WO2018192239A1 - 一种改性棉纤维及制备方法与应用 - Google Patents

一种改性棉纤维及制备方法与应用 Download PDF

Info

Publication number
WO2018192239A1
WO2018192239A1 PCT/CN2017/115318 CN2017115318W WO2018192239A1 WO 2018192239 A1 WO2018192239 A1 WO 2018192239A1 CN 2017115318 W CN2017115318 W CN 2017115318W WO 2018192239 A1 WO2018192239 A1 WO 2018192239A1
Authority
WO
WIPO (PCT)
Prior art keywords
cotton fiber
pgma
psmp
reaction
deta
Prior art date
Application number
PCT/CN2017/115318
Other languages
English (en)
French (fr)
Inventor
刘长坤
贾继珍
梁晓燕
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2018192239A1 publication Critical patent/WO2018192239A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/325Amines
    • D06M13/332Di- or polyamines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/35Heterocyclic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/02Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of natural origin
    • D06M14/04Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of natural origin of vegetal origin, e.g. cellulose or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/4825Polysaccharides or cellulose materials, e.g. starch, chitin, sawdust, wood, straw, cotton
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic

Definitions

  • the invention relates to the field of water treatment materials, in particular to a modified cotton fiber and a preparation method and application thereof.
  • Heavy metals are difficult to degrade and have enrichment. Heavy metal pollutants emitted in production activities such as mining and smelting enter the atmosphere and water resources, causing atmospheric and water pollution, and entering the human body through the food chain, in some organs of the human body. Enrichment can cause acute or chronic poisoning in humans, and it is carcinogenic, teratogenic and mutagenic.
  • cadmium As one of the heavy metals, cadmium accumulates in the human body, causing damage to important organs such as kidney, bone, liver, central and lung. Since the discovery of cadmium in the early 20th century, the production of cadmium has increased year by year. Cadmium is widely used in the electroplating industry, chemical industry, electronics industry and nuclear industry. Cadmium is a by-product of the zinc smelting industry and is mainly used in batteries, dyes or plastic stabilizers. It is more easily adsorbed by crops than other heavy metals. A considerable amount of cadmium is discharged into the environment through waste gas, waste water and waste residue, causing pollution. Therefore, the removal of heavy metal cadmium ions is very necessary.
  • Methods for detecting cadmium ions in a solution include visible spectrophotometry, atomic absorption spectrometry, electrochemical analysis, fluorescence spectroscopy, and inductively coupled plasma mass spectrometry.
  • visible spectrophotometry atomic absorption spectrometry
  • electrochemical analysis fluorescence spectroscopy
  • inductively coupled plasma mass spectrometry a method for detecting cadmium ions in a solution.
  • most of these methods require a complicated sample preparation process, and the equipment has a large footprint and high detection cost, which is not suitable for on-site inspection.
  • Cadmium-containing wastewater is a kind of wastewater that is very polluting to the environment and is very harmful to human health.
  • treatment methods for cadmium-containing wastewater such as neutralization precipitation method, sulfide precipitation method, adsorption method, membrane separation method, electrolysis method, etc., but the treatment cost is high, the control conditions are many, the actual operation is difficult, and it will be produced. Secondary pollution.
  • the “13th Five-Year Plan” eco-environment planning clearly pointed out that strengthening green technology innovation leads the way, promotes the deep integration of greenization and innovation, and implements water environment quality target management based on control units.
  • New wastewater treatment methods that are cheap, efficient, stable, and free of secondary pollution have gradually attracted people's attention.
  • the new material adsorption method retains the physical properties of raw materials, and is coated by chemical modification methods such as coating and grafting polymer chains. By giving it more features and making the material multifunctional, it is considered to be a promising alternative.
  • the natural polymer and its derivative adsorbent have the advantages of economical, wide source, easy biodegradation, easy recycling, and easy preparation, and thus have attracted much attention and application.
  • cellulose is a natural polymer material with high utilization rate.
  • Cellulose is the most abundant polymer material. Cotton, wood, straw, bamboo, etc. are all sources of cellulosic materials.
  • cellulose is a polysaccharide formed by linking ( ⁇ )- ⁇ -glycosidic bonds between ⁇ -D-glucopyranose.
  • ⁇ - ⁇ -glycosidic bonds between ⁇ -D-glucopyranose There are a large number of hydroxyl groups, and various chemical reactions, including grafting and esterification, can occur. , oxidation and other reactions, through which the cellulose can be chemically modified to add corresponding functional groups.
  • the natural product cotton fiber contains a large number of groups such as hydroxyl groups and oxime bonds, which can undergo degradation, esterification, etherification and other reactions, and produce many valuable cotton fiber derivatives.
  • the cotton fiber is functionalized by chemical modification and applied to the adsorption and detection of water weight metal.
  • the aminated modified cotton fiber adsorbs Cd 2+ and creates a spectrometer Cd 2+ concentration detection method through color reaction. No relevant reports have been reported.
  • the object of the present invention is to provide an aminated modified cotton fiber to adsorb Cd 2+ and to create a spectrometer Cd 2+ concentration detection method by color reaction, so as to solve the existing detection methods, most of which require a complicated sample preparation process, equipment and equipment. It has a large area and high testing cost, and is not suitable for on-site inspection.
  • the existing treatment methods have high processing costs, many control conditions, practical operation difficulties, and secondary pollution problems.
  • the object of the present invention is to provide a modified cotton fiber, a preparation method and an application thereof, and aim to solve the problem that most of the existing detection methods require a complicated sample preparation process, and the equipment has a large area and a detection cost.
  • High, not suitable for on-site inspection; and existing treatment methods have high processing costs, many control conditions, practical operation difficulties, and secondary pollution problems.
  • a method for preparing a modified cotton fiber which comprises:
  • Step A cotton fiber and 2-bromoisobutyryl bromide are reacted at room temperature for 12-48 h to obtain brominated cotton;
  • Step B bromide cotton and GMA are reacted at 40-50 ° C for 1-4 h to obtain cotton fiber-PGMA (cotton fiber grafted with PGMA);
  • Step C cotton fiber-PGMA and SMP are reacted in an inert atmosphere for 6-24h to obtain cotton fiber-PGMA-PSMP (cotton fiber grafted with PGMA and PSMP in sequence);
  • Step D cotton fiber-PGMA-PSMP and DETA are reacted at room temperature for 12-48h to obtain cotton fiber-PGMA(DETA)-PSMP (sequentially grafted aminated PGMA polymer chain and PSMP cotton fiber);
  • Step E Cotton fiber-PGMA (DETA)-PSMP and TMPyP are reacted at room temperature for 6-24h to obtain cotton fiber-PGMA(DETA)-PSMP-TMPyP (sequentially grafted aminated PGMA polymer chain and porphyrinated PSMP high) Molecular chain of cotton fiber).
  • the preparation method of the modified cotton fiber wherein the reaction solvent of the step A is dichloromethane, and the reaction catalyst is pyridine.
  • the method for preparing the modified cotton fiber wherein the reaction condition of the step A further comprises: sealing and placing the reaction under magnetic stirring.
  • the preparation method of the modified cotton fiber wherein the reaction solvent of the step B is a mixture of deionized water and dimethylformamide, and the reaction catalyst is 2,2-bipyridine (Bpy), CuBr and CuBr. 2 .
  • the method for preparing a modified cotton fiber wherein the mass ratio of the CuBr to CuBr 2 is 1-5:1.
  • reaction solvent of the step C is a mixed solution of deionized water and methanol, and the reaction catalyst is CuBr and Bpy.
  • the method for preparing a modified cotton fiber wherein the reaction solvent of the step D is tetrahydrofuran.
  • the method for preparing a modified cotton fiber wherein in the step E, the mass ratio of the cotton fiber-PGMA (DETA)-PSMP and TMPyP is 1-5:1.
  • the invention has the beneficial effects that the cotton fiber of the raw material of the invention is cheap and easy to obtain, and a large amount of hydroxyl groups are present on the surface, and various chemical reactions can occur, which is convenient for modification.
  • chemical modification method Through chemical modification method, the multi-functionalization of cotton fiber is realized, and its detection and adsorption performance are imparted.
  • the chemical modification of cotton fiber by SI-ATRP method and acyclic polyamine amination is simple and easy to control.
  • the CPDPT material prepared by the invention has short response time to cadmium ions, and the color change is fast and obvious, and can be used for rapid detection of cadmium ions; after block polymerization, the PGMA segment is introduced.
  • the amine group increases the adsorption of cadmium ions by CPDPT materials.
  • Figure 1 is a schematic view showing the preparation process of the modified cotton fiber of the present invention.
  • Example 2 is a graph showing the results of adsorption test of the modified cotton fiber material prepared in Example 1 of the present invention.
  • the present invention provides a modified cotton fiber, a preparation method and an application thereof, and the present invention will be further described in detail below in order to make the objects, technical solutions and effects of the present invention more clear and clear. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • a method for preparing a modified cotton fiber of the present invention comprises:
  • Step A cotton fiber and 2-bromoisobutyryl bromide are reacted at room temperature for 12-48 h to obtain brominated cotton.
  • the step A is specifically as follows:
  • the cotton fiber of the raw material selected by the invention is cheap and easy to obtain, and a large amount of hydroxyl groups are present on the surface, and various chemical reactions can occur, which is convenient for modification.
  • cotton fiber with rich content and easy modification is used as the adsorbent matrix, and substituted with 2-bromoisobutyryl bromide (BIBB) to obtain brominated cotton (cotton fiber-Br).
  • BIBB 2-bromoisobutyryl bromide
  • Step B brominated cotton and GMA are reacted at 40-50 ° C for 1-4 h to obtain cotton fiber-PGMA.
  • the step B is specifically as follows:
  • SI-ATRP reaction Place cotton fiber-Br in a container, then add 1-15 mL of deionized water, 5-20 mL of dimethylformamide (DMF), 10-30 mL of glycidyl methacrylate (GMA), 0.1 -1.0 g of 2,2-bipyridyl (Bpy), CuBr and CuBr 2 , wherein the mass ratio of CuBr to CuBr 2 is 1-5:1 (eg 1:1, 2:1 or 5:1), under magnetic stirring, The stirring speed is 150 rpm, and the reaction is carried out at 40-50 ° C (such as 45 ° C) and argon atmosphere for 1-4 h. After the reaction is completed, cotton fiber-PGMA is obtained, and then washed with tetrahydrofuran (THF), acetone and deionized water, and dried. Dry spare.
  • DMF dimethylformamide
  • GMA glycidyl methacrylate
  • Bpy 2,2-bipyridyl
  • Deionized water and dimethylformamide in the above steps are used as a reaction solvent, and Bpy, CuBr and CuBr 2 are used as reaction catalysts, and the reaction catalyst is advantageous for increasing the reaction rate.
  • the surface-initiated-atomic transfer radical polymerization (SI-ATRP) method is used to graft the PGMA polymer segment, which is simple and easy, requires less monomer, allows certain oxygen and impurities to exist during the reaction, and can control the activity.
  • SI-ATRP surface-initiated-atomic transfer radical polymerization
  • the molecular weight of the polymerization and its distribution coefficient do not destroy the skeletal structure of the cellulose.
  • Step C cotton fiber-PGMA and SMP were reacted in an inert atmosphere for 6-24 h to obtain cotton fiber-PGMA-PSMP.
  • the step C is specifically as follows:
  • SI-ATRP reaction dissolve 0.01-0.10g cotton fiber-PGMA, 0.05-0.2g Bpy, 0.01-0.20g CuBr and 1-5g 3-sulfonic acid propyl methacrylate potassium salt (SMP) in 1-5mL In a mixed solution of ionized water and 4-45 mL of methanol, and stirring under magnetic stirring, the stirring speed was 150 rpm, and the reaction was carried out for 6-24 hours in an argon atmosphere. After completion of the reaction, cotton fiber-PGMA-PSMP was obtained. The product was repeatedly washed with an excess of 0.05-0.2 mol/L EDTA (ethylenediaminetetraacetic acid) solution, deionized water, and air-dried for use.
  • EDTA ethylenediaminetetraacetic acid
  • the PSMP segment helps to further introduce TMPyP and increase the number of TMPyP imports. Thereby increasing the complexation with Cd 2+ to adsorb and remove Cd 2+ from the sewage.
  • the catalyst system used in this step is Bpy and CuBr, which can control the reaction rate well.
  • this step is also grafted by the SI-ATRP method, and the advantages are not described again.
  • Step D cotton fiber-PGMA-PSMP and DETA were reacted at room temperature for 12-48 h to obtain cotton fiber-PGMA(DETA)-PSMP.
  • the step D is specifically as follows:
  • Amination reaction Take cotton fiber-PGMA-PSMP in a test tube, add 1-15 mL of tetrahydrofuran (THF) and 1-15 mL of diethylenetriamine (DETA), stir using a magnetic stirrer, rotate at 150 rpm, and react at room temperature. After -48 h, cotton fiber-PGMA (DETA)-PSMP was obtained, and cotton fiber-PGMA (DETA)-PSMP was taken out, washed with acetone and deionized water, and air-dried for use.
  • THF tetrahydrofuran
  • DETA diethylenetriamine
  • DETA is grafted onto PGMA by ring-opening reaction, which greatly increases the adsorption amount of Cd 2+ on the final modified cotton fiber.
  • DETA is introduced by a ring opening reaction of an amine group with an epoxy group on cotton fiber-PGMA.
  • the chemical modification of cotton fibers can be carried out by replacing the acyclic polyamine compound, such as ethylenediamine, triethylenetetramine, tetraethylenepentamine or other polyethene polyamine compounds. Sex, from A similar aminated cotton material was prepared.
  • Step E Cotton fiber-PGMA (DETA)-PSMP and TMPyP were reacted at room temperature for 6-24 h to obtain cotton fiber-PGMA(DETA)-PSMP-TMPyP.
  • the step E is specifically as follows:
  • Electrostatic composite reaction immerse cotton fiber-PGMA(DETA)-PSMP in 10-20mg/L 5,10,15,20-four (1-A) by mass ratio of 1-5:1
  • TMPyP 4-pyridyl)porphyrin tetrakis(p-toluenesulfonate)
  • CPDPT modified cotton fiber cotton fiber-PGMA (DETA)-PSMP-TMPyP
  • TMPyP 5,10,15,20-tetrakis(1-methyl-4-pyridyl)porphyrin tetra(p-toluenesulfonate)
  • TMPyP 5,10,15,20-tetrakis(1-methyl-4-pyridyl)porphyrin tetra(p-toluenesulfonate)
  • a cotton fiber-PGMA (DETA)-PSMP-TMPyP modified cotton fiber material was obtained.
  • TMPyP can adsorb cadmium ions in a large amount, and the color gradually becomes shallower and deeper. Therefore, TMPyP has both cadmium ion detection and adsorption.
  • This step introduces TMPyP on the surface of the material by electrostatic interaction of the positively charged TMPyP with the negatively charged PSMP.
  • TMPyP other porphyrins such as 5,10,15,20-tetrakis(3,5-dimethoxyphenyl)porphyrin, 5,10,15,20-tetrakis(4-amino) can be introduced. Phenyl)porphyrins, etc., are modified to produce similar aminated cotton materials.
  • the prepared modified cotton fiber CPDPT material was subjected to adsorption experiment.
  • the method for measuring the adsorption amount was as follows: 50 mg of modified cotton fiber CPDPT was added to 50 ml of 4 mmol/l Cd(NO 3 ) 2 solution, and protected from light at room temperature. After shaking to the adsorption equilibrium, the concentration of cadmium ions in the solution was measured and the color development of the material was observed. Calculate the amount of adsorption of CPDPT material according to the following formula:
  • C 0 and C e are the original solution concentration and adsorption equilibrium concentration (mmol/L) of cadmium ions
  • V is the volume (L) of the adsorption solution
  • m is the mass of the adsorbent CPDPT.
  • the invention utilizes cotton fiber with rich content and easy modification as the adsorbent matrix, and replaces with 2-bromoisobutyryl bromide (BIBB) to obtain brominated cotton (Coton-Br), and then utilizes convenient and controllable surface initiation- Atomic Transfer Radical Polymerization (SI-ATRP) technology grafted polyglycidyl methacrylate (PGMA) polymer brush on the surface of brominated cotton material, and continued to use G-ATRP technology to graft a bunch of polymer behind PGMA polymer brush.
  • SI-ATRP surface initiation- Atomic Transfer Radical Polymerization
  • PGMA polyglycidyl methacrylate
  • PSMP 3-sulfonic acid propyl methacrylate potassium salt
  • DETA diethylenetriamine
  • TMPyP Adsorbed 5,10,15,20-tetrakis(1-methyl-4-pyridyl)porphyrin tetra(p-toluenesulfonate)
  • the modified cotton fiber material obtained by the invention adsorbs Cd 2+ color reaction to establish a linear relationship between Cd 2+ concentration and color development absorbance, and the amine group introduced on the PGMA segment increases the adsorption of cadmium ions by CPDPT material.
  • the amount of CPDPT can be successfully applied to the detection and adsorption of Cd 2+ in water.
  • the present invention has the following advantages:
  • the surface of cotton fiber is rich in hydroxyl, easy to modify graft
  • CPDPT material has a short response time to cadmium ions, color change is fast and obvious, and can be used for rapid detection of cadmium ions;
  • the amine group introduced on the PGMA segment increases the adsorption amount of CPDPT material to cadmium ions.
  • bromination reaction Take 1g cotton fiber and 30mL DCM into the container, then place the container in the ice water bath, then take 10mL BIBB into the container, then slowly add 1mL of pyridine, seal the container after the addition, and set In a magnetic stirrer, the stirring speed is 150 rpm, and the reaction is carried out at room temperature for 20 hours. After the reaction is completed, the cotton fiber-Br is obtained, the cotton fiber-Br is taken out, repeatedly washed with acetone and deionized water, finally dried, and stored in a drying oven. ,spare.
  • SI-ATRP reaction take 0.05g cotton fiber-PGMA, 0.1g Bpy, 0.05g CuBr and 1g SMP dissolved in the mixed solution (2mL deionized water and 8mL methanol), magnetic stirring, stirring speed is 150rpm After reacting for 12 hours, the cotton fiber-PGMA-PSMP was obtained after the reaction was completed, and repeatedly washed with an excess of 0.1 mol/L EDTA (ethylenediaminetetraacetic acid) solution, deionized water, and dried for use.
  • EDTA ethylenediaminetetraacetic acid
  • the prepared modified cotton fiber material (CPDPT) was used as the adsorption experiment.
  • the method for measuring the adsorption amount was as follows: 50 mg of CPDPT was added to 50 ml of 4 mmol/L Cd(NO 3 ) 2 solution, and shaken at room temperature until adsorption. After equilibration, the concentration of cadmium ions in the solution was measured and the color development of the material was observed. Calculate the amount of adsorption (q) of CPDPT material according to the following formula:
  • C 0 and C e are the original solution concentration and adsorption equilibrium concentration (mmol/L) of cadmium ion, respectively;
  • V is the volume (L) of the adsorption solution
  • m is the mass of the adsorbent CPDPT.
  • the CPDPT material prepared by the method has a cadmium ion adsorption capacity of 141.12 mg/g, which is very suitable for treating sewage containing cadmium ions.
  • bromination reaction take 0.8g cotton fiber and 20mL DCM into the container, then place the container in the ice water bath, then take 8mL BIBB into the container, then slowly add 0.8mL of pyridine, after sealing, seal the container The mixture was placed in a magnetic stirrer at a stirring speed of 150 rpm and reacted at room temperature for 20 hours. After completion of the reaction, cotton fiber-Br was obtained, cotton fiber-Br was taken out, repeatedly washed with acetone and deionized water, finally dried, and stored in Dry box, spare.
  • SI-ATRP reaction Take 0.05g cotton fiber-PGMA, 0.08g Bpy, 0.08g CuBr and 1.5g SMP dissolved in mixed solution (2mL deionized water and 10mL methanol), stir under magnetic stirring After 150 rpm, the reaction was carried out for 10 h. After completion of the reaction, cotton fiber-PGMA-PSMP was obtained, which was repeatedly washed with an excess of 0.1 mol/L EDTA (ethylenediaminetetraacetic acid) solution, deionized water, and dried for use.
  • EDTA ethylenediaminetetraacetic acid
  • the present invention provides a modified cotton fiber, a preparation method and application thereof, and the invention utilizes a cotton fiber with rich content and easy modification as a adsorbent matrix, and occurs with 2-bromoisobutyryl bromide (BIBB).
  • BIBB 2-bromoisobutyryl bromide
  • Substitution reaction to obtain brominated cotton (cotton fiber-Br) and then grafting polyglycidyl methacrylate (PGMA) on the surface of brominated cotton material by a convenient and controllable surface initiation-atomic transfer radical polymerization (SI-ATRP) technique.
  • SI-ATRP surface initiation-atomic transfer radical polymerization
  • the modified cotton fiber material obtained by the invention exhibits rapid color development for Cd 2+ and can reach 90% of saturated adsorption amount within 10 min, which is suitable for on-site detection; the adsorption capacity of Cd 2+ reaches 141.12 mg/g, adsorption High efficiency, simple operation, suitable for treating cadmium-containing sewage; and the raw material cotton fiber used is cheap and easy to obtain, and the SI-ATRP method adopted by the invention is simple and easy to control, and the obtained product is clean and pollution-free, and the prior art is solved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种改性棉纤维及制备方法与应用,其制备方法包括步骤:棉纤维和2-溴异丁酰溴反应,得到溴化棉;溴化棉和GMA反应,得到棉纤维-PGMA;棉纤维-PGMA和SMP反应,得到棉纤维-PGMA-PSMP;棉纤维-PGMA-PSMP和DETA反应,得到棉纤维-PGMA(DETA)-PSMP;将棉纤维-PGMA(DETA)-PSMP和TMPyP反应,得到棉纤维-PGMA(DETA)-PSMP-TMPyP。得到改性棉纤维对Cd 2+表现出快速显色,在10min内能达到饱和吸附量的90%,卟啉功能棉纤维大大增加了对镉离子的吸附量。

Description

一种改性棉纤维及制备方法与应用 技术领域
本发明涉及水处理材料领域,尤其涉及一种改性棉纤维及制备方法与应用。
背景技术
随着工业发展的需要,重金属的使用及开采量大大增加,被广泛应用于化工、农药、冶炼、电镀、印刷、医药等领域,在发展的同时也带来了严重的环境污染。重金属很难降解,并具有富集性,在开采、冶炼等生产活动中排放的重金属污染物进入大气、水资源当中,造成大气、水污染,并通过食物链进入人体,在人体的某些器官当中富集,就会造成人体急性或慢性中毒,具有致癌、致畸及致突变作用。
镉作为重金属之一,在人体内蓄积,导致肾、骨、肝、中枢、肺等重要器官受到损害。20世纪初发现镉以来,镉的产量逐年增加。镉广泛应用于电镀工业、化工业、电子业和核工业等领域。镉是炼锌业的副产品,主要用在电池、染料或塑胶稳定剂中,它比其它重金属更容易被农作物所吸附。相当数量的镉通过废气、废水、废渣排入环境,造成污染。因此,对重金属镉离子的去除是非常必要的。
用于检测溶液中的镉离子的方法有可见分光光度法、原子吸收法、电化学分析法、荧光光谱法和电感耦合等离子体质谱法等。然而,这些方法大多需要复杂的样品制备过程,设备仪器占地面积大,检测费用高,不适合现场检测。
含镉废水是一种对环境污染十分严重和对人类身体健康危害很大的废水。现今,含镉废水的处理方法较多,有中和沉淀法、硫化物沉淀法、吸附法、膜分离法、电解法等,但处理费用较高,控制条件多,实际操作困难,且会产生二次污染。
“十三五”生态环境规划明确指出,强化绿色科技创新引领,推进绿色化与创新驱动深度融合,实施以控制单元为基础的水环境质量目标管理。廉价、高效、稳定且无二次污染的新型废水处理方法逐渐引起人们的重视。其中,新型材料吸附法在保留原材料物理性能的同时,通过涂覆、接枝高分子链等化学改性方法赋 予其更多特性,使得材料多功能化,被认为是具有广阔前景的替代方法。
天然高分子及其衍生物吸附剂具有经济实惠、来源广泛、易于生物降解、易于回收处理、易于制备等优势,因而备受关注和应用。其中纤维素就是一种利用率较高的天然高分子材料。纤维素是资源最为丰富的高分子材料,棉麻、木材、秸秆、竹子等等都是纤维素材料的来源。同时,纤维素是由β-D-吡喃葡萄糖之间通过(1-4)-β-苷键连接而成的多糖,存在大量的羟基,可以发生多种化学反应,包括接枝、酯化、氧化等反应,通过这些反应可对纤维素进行化学改性,添加相应功能基团。
天然产物棉纤维分子中含有大量羟基和甙键等基团,可发生降解、酯化、醚化等反应,制造出许多有价值的棉纤维衍生物。采用资源丰富的棉纤维作为基体材料,通过化学改性实现棉纤维功能化,并应用于水体重金属的吸附与检测。对于棉纤维的改性有很多,但是胺化改性棉纤维吸附Cd2+,并通过显色反应创建光谱仪Cd2+浓度检测法,并没有看到相关的报道。
因此,本发明目的在于提供一种胺化改性棉纤维吸附Cd2+,并通过显色反应创建光谱仪Cd2+浓度检测法,以解决现有检测方法大多需要复杂的样品制备过程,设备仪器占地面积大,检测费用高,不适合现场检测;及现有处理方法处理费用较高,控制条件多,实际操作困难,且会产生二次污染的问题。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种改性棉纤维及制备方法与应用,旨在解决现有检测方法大多需要复杂的样品制备过程,设备仪器占地面积大,检测费用高,不适合现场检测;及现有处理方法处理费用较高,控制条件多,实际操作困难,且会产生二次污染的问题。
本发明的技术方案如下:
一种改性棉纤维的制备方法,其中,包括:
步骤A、棉纤维和2-溴异丁酰溴室温下反应12-48h,得到溴化棉;
步骤B、溴化棉和GMA在40-50℃下反应1-4h,得到棉纤维-PGMA(接枝PGMA的棉纤维);
步骤C、棉纤维-PGMA和SMP惰性气氛下反应6-24h,得到棉纤维-PGMA-PSMP(依次接枝PGMA和PSMP的棉纤维);
步骤D、棉纤维-PGMA-PSMP和DETA室温下反应12-48h,得到棉纤维-PGMA(DETA)-PSMP(依次接枝胺化PGMA高分子链和PSMP的棉纤维);
步骤E、将棉纤维-PGMA(DETA)-PSMP和TMPyP室温下反应6-24h,得到棉纤维-PGMA(DETA)-PSMP-TMPyP(依次接枝胺化PGMA高分子链和卟啉化PSMP高分子链的棉纤维)。
所述的改性棉纤维的制备方法,其中,所述步骤A的反应溶剂为二氯甲烷,反应催化剂为吡啶。
所述的改性棉纤维的制备方法,其中,所述步骤A的反应条件还包括:密闭,并置于磁力搅拌下进行反应。
所述的改性棉纤维的制备方法,其中,所述步骤B的反应溶剂为去离子水和二甲基甲酰胺的混合液,反应催化剂为2,2-联吡啶(Bpy)、CuBr和CuBr2
所述的改性棉纤维的制备方法,其中,所述CuBr和CuBr2的质量比为1-5:1。
所述的改性棉纤维的制备方法,其中,所述步骤C的反应溶剂为去离子水和甲醇的混合液,反应催化剂为CuBr和Bpy。
所述的改性棉纤维的制备方法,其中,所述步骤D的反应溶剂为四氢呋喃。
所述的改性棉纤维的制备方法,其中,所述步骤E中,所述棉纤维-PGMA(DETA)-PSMP和TMPyP的质量比为1-5:1。
一种改性棉纤维,其中,采用如上任一所述的制备方法制备而成。
一种改性棉纤维的应用,其中,将如上所述的改性棉纤维应用于检测和吸附镉离子。
有益效果:本发明原材料棉纤维廉价易得,表面存在大量羟基,可以发生多种化学反应,便于改性。通过化学改性方法,实现棉纤维的多功能化,赋予其检测与吸附性能;采用SI-ATRP方法和无环多聚胺胺化对棉纤维进行化学改性,操作简单且易于控制。本发明制备的CPDPT材料对镉离子的响应时间短,颜色变化快且明显,可以用于快速检测镉离子;嵌段聚合后,PGMA链段上引入的 胺基增大了CPDPT材料对镉离子的吸附量。
附图说明
图1为本发明改性棉纤维的制备流程示意图。
图2为本发明实施例1制备的改性棉纤维材料吸附测试结果图。
具体实施方式
本发明提供一种改性棉纤维及制备方法与应用,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
结合图1所示,本发明的一种改性棉纤维的制备方法,包括:
步骤A、棉纤维和2-溴异丁酰溴室温下反应12-48h,得到溴化棉。所述步骤A具体如下:
溴化反应:将0.5-3.0g棉纤维(原始棉)和10-50mL DCM(二氯甲烷)加入容器中,再将容器置于冰水浴中,然后取5-30mL 2-溴异丁酰溴(BIBB)加入容器中,再缓慢加入0.5-3mL吡啶。加完上述原料后,密封容器,并置于磁力搅拌器中,搅拌转速150rpm,室温中反应12-48h后,得到溴化棉(棉纤维-Br),将棉纤维-Br取出,用丙酮和去离子水反复冲洗,最后晾干备用。
本发明所选的原材料棉纤维廉价易得,表面存在大量羟基,可以发生多种化学反应,便于改性。本步骤采用含量丰富、易于改性的棉纤维作为吸附剂基体,与2-溴异丁酰溴(BIBB)发生取代反应得到溴化棉(棉纤维-Br)。
步骤B、溴化棉和GMA在40-50℃下反应1-4h,得到棉纤维-PGMA。所述步骤B具体如下:
SI-ATRP反应:将棉纤维-Br置于容器中,然后加入1-15mL去离子水、5-20mL二甲基甲酰胺(DMF)、10-30mL甲基丙烯酸缩水甘油酯(GMA)、0.1-1.0g 2,2-联吡啶(Bpy)、CuBr和CuBr2,其中CuBr和CuBr2质量比为1-5:1(如1:1、2:1或5:1),磁力搅拌下,搅拌转速为150rpm,在40~50℃(如45℃)和氩气氛围下反应1-4h,反应完毕后得到棉纤维-PGMA,再依次用四氢呋喃(THF)、丙酮和去离子水洗涤,晾干备用。
上述步骤的去离子水和二甲基甲酰胺作为反应溶剂,Bpy、CuBr和CuBr2作为反应催化剂,该反应催化剂利于提高反应速率。本步骤采用表面引发-原子转移自由基聚合(SI-ATRP)的方法接枝PGMA高分子链段,简单易行,对单体要求较低,反应时允许一定的氧和杂质存在,可以控制活性聚合的分子量及其分布系数,同时不会破坏纤维素的骨架结构。
步骤C、棉纤维-PGMA和SMP惰性气氛下反应6-24h,得到棉纤维-PGMA-PSMP。所述步骤C具体如下:
SI-ATRP反应:将0.01-0.10g棉纤维-PGMA,0.05-0.2g Bpy、0.01-0.20g CuBr和1-5g 3-磺酸丙基甲基丙烯酸钾盐(SMP)溶解在1-5mL去离子水和4-45mL甲醇的混合溶液中,并磁力搅拌下,搅拌转速为150rpm,氩气气氛中反应6-24h,反应完毕后得到棉纤维-PGMA-PSMP。将产物反复用过量的0.05-0.2mol/L EDTA(乙二胺四乙酸)溶液、去离子水洗涤,晾干备用。
PSMP链段有助于后续进一步引入TMPyP,增大TMPyP引入数量。从而增加与Cd2+之间的络合作用,吸附并去除污水中的Cd2+
本步骤选用的催化剂体系为Bpy和CuBr,能很好地控制反应速率。同时本步骤也是采用SI-ATRP方法接枝,好处不再赘述。
步骤D、棉纤维-PGMA-PSMP和DETA室温下反应12-48h,得到棉纤维-PGMA(DETA)-PSMP。所述步骤D具体如下:
胺化反应:取棉纤维-PGMA-PSMP置于试管内,加入1-15mL四氢呋喃(THF)和1-15mL二乙烯三胺(DETA),使用磁力搅拌器搅拌,转速为150rpm,室温下反应12-48h后,得到棉纤维-PGMA(DETA)-PSMP,取出棉纤维-PGMA(DETA)-PSMP,用丙酮和去离子水洗涤,晾干备用。
本步骤通过开环反应在PGMA上接枝DETA,大大增加了最终改性棉纤维对Cd2+的吸附量。
本步骤通过胺基与棉纤维-PGMA上的环氧基团的开环反应,引入DETA。需说明的是,除所述DETA以外,还可用无环多聚胺化合物,如乙二胺、三乙烯四胺、四乙烯五胺或其它多乙烯多胺化合物进行替代,对棉纤维进行化学改性,从 而制备出类似的胺化棉材料。
步骤E、将棉纤维-PGMA(DETA)-PSMP和TMPyP室温下反应6-24h,得到棉纤维-PGMA(DETA)-PSMP-TMPyP。所述步骤E具体如下:
静电复合反应:按质量比计,以1-5:1的固液比,将棉纤维-PGMA(DETA)-PSMP浸泡在10-20mg/L 5,10,15,20-四(1-甲基-4-吡啶基)卟啉四(对甲苯磺酸盐)(TMPyP)溶液中,在磁力搅拌下,搅拌转速为150rpm,室温下反应6-24小时后,将产物取出,用去离子水反复洗涤,晾干,得到改性棉纤维棉纤维-PGMA(DETA)-PSMP-TMPyP(简称CPDPT)。
本步骤通过静电作用将对Cd2+有吸附作用的5,10,15,20-四(1-甲基-4-吡啶基)卟啉四(对甲苯磺酸盐)(TMPyP)引入到PSMP上,得到棉纤维-PGMA(DETA)-PSMP-TMPyP改性棉纤维材料。TMPyP能够大量吸附镉离子,并且颜色会逐渐由浅变深,因此TMPyP兼具镉离子检测及吸附作用。
本步骤通过带正电的TMPyP与带负电荷的PSMP的静电相互作用,将TMPyP引入在材料表面。除TMPyP以外,还可以引入其它卟啉类化合物,如5,10,15,20-四(3,5-二甲氧苯基)卟啉、5,10,15,20-四(4-氨基苯基)卟啉等,对棉纤维进行改性,从而制备出类似的胺化棉材料。
将上述制备好的改性棉纤维CPDPT材料进行吸附实验,吸附量的测算方法如下:取50mg改性棉纤维CPDPT加入到50ml的4mmol/l的Cd(NO3)2溶液中,室温下避光震荡至吸附平衡后,测定溶液中镉离子浓度以及观察材料显色情况。依下式计算CPDPT材料的吸附量:
q=(C0-Ce)V/m
式中,q(mmol/g)为平衡吸附量;
C0和Ce为镉离子的原始溶液浓度和吸附平衡浓度(mmol/L);
V为吸附溶液的体积(L);
m为吸附剂CPDPT的质量。
本发明利用含量丰富、易于改性的棉纤维作为吸附剂基体,与2-溴异丁酰溴(BIBB)发生取代反应得到溴化棉(Coton-Br),然后利用方便可控的表面引发 -原子转移自由基聚合(SI-ATRP)技术在溴化棉材料表面接枝聚甲基丙烯酸缩水甘油酯(PGMA)聚合物刷,继续利用SI-ATRP技术,在PGMA聚合物刷后面接枝一段聚3-磺酸丙基甲基丙烯酸钾盐(PSMP)聚合物刷,SI-ATRP反应结束后,通过开环反应在PGMA上引入二乙烯三胺(DETA),然后通过静电作用将对Cd2+有吸附作用的5,10,15,20-四(1-甲基-4-吡啶基)卟啉四(对甲苯磺酸盐)(TMPyP)引入到PSMP上,得到棉纤维-PGMA(DETA)-PSMP-TMPyP改性棉纤维材料。本发明得到的改性棉纤维材料吸附Cd2+显色反应建立Cd2+浓度与显色吸光率之间的线性关系,PGMA链段上引入的胺基增大了CPDPT材料对镉离子的吸附量,CPDPT可以成功应用于水体中Cd2+的检测与吸附。
与现有技术相比,本发明具有如下优点:
1、实现棉纤维的多功能化,通过化学改性方法,赋予其检测与吸附性能;
2、棉纤维表面富含羟基,容易改性接枝;
3、采用SI-ATRP方法和无环多聚胺胺化对棉纤维进行化学改性,操作简单且易于控制;
4、CPDPT材料对镉离子的响应时间短,颜色变化快且明显,可以用于快速检测镉离子;
5、嵌段聚合后,PGMA链段上引入的胺基增大了CPDPT材料对镉离子的吸附量。
下面通过实施例对本发明进行详细说明。
实施例1
(1)、溴化反应:取1g棉纤维和30mL DCM加入容器中,再将容器置于冰水浴中,然后取10mL BIBB加入容器中,再缓慢加入吡啶1mL,加完后密封容器,并置于磁力搅拌器中,搅拌转速为150rpm,室温中反应20h,反应完成后得到棉纤维-Br,将棉纤维-Br取出,用丙酮和去离子水反复冲洗,最后晾干,并存储于干燥箱,备用。
(2)、SI-ATRP反应:取棉纤维-Br置于容器中,然后加入5mL去离子水,10mL DMF,15mL GMA,0.5g Bpy,0.1g CuBr和CuBr2(CuBr和CuBr2质量比 例为3:1),磁力搅拌下,搅拌转速为150rpm,在45℃和Ar氛围下反应2h,反应完毕后得到棉纤维-PGMA,依次用THF、丙酮和去离子水洗涤,晾干备用。
(3)、SI-ATRP反应:取0.05g棉纤维-PGMA、0.1g Bpy、0.05g CuBr和1g SMP溶解在混合溶液(2mL去离子水和8mL甲醇)中,磁力搅拌下,搅拌转速为150rpm,反应12h,反应完毕后得到棉纤维-PGMA-PSMP,反复用过量的0.1mol/L EDTA(乙二胺四乙酸)溶液、去离子水洗涤,晾干备用。
(4)、胺化反应:取棉纤维-PGMA-PSMP置于试管内,加入5mL THF和5mL的DETA,磁力搅拌下,搅拌转速为150rpm,在室温中反应24h,反应完毕后得到棉纤维-PGMA(DETA)-PSMP,用丙酮和去离子水洗涤,晾干备用。
(5)、静电复合反应:按照1:1的固液比,将棉纤维-PGMA(DETA)-PSMP浸泡在15mg/L的TMPyP溶液中,磁力搅拌下,搅拌转速为150rpm,室温中反应12h,反应完毕后得到改性棉纤维棉纤维-PGMA(DETA)-PSMP-TMPyP(简称CPDPT),取出CPDPT,用去离子水反复洗涤,晾干备用。
吸附测试
将制备好的改性棉纤维材料(CPDPT)做吸附实验,吸附量的测算方法如下:取50mg CPDPT加入到50ml的4mmol/L的Cd(NO3)2溶液中,室温下避光震荡至吸附平衡后,测定溶液中镉离子浓度以及观察材料显色情况。依下式计算CPDPT材料的吸附量(q):
q=(C0-Ce)V/m;
q(mmol/g)为平衡吸附量;
C0和Ce分别为镉离子的原始溶液浓度和吸附平衡浓度(mmol/L);
V为吸附溶液的体积(L);
m为吸附剂CPDPT的质量。
测试结果:
如附图2所示,随着吸附时间的增加,CPDPT材料的颜色由浅逐渐变深,从图中可以看出,在10min内能达到饱和吸附量的90%,这一快速显色反应有助于检测污水中是否含有镉离子,同时特别适合于现场检测。通过计算,本实施 例制备的CPDPT材料对镉离子的吸附能力达到了141.12mg/g,非常适合处理含有镉离子的污水。
实施例2
(1)、溴化反应:取0.8g棉纤维和20mL DCM加入容器中,再将容器置于冰水浴中,然后取8mL BIBB加入容器中,再缓慢加入吡啶0.8mL,加完后密封容器,并置于磁力搅拌器中,搅拌转速为150rpm,室温中反应20h,反应完成后得到棉纤维-Br,将棉纤维-Br取出,用丙酮和去离子水反复冲洗,最后晾干,并存储于干燥箱,备用。
(2)、SI-ATRP反应:取0.1g棉纤维-Br置于容器中,然后加入10mL去离子水,8mL DMF,12mL GMA,0.2g Bpy,0.1g CuBr和CuBr2(CuBr和CuBr2质量比例为2:1),磁力搅拌下,搅拌转速为150rpm,在45℃和Ar氛围下反应2h,反应完毕后得到棉纤维-PGMA,依次用THF、丙酮和去离子水洗涤,晾干备用。
(3)、SI-ATRP反应:取0.05g棉纤维-PGMA、0.08g Bpy、0.08g CuBr和1.5g SMP溶解在混合溶液(2mL去离子水和10mL甲醇)中,磁力搅拌下,搅拌转速为150rpm,反应10h,反应完毕后得到棉纤维-PGMA-PSMP,反复用过量的0.1mol/L EDTA(乙二胺四乙酸)溶液、去离子水洗涤,晾干备用。
(4)、胺化反应:取0.1g棉纤维-PGMA-PSMP置于试管内,加入8mL THF和20mL的DETA,磁力搅拌下,搅拌转速为150rpm,在室温中反应20h,反应完毕后得到棉纤维-PGMA(DETA)-PSMP,用丙酮和去离子水洗涤,晾干备用。
(5)、静电复合反应:按照3:1的固液比,将棉纤维-PGMA(DETA)-PSMP浸泡在15mg/L的TMPyP溶液中,磁力搅拌下,搅拌转速为150rpm,室温中反应15h,反应完毕后得到改性棉纤维棉纤维-PGMA(DETA)-PSMP-TMPyP(简称CPDPT),取出CPDPT,用去离子水反复洗涤,晾干备用。
实施例3
(1)取1.8g棉纤维和20mL DCM加入容器中,进行冰水浴,然后,加入18mL BIBB,再缓慢加入吡啶1.8mL,加完后密封容器,磁力搅拌,转速为150rpm, 室温中反应40h,得到棉纤维-Br,用丙酮和去离子水反复洗涤,晾干备用。
(2)取0.15g棉纤维-Br置于容器中,然后加入10mL去离子水,15mL DMF,20mL GMA,0.5g Bpy,0.2g CuBr和CuBr2(CuBr和CuBr2质量比例为3:1),磁力搅拌,转速为150rpm,在45℃和Ar氛围下反应3h,得到棉纤维-PGMA,依次用THF、丙酮和去离子水洗涤,晾干备用。
(3)取0.15g棉纤维-PGMA、0.12g Bpy、0.15g CuBr和2.5g SMP溶解在混合溶液(3mL去离子水和25mL甲醇)中,磁力搅拌,转速为150rpm,反应15h,得到棉纤维-PGMA-PSMP,用过量的0.1mol/L EDTA(乙二胺四乙酸)溶液、去离子水洗涤,晾干备用。
(4)取0.2g棉纤维-PGMA-PSMP置于试管内,加入8mL THF和32mL的DETA,磁力搅拌,转速为150rpm,在室温下反应30h,得到棉纤维-PGMA(DETA)-PSMP,用丙酮和去离子水洗涤,晾干备用。
(5)按照4:1的固液比,将棉纤维-PGMA(DETA)-PSMP浸泡在15mg/L的TMPyP溶液中,磁力搅拌,转速为150rpm,室温下反应15h,得到改性棉纤维棉纤维-PGMA(DETA)-PSMP-TMPyP(简称CPDPT),用去离子水洗涤,晾干备用。
综上所述,本发明提供了一种改性棉纤维及制备方法与应用,本发明利用含量丰富、易于改性的棉纤维作为吸附剂基体,与2-溴异丁酰溴(BIBB)发生取代反应得到溴化棉(棉纤维-Br),然后利用方便可控的表面引发-原子转移自由基聚合(SI-ATRP)技术在溴化棉材料表面接枝聚甲基丙烯酸缩水甘油酯(PGMA)聚合物刷,并进一步在PGMA聚合物刷后面接枝一段聚3-磺酸丙基甲基丙烯酸钾盐(PSMP)聚合物刷,然后通过开环反应在PGMA上引入二乙烯三胺(DETA),最后通过静电作用将5,10,15,20-四(1-甲基-4-吡啶基)卟啉四(对甲苯磺酸盐)(TMPyP)引入到PSMP上,得到棉纤维-PGMA(DETA)-PSMP-TMPyP(CPDPT)改性棉纤维材料。
本发明得到的改性棉纤维材料对Cd2+表现出快速显色,在10min内能达到饱和吸附量的90%,适合于现场检测;对Cd2+吸附能力达到了141.12mg/g,吸 附高效,且操作简单,适于处理含镉的污水;并且所用原材料棉纤维廉价易得,并且本发明所采用的SI-ATRP方法操作简单且易于控制,所得产物清洁无污染,解决了现有技术检测及处理费用高、产生二次污染的问题。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种改性棉纤维的制备方法,其特征在于,包括:
    步骤A、棉纤维和2-溴异丁酰溴室温下反应12-48h,得到溴化棉;
    步骤B、溴化棉和GMA在40-50℃下反应1-4h,得到棉纤维-PGMA;
    步骤C、棉纤维-PGMA和SMP惰性气氛下反应6-24h,得到棉纤维-PGMA-PSMP;
    步骤D、棉纤维-PGMA-PSMP和DETA室温下反应12-48h,得到棉纤维-PGMA(DETA)-PSMP;
    步骤E、将棉纤维-PGMA(DETA)-PSMP和TMPyP室温下反应6-24h,得到棉纤维-PGMA(DETA)-PSMP-TMPyP。
  2. 根据权利要求1所述的改性棉纤维的制备方法,其特征在于,所述步骤A的反应溶剂为二氯甲烷,反应催化剂为吡啶。
  3. 根据权利要求1所述的改性棉纤维的制备方法,其特征在于,所述步骤A的反应条件还包括:密闭,并置于磁力搅拌下进行反应。
  4. 根据权利要求1所述的改性棉纤维的制备方法,其特征在于,所述步骤B的反应溶剂为去离子水和二甲基甲酰胺的混合液,反应催化剂为2,2-联吡啶、CuBr和CuBr2
  5. 根据权利要求4所述的改性棉纤维的制备方法,其特征在于,所述CuBr和CuBr2的质量比为1-5:1。
  6. 根据权利要求1所述的改性棉纤维的制备方法,其特征在于,所述步骤C的反应溶剂为去离子水和甲醇的混合液,反应催化剂为CuBr和Bpy。
  7. 根据权利要求1所述的改性棉纤维的制备方法,其特征在于,所述步骤D的反应溶剂为四氢呋喃。
  8. 根据权利要求1所述的改性棉纤维的制备方法,其特征在于,所述步骤E中,所述棉纤维-PGMA(DETA)-PSMP和TMPyP的质量比为1-5:1。
  9. 一种改性棉纤维,其特征在于,采用如权利要求1~8任一所述的制备方法制备而成。
  10. 一种改性棉纤维的应用,其特征在于,将如权利要求9所述的改性棉纤维应用于检测和吸附镉离子。
PCT/CN2017/115318 2017-04-17 2017-12-08 一种改性棉纤维及制备方法与应用 WO2018192239A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710249925.3 2017-04-17
CN201710249925.3A CN107099999B (zh) 2017-04-17 2017-04-17 一种改性棉纤维及制备方法与应用

Publications (1)

Publication Number Publication Date
WO2018192239A1 true WO2018192239A1 (zh) 2018-10-25

Family

ID=59656288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115318 WO2018192239A1 (zh) 2017-04-17 2017-12-08 一种改性棉纤维及制备方法与应用

Country Status (2)

Country Link
CN (1) CN107099999B (zh)
WO (1) WO2018192239A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107099999B (zh) * 2017-04-17 2019-10-25 深圳大学 一种改性棉纤维及制备方法与应用
CN109912046A (zh) * 2019-03-30 2019-06-21 杨晓飞 一种农业污水处理剂及其制备方法
CN110124623A (zh) * 2019-05-21 2019-08-16 南昌大学 一种改性玉米秸秆纤维素吸附剂、制备方法及用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1970876A (zh) * 2006-12-01 2007-05-30 陕西师范大学 一种制备具有亲水或疏水性纤维的方法
CN103706334A (zh) * 2014-01-07 2014-04-09 福州大学 一种结构可控的纤维素吸附剂及其制备方法
CN104345043A (zh) * 2014-07-16 2015-02-11 天津工业大学 一种适用于重金属离子检测的卟啉光学传感功能膜及其制备方法
CN104667891A (zh) * 2015-02-09 2015-06-03 南京工业大学 一种吸附水中重金属螯合纤维材料的制备方法
CN107099999A (zh) * 2017-04-17 2017-08-29 深圳大学 一种改性棉纤维及制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103709340B (zh) * 2013-12-29 2016-03-09 哈尔滨工业大学 粉末活性炭表面接枝聚(n-异丙基丙烯酰胺)的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1970876A (zh) * 2006-12-01 2007-05-30 陕西师范大学 一种制备具有亲水或疏水性纤维的方法
CN103706334A (zh) * 2014-01-07 2014-04-09 福州大学 一种结构可控的纤维素吸附剂及其制备方法
CN104345043A (zh) * 2014-07-16 2015-02-11 天津工业大学 一种适用于重金属离子检测的卟啉光学传感功能膜及其制备方法
CN104667891A (zh) * 2015-02-09 2015-06-03 南京工业大学 一种吸附水中重金属螯合纤维材料的制备方法
CN107099999A (zh) * 2017-04-17 2017-08-29 深圳大学 一种改性棉纤维及制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU, C.K. ET AL.: "Preparation of the Porphyrin-Functionalized Cotton Fiber for the Chromogenic Detection and Efficient Adsorption of Cd 2+ Ions", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 488, 4 November 2016 (2016-11-04), XP029825093 *
LIU, C.K. ET AL.: "Visible Sequestration of Cu2+ Ions Using Amino-Functionalized Cotton Fiber", RSC ADVANCES, 2 February 2017 (2017-02-02), pages 9744 - 9752, XP055550367 *

Also Published As

Publication number Publication date
CN107099999A (zh) 2017-08-29
CN107099999B (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
Wang et al. A marine‐inspired hybrid sponge for highly efficient uranium extraction from seawater
WO2018192239A1 (zh) 一种改性棉纤维及制备方法与应用
CN109092265B (zh) 一种聚咪唑离子液体改性的纤维素基吸附剂及其制备方法和应用
CN107321319B (zh) 多孔纳米纤维膜的制备及其在重金属离子吸附应用
Zhao et al. α-ketoglutaric acid modified chitosan/polyacrylamide semi-interpenetrating polymer network hydrogel for removal of heavy metal ions
CN106076279A (zh) 一种重金属离子吸附剂及其制备方法和应用
Zhang et al. Homochiral fluorescence responsive molecularly imprinted polymer: Highly chiral enantiomer resolution and quantitative detection of L-penicillamine
Jia et al. Double functional polymer brush-grafted cotton fiber for the fast visual detection and efficient adsorption of cadmium ions
CN112973653B (zh) 基于聚偕胺肟的Mxene膜吸附材料的制备方法及提铀方法
CN110918067B (zh) 一种接枝纤维素吸附剂及其制备方法和应用
CN104525129A (zh) 一种用于重金属废水处理的改性活性炭的制备方法
CN104923176B (zh) 一种树枝状高密度固态胺纤维材料及其制备方法
CN111636145A (zh) 一种吸附重金属的聚酯纤维膜及其制备方法
CN111167417A (zh) 一种改性甘蔗渣及其制备方法和作为吸附剂的应用
CN113648984A (zh) 一种温度-pH响应分子印迹纤维膜及其制备方法
CN108159902B (zh) 一种螯合型聚丙烯腈中空纤维膜的制备方法
KR101987667B1 (ko) 금속이온 흡착막, 이의 제조방법 및 이의 응용
CN110354822A (zh) 一种胺基化表面离子印迹秸秆基生物吸附剂的制备方法
CN110090627A (zh) 一种钙离子印迹壳聚糖吸附剂及其制备方法与应用
CN108126678B (zh) 一种可再生的纳米碳材料涂覆纤维吸附剂及其制备方法
CN105833846B (zh) 一种汞离子吸附螯合纤维的制备方法
CN107115846A (zh) 一种冠醚固载化玻璃纤维材料及其制备方法
CN113145077A (zh) 一种环氧改性淀粉基Fe3O4吸附剂材料的制备方法
CN106492768A (zh) 一种离子选择性纤维素基吸附剂的制备方法及应用
Wolman et al. Peptide imprinted polymer synthesized by radiation-induced graft polymerization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906213

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 04/08/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17906213

Country of ref document: EP

Kind code of ref document: A1