WO2018192517A1 - 改良型柴油加氢裂化催化剂及其制备方法 - Google Patents

改良型柴油加氢裂化催化剂及其制备方法 Download PDF

Info

Publication number
WO2018192517A1
WO2018192517A1 PCT/CN2018/083500 CN2018083500W WO2018192517A1 WO 2018192517 A1 WO2018192517 A1 WO 2018192517A1 CN 2018083500 W CN2018083500 W CN 2018083500W WO 2018192517 A1 WO2018192517 A1 WO 2018192517A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
hydrocracking catalyst
catalyst
preparing
alumina
Prior art date
Application number
PCT/CN2018/083500
Other languages
English (en)
French (fr)
Inventor
明卫星
冯春峰
赵焘
朱吟昊
施苗
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Publication of WO2018192517A1 publication Critical patent/WO2018192517A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7815Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself

Definitions

  • the invention relates to a catalyst, in particular to an improved diesel hydrocracking catalyst and a process for the preparation thereof.
  • the conventional preparation methods of the hydrocracking catalyst mainly include a dipping method, a coprecipitation method, a kneading method, etc., wherein the preparation process of the kneading method is the simplest, and the requirements for the process and the catalyst compound are not high, but the preparation process is relatively extensive, the catalyst The dispersibility of each component is not good, and some metal hydrogenation active centers are covered, which can not exert its activity better. It is usually used for catalysts with less hydrogenation performance; the preparation process of coprecipitation method is the most complicated.
  • the impregnation method is the most widely used method for preparing hydrocracking catalysts. Firstly, a carrier having a shape, mechanical strength, specific surface and acidity, etc., which meets the performance requirements of the catalyst, is prepared, and then the metal component is supported by a saturated or supersaturated impregnation method. The components are enriched in the catalyst to make the catalyst have higher mechanical strength and fully exert its hydrogenation performance.
  • the hydrocracking catalyst prepared by the prior method has simple mechanical mixing between the components, and the components in the catalyst are easily agglomerated into secondary particles, so that the dispersibility of the active component is poor, and the prepared catalyst is difficult to prepare. The best performance is achieved, and there are also problems with complicated preparation processes and high costs.
  • US Pat. No. 4,738,767 discloses a hydrocracking catalyst whose main acidic component is amorphous silicon aluminum.
  • the amorphous silicon aluminum used in the carrier is prepared by precipitating aluminum into a silica gel, which results in a ratio of silicon to aluminum. The surface area and pore volume are small, the acid amount is low and the distribution is uneven, and the catalyst activity is not high.
  • CN1351121A discloses a hydrocracking catalyst containing modified ⁇ molecular sieve and amorphous silicon aluminum and a preparation method thereof, wherein the modified ⁇ molecular sieve directly exchanges the synthesized molecular sieve slurry with ammonium, and then roasts deammonium and acid.
  • the modified ⁇ molecular sieve is obtained by treatment and hydrothermal treatment. Since a large amount of non-skeletal aluminum is retained in the pores of the molecular sieve, the acidity and diffusion property of the modified molecular sieve are affected, which ultimately affects the yield and properties of the diesel product.
  • CN1393521A discloses a medium oil type hydrocracking catalyst and a preparation method thereof, wherein the carrier used for the catalyst is amorphous silicon aluminum, aluminum oxide and Y and ⁇ composite molecular sieve, wherein the composite molecular sieve is after the ⁇ molecular sieve raw powder is burned to the template. After mixing with the modified Y molecular sieve and then performing ammonium exchange treatment, the catalytic activity of the catalyst is not high, and the product quality of the middle distillate of jet coal and diesel is generally required to be further improved.
  • the object of the present invention is to provide an improved diesel hydrocracking catalyst and a preparation method thereof, which can significantly reduce the freezing point of the diesel fraction and increase the cetane number of the diesel fuel under the premise of ensuring the diesel oil yield.
  • an improved diesel hydrocracking catalyst comprising the following components and their weight percentages: 4 to 25% molecular sieve, 10 to 65% ⁇ - Al 2 O 3 , 15 to 70% amorphous silicon aluminum, 9 to 40% binder and 7 to 35% active metal oxide; the catalyst has a specific surface area of 220 to 450 m 2 /g, total pores The capacity is 0.30 to 0.73 cm 3 /g.
  • the catalyst raw material comprises the following components and their weight percentages: 2 to 4% molecular sieve, 20 to 34% ⁇ -Al 2 O 3 , 20 to 35% amorphous silicon aluminum, 13 to 40% a binder and 18 to 29% active metal oxide; the catalyst has a specific surface area of 342 to 361 m 2 /g, and a total pore volume of 0.50 to 0.57 cm 3 /g; the catalyst is columnar and has a length of 3 to 3 8mm.
  • the molecular sieve is one or more of a ⁇ molecular sieve, a Y molecular sieve, a MOR molecular sieve, a ZSM-5 molecular sieve, a ZSM-22 molecular sieve, and a ZSM-23 molecular sieve.
  • the active metal in the active metal oxide is one or more of W, Mo, Ni, and Co.
  • the ⁇ molecular sieve has a specific surface area of 450 to 750 m 2 /g and a total pore volume of 0.3 to 0.5 cm 3 /g.
  • the amorphous silicon aluminum has a pore volume of 0.5 to 1.0 cm 3 /g and a specific surface area of 300 to 500 m 2 /g.
  • the binder contains 10 to 40% by mass of small-pore alumina, and the rest is acid;
  • the small-pore alumina has a pore volume of 0.3 to 0.5 cm 3 /g and a specific surface area of 200 ⁇ . 350 m 2 /g, the mass ratio of the acid to the small pore alumina is 0.1 to 0.5.
  • a method for preparing the above improved diesel hydrocracking catalyst comprises the following steps:
  • the molecular sieve obtained in the step 1) is added to a mixed solution of aluminum salt and ammonia water for precipitation, and the precipitate is fully precipitated, and then the slurry is sequentially evaporated, dried and calcined to obtain a molecular sieve and Alumina composite material;
  • 3) preparing the catalyst: mixing the molecular sieve obtained in the step 2) with the alumina composite material, the amorphous silicon aluminum, the binder and the active metal oxide according to the ratio of the raw materials, sequentially rolling, forming, drying and activating.
  • the hydrocracking catalyst is obtained.
  • the silicon source, the aluminum source, the sodium hydroxide, the tetraethylammonium bromide solution and the water are mixed in a molar ratio of SiO 2 :Al 2 O 3 :Na 2 O:tetraethyl bromide.
  • Ammonium:H 2 O is added in a ratio of 50 to 70: 1 : 5 to 8:15 to 20:1000 to 1200.
  • the aluminum salt is 0.5 to 3.0 mol/L of aluminum chloride, and the concentration of the ammonia water is 0.5 to 4 mol/L.
