WO2018196106A1 - 一种激光热力逐层交互增材制造的组合装置 - Google Patents

一种激光热力逐层交互增材制造的组合装置 Download PDF

Info

Publication number
WO2018196106A1
WO2018196106A1 PCT/CN2017/087533 CN2017087533W WO2018196106A1 WO 2018196106 A1 WO2018196106 A1 WO 2018196106A1 CN 2017087533 W CN2017087533 W CN 2017087533W WO 2018196106 A1 WO2018196106 A1 WO 2018196106A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
layer
laser
forming
waterproof layer
Prior art date
Application number
PCT/CN2017/087533
Other languages
English (en)
French (fr)
Inventor
鲁金忠
卢海飞
罗开玉
吴刘军
邵亦锴
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US16/068,806 priority Critical patent/US10792766B2/en
Publication of WO2018196106A1 publication Critical patent/WO2018196106A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/224Driving means for motion along a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/80Plants, production lines or modules
    • B22F12/82Combination of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/84Parallel processing within single device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • B22F3/164Partial deformation or calibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • B22F3/164Partial deformation or calibration
    • B22F3/168Local deformation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/009Working by laser beam, e.g. welding, cutting or boring using a non-absorbing, e.g. transparent, reflective or refractive, layer on the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0093Working by laser beam, e.g. welding, cutting or boring combined with mechanical machining or metal-working covered by other subclasses than B23K
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/146Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/356Working by laser beam, e.g. welding, cutting or boring for surface treatment by shock processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K28/00Welding or cutting not covered by any of the preceding groups, e.g. electrolytic welding
    • B23K28/02Combined welding or cutting procedures or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/222Driving means for motion along a direction orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • B22F3/164Partial deformation or calibration
    • B22F2003/166Surface calibration, blasting, burnishing, sizing, coining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to the field of additive manufacturing and the field of laser shock strengthening, and particularly relates to a combined device for laser thermal force layer-by-layer interactive additive manufacturing, which effectively solves the problem that the internal stress of the additive manufacturing causes the forming part to be easily deformed and cracked. "The problem of "control” caused by metallurgical defects leading to poor fatigue performance, improving the fatigue strength and mechanical properties of the formed parts, and achieving efficient and high-quality overall processing of the formed parts.
  • Selective laser melting (SLM) technology is the latest rapid prototyping technology introduced this year. It uses layered manufacturing for additive manufacturing and converts CAD models into physical parts through powder.
  • the laser rapidly melts the selected metal powder and the rapid cooling and solidification technology to obtain a non-equilibrium supersaturated solid solution and a uniform fine metallographic structure, and has a wide range of forming materials.
  • the manufacturing process is not limited by the complicated structure of the metal parts, and does not require any tooling.
  • the mold is simple in process, can realize the rapid manufacture of metal parts, reduce the cost, and can also realize the manufacture of the gradient functional material with continuous change of material composition.
  • Laser shock peening (LSP) technology is a new type of surface strengthening technology, which mainly uses short pulse (tens of nanoseconds) and high peak power density (>109W/cm 2 ) laser irradiation on metal surface. After the laser beam passes through the constraining layer, it is absorbed by the absorption layer, and the absorption layer obtains energy to form explosive vaporization evaporation, and generates a plasma of high temperature and high pressure. Due to the constraint of the outer constraining layer, the plasma forms a high-pressure shock wave and propagates to the inside of the material, utilizing The force effect of the shock wave is plastically deformed in the surface layer of the material, which causes the microstructure of the surface material to change, and the grain size of the material is refined.
  • short pulse tens of nanoseconds
  • high peak power density >109W/cm 2
  • the material structure is denser, the porosity is reduced, and the residual compressive stress is formed on the deeper thickness.
  • the compressive stress layer can effectively eliminate the stress concentration inside the material and inhibit the initiation and expansion of cracks, and significantly improve the fatigue life and corrosion resistance and wear resistance of key parts.
  • the laser shock peening technology can refine the coarse layer of the cladding layer, induce the residual compressive stress of a large depth, and close the microcrack and micro metallurgical defects in the plastic deformation layer, which is to eliminate the residual tensile stress and fine grain of the cladding layer.
  • the present invention provides a combined device for laser thermal force layer-by-layer interactive additive manufacturing, in order to achieve laser shock strengthening of the formed part simultaneously in the forming process of the forming part, effectively solving the forming part caused by internal stress in the additive manufacturing process.
  • the “control” and metallurgical defects that are prone to deformation and cracking lead to the “control” problem of poor fatigue performance, improve the fatigue strength and mechanical properties of the formed parts, and achieve efficient and high-quality overall processing of the formed parts.
  • the invention aims to provide a combined device for laser thermal force layer-by-layer interactive additive manufacturing, which realizes laser shock strengthening of the formed part simultaneously in the forming process of the forming part by laser impact strengthening and selective laser melting alternate operation. After each layer of powder is melted, it is subjected to laser shock peening, which effectively solves the problem of “controlling shape” caused by internal stress in the additive manufacturing and easy deformation and cracking of the formed part, and the “control” problem caused by poor metallurgical defects. Improve the fatigue strength and mechanical properties of the formed parts, and achieve efficient and high-quality overall processing of the formed parts.
  • the invention provides a combined device for laser thermal layer-by-layer interactive additive manufacturing, the combination device comprising a laser impact strengthening module, a water spray module, a selective laser melting module, a waterproof layer, a roller, a roller bracket, a thread screw and The waterproof layer applying module of the motor, the back shaped water tank, the pneumatic module composed of the air compressor, the cylinder and the control valve, the base, the hydraulic lifting module composed of the hydraulic cylinder, the electrical system and the lifting and lowering worktable, the guide rail and the powder supply
  • a powder spreading module consisting of a box, a scraper and a motor.
  • the laser shock reinforced module and the selective laser melting module are located directly above the forming member and can be moved by the mechanical arm; the waterproof layer is located at the front side of the forming member, and the threaded screw can be moved forward and backward by the motor to move up and down through the pneumatic module.
  • drums, roller brackets, threaded screws and motors on the left and right sides of the forming part, wherein the drum is located on the drum bracket, the drum bracket is located on the threaded screw; the forming part is located on the liftable table; the paving module is located in the forming part
  • the rear side can be reciprocated back and forth through the guide rail; the liftable workbench is surrounded by a back-shaped sink, and the pneumatic module is located under the sink; the bottom of the whole device is the base.
  • the laser thermal force layer-by-layer interactive additive manufacturing device has a laser impact enhancement module that can alternately work with the selective laser melting module to achieve the effect of strengthening the formed member while forming the shaped member.
  • the parameters of the laser shock enhancement are: a spot diameter of 3 mm, a pulse width of 8 to 30 ns, a pulse energy of 2 to 15 J, and a lateral and longitudinal overlap ratio of 50%.
  • the parameters of the selective laser melting forming are: a spot diameter of 80 ⁇ m, a laser wavelength of 1.06 to 1.10 ⁇ m, a laser power of 200 to 1000 W, a scanning speed of 500 to 1000 mm/s, and a layer thickness of 0.02 to 0.5 mm. .
  • the laser thermal force layer-by-layer interactive additive manufacturing device has a paving module moving through the guide rail to achieve uniform powdering and resetting.
  • the laser thermal force layer-by-layer interactive additive manufacturing device has a hydraulic lifting module lifter
  • the table is smoothly lifted and lowered by the hydraulic lifting module, and decreases as the height of the workpiece increases.
  • the laser thermal force layer-by-layer cross-additive manufacturing device combines the selective laser melting module to control the motion trajectory by the robot during selective laser melt forming.
  • the laser thermal force layer-by-layer cross-additive manufacturing device combines the laser impact enhancement module to control the motion trajectory by the robot.
  • the laser thermal force layer-by-layer interactive additive manufacturing device when the outer surface of the forming member is laser shock reinforced, the waterproof layer applying module transfers the waterproof layer through the motor and the pneumatic module, so that the waterproof layer automatically moves and fits, Separate and reset.
  • the laser thermal force layer-by-layer cross-additive manufacturing device has a waterproof layer applying module that realizes vertical movement by a pneumatic module, and controls adhesion and separation of the waterproof layer and the outer surface of the forming member.
  • the laser thermal force layer-by-layer cross-additive manufacturing device has a waterproof layer applying module that realizes horizontal movement by the motor, performs waterproof layer movement and reset, does not affect the removal of the forming part and the subsequent selectivity. Laser melting forming.
  • the laser thermal force layer-by-layer interactive additive manufacturing device has a water-repellent layer using an aluminum foil of a self-adhesive waterproof material.
  • the waterproof layer applying module realizes intermittent movement of the roller through the motor to perform waterproofing. Layer replacement, avoiding repeated use and water leakage.
  • the laser thermal force layer-by-layer cross-additive manufacturing device combines a uniform water film with a thickness of 1 to 2 mm formed by deionized water as a constraining layer through a water spray module during laser shock strengthening. Increase the peak pressure of the shock wave.
