膜太阳能电池,其特征在于,所述n型或p型非晶硅薄膜的厚度为10nm,其暗电导率不小于10-5(Ω·cm)-1量级。
7.根据权利要求1所述的基于柔性基底的多晶硅薄膜太阳能电池,其特征在于,所述电极一或电极二为导电氧化物薄膜或金属薄膜。
8.根据权利要求7所述的基于柔性基底的多晶硅薄膜太阳能电池,其特征在于,所述导电氧化物薄膜材料为掺铟氧化锡或掺铝氧化锌;所述金属薄膜材料为银或铝。
9.根据权利要求7或8所述的基于柔性基底的多晶硅薄膜太阳能电池,其特征在于,所述导电氧化物薄膜和金属薄膜在可见光范围内平均透过率不小于70%,电阻率不大于10-3Ω·cm量级。
10.一种权利要求1所述的基于柔性基底的多晶硅薄膜太阳能电池的制备方法,其特征在于,包括以下步骤:
(1)选择柔性基底并进行表面清洗处理;
(2)制备电极一;
(3)采用PECVD或HWCVD技术在电极一上制备p型或n型非晶硅层,然后采用闪光灯退火法使其晶化为多晶硅薄膜;
(4)采用PECVD或HWCVD技术在p型或n型多晶硅薄膜上制备本征非晶硅薄膜;
(5)采用PECVD或HWCVD技术在本征非晶硅薄膜上制备n型或p型非晶硅薄膜;
(6)制备电极二。
CN201310638195.8A 2013-12-02 2013-12-02 一种基于柔性基底的多晶硅薄膜太阳能电池及其制备方法 Pending CN104681639A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310638195.8A CN104681639A (zh) 2013-12-02 2013-12-02 一种基于柔性基底的多晶硅薄膜太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310638195.8A CN104681639A (zh) 2013-12-02 2013-12-02 一种基于柔性基底的多晶硅薄膜太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
CN104681639A true CN104681639A (zh) 2015-06-03

Family

ID=53316451

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310638195.8A Pending CN104681639A (zh) 2013-12-02 2013-12-02 一种基于柔性基底的多晶硅薄膜太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN104681639A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107611005A (zh) * 2017-08-15 2018-01-19 中国科学院宁波材料技术与工程研究所 一种多晶硅薄膜的制备方法及其产物和包含该多晶硅薄膜的太阳能电池
CN109979314A (zh) * 2017-12-12 2019-07-05 夏普株式会社 显示装置
CN111279458A (zh) * 2017-07-31 2020-06-12 康宁股份有限公司 制造多晶硅的闪光灯退火方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6436488B1 (en) * 2000-06-12 2002-08-20 Agilent Technologies, Inc. Chemical vapor deposition method for amorphous silicon and resulting film
CN101882652A (zh) * 2010-06-29 2010-11-10 上海大学 基于激光刻蚀晶化光学薄膜层的非晶硅薄膜太阳能电池的制备工艺
CN101970131A (zh) * 2007-12-19 2011-02-09 西雷克斯有限公司 采用多层高速喷墨打印生成太阳能电池的方法
CN102437252A (zh) * 2011-12-19 2012-05-02 杨建明 一种薄膜太阳能电池的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6436488B1 (en) * 2000-06-12 2002-08-20 Agilent Technologies, Inc. Chemical vapor deposition method for amorphous silicon and resulting film
CN101970131A (zh) * 2007-12-19 2011-02-09 西雷克斯有限公司 采用多层高速喷墨打印生成太阳能电池的方法
CN101882652A (zh) * 2010-06-29 2010-11-10 上海大学 基于激光刻蚀晶化光学薄膜层的非晶硅薄膜太阳能电池的制备工艺
CN102437252A (zh) * 2011-12-19 2012-05-02 杨建明 一种薄膜太阳能电池的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111279458A (zh) * 2017-07-31 2020-06-12 康宁股份有限公司 制造多晶硅的闪光灯退火方法
CN111279458B (zh) * 2017-07-31 2023-10-27 康宁股份有限公司 制造多晶硅的闪光灯退火方法
CN107611005A (zh) * 2017-08-15 2018-01-19 中国科学院宁波材料技术与工程研究所 一种多晶硅薄膜的制备方法及其产物和包含该多晶硅薄膜的太阳能电池
CN109979314A (zh) * 2017-12-12 2019-07-05 夏普株式会社 显示装置

Similar Documents

Publication Publication Date Title
JP4814307B2 (ja) 薄膜シリコンに基づいた光電池の製造方法
KR102219630B1 (ko) 태양 전지 전극 형성의 무전해 전도율 향상을 위한 방법
CN102800719B (zh) 一种柔性CdTe薄膜太阳能电池及其制备方法
CN102386274B (zh) 在薄膜光伏器件中形成作为背接触的各向异性传导层的方法
WO2008048233A9 (en) Nanostructure and photovoltaic cell implementing same
US8852989B2 (en) Back-contact for thin film solar cells optimized for light trapping for ultrathin absorbers
CN102242345B (zh) 一种直接制备绒面氧化锌透明导电薄膜的方法
CN102522434A (zh) 铜铟镓硒薄膜光伏电池装置及其制备方法
KR20100097549A (ko) 산화아연 나노와이어를 이용한 박막 실리콘 태양전지 및 그의 제조방법
CN107871795A (zh) 一种基于柔性钼衬底的镉掺杂铜锌锡硫硒薄膜的带隙梯度的调控方法
CN107658366A (zh) 一种异质结电池的镀膜方法及pvd载板和镀膜装置
CN104025308B (zh) 太阳能电池装置及其制造方法
JP2012004568A (ja) 電極の形成方法及びこれを利用した太陽電池の製造方法
CN102664213A (zh) 一种高光电转换效率的太阳能电池及制备方法
CN104681639A (zh) 一种基于柔性基底的多晶硅薄膜太阳能电池及其制备方法
CN101820006B (zh) 高转化率硅基单结多叠层pin薄膜太阳能电池及其制造方法
CN103137765A (zh) 一种铝诱导晶化多晶硅薄膜太阳能电池及制备方法
CN102312194B (zh) 用于形成导电透明氧化物膜层的设备和方法
CN102208485A (zh) 基于碲化镉的薄膜光伏器件所用的导电透明氧化物膜层的形成方法
CN103367479A (zh) 一种柔性太阳能电池绒面导电衬底及其制备方法
Minami et al. Textured surface structures formed using new techniques on transparent conducting Al-doped zinc oxide films prepared by magnetron sputtering
CN101872812A (zh) 非晶硅/单晶硅异质结太阳能电池铝背电场制备方法
CN103187481A (zh) 导电基板及其制造方法,以及太阳能电池
CN103000738A (zh) 一种机械叠层碲化镉/多晶硅太阳能电池
CN102433545A (zh) 一种交替生长技术制备绒面结构ZnO薄膜及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150603

RJ01 Rejection of invention patent application after publication