CN106435158B - 利用表面微织构去除残余应力洞的工件表面激光冲击工艺 - Google Patents

利用表面微织构去除残余应力洞的工件表面激光冲击工艺 Download PDF

Info

Publication number
CN106435158B
CN106435158B CN201610880917.4A CN201610880917A CN106435158B CN 106435158 B CN106435158 B CN 106435158B CN 201610880917 A CN201610880917 A CN 201610880917A CN 106435158 B CN106435158 B CN 106435158B
Authority
CN
China
Prior art keywords
laser
micro
texture
impact
workpiece surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610880917.4A
Other languages
English (en)
Other versions
CN106435158A (zh
Inventor
曹宇鹏
陈浩天
花国然
王恒
蒋苏州
陈怡平
马建军
朱娟
朱珉睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN201711292041.2A priority Critical patent/CN107858501B/zh
Priority to CN201610880917.4A priority patent/CN106435158B/zh
Publication of CN106435158A publication Critical patent/CN106435158A/zh
Application granted granted Critical
Publication of CN106435158B publication Critical patent/CN106435158B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明涉及利用表面微织构去除残余应力洞的工件表面激光冲击工艺,对微织构激光参数进行优化,利用激光微织构形成的阵列小孔,达到释放残余应力的目的,同时,微织构形成的小孔在稀疏波传播过程中起到阻断作用,使表面汇聚波不能到达光斑中心,无法形成残余应力洞,使用PDVF压电传感器在工件表面监测确保表面稀疏波无法向光斑中心汇聚。此外,本发明将激光冲击强化的激光参数转换为以去离子水为约束层的激光参数,使得本工艺能够在工业上进行大规模运用。使用本发明方法进行工件表面的激光冲击强化处理,无需改变光斑形状,无需高搭接率,可以直接消除残余应力洞,不仅提高加工效率同时降低了加工成本。