  • the laser thermal force layer-by-layer interactive additive manufacturing device has a lifting table at the center and a peripheral shaped water tank to prevent water splashing or submerging the formed parts and powder.
  • the laser thermal force layer-by-layer cross-additive manufacturing device has water in the shaped water tank that can be recycled through the water circulation module.
  • the invention provides a combined device for laser thermal force layer-by-layer interactive additive manufacturing, which realizes the simultaneous forming of the formed parts during the forming process of the forming part by alternately working with the laser impact strengthening module and the selective laser melting module. Perform laser shock enhancement.
  • Figure 1 is a front elevational view of an embodiment of the present invention.
  • FIG. 2 is a top view of FIG. 1 (except for a laser shock reinforced module and a selective laser melt forming module).
  • Figure 3 is a left side elevational view of a selective laser melt forming process in accordance with one embodiment of the present invention.
  • Fig. 4 is a front elevational view showing a laser shock peening of an embodiment of the present invention.
  • Figure 5 is a left side elevational view of a laser shock reinforced embodiment of the present invention.
  • 1-laser impact strengthening module 2-water jet module; 3-selective laser melting forming module; 4-waterproof layer; 5-roller; 6-roller bracket; 7-thread screw; 8-shaped sink 9-pneumatic module; 10-base; 11-hydraulic lifting module; 12-liftable table; 13-formed part; 14-powder; 15-rail, 16-laying module.
  • the invention aims at the deficiencies in the prior art, and provides a combined device for laser thermal force layer-by-layer interactive additive manufacturing, which mainly works alternately and freely by laser shock strengthening module and selective laser melting forming module (Fig.1) 2)), the laser impact strengthening of the formed part is simultaneously performed during the forming process of the forming part, which effectively solves the problem that the internal stress of the additive manufacturing causes the forming part to be easily deformed and cracked, and the metallurgical defect causes poor fatigue performance.
  • the "control" problem is to improve the fatigue strength and mechanical properties of the formed parts, and to achieve efficient and high-quality overall processing of the formed parts.
  • FIG. 1 is a front view of an embodiment of the present invention
  • FIG. 2 is a top view of FIG. 1 (except for a laser shock reinforced module and a selective laser melt forming module).
  • a combination of laser thermal layer-by-layer interactive additive manufacturing As shown, a combination of laser thermal layer-by-layer interactive additive manufacturing.
  • the paving module 16 intermittently reciprocates through the guide rails 15, evenly spreads the powder on the liftable table 12, and automatically resets to the initial position after the powdering is completed (as shown in Fig. 2), without affecting Subsequent selective laser melting forming module and laser shock reinforced module operation.
  • the movement trajectory is controlled by the robot.
  • the waterproof layer 4 is in the safe area and does not affect the selective laser melting forming module operation.
  • the parameters of selective laser melting forming are: spot diameter 80 ⁇ m, laser wavelength 1.08 ⁇ m, laser power 600W, scanning speed 800mm/s, powder layer thickness 0.2mm, selective laser melting forming, in one After the layer powder is melted, the selective laser melting forming module 3 ends the operation, and the laser impact strengthening module 1 performs laser shock strengthening.
  • the selective laser fusion forming module 3 is separated from the liftable table 12 by a robot; likewise, during the laser shock reinforced module operation (Fig. 4 and 5)), the movement track is controlled by the robot.
  • laser shock enhancement is performed. After laser shock enhancement, the laser impact enhancement module ends the operation.
  • the lifting table (12) can be lowered by a hydraulic lifting module (11) to a certain height (generally less than 1 mm, because the depth of the impact layer of the laser impact strengthening is about 1 mm), leaving room for subsequent paving operations.
  • the selective laser melting forming module 3 will melt the next layer of powder.
  • the selective laser melting module 3 and the laser shock peening module 1 are alternately operated and freely switched until the processing of the designated forming member is completed.
  • the waterproof layer 4 drives the threaded spindle 7 to move over the forming member 13 by the motor, and rotates the drum 5 to a certain angle, so that the last used waterproof layer is offset from the outer surface of the forming member 13, and the new waterproof layer is lowered by the pneumatic module 9. Up to 1 mm below the outer surface of the shaped part, a new waterproof layer is bonded to the outer surface of the formed part.
  • the water spray module 2 works together with the laser shock reinforced module to provide a constraining layer for laser shock reinforcement of the outer surface of the formed part.
  • the waterproof layer and the back water tank are designed to avoid water splashing or flooding the formed part 13 and powder (as shown in FIG. 2). And the water in the sink can be recycled.
  • the laser shock peening module 1 and the water spray module 2 finish the work, and the waterproof layer 4 is raised to the initial height by the pneumatic module 9, separated from the forming member, and the threaded screw 7 is returned to the initial position by the motor, and the lowering is performed. Processing of a shaped part.

