WO2018188433A1 - 电动型移动充电车及基于该电动型移动充电车的充放电方法 - Google Patents

电动型移动充电车及基于该电动型移动充电车的充放电方法 Download PDF

Info

Publication number
WO2018188433A1
WO2018188433A1 PCT/CN2018/078212 CN2018078212W WO2018188433A1 WO 2018188433 A1 WO2018188433 A1 WO 2018188433A1 CN 2018078212 W CN2018078212 W CN 2018078212W WO 2018188433 A1 WO2018188433 A1 WO 2018188433A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
charging
storage battery
battery
soc
Prior art date
Application number
PCT/CN2018/078212
Other languages
English (en)
French (fr)
Inventor
范金焰
Original Assignee
蔚来汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔚来汽车有限公司 filed Critical 蔚来汽车有限公司
Publication of WO2018188433A1 publication Critical patent/WO2018188433A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/40Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries adapted for charging from various sources, e.g. AC, DC or multivoltage

Definitions

  • the present invention relates to a new energy charging device, and in particular to a circuit system of an electric type mobile charging car and a charging and discharging method based on the electric type mobile charging car.
  • the current electric mobile charging car is still immature, the charging interface is complicated, and it is not easy to operate.
  • the charging interface of the mobile charging car itself is not unified with the charging interface of the charging battery on the vehicle, whether it is AC charging or DC charging. With a separate charging interface, the power of the charging pile can be increased and the charging speed of the battery is continuously increased, so that it is not necessary to use multiple charging guns for the vehicle itself, and the vehicle storage battery is charged.
  • the present invention has been made in an effort to provide a mobile charging vehicle capable of simplifying the structure of the charging vehicle itself and capable of simplifying manual operation steps during charging, and a charging and discharging method and a charging method based on the mobile charging vehicle.
  • An electric mobile charging vehicle includes: a charging interface; a first energy storage battery; a second energy storage battery; and a power battery.
  • the charging interface is configured to selectively connect only one of the first energy storage battery, the second energy storage battery, and the power battery when charging the mobile charging vehicle itself.
  • the power battery, the first energy storage battery and the second energy storage battery are the same battery, and the charging interface is used for connecting to an external charging facility.
  • the charging interface is configured to be connected to any one of an external DC charging post, an AC charging post, and a wireless charging transmitting device.
  • a first switch disposed between the first energy storage battery and the charging interface
  • a second switch disposed between the second energy storage battery and the charging interface
  • the monitor is configured to monitor SOC of the first energy storage battery, the second energy storage battery, and the power battery, and control according to the following monitoring result:
  • the third switch is preferentially turned on to charge the power battery
  • the switch connected to a storage battery of the first energy storage battery and the second energy storage battery with a smaller SOC is preferentially turned on;
  • the power-on operation ends.
  • the monitor is further configured to control the electric mobile charging vehicle to provide a charging service to the user according to the monitoring result.
  • the monitor is arranged to implement control of one of the following modes:
  • the power battery is preferentially charged
  • An electric mobile charging vehicle includes: a charging interface; first to Nth energy storage batteries; and a power battery;
  • the charging interface is configured to selectively connect only to the first to Nth energy storage batteries and one of the power batteries when charging the mobile charging vehicle itself, wherein N is a natural number.
  • the first energy storage battery to the Nth energy storage battery are the same battery, and the charging interface is used to connect to an external charging facility that supplements the mobile charging vehicle itself.
  • the charging interface is configured to be connected to any one of an external DC charging post, an AC charging post, and a wireless charging transmitting device.
  • the first switch to the Nth switch are respectively disposed between each of the first to seventh energy storage batteries and the charging interface, and
  • a power battery switch disposed between the power battery and the charging interface
  • the mobile charging vehicle itself In the case where the mobile charging vehicle itself is charged, it is selectively turned on only one of the first to Nth switches.
  • the monitor is configured to monitor the first switch to the Nth switch and the SOC of the power battery, and control one of the first switch to the Nth switch and the power battery switch to be turned on according to the monitoring result.
  • the monitor is configured to monitor the SOC of the first energy storage battery to the Nth energy storage battery and the power battery, and control according to the following monitoring result:
  • the power battery switch is preferentially turned on to charge the power battery
  • the switches connected to the storage battery of the SOC from small to large are sequentially turned on, so as to sequentially charge the energy storage battery with the SOC from small to large;
  • the monitor is further configured to control the electric mobile charging vehicle to provide a charging service to the user according to the monitoring result.
  • the monitor is arranged to implement control of one of the following modes:
  • a power-replenishing method for charging an electric mobile charging vehicle comprises the following steps:
  • the power battery is preferentially charged
  • the energy storage battery with a small SOC from the SOC is sequentially charged
  • the mobile charging vehicle of the present invention and the charging and discharging method based on the mobile charging vehicle can simplify the power supply of the power battery and the energy storage battery by using one charging interface by setting the power battery and the energy storage battery to be the same.
  • the operation process simplifies the system structure and saves costs.
  • the SOC of each energy storage battery and the power battery can be monitored by the monitor, and the energy storage battery and the power battery can be supplemented according to the monitoring result, so that the power battery can be preferentially supplemented, and the intelligent and efficient power can be realized.
  • the method is to recharge the power battery and the energy storage battery of the mobile charging car.
  • various charging methods can be provided according to the actual situation of the application, and the charging methods are various and the charging efficiency is high.
  • FIG. 1 is a circuit configuration diagram showing an electric type mobile charging vehicle according to a first embodiment of the present invention.
  • FIG. 2 is a circuit configuration diagram showing a circuit of a part of the electric type mobile charging vehicle according to the second embodiment of the present invention.
  • FIG. 3 is a circuit configuration diagram showing another part of the electric circuit of the electric type mobile charging vehicle according to the second embodiment of the present invention.
  • FIG. 1 is a circuit configuration diagram showing an electric type mobile charging vehicle according to a first embodiment of the present invention.
  • the electric mobile charging vehicle includes at least one charging interface 100 connected to an external charging facility; a first energy storage battery 200; a second energy storage battery 300 and a power battery 400; .
  • the first energy storage battery 200 and the second energy storage battery 300 and the power battery 400 are the same battery.
  • the same battery means that the capacity, the voltage range, and the material of the battery are the same.
  • only one charging interface 100 is provided, and the charging interface 100 is arranged to selectively only interact with the first energy storage battery 200, the second energy storage battery 300, and the power battery 400 when charging the mobile charging vehicle.
  • the charging interface 100 is for connecting with an external charging device to charge the electric mobile charging car.
  • the charging interface 100 is used to connect to any one of an external DC charging post, an AC charging post, and a wireless charging transmitting device.
  • the circuit structure of the electric mobile charging vehicle of FIG. 1 further includes the following components:
  • the first switch K1 is disposed between the first energy storage battery 200 and the charging interface 100;
  • the second switch K2 is disposed between the second energy storage battery 300 and the charging interface 100;
  • the third switch K3 is disposed between the power battery 400 and the charging interface 100;
  • a first DC/DC 500 for performing a DC conversion on an output of the first energy storage battery 200, wherein the DC/DC is a DC to DC converter;
  • the motor driver 700 is configured to change the DC voltage output from the power battery 400 to the voltage of the drive motor.
  • the fourth switch K4 is disposed between the first energy storage battery 200 and the first DC/DC 500;
  • the fifth switch K5 is disposed between the second energy storage battery 300 and the second DC/DC 600;
  • a seventh switch K7 disposed between the fifth switch K5 and the sixth switch K6;
  • the eighth switch K8 is disposed at the output end of the first DC/DC 500 (ie, the first DC/DC 500 end is connected to the fourth switch K4, the other end of the first DC/DC 500 and the eighth switch K8);
  • the ninth switch K9