Description

利用表面微织构去除残余应力洞的工件表面激光冲击工艺
技术领域
本发明涉及利用表面微织构去除残余应力洞的工件表面激光冲击工艺,属于激光加工技术领域。
背景技术
激光冲击强化(Laser Shocking Peening,LSP)技术,也称激光喷丸技术。激光冲击强化是使用高功率密度(GW/cm2量级)、短脉冲(10-30ns量级)的激光通过约束层辐照于金属表面所涂覆的能量吸收层时,涂层吸收激光能量迅速气化并几乎同时形成大量密集的高温(710K)、高压(>1GPa)等离子体。约束层能够有效增强激光冲击波的压力并延长其持续时间,阻碍等离子体爆炸,增强激光能量耦合,显著改善激光冲击的强化效果。
表面微织构工艺目前被证明可以有效改善材料表面摩擦磨损性能和承载能力的一种手段。近年来,通过在摩擦副上加工出一系列的微图形阵列在表面改性技术中得到了越来越多的关注。并且,在仿生摩擦学探究过程中发现,表面的抗磨程度并非与其光滑程度成正比,反而有一定粗糙形态的表面具有更好的抗磨性能。
激光冲击强化被广泛应用于提高航空发动机涡轮叶片残余应力和疲劳强度,在通常情况下,激光的光斑中心是残余压应力最大的区域,但随着激光强度的增大,原有的等双轴分布的残余应力现象消失,变为一种最大残余压应力没有出现在光斑中心的现象,这种现象称之为“残余应力洞”,主要表现为冲击中心区域残余压应力缺失。“残余应力洞”的现象的出现,导致激光冲击强化光斑中心压应力缺失,甚至形成拉应力,使光斑形成较大的应力梯度,在实际生产和应用中极易引起经过激光冲击强化后的工件产生裂纹,严重降低寿命。
通过“光学二元衍射”方法将Gauss 圆光斑改为均匀方光斑,可以有效抑制“残余应力洞”的形成,形成较为均匀的残余压应力层,但是方光斑形成的表面最大残余压应力值和塑性影响层深度都会发生一定程度的降低,同时加工成本较高。或者采用圆形光斑进行搭接,常采用70%的搭接率才可以降低残余应力洞的影响。
发明内容
本发明的目的在于:克服上述现有技术的缺陷,提出一种利用表面微织构去除残余应力洞的工件表面激光冲击工艺,通过该方法可以确定理想的微织构激光冲击工艺,利用该工艺使得板材在激光冲击强化后避免产生“残余应力洞”的现象。
为了达到上述目的,本发明提出的一种利用表面微织构去除残余应力洞的工件表面激光冲击工艺,其特征在于步骤如下:
步骤1、在工件表面进行激光微织构处理,微织构采用的激光能量为P0(此处利用激光的热效应进行加工,采用光纤激光器,使用弱激光),微织构密度为B, 微织构的激光能量P0的范围为P1-P2;
步骤2、采用K9玻璃作为约束层对激光微织构处理过的工件表面进行激光冲击强化,所述激光冲击强化的激光能量P3(此处利用强激光诱导冲击波的力学效应进行加工,使用脉冲激光器,使用强激光),该能量可使得未处理过的工件表面出现残余应力洞;同时使用PVDF压电传感器进行工件表面动态应变检测,确保表面稀疏波无法向光斑中心汇聚;
步骤3、若PVDF压电传感器检测不到稀疏波,则减小微织构密度,重复步骤1-2,直到检测到稀疏波;若PVDF压电传感器检测到稀疏波,则增大微织构密度,重复步骤1-2,直到检测不到稀疏波;以刚好检测不到稀疏波时所对应的微织构密度作为相应激光微织构处理激光能量下的最小可行微织构密度;
步骤4、调整激光微织构处理的激光能量P0,并重复步骤1-3,最终获得由微织构激光能量和对应的最小可行微织构密度构成的若干个数据对,选择微织构孔深适中,微织构密度最小的数据对,作为实施的微织构的激光能量和微织构密度;
步骤5、测量以K9玻璃为约束层,以激光能量P3进行激光冲击强化后试样加载区域边缘滑移深度;
步骤6、以去离子水为约束层,调节激光冲击强化的激光参数,使得激光冲击后试样加载区域边缘滑移深度约等于步骤5中的试样加载区域边缘滑移深度;
步骤7、以筛选出的微织构密度和相应强度的冲击激光在工件表面制备微织构,然后以去离子水为约束层,用调节后的激光参数对工件表面进行激光冲击强化,使用该工艺方法可消除激光冲击强化导致工件表面产生的残余应力洞。
为了达到上述目的,本发明还具有以下特征:
1、步骤1中,微织构激光(单脉冲)能量P0的范围为0.2mj-1mJ,激光的光斑尺寸为1μm,微织构凹坑距离范围为:0-140μm。
2、所述工件表面预先打磨成镜面。
3、借助日本基恩士VHX 1000c超景深三维显微镜观察材料的三维形貌,确定试样加载区域边缘滑移深度。
4、步骤5中,测量获得的试样加载区域边缘滑移深度为H1,步骤6中,用使激光能量P4进行激光冲击强化,其中,P1<P4<P3,测量以去离子水为约束层激光冲击后试样加载区域边缘滑移深度为H2,若H2>H1则选择激光能量为P4’ =P1+0.618*(P4-P1)的激光进行强化冲击实验,若 H2<H1则选择激光能量P4’=P4+0.618*(P3-P4) 的激光进行强化冲击实验;激光冲击后试样加载区域边缘滑移深度H2’,不断调节冲级强化激光的能量,直到H2’≈H1。
5、步骤6完成后,测量激光冲击区域残余应力,若分布不均匀则调整调节强化冲击激光参数,直至表面残余应力分布均匀。
本发明原理如下:
激光冲击波加载材料表面后,冲击波在材料内部会形成轴向传播的纵波和稀疏波,而在材料表面则会形成稀疏波,并向四周传播。光斑边界可看成是稀疏波的波源,稀疏波由光斑边界向四周传播,一部分向中心汇聚,另一部分向外传播。针对残余应力洞是由稀疏波向中间汇聚和薄板试样中激光冲击波在试样中来回反射共同作用形成。利用激光微织构形成的阵列小孔,达到释放残余应力的目的,同时,微织构形成的小孔在表面稀疏波传播过程中起到阻断作用,使稀疏波无法汇聚到光斑中心,无法形成残余应力洞。对于薄板件,通过在背面增加与材料固有频率接近的阻抗吸收到达背面的冲击波。
使用本发明方法进行工件表面的激光冲击强化处理,无需改变光斑形状,无需高搭接率,可以直接消除残余应力洞,不仅提高加工效率同时降低了加工成本。
附图说明
下面结合附图对本发明作进一步的说明。
图1-a是本实施例工件表面微织构全貌图。
图1-b是本实施例工件表面微织构单盲孔图。
图2-a是检测到稀疏波的波形图。
图2-b是未检测到稀疏波的波形图。
图3-a是工件表面最大残余主应力分布图。
图3-b是工件表面最小残余主应力分布图。
图3-c是工件表面残余主应力方向角分布图。
图4-a是本实施例工件表面激光冲击强化后的全貌图。
图4-b是本实施例工件表面激光冲击强化后的单盲孔图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步说明。
本实施例一种利用表面微织构去除残余应力洞的工件表面激光冲击工艺,其特征在于步骤如下:
步骤1、在工件表面(工件表面预先打磨成镜面)进行激光微织构处理(此处利用激光的热效应进行加工,采用光纤激光器,使用弱激光),冲击激光能量为P0,微织构密度为B,冲击激光能量P0的范围为P1-P2。优选的,冲击激光能量P0的范围为0.2mj-1mj,冲击激光的光斑尺寸为1μm,微织构凹坑距离范围为:0-140μm。本例中,选用7050铝合金材料,以单脉冲能量为0.2mj(功率5W)的激光,光斑尺寸为1μm,微织构凹坑距离为5μm进行微织构的制备,激光微织构处理后,显微镜下的微织构全貌见图1-a,显微镜下的微织构单盲孔见图1-b。
步骤2、采用K9玻璃作为约束层对激光微织构处理过的工件表面进行激光冲击强化(此处利用强激光诱导冲击波的力学效应进行加工,使用脉冲激光器,使用强激光),所述激光冲击强化的激光能量P3可使得未处理过的工件表面出现残余应力洞;同时使用PVDF压电传感器进行工件表面动态应变检测。
步骤3、若PVDF压电传感器检测不到稀疏波,则减小微织构密度,重复步骤1-2,直到检测到稀疏波;若PVDF压电传感器检测到稀疏波,则增大微织构密度,重复步骤1-2,直到检测不到稀疏波;以刚好检测不到稀疏波时所对应的微织构密度作为相应激光微织构处理激光能量下的最小可行微织构密度。如图2-a所示,为检测到稀疏波的波形图。图2-b为未检测到稀疏波的波形图。
步骤4、调整激光微织构加工的激光能量P0,并重复步骤1-3,最终获得由微织构激光能量和对应的最小可行微织构密度构成的若干个数据对,择微织构孔深适中(对于具体的一种材料而言,微织构盲孔深度都有一个合适的范围,可以通过实验的方法获得,也可以通过查找相关文献来获得),微织构密度最小的数据对,作为实施的冲击激光能量和微织构密度。
步骤5、测量以K9玻璃为约束层,以激光能量P3进行激光冲击强化后试样加载区域边缘滑移深度。本例中,使用日本基恩士VHX 1000c超景深三维显微镜观察材料的三维形貌,确定试样加载区域边缘滑移深度。本步骤中,测量获得的试样加载区域边缘滑移深度为H1。
步骤6、以去离子水为约束层,调节强化冲击激光参数,使得激光冲击后试样加载区域边缘滑移深度约等于步骤5中的试样加载区域边缘滑移深度。本步骤优选的具体做法是:用使激光能量P4进行激光冲击强化,其中,P1<P4<P3,测量以去离子水为约束层激光冲击后试样加载区域边缘滑移深度为H2,若H2>H1则选择激光能量为P4’ =P1+0.618*(P4-P1)的激光进行强化冲击实验,若 H2<H1则选择激光能量P4’=P4+0.618*(P3-P4) 的激光进行强化冲击实验;激光冲击后试样加载区域边缘滑移深度H2’,不断调节冲级强化激光的能量,直到H2’≈H1。步骤6完成后,测量激光冲击区域残余应力,若分布不均匀则调整调节强化冲击激光参数,直至表面残余应力分布均匀。如图3-a所示为工件表面最大残余主应力分布图,图3-b为工件表面最小残余主应力分布图,图3-c为工件表面残余主应力方向角分布图。从图中可知:试样其最大残余主应力均为压应力,主应力方向角曲线波动大,主应力方向分散不易应力集中。
步骤7、以筛选出的微织构密度和相应强度的冲击激光在工件表面制备微织构,然后以去离子水为约束层,用调节后的强化冲击激光对工件表面进行激光冲击强化,工件表面残余主应力为分布均匀的压应力,不存在“残余应力洞”现象。
针对不同材料,最理想的工艺参数会有所不同。针对7050航空铝合金,在激光功率为5W,光斑直径为1μm,凹坑距离为110μm,获得了最为理想的残余压应力。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (8)

1.一种利用表面微织构去除残余应力洞的工件表面激光冲击工艺,利用表面微织构去除残余应力洞的工件表面激光冲击工艺,其特征在于步骤如下:
步骤1、在工件表面进行激光微织构处理,微织构采用的激光能量为P0,微织构密度为B, 微织构的激光能量P0的范围为P1-P2;
步骤2、采用K9玻璃作为约束层对激光微织构处理过的工件表面进行激光冲击强化,所述激光冲击强化的激光能量P3,该能量可使得未处理过的工件表面出现残余应力洞;同时使用PVDF压电传感器进行工件表面动态应变检测;
步骤3、若黏贴在表面的PVDF压电传感器检测不到稀疏波,则减小微织构密度,重复步骤1-2,直到检测到稀疏波;若PVDF压电传感器检测到稀疏波,则增大微织构密度,重复步骤1-2,直到检测不到稀疏波;以刚好检测不到稀疏波时所对应的微织构密度作为相应激光微织构处理激光能量下的最小可行微织构密度;
步骤4、调整激光微织构处理的激光能量P0,并重复步骤1-3,最终获得由微织构激光能量和对应的最小可行微织构密度构成的若干个数据对,选择微织构孔深适中,微织构密度最小的数据对,作为实施的微织构的激光能量和微织构密度;
步骤5、测量以K9玻璃为约束层,以激光能量P3进行激光冲击强化后试样加载区域边缘滑移深度;
步骤6、以去离子水为约束层,调节激光冲击强化的激光参数,使得激光冲击后试样加载区域边缘滑移深度约等于步骤5中的试样加载区域边缘滑移深度;
步骤7、以筛选出的微织构密度和相应能量的激光在工件表面制备微织构,然后以去离子水为约束层,用调节后的激光参数对工件表面进行激光冲击强化。
2.根据权利要求1所述的利用表面微织构去除残余应力洞的工件表面激光冲击工艺,其特征在于:步骤1中,微织构激光能量P0的范围为0.2mj-1mJ,激光的光斑尺寸为1μm,微织构凹坑距离范围为:0-140μm。
3.根据权利要求1所述的利用表面微织构去除残余应力洞的工件表面激光冲击工艺,其特征在于:所述工件表面预先打磨成镜面。
4. 根据权利要求1所述的利用表面微织构去除残余应力洞的工件表面激光冲击工艺,其特征在于:借助日本基恩士VHX 1000c超景深三维显微镜观察材料的三维形貌,确定试样加载区域边缘滑移深度。
5. 根据权利要求1所述的利用表面微织构去除残余应力洞的工件表面激光冲击工艺,其特征在于:步骤5中,测量获得的试样加载区域边缘滑移深度为H1,步骤6中,用使激光能量P4进行激光冲击强化,其中,P1<P4<P3,测量以去离子水为约束层激光冲击后试样加载区域边缘滑移深度为H2,若H2>H1则选择激光能量为P4’ =P1+0.618*(P4-P1)的激光进行强化冲击实验,若 H2<H1则选择激光能量P4’=P4+0.618*(P3-P4) 的激光进行强化冲击实验;激光冲击后试样加载区域边缘滑移深度H2’,不断调节冲级强化激光的能量,直到H2’≈H1。
6.根据权利要求1所述的利用表面微织构去除残余应力洞的工件表面激光冲击工艺,其特征在于:步骤6完成后,测量激光冲击区域残余应力,若分布不均匀则调整调节强化冲击激光参数,直至表面残余应力分布均匀。
7. 根据权利要求1所述的利用表面微织构去除残余应力洞的工件表面激光冲击工艺,其特征在于:步骤1中, 使用光纤激光器对工件表面进行热处理,制备表面微织构。
8.根据权利要求1所述的利用表面微织构去除残余应力洞的工件表面激光冲击工艺,其特征在于:步骤2中使用脉冲激光器的强激光诱导冲击波的力学效应对工件表面进行激光冲击强化。
CN201610880917.4A 2016-10-09 2016-10-09 利用表面微织构去除残余应力洞的工件表面激光冲击工艺 Active CN106435158B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201711292041.2A CN107858501B (zh) 2016-10-09 2016-10-09 一种去除残余应力洞的工件表面激光冲击工艺
CN201610880917.4A CN106435158B (zh) 2016-10-09 2016-10-09 利用表面微织构去除残余应力洞的工件表面激光冲击工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610880917.4A CN106435158B (zh) 2016-10-09 2016-10-09 利用表面微织构去除残余应力洞的工件表面激光冲击工艺

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201711292041.2A Division CN107858501B (zh) 2016-10-09 2016-10-09 一种去除残余应力洞的工件表面激光冲击工艺

Publications (2)

Publication Number Publication Date
CN106435158A CN106435158A (zh) 2017-02-22
CN106435158B true CN106435158B (zh) 2017-12-15

Family

ID=58172407

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201711292041.2A Active CN107858501B (zh) 2016-10-09 2016-10-09 一种去除残余应力洞的工件表面激光冲击工艺
CN201610880917.4A Active CN106435158B (zh) 2016-10-09 2016-10-09 利用表面微织构去除残余应力洞的工件表面激光冲击工艺

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201711292041.2A Active CN107858501B (zh) 2016-10-09 2016-10-09 一种去除残余应力洞的工件表面激光冲击工艺

Country Status (1)

Country Link
CN (2) CN107858501B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107742011B (zh) * 2017-09-26 2020-12-11 南京航空航天大学 叶轮叶片减阻微织构的设计方法
CN108085631B (zh) * 2017-11-14 2019-10-08 上海交通大学 一种医用钛合金螺钉的表面处理方法
CN110361121B (zh) * 2018-04-09 2020-12-25 中国科学院沈阳自动化研究所 一种激光冲击强化诱导残余应力场精确预测方法
CN110026686B (zh) * 2019-05-28 2021-07-02 广东工业大学 一种激光冲击方法、装置及设备
CN111074061B (zh) * 2020-01-07 2021-07-23 山东大学 一种基于激光冲击波的均匀表面强化方法
CN112501425B (zh) * 2020-11-27 2021-08-27 山东大学 一种具有反高斯分布冲击波强度的激光表面强化方法
CN113122702B (zh) * 2021-03-25 2022-03-01 山东大学 一种基于变液体约束层物性的双物理效应脉冲激光冲击方法
CN113523708B (zh) * 2021-08-24 2022-08-23 南通大学 一种修复齿面微接触疲劳损伤的方法及修复装置
CN114295731B (zh) * 2021-12-28 2023-02-21 杭州电子科技大学 一种基于激光激励纵波测量亚表面缺陷深度的方法
CN114486032B (zh) * 2021-12-31 2023-07-28 中国航空制造技术研究院 一种转角激光冲击强化残余应力分析方法
CN115821027A (zh) * 2022-10-25 2023-03-21 北京翔博科技股份有限公司 基于激光超声的残余应力消除方法、装置和设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025821A1 (en) * 1994-03-22 1995-09-28 Battelle Memorial Institute Reducing edge effects of laser shock peening
CN1102962C (zh) * 1997-12-18 2003-03-12 通用电气公司 采用低能激光的激光冲击处理
US7776165B1 (en) * 2000-06-09 2010-08-17 Lsp Technologies, Inc. Method of modifying a workpiece following laser shock processing
CN102409157A (zh) * 2011-11-21 2012-04-11 江苏大学 一种中空激光强化方法
CN103060528A (zh) * 2013-01-14 2013-04-24 温州大学 一种激光复合强化工艺
CN103111752A (zh) * 2013-01-14 2013-05-22 温州大学 一种激光复合微织构缸套内表面的方法和装置
CN104046769A (zh) * 2014-06-09 2014-09-17 江苏大学 一种激光冲击波强化中降低表面粗糙度的方法及装置
CN105002349A (zh) * 2015-07-21 2015-10-28 江苏大学 一种变光斑多层交错激光冲击均匀强化叶片的方法
CN105177273A (zh) * 2015-09-30 2015-12-23 江苏大学 一种提高关键重要构件疲劳强度的激光冲击强化方法
CN105648201A (zh) * 2016-03-24 2016-06-08 江苏大学 一种利用激光冲击波提高自修复材料修复效果的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030378A (ja) * 2000-07-17 2002-01-31 Sumitomo Special Metals Co Ltd 結晶化発熱温度制御による鉄基永久磁石合金の製造方法
WO2011123205A1 (en) * 2010-03-30 2011-10-06 Imra America, Inc. Laser-based material processing apparatus and methods
CN101759139B (zh) * 2009-12-10 2013-06-12 江苏大学 Mems微器件的表面改性处理方法及装置
US20120255923A1 (en) * 2011-04-08 2012-10-11 Douglas Johnson Modular display and storage tray system
US20130133804A1 (en) * 2011-11-29 2013-05-30 Samy Laroussi Mzabi Texturing of a reinforcing cord for a pneumatic tire
CN103060796A (zh) * 2013-01-14 2013-04-24 温州大学 一种激光复合微织构修复强化齿轮的方法
CN103614541B (zh) * 2013-10-31 2015-08-19 中国科学院宁波材料技术与工程研究所 针对工件表面的激光冲击强化装置及激光冲击强化处理方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025821A1 (en) * 1994-03-22 1995-09-28 Battelle Memorial Institute Reducing edge effects of laser shock peening
CN1102962C (zh) * 1997-12-18 2003-03-12 通用电气公司 采用低能激光的激光冲击处理
US7776165B1 (en) * 2000-06-09 2010-08-17 Lsp Technologies, Inc. Method of modifying a workpiece following laser shock processing
CN102409157A (zh) * 2011-11-21 2012-04-11 江苏大学 一种中空激光强化方法
CN103060528A (zh) * 2013-01-14 2013-04-24 温州大学 一种激光复合强化工艺
CN103111752A (zh) * 2013-01-14 2013-05-22 温州大学 一种激光复合微织构缸套内表面的方法和装置
CN104046769A (zh) * 2014-06-09 2014-09-17 江苏大学 一种激光冲击波强化中降低表面粗糙度的方法及装置
CN105002349A (zh) * 2015-07-21 2015-10-28 江苏大学 一种变光斑多层交错激光冲击均匀强化叶片的方法
CN105177273A (zh) * 2015-09-30 2015-12-23 江苏大学 一种提高关键重要构件疲劳强度的激光冲击强化方法
CN105648201A (zh) * 2016-03-24 2016-06-08 江苏大学 一种利用激光冲击波提高自修复材料修复效果的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
激光技术在表界面性能检测与调控中的应用;曹宇鹏;《南通大学学报(自然科学版)》;20140630;第13卷(第2期);26-31 *

Also Published As

Publication number Publication date
CN107858501B (zh) 2019-02-12
CN107858501A (zh) 2018-03-30
CN106435158A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN106435158B (zh) 利用表面微织构去除残余应力洞的工件表面激光冲击工艺
Amanov et al. Effect of combined shot peening and ultrasonic nanocrystal surface modification processes on the fatigue performance of AISI 304
CN103409758B (zh) 泵类壳体及叶片微细裂纹激光强化延寿方法
WO2018196105A1 (zh) 一种在金属工件表层形成梯度纳米结构的组合方法
Bagherifard et al. Fatigue properties of nanocrystallized surfaces obtained by high energy shot peening
CN106244791B (zh) 一种降低激光增材件气孔率的表面强化方法
CN110438425B (zh) 一种激光冲击强化与喷丸强化优化组合的强化方法
WO2023036141A1 (zh) 一种可消除熔覆层界面的海工平台桩腿激光复合修复方法
CN110760668B (zh) 一种获取超细晶表层的超声辅助激光喷丸方法
CN102409157A (zh) 一种中空激光强化方法
CN107290362B (zh) 一种690高强钢表面形成纳米晶的检测方法
Tan et al. Effects of different mechanical surface treatments on surface integrity of TC17 alloys
CN103231206A (zh) 一种深海钻井平台r4级系泊链生产工艺
Cao et al. Numerical simulation of residual stress field induced by laser shock processing with square spot
Geng et al. Microstructure and mechanical properties of AZ31B magnesium alloy via ultrasonic surface rolling process
CN106467933A (zh) 一种基于梯度晶粒的激光冲击强化方法
CN107236859A (zh) 一种获得最佳表面质量激光喷丸参数的建模和计算方法
CN108707741A (zh) 一种奥氏体不锈钢焊接接头的表面复合处理工艺
CN103343189B (zh) 一种组合式激光冲击强化厚板的方法
CN102618700A (zh) 一种金属玻璃的激光疲劳强化方法
Yao et al. Laser hardening techniques on steam turbine blade and application
CN109136529A (zh) 一种激光冲击强化方法
Yang et al. Laser shock forming of SUS304 stainless steel sheet with elliptical spot
Cao et al. Experimental study on laser peen texturing and tribological properties of E690 high-strength steel
Wei et al. Surface integrity variations of stainless steel 304 upon severe shot peening

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant