CN106244791A - 一种降低激光增材件气孔率的表面强化方法 - Google Patents

一种降低激光增材件气孔率的表面强化方法 Download PDF

Info

Publication number
CN106244791A
CN106244791A CN201610612166.8A CN201610612166A CN106244791A CN 106244791 A CN106244791 A CN 106244791A CN 201610612166 A CN201610612166 A CN 201610612166A CN 106244791 A CN106244791 A CN 106244791A
Authority
CN
China
Prior art keywords
laser
pore
gain material
laser gain
reinforcing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610612166.8A
Other languages
English (en)
Other versions
CN106244791B (zh
Inventor
孙桂芳
卢轶
王占栋
倪中华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201610612166.8A priority Critical patent/CN106244791B/zh
Publication of CN106244791A publication Critical patent/CN106244791A/zh
Application granted granted Critical
Publication of CN106244791B publication Critical patent/CN106244791B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing

Abstract

本发明一种降低激光增材件气孔率的表面强化方法:首先通过X射线断层扫描激光增材制造的零件表面,探测出零件内部的气孔分布。在零件表面涂覆吸收层并通过涂水机器人施加水约束层,激光器进入STANDBY(准备模式)模式准备进行激光冲击。将气孔参数输入工控机,工控机根据气孔分布与大小在激光冲击的不同区域施加不同的能量、频率、功率密度及脉宽。该方法能够有效降低激光增材构件或者激光焊缝表层或亚表层气孔率,同时能够细化组织晶粒,提升构件力学性能。

