WO2015124027A1 - 一种有序分布的导电薄膜及其器件和纳米导线结构 - Google Patents

一种有序分布的导电薄膜及其器件和纳米导线结构 Download PDF

Info

Publication number
WO2015124027A1
WO2015124027A1 PCT/CN2014/094758 CN2014094758W WO2015124027A1 WO 2015124027 A1 WO2015124027 A1 WO 2015124027A1 CN 2014094758 W CN2014094758 W CN 2014094758W WO 2015124027 A1 WO2015124027 A1 WO 2015124027A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
conductive film
ordered
layer
substrate
Prior art date
Application number
PCT/CN2014/094758
Other languages
English (en)
French (fr)
Inventor
杨柏儒
韩宋佳
谢汉萍
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410058174.3A external-priority patent/CN103854723B/zh
Priority claimed from CN201410445254.4A external-priority patent/CN104240797A/zh
Application filed by 中山大学 filed Critical 中山大学
Publication of WO2015124027A1 publication Critical patent/WO2015124027A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to the field of conductive films, and more particularly to an ordered distribution of conductive films and devices thereof and nanowire structures.
  • the transparent conductive film refers to a film having excellent light transmittance and high light transmittance in the visible light band, and mainly includes a metal film system, an oxide film system, another compound film system, a polymer film system, a composite film system, and the like.
  • the metal film has good electrical conductivity but poor transparency.
  • the semiconductor film series is just the opposite, with poor conductivity and high transparency.
  • the most widely studied and widely used are metal film systems and oxide film systems.
  • Common transparent conductive films are ITO (tin-doped indium trioxide), AZO (aluminum-doped zinc oxide), etc., which have a large forbidden band width, absorb only ultraviolet light, and do not absorb visible light, so they are called "transparent".
  • the transparent conductive film is generally made of a metal oxide film as a conductive layer structure, and the most widely used one is ITO, that is, indium zinc metal oxide, which is formed by a vapor deposition or sputtering method on a transparent glass or plastic substrate to form a conductive layer.
  • ITO indium zinc metal oxide
  • the entire coating process needs to be carried out under high vacuum, and the coating temperature and post-annealing are carried out at high temperatures, which are highly demanding on equipment.
  • metal oxides are easily damaged when subjected to external stress or bending, which limits their development in the field of flexible devices.
  • the conductive materials currently used for making transparent conductive films mainly include: metal nanowires, metal nanoparticles, conductive high molecular polymers, graphene, carbon nanotubes, and the like.
  • the transparent conductive film made of a linear conductive filler has excellent electrical conductivity and light transmittance, and can maintain a low surface resistance value after being bent a plurality of times. Therefore, it has the greatest potential to replace ITO for the production of transparent conductive films.
  • the linear conductive filler realizes the conductive property by randomly forming a network structure, as shown in FIG. 1 and FIG. 2, so the conductive layer needs to have a certain amount of linear conductive filler to ensure that it has a low Surface resistance.
  • the increase in the content of the linear conductive filler causes a decrease in the transmittance of the film and an increase in the haze, which affects the application value. Therefore, there is a need for a new fabrication process that uses only a small amount of linear conductive filler to form an ordered distribution network structure to produce a transparent conductive film with high light transmittance and low surface resistance.
  • Transparent conductive films have a relatively high resistance value.
  • high light transmittance and high electrical conductivity are contradictory and restrictive, and there is a trade-off relationship between the two.
  • the process of obtaining a transparent conductive film with a lower resistance value is complicated, mainly from the aspects of low temperature deposition technology, film growth mechanism and film surface modification. How to provide a simple and effective method to reduce the resistance value of the transparent conductive film and improve the transparency of the transparent conductive film is an urgent problem to be overcome.
  • An object of the present invention is to overcome the deficiencies of the prior art and to provide a conductive film having high light transmittance and low surface resistance.
  • the present invention firstly provides an ordered distribution of a conductive film comprising a substrate and a conductive layer disposed on the substrate, wherein:
  • the conductive layer is formed by an ordered distribution of conductive filler.
  • the conductive fillers are ordered in a one-dimensional orientation distribution along the same direction.
  • the conductive filler is ordered in a two-dimensional cross-orientation distribution along any of 0° to 90°.
  • the conductive fillers are ordered in a two-dimensional vertical cross-orientation distribution.
  • the conductive filler is a metal nanowire, a carbon nanotube, a metal nanoparticle, a graphene, a conductive polymer or an oxidized metal.
  • a conductive film comprising a substrate and a conductive layer disposed on the substrate, further comprising an alignment film layer for alignment, wherein the alignment film is provided with an array of grooves; the conductive layer Coating is formed on the alignment film by a conductive filler to form an ordered distribution structure.
  • the conductive fillers are ordered in a one-dimensional orientation distribution along the same direction.
  • the conductive filler is ordered in a two-dimensional cross-orientation distribution along any of 0° to 90°.
  • the conductive layer is disposed at the top or bottom of the alignment film or is integral with the alignment film.
  • More desirable to provide an ordered distribution of conductive film including the following steps:
  • the conductive ink is coated on the substrate by one or more coating methods, and dried to form a conductive film; the coating method is oriented coating.
  • Each layer of conductive filler is distributed in a direction parallel to the previous one.
  • the conductive orientation of each layer is distributed at an angle to the previous time; the angle ranges from 0° to 90 ° between.
  • Each layer of conductive filler is distributed in a direction perpendicular to the previous one.
  • the way to achieve orientation is mechanical orientation, photoalignment orientation or chemical orientation.
  • the coating method is brush coating, roll coating, screen printing, gravure printing, letterpress printing or inkjet printing.
  • a device for applying an ordered conductive film including a substrate;
  • the conductive film having a certain pattern structure on the substrate; the conductive film is formed by an orderly cross-distribution of the conductive filler.
  • the conductive filler is a metal nanowire, a carbon nanotube, a metal nanoparticle, a graphene, a conductive polymer or an oxidized metal.
  • a device for applying an ordered conductive film comprising: a substrate, a conductive film having a pattern structure on the substrate, and an alignment film layer for orientation; the conductive film is sequentially coated by the conductive filler in the alignment Formed on the film.
  • the above device includes an insulating layer, a gate electrode, an active layer, a source, and a drain to form a TFT active matrix; the gate electrode is formed of an ordered conductive film disposed on the substrate.
  • the above device comprises a sensor layer and a transparent cover layer to form a touch panel; the sensor layer is formed by an ordered conductive film disposed on the substrate, the transparent cover layer being disposed on the sensor layer.
  • the device includes a first conductive layer and a second conductive layer respectively formed of an ordered conductive film; the second conductive layer is disposed on the first conductive layer and separated from the first conductive layer by an insulating layer And at least one of the first conductive layer and the second conductive layer is further coated with a transparent cover layer to form a touch panel.
  • the above device includes an anode electrode, an organic light-emitting layer, and a cathode electrode to form an OLED device; wherein at least one of the anode or cathode electrode is formed of an ordered conductive film disposed on the substrate.
  • the device includes a bottom electrode, a semiconductor diode, and a top electrode to form a solar cell; the semiconductor diode is located on the bottom electrode; the top electrode is located on the semiconductor diode; wherein at least one of the bottom electrode and the top electrode is disposed An ordered conductive film on the substrate is formed.
  • a transparent electrode is connected from the source or the drain of the TFT device; wherein the transparent electrode is formed by the ordered conductive film.
  • the above device includes an upper electrode and a lower electrode to form a capacitor device, wherein at least one of the upper electrode or the lower electrode is formed of the ordered conductive film.
  • the transparent electrode described above is the pixel electrode of the active drive backplane of the active display.
  • the transparent electrode described above is a pixel electrode of an active drive backplane of a passive display. More than 50% of the conductive filler in the conductive filler has a minimum angle of less than 30° with respect to the vertical or horizontal direction. More than 50% of the conductive filler in the conductive filler has a minimum angle of less than 20° with respect to the vertical or horizontal direction. More than 50% of the conductive filler in the conductive filler has a minimum angle of less than 10° with respect to the vertical or horizontal direction.
  • a device having an electromagnetic shielding function including a substrate requiring electromagnetic shielding, wherein the substrate is provided with a conductive film; the conductive film is formed by an orderly cross-distribution of the conductive filler.
  • a device for applying an ordered conductive film comprising: a substrate and a conductive film on the substrate; the conductive film comprising a conductive region and an insulating region, wherein the surface of the two regions is hydrophilic and hydrophobic, respectively In the conductive region, the conductive fillers are sequentially cross-distributed.
  • the invention further provides a nanowire structure comprising: a one-dimensional nanowire set arranged in an order along a first direction, a one-dimensional nanowire set arranged in a second direction, and an adhesive, the adhesive The interconnection of the one-dimensional nanowires in the two sets of one-dimensional nanowire sets.
  • the one-dimensional nanowires in the one-dimensional nanowires arranged in an order along the first direction have a deviation from the first direction of 0 to 10°, and the one-dimensional nanowires arranged in an order along the second direction
  • the deviation of the one-dimensional nanowire from the second direction is 0 to 10°.
  • It also includes other one-dimensional nanowires that are ordered or unordered.
  • the one-dimensional nanowire has an aspect ratio of 10 to 2000.
  • the one-dimensional nanowires are one or more of metal nanowires, carbon-based nanowires, silicon-based nanowires, metal compound nanowires or conductive polymer nanowires.
  • the adhesive is a conductive polymer, an acrylate resin, a phenol resin, a silicone resin, a polyurethane, an epoxy resin, a polyester, a fluoropolymer, a polyamide, a polyimide, a polyvinyl alcohol, and a modification.
  • a conductive polymer an acrylate resin, a phenol resin, a silicone resin, a polyurethane, an epoxy resin, a polyester, a fluoropolymer, a polyamide, a polyimide, a polyvinyl alcohol, and a modification.
  • the conductive layer comprises the nanowire structure and substrate of claim 33.
  • the one-dimensional nanowires in the nanowire structure are subjected to surface pretreatment, and the pretreatment is one or more of surface pressing, illumination, electric field, magnetic field and heating.
  • the substrate is glass, polymethyl methacrylate, polycarbonate, polyethylene naphthalate, polyethylene terephthalate, polyolefin, fluoropolymer, polyamide, polyacyl One or more of an imine, a silicone resin, a polyether ketone, a polyether ketone ketone, a polynorbornene, a polyester, a polystyrene or a cellulose triacetate.
  • the transparent conductive film further includes an alignment film layer, and the alignment film layer is located above and below the conductive layer Or among them.
  • the alignment film layer is composed of a plurality of alignment films in different directions.
  • the substrate is polyurethane, acrylate resin, silicone, polysilane, polyvinyl chloride, polystyrene, epoxy resin, fluoropolymer, polyamide, polyimide, polynorbornene, acrylonitrile- One or more of butadiene-styrene copolymer, polyvinyl alcohol, modified starch, modified cellulose, chitosan, starch, cellulose, vegetable gum, polyacrylamide or polyvinylpyrrolidone.
  • buffer layer between the substrate and the conductive layer.
  • a use of the nanowire structure described above in a device is provided, the device being a display screen, a touch screen, a sensor, a solar cell, or a thermally conductive plate.
  • the display device being a display screen, a touch screen, a sensor, a solar cell or a heat conducting plate.
  • a magnetic field and its magnetic nanowires are used in the above transparent conductive film.
  • a preferred method is that the magnetic nanowires are linearly arranged in the transparent conductive film by the action of a magnetic field.
  • the transparent conductive film of the present invention has better electrical conductivity, an average conductivity of 20 to 100 ⁇ /sq, and a transparency of the present invention of 94 to 95%.
  • the transparent conductive film of the present invention has better physical properties, and since each of the nodes is coated with a colloid, the performance of the transparent conductive film is not changed by a little deformation.
  • the present invention In order to achieve high transmittance and high conductivity, the present invention first provides a magnetic field and its application to a magnetic nanowire in a transparent conductive film.
  • the present invention enhances the conductivity of the transparent conductive film by allowing the magnetic field and its magnetic nanowires to maintain transparency.
  • a transparent conductive film is provided according to requirements, and the transparent conductive film includes magnetic nanowires.
  • the magnetic nanowire layer, the transparent conductive layer and the substrate are included, and the substrate is the bottom layer, and the magnetic nanowire layer is obtained by orienting the magnetic nanowires by a magnetic field.
  • the magnetic nanowire layer is 1 to 10 layers
  • the transparent conductive layer is 1 to 10 layers.
  • the conductive filler of the transparent conductive layer is a low-dimensional conductive material.
  • a method for preparing a transparent conductive film wherein a solvent containing a magnetic nanowire is dispersed on a substrate, and then a directional magnetic field is applied to two stages of the substrate, oriented, and then the solvent is evaporated to dryness.
  • a method for preparing a transparent conductive film comprising the steps of: dispersing a solvent containing magnetic nanowires on a substrate, and then applying a directional magnetic field to the two sections of the substrate, orienting, and The solvent is evaporated to dryness to obtain a magnetic nanowire layer, and S2.
  • a solvent containing a low-dimensional conductive material is dispersed on the magnetic nanowire layer, and then the solvent is evaporated to dryness.
  • S1 and S2 can be repeated 1 to 10 times, respectively, to obtain a transparent conductive film which is compounded by a plurality of layers of materials.
  • S2 after dispersing a solvent containing a low-dimensional conductive material on a magnetic nanowire layer, by Meyer rod orientation, or by electric field induced orientation, or by microfluid induced orientation, or by mechanical rubbing orientation, or by ultraviolet light
  • the light alignment orientation forms an angle of 0 to 90° with the direction of the magnetic field.
  • conductive coatings between different layers may be inconsistent.
  • the first conductive layer may be a magnetic nanowire (magnetic metal, alloy or superlattice nanowire) array film obtained by applying an directional strong magnetic field to induce orientation, and is applicable according to different kinds of materials, physical dimensions and density orientation degrees.
  • the magnetic field strength B varies from 0.03 to 2T.
  • the above magnetic nanowires refer to magnetically conductive nanowires including, but not limited to, metallic iron, cobalt, nickel nanoparticles, nanowires, nanorods, nanotubes and alloys thereof, and repeated in magnetic/nonmagnetic cycles. Superlattice nanostructures made by structural growth.
  • the conductive filler of the transparent conductive layer described above is a conductive nano material applied in a transparent conductive film as understood in the conventional sense, including but not limited to carbon nanotubes, graphene, magnetic or non-magnetic metal/alloy nanoparticles and nanometers. New materials such as wires and conductive polymers.
  • the above-mentioned substrate refers to a substrate which is conventionally understood and used in a transparent conductive film, including but not limited to polymethacrylate, polyvinyl alcohol, phenolic plastic, polyimide, polyurethane, epoxy resin, fiber. , silicones and other silicon-containing polymers.
  • the transparent conductive film proposed by the invention has a multi-layer structure, and different layer films are prepared by magnetic nano materials and other transparent conductive materials by orientation and coating film formation methods.
  • the angle between the film and the orientation direction of the film material can be simply controlled to realize the preparation of the microscopic ordered transparent conductive film and form an interconnected nanowire network film.
  • the object of the present invention is also to overcome the shortcomings of the prior art and provide a device for applying an ordered conductive film, including a liquid crystal display (LCD), a solar cell, a microelectronic ITO conductive film glass, a photoelectron, and various The field of optics.
  • LCD liquid crystal display
  • solar cell a solar cell
  • microelectronic ITO conductive film glass a microelectronic ITO conductive film glass
  • a photoelectron various The field of optics.
  • a device using an ordered conductive film comprising a substrate and a conductive film having a certain pattern structure on the substrate; the conductive film is formed by an ordered distribution of conductive filler.
  • a device for applying an ordered conductive film of the present invention has a conductive layer formed by an ordered distribution of conductive fillers to form an ordered distribution structure.
  • a transparent conductive film having high light transmittance and low surface resistance can be produced by using only a small amount of linear conductive filler to form an ordered distribution network structure.
  • the manufacturing process is simpler, the manufacturing cost can be effectively reduced, the optical loss can be reduced, and the optical effect is good.
  • the conductive filler is a metal nanowire, a carbon nanotube, a metal nanoparticle, a graphene, a conductive polymer or an oxidized metal.
  • the present invention also proposes another technical solution: a device using an ordered conductive film, comprising a substrate, a conductive film having a certain pattern structure on the substrate, and an alignment film layer for orientation; the conductive film is made of conductive An ordered coating of the filler is formed on the alignment film.
  • the device includes an insulating layer, a gate electrode, an active layer, a source, and a drain to form a TFT active matrix;
  • the gate electrode is formed of an ordered conductive film disposed on the substrate.
  • the conductive film is applied to the TFT active matrix, and the TFT active matrix is formed by replacing the conventional ITO by an ordered conductive transparent conductive film, which can effectively reduce the manufacturing cost and can be used for fabricating a flexible TFT device.
  • the device includes a sensor layer and a transparent cover layer to form a sensing array; the sensor layer is formed by an ordered conductive film disposed on the substrate, the transparent cover layer being disposed over the sensor layer.
  • the device includes a first sensor layer and a second sensor layer respectively formed of a conductive film; the second sensor layer is disposed on the first sensor layer and separated from the first sensor layer by an insulating layer; And at least one of the first sensor layer and the second sensor layer is further coated with a transparent cover layer to form a touch panel.
  • the conductive film is applied to a double-layer touch panel, and the sensor layer of the touch panel is replaced by a transparent conductive film arranged in an orderly manner, which can effectively reduce the manufacturing cost and can be used for manufacturing a flexible touch screen.
  • the device includes an anode electrode, an organic light-emitting layer, and a cathode electrode to form an OLED device; wherein at least one of the anode or cathode electrode is formed of an ordered conductive film disposed on the substrate.
  • the conductive film can be applied to an OLED device, and the transparent electrode of the OLED can be fabricated by an orderly distributed transparent conductive film, which can reduce the optical loss of the device, improve the luminous efficiency of the device, and can be used for fabricating a large-sized flexible OLED device.
  • the device includes a bottom electrode, a semiconductor diode, and a top electrode to form a solar cell; the semiconductor diode is located on the bottom electrode; the top electrode is located on the semiconductor diode; wherein at least one of the bottom electrode and the top electrode is disposed A conductive film is formed on the substrate.
  • the conductive film can be applied to a solar cell, and a solar cell can be fabricated by an orderly distributed transparent conductive film or a large-sized flexible solar film cell can be produced while improving the absorption efficiency of the solar cell.
  • the device includes a bottom electrode, a battery storage layer, and a top electrode to form a battery; wherein at least one of the bottom electrode and the top electrode is formed of an ordered conductive film disposed on the substrate.
  • the conductive film can be applied to battery conduction, and a flexible battery is fabricated by an orderly distributed transparent conductive film. It can be produced in large size and also improves the charge transfer efficiency inside the battery.
  • a transparent electrode is connected from the source or the drain of the TFT device; wherein the transparent electrode is formed by the ordered conductive film.
  • the device includes an upper electrode and a lower electrode to form a capacitor device, wherein at least one of the upper electrode or the lower electrode is formed of the ordered conductive film.
  • the transparent electrode is the pixel electrode of the active drive backplane of the active display.
  • the transparent electrode is a pixel electrode of an active drive backplane of a passive display.
  • the conductive fillers are ordered to be distributed in a unidirectional orientation along the same direction.
  • the conductive filler is ordered in a two-dimensional cross-orientation distribution along any of 0° to 90°.
  • the conductive fillers are ordered in a two-dimensional vertical cross-orientation distribution.
  • the present invention also provides a device having an electromagnetic shielding function comprising a substrate requiring electromagnetic shielding, on which a conductive film is provided; the conductive film is formed by an ordered distribution of conductive filler. By adding an ordered conductive film, the electromagnetic shielding effect of the device can be effectively improved.
  • the present invention also proposes another technical solution: a device for applying an ordered conductive film, comprising: a substrate and a conductive film on the substrate; the conductive film comprising a conductive region and an insulating region, wherein the two regions of the substrate surface respectively It has hydrophilicity and hydrophobicity, and in the conductive region, the conductive filler is orderedly distributed.
  • This ordered conductive layer can be applied to a roll-to-roll process.
  • FIG. 1 is a schematic diagram showing a random orientation distribution of a conductive material in the prior art.
  • FIG. 2 is a graph of experimental data of FIG. 1.
  • FIG. 3 is a one-dimensional orientation distribution diagram of a conductive material in the same direction in the present invention.
  • Figure 5 is a two-dimensional vertical cross-orientation profile of a conductive material in the present invention.
  • Figure 6 is a graph of experimental data of Figure 5.
  • FIG. 7 is a schematic view showing the adhesive structure of the nano material contact junction of the present invention.
  • Figure 8 is a schematic view of a 45° cross-network film prepared by a magnetic force and Meyer bar coating alignment method.
  • Figure 9 is a cross-sectional view showing the structure of the composite film of Figure 8.
  • Figure 10 is a cross-sectional view showing the structure of a TFT active matrix using an ordered conductive film.
  • FIG. 11 is a cross-sectional view showing the structure of a touch panel to which an ordered conductive film is applied.
  • Figure 12 is a cross-sectional view showing the structure of a solar cell to which an ordered conductive film is applied.
  • Figure 13 is a cross-sectional view showing the structure of an OLED device using an ordered conductive film.
  • Figure 14 is a plan view showing the structure of a patterned conductive film.
  • a nanosilver solution having a concentration of 10 mg/ml and a 1 wt% aqueous solution of HPMC were mixed at a mass ratio of 1:6, and the average diameter of the nanosilver wires was 35 nm and the length was 10 um.
  • the resulting suspension was mixed on a vortex mixer for 10 minutes to obtain a uniformly dispersed suspension.
  • the suspension was applied to a glass substrate using a No. 0 Mayer rod, the glass substrate was quickly transferred to a 90 ° C hot plate for dry curing for 2 minutes, and then the suspension was coated again in parallel with the first coating direction using a Mayer rod.
  • the film was coated on the dried and cured conductive film, and transferred to a 90 ° C hot plate for drying and curing for 2 minutes.
  • 3 and 4 are one-dimensional orientation profiles of conductive materials in the same direction in the present invention.
  • a nanosilver solution having a concentration of 10 mg/ml and a 1 wt% aqueous solution of HPMC were mixed at a mass ratio of 1:6, and the average diameter of the nanosilver wires was 35 nm and the length was 10 um.
  • the resulting suspension was mixed on a vortex mixer for 10 minutes to obtain a uniformly dispersed suspension.
  • the suspension was applied to a glass substrate using a No. 0 Mayer rod, the glass substrate was quickly transferred to a 90 ° C hot plate for dry curing for 2 minutes, and then the suspension was coated again in a vertical upper coating direction using a Mayer rod.
  • FIG. 5 and FIG. 6 are two-dimensional vertical cross-orientation profiles of the conductive material in the present invention. Test sample surface resistivity, light transmittance. After deducting the loss of transmittance of the glass substrate, the transmittance of the conductive layer film at a wavelength of 550 nm was 95.07%, and the sheet resistance value measured by the four-probe method was 45 ⁇ / ⁇ .
  • FIG. 7 it is a schematic view of the adhesive structure of the present invention.
  • the transparent conductive film comprises a substrate 1, a nanowire 2, and an adhesive 3.
  • a nano silver solution having a concentration of 10 mg/ml and a photocurable ring having a concentration of 0.5% by weight
  • the oxygen resin ethanol solution was mixed at a mass ratio of 1:6, and the nano silver wire had an average diameter of 35 nm and a length of 10 ⁇ m.
  • the resulting suspension was mixed on a vortex mixer for 10 minutes to obtain a uniformly dispersed suspension.
  • the suspension was applied to the glass substrate twice and the directions were perpendicular to each other.
  • the glass substrate was then quickly transferred to a 90 ° C hot plate for 2 minutes pre-bake.
  • the substrate was subjected to ultraviolet exposure treatment for an exposure time of 45 s. After the exposure was completed, the substrate was moved to a hot plate at 120 ° C and a pressure of 10 MPa was applied to the surface to make the contact between the nano silver wires more tight and baked for 10 minutes. Test sample surface resistivity, light transmittance. After deducting the loss of transmittance of the glass substrate, the transmittance of the conductive layer film at a wavelength of 550 nm was 94.3%, and the sheet resistance value measured by the four-probe method was 60 ⁇ /sq.
  • FIG. 7 is a schematic structural view of the present invention.
  • the transparent conductive film comprises a substrate 1, a nanowire 2, and an adhesive 3.
  • the polymer for orientation is dissolved in an organic solvent, and the suspension is applied to the surface of the substrate by wet film formation to prepare an alignment film.
  • the oriented high molecular polymer used is a chain polymer, and a coumarin having a photosensitive property or other photosensitive functional group is linked by a carbon chain of a certain length on a side chain.
  • a high-intensity xenon lamp is used to obtain a certain intensity of UV-polarized light at a photosensitive group-sensitive wavelength through a filter and a polarizer, and the UV-polarized light is directed perpendicularly to the surface of the substrate for a certain period of time, and the photosensitive group will be polarized in the direction of UV light.
  • a cross-linking reaction occurs to form an oriented structure.
  • the alignment film is oriented in two directions perpendicular to each other by adjusting the direction of the UV polarized light.
  • a nano silver solution having a concentration of 10 mg/ml and an ethanol solution were mixed at a mass ratio of 1:6, and the nano silver wire had an average diameter of 35 nm and a length of 10 ⁇ m.
  • the resulting suspension was mixed on a vortex mixer for 10 minutes to obtain a uniformly dispersed suspension.
  • the suspension was applied to an alignment film.
  • the film as a whole was quickly transferred to a 90 ° C hot plate for 2 minutes.
  • the solvent is removed to form a cross-network type conductive structure.
  • a nano silver solution having a concentration of 10 mg/ml and an ethanol solution were mixed at a mass ratio of 1:6, and the nano silver wire had an average diameter of 35 nm and a length of 10 ⁇ m.
  • the resulting suspension was mixed on a vortex mixer for 10 minutes to obtain a uniformly dispersed suspension.
  • the suspension was applied to a glass substrate.
  • the glass substrate was then quickly transferred to a 90 ° C hot plate for 2 minutes. Remove solvent.
  • Examples 3-4 and Comparative Examples Transparent conductive thin film Membrane, measured transmittance and resistance value, the results are shown in Table 1.
  • Example Example 3 Example 4 Example 5 Transmittance 94.3 94.8 94.8 Resistance value ( ⁇ /sq) 60 75 350
  • iron-platinum nanowires were selected as magnetic nanomaterials to prepare ordered transparent conductive films.
  • the nanostructures were 1.5 nm diameter metal platinum nanowires with an average length of more than 1 ⁇ m, and nanowire iron particles with a diameter of 3 nm at the ends of the nanowires;
  • concentration was 20 mg/ml
  • purity was higher than 99.5%
  • dispersion was black.
  • it needs to be mixed with a mixer for 30 minutes, and evenly spread on the substrate to form a wet film with a thickness of about 12 ⁇ m.
  • the substrate is quickly transferred to a 50 ° C hot plate for drying and curing for 10 min, while using a common strip magnet or electromagnet, a directional magnetic field is applied to the plane of the substrate, and the magnetic field strength B is 1.15 T, which can make the anisotropic nanometer.
  • the material is self-assembled in the direction of the magnetic field, and solidified after the solvent is volatilized to obtain a micro-ordered transparent first conductive layer.
  • the film had a visible light transmittance T of about 87% and a sheet resistance of about 235 ⁇ / ⁇ .
  • a nano-silver wire @ethanol dispersion stock solution having a concentration of 10 mg/ml and a HPMC aqueous solution having a concentration of 0.5 wt% were mixed at a mass ratio of 1:6, and mixed by a mixer for 10 minutes to obtain a uniform dispersion liquid having an average diameter of 35 nm.
  • the length is 15um.
  • the dispersion suspension was uniformly coated on the base substrate with a No. 2 (12 ⁇ m microgroove) Meyer rod in a direction at an angle of 45° to the orientation direction of the first conductive layer nanomaterial (the direction of the applied magnetic field), and then rapidly placed.
  • the volatile solvent was dried on a hot plate at 90 ° C for 2 min to form a second conductive layer with a microscopic order and a matrix of conductive filler.
  • the composite conductive film had a visible light transmittance T of about 84% and a sheet resistance of about 83 ⁇ / ⁇ .
  • the angle between the orientation directions of the nanomaterials between the conductive layers can be arbitrarily controlled, taking a 45° ordered cross-network film as an example, as shown in FIG. For the sake of clarity of structure, different nanomaterials are not expressed in equal proportions to the actual length ratio.
  • a schematic cross-sectional view of the composite conductive film is finally obtained as shown in FIG.
  • the present invention applies an ordered conductive film to a TFT active matrix.
  • the TFT active matrix includes a substrate 11, a gate electrode 12, an insulating layer 13, an active layer 14, a source 15, and a drain 16 And a protective layer 17.
  • the gate electrode 12 is disposed on the substrate 11, which is formed of an ordered conductive film.
  • the insulating layer 13 is covered on the gate electrode 12.
  • the active layer 14 is overlaid on the insulating layer 13.
  • the source 15 and the drain 16 are respectively disposed on both sides of the upper surface of the active layer 14.
  • the protective layer 17 covers the upper surface of the active layer 14 and the periphery of the source 15 and the drain 16.
  • the method for manufacturing an ordered conductive film for fabricating a TFT active matrix is as follows: a solution is uniformly applied to a surface of a substrate by a wet film forming process, and then a patterned film of the interlayer film is formed by photolithography and development. Finally, a TFT active matrix is fabricated. Firstly, a layer of conductive thin film with nano silver wire is arranged on the cleaned PET substrate. The conductive film contains photosensitive material. After being dried by the hot plate, it is exposed, developed, baked and cured.
  • the TFT active matrix can be fabricated by replacing the conventional ITO with an ordered conductive transparent conductive film, which can effectively reduce the manufacturing cost and can be used to fabricate a flexible TFT device.
  • the coating direction and the number of times are changed, and the method for preparing the ordered conductive film may include various methods, for example, Method 1: a nano silver solution having a concentration of 10 mg/ml and a concentration of 1 wt.
  • the % HPMC aqueous solution was mixed at a mass ratio of 1:6, and the nano silver wire had an average diameter of 35 nm and a length of 10 ⁇ m.
  • the resulting suspension was mixed on a vortex mixer for 10 minutes to obtain a uniformly dispersed suspension.
  • the suspension was applied to a glass substrate using a No.
  • the glass substrate was quickly transferred to a 90 ° C hot plate for dry curing for 2 minutes, and then the suspension was coated again in parallel with the first coating direction using a Mayer rod.
  • the film was coated on the dried and cured conductive film, and transferred to a 90 ° C hot plate for drying and curing for 2 minutes to obtain a nano silver transparent conductive film.
  • the transmittance of the conductive layer film at a wavelength of 550 nm was 95.53%, and the sheet resistance value measured by the four-probe method was 78 ⁇ / ⁇ .
  • Method 2 The nano silver solution having a concentration of 10 mg/ml and the aqueous solution of HPMC having a concentration of 1 wt% were mixed at a mass ratio of 1:6, and the average diameter of the nano silver wire was 35 nm and the length was 10 um.
  • the resulting suspension was mixed on a vortex mixer for 10 minutes to obtain a uniformly dispersed suspension.
  • the suspension was applied to a glass substrate using a No. 1 Mayer rod, the glass substrate was quickly transferred to a 90 ° C hot plate for dry curing for 2 minutes, and then the suspension was coated again with a Mayer rod in a vertical first coating direction.
  • the film was coated on the dried and cured conductive film, and transferred to a 90 ° C hot plate for drying and curing for 2 minutes to obtain a nano silver transparent conductive film.
  • the present invention applies an ordered conductive film to a touch panel.
  • the touch panel includes two sets of substrates 21 having sensor layers 22; the two sets of substrates 21 are disposed opposite to each other, and an insulating layer 23 is disposed between the two sensor layers 22, and a protective layer 24 is disposed on a substrate on the upper layer.
  • the method includes the following steps: forming a sensor layer on the surface of the substrate by using a wet film formation method, wherein the conductive filler is distributed in an orderly manner.
  • the sensor layer is patterned, for example, a photoresist is coated on the surface of the conductive film, and the non-retained area is exposed through exposure and development, and then chemically or electrochemically etched, and finally washed away.
  • the photoresist is provided with a sensor layer having a predetermined pattern. Attached to an external touch IC via FPC. Finally, an optical glue and a cover plate are attached to the surface of the substrate as a protective layer.
  • the coating direction and the number of times are changed, and the method of producing the ordered conductive film may include various types.
  • the present invention applies an ordered conductive film to an OLED device.
  • the OLED device includes a substrate 31, a conductive layer 32, an organic light-emitting layer 33, a cathode 34, and a protective layer 35.
  • the conductive layer 32 is overlaid on the substrate 31.
  • the conductive layer 32 is an anode.
  • the organic light emitting layer 33 is overlaid on the conductive layer 32.
  • the cathode 34 is disposed on the organic light-emitting layer 33.
  • the protective layer 35 is overlaid on the cathode 34.
  • the ordered conductive film is applied to the fabrication of the OLED device mainly by the following steps: performing lithographic patterning on the ordered conductive film on the substrate, and then cleaning the film, and after plasma treatment, feeding it into the vacuum coating machine
  • the OLED organic light-emitting layer is evaporated, and then the OLED cathode is evaporated.
  • the OLED device is sent through a transfer rod to a glove box filled with high purity nitrogen.
  • the transparent electrode of the OLED is formed by the transparent conductive film which is distributed in sequence, which can reduce optical loss of the device, improve the luminous efficiency of the device, and can be used for fabricating a large-sized flexible OLED device.
  • the coating direction and the number of times are changed, and the method of producing the ordered conductive film may include various types.
  • the present invention applies an ordered conductive film to a solar cell.
  • the solar cell includes a substrate 41, a conductive layer 42, a P-type semiconductor layer 43, an N-type semiconductor layer 44, and a metal electrode 45.
  • the conductive layer is overlaid on the substrate.
  • the P-type semiconductor layer is overlaid on the conductive layer.
  • the N-shaped half A conductor layer is overlaid on the P-type semiconductor layer.
  • the metal electrode is disposed on the N-type semiconductor layer.
  • the ordered conductive film is applied to the production of a solar cell.
  • the specific steps are as follows: depositing a transparent conductive film with an orderly distribution of conductive filler on the transparent substrate to form a conductive transparent Ag/PET, and then depositing a surface on the conductive layer by a gel method.
  • the PZT film is annealed to form a polycrystalline PZT film, and then P-type a-Si is deposited by magnetron sputtering on the PZT to form a solar film.
  • the electrode Al is deposited on the surface of the film by magnetron sputtering to form a solar cell.
  • the surface of the substrate was pretreated by a coating method to form a super-hydrophilic region and a super-hydrophobic region, and a nano-silver solution having a concentration of 10 mg/ml and a 1 wt% aqueous solution of HPMC were mixed at a mass ratio of 1:6, and the nano-silver was mixed.
  • the line has an average diameter of 35 nm and a length of 10 um.
  • the resulting suspension was mixed on a vortex mixer for 10 minutes to obtain a uniformly dispersed suspension.
  • the suspension was applied to a glass substrate using a No.
  • the glass substrate was quickly transferred to a 90 ° C hot plate for dry curing for 2 minutes, and then the suspension was coated again in a vertical upper coating direction using a Mayer rod.
  • a nano silver transparent conductive film having a patterned structure is obtained, as shown in FIG. 131 is a super-hydrophobic region, the surface is not covered with a nano-silver structure to form an insulating region, and 132 is a super-hydrophilic region of the substrate to form a conductive region having an ordered structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

一种有序分布的导电薄膜及其器件和纳米导线结构。导电薄膜包括基板(1、11、21、31、41)与设置在基板上的导电层(32、42);导电层由导电填料有序分布形成,具有一定图形结构。利用这种工艺,使用少量的线性导电填料形成有序分布的网络结构,使用胶体对填料连接点处进行固定处理,尤其是经过预处理降低接触电阻,然后在两方向导线的相互连接处用胶粘胶粘合,降低薄膜片电阻并提高薄膜稳定性,就可以制作出高透光率、低表面电阻的透明导电薄膜。导电薄膜的透光率可以达到95%以上,其方块电阻值低至45Ω/口,相比于无规则分布薄膜,导电度提升一倍,同时实现了优良的透光性与导电性。对于器件来说,制作工艺更简单,有效地降低了制作成本,同时具有优异的导电性能和高透光率。

Description

一种有序分布的导电薄膜及其器件和纳米导线结构 技术领域
本发明涉及导电膜领域,更具体地,涉及一种有序分布的导电薄膜及其器件和纳米导线结构。
背景技术
透明导电薄膜是指具有优异导电性能的同时,在可见光波段具有较高的透光率的薄膜,主要有金属膜系、氧化物膜系、其他化合物膜系、高分子膜系、复合膜系等金属膜系导电性能好,但是透明率差。半导体薄膜系列刚好相反,导电性差,透明率高。当前研究和应用最为广泛的是金属膜系和氧化物膜系。常见的透明导电薄膜为ITO(锡掺杂三氧化铟)、AZO(铝掺杂氧化锌)等,它们的禁带宽度大,只吸收紫外光,不吸收可见光,因此称之为“透明”,常应用于触控面板,太阳能薄膜电池的透明电极,平板显示器,可致发光器件等。随着各种器件朝向轻薄化、可弯曲化发展,柔性透明导电薄膜由于具有柔性可弯曲,轻薄等优点而得到各界的广泛关注。
目前制作透明导电薄膜一般采用金属氧化物薄膜做导电层结构,应用最多的是ITO即铟锌金属氧化物,通过蒸镀或者溅射的方法在透明的玻璃或者塑料衬底表明形成一层可导电的铟锌氧化物薄膜。然而整个镀膜过程需要在高真空度下进行,并且镀膜温度及后退火都要在高温下进行,对设备要求很高。而且金属氧化物在受到外界应力作用或者弯曲时,很容易受到损坏,限制了其在柔性器件领域的发展。
现在用于制作透明导电薄膜的导电材料主要有:金属纳米线、金属纳米颗粒、导电高分子聚合物、石墨烯、碳纳米管等。其中采用线性导电填料制作的透明导电薄膜具有优异的导电性能和透光率,在经过多次弯折后仍然能够保持较低的表面电阻值。因此最具有潜力替代ITO用于制作透明导电薄膜。
传统的透明导电薄膜中,线性导电填料通过无规分布形成网络结构而实现导电性能,如图1和图2所示,因此导电层需要有达到一定量的线性导电填料以保证其具有较低的表面电阻。然而线性导电填料含量的增多,会引起薄膜透光率下降、雾度提高,影响应用价值。因此需要一种新的制成工艺,仅使用少量的线性导电填料形成有序分布的网络结构,制作高透光率、低表面电阻的透明导电薄膜, 广泛地用于液晶显示器(LCD)、太阳能电池、微电子ITO导电膜玻璃、光电子和各种光学领域。。
透明导电薄膜存在电阻值比较高的问题,一般来说,高透光率和高导电性(低薄膜电阻)是互相矛盾和制约的,两者之间存在此消彼长的Trade-off关系。目前想要获得较低电阻值的透明导电薄膜的工艺比较复杂,主要是从低温沉积技术、薄膜生长机理和薄膜表面改性等方面进行研究。如何提供一种简单有效的方法来降低透明导电薄膜的电阻值,提高透明导电薄膜的透明度,是目前急需克服的一个问题。
发明内容
本发明的目的在于克服现有技术的不足,提供一种高透光率、低表面电阻的导电薄膜。
为了以上发明目的,本发明首先提供一种有序分布的导电薄膜,包括基板与设置在基板上的导电层,其特征在于:
所述导电层由导电填料有序分布形成。
所述导电填料有序分布为沿同一方向一维取向分布。
所述导电填料有序分布为沿0°到90°中任一角度的二维交叉取向分布。
所述导电填料有序分布为二维垂直交叉取向分布。
所述的导电填料为金属纳米线、碳纳米管、金属纳米颗粒、石墨烯、导电聚合物或氧化金属。
更进一步提供一种有序分布的导电薄膜,包括基板与设置在基板上的导电层,还包括一用于取向的配向膜层,配向膜上设有有序分布的沟槽;所述导电层由导电填料涂覆在配向膜上形成,以形成有序分布的结构。
所述导电填料有序分布为沿同一方向一维取向分布。
所述导电填料有序分布为沿0°到90°中任一角度的二维交叉取向分布。
所述导电层设置在该配向膜的顶部或者底部或者和配向膜是一体的。
更具需求提供一种有序分布的导电薄膜的制作方法,包括以下步骤:
将导电墨水经过1次或者多次涂布的方法涂覆在基板上,经过干燥固化后形成导电薄膜;所述涂覆方法为取向型涂布。
每层导电填料分布取向方向与前一次平行。
每层导电填料分布取向方向与前一次呈一定角度;该角度的范围在0°到90 °之间。
每层导电填料分布取向方向与前一次垂直。
实现取向的方式为力学取向、光配向取向或化学取向。涂布方法为毛刷涂布、辊棒涂布、丝网印刷、凹版印刷、凸版印刷或喷墨打印。
根据需求,再提供一种应用有序导电薄膜的器件,包括基板;以及
在该基板上具有一定图形结构的导电薄膜;该导电薄膜由导电填料有序交叉分布形成。
所述的导电填料为金属纳米线、碳纳米管、金属纳米颗粒、石墨烯、导电聚合物或氧化金属。
更进一步提供一种应用有序导电薄膜的器件,包括基板、在该基板上具有一定图形结构的导电薄膜以及一用于取向的配向膜层;所述导电薄膜由导电填料有序涂布在配向膜上形成。
上述的器件包括绝缘层、栅极电极、有源层、源极以及漏极,以形成TFT有源矩阵;该栅极电极由设置在该基板上的有序导电薄膜形成。
上述的器件包括传感器层以及透明覆盖层,以形成触控面板;该传感器层由设置在该基板上的有序导电薄膜形成,该透明覆盖层设置于传感器层之上。
上述的器件包括分别由有序导电薄膜形成的第一导电层与第二导电层;该第二导电层设置在该第一导电层之上,并通过绝缘层与该第一导电层分隔开;并且该第一导电层和该第二导电层中至少一个进一步涂覆有透明覆盖层,以形成触控面板。
上述的器件包括阳极电极、有机发光层以及阴极电极,以形成OLED器件;其中,该阳极或阴极电极中至少有一种由设置在基板上的有序导电薄膜形成。
上述的器件包括底部电极、半导体二极管以及顶部电极,以形成太阳能电池;该半导体二极管位于底部电极上;该顶部电极位于该半导体二极管上;其中,该底部电极与该顶部电极中至少一个由设置在基板上的有序导电薄膜形成。
由TFT器件的源极或者漏极接出一条透明电极;其中,该透明电极由该有序导电薄膜形成。
上述的器件包括上电极、下电极以形成电容装置,其中上电极或者下电极中至少有一种由该有序导电薄膜形成。上述的透明电极为主动式显示器之有源驱动背板的像素电极。上述的透明电极为被动式显示器之有源驱动背板的像素电极。 所述导电填料中超过50%的导电填料与垂直或水平方向的最小夹角小于30°。所述导电填料中超过50%的导电填料与垂直或水平方向的最小夹角小于20°。所述导电填料中超过50%的导电填料与垂直或水平方向的最小夹角小于10°。
根据需求再提供一种具有电磁屏蔽功能的器件,包括需要电磁屏蔽的衬底,该衬底上设有一导电薄膜;该导电薄膜由导电填料有序交叉分布形成。
更进一步提供一种应用有序导电薄膜的器件,包括基板以及在该基板上的导电薄膜;该导电薄膜包含导电区域和绝缘区域,其中所述两种区域基板表面分别具有亲水性和疏水性,在所述导电区域中,导电填料有序交叉分布。
本发明另外再提供一个纳米导线结构,包括:沿第一方向有序排列的一维纳米导线组、沿第二方向有序排列的一维纳米导线组和粘联胶,所述的粘联胶位于所述的两组一维纳米导线组中的一维纳米导线的相互连接处。
所述的沿第一方向有序排列的一维纳米导线中的一维纳米导线和第一方向的偏差为0~10°,所述的沿第二方向有序排列的一维纳米导线中的一维纳米导线和第二方向的偏差为0~10°。
还包括其他的有序分布或无序分布的一维纳米导线。
所述的一维纳米导线的长宽比为10~2000。
所述的一维纳米导线为金属纳米线、碳基纳米线、硅基纳米线、金属化合物纳米线或导电高分子纳米线中的一种或几种。
所述的粘联胶为导电高分子、丙烯酸酯类树脂、酚醛树脂、有机硅树脂、聚氨酯、环氧树脂、聚酯、氟聚合物、聚酰胺、聚酰亚胺、聚乙烯醇、改性淀粉、改性纤维素、壳聚糖、淀粉、纤维素、植物胶、聚丙烯酰胺或聚乙烯吡咯酮中的一种或几种。
所述导电层包含权利要求33所述的纳米导线结构和基质。
所述的纳米导线结构中的一维纳米导线经过表面预处理,所述的预处理为表面加压、光照、电场、磁场和加热中的一种或多种。
所述的衬底为玻璃、聚甲基丙烯酸甲酯、聚碳酸酯、聚萘二甲酸乙二醇酯、聚对苯二甲酸乙二酯、聚烯烃、含氟聚合物、聚酰胺、聚酰亚胺、有机硅树脂、聚醚酮、聚醚酮酮、聚降冰片烯、聚酯,聚苯乙烯或三醋酸纤维素中的一种或几种。
所述的透明导电膜还包括配向膜层,所述的配向膜层位于导电层之上、之下 或之中。
所述的配向膜层由多个不同方向的配向膜组成。
所述的基质为聚氨酯、丙烯酸酯类树脂、硅酮、聚硅烷、聚氯乙烯、聚苯乙烯、环氧树脂、氟聚合物、聚酰胺、聚酰亚胺、聚降冰片烯、丙烯腈-丁二烯-苯乙烯共聚物、聚乙烯醇,改性淀粉,改性纤维素,壳聚糖,淀粉,纤维素,植物胶,聚丙烯酰胺或聚乙烯吡咯酮中的一种或几种。
进一步包括在衬底与导电层之间有缓冲层。
提供一种上述的纳米导线结构在器件中的应用,所述的器件为显示屏、触摸屏、传感器、太阳能电池或导热板。
一种上述的透明导电膜在器件中的应用,所述的器件为显示屏、触摸屏、传感器、太阳能电池或导热板。
一种磁场及其磁性纳米线在上述的透明导电薄膜中的应用。
上述的应用,优选的方法为所述的磁性纳米线通过磁场的作用在透明导电薄膜中成线性排列。
本发明的优点在于:
1.本发明的透明导电薄膜具有更好的导电性能,平均导电性在20~100Ω/sq,且本发明的透明度在94~95%。
2.本发明的透明导电薄膜的物理性能更好,由于每个结点都包覆有胶体,不会因为一点点形变就使得透明导电薄膜的性能发生改变。
本发明的另一个技术方案如下:为了实现高透光率高导电率,本发明首先提供一种磁场及其磁性纳米线在透明导电薄膜中的应用。
本发明通过让磁场及其磁性纳米线提高透明导电薄膜的导电率,且能保持透明度。根据需求提供一种透明导电薄膜,所述的透明导电薄膜中包括磁性纳米线。包括磁性纳米线层、透明导电层和基板,所述的基板为最底层,所述的磁性纳米线层是通过磁场将磁性纳米线定向取向得到的。所述的磁性纳米线层为1~10层,所述的透明导电层为1~10层。所述的透明导电层的导电填料为低维导电材料。更进一步的,提供一种透明导电薄膜的制备方法,将含有磁性纳米线的溶剂分散于基板之上,然后在基板两段施加定向磁场,定向导向,之后将溶剂蒸干,即得。更具需求再提供一种透明导电薄膜的制备方法,包括以下步骤,S1.将含有磁性纳米线的溶剂分散于基板之上,然后在基板两段施加定向磁场,定向导向,并将 溶剂蒸干,得到磁性纳米线层,S2.将含有低维导电材料的溶剂分散于磁性纳米线层上,之后将溶剂蒸干,即得。其中,S1和S2可以分别重复1~10遍,从而得到由多层材料复合而成的透明导电薄膜。在S2中,在将含有低维导电材料的溶剂分散于磁性纳米线层上之后,通过迈耶棒取向,或通过电场诱导取向,或通过微流诱导取向,或通过机械摩擦取向,或通过紫外光配向取向,与磁场方向形成0~90°夹角。进一步,不同层间的导电涂料可以不一致。第一导电层可以是利用外加某定向强磁场,诱导取向得到的磁性纳米线(磁性金属、合金或超晶格纳米线)阵列薄膜,根据材料种类、物理尺寸及其密度取向度的不同,适用的磁场强度B为从0.03到2T不等。以上的磁性纳米线是指具有磁性的能够导电的纳米线,包括但不限于金属铁、钴、镍纳米颗粒、纳米线、纳米棒、纳米管及其合金物,以及以磁性/非磁性周期重复结构生长制成的超晶格纳米结构。以上所述的透明导电层的导电填料,是常规意义上理解的在透明导电薄膜中应用的导电纳米材料,包括但不限于碳纳米管、石墨烯、磁性或非磁性金属/合金纳米颗粒和纳米线以及导电高分子等新型材料。以上所述的基板是指常规以上理解的在透明导电膜中应用的基材,包括但不限于聚甲基丙烯酸酯、聚乙烯醇、酚醛塑料、聚酰亚胺、聚氨酯、环氧树脂、纤维素、硅酮及其他含硅聚合物。本发明提出的透明导电薄膜为多层结构,不同层薄膜由磁性纳米材料及其他透明导电材料通过取向和涂布成膜方法制得。膜与膜材料取向方向之间的夹角可以简单控制,实现微观有序透明导电薄膜的制备,形成的互联互通的纳米线网络薄膜。
本发明的目的还在于克服现有技术的缺点于不足,提供了一种应用有序导电薄膜的器件,包括应用于液晶显示器(LCD)、太阳能电池、微电子ITO导电膜玻璃、光电子和各种光学领域。
本发明是通过以下的技术方案实现的:一种应用有序导电薄膜的器件,包括基板以及在该基板上具有一定图形结构的导电薄膜;该导电薄膜由导电填料有序分布形成。相比于现有技术,本发明的一种应用有序导电薄膜的器件,其导电层是由导电填料有序分布形成的,从而形成有序分布的结构。利用这种工艺,仅使用少量的线性导电填料形成有序分布的网络结构,就可以制作高透光率、低表面电阻的透明导电薄膜。对于器件来说,制作工艺更简单,可以有效地降低制作成本,同时可以减少光学的损失,具有良好的光学效果。进一步,所述的导电填料为金属纳米线、碳纳米管、金属纳米颗粒、石墨烯、导电聚合物或氧化金属。
本发明还提出另一种技术方案:一种应用有序导电薄膜的器件,包括基板、在该基板上具有一定图形结构的导电薄膜以及一用于取向的配向膜层;所述导电薄膜由导电填料有序涂布在配向膜上形成。
进一步,该器件包括绝缘层、栅极电极、有源层、源极以及漏极,以形成TFT有源矩阵;该栅极电极由设置在该基板上的有序导电薄膜形成。该导电薄膜应用于TFT有源矩阵,通过有序分布的透明导电薄膜代替传统的ITO制作TFT有源矩阵,既能够有效的降低制作成本,同时可以用于制作柔性TFT器件。
进一步,该器件包括传感器层以及透明覆盖层,以形成传感阵列;该传感器层由设置在该基板上的有序导电薄膜形成,该透明覆盖层设置于传感器层之上。通过有序分布的透明导电薄膜代替传统的ITO制作传感器阵列,既能够有效的降低制作成本,同时可以用于制作柔性传感器阵列。
进一步,该器件包括分别由导电薄膜形成的第一传感器层与第二传感器层;该第二传感器层设置在该第一传感器层之上,并通过绝缘层与该第一传感器层分隔开;并且该第一传感器层和该第二传感器层中至少一个进一步涂覆有透明覆盖层,以形成触控面板。该导电薄膜应用于双层触控面板,通过有序分布的透明导电薄膜代替传统的ITO制作触控面板的传感器层,既能够有效的降低制作成本,同时可以用于制作柔性触摸屏。
进一步,该器件包括阳极电极、有机发光层以及阴极电极,以形成OLED器件;其中,该阳极或阴极电极中至少有一种由设置在基板上的有序导电薄膜形成。该导电薄膜可以应用于OLED器件,通过有序分布的透明导电薄膜制作OLED的透明电极,可以减少器件光学损失,提高设备发光效率,同时可以用于制作大尺寸柔性OLED器件。
进一步,该器件包括底部电极、半导体二极管以及顶部电极,以形成太阳能电池;该半导体二极管位于底部电极上;该顶部电极位于该半导体二极管上;其中,该底部电极与该顶部电极中至少一个由设置在基板上的导电薄膜形成。该导电薄膜可以应用于太阳能电池,通过有序分布的透明导电薄膜制作太阳能电池或,可以生产大尺寸柔性太阳能薄膜电池,同时提高太阳能电池的吸收效率。
进一步,该器件包括底部电极、电池储存层以及顶部电极,以形成电池;其中,该底部电极与该顶部电极中至少一个由设置在基板上的有序导电薄膜形成。该导电薄膜可以应用于电池传导,通过有序分布的透明导电薄膜制作柔性电池, 可以大尺寸生产,同时也提高电池内部的电荷传输效率。
进一步,由TFT器件的源极或者漏极接出一条透明电极;其中,该透明电极由该有序导电薄膜形成。该器件包括上电极、下电极以形成电容装置,其中上电极或者下电极中至少有一种由该有序导电薄膜形成。该透明电极为主动式显示器之有源驱动背板的像素电极。该透明电极为被动式显示器之有源驱动背板的像素电极。所述导电填料有序分布为沿同一方向单向取向分布。所述导电填料有序分布为沿0°到90°中任一角度的二维交叉取向分布。所述导电填料有序分布为二维垂直交叉取向分布。
本发明还提供一种具有电磁屏蔽功能的器件,其包括需要电磁屏蔽的衬底,在该衬底上设有一导电薄膜;该导电薄膜由导电填料有序分布形成。通过加上一层有序导电薄膜,能有效提高器件的电磁屏蔽效果。
本发明还提出另一种技术方案:一种应用有序导电薄膜的器件,包括基板以及在该基板上的导电薄膜;该导电薄膜包含导电区域和绝缘区域,其中所述两种区域基板表面分别具有亲水性和疏水性,在所述导电区域中,导电填料有序分布。
此有序导电层的制作可以适用于卷对卷制程。
下面参见附图及具体实施例,对本发明作进一步说明。
附图说明
图1为现有技术中的导电材料随机取向分布示意图。
图2为图1的实验数据图。
图3为本发明中的导电材料沿同一方向的一维取向分布图。
图4为图3的实验数据图。
图5为本发明中的导电材料的二维垂直交叉取向分布图。
图6为图5的实验数据图。
图7为本发明的纳米材料接触结处胶黏结构示意图。
图8为磁力和迈耶棒涂布配向方法制得的45°交叉网络薄膜示意图。
图9为图8复合薄膜的结构剖面图。
图10为应用有序导电薄膜的TFT有源矩阵的结构剖面图。
图11为应用有序导电薄膜的触控面板的结构剖面图。
图12为应用有序导电薄膜的太阳能电池的结构剖面图。
图13为应用有序导电薄膜的OLED器件的结构剖面图。
图14为图形化的导电薄膜结构平面示意图。
具体实施方式
下面结合附图和具体实施例进一步详细说明本发明。除非特别说明,本发明采用的试剂、设备和方法为本技术领域常规市购的试剂、设备和常规使用的方法。实施例1
将浓度10mg/ml的纳米银溶液和浓度1wt%的HPMC水溶液按照1:6的质量比混合,纳米银线平均直径35nm,长度10um。将所得的悬浮液在漩涡混匀器上混合10分钟,从而得到分散均匀的悬浮液。使用0号Mayer棒将该悬浮液涂覆到玻璃基板上,将玻璃基板迅速转移至90℃热板上干燥固化2分钟,然后再次使用Mayer棒沿平行第一次涂覆方向将该悬浮液涂覆到经过干燥固化后的导电薄膜上,并再次转移至90℃热板上干燥固化2分钟,再次重复上一步骤后,制得纳米银透明导电薄膜。图3和图4为本发明中的导电材料沿同一方向的一维取向分布图。测试样品表面电阻率,透光率。在扣除玻璃基板透光率损失后,导电层薄膜在550纳米波长的透光率为94.54%,四探针法测得的方块电阻值为90Ω/口。
实施例2
将浓度10mg/ml的纳米银溶液和浓度1wt%的HPMC水溶液按照1:6的质量比混合,纳米银线平均直径35nm,长度10um。将所得的悬浮液在漩涡混匀器上混合10分钟,从而得到分散均匀的悬浮液。使用0号Mayer棒将该悬浮液涂覆到玻璃基板上,将玻璃基板迅速转移至90℃热板上干燥固化2分钟,然后再次使用Mayer棒沿垂直上一次涂覆方向将该悬浮液涂覆到经过干燥固化后的导电薄膜上,并再次转移至90℃热板上干燥固化2分钟,再次重复上一步骤后,制得纳米银透明导电薄膜。请参阅图5和图6,其是本发明中的导电材料的二维垂直交叉取向分布图。测试样品表面电阻率,透光率。在扣除玻璃基板透光率损失后,导电层薄膜在550纳米波长的透光率为95.07%,四探针法测得的方块电阻值为45Ω/口。
实施例3
如图7所示,为本发明的胶黏结构示意图。该透明导电薄膜包含衬底1,纳米导线2,粘联胶3。将浓度10mg/ml的纳米银溶液和浓度0.5wt%的光固化型环 氧树脂乙醇溶液按照1:6的质量比混合,纳米银线平均直径35nm,长度10um。将所得的悬浮液在漩涡混匀器上混合10分钟,从而得到分散均匀的悬浮液。将该悬浮液分两次涂覆到玻璃基板上,且两次方向互相垂直。随后将玻璃基板迅速转移至90℃热板上预烘2分钟。去除溶剂后将该基板进行紫外曝光处理,曝光时间45s。完成曝光后,将基板移至120℃热板并在其表面施加10MPa压力,使纳米银线之间接触更加紧密,烘烤10min。测试样品表面电阻率,透光率。在扣除玻璃基板透光率损失后,导电层薄膜在550纳米波长的透光率为94.3%,四探针法测得的方块电阻值为60Ω/sq。
实施例4(对比例)
如图7所示,为本发明的结构示意图。该透明导电薄膜包含衬底1,纳米导线2,粘联胶3。将取向用的高分子聚合物溶于有机溶剂中,通过湿法成膜的方式将该悬浮液涂覆在基板表面,制备配向膜。使用的取向型高分子聚合物为链式高分子聚合物,在侧链上以一定长度的碳链段链接具有光敏特性的香豆素或者其他光敏官能团。利用高压疝灯通过滤光片和偏振器得到光敏基团敏感波长下一定强度的UV偏振光,并将该UV偏振光垂直射向基板表面,照射一定时长,光敏基团将在UV光偏振方向上发生交联反应,形成取向结构。通过调整UV偏振光方向,使配向膜沿相互垂直的两个方向取向。将浓度10mg/ml的纳米银溶液和乙醇溶液按照1:6的质量比混合,纳米银线平均直径35nm,长度10um。将所得的悬浮液在漩涡混匀器上混合10分钟,从而得到分散均匀的悬浮液。将该悬浮液涂覆到配向膜上。随后将薄膜整体迅速转移至90℃热板上烘烤2分钟。去除溶剂形成交叉网络型导电结构。测试样品表面电阻率,透光率。在扣除基板透光率损失后,导电层薄膜在550纳米波长的透光率为94.8%,四探针法测得的方块电阻值为75Ω/sq。
实施例5
将浓度10mg/ml的纳米银溶液和乙醇溶液按照1:6的质量比混合,纳米银线平均直径35nm,长度10um。将所得的悬浮液在漩涡混匀器上混合10分钟,从而得到分散均匀的悬浮液。将该悬浮液涂覆到玻璃基板上。随后将玻璃基板迅速转移至90℃热板上烘烤2分钟。去除溶剂。测试样品表面电阻率,透光率。在扣除玻璃基板透光率损失后,导电层薄膜在550纳米波长的透光率为94.8%,四探针法测得的方块电阻值为350Ω/sq.将实施例3-4和对比例所制得的透明导电薄 膜,测得透光率以及电阻值,结果如表1所示
实施例 实施例3 实施例4 实施例5
透光率 94.3 94.8 94.8
电阻值(Ω/sq) 60 75 350
表1 测试结果
实验结果说明,本发明在保证透光率的情况下,电阻值大大降低,抗拉伸强度测试也显示薄膜稳定性有明显提高。
实施例6
首先选用铁铂纳米线作为磁性纳米材料来制备有序透明导电薄膜,其纳米结构为1.5nm直径的金属铂纳米线,平均长度大于1μm,纳米线末端有直径为3nm的纳米金属铁颗粒;分散在正己烷、甲苯分散液中,浓度为20mg/ml,纯度高于99.5%,分散液呈黑色。分散液使用前需用混匀器震荡混合30min,在衬底上刮涂均匀,形成厚度约为12μm的湿膜。将衬底基板迅速转移至50℃热板上干燥固化10min,同时使用普通条形磁铁或电磁铁,对衬底所在平面内施加定向的磁场,磁场强度B为1.15T,可以使得各向异性纳米材料沿磁场方向排列自组装,在溶剂挥发后固化制得微观有序透明的第一传导层。该薄膜的可见光透过率T约为87%,薄膜电阻约为235Ω/□。再将浓度10mg/ml的纳米银线@乙醇分散原液和浓度为0.5wt%的HPMC水溶液按照1:6的质量比混合,混匀器混匀10min得到均匀分散液,纳米银线平均直径35nm,长度15um。以与第一传导层纳米材料取向方向(外加磁场方向)成45°夹角的方向,用2号(12μm微槽)迈耶棒在衬底基板上均匀涂覆分散悬浮液,后迅速置于90℃高温热板上2min,烘干挥发性溶剂,形成导电填料微观有序且有基质的第二传导层。该复合导电薄膜的可见光透过率T约为84%,薄膜电阻约为83Ω/□。传导层间的纳米材料取向方向之间的夹角可以任意控制,以45°有序交叉网络薄膜为例,如图8所示。为了结构示意清晰,不同纳米材料并不是按实际长度比值等比例表示。最终得到复合导电薄膜的横截面示意图如图9。
实施例7
如图10所示,本发明将有序导电薄膜应用于制作TFT有源矩阵。该TFT有源矩阵包括基板11、栅极电极12、绝缘层13、有源层14、源极15、漏极16以 及保护层17。该栅极电极12设置在基板11上,其由有序导电薄膜形成。该绝缘层13覆盖在该栅极电极12上。该有源层14覆盖在该绝缘层13上。该源极15与该漏极16分别设置在该有源层14的上表面的两侧。该保护层17覆盖在该有源层14的上表面以及源极15与漏极16的周围。将有序导电薄膜应用于制作TFT有源矩阵的制作方法如下:通过采用湿法成膜工艺将溶液均匀涂布到基板表面,随后通过光刻、显影的方法实现隔层膜的图形化制作,最终制作出TFT有源矩阵。首先在清洗干净的PET基板上形成一层纳米银线有序分布的导电薄膜层,其中导电薄膜中含有光敏材料,经过热板前烘干后,对其进行曝光、显影、烘烤固化后制成栅极电极层;随后在栅极电极层表面分布涂布绝缘层有机膜、IGZO溶胶膜、AgNW导电膜、绝缘层有机薄膜作为绝缘层,有源层,源、漏电极和保护层。每层均通过前烘、光刻、显影、后烘实现图形化处理。至此,TFT有源矩阵制作完成。通过有序分布的透明导电薄膜代替传统的ITO制作TFT有源矩阵,既能够有效的降低制作成本,同时可以用于制作柔性TFT器件。在本实施例中,根据实施例1、2等,改变涂布方向和次数,制作有序导电薄膜的方法可以包括多种,例如:方法一:将浓度10mg/ml的纳米银溶液和浓度1wt%的HPMC水溶液按照1:6的质量比混合,纳米银线平均直径35nm,长度10um。将所得的悬浮液在漩涡混匀器上混合10分钟,从而得到分散均匀的悬浮液。使用1号Mayer棒将该悬浮液涂覆到玻璃基板上,将玻璃基板迅速转移至90℃热板上干燥固化2分钟,然后再次使用Mayer棒沿平行第一次涂覆方向将该悬浮液涂覆到经过干燥固化后的导电薄膜上,并再次转移至90℃热板上干燥固化2分钟,制得纳米银透明导电薄膜。在扣除玻璃基板透光率损失后,导电层薄膜在550纳米波长的透光率为95.53%,四探针法测得的方块电阻值为78Ω/口。方法二:将浓度10mg/ml的纳米银溶液和浓度1wt%的HPMC水溶液按照1:6的质量比混合,纳米银线平均直径35nm,长度10um。将所得的悬浮液在漩涡混匀器上混合10分钟,从而得到分散均匀的悬浮液。使用1号Mayer棒将该悬浮液涂覆到玻璃基板上,将玻璃基板迅速转移至90℃热板上干燥固化2分钟,然后再次使用Mayer棒沿垂直第一次涂覆方向将该悬浮液涂覆到经过干燥固化后的导电薄膜上,并再次转移至90℃热板上干燥固化2分钟,制得纳米银透明导电薄膜。测试样品表面电阻率,透光率。在扣除玻璃基板透光率损失后,导电层薄膜在550纳米波长的透光率为96.37%,四探针法测得的方块电阻值为70Ω/口。
实施例8
如图11所示,本发明将有序导电薄膜应用于制作触控面板。该触控面板包括两组具有传感器层22的基板21;该两组基板21正对设置,两传感器层22之间设有一层绝缘层23,且位于上层的一块基板上设有一层保护层24。使用有序导电薄膜制作触控面板时,具体包括以下步骤:使用湿法成膜的方法在基板表面形成传感器层,其中导电填料呈有序状分布。然后对传感器层进行图形化处理,例如:在导电薄膜表面涂覆一层光刻胶,经过曝光、显影将非保留区域暴露出来,然后使用化学或电化学的方法将其腐蚀掉,最后洗去光刻胶,得到有预定图案的传感器层。通过FPC贴合于外部触控IC连接。最后在基板表面贴光学胶、盖板作为保护层。通过有序分布的透明导电薄膜代替传统的ITO制作触控面板的传感器层,既能够有效的降低制作成本,同时可以用于制作柔性触摸屏。在本实施例中,根据实施例1、2等,改变涂布方向和次数,制作有序导电薄膜的方法可以包括多种。
实施例9
如图12所示,本发明将有序导电薄膜应用于制作OLED器件。该OLED器件包括基板31、导电层32、有机发光层33、阴极34以及保护层35。该导电层32覆盖在该基板31上,在OLED器件中,该导电层32为阳极。该有机发光层33覆盖在该导电层32上。该阴极34设置在该有机发光层33上。该保护层35覆盖在该阴极34上。将有序导电薄膜应用于制作OLED器件,主要通过以下步骤:对基板上的有序导电薄膜进行光刻图形化处理,随后对薄膜进行清洗,等离子体处理后,将其送入真空镀膜机内,蒸镀OLED有机发光层,然后蒸镀OLED阴极。最后通过传递杆将OLED器件送至充有高纯氮气的手套箱内封装。通过有序分布的透明导电薄膜制作OLED的透明电极,可以减少器件光学损失,提高设备发光效率,同时可以用于制作大尺寸柔性OLED器件。在本实施例中,根据实施例1、2等,改变涂布方向和次数,制作有序导电薄膜的方法可以包括多种。
实施例10
如图13所示,本发明将有序导电薄膜应用于制作太阳能电池。该太阳能电池包括基板41、导电层42、P型半导体层43、N型半导体层44以及金属电极45。该导电层覆盖在该基板上。该P型半导体层覆盖在该导电层上。该N型半 导体层覆盖在该P型半导体层上。该金属电极设置在该N型半导体层上。将有序导电薄膜应用于制作太阳能电池,具体步骤如下:在透明基板上沉积一层导电填料有序分布的透明导电薄膜,形成导电透明Ag/PET,然后采用凝胶法在导电层表面沉积一层PZT薄膜,经过退火处理,形成多晶PZT薄膜,然后在PZT上用磁控溅射沉积P型a-Si,形成太阳能薄膜。最后,采用磁控溅射在薄膜表面沉积电极Al,即制成太阳能电池。通过有序分布的透明导电薄膜制作太阳能电池,可以生产大尺寸柔性太阳能薄膜电池,同时提高太阳能电池的吸收效率。实施例11
采用镀膜的方法对基板表面进行预处理,使其形成超亲水区域和超疏水区域,将浓度10mg/ml的纳米银溶液和浓度1wt%的HPMC水溶液按照1:6的质量比混合,纳米银线平均直径35nm,长度10um。将所得的悬浮液在漩涡混匀器上混合10分钟,从而得到分散均匀的悬浮液。使用0号Mayer棒将该悬浮液涂覆到玻璃基板上,将玻璃基板迅速转移至90℃热板上干燥固化2分钟,然后再次使用Mayer棒沿垂直上一次涂覆方向将该悬浮液涂覆到经过干燥固化后的导电薄膜上,并再次转移至90℃热板上干燥固化2分钟,再次重复上一步骤后,制得具有图形化结构的纳米银透明导电薄膜如图14所示,其中131为超疏水区域,表面没有纳米银结构覆盖形成绝缘区域,132为基板超亲水区域,形成具有有序结构的导电区域。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (46)

  1. 一种有序分布的导电薄膜,包括基板与设置在基板上的导电层,其特征在于:
    所述导电层由导电填料有序分布形成。
  2. 如权利要求1所述的一种有序分布的导电薄膜,其特征在于:所述导电填料有序分布为沿同一方向一维取向分布。
  3. 如权利要求1所述的一种有序分布的导电薄膜,其特征在于:所述导电填料有序分布为沿0°到90°中任一角度的二维交叉取向分布。
  4. 如权利要求3所述的一种有序分布的导电薄膜,其特征在于:所述导电填料有序分布为二维垂直交叉取向分布。
  5. 如权利要求1到4中任一权利要求所述的一种有序分布的导电薄膜,其特征在于:所述的导电填料为金属纳米线、碳纳米管、金属纳米颗粒、石墨烯、导电聚合物或氧化金属。
  6. 一种有序分布的导电薄膜,包括基板与设置在基板上的导电层,其特征在于:还包括一用于取向的配向膜层,配向膜上设有有序分布的沟槽;所述导电层由导电填料涂覆在配向膜上形成,以形成有序分布的结构。
  7. 如权利要求6所述的一种有序分布的导电薄膜,其特征在于:所述导电填料有序分布为沿同一方向一维取向分布。
  8. 如权利要求6所述的一种有序分布的导电薄膜,其特征在于:所述导电填料有序分布为沿0°到90°中任一角度的二维交叉取向分布。
  9. 如权利要求6至8中任一权利要求所述的一种有序分布的导电薄膜,其特征在于:所述导电层设置在该配向膜的顶部或者底部或者和配向膜是一体的。
  10. 一种有序分布的导电薄膜的制作方法,其特征在于包括以下步骤:
    将导电墨水经过1次或者多次涂布的方法涂覆在基板上,经过干燥固化后形成导电薄膜;所述涂覆方法为取向型涂布。
  11. 如权利要求10所述的导电薄膜的制备方法,其特征在于:每层导电填料分布取向方向与前一次平行。
  12. 如权利要求11所述的导电薄膜的制备方法,其特征在于:每层导电填料分布
    取向方向与前一次呈一定角度;该角度的范围在0°到90°之间。
  13. 如权利要求12所述的导电薄膜的制备方法,其特征在于:每层导电填料分 布取向方向与前一次垂直。
  14. 如权利要求10所述的导电薄膜的制作方法,其特征在于:实现取向的方式为力学取向、光配向取向或化学取向。
  15. 如权利要求10所述的导电薄膜的制作方法,其特征在于:涂布方法为毛刷涂布、辊棒涂布、丝网印刷、凹版印刷、凸版印刷或喷墨打印。
  16. 一种应用有序导电薄膜的器件,其特征在于:包括
    基板;以及
    在该基板上具有一定图形结构的导电薄膜;该导电薄膜由导电填料有序交叉分布形成。
  17. 根据权利要求16所述的应用有序导电薄膜的器件,其特征在于:所述的导电填料为金属纳米线、碳纳米管、金属纳米颗粒、石墨烯、导电聚合物或氧化金属。
  18. 一种应用有序导电薄膜的器件,其特征在于:包括基板、在该基板上具有一定图形结构的导电薄膜以及一用于取向的配向膜层;所述导电薄膜由导电填料有序涂布在配向膜上形成。
  19. 根据权利要求16或18所述的应用有序导电薄膜的器件,其特征在于:该器件包括绝缘层、栅极电极、有源层、源极以及漏极,以形成TFT有源矩阵;该栅极电极由设置在该基板上的有序导电薄膜形成。
  20. 根据权利要求16或18所述的应用有序导电薄膜的器件,其特征在于:该器件包括传感器层以及透明覆盖层,以形成触控面板;该传感器层由设置在该基板上的有序导电薄膜形成,该透明覆盖层设置于传感器层之上。
  21. 根据权利要求16或18所述的应用有序导电薄膜的器件,其特征在于:该器件包括分别由有序导电薄膜形成的第一导电层与第二导电层;该第二导电层设置在该第一导电层之上,并通过绝缘层与该第一导电层分隔开;并且该第一导电层和该第二导电层中至少一个进一步涂覆有透明覆盖层,以形成触控面板。
  22. 根据权利要求16或18所述的应用有序导电薄膜的器件,其特征在于:该器件包括阳极电极、有机发光层以及阴极电极,以形成OLED器件;其中,该阳极或阴极电极中至少有一种由设置在基板上的有序导电薄膜形成。
  23. 根据权利要求16或18所述的应用有序导电薄膜的器件,其特征在于:该器件包括底部电极、半导体二极管以及顶部电极,以形成太阳能电池;该半导体二极管位于底部电极上;该顶部电极位于该半导体二极管上;其中,该底部电极与 该顶部电极中至少一个由设置在基板上的有序导电薄膜形成。
  24. 根据权利要求16或18所述的应用有序导电薄膜的器件,其特征在于:由TFT器件的源极或者漏极接出一条透明电极;其中,该透明电极由该有序导电薄膜形成。
  25. 根据权利要求16或18所述的应用有序导电薄膜的器件,其特征在于:该器件包括上电极、下电极以形成电容装置,其中上电极或者下电极中至少有一种由该有序导电薄膜形成。
  26. 根据权利要求16或18所述的应用有序导电薄膜的器件,其特征在于:该透明电极为主动式显示器之有源驱动背板的像素电极。
  27. 根据权利要求16或18所述的应用有序导电薄膜的器件,其特征在于:该透明电极为被动式显示器之有源驱动背板的像素电极。
  28. 根据权利要求16或18所述的应用有序导电薄膜的器件,其特征在于:所述导电填料中超过50%的导电填料与垂直或水平方向的最小夹角小于30°。
  29. 根据权利要求16或18所述的应用有序导电薄膜的器件,其特征在于:所述导电填料中超过50%的导电填料与垂直或水平方向的最小夹角小于20°。
  30. 根据权利要求16或18所述的应用有序导电薄膜的器件,其特征在于:所述导电填料中超过50%的导电填料与垂直或水平方向的最小夹角小于10°。
  31. 一种具有电磁屏蔽功能的器件,包括需要电磁屏蔽的衬底,其特征在于:在该衬底上设有一导电薄膜;该导电薄膜由导电填料有序交叉分布形成。
  32. 一种应用有序导电薄膜的器件,其特征在于:包括基板以及在该基板上的导电薄膜;该导电薄膜包含导电区域和绝缘区域,其中所述两种区域基板表面分别具有亲水性和疏水性,在所述导电区域中,导电填料有序交叉分布。
  33. 一个纳米导线结构,其特征在于,包括:沿第一方向有序排列的一维纳米导线组、沿第二方向有序排列的一维纳米导线组和粘联胶,所述的粘联胶位于所述的两组一维纳米导线组中的一维纳米导线的相互连接处。
  34. 根据权利要求33所述的纳米导线结构,其特征在于,所述的沿第一方向有序排列的一维纳米导线中的一维纳米导线和第一方向的偏差为0~10°,所述的沿第二方向有序排列的一维纳米导线中的一维纳米导线和第二方向的偏差为0~10°。
  35. 根据权利要求33所述的纳米导线结构,其特征在于,还包括其他的有序分布或无序分布的一维纳米导线。
  36. 根据权利要求33所述的纳米导线结构,其特征在于,所述的一维纳米导线的长宽比为10~2000。
  37. 根据权利要求33所述的纳米导线结构,其特征在于,所述的一维纳米导线为金属纳米线、碳基纳米线、硅基纳米线、金属化合物纳米线或导电高分子纳米线中的一种或几种。
    所述的粘联胶为导电高分子、丙烯酸酯类树脂、酚醛树脂、有机硅树脂、聚氨酯、环氧树脂、聚酯、氟聚合物、聚酰胺、聚酰亚胺、聚乙烯醇、改性淀粉、改性纤维素、壳聚糖、淀粉、纤维素、植物胶、聚丙烯酰胺或聚乙烯吡咯酮中的一种或几种。
  38. 一种透明导电膜,其特征在于,包括衬底和导电层,所述导电层包含权利要求33所述的纳米导线结构和基质。
  39. 根据权利要求38所述的透明导电膜,其特征在于,所述的纳米导线结构中的一维纳米导线经过表面预处理,所述的预处理为表面加压、光照、电场、磁场和加热中的一种或多种。
    所述的衬底为玻璃、聚甲基丙烯酸甲酯、聚碳酸酯、聚萘二甲酸乙二醇酯、聚对苯二甲酸乙二酯、聚烯烃、含氟聚合物、聚酰胺、聚酰亚胺、有机硅树脂、聚醚酮、聚醚酮酮、聚降冰片烯、聚酯,聚苯乙烯或三醋酸纤维素中的一种或几种。
  40. 根据权利要求38所述的透明导电膜,其特征在于,所述的透明导电膜还包括配向膜层,所述的配向膜层位于导电层之上、之下或之中。
  41. 根据权利要求38所述的透明导电膜,其特征在于,所述的配向膜层由多个不同方向的配向膜组成。
    所述的基质为聚氨酯、丙烯酸酯类树脂、硅酮、聚硅烷、聚氯乙烯、聚苯乙烯、环氧树脂、氟聚合物、聚酰胺、聚酰亚胺、聚降冰片烯、丙烯腈-丁二烯-苯乙烯共聚物、聚乙烯醇,改性淀粉,改性纤维素,壳聚糖,淀粉,纤维素,植物胶,聚丙烯酰胺或聚乙烯吡咯酮中的一种或几种。
  42. 如权利要求38所述的透明导电薄膜,进一步包括在衬底与导电层之间有缓冲层。
  43. 一种权利要求33所述的纳米导线结构在器件中的应用,其特征在于,所述的器件为显示屏、触摸屏、传感器、太阳能电池或导热板。
  44. 一种权利要求38所述的透明导电膜在器件中的应用,其特征在于,所述的器件为显示屏、触摸屏、传感器、太阳能电池或导热板。
  45. 一种磁场及其磁性纳米线在权利要求6所述的透明导电薄膜中的应用。
  46. 根据权利要求45所述的磁性纳米线在透明导电薄膜中的应用,其特征在于,所述的磁性纳米线通过磁场的作用在透明导电薄膜中成线性排列。
PCT/CN2014/094758 2014-02-20 2014-12-24 一种有序分布的导电薄膜及其器件和纳米导线结构 WO2015124027A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410058174.3A CN103854723B (zh) 2014-02-20 2014-02-20 一种应用有序导电薄膜的器件
CN201410058174.3 2014-02-20
CN201410445254.4 2014-09-03
CN201410445254.4A CN104240797A (zh) 2014-09-03 2014-09-03 一种透明导电薄膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2015124027A1 true WO2015124027A1 (zh) 2015-08-27

Family

ID=53877620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094758 WO2015124027A1 (zh) 2014-02-20 2014-12-24 一种有序分布的导电薄膜及其器件和纳米导线结构

Country Status (1)

Country Link
WO (1) WO2015124027A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108251820A (zh) * 2018-03-09 2018-07-06 无锡博硕珈睿科技有限公司 自加热制品/材料的制造方法及制造设备
CN114806207A (zh) * 2022-04-26 2022-07-29 厦门大学 一种正交取向化二维复合材料、制备方法与柔性纳米发电机
CN116410627A (zh) * 2023-04-04 2023-07-11 北京航空航天大学 一种基于蒸发自驱动的透明导电涂层的制备方法、透明导电涂层

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464759A (zh) * 2007-12-21 2009-06-24 清华大学 触摸屏的制备方法
CN103426501A (zh) * 2013-02-04 2013-12-04 南昌欧菲光科技有限公司 透明导电膜
CN103700430A (zh) * 2013-12-25 2014-04-02 中山大学 一种有序分布的导电薄膜及其制造方法
CN103854723A (zh) * 2014-02-20 2014-06-11 中山大学 一种应用有序导电薄膜的器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464759A (zh) * 2007-12-21 2009-06-24 清华大学 触摸屏的制备方法
CN103426501A (zh) * 2013-02-04 2013-12-04 南昌欧菲光科技有限公司 透明导电膜
CN103700430A (zh) * 2013-12-25 2014-04-02 中山大学 一种有序分布的导电薄膜及其制造方法
CN103854723A (zh) * 2014-02-20 2014-06-11 中山大学 一种应用有序导电薄膜的器件

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108251820A (zh) * 2018-03-09 2018-07-06 无锡博硕珈睿科技有限公司 自加热制品/材料的制造方法及制造设备
CN114806207A (zh) * 2022-04-26 2022-07-29 厦门大学 一种正交取向化二维复合材料、制备方法与柔性纳米发电机
CN116410627A (zh) * 2023-04-04 2023-07-11 北京航空航天大学 一种基于蒸发自驱动的透明导电涂层的制备方法、透明导电涂层

Similar Documents

Publication Publication Date Title
Zhu et al. Flexible transparent electrodes based on silver nanowires: Material synthesis, fabrication, performance, and applications
Kim et al. Stretchable and transparent electrodes based on in-plane structures
Lee et al. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel
Zhou et al. High-performance flexible organic light-emitting diodes using embedded silver network transparent electrodes
US9241411B2 (en) Substrate having transparent electrode for flexible display and method of fabricating the same
US9892821B2 (en) Electrical conductors and electronic devices including the same
US8310009B2 (en) Display apparatus
CN107610802B (zh) 透明导电薄膜、光电器件及其制作方法
KR102543984B1 (ko) 도전체, 그 제조 방법, 및 이를 포함하는 전자 소자
CN110473655B (zh) 一种透明导电薄膜及其制备方法
US10329660B2 (en) Flexible transparent thin film
Zhu et al. Recent advances in flexible and wearable organic optoelectronic devices
JP2009211978A (ja) 透明導電膜及びこれを用いた光学装置
CN103700430A (zh) 一种有序分布的导电薄膜及其制造方法
KR20090024437A (ko) 변형된 기판 구조를 갖는 탄소 나노튜브 막 및 그 제조방법
US20200081312A1 (en) Ultra-flexible and robust silver nanowire films for controlling light transmission and method of making the same
CN103854723A (zh) 一种应用有序导电薄膜的器件
Chiang et al. Orthogonally weaved silver nanowire networks for very efficient organic optoelectronic devices
KR20120001684A (ko) 투명 전도성막, 이의 제조 방법, 및 이를 이용한 투명전극 및 소자
Meng et al. Silver mesh electrodes via electroless deposition-coupled inkjet-printing mask technology for flexible polymer solar cells
WO2015124027A1 (zh) 一种有序分布的导电薄膜及其器件和纳米导线结构
Lee et al. Smooth-surface silver nanowire electrode with high conductivity and transparency on functional layer coated flexible film
KR101675201B1 (ko) 지지체를 이용한 은나노와이어 투명전극 제조방법
US20140147675A1 (en) Structure and method for a graphene-based apparatus
CN214012530U (zh) 一种导电结构及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883469

Country of ref document: EP

Kind code of ref document: A1