WO2018192019A1 - 显示基板的制作方法、显示基板及液晶显示面板 - Google Patents

显示基板的制作方法、显示基板及液晶显示面板 Download PDF

Info

Publication number
WO2018192019A1
WO2018192019A1 PCT/CN2017/083687 CN2017083687W WO2018192019A1 WO 2018192019 A1 WO2018192019 A1 WO 2018192019A1 CN 2017083687 W CN2017083687 W CN 2017083687W WO 2018192019 A1 WO2018192019 A1 WO 2018192019A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
nano
graphene
scale
Prior art date
Application number
PCT/CN2017/083687
Other languages
English (en)
French (fr)
Inventor
于晓平
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/543,985 priority Critical patent/US20180329251A1/en
Publication of WO2018192019A1 publication Critical patent/WO2018192019A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/36Imagewise removal not covered by groups G03F7/30 - G03F7/34, e.g. using gas streams, using plasma
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/04Charge transferring layer characterised by chemical composition, i.e. conductive
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/16Materials and properties conductive

Definitions

  • the present invention relates to the field of flat display technology, and in particular to a method of manufacturing a display substrate, a display substrate, and a liquid crystal display panel.
  • the liquid crystal display device has many advantages such as thin body, power saving, no radiation, and the like, and is widely used.
  • Vertical alignment The Alignment (VA) mode is one of the most commonly used display modes for liquid crystal display devices, and has the advantages of wide viewing angle and fast response.
  • the Oxides/slit, ITO/slit structure by applying a voltage, forms an oblique electric field distribution between the ITO/slit of the upper and lower substrates, thereby driving the liquid crystal molecules.
  • the electrodes are fabricated, by controlling the arrangement of the ITO/slit of the upper and lower substrates, the rotational azimuth of the liquid crystal molecules is maintained at 45° to obtain the maximum light transmission efficiency.
  • ITO/slit In order to further improve the efficiency of liquid crystal, people gradually refine the arrangement of ITO/slit.
  • ITO/slit can only be micron-sized, which is difficult to be more refined.
  • disadvantages such as expensive indium tin oxide, low electrical conductivity and poor mechanical stability, it is limited to some extent.
  • the technical problem to be solved by the present invention is to provide a method for fabricating a display substrate, a display substrate, and a liquid crystal display panel, which can improve light penetration efficiency and electron conduction rate, thereby improving display quality of the display substrate.
  • a technical solution adopted by the present invention is to provide a display substrate, the display substrate includes a base substrate; and the base substrate is provided with a graphene electrode layer having a nano-scale electrode pattern; A first auxiliary layer having a nano-scale pattern is disposed between the base substrate and the graphene electrode layer; wherein the nano-scale electrode pattern of the graphene electrode layer is formed by a nanoimprint technique.
  • another technical solution adopted by the present invention is to provide a method for fabricating a display substrate, the method comprising: providing a substrate; forming a nano-scale electrode pattern on the substrate Graphene electrode layer.
  • the liquid crystal display panel includes a display substrate, the display substrate includes a base substrate, and the base substrate is disposed on the substrate There is a graphene electrode layer having a nanoscale electrode pattern.
  • the invention has the beneficial effects that the method for fabricating the display substrate of the present invention comprises: providing a substrate substrate; forming a graphene electrode layer having a nano-scale electrode pattern on the substrate substrate.
  • the graphene electrode layer has a nano-scale electrode pattern and the graphene layer is thin and transparent, light transmittance can be improved, thereby improving display efficiency, and the graphene layer has good conductivity and can enhance electron conduction rate. Further, the display quality of the display substrate is improved.
  • FIG. 1 is a schematic flow chart of an embodiment of a method for fabricating a display substrate of the present invention
  • FIG. 2 is a schematic structural view of an embodiment of a display substrate of the present invention.
  • FIG. 3 is a schematic flow chart of another embodiment of a method for fabricating a display substrate of the present invention.
  • FIG. 4 to FIG. 7 are schematic diagrams showing processes of another embodiment of a method for fabricating a display substrate of the present invention.
  • FIG. 8 is a schematic flow chart of still another embodiment of a method for fabricating a display substrate of the present invention.
  • FIG. 14 are schematic diagrams showing processes of still another embodiment of the method of fabricating the display substrate of the present invention.
  • an embodiment of a method for manufacturing a display substrate of the present invention includes:
  • Step S101 providing a substrate substrate 101
  • the base substrate 101 may be made of a transparent material, and may be a water-blocking transparent organic material or glass. When selecting, different materials may be selected according to the specific display substrate type. Commonly used are glass substrates, silica substrates, and some applications can use polyvinyl chloride (Polyvinyl) Chloride, PV), polytetrafluoro ethylene (PFA), polyethylene terephthalate (Polyethylene) Terephthalate, PET) substrate, etc.
  • the base substrate 101 may be a TFT substrate or a CF substrate in which the top layer is the above-described material and the pixel electrode layer is not formed.
  • Step S102 Forming a graphene electrode layer 102 having a nano-scale electrode pattern on the base substrate 101.
  • the nanoscale pattern can be formed by at least one of photolithography, soft etching, graphene edge printing, nanoimprinting, and the like.
  • Graphene is a new type of nano-carbon material with extremely high specific surface area, good mechanical strength, high thermal conductivity and light transmission efficiency, and superior electrical conductivity and high temperature stability. At room temperature, graphene has an electron mobility of more than 15,000 cm 2 /V ⁇ s and a resistivity of only 10-6 ⁇ •cm, which is the world's lowest resistivity material. Therefore, graphene is essentially a transparent and good conductor. When graphene is used as an electrode, the conduction rate of electrons and the transmittance of light can be ensured, thereby reducing the amount of electrode raw materials and saving cost.
  • the display substrate of the present invention forms a graphene electrode layer having a nano-scale electrode pattern on the base substrate 101. Since the graphene electrode layer has a nano-scale electrode pattern and the graphene layer is thin and transparent, the transmittance of light can be improved, thereby The display efficiency is improved, and the graphene layer has good conductivity, which can increase the conduction rate of electrons, thereby improving the display quality of the display substrate.
  • step S102 further includes: sub-step S1021, sub-step S1022, and sub-step S1023.
  • Sub-step S1021 forming a first auxiliary layer 202 on the base substrate 201;
  • the first auxiliary layer 202 may be a transparent layer with good light transmittance, and the material thereof may specifically be polymethyl methacrylate (polymethyl methacrylate). Methacrylate, PMMA), polystyrene (PS), polycarbonate (Polycarbonate, PC), polyvinyl chloride (Polyvinyl) At least one of chloride, PVC, and the like. In an application scenario, the first auxiliary layer 202 also needs to be nanoimprintable.
  • the first auxiliary layer 202 may be formed by coating a liquid PMMA on a base substrate 201 by spin coating, and uniformly forming and then solidifying to form a PMMA layer.
  • a spray coating method such as a dip coating method, an electrophoretic coating method, a painting method, and the like, may be employed, and are not limited herein.
  • Sub-step S1022 performing nano-scale patterning processing on the first auxiliary layer 202;
  • the nano-scale patterning treatment of the first auxiliary layer 202 can be performed by photolithography, electron beam direct writing, X-ray exposure, extreme deep ultraviolet light source exposure, vacuum ultraviolet light etching technology, soft etching, and nano imprint technology.
  • the first auxiliary layer 202 is subjected to nano-scale patterning treatment by using a nanoimprint technique.
  • Nano-imprinting technology can be used to form a large-area three-dimensional artificial structure with a resolution of less than 10 nm on the PMMA layer, thereby achieving nano-scale patterning treatment.
  • Nanoimprint technology does not have diffraction phenomena in optical exposure and scattering in electron beam exposure, and has ultra-high resolution; but it can be processed in parallel like optical exposure, and hundreds of devices are fabricated at the same time, resulting in high yield.
  • nanoimprint technology does not require complex optical systems like optical exposure machines, or complex electromagnetic focusing systems like electron beam exposure machines, which are low in cost; and can be used to make masks on almost no difference. Transfer to the wafer with high fidelity.
  • nanoimprint technology includes hot stamping lithography, UV-curing nanoimprint technology, micro-contact nanoimprint technology, and soft imprint technology.
  • the first auxiliary layer 202 is subjected to nano-scale patterning processing by using a thermal imprint lithography technique.
  • the embossing die 203 used in the nano-scale patterning process can be SiC, Si3N4, SiO2, etc. with high precision, high hardness and chemical stability, and can be processed by electron beam etching technology or reactive ion etching technology to make the embossing die. 203 forms the desired nanoscale pattern.
  • the process of hot stamping the first auxiliary layer 202 to form a nano-scale pattern may specifically: heating the PMMA layer above its glass transition temperature; heating method may specifically adopt heating plate heating, ultrasonic heating, etc. .
  • the use of ultrasonic heating can shorten the heating process to a few seconds, which is beneficial to reduce power consumption, increase production and reduce costs.
  • the pressure is applied to the imprinting mold 203, and the heating temperature and pressure are maintained for a period of time, so that the liquid PMMA fills the nano-pattern gap of the mold 203, and then the temperature is lowered to below the glass transition temperature, and then the mold is released.
  • the PMMA layer completes the nanoscale patterning process.
  • the entire process is carried out in a vacuum environment of less than 1 Pa.
  • the vacuum environment can smoothly discharge the gas in the first auxiliary layer 202, thereby reducing the influence of the bubbles on the pattern quality during the imprinting, thereby improving the quality of the formed nano-scale pattern.
  • a gas-assisted nanoimprint technique may be employed, specifically, the mold 203 and the substrate substrate 201 having the first auxiliary layer 202 are aligned and placed in a vacuum chamber before imprinting, and then the vacuum is applied to the cavity.
  • the body is filled with an inert gas to pressurize.
  • gas pressure By means of gas pressure, the pressure is uniform, and the pressure can be controlled according to the intake air amount, thereby avoiding the problem that the bearing table needs to adopt multi-degree of freedom adaptive correction during the mechanical pressure application, and simplifies the production process.
  • Sub-step S1023 A graphene electrode layer 204 is formed on the first auxiliary layer 2021 subjected to nano-scale patterning.
  • Forming the graphene electrode layer 204 on the first auxiliary layer 2021 subjected to nano-scale patterning is specifically performed by forming a graphene film layer thereon.
  • the graphene film may have 1 to 10 layers of monoatomic graphene, and the graphene film may be formed by at least at least one of a chemical vapor deposition method, a redox method, a mechanical stripping method, a carbon nanotube cracking method, and an SiC epitaxial growth method.
  • a chemical vapor deposition method e.g., a chemical vapor deposition method, a redox method, a mechanical stripping method, a carbon nanotube cracking method, and an SiC epitaxial growth method.
  • PI polyimide
  • ODF Drop Filling
  • the use of the hot stamping technique can form a high-quality, low-cost nano-scale pattern, and the use of the graphene electrode layer 204 having a nano-scale electrode pattern can improve the display quality of the display substrate.
  • step S102 includes: sub-step S1024, sub-step S1025, sub-step S1026, and sub-step S1027.
  • Sub-step S1024 sequentially forming a graphene layer 302 and a second auxiliary layer 303 on the base substrate 301;
  • Sub-step S1025 performing nano-scale patterning processing on the second auxiliary layer 303 to form the second auxiliary layer 303 to form a nano-scale electrode pattern;
  • the manner in which the graphene layer 302 in the present embodiment is formed is substantially the same as that in the above embodiment, and the material of the second auxiliary layer 303, the manner of formation, and the like are related to the first auxiliary layer in the above embodiment.
  • the basics are the same. For details, refer to the foregoing implementation manner, and details are not described herein again.
  • Sub-step S1026 treating the graphene layer 302 to form the graphene layer 302 to form a nano-scale electrode pattern
  • the graphene layer 302 is processed, and plasma surface treatment technology, photolithography, laser etching, etc. may be used. In this embodiment, RIE is specifically adopted, so that the graphene layer 302 is formed and the second auxiliary has a nano-scale pattern.
  • the layer 3031 has the same pattern.
  • Sub-step S1027 removing the second auxiliary layer 3031 having a nano-scale pattern.
  • the second auxiliary layer 3031 having the nano-scale pattern may be removed.
  • the removal of the second auxiliary layer 3031 having the above-described nano-scale pattern can be specifically immersed in an organic solvent capable of dissolving it.
  • an organic solvent capable of dissolving it.
  • PMMA for example, at least one of acetone, dimethylaniline (DMF), dichloromethane, chlorobenzene, toluene, tetrahydrofuran, chloroform, or the like may be used, or an alkaline solution such as NaOH solution may be used.
  • the heating and ultrasonic methods can be further used as an aid to accelerate the removal of the PMMA layer.
  • PI polyimide
  • ODF Drop Filling
  • the obtained display substrate has the beneficial effects of the above embodiment, and the PMMA layer and the lining can be avoided due to the removal of the PMMA layer.
  • the interference phenomenon of light caused by the base substrate affects the display efficiency, and the light transmittance of the display substrate can be further enhanced, and the display substrate can be made lighter and thinner.
  • the thin film transistor substrate of the present invention is specifically formed according to any one of the methods for fabricating the display substrate.
  • the specific method is the same as the above embodiments, and details are not described herein again.
  • the thin film transistor substrate of the present embodiment employs a graphene electrode layer having a nano-scale electrode pattern, and the graphene layer is thin and transparent, which can improve light transmittance, thereby improving display efficiency, and the graphene layer has good conductivity.
  • the electron conduction rate can be increased, thereby improving the display quality of the display substrate.
  • the color filter substrate is specifically formed according to any one of the methods for fabricating the display substrate, and the specific method is not described herein. Narration.
  • the color filter substrate in the present embodiment employs a graphene electrode layer having a nano-scale electrode pattern, and the graphene layer is thin and transparent, which can improve light transmittance, thereby improving display efficiency, and the graphene layer has good properties. Conductivity can increase the conduction rate of electrons, thereby improving the display quality of the display substrate.
  • the liquid crystal display panel includes the substrate of the thin film transistor substrate and/or the color filter substrate.
  • the liquid crystal display panel of the present invention includes a liquid crystal display panel used for an electronic device such as a television, an electronic computer, a tablet computer, a mobile phone, an MP3, an MP4, or the like, which is a liquid crystal display, and particularly a VA liquid crystal display panel such as MVA and PVA.
  • the liquid crystal display panel of the present embodiment has high liquid crystal efficiency and extremely high display quality.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种显示基板的制作方法、显示基板以及液晶显示面板,方法包括:提供一衬底基板(101,201,301);在衬底基板(101,201,301)上形成一具有纳米级电极图案的石墨烯电极层(102,204,3021)。通过上述方式,能够提升光的穿透效率以及电子传导速率,从而提高显示基板的显示质量。

Description

显示基板的制作方法、显示基板及液晶显示面板
【技术领域】
本发明涉及平面显示技术领域,特别是涉及显示基板的制作方法、显示基板及液晶显示面板。
【背景技术】
液晶显示装置具有机身薄、省电、无辐射等众多优点而得到广泛的应用。垂直配向(Vertical Alignment,VA)模式为目前液晶显示器件最常用的显示模式之一,具有视角广、响应快等优点。
VA模式中通常在薄膜晶体管基板(Thin Film Transistor,TFT)或者同时在彩色滤光片基板(Color filter,CF)上设置氧化铟锡/缝隙(Indium Tin Oxides/slit,ITO/slit)结构,通过施加电压,使上下基板的ITO/slit间形成倾斜的电场分布,进而驱动液晶分子。在制作电极时,通过控制上下基板的ITO/slit的排列方式,使得液晶分子的转动方位角保持45°,以获得最大的光透过效率。
为进一步提高液晶效率,人们逐步细化ITO/slit的排列,然而,由于制程工艺的限制,ITO/slit只能做到微米级,很难做到更精细化。同时,由于氧化铟锡较为昂贵、导电率低以及机械稳定性差等弊端,使其在一定程度上受到了限制。
【发明内容】
本发明主要解决的技术问题是提供一种显示基板的制作方法、显示基板以及液晶显示面板,能够提升光的穿透效率以及电子传导速率,从而提高显示基板的显示质量。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种显示基板,所述显示基板包括一衬底基板;所述衬底基板上设置有一具有纳米级电极图案的石墨烯电极层;所述衬底基板与所述石墨烯电极层之间设置有一具有纳米级图案第一辅助层;其中,所述石墨烯电极层的所述纳米级电极图案采用纳米压印技术形成。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种显示基板的制作方法,所述方法包括:提供一衬底基板;在所述衬底基板上形成一具有纳米级电极图案的石墨烯电极层。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种液晶显示面板,所述液晶显示面板包括一显示基板;所述显示基板包括一衬底基板;所述衬底基板上设置有一具有纳米级电极图案的石墨烯电极层。
本发明的有益效果是:区别于现有技术的情况,本发明显示基板的制作方法包括:提供一衬底基板;在所述衬底基板上形成一具有纳米级电极图案的石墨烯电极层。其中,由于石墨烯电极层具有纳米级电极图案且石墨烯层薄且透明,能够提高光的透过率,从而提高显示效率,同时石墨烯层具有良好的导电性,能够提升电子的传导速率,进而提高显示基板的显示质量。
【附图说明】
图1是本发明显示基板的制作方法一实施方式的流程示意图;
图2是本发明显示基板一实施方式的结构示意图;
图3是本发明显示基板的制作方法另一实施方式的流程示意图;
图4至图7是本发明显示基板的制作方法另一实施方式的制程示意图;
图8是本发明显示基板的制作方法又一实施方式的流程示意图;
图9至图14是本发明显示基板的制作方法又一实施方式的制程示意图。
【具体实施方式】
请参阅图1、图2,本发明显示基板的制作方法一实施方式包括:
步骤S101:提供一衬底基板101;
衬底基板101可以为透明材质,具体可以为隔水隔氧透明有机材质或玻璃,选择时可根据具体的显示基板种类选择不同的材质。常见的有玻璃基板、二氧化硅基板,也有一些应用中可采用聚氯乙烯(Polyvinyl chloride,PV)、可熔性聚四氟乙烯(Polytetrafluoro ethylene,PFA)、聚对苯二甲酸乙二酯(Polyethylene terephthalate,PET)基板等。当然,上述衬底基板101也可以为顶层为上述材质,且尚未形成像素电极层的TFT基板或CF基板。
步骤S102:在衬底基板101上形成一具有纳米级电极图案的石墨烯电极层102。
其中,纳米级级图案的形成可通过光刻、软刻蚀、石墨烯边缘印刷术、纳米压印技术等方法中的至少一种。
石墨烯是一种新型的纳米碳材料,具有极高的比表面积、良好的机械强度、极高的导热系数和光透过效率以及超强的导电性和高温稳定性。常温下,石墨烯的电子迁移率超过15000cm2/V•s,而电阻率仅为10-6Ω•cm,是世界上电阻率最低的材料。因此,石墨烯实质上是一种透明、良好的导体,将石墨烯用作电极时,能够保证电子的传导速率和光的透过率,进而减少电极原料的用量,节省成本。
本发明显示基板在衬底基板101上形成一具有纳米级电极图案的石墨烯电极层,由于石墨烯电极层具有纳米级电极图案且石墨烯层薄且透明,能够提高光的透过率,从而提高显示效率,同时石墨烯层具有良好的导电性,能够提升电子的传导速率,进而提高显示基板的显示质量。
请参阅图3至图7,在一个实施方式中,步骤S102进一步包括:子步骤S1021、子步骤S1022以及子步骤S1023。
子步骤S1021:在衬底基板201上形成第一辅助层202;
第一辅助层202可以为透明层,具有良好的光的透过率,其材质具体可以是聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)、聚苯乙烯(Polystyrene,PS)、聚碳酸酯(Polycarbonate,PC)、聚氯乙烯(Polyvinyl chloride,PVC)等中的至少一种。在一个应用场景中,第一辅助层202还需可纳米压印。
其中PMMA的透光率极好。本实施方式中以PMMA为例,第一辅助层202的具体形成方法可以为:在衬底基板201上采用旋涂法涂覆液态的PMMA,均匀涂布后固化即可形成PMMA层。当然,也可以采用其它的涂覆方式,如喷涂法、浸涂法、电泳涂装法以及涂刷法等等,此处不做限定。
子步骤S1022:对第一辅助层202进行纳米级图案化处理;
对第一辅助层202进行纳米级图案化处理可以采用光刻、电子束直写、X射线曝光、极深紫外光源曝光、真空紫外光蚀技术、软刻蚀以及纳米压印技术等进行。
本实施方式中,具体采用纳米压印技术对第一辅助层202进行纳米级图案化处理。采用纳米压印技术,可以在PMMA层上形成分辨率小于10nm的大面积三维人工结构,进而实现对其纳米级图案化处理。纳米压印技术不存在光学曝光中的衍射现象和电子束曝光中的散射现象,具有超高分辨率;但却可以像光学曝光那样并行处理,同时制作成百上千个器件,从而具有高产量的优点;同时,纳米压印技术不像光学曝光机那样需要复杂的光学系统,或者电子束曝光机那样需要复杂的电磁聚焦系统,成本低;并且能够几乎无差别的将掩膜版上的图形转移到晶元上,具有高保真度。
其中,纳米压印技术包括热压印光刻技术、紫外固化纳米压印技术、微接触纳米压印技术、软压印技术等。本实施方式中具体采用热压印光刻技术对第一辅助层202进行纳米级图案化处理。
其中,进行纳米级图案化处理时采用的压印模具203可以为精度高、硬度大、化学性质稳定的SiC、Si3N4、SiO2等,可利用电子束蚀刻技术或反应离子蚀刻技术处理使得压印模具203形成所需的纳米级图形。
以PMMA为例,对第一辅助层202进行热压印形成纳米级图案的处理具体可以为:将PMMA层加热至其玻璃化转变温度之上;加热方式具体可采用加热板加热、超声波加热等。其中,采用超声波加热可以将加热过程缩短至几秒钟,有利于降低功耗、提高产量和降低成本。加热完成后,加压于压印模具203,并保持加热温度和压力一段时间,使液态的PMMA填充模具203的纳米级图形空隙,然后降低温度至玻璃化转变温度以下后脱模,此时的PMMA层便完成了纳米级图案化处理。
在一个应用场景中,为了减小空气气泡对转移图案质量的影响,整个工艺过程均在小于1Pa的真空环境中进行。其中,真空环境可以使第一辅助层202中的气体顺利排出,减少压印时气泡对图案质量的影响,进而提高所形成的纳米级图案质量。
在一个应用场景中,可以采用气体辅助纳米压印技术,具体是在压印前将模具203和具有第一辅助层202的衬底基板201对准后固定置于真空腔体内,然后真空向腔体内充入惰性气体加压。采用气体施压的方式,压力均匀,且压力大小可以根据进气量控制,进而能够避免机械施压过程中承片台需要采用多自由度自适应校正的难题,简化生产工艺。
子步骤S1023:在经过纳米级图案化处理的第一辅助层2021上形成石墨烯电极层204。
在经过纳米级图案化处理的第一辅助层2021上形成石墨烯电极层204具体通过在其上形成石墨烯薄膜层进行。
其中,石墨烯薄膜可以具有1~10层单原子石墨烯,形成石墨烯薄膜具体可以通过化学气相沉积法、氧化还原法、机械剥离法、碳纳米管裂解法以及SiC外延生长法等中的至少一种。
进一步地,在形成石墨烯电极层204后,继续进行聚酰亚胺(Polyimide,PI)涂布、液晶滴下(One Drop Filling,ODF)等制程,制备显示器件,并通过施加外部电压驱动液晶倾倒实现液晶显示的功能。
通过本实施方式,热压印技术的采用能够形成高质量、低成本的纳米级图案,且采用具有纳米级电极图案的石墨烯电极层204,能够提高显示基板的显示质量。
请参阅图8至图14,在一个实施方式中,步骤S102包括:子步骤S1024、子步骤S1025、子步骤S1026以及子步骤S1027。
子步骤S1024:在衬底基板301上依次形成石墨烯层302、第二辅助层303;
子步骤S1025:对第二辅助层303进行纳米级图案化处理,以使第二辅助层303形成纳米级电极图案;
其中,本实施方式中的石墨烯层302的形成方式与上述实施方式中的相关内容基本相同,同时,第二辅助层303的材料以及形成方式等与上述实施方式中第一辅助层的相关内容基本相同,具体参见上述实施方式,此处不再赘述。
子步骤S1026:对石墨烯层302进行处理,以使石墨烯层302形成纳米级电极图案;
对石墨烯层302进行处理,可以采用等离子体(plasma)表面处理技术、光刻、激光刻蚀等,本实施方式中具体采用RIE,使得石墨烯层302形成与具有纳米级图案的第二辅助层3031相同的图案。
子步骤S1027:去除该具有纳米级图案的第二辅助层3031。
在本实施方式中,在石墨烯层302上覆盖的具有纳米级电极图案的在墨烯层302形成纳米级电极图案之后,可去除该具有纳米级图案的第二辅助层3031。
去除上述具有纳米级图案的第二辅助层3031具体可通过浸泡在能够将其溶解的有机溶剂当中。同样以PMMA为例,可以采用例如丙酮、二甲基苯胺(Dimethylformaid,DMF)、二氯甲烷、氯苯、甲苯、四氢呋喃、氯仿等中的至少一种,也可以采用碱性溶液,如NaOH溶液。当然,也可以进一步采用加热和超声的方法作为辅助,加速PMMA层的去除。
进一步地,在形成石墨烯电极层204后,继续进行聚酰亚胺(Polyimide,PI)涂布、液晶滴下(One Drop Filling,ODF)等制程,制备显示器件,并通过施加外部电压驱动液晶倾倒实现液晶显示的功能 。
通过本实施方式,最终在基板上仅形成具有纳米级电极图案的石墨烯电极层3021,最终所得到的显示基板除了具有上述实施方式的有益效果外,由于PMMA层的去除能够避免PMMA层与衬底基板造成的光的干涉现象对显示效率的影响,且能够进一步增强显示基板的光透过率,同时也使显示基板更加轻薄。
其中,在本发明薄膜晶体管基板一实施方式中,该薄膜晶体管基板具体根据上述显示基板制作方法中的任一种方法制成,具体方法如上述各实施方式,此处不再赘述。本实施方式中的薄膜晶体管基板采用具有纳米级电极图案的石墨烯电极层,而且石墨烯层薄且透明,能够提高光的透过率,从而提高显示效率,同时石墨烯层具有良好的导电性,能够提升电子的传导速率,进而提高显示基板的显示质量。
其中,在本发明彩色滤光片基板一实施方式中,该彩色滤光片基板具体根据上述显示基板制作方法中的任一种方法制成,具体方法如上述相关各实施方式,此处不再赘述。本实施方式中的彩色滤光片基板采用具有纳米级电极图案的石墨烯电极层,而且石墨烯层薄且透明,能够提高光的透过率,从而提高显示效率,同时石墨烯层具有良好的导电性,能够提升电子的传导速率,进而提高显示基板的显示质量。
其中,在本发明液晶显示面板一实施方式中,该液晶显示面板包括上述薄膜晶体管基板一实施方式和/或彩色滤光片基板一实施方式中的基板。其中,本发明液晶显示面板包括利用液晶显示的电视机、电子计算机、平板电脑、手机、MP3、MP4等电子设备所使用的液晶显示面板,尤其指MVA和PVA等VA类液晶显示面板。本实施方式中的液晶显示面板液晶效率高,具有极高的显示质量。
以上仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (16)

  1. 一种显示基板,其中,所述显示基板包括一衬底基板;
    所述衬底基板上设置一具有纳米级电极图案的石墨烯电极层;
    所述衬底基板与所述石墨烯电极层之间设置一具有纳米级图案第一辅助层;
    其中,所述石墨烯电极层的所述纳米级电极图案采用纳米压印技术形成。
  2. 根据权利要求1所述的显示基板,其中,
    所述第一辅助层的材料为聚甲基丙烯酸甲酯。
  3. 根据权利要求1所述的显示基板,其中,
    所述纳米压印技术为热压印光刻技术。
  4. 一种显示基板的制作方法,其中,所述方法包括:
    提供一衬底基板;
    在所述衬底基板上形成一具有纳米级电极图案的石墨烯电极层。
  5. 根据权利要求4所述的方法,其中,所述在所述衬底基板上形成一具有纳米级电极图案的石墨烯电极层,包括:
    在所述衬底基板上形成第一辅助层;
    对所述第一辅助层进行纳米级图案化处理;
    在经过纳米级图案化处理的所述第一辅助层上形成石墨烯电极层。
  6. 根据权利要求4所述的方法,其中,所述在所述衬底基板上形成一具有纳米级图案的石墨烯电极层,包括:
    在所述衬底基板上依次形成石墨烯层、第二辅助层;
    对所述第二辅助层进行纳米级图案化处理,以使所述第二辅助层形成纳米级电极图案;
    对所述石墨烯层进行处理,以使所述石墨烯层形成所述纳米级电极图案;
    去除所述第二辅助层。
  7. 根据权利要求4所述的方法,其中,所述在所述衬底基板上形成一具有纳米级电极图案的石墨烯电极层,包括:
    采用纳米压印技术在所述衬底基板上形成一具有纳米级电极图案的石墨烯电极层。
  8. 根据权利要求7所述的方法,其中,
    所述纳米压印技术为热压印光刻技术。
  9. 根据权利要求5所述的方法,其中,
    所述第一辅助层的材料为聚甲基丙烯酸甲酯。
  10. 根据权利要求6所述的方法,其中,
    所述第二辅助层的材料为聚甲基丙烯酸甲酯。
  11. 根据权利要求6所述的方法,其中,所述对所述石墨烯层进行处理,以使所述石墨烯层形成所述纳米级电极图案,包括:
    采用等离子体表面处理技术,对所述石墨烯层进行处理,以使所述石墨烯层形成所述纳米级电极图案。
  12. 一种液晶显示面板,其中,所述液晶显示面板包括一显示基板;
    所述显示基板包括一衬底基板;
    所述衬底基板上设置有一具有纳米级电极图案的石墨烯电极层。
  13. 根据权利要求12所述的液晶显示面板,其中,
    所述衬底基板与所述石墨烯电极层之间设置有一具有纳米级图案第一辅助层。
  14. 根据权利要求13所述的液晶显示面板,其中,
    所述第一辅助层的材料为聚甲基丙烯酸甲酯。
  15. 根据权利要求12所述的液晶显示面板,其中,
    所述石墨烯电极层的所述纳米级电极图案采用纳米压印技术形成。
  16. 根据权利要求15所述的液晶显示面板,其中,
    所述纳米压印技术为热压印光刻技术。
PCT/CN2017/083687 2017-04-20 2017-05-10 显示基板的制作方法、显示基板及液晶显示面板 WO2018192019A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/543,985 US20180329251A1 (en) 2017-04-20 2017-05-10 Manufacturing method of display substrate, display substrate and liquid crystal display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710261634.6A CN107024806A (zh) 2017-04-20 2017-04-20 显示基板的制作方法、显示基板及液晶显示面板
CN201710261634.6 2017-04-20

Publications (1)

Publication Number Publication Date
WO2018192019A1 true WO2018192019A1 (zh) 2018-10-25

Family

ID=59528173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083687 WO2018192019A1 (zh) 2017-04-20 2017-05-10 显示基板的制作方法、显示基板及液晶显示面板

Country Status (3)

Country Link
US (1) US20180329251A1 (zh)
CN (1) CN107024806A (zh)
WO (1) WO2018192019A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108873532B (zh) * 2018-06-07 2021-03-02 Tcl华星光电技术有限公司 立体电极的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064574A (zh) * 2013-01-14 2013-04-24 无锡力合光电石墨烯应用研发中心有限公司 一种石墨烯电容式触摸屏金属电极的精细图案化方法
US20150109719A1 (en) * 2013-10-17 2015-04-23 Electronics And Telecommunications Research Institute Method of forming graphene electrode and capacitor including the same
CN104656996A (zh) * 2015-03-03 2015-05-27 京东方科技集团股份有限公司 触控单元、触控基板及其制作方法和柔性触控显示装置
CN104835729A (zh) * 2015-04-03 2015-08-12 西安交通大学 一种柔性还原石墨烯图形化电极的模板热场诱导成形方法
CN104934551A (zh) * 2015-05-14 2015-09-23 京东方科技集团股份有限公司 一种柔性电极层及其制备方法、显示基板、显示装置
CN105892747A (zh) * 2016-04-06 2016-08-24 深圳市华星光电技术有限公司 触摸显示面板、其制备方法以及触摸显示器
CN106009015A (zh) * 2016-07-15 2016-10-12 深圳市华星光电技术有限公司 导电聚合物薄膜及其制作方法与液晶显示面板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629035A (zh) * 2011-09-29 2012-08-08 京东方科技集团股份有限公司 薄膜晶体管阵列基板及其制造方法
CN102655146B (zh) * 2012-02-27 2013-06-12 京东方科技集团股份有限公司 阵列基板、阵列基板的制备方法及显示装置
KR101436911B1 (ko) * 2012-04-25 2014-09-02 그래핀스퀘어 주식회사 핫엠보싱 임프린팅을 이용한 그래핀의 패터닝 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064574A (zh) * 2013-01-14 2013-04-24 无锡力合光电石墨烯应用研发中心有限公司 一种石墨烯电容式触摸屏金属电极的精细图案化方法
US20150109719A1 (en) * 2013-10-17 2015-04-23 Electronics And Telecommunications Research Institute Method of forming graphene electrode and capacitor including the same
CN104656996A (zh) * 2015-03-03 2015-05-27 京东方科技集团股份有限公司 触控单元、触控基板及其制作方法和柔性触控显示装置
CN104835729A (zh) * 2015-04-03 2015-08-12 西安交通大学 一种柔性还原石墨烯图形化电极的模板热场诱导成形方法
CN104934551A (zh) * 2015-05-14 2015-09-23 京东方科技集团股份有限公司 一种柔性电极层及其制备方法、显示基板、显示装置
CN105892747A (zh) * 2016-04-06 2016-08-24 深圳市华星光电技术有限公司 触摸显示面板、其制备方法以及触摸显示器
CN106009015A (zh) * 2016-07-15 2016-10-12 深圳市华星光电技术有限公司 导电聚合物薄膜及其制作方法与液晶显示面板

Also Published As

Publication number Publication date
US20180329251A1 (en) 2018-11-15
CN107024806A (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
WO2014131259A1 (zh) 导电玻璃基板及其制作方法
CN102654672B (zh) 一种显示装置、阵列基板、彩膜基板及其制作方法
KR20110042023A (ko) 그래핀의 롤투롤 전사 방법, 그래핀의 롤투롤 전사 장치 및 그래핀 롤
EP3385995A1 (en) Flexible transparent thin film
CN106782741A (zh) 一种基于纳米压印的柔性透明导电膜及其制备方法
US20120164317A1 (en) Method for fabricating polarizer
WO2019132243A1 (ko) 투명전극 제조방법
WO2020048082A1 (zh) 用于显示面板的柔性基板及其制作方法
CN108153108A (zh) 一种大尺寸无拼接微纳模具制造方法
JP6838246B2 (ja) アレイ基板、表示基板の製造方法及びディスプレイパネル
US9315389B2 (en) Hydrogen surface-treated graphene, formation method thereof and electronic device comprising the same
WO2018192019A1 (zh) 显示基板的制作方法、显示基板及液晶显示面板
CN111916524B (zh) 一种仿视网膜成像的硫化钼光探测器及其制备方法
WO2020228421A1 (zh) 阵列基板、其制备方法及显示面板
WO2016114501A2 (ko) 대면적 단일 도메인으로 배열된 유기분자의 수직원기둥 또는 라멜라 구조체의 제조방법
WO2015124027A1 (zh) 一种有序分布的导电薄膜及其器件和纳米导线结构
WO2019127796A1 (zh) 薄膜晶体管及其制造方法
WO2018188142A1 (zh) 一种提高阵列基板掩膜剥离效率的方法、阵列基板及显示面板
KR20150109514A (ko) 나노 물질 패턴의 제조방법
KR20160000563A (ko) 나노 물질 패턴의 제조방법
WO2010093069A1 (ko) 나노 구조물 제작방법
WO2018094800A1 (zh) 一种显示面板及装置
JP2011018641A (ja) 導電板及びその製造方法
WO2019205586A1 (zh) 显示基板及其制备方法、显示装置
US11961632B2 (en) Fabrication method of conductive nanonetworks using mastermold

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15543985

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906010

Country of ref document: EP

Kind code of ref document: A1