Description

一种降低激光增材件气孔率的表面强化方法
技术领域
本发明涉及激光增材制造、激光焊接、激光冲击领域,特指一种通过激光冲击或超声冲击来改善激光增材制造件及焊接件强度、抗疲劳性能及抗应力腐蚀性能的装置,它通过激光冲击产生的高压冲击波与材料表层及亚表层的气孔及组织发生相互作用,从而使气孔缩小、闭合乃至湮没并且细化组织,提升构件的强度、抗疲劳性能及抗应力腐蚀性能。
背景技术
现代工业高端装备正向大型化、高参数、极端恶劣条件下高可靠、长寿命服役的方向快速发展,高性能难加工金属大型关键构件制造技术被公认为是重大高端装备制造业的基础和核心关键技术。激光增材制造技术有望为国防及工业重大装备中大型难加工金属构件的制造提供一条快速、柔性、低成本、高性能、短周期的技术新途径。从1992年起,基于同轴送粉激光熔化沉积的致密金属零件激光增材制造技术在世界范围内引起了人们的高度关注,国内外众多大学及研究院所在钛合金、镍基高温合金、超高强度钢、不锈钢、难熔合金等高性能金属材料的激光增材制造工艺、装备、组织及性能研究等方面取得了大量研究成果。
激光增材制造技术作为一项新的制造技术,其制造件中存在层间及道间局部未熔合、气隙、卷入性和析出性气孔、微细陶瓷夹杂物、内部特殊裂纹等冶金缺陷。由于未能有效解决激光增材制造过程中“内部质量”的控制问题而一直未能实现承力关键构件的激光增材制造关键技术的突破。同样,激光焊接件焊缝中存在的气孔等缺陷大大降低了焊接件的强度、疲劳抗力及抗应力腐蚀性能。
研究表明,92-100%的Al-Si合金试样的疲劳裂纹形核于试样表层或亚表层的气孔。并且,并非所有尺寸的气孔都是裂纹形核点,主要裂纹形核于一些致命性(具有特殊形态和尺寸范围)的气孔附近。因此,只要消除表层、亚表层(距离表面100μm范围内)附近的某些致命性气孔即可延长试样的疲劳寿命。对铝合金进行塑性变形可以缩小或者扁平其中已存在的气孔或者使气孔闭合。有研究采用热等静压方法降低了激光近净成型试样的物理缺陷,并且显著提高了其疲劳性能。但是由于沉积件经热等静压方法后处理后会产生较大变形,故其并非有效的去除沉积件气孔的方法。
发明内容
基于以上不足,本发明提出一种降低激光增材件气孔率的表面强化方法,它利用激光冲击降低激光增材制造构件或者激光焊接件焊缝的表层气孔率从而提高其抗疲劳性能及抗应力腐蚀性能。该方法能够有效降低激光增材构件或者激光焊缝表层或亚表层气孔率,同时能够细化组织晶粒,提升构件力学性能。
本发明的方法技术方案如下:一种降低激光增材件气孔率的表面强化方法,通过X射线断层扫描激光增材制造的零件表面,探测出零件内部的气孔分布;将气孔参数输入工控机,工控机根据气孔分布与大小制定激光冲击策略。
优选的,当气孔距表面在0-1.5mm且其孔直径在10um~20um,采用激光能量10J-15J对零件表面进行冲击,冲击波在气孔孔壁间来回反射后,在孔壁周围材料生成残余压应力,避免孔壁成为裂纹源。
优选的,当气孔距表面0-1.5mm且为气孔直径<10um时,采用激光能量>15J,在冲击力的作用下,使小孔直接闭合,根除裂纹源,强化材料。
优选的,当气孔距表面>1.5mm时,采用1-5ns,能量较小的激光能量1-10J对零件进行冲击,使激光冲击作用的深度小于气孔深度,确保拉伸波到达气孔后不足以造成生塑性变形,产生残余拉应力。
与现有技术相比,本发明具有如下优点:
1.针对不同的气孔缺陷情况制定不同的强化策略,使得激光冲击强化技术能够应用于含有气孔缺陷的构件。
2.本发明能够对增材制造中不可避免的气孔缺陷进行强化修复,闭合微小的气孔,强化较大气孔周围的材料降低其成为裂纹源的概率。
3.在修复气孔缺陷时,细化了冲击区域的微观组织,强化了材料,使其硬度,抗疲劳能力提高。
附图说明
图1是本发明激光强化方法示意图;
图2a是冲击前试样内的气孔分布;
图2b是图2a局部放大图;
图2c是冲击后试样内的气孔分布;
图2d是图2c局部放大图。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
以下实施例用来说明本发明,但不是限制本发明。
本发明提供的降低激光增材件气孔率的表面强化方法,通过X射线断层扫描激光增材制造的零件表面,探测出零件内部的气孔分布;将气孔参数输入工控机,工控机根据气孔分布与大小制定激光冲击策略。
当气孔距表面在0-1.5mm且其孔直径在10um~20um,采用激光能量10J-15J对零件表面进行冲击,冲击波在气孔孔壁间来回反射后,在孔壁周围材料生成残余压应力,避免孔壁成为裂纹源。
当气孔距表面0-1.5mm且为气孔直径<10um时,采用激光能量>15J,在冲击力的作用下,使小孔直接闭合,根除裂纹源,强化材料。
当气孔距表面>1.5mm时,采用脉宽1-5ns,能量较小的激光能量1-10J对零件进行冲击,使激光冲击作用的深度小于气孔深度,确保拉伸波到达气孔后不足以造成生塑性变形,产生残余拉应力。
具体实施例1:
首先通过X射线1断层扫描激光增材制造的零件4表面,探测出零件内部的气孔分布。在零件表面涂覆吸收层6并通过涂水机器人施加水约束层5,激光器2进入准备模式(standby)进行激光冲击。将气孔参数输入工控机,工控机根据气孔分布与大小制定激光冲击策略:
当第一气孔101距表面较近(0-1.5mm)且该气孔101直径较大时(10um~20um),采用中等大小的激光能量(10J-15J)对零件4表面进行冲击,冲击波在第一气孔101孔壁间来回反射后,会在孔壁周围材料生成残余压应力,避免孔壁成为裂纹源。
当第二气孔102局表面较近(0-1.5mm)且该气孔101直径较小(<10um)时,采用较大的激光能量(>15J),在冲击力的作用下,可以使第二气孔102直接闭合,根除裂纹源,强化材料。
当第三气孔103距表面较远(>1.5mm)时,采用脉宽较短,能量较小的激光能量(1-10J)对零件4进行冲击,使激光冲击作用的深度小于气孔深度,确保拉伸波到达气孔后不足以造成生塑性变形,产生残余拉应力。
具体实施例2:采用激光能量8J,脉宽22ns,重复频率0.5Hz,光斑直径6mm,搭接率50%的激光对材料两面进行冲击,在材料两面产生气孔压缩区CP。
如图2c、2d所示是激光双面冲击前后铝合金焊缝拉伸断口气孔P的变化情况。图2c中区域I为冲击区域,II为未冲击区域,可以明显看出在冲击作用后气孔p减少,材料组织细化。气孔率由冲击前的2.42%降至0.82%,拉伸强度由203.98MPa提高至237.9MPa。