Abstract

一种激光热力逐层交互增材制造的组合装置,所述组合装置包括激光冲击强化模块(1),喷水模块(2),选择性激光熔化模块(3),由防水层(4)、滚筒(5)、滚筒支架(6)、螺纹丝杠(7)和电机构成的防水层施加模块,回形水槽(8),由空气压缩机、气缸和控制阀构成的气动模块(9),底座(10),由液压缸、电气系统和可升降工作台(12)构成的液压升降模块(11),导轨(15)以及由供粉箱、刮板和电机构成的铺粉模块(16)。该装置通过激光冲击强化模块(1)和选择性激光熔化模块(3)交替工作,实现了在成形件(13)成形过程中同时对成形件(13)进行激光冲击强化,对成形件(13)的强化效果更加彻底,有效解决了增材制造中内应力造成成形件(13)易于变形开裂的"控形"和冶金缺陷导致疲劳性能较差的"控性"难题,提高成形件(13)的疲劳强度和力学性能,实现成形件(13)的高效高质量整体加工。

Description

一种激光热力逐层交互增材制造的组合装置 技术领域
本发明涉及增材制造领域以及激光冲击强化领域,特指一种激光热力逐层交互增材制造的组合装置,本装置有效解决了增材制造中内应力造成成形件易于变形开裂的“控形”和冶金缺陷导致疲劳性能较差的“控性”难题,提高成形件的疲劳强度和力学性能,实现成形件的高效高质量整体加工。
背景技术
选择性激光熔化(Selective laser melting,SLM)技术是一种今年出现的最新的快速成形技术,应用分层制造进行增材制造,通过粉末将CAD模型转换为实物零件。其采用激光快速熔化选区金属粉末与快速冷却凝固技术,可以获得非平衡态过饱和固溶体及均匀细小的金相组织,并且成形材料范围广泛,制造过程不受金属零件复杂结构的限制,无需任何工装模具,工艺简单,可实现金属零件的快速制造,降低成本,还能实现材料组分连续变化的梯度功能材料制造。
激光冲击强化(Laser shock peening,LSP)技术是一种新型的表面强化技术,主要是采用短脉冲(几十纳秒)、高峰值功率密度(>109W/cm2)的激光辐照在金属表面,激光束通过约束层之后被吸收层吸收,吸收层从而获得能量形成爆炸性气化蒸发,产生高温高压的等离子体,由于外层约束层的约束,等离子体形成高压冲击波从而向材料内部传播,利用冲击波的力效应在材料表层发生塑性变形,使得表层材料微观组织发生变化,细化材料晶粒尺寸,是材料组织更致密,降低孔隙率,并在较深的厚度上形成残余压应力,而残余压应力层能有效地消除材料内部的应力集中和抑制裂纹的萌生和扩展,显著提高关键零件构件的疲劳寿命以及抗腐蚀和抗磨损能力。大量的研究证明激光冲击强化技术是延长裂纹萌生时间降低裂纹扩展速度提高材料寿命的有效手段。
虽然近年来在激光增材制造方面取得了长足进步,但是由于选择性激光熔凝是一个快速成形过程,熔化的金属表面张力很大,所以容易产生球化效应,导致制件内部空洞增多,密度和强度降低;金属粉末熔化快,熔池存在时间短,快速凝固成形时存在较大的温度梯度,以至于容易产生较大的热应力,不同组织的热膨胀系数不一样,会产生组织应力,凝固组织还存在残余应力,这三种应力综合作用将会导致制件产生裂纹。而激光冲击强化技术可以显著细化熔覆层粗晶,诱导较大深度的残余压应力,同时能闭合塑性变形层内微裂纹和微小冶金缺陷,是消除熔覆层残余拉应力和细化晶粒的一种卓有成效的方法。
鉴于上述问题,本发明提出一种激光热力逐层交互增材制造的组合装置,以实现在成形件成形过程中同时对成形件进行激光冲击强化,有效解决了增材制造中内应力造成成形件易于变形开裂的“控形”和冶金缺陷导致疲劳性能较差的“控性”难题,提高成形件的疲劳强度和力学性能,实现成形件的高效高质量整体加工。
发明内容
本发明旨在提供了一种激光热力逐层交互增材制造的组合装置,通过激光冲击强化和选择性激光熔化交替工作,实现了在成形件成形过程中同时对成形件进行激光冲击强化,在每一层粉料熔化之后,对其进行激光冲击强化,有效解决了增材制造中内应力造成成形件易于变形开裂的“控形”和冶金缺陷导致疲劳性能较差的“控性”难题,提高成形件的疲劳强度和力学性能,实现成形件的高效高质量整体加工。
本发明提出一种激光热力逐层交互增材制造的组合装置,所述组合装置包括激光冲击强化模块,喷水模块,选择性激光熔化模块,由防水层、滚筒、滚筒支架、螺纹丝杠和电机构成的防水层施加模块,回形水槽,由空气压缩机、气缸和控制阀构成的气动模块,底座,由液压缸、电气系统和可升降工作台构成的液压升降模块,导轨以及由供粉箱、刮板和电机构成的铺粉模块。
其中,激光冲击强化模块与选择性激光熔化模块位于成形件正上方,可通过机械手臂进行移动;防水层位于成形件前侧,可通过电机带动螺纹丝杠进行前后移动,通过气动模块进行上下移动;成形件左右两侧各有一组滚筒、滚筒支架、螺纹丝杠和电机,其中滚筒位于滚筒支架上,滚筒支架位于螺纹丝杠上;成形件位于可升降工作台上;铺粉模块位于成形件后侧,可通过导轨进行前后往复移动;可升降工作台四周为回形水槽,气动模块位于水槽下方;整个装置最下方为底座。
优选地,所述的激光热力逐层交互增材制造的组合装置,其激光冲击强化模块可与选择性激光熔化模块交替工作,达到在对成形件进行成形加工的同时强化成形件的效果。
优选地,激光冲击强化的参数为:光斑直径为3mm,脉宽为8~30ns,脉冲能量2~15J,横向和纵向搭接率均为50%。
优选地,选择性激光熔化成形的参数为:光斑直径为80μm,激光波长为1.06~1.10μm,激光功率为200~1000W,扫描速度为500~1000mm/s,铺粉层厚为0.02~0.5mm。
优选地,所述的激光热力逐层交互增材制造的组合装置,其铺粉模块通过导轨移动,实现均匀铺粉及复位。
优选地,所述的激光热力逐层交互增材制造的组合装置,其液压升降模块的升降工 作台通过液压升降模块实现平稳升降,随着制件高度的增加而下降。
优选地,所述的激光热力逐层交互增材制造的组合装置,在选择性激光熔化成形时,选择性激光熔化模块通过机械手控制运动轨迹。
优选地,所述的激光热力逐层交互增材制造的组合装置,在激光冲击强化时,激光冲击强化模块通过机械手控制运动轨迹。
优选地,所述的激光热力逐层交互增材制造的组合装置,在成形件外表面激光冲击强化时,防水层施加模块通过电机和气动模块调动防水层,使防水层自动移动、贴合、分离及复位。
优选地,所述的激光热力逐层交互增材制造的组合装置,其防水层施加模块通过气动模块实现垂直方向的运动,控制防水层与成形件外表面的贴合和分离。
优选地,所述的激光热力逐层交互增材制造的组合装置,其防水层施加模块通过电机实现水平方向的运动,进行防水层移动和复位,不影响成形件卸下以及接下来的选择性激光熔化成形。
优选地,所述的激光热力逐层交互增材制造的组合装置,防水层采用自粘防水材料的铝箔,当结束一个成形件的加工后,防水层施加模块通过电机实现滚筒间歇运动,进行防水层更换,避免重复使用,出现漏水情况。
优选地,所述的激光热力逐层交互增材制造的组合装置,在激光冲击强化时,通过喷水模块,采用以去离子水形成的厚度为1~2mm的均匀水膜作为约束层,以提高冲击波的峰值压力。
优选地,所述的激光热力逐层交互增材制造的组合装置,其可升降工作台在中心,周边为回形水槽,防止水飞溅或淹没成形件及粉末。
优选地,所述的激光热力逐层交互增材制造的组合装置,其回形水槽中的水通过水循环模块,可循环利用。
本发明的有益效果:本发明提供了一种激光热力逐层交互增材制造的组合装置,通过激光冲击强化模块和选择性激光熔化模块交替工作,实现了在成形件成形过程中同时对成形件进行激光冲击强化。
1.选择性激光熔化技术与激光冲击强化技术的结合使用,提高了加工效率,可以更加广泛地应用于工业生产。
2.有效解决了增材制造中内应力造成成形件易于变形开裂的“控形”和冶金缺陷导致疲劳性能较差的“控性”难题,提高成形件的疲劳强度和力学性能。
附图说明
图1为本发明一种实施例的主视图。
图2为图1的俯视图(除激光冲击强化模块和选择性激光熔化成形模块)。
图3为本发明一种实施例选择性激光熔化成形时的左视图。
图4为本发明一种实施例激光冲击强化时的主视图。
图5为本发明一种实施例激光冲击强化时的左视图。
图中:1-激光冲击强化模块;2-喷水模块;3-选择性激光熔化成形模块;4-防水层;5-滚筒;6-滚筒支架;7-螺纹丝杠;8-回形水槽;9-气动模块;10-底座;11-液压升降模块;12-可升降工作台;13-成形件;14-粉末;15-导轨,16-铺粉模块。
具体实施方式
本发明针对现有技术中的不足,提供了一种激光热力逐层交互增材制造的组合装置,主要是通过激光冲击强化模块和选择性激光熔化成形模块交替工作、自由切换(如图1、2所示),实现了在成形件成形过程中同时对成形件进行激光冲击强化,有效解决了增材制造中内应力造成成形件易于变形开裂的“控形”和冶金缺陷导致疲劳性能较差的“控性”难题,提高成形件的疲劳强度和力学性能,实现成形件的高效高质量整体加工。
参见图1与图2,图1为本发明一种实施例的主视图,图2为图1的俯视图(除激光冲击强化模块和选择性激光熔化成形模块)。如图所示,一种激光热力逐层交互增材制造的组合装置。
在进行选择性激光熔化前,铺粉模块16通过导轨15间歇往复运动,均匀地在可升降工作台12上铺粉,铺粉完成后自动复位至初始位置(如图2所示),不影响后续选择性激光熔化成形模块和激光冲击强化模块作业。
在选择性激光熔化成形模块3作业时(如图3所示),通过机械手控制其运动轨迹,此时,防水层4在安全区域,不会影响选择性激光熔化成形模块作业。
选用选择性激光熔化成形的参数为:光斑直径为80μm,激光波长为1.08μm,激光功率为600W,扫描速度为800mm/s,铺粉层厚为0.2mm,进行选择性激光熔化成形,在一层粉料熔化之后,选择性激光熔化成形模块3结束作业,激光冲击强化模块1将对其进行激光冲击强化。
在激光冲击强化模块作业前(如图4和5所示),选择性激光熔凝成形模块3通过机械手离开可升降工作台12上方;同样地,在激光冲击强化模块作业时(如图4和5所示),通过机械手控制其运动轨迹。
选用激光冲击强化的参数为:光斑直径为3mm,脉宽为10ns,脉冲能量8J,横向和纵向搭接率均为50%,进行激光冲击强化,在激光冲击强化之后,激光冲击强化模块结束作业,可升降工作台(12)通过液压升降模块(11)下降一定高度(一般小于1mm,因为激光冲击强化的影响层深度约为1mm),为后续的铺粉作业留出空间。
铺粉模块16进行铺粉后,选择性激光熔化成形模块3将进行下一层粉料熔化。
如此,选择性激光熔化模块3和激光冲击强化模块1交替作业、自由切换,直至完成对指定成形件的加工。最后,防水层4通过电机带动螺纹丝杠7移动至成形件13上方,通过滚筒5转动一定角度,使上一次使用过的防水层偏离成形件13外表面,新的防水层通过气动模块9下降至低于成形件外表面1mm处,使新的防水层与成形件外表面贴合。喷水模块2随激光冲击强化模块一起作业,为成形件外表面激光冲击强化提供了约束层,防水层及回形水槽的设计避免水飞溅或淹没成形件13及粉末(如图2所示),且水槽中的水可循环使用。
激光冲击强化之后,激光冲击强化模块1和喷水模块2结束作业,防水层4通过气动模块9上升至初始高度,与成形件分离,并通过电机带动螺纹丝杠7复位至初始位置,进行下一个成形件的加工。

Claims (10)

  1. 一种激光热力逐层交互增材制造的组合装置,其特征在于:所述组合装置包括激光冲击强化模块,喷水模块,选择性激光熔化模块,由防水层、滚筒、滚筒支架、螺纹丝杠和电机构成的防水层施加模块,回形水槽,由空气压缩机、气缸和控制阀构成的气动模块,底座,由液压缸、电气系统和可升降工作台构成的液压升降模块,导轨以及由供粉箱、刮板和电机构成的铺粉模块;
    其中,激光冲击强化模块与选择性激光熔化模块位于成形件正上方,可通过机械手臂进行移动;防水层位于成形件前侧,可通过电机带动螺纹丝杠进行前后移动,通过气动模块进行上下移动;成形件左右两侧各有一组滚筒、滚筒支架、螺纹丝杠和电机,其中滚筒位于滚筒支架上,滚筒支架位于螺纹丝杠上;成形件位于可升降工作台上;铺粉模块位于成形件后侧,可通过导轨进行前后往复移动;可升降工作台四周为回形水槽,气动模块位于水槽下方;整个装置最下方为底座。
  2. 如权利要求1所述的一种激光热力逐层交互增材制造的组合装置,其特征在于:激光冲击强化模块可与选择性激光熔化模块交替工作,达到在对成形件进行成形加工的同时强化成形件的效果。
  3. 如权利要求1或2所述的一种激光热力逐层交互增材制造的组合装置,其特征在于:激光冲击强化的参数为:光斑直径为3mm,脉宽为8~30ns,脉冲能量2~15J,横向和纵向搭接率均为50%;选择性激光熔化成形的参数为:光斑直径为80μm,激光波长为1.06~1.10μm,激光功率为200~1000W,扫描速度为500~1000mm/s,铺粉层厚为0.02~0.5mm。
  4. 如权利要求1所述的一种激光热力逐层交互增材制造的组合装置,其特征在于:铺粉模块通过导轨移动,实现均匀铺粉及复位;液压升降模块的升降工作台通过液压升降模块实现平稳升降,随着制件高度的增加而下降。
  5. 如权利要求1所述的一种激光热力逐层交互增材制造的组合装置,其特征在于:在选择性激光熔化成形时,选择性激光熔化模块通过机械手控制运动轨迹;在激光冲击强化时,激光冲击强化模块通过机械手控制运动轨迹。
  6. 如权利要求1所述的一种激光热力逐层交互增材制造的组合装置,其特征在于:在成形件外表面激光冲击强化时,防水层施加模块通过电机和气动模块调动防水层,使防水层自动移动、贴合、分离及复位;即防水层施加模块通过气动模块实现垂直方向的运动,控制防水层与成形件外表面的贴合和分离;防水层施加模块通过电机实现水平方向的 运动,进行防水层移动和复位,不影响成形件卸下以及接下来的选择性激光熔化成形。
  7. 如权利要求1所述的一种激光热力逐层交互增材制造的组合装置,其特征在于:防水层采用自粘防水材料的铝箔,当结束一个成形件的加工后,防水层施加模块通过电机实现滚筒间歇运动,进行防水层更换,避免重复使用,出现漏水情况。
  8. 如权利要求1所述的一种激光热力逐层交互增材制造的组合装置,其特征在于:在激光冲击强化时,通过喷水模块,采用以去离子水形成的厚度为1~2mm的均匀水膜作为约束层,以提高冲击波的峰值压力。
  9. 如权利要求1所述的一种激光热力逐层交互增材制造的组合装置,其特征在于:可升降工作台在中心,周边为回形水槽,防止水飞溅或淹没成形件及粉末;回形水槽中的水通过水循环模块,可循环利用。
  10. 使用如权利要求1所述组合装置进行激光热力逐层交互增材制造的方法,其特征在于具体步骤如下:
    在进行选择性激光熔化前,铺粉模块通过导轨间歇往复运动,均匀地在可升降工作台上铺粉,铺粉完成后自动复位至初始位置,不影响后续选择性激光熔化成形模块和激光冲击强化模块作业;
    在选择性激光熔化成形模块作业时,通过机械手控制其运动轨迹,此时,防水层在安全区域,不会影响选择性激光熔化成形模块作业;
    进行选择性激光熔化成形,在一层粉料熔化之后,选择性激光熔化成形模块结束作业,激光冲击强化模块将对其进行激光冲击强化;
    在激光冲击强化模块作业前,选择性激光熔凝成形模块通过机械手离开可升降工作台上方;同样地,在激光冲击强化模块作业时,通过机械手控制其运动轨迹;
    在激光冲击强化之后,激光冲击强化模块结束作业,可升降工作台通过液压升降模块下降一定高度,为后续的铺粉作业留出空间;
    铺粉模块进行铺粉后,选择性激光熔化成形模块将进行下一层粉料熔化;
    如此,选择性激光熔化模块和激光冲击强化模块交替作业、自由切换,直至完成对指定成形件的加工;最后,防水层通过电机带动螺纹丝杠移动至成形件上方,通过滚筒转动使上一次使用过的防水层偏离成形件外表面,新的防水层通过气动模块下降至低于成形件外表面1mm处,使新的防水层与成形件外表面贴合;喷水模块随激光冲击强化模块一起作业,为成形件外表面激光冲击强化提供了约束层,防水层及回形水槽的设计避免水飞溅或淹没成形件及粉末,且水槽中的水可循环使用;
    激光冲击强化之后,激光冲击强化模块和喷水模块结束作业,防水层通过气动模块上 升至初始高度,与成形件分离,并通过电机带动螺纹丝杠复位至初始位置,进行下一个成形件的加工。
PCT/CN2017/087533 2017-04-25 2017-06-08 一种激光热力逐层交互增材制造的组合装置 WO2018196106A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/068,806 US10792766B2 (en) 2017-04-25 2017-06-08 Combined apparatus for layer-by-layer interactive additive manufacturing with laser thermal/mechanical effects

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710273048.3A CN107186214B (zh) 2017-04-25 2017-04-25 一种激光热力逐层交互增材制造的方法和组合装置
CN201710273048.3 2017-04-25

Publications (1)

Publication Number Publication Date
WO2018196106A1 true WO2018196106A1 (zh) 2018-11-01

Family

ID=59873293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087533 WO2018196106A1 (zh) 2017-04-25 2017-06-08 一种激光热力逐层交互增材制造的组合装置

Country Status (3)

Country Link
US (1) US10792766B2 (zh)
CN (1) CN107186214B (zh)
WO (1) WO2018196106A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3089448A1 (fr) * 2018-12-10 2020-06-12 Addup Machine de fabrication additive avec un dispositif de guidage à agencement compact
FR3089447A1 (fr) * 2018-12-10 2020-06-12 Addup Machine de fabrication additive avec un actionneur à agencement compact
CN111515339A (zh) * 2020-01-16 2020-08-11 共享智能铸造产业创新中心有限公司 一种3dp打印设备
WO2020260017A1 (de) * 2019-06-28 2020-12-30 Airbus Defence and Space GmbH Cr-reiche al-legierung mit hoher druck- und scherfestigkeit
WO2021090043A1 (en) * 2019-11-04 2021-05-14 Ecole Polytechnique Federale De Lausanne (Epfl) Laser treatment systems and methods for in-situ laser shock peening (lsp) treatment of parts during production thereof by a selective laser sintering or melting (sls/slm) process, and additive manufacturing systems and methods implementing the same
CN113695595A (zh) * 2021-09-01 2021-11-26 大连理工大学 采用激光金属沉积与随动轧制制备薄壁坯料的方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190143587A1 (en) * 2017-11-13 2019-05-16 General Electric Company Foil part warp compensation for mobile large scale additive manufacturing using foil-based build materials
JP7204236B2 (ja) * 2018-08-31 2023-01-16 国立大学法人大阪大学 金属積層造形装置及び金属積層造形方法
CN109967739B (zh) * 2019-03-26 2021-07-20 上海工程技术大学 一种基于增材制造技术制备梯度结构金属件的方法
CN110116207A (zh) * 2019-05-14 2019-08-13 中国航发北京航空材料研究院 激光选区熔化增材制造构件的强化装置和方法
CN110125405A (zh) * 2019-06-21 2019-08-16 武汉轻工大学 Gh625合金性能强化方法
CN110315078B (zh) * 2019-07-30 2024-03-26 华中科技大学 一种多功能的激光选区熔化成形设备
CN110434332B (zh) * 2019-08-09 2020-07-28 西安交通大学 一种金属增材制造的在线热处理工艺
CN110961635A (zh) * 2019-12-31 2020-04-07 西安交通大学 一种通过激光冲击强化改善异种合金增材制造界面组织和性能的方法
CN112692304B (zh) * 2020-12-14 2022-01-14 武汉大学 一种基于脉冲激光控制熔池流动的激光复合增材制造方法
DE102021108175A1 (de) 2021-03-31 2022-10-06 RUHR-UNIVERSITäT BOCHUM Verfahren und Vorrichtung zur schichtweisen additiven Herstellung von wenigstens einem Bauteil
CN215947365U (zh) * 2021-07-14 2022-03-04 蓝达合智能装备(苏州)有限公司 一种激光冲击强化薄壁结构的防层裂装置
CN113976925A (zh) * 2021-10-14 2022-01-28 华中科技大学 激光选区熔化和激光冲击强化复合的增材制造设备和方法
CN114850510A (zh) * 2022-04-27 2022-08-05 中国人民解放军空军工程大学 一种预防金属部件增材修复热变形方法和装置
CN114955609A (zh) * 2022-06-01 2022-08-30 自贡中天胜新材料科技有限公司 高粘性复合材料高效摊料工艺及装置
CN115255386B (zh) * 2022-07-22 2024-02-09 天津大学 一种保护仓内外增材制造与激光冲击强化复合制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10360094A1 (de) * 2003-12-20 2005-09-08 Concept Laser Gmbh Pulverdosierung - automatische Pulverzustellung
CN102328081A (zh) * 2011-09-26 2012-01-25 华中科技大学 一种高功率激光快速成形三维金属零件的方法
CN104923789A (zh) * 2015-07-06 2015-09-23 华中科技大学 一种激光选区熔化耦合冲击波设备
CN105154870A (zh) * 2015-09-01 2015-12-16 广东工业大学 一种金属零件应力控制3d打印再制造方法
JP2016211050A (ja) * 2015-05-12 2016-12-15 株式会社アスペクト 粉末床溶融結合装置
CN106244791A (zh) * 2016-07-28 2016-12-21 东南大学 一种降低激光增材件气孔率的表面强化方法
JP6074490B1 (ja) * 2015-12-22 2017-02-01 株式会社ソディック 積層造形装置及び積層造形装置のプログラム再開方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10360094A1 (de) * 2003-12-20 2005-09-08 Concept Laser Gmbh Pulverdosierung - automatische Pulverzustellung
CN102328081A (zh) * 2011-09-26 2012-01-25 华中科技大学 一种高功率激光快速成形三维金属零件的方法
JP2016211050A (ja) * 2015-05-12 2016-12-15 株式会社アスペクト 粉末床溶融結合装置
CN104923789A (zh) * 2015-07-06 2015-09-23 华中科技大学 一种激光选区熔化耦合冲击波设备
CN105154870A (zh) * 2015-09-01 2015-12-16 广东工业大学 一种金属零件应力控制3d打印再制造方法
JP6074490B1 (ja) * 2015-12-22 2017-02-01 株式会社ソディック 積層造形装置及び積層造形装置のプログラム再開方法
CN106244791A (zh) * 2016-07-28 2016-12-21 东南大学 一种降低激光增材件气孔率的表面强化方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3089448A1 (fr) * 2018-12-10 2020-06-12 Addup Machine de fabrication additive avec un dispositif de guidage à agencement compact
FR3089447A1 (fr) * 2018-12-10 2020-06-12 Addup Machine de fabrication additive avec un actionneur à agencement compact
WO2020120887A1 (fr) * 2018-12-10 2020-06-18 Addup Machine de fabrication additive avec un dispositif de guidage à agencement compact
WO2020120888A1 (fr) * 2018-12-10 2020-06-18 Addup Machine de fabrication additive avec un actionneur à agencement compact
WO2020260017A1 (de) * 2019-06-28 2020-12-30 Airbus Defence and Space GmbH Cr-reiche al-legierung mit hoher druck- und scherfestigkeit
WO2021090043A1 (en) * 2019-11-04 2021-05-14 Ecole Polytechnique Federale De Lausanne (Epfl) Laser treatment systems and methods for in-situ laser shock peening (lsp) treatment of parts during production thereof by a selective laser sintering or melting (sls/slm) process, and additive manufacturing systems and methods implementing the same
CN111515339A (zh) * 2020-01-16 2020-08-11 共享智能铸造产业创新中心有限公司 一种3dp打印设备
CN113695595A (zh) * 2021-09-01 2021-11-26 大连理工大学 采用激光金属沉积与随动轧制制备薄壁坯料的方法
US11612960B2 (en) 2021-09-01 2023-03-28 Dalian University Of Technology Method for preparing thin-walled preforms by laser metal deposition and follow-up rolling

Also Published As

Publication number Publication date
US20200189037A1 (en) 2020-06-18
CN107186214B (zh) 2018-06-26
US10792766B2 (en) 2020-10-06
CN107186214A (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
WO2018196106A1 (zh) 一种激光热力逐层交互增材制造的组合装置
US11318564B2 (en) Device and method for electromagnetic induction heating-assisted laser additive manufacturing of titanium matrix composite
CN106735967B (zh) 一种超声振动辅助电弧增材制造控形控性的方法
CN109746441B (zh) 一种激光冲击强化辅助的激光增材制造复合加工方法
US10596661B2 (en) Method and device for implementing laser shock peening or warm laser shock peening during selective laser melting
CN201300207Y (zh) 一种金属零件选区激光熔化快速成型设备
EP3229994B1 (en) Additive manufacturing and integrated impact post-treatment
CN105543839A (zh) 一种梯度耐磨涂层及制备梯度耐磨涂层的方法
CN109226755B (zh) 提高增材构件沉积层间结合强度的增材制造装置和方法
CN109332690B (zh) 一种金属3d打印方法和装置
CN111957968A (zh) 一种复合增减材加工成形装置及方法
CN110976869A (zh) 一种零件增材复合制造装置及方法
CN111172529A (zh) 一种铸造铝合金结构件在激光同轴送粉修复过程中的缺陷控制方法
CN111558810A (zh) 一种增减材和激光冲击强化复合的金属丝材增材制造工艺
CN105689715A (zh) 一种模具等离子3d快速成型再制造设备及方法
CN107584122A (zh) 一种基于搅拌摩擦连接‑微熔滴复合增材制造的方法和装置
CN112756628A (zh) 激光选区熔化与激光冲击强化复合增材制造装置及方法
CN113145861A (zh) 一种金属构件增材制造同步锤击形性控制装置与方法
CN110280915B (zh) 一种基于水下打孔改善制孔质量的激光打孔装置及方法
CN112941525A (zh) 一种激光喷丸辅助强化激光熔覆层的装置及方法
CN111037162A (zh) 一种用于电弧打印增材制造过程的冷却装置
JP2012224907A (ja) 三次元形状造形物の製造方法
CN1283397C (zh) 离心铸造装置
CN117139646A (zh) 一种脉冲电流辅助脉冲激光烧结抑制飞溅的装置及方法
CN203923374U (zh) 一种机械振动辅助激光熔覆轴类零件的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907588

Country of ref document: EP

Kind code of ref document: A1