  • the molecular sieve and the alumina composite have a pore volume of 0.4 to 0.9 cm 3 /g and a specific surface area of 350 to 500 m 2 /g.
  • the molecular sieve is a ⁇ molecular sieve
  • the crystallization temperature is 135 to 145 ° C
  • the water is washed until the pH of the washing liquid is 6.5 to 7.5
  • the drying temperature is 90 to 110 ° C
  • the drying time is 22 to 26 hours.
  • the temperature is 60-80 ° C
  • the pH is 3-7
  • the drying temperature is 90-120 ° C
  • the drying time is 2 to 3 hours
  • the baking temperature is 300-600 ° C.
  • the baking time is 2 to 8 hours.
  • the drying temperature is 100 to 120 ° C
  • the drying time is 18 to 22 hours
  • the activation temperature is 450 to 600 ° C
  • the activation time is 4 to 6 hours.
  • the concentration of the ammonia water is 1.0 to 2.0 mol/L.
  • the aluminum source is one or more of pseudoboehmite, aluminum sulfate and sodium metaaluminate
  • the silicon source is one of white carbon black, silica sol and water glass. kind or several.
  • the present invention has the following advantages:
  • the present invention provides a preparation method of a diesel hydrocracking catalyst, which comprises adding a zeolite molecular sieve without a templating agent to an inorganic aluminum salt solution for preparing ⁇ -Al 2 O 3 , and precipitating, drying and roasting to obtain a molecular sieve and a composite material of ⁇ -Al 2 O 3 in which NH 4 + formed by the reaction of an aluminum salt with ammonia water is exchanged with a base Na + which is a negative charge of a balanced molecular sieve skeleton, and in the calcination process, organic molecules in the molecular sieve are simultaneously
  • the templating agent and NH 4 + are removed, and the templating agent is mainly used to fill the inside of the pores and balance the negative charge of the molecular sieve framework TEA + , and the NH 4 + is removed in the form of NH 3 to obtain the H- ⁇ molecular sieve, thereby
  • the composite material is mixed with other materials according to the catalyst preparation ratio, crushed, formed, dried and activated to obtain a catalyst.
  • the carrier Because of the high molecular sieve dispersion in the catalyst carrier of the invention, the carrier has a more uniform acidity, alumina and molecular sieve. The closer contact is beneficial to the rapid transfer of reactants and product molecules between the acid center and the cracking center.
  • the cracking component and the hydrogenation component are optimally matched, and the hydrocracking catalyst middle distillate selectivity prepared using the same high.
  • the hydrogenation active center and the cracking active center of the catalyst of the invention are more reasonable, have better middle distillate selectivity, can produce high quality middle distillate products, and have high catalytic activity, and can ensure high diesel recovery.
  • the freezing point of the diesel fraction is obviously reduced, and the cetane number of the diesel oil is improved, which is suitable for the catalytic process of treating high-quality diesel oil by hydrocracking of the vacuum distillate.
  • the carrier of the invention has a large specific surface area, a wide and transparent channel structure, can provide more mass transfer opportunities, and has a high diffusion rate, and the reactant molecules can quickly enter the inside of the carrier channel, thereby realizing the reaction molecules in the acid center and the hydrogenation center.
  • the rapid transfer between the reaction products can quickly escape, avoiding the occurrence of secondary side reactions.
  • the invention optimizes the matching between the hydrogenation function and the acidic function, forms a combination of strong hydrogenation function and medium acid or weak acid function, and the positive carbon ion can be more hydrogenated to the heterogeneous hydrogenation center. The direction of progress is reduced, and the secondary cracking of the cracked product is reduced.
  • the specific surface area and pore volume were determined by low temperature N 2 physical adsorption method.
  • the molar ratio of silicon to aluminum was determined by chemical method.
  • the amount of infrared acid, B acid and L acid were determined by pyridine adsorption infrared spectroscopy. The degree is determined by the XRD method.
  • the crystallized molecular sieve slurry is directly filtered, washed, dried, and dried without de- templating agent treatment, and the SiO 2 /Al 2 O 3 (molar ratio) is 20-60; the aluminum salt solution and the alkali precipitant are mixed.
  • stirring the temperature is controlled at 60-80 ° C, the pH is controlled at 3-7, the evaporation is carried out at a temperature of 50-90 ° C, the drying is performed at 100 ° C, and the precipitate is baked.
  • the calcination temperature is 300-600 ° C, the calcination time is 2-6 hours, and the molecular sieve and the alumina composite material are obtained; according to the catalyst mixing ratio, the molecular sieve and the alumina composite material, the amorphous silicon aluminum, the active metal oxide and the bonding Agent (the pore volume of the alumina in the binder is 0.3-0.5 cm 3 /g, the specific surface area is 200-350 m 2 /g, the ratio of acid to alumina in the binder is 0.1-0.5, and the acid is HNO 3 Or H 3 PO 4 ), mixing, rolling in a wheel mill for 20 to 60 minutes, extruding into a column, the length of the carrier is 3 to 8 mm, and then drying the strip carrier at 100 to 120 ° C for 10 to 20 hours. The mixture is calcined at 450 to 600 ° C for 4 to 6 hours to obtain a hydrocracking catalyst.
  • binder 240g (dry basis 30%) is mixed, milled in a wheel mill for 40 minutes, crushed into a extrudable paste, extruded into strips, the carrier shape is columnar, length is 3 ⁇ 8 mm, the strip carrier was dried at 120 ° C for 20 hours, and calcined at 550 ° C for 5-6 hours to obtain a catalyst H-2.
  • Table 2 The properties are shown in Table 2.
  • the catalysts H-3 and H-4 obtained in Example 3 and Example 4 were evaluated on a fixed bed hydrogenation experimental apparatus under the following conditions: a total reaction pressure of 10 MPa, a hydrogen oil volume ratio of 1000, and a volumetric space velocity of 1.0 h. -1 , using vacuum distillate (VGO) as a feedstock oil, the properties of which are shown in Table 3.
  • VGO vacuum distillate
  • the catalysts H-3 and H-4 were evaluated under the same process conditions, and the evaluation results are shown in Table 4.
  • the catalyst middle distillate prepared by the present invention has good selectivity under the same process conditions. Under the premise of ensuring the diesel oil yield, the freezing point of the diesel fraction is obviously reduced, and the cetane number of the diesel fuel is increased.
  • Raw material oil Vacuum distillate Density (20 ° C), kg / m 3 912.3 Distillation range, °C IBP/10% 315/403 30%/50% 442/461 70%/90% 495/526 95%/EBP 532/544 Freezing point, °C 32 Nitrogen, ⁇ g/g 1568 Carbon, wt% 84.53 Hydrogen, wt% 11.72 Carbon residue, wt% 0.32 BMCI value 43

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

一种改良型柴油加氢裂化催化剂及其制备方法,催化剂原料包括以下组分及重量百分比:4~25%的分子筛,10~65%的γ‑Al 2O 3,15~70%的无定形硅铝,9~40%的粘结剂及7~35%的活性金属氧化物;催化剂比表面积为220~450m 2/g,总孔容为0.30~0.73cm 3/g。在制备分子筛与氧化铝复合材料的过程中加入不脱模板剂的分子筛,混合液中,铝盐与氨水反应生成的NH 4+与平衡分子筛骨架负电荷的碱Na +进行交换,在焙烧过程中,同时将分子筛中的有机模板剂及NH 4+脱除,从而在制备复合材料过程中完成了沸石分子筛的铵交换及脱模板剂,不用单独对分子筛进行脱模板剂和铵交换,模板剂对分子筛孔道结构具有支撑和保护作用,本催化剂可在保证柴油高收率的前提下,明显地降低柴油馏分的凝点,提高柴油的十六烷值。

Description

改良型柴油加氢裂化催化剂及其制备方法 技术领域
本发明涉及催化剂,具体地指一种改良型柴油加氢裂化催化剂及其制备方法。
背景技术
近年来,随着我国经济的高速发展,各种油品的需求快速增长,而柴油的需求一直居各种石油产品之首。受加工原有特点和加工流程的制约,柴油的产量,尤其是低凝点柴油的产量,受到馏分油凝点的限制,这成为制约北方炼油企业经济效益的“瓶颈”问题。因此,提高低凝点柴油的质量和产量,以满足市场需求,仍然是备受企业关注的问题。这也对加氢裂化技术提出了更高的要求,而催化剂在加氢裂化反应中起核心作用,加氢裂化技术的关键在于催化剂的研制和改进。
加氢裂化催化剂常规的制备方法主要有浸渍法、共沉淀法、混捏法等,其中混捏法的制备工艺最简单,对工艺及催化剂配料的要求都不高,但由于其制备过程较粗放,催化剂中各组分的分散性不好,部分金属加氢活性中心被覆盖,不能更好的发挥其活性,通常为加氢性能要求不是很高的催化剂所采用;共沉淀法制备技术制备过程最为复杂,但催化剂中各组分的分散度很好,各组分之间的匹配关系好,加氢和裂化活性中心在催化剂中均匀分布,使催化剂加氢与裂化活性中心具有更高的协同作用;浸渍法是制备加氢裂化催化剂最广泛的使用方法,首先需制备出形状,机械强度,比表面及酸性等符合催化剂性能要求的载体,然后通过饱和或过饱和浸渍方法进行负载金属组分,金属组分富集于催化剂中,使催化剂具有更高的机械强度,充分发挥其加氢性能。
然而,现有方法制得的加氢裂化催化剂,其组分之间都是简单的机械混合,催化剂中各组分容易团聚为二次粒子,使得活性组分分散性较差,制备的催化剂难以发挥最佳性能,而且还存在制备流程复杂,成本高的问题。如:US4738767公开了一种加氢裂化催化剂,其主要酸性组分是无定形硅铝,载体所用的无定形硅铝的制备方法是将铝沉淀到硅凝胶中,这就造成硅铝的比表面积和孔容都较小,酸量低且分布不均匀等特点,催化剂活性不高。CN1351121A公布了一种含改性β分子筛和无定型硅铝的加氢裂化催化剂及其制备方法,该方法中改性β分子筛是将合成后的分子筛浆液直接进行铵交换,然后焙烧脱铵、酸处理和水热处理得到改性β分子筛,由于大量非骨架铝滞留在分子筛孔 道中,影响了改性分子筛的酸性及其扩散性能,最终影响了柴油产品的产率和性质。CN1393521A公开了一种中油型加氢裂化催化剂及其制备方法,催化剂所用载体为无定形硅铝、氧化铝及Y和β的复合型分子筛,其中复合分子筛是将β分子筛原粉烧去模板剂后与改性Y分子筛混合后,再进行铵交换处理而得,该催化剂的催化活性不高,航煤和柴油的中间馏分油的产品质量一般,需进一步提高。
发明内容
本发明的目的就是要提供一种改良型柴油加氢裂化催化剂及其制备方法,该催化剂可在保证柴油收率的前提下,明显地降低柴油馏分的凝点,提高柴油的十六烷值。
为实现上述目的,本发明采用的技术方案是:一种改良型柴油加氢裂化催化剂,所述催化剂原料包括以下组分及其重量百分比:4~25%的分子筛,10~65%的γ-Al 2O 3,15~70%的无定形硅铝,9~40%的粘结剂及7~35%的活性金属氧化物;所述催化剂的比表面积为220~450m 2/g,总孔容为0.30~0.73cm 3/g。
进一步地,所述催化剂原料包括以下组分及其重量百分比:2~4%的分子筛,20~34%的γ-Al 2O 3,20~35%的无定形硅铝,13~40%的粘结剂及18~29%的活性金属氧化物;所述催化剂的比表面积为342~361m 2/g,总孔容为0.50~0.57cm 3/g;所述催化剂呈柱状,长度为3~8mm。
进一步地,所述分子筛为β分子筛、Y型分子筛、MOR分子筛、ZSM-5分子筛、ZSM-22分子筛及ZSM-23分子筛中的一种或几种。
进一步地,所述活性金属氧化物中的活性金属为W、Mo、Ni和Co中的一种或几种。
进一步地,所述β分子筛比表面积为450~750m 2/g,总孔容为0.3~0.5cm 3/g。
进一步地,所述无定形硅铝孔容为0.5~1.0cm 3/g,比表面积为300~500m 2/g。
更进一步地,所述粘结剂中含质量百分数为10~40%的小孔氧化铝,其余为酸;所述小孔氧化铝孔容为0.3~0.5cm 3/g,比表面积为200~350m 2/g,所述酸与所述小孔氧化铝质量比例为0.1~0.5。
一种上述改良型柴油加氢裂化催化剂的制备方法,包括以下步骤:
1)水热合成法制备分子筛:将四乙基溴化铵溶液、氢氧化钠、铝源和水混合并搅拌至澄清溶液,然后加入硅源,继续搅拌得到硅铝凝胶;然后将硅铝凝胶进行晶化,经水洗和干燥处理,得分子筛;
2)制备分子筛与γ-Al 2O 3复合材料:将步骤1)得到的分子筛加入铝盐和氨水的混合溶液中进行沉淀,充分沉淀后取浆液依次进行蒸发,干燥和焙烧处理,得分子筛与氧化铝复合材料;
3)制备催化剂:将步骤2)所得分子筛与氧化铝复合材料、无定形硅铝、粘结剂及活性金属氧化物按所述原料比例进行混合,依次碾压、成型、干燥及活化,即可得所述加氢裂化催化剂。
进一步地,所述步骤1)中,硅源、铝源、氢氧化钠、四乙基溴化铵溶液及水按配料摩尔比SiO 2∶Al 2O 3∶Na 2O∶四乙基溴化铵∶H 2O为50~70∶1∶5~8∶15~20∶1000~1200的比例加入。
进一步地,所述步骤2)中,铝盐为0.5~3.0mol/L的氯化铝,氨水的浓度为0.5~4mol/L。
进一步地,所述步骤2)中,分子筛与氧化铝复合材料的孔容为0.4~0.9cm 3/g,比表面积为350~500m 2/g。
进一步地,所述步骤1)中,分子筛为β分子筛,晶化温度为135~145℃;水洗至洗涤液pH为6.5~7.5;干燥温度为90~110℃,干燥时间为22~26h。
进一步地,所述步骤2)中,沉淀过程中,温度为60~80℃,pH为3~7;干燥温度为90~120℃,干燥时间为2~3小时;焙烧温度为300~600℃,焙烧时间为2~8小时。
进一步地,所述步骤3)中,干燥温度为100~120℃,干燥时间为18~22小时,活化温度为450~600℃,活化时间为4~6小时。
进一步地,所述步骤2)中,氨水的浓度为1.0~2.0mol/L。
更进一步地,所述步骤1)中,铝源为拟薄水铝石、硫酸铝和偏铝酸钠中的一种或几种;硅源为白炭黑、硅溶胶和水玻璃中的一种或几种。
与现有技术相比,本发明具有以下优点:
其一,本发明提供了一种柴油加氢裂化催化剂制备方法,在制备γ-Al 2O 3的无机铝盐溶液中加入不脱模板剂的沸石分子筛,经沉淀,干燥及焙烧,得到分子筛与γ-Al 2O 3的复合材料,其中,混合液中,铝盐与氨水反应生成的NH 4 +与平衡分子筛骨架负电荷的碱Na +进行交换,在焙烧过程中,同时将分子筛中的有机模板剂及NH 4 +脱除,脱除的模板剂主要为填充孔道内部及平衡分子筛骨架负电荷的TEA +,而NH 4 +则以NH 3的形式被除掉,得到H-β分子筛,从而在制备复合材料过程中完成了沸石分子筛的铵交换及脱模 板剂,无需单独对沸石分子筛进行脱模板剂和铵交换,不但简化了制备工艺,而且模板剂对沸石孔道结构具有支撑和保护作用,沸石分子筛保持了良好的孔道结构。
其二,按照催化剂制备比例将复合材料与其它物料进行混合,碾压,成型,干燥及活化得到催化剂,因本发明催化剂载体中分子筛分散度高,载体具有更加均匀的酸性位,氧化铝与分子筛接触的更加紧密,有利于反应物及产物分子在酸性中心与裂化中心之间的快速转移,裂化组分和加氢组分得到了优化配合,使用其制备的加氢裂化催化剂中间馏分油选择性高。
其三,本发明催化剂的加氢活性中心和裂化活性中心匹配更加合理,具有更好的中间馏分油选择性,可多产优质中间馏分油产品,且催化活性很高,可在保证柴油高收率的前提下,明显地降低柴油馏分的凝点,提高柴油的十六烷值,适合于处理减压馏分油的加氢裂化生产优质柴油的催化过程。
其四,本发明载体比表面积大,孔道结构宽阔畅通,可以提供更多的传质机会,扩散速度高,反应物分子可以快速进入载体孔道内部,实现了反应分子在酸性中心和加氢中心之间的快速转移,反应产物可以快速逸出,避免了二次副反应的发生。同时,本发明优化了加氢功能和酸性功能之间的匹配,形成强加氢功能与中酸或弱酸性功能组合,正碳离子能更多地在加氢活性中心上加氢饱和向异构化方向进行,减少了裂解产物的二次裂化。
具体实施方式
下面结合具体实施例对本发明作进一步的详细说明,便于更清楚地了解本发明,但它们不对本发明构成限定。
以下实施例中,比表面积和孔容采用低温N 2物理吸附法测定,硅铝摩尔比采用化学法测定,红外酸量、B酸量和L酸量采用吡啶吸附红外光谱法测定,分子筛相对结晶度采用XRD方法测定。
以下实施例中加氢裂化催化剂的制备按如下步骤进行:
晶化后的分子筛浆液直接进行过滤、洗涤、干燥,干燥后不进行脱模板剂处理,其SiO 2/Al 2O 3(摩尔比)为20~60;将铝盐溶液和碱沉淀剂混合,把上述不脱模板剂的分子筛加入混合溶液中,搅拌,温度控制在60~80℃,pH值控制在3~7,于50~90℃温度条件下进行蒸发,100℃干燥,将沉淀进行焙烧,焙烧温度为300~600℃,焙烧时间为2~6 小时,得到分子筛与氧化铝复合材料;按照催化剂混合比例,将分子筛与氧化铝复合材料,无定形硅铝,活性金属氧化物及粘结剂(该粘结剂中小孔氧化铝孔容为0.3~0.5cm 3/g,比表面积为200~350m 2/g,粘结剂中酸与氧化铝比值为0.1~0.5,酸为HNO 3或H 3PO 4)进行混合,在轮碾机中进行碾压20~60分钟,挤条成柱状,载体长度为3~8mm,再将条状载体于100~120℃干燥10~20小时,450~600℃下焙烧4~6小时,得到加氢裂化催化剂。
实施例1
称取201.3g四乙基溴化铵(98wt%,工业级),27.39g氢氧化钠,7.2g拟薄水铝石(70wt%,工业级),870g水混合并搅拌至澄清溶液,然后在不断搅拌下向溶液中加入180g白炭黑(98wt%,工业级),并继续搅拌以得到均匀的硅铝凝胶;将硅铝凝胶于145℃动态晶化7天,经固液分离和洗涤干燥后得到β分子筛,编号为B1,该β分子筛的主要性质见表1。
将3000ml氯化铝溶液(浓度为1.5mol/L)加入5000ml烧杯中,将19g B1分子筛(干基99%)加入混合液中,恒温70℃,不断加入2mol/L的氨水直至pH值为4,于85℃下蒸发,将吸出的白色固体于100℃下干燥3小时,500℃下焙烧4小时得到分子筛与氧化铝复合材料273.7g(干基93%),转化率为72.5%,编号为C1。
将183.7g(干基93%)C1、无定形硅铝172.7g(干基88%)、MoO 395.5g(99.1wt%)、Ni(NO 3) 6H 2O(NiO,26.6wt%)106.7g、粘结剂240g(干基30%)进行混合,在轮碾机中进行碾压40分钟,碾压为可挤膏状,挤条成型,载体形状为柱状,长度为3~8mm,再将条状载体于120℃干燥20小时,550℃下焙烧5~6小时,得到催化剂H-1,性质见表2。
实施例2
称取201.3g四乙基溴化铵(98wt%,工业级),27.39g氢氧化钠,7.2g拟薄水铝石(70wt%,工业级),870g水混合并搅拌至澄清溶液,然后在不断搅拌下向溶液中加入180g白炭黑(98wt%,工业级),并继续搅拌以得到均匀的硅铝凝胶;将硅铝凝胶于145℃动态晶化7天,经固液分离和洗涤干燥后得到β分子筛,编号为B1,该β分子筛的主要性质见表1。
将3000ml氯化铝溶液(浓度为1.5mol/L)加入5000ml烧杯中,将28g B1分子筛(干基99%)加入混合液中,恒温70℃,不断加入2mol/L的氨水直至pH值为4,于85℃下 蒸发,将吸出的白色固体于100℃下干燥3小时,500℃下焙烧4小时得到分子筛与氧化铝复合材料276.2g(干基93%),转化率为73%,编号为C2。
将225.1g(干基93%)C2、无定形硅铝126.8g(干基88%)、MoO 3为114.3g(99.1wt%)、Ni(NO 3) 6H 2O(NiO,26.6wt%)为167.4g、粘结剂240g(干基30%)进行混合,在轮碾机中进行碾压40分钟,碾压为可挤膏状,挤条成型,载体形状为柱状,长度为3~8mm,再将条状载体于120℃干燥20小时,550℃下焙烧5~6小时,得到催化剂H-2,性质见表2。
实施例3
称取185.3g四乙基溴化铵(98wt%,工业级),22.65g氢氧化钠,10.3g拟薄水铝石(70wt%,工业级),870g水混合并搅拌至澄清溶液,然后在不断搅拌下向溶液中加入180g白炭黑(工业级),并继续搅拌以得到均匀的硅铝凝胶;将硅铝凝胶于145℃动态晶化7天,经固液分离和洗涤干燥后得到β分子筛,编号为B2,该β分子筛的主要性质见表1。
将3000ml氯化铝溶液(浓度为1.5mol/L)加入5000ml烧杯中,将60.5g B2分子筛(干基99%)加入混合液中,恒温70℃,不断加入2mol/L的氨水直至pH值为4,于85℃下蒸发,将吸出的白色固体于100℃下干燥3小时,500℃下焙烧4小时得到分子筛与氧化铝复合材料296.4g(干基93%),转化率为78.4%,编号为C3。
将145.7g(干基93%)C3、无定形硅铝210.7g(干基88%)、MoO 3为104.5g(99.1wt%)、Ni(NO 3) 6H 2O(NiO,26.6wt%)为113.7g、粘结剂240g(干基30%)进行混合,在轮碾机中进行碾压40分钟,碾压为可挤膏状,挤条成型,载体形状为柱状,长度为3~8mm,再将条状载体于120℃干燥20小时,550℃下焙烧5~6小时,得到催化剂H-3,性质见表2。
实施例4
称取185.3g四乙基溴化铵(98wt%,工业级),22.65g氢氧化钠,10.3g拟薄水铝石(70wt%,工业级),870g水混合并搅拌至澄清溶液,然后在不断搅拌下向溶液中加入180g白炭黑(工业级),并继续搅拌以得到均匀的硅铝凝胶;将硅铝凝胶于145℃动态晶化7天,经固液分离和洗涤干燥后得到β分子筛,编号为B2,该β分子筛的主要性质见表1。
将3000ml氯化铝溶液(浓度为1.5mol/L)加入5000ml烧杯中,将34.3g B2分子筛(干基99%)加入混合液中,恒温70℃,不断加入2mol/L的氨水直至pH值为4,于85℃下蒸发,将吸出的白色固体于100℃下干燥3小时,500℃下焙烧4小时得到分子筛与氧化铝复合材料285.3g(干基93%),转化率为75.6%,编号为C4。
将196.4g(干基93%)C4、无定形硅铝159.6g(干基88%)、MoO 3为108.5g(99.1wt%)、Ni(NO 3) 6H 2O(NiO,26.6wt%)为183.7g、粘结剂240g(干基30%)进行混合,在轮碾机中进行碾压40分钟,碾压为可挤膏状,挤条成型,载体形状为柱状,长度为3~8mm,再将条状载体于120℃干燥20小时,550℃下焙烧5~6小时,得到催化剂H-4,性质见表2。
将实施例3和实施例4所得催化剂H-3和H-4在固定床加氢实验装置上进行评价,评价条件为:反应总压为10MPa,氢油体积比为1000,体积空速1.0h -1,使用减压馏分油(VGO)为原料油,该原料油性质见表3。将催化剂H-3和H-4在相同的工艺条件下进行评价,评价结果见表4,从表4数据可以看出,在相同的工艺条件下,本发明制备的催化剂中间馏分油选择性好,保证柴油收率的前提下,明显地降低了柴油馏分的凝点,提高了柴油的十六烷值。
表1
分子筛 B1 B2
硅铝比(Si/Al) 31.5 22.6
相对结晶度,% 96 105
比表面,m 2/g 624 643
总孔容,ml/g 0.32 0.35
红外酸量,mmol/g 0.29 0.31
B酸/L酸 0.56 0.48
表2
Figure PCTCN2018083500-appb-000001
表3
原料油 减压馏分油
密度(20℃),kg/m 3 912.3
馏程,℃  
IBP/10% 315/403
30%/50% 442/461
70%/90% 495/526
95%/EBP 532/544
凝点,℃ 32
氮,μg/g 1568
碳,wt% 84.53
氢,wt% 11.72
残炭,wt% 0.32
BMCI值 43
表4
Figure PCTCN2018083500-appb-000002

Claims (16)

  1. 一种改良型柴油加氢裂化催化剂,其特征在于:所述催化剂原料包括以下组分及其重量百分比:4~25%的分子筛,10~65%的γ-Al 2O 3,15~70%的无定形硅铝,9~40%的粘结剂及7~35%的活性金属氧化物;所述催化剂的比表面积为220~450m 2/g,总孔容为0.30~0.73cm 3/g。
  2. 根据权利要求1所述改良型柴油加氢裂化催化剂,其特征在于:所述催化剂原料包括以下组分及其重量百分比:2~4%的分子筛,20~34%的γ-Al 2O 3,20~35%的无定形硅铝,13~40%的粘结剂及18~29%的活性金属氧化物;所述催化剂的比表面积为342~361m 2/g,总孔容为0.50~0.57cm 3/g;所述催化剂呈柱状,长度为3~8mm。
  3. 根据权利要求1或2所述改良型柴油加氢裂化催化剂,其特征在于:所述分子筛为β分子筛、Y型分子筛、MOR分子筛、ZSM-5分子筛、ZSM-22分子筛及ZSM-23分子筛中的一种或几种。
  4. 根据权利要求1或2所述改良型柴油加氢裂化催化剂,其特征在于:所述活性金属氧化物中的活性金属为W、Mo、Ni和Co中的一种或几种。
  5. 根据权利要求3所述改良型柴油加氢裂化催化剂,其特征在于:所述β分子筛比表面积为450~750m 2/g,总孔容为0.3~0.5cm 3/g。
  6. 根据权利要求1或2所述改良型柴油加氢裂化催化剂,其特征在于:所述无定形硅铝孔容为0.5~1.0cm 3/g,比表面积为300~500m 2/g。
  7. 根据权利要求1或2所述改良型柴油加氢裂化催化剂,其特征在于:所述粘结剂中含质量百分数为10~40%的小孔氧化铝,其余为酸;所述小孔氧化铝孔容为0.3~0.5cm 3/g,比表面积为200~350m 2/g,所述酸与所述小孔氧化铝质量比例为0.1~0.5。
  8. 一种权利要求1所述改良型柴油加氢裂化催化剂载体的制备方法,其特征在于:包括以下步骤:
    1)水热合成法制备分子筛:将四乙基溴化铵溶液、氢氧化钠、铝源和水混合并搅拌至澄清溶液,然后加入硅源,继续搅拌得到硅铝凝胶;然后将硅铝凝胶进行晶化,经水洗和干燥处理,得分子筛;
    2)制备分子筛与γ-Al 2O 3复合材料:将步骤1)得到的分子筛加入铝盐和氨水的混 合溶液中进行沉淀,充分沉淀后取浆液依次进行蒸发,干燥和焙烧处理,得分子筛与氧化铝复合材料;
    3)制备催化剂:将步骤2)所得分子筛与氧化铝复合材料、无定形硅铝、粘结剂及活性金属氧化物按所述原料比例进行混合,依次碾压、成型、干燥及活化,即可得所述加氢裂化催化剂。
  9. 根据权利要求8所述改良型柴油加氢裂化催化剂的制备方法,其特征在于:所述步骤1)中,硅源、铝源、氢氧化钠、四乙基溴化铵溶液及水按配料摩尔比SiO 2∶Al 2O 3∶Na 2O∶四乙基溴化铵∶H 2O为50~70∶1∶5~8∶15~20∶1000~1200的比例加入。
  10. 根据权利要求8所述改良型柴油加氢裂化催化剂的制备方法,其特征在于:所述步骤2)中,铝盐为0.5~3.0mol/L的氯化铝,氨水的浓度为0.5~4mol/L。
  11. 根据权利要求8或9或10所述改良型柴油加氢裂化催化剂载体的制备方法,其特征在于:所述步骤2)中,分子筛与氧化铝复合材料的孔容为0.4~0.9cm 3/g,比表面积为350~500m 2/g。
  12. 根据权利要求8或9或10所述改良型柴油加氢裂化催化剂载体的制备方法,其特征在于:所述步骤1)中,分子筛为β分子筛,晶化温度为135~145℃;水洗至洗涤液pH为6.5~7.5;干燥温度为90~110℃,干燥时间为22~26h。
  13. 根据权利要求8或9或10所述改良型柴油加氢裂化催化剂载体的制备方法,其特征在于:所述步骤2)中,沉淀过程中,温度为60~80℃,pH为3~7;干燥温度为90~120℃,干燥时间为2~3小时;焙烧温度为300~600℃,焙烧时间为2~8小时。
  14. 根据权利要求8或9或10所述改良型柴油加氢裂化催化剂载体的制备方法,其特征在于:所述步骤3)中,干燥温度为100~120℃,干燥时间为18~22小时,活化温度为450~600℃,活化时间为4~6小时。
  15. 根据权利要求8或9或10所述改良型柴油加氢裂化催化剂载体的制备方法,其特征在于:所述步骤2)中,氨水的浓度为1.0~2.0mol/L。
  16. 根据权利要求8或9或10所述改良型柴油加氢裂化催化剂载体的制备方法,其特征在于:所述步骤1)中,铝源为拟薄水铝石、硫酸铝和偏铝酸钠中的一种或几种;硅源为白炭黑、硅溶胶和水玻璃中的一种或几种。
PCT/CN2018/083500 2017-04-21 2018-04-18 改良型柴油加氢裂化催化剂及其制备方法 WO2018192517A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710264308.0 2017-04-21
CN201710264308.0A CN106925342B (zh) 2017-04-21 2017-04-21 改良型柴油加氢裂化催化剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2018192517A1 true WO2018192517A1 (zh) 2018-10-25

Family

ID=59437829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083500 WO2018192517A1 (zh) 2017-04-21 2018-04-18 改良型柴油加氢裂化催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN106925342B (zh)
WO (1) WO2018192517A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116020537A (zh) * 2021-10-25 2023-04-28 中国石油化工股份有限公司 一种用于生产润滑油基础油的催化剂及其制备方法和应用
CN116060114A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种加氢精制催化剂及其制备方法和应用
CN116060107A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种加氢裂化催化剂及其制备方法和应用
CN116060103A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种改性β分子筛及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106925342B (zh) * 2017-04-21 2020-02-07 武汉凯迪工程技术研究总院有限公司 改良型柴油加氢裂化催化剂及其制备方法
CN107008509B (zh) * 2017-04-21 2020-02-07 武汉凯迪工程技术研究总院有限公司 改良型柴油加氢裂化催化剂载体及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030780A (en) * 1990-07-26 1991-07-09 Union Oil Company Of California Aromatic saturation process with a silica-alumina and zeolite catalyst
CN101380588A (zh) * 2007-09-04 2009-03-11 中国石油化工股份有限公司 一种加氢裂化催化剂载体及其制备方法
CN101450319A (zh) * 2007-12-04 2009-06-10 中国石油化工股份有限公司 一种中油型加氢裂化催化剂及其制备方法
CN102049283A (zh) * 2009-10-27 2011-05-11 中国石油化工股份有限公司 加氢裂化催化剂及其制备方法
CN103100437A (zh) * 2011-11-11 2013-05-15 中国石油化工股份有限公司 催化剂载体材料的制备方法
CN106925342A (zh) * 2017-04-21 2017-07-07 武汉凯迪工程技术研究总院有限公司 改良型柴油加氢裂化催化剂及其制备方法
CN107008509A (zh) * 2017-04-21 2017-08-04 武汉凯迪工程技术研究总院有限公司 改良型柴油加氢裂化催化剂载体及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636373A (en) * 1984-06-26 1987-01-13 Mobil Oil Corporation Synthesis of crystalline silicate ZSM-12 using dibenzyldimethylammonium cations and the product produced
CN1026216C (zh) * 1992-07-30 1994-10-19 中国石油化工总公司 重油催化裂化催化剂及其制备方法
US9187702B2 (en) * 2009-07-01 2015-11-17 Chevron U.S.A. Inc. Hydroprocessing catalyst and method of making the same
CN103100410B (zh) * 2011-11-11 2015-05-13 中国石油化工股份有限公司 含分子筛的加氢催化剂的制备方法
CN104492472B (zh) * 2014-12-09 2017-01-04 华东师范大学 一种具有低焦炭产率的流化催化裂化催化助剂及制备方法
CN106311319B (zh) * 2015-06-29 2019-03-12 中国石油天然气股份有限公司 一种含微-介孔复合分子筛的加氢裂化催化剂及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030780A (en) * 1990-07-26 1991-07-09 Union Oil Company Of California Aromatic saturation process with a silica-alumina and zeolite catalyst
CN101380588A (zh) * 2007-09-04 2009-03-11 中国石油化工股份有限公司 一种加氢裂化催化剂载体及其制备方法
CN101450319A (zh) * 2007-12-04 2009-06-10 中国石油化工股份有限公司 一种中油型加氢裂化催化剂及其制备方法
CN102049283A (zh) * 2009-10-27 2011-05-11 中国石油化工股份有限公司 加氢裂化催化剂及其制备方法
CN103100437A (zh) * 2011-11-11 2013-05-15 中国石油化工股份有限公司 催化剂载体材料的制备方法
CN106925342A (zh) * 2017-04-21 2017-07-07 武汉凯迪工程技术研究总院有限公司 改良型柴油加氢裂化催化剂及其制备方法
CN107008509A (zh) * 2017-04-21 2017-08-04 武汉凯迪工程技术研究总院有限公司 改良型柴油加氢裂化催化剂载体及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116020537A (zh) * 2021-10-25 2023-04-28 中国石油化工股份有限公司 一种用于生产润滑油基础油的催化剂及其制备方法和应用
CN116020537B (zh) * 2021-10-25 2024-06-07 中国石油化工股份有限公司 一种用于生产润滑油基础油的催化剂及其制备方法和应用
CN116060114A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种加氢精制催化剂及其制备方法和应用
CN116060107A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种加氢裂化催化剂及其制备方法和应用
CN116060103A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种改性β分子筛及其制备方法和应用
CN116060103B (zh) * 2021-10-29 2024-05-07 中国石油化工股份有限公司 一种改性β分子筛及其制备方法和应用

Also Published As

Publication number Publication date
CN106925342B (zh) 2020-02-07
CN106925342A (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
WO2018192520A1 (zh) 优化型柴油加氢裂化催化剂及其制备方法
WO2018192517A1 (zh) 改良型柴油加氢裂化催化剂及其制备方法
WO2018192519A1 (zh) 优化型柴油加氢裂化催化剂载体及其制备方法
CN107008509B (zh) 改良型柴油加氢裂化催化剂载体及其制备方法
CN102049283B (zh) 加氢裂化催化剂及其制备方法
CN101618348B (zh) 一种加氢裂化催化剂载体及其制备方法
KR20120004935A (ko) 수소화 분해 촉매, 그의 제조 방법 및 용도
CN107008487B (zh) 柴油和喷气燃料生产用加氢裂化催化剂及其制备方法
CN105817259A (zh) 一种多产石脑油型加氢裂化催化剂及其制备方法
CN103447069B (zh) 一种包含y型分子筛的催化裂化催化剂及其制备方法
CN102049308B (zh) 加氢裂化催化剂载体及其制备方法
CN102233282B (zh) 一种以氧化硅-氧化铝为载体的费托合成催化剂及其应用
CN106669782A (zh) 一种加氢裂化催化剂及其制备方法和应用
CN101618347B (zh) 一种含y分子筛的加氢裂化催化剂载体及其制备方法
CN116265109B (zh) 一种重油高效转化催化剂的制备方法
CN1765510A (zh) 含复合沸石的氧化铝载体及其制备方法
CN102974376A (zh) 一种催化裂化助剂及其制备方法
CN102372537A (zh) 甲醇转化制丙烯和芳烃的方法
CN105713657A (zh) 一种加氢裂化的方法
CN116265106A (zh) 一种多产低碳烯烃催化裂化催化剂的制备方法
CN116265107A (zh) 一种多产柴油催化裂化催化剂的制备方法
CN103449465A (zh) 高岭土微球原位晶化β分子筛及其制备方法
CN101941714B (zh) 一种用改性高岭土合成分子筛的方法
CN113117729A (zh) 异构化催化剂及其制备方法
CN116059987B (zh) 一种无定形硅铝的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787829

Country of ref document: EP

Kind code of ref document: A1