Claims (4)

1.一种降低激光增材件气孔率的表面强化方法,其特征在于,通过X射线断层扫描激光增材制造的零件表面,探测出零件内部的气孔分布;将气孔参数输入工控机,工控机根据气孔分布与大小制定激光冲击策略。
2.根据权利要求1所述的降低激光增材件气孔率的表面强化方法,其特征在于,当气孔距表面在0-1.5mm且其孔直径在10um~20um,采用激光能量10J-15J对零件表面进行冲击,冲击波在气孔孔壁间来回反射后,在孔壁周围材料生成残余压应力,避免孔壁成为裂纹源。
3.根据权利要求1或2所述的降低激光增材件气孔率的表面强化方法,其特征在于,当气孔距表面0-1.5mm且为气孔直径<10um时,采用激光能量>15J,在冲击力的作用下,使小孔直接闭合,根除裂纹源,强化材料。
4.根据权利要求1或2所述的降低激光增材件气孔率的表面强化方法,其特征在于,当气孔距表面>1.5mm时,采用脉宽1-5ns,能量较小的激光能量1-10J对零件进行冲击,使激光冲击作用的深度小于气孔深度,确保拉伸波到达气孔后不足以造成生塑性变形,产生残余拉应力。
CN201610612166.8A 2016-07-28 2016-07-28 一种降低激光增材件气孔率的表面强化方法 Active CN106244791B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610612166.8A CN106244791B (zh) 2016-07-28 2016-07-28 一种降低激光增材件气孔率的表面强化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610612166.8A CN106244791B (zh) 2016-07-28 2016-07-28 一种降低激光增材件气孔率的表面强化方法

Publications (2)

Publication Number Publication Date
CN106244791A true CN106244791A (zh) 2016-12-21
CN106244791B CN106244791B (zh) 2018-03-20

Family

ID=57605529

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610612166.8A Active CN106244791B (zh) 2016-07-28 2016-07-28 一种降低激光增材件气孔率的表面强化方法

Country Status (1)

Country Link
CN (1) CN106244791B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106735221A (zh) * 2017-02-24 2017-05-31 广东工业大学 一种激光冲击锻打金属3d打印复合制造方法及装置
CN106825574A (zh) * 2017-04-18 2017-06-13 广东工业大学 一种金属梯度材料激光冲击锻打复合增材制造方法及装置
CN107138728A (zh) * 2017-05-27 2017-09-08 广东工业大学 一种复杂结构的增材制造方法及增材制造系统
CN107186214A (zh) * 2017-04-25 2017-09-22 江苏大学 一种激光热力逐层交互增材制造的组合装置
CN107234239A (zh) * 2017-05-08 2017-10-10 广东工业大学 机器人姿态控制的电弧沉积激光锻打增材制造方法和装备
CN107262713A (zh) * 2017-05-08 2017-10-20 广东工业大学 一种光内同轴送粉激光冲击锻打复合加工成形装置及方法
CN107283059A (zh) * 2017-05-18 2017-10-24 广东工业大学 一种电弧熔积激光冲击锻打增材制造方法和装置
CN107335805A (zh) * 2017-05-27 2017-11-10 广东工业大学 一种金属零件激光光内送丝熔覆激光冲击锻打复合增材制造方法
CN107520449A (zh) * 2017-06-23 2017-12-29 广东工业大学 一种模具熔积成形激光冲击锻打复合增材制造方法及其装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239432A (zh) * 2007-11-16 2008-08-13 江苏大学 合金表面微小裂纹止裂方法及其装置
CN101412176A (zh) * 2008-11-20 2009-04-22 江苏大学 一种含微小裂纹的金属结构件激光冲击再制造方法
CN102489879A (zh) * 2011-11-18 2012-06-13 江苏大学 泵类零部件微细裂纹快速修复延寿方法与装置
CN103409758A (zh) * 2013-07-12 2013-11-27 江苏大学 泵类壳体及叶片微细裂纹激光强化延寿方法
CN104878190A (zh) * 2015-06-11 2015-09-02 沈阳理工大学 一种基于激光冲击强化的抑制零件裂纹萌生与扩展的方法
CN105349736A (zh) * 2015-11-22 2016-02-24 沈阳黎明航空发动机(集团)有限责任公司 基于激光冲击强化的抑制结构件中的裂纹萌生与扩展方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239432A (zh) * 2007-11-16 2008-08-13 江苏大学 合金表面微小裂纹止裂方法及其装置
CN101412176A (zh) * 2008-11-20 2009-04-22 江苏大学 一种含微小裂纹的金属结构件激光冲击再制造方法
CN102489879A (zh) * 2011-11-18 2012-06-13 江苏大学 泵类零部件微细裂纹快速修复延寿方法与装置
CN103409758A (zh) * 2013-07-12 2013-11-27 江苏大学 泵类壳体及叶片微细裂纹激光强化延寿方法
CN104878190A (zh) * 2015-06-11 2015-09-02 沈阳理工大学 一种基于激光冲击强化的抑制零件裂纹萌生与扩展的方法
CN105349736A (zh) * 2015-11-22 2016-02-24 沈阳黎明航空发动机(集团)有限责任公司 基于激光冲击强化的抑制结构件中的裂纹萌生与扩展方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
滕彬等: "激光小孔型气孔产生原因及抑制方法", 《焊接生产应用》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106735221A (zh) * 2017-02-24 2017-05-31 广东工业大学 一种激光冲击锻打金属3d打印复合制造方法及装置
CN106825574A (zh) * 2017-04-18 2017-06-13 广东工业大学 一种金属梯度材料激光冲击锻打复合增材制造方法及装置
CN106825574B (zh) * 2017-04-18 2020-02-07 广东工业大学 一种金属梯度材料激光冲击锻打复合增材制造方法及装置
US10792766B2 (en) 2017-04-25 2020-10-06 Jiangsu University Combined apparatus for layer-by-layer interactive additive manufacturing with laser thermal/mechanical effects
CN107186214A (zh) * 2017-04-25 2017-09-22 江苏大学 一种激光热力逐层交互增材制造的组合装置
CN107186214B (zh) * 2017-04-25 2018-06-26 江苏大学 一种激光热力逐层交互增材制造的方法和组合装置
WO2018196106A1 (zh) * 2017-04-25 2018-11-01 江苏大学 一种激光热力逐层交互增材制造的组合装置
CN107234239B (zh) * 2017-05-08 2019-08-23 广东工业大学 机器人姿态控制的电弧沉积激光锻打增材制造方法和装备
CN107234239A (zh) * 2017-05-08 2017-10-10 广东工业大学 机器人姿态控制的电弧沉积激光锻打增材制造方法和装备
CN107262713A (zh) * 2017-05-08 2017-10-20 广东工业大学 一种光内同轴送粉激光冲击锻打复合加工成形装置及方法
CN107262713B (zh) * 2017-05-08 2020-02-21 广东工业大学 一种光内同轴送粉激光冲击锻打复合加工成形装置及方法
CN107283059B (zh) * 2017-05-18 2019-10-29 广东工业大学 一种电弧熔积激光冲击锻打增材制造方法和装置
CN107283059A (zh) * 2017-05-18 2017-10-24 广东工业大学 一种电弧熔积激光冲击锻打增材制造方法和装置
CN107335805B (zh) * 2017-05-27 2019-11-26 广东工业大学 一种金属零件激光光内送丝熔覆激光冲击锻打复合增材制造方法
CN107335805A (zh) * 2017-05-27 2017-11-10 广东工业大学 一种金属零件激光光内送丝熔覆激光冲击锻打复合增材制造方法
CN107138728A (zh) * 2017-05-27 2017-09-08 广东工业大学 一种复杂结构的增材制造方法及增材制造系统
CN107520449A (zh) * 2017-06-23 2017-12-29 广东工业大学 一种模具熔积成形激光冲击锻打复合增材制造方法及其装置

Also Published As

Publication number Publication date
CN106244791B (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
CN106244791A (zh) 一种降低激光增材件气孔率的表面强化方法
CN107253148A (zh) 一种在金属工件表层形成梯度纳米结构的组合方法
CN103409758B (zh) 泵类壳体及叶片微细裂纹激光强化延寿方法
CN102199690A (zh) 一种多晶体金属材料激光等离子体冲击波表面纳米化方法
Aminzadeh et al. Multi-objective topology optimization of deep drawing dissimilar tailor laser welded blanks; experimental and finite element investigation
CN106435158B (zh) 利用表面微织构去除残余应力洞的工件表面激光冲击工艺
CN112853086A (zh) 一种脉冲电流耦合激光喷丸强化金属材料的方法及装置
CN104531979A (zh) 一种电脉冲和超声耦合实现金属表面晶粒细化的工艺
CN107267742B (zh) 一种不同厚度小孔构件激光冲击强化方法
Jia et al. Microstructure and mechanical properties of fiber laser welded joints of ultrahigh-strength steel 22MnB5 and dual-phase steels
Qutaba et al. A review on peening processes and its effect on surfaces
CN109520925B (zh) 激光熔覆层与基体间结合强度测试方法
CN102127630A (zh) X70管线钢焊接接头激光冲击强化处理方法
Zheng et al. Investigation on initial grain size and laser power density effects in laser shock bulging of copper foil
Chen et al. Microstructure and mechanical properties of HSLA thick plates welded by novel double-sided gas metal arc welding
JP2007297651A (ja) 硬質金属表面における結晶粒微細化方法
CN101624691A (zh) 一种钛合金材料表面纳米化处理方法
Ermakova et al. Experimental investigation of the fatigue crack growth behavior in wire arc additively manufactured ER100S‐1 steel specimens
Xiaofan et al. Fatigue behavior of direct laser deposited Ti-6.5 Al-2Zr-1Mo-1V titanium alloy and its life distribution model
Zeng et al. Study of laser cladding thermal damage: A quantified microhardness method
CN101624692A (zh) 一种铝合金材料表面纳米化处理方法
Jeyaprakash et al. Influence of coherent intermetallic nano-precipitates on the nano-level mechanical and tribological properties of the Laser-Powder bed fused Scalmalloy
He et al. Improvement of very high cycle fatigue properties in an AA7075 friction stir welded joint by ultrasonic peening treatment
CN102936647A (zh) 一种提高经表面机械强化的焊接接头疲劳寿命的方法
CN1708592A (zh) 耐环境助长裂纹性优良的金属结构制品、提高金属结构制品的抗环境助长裂纹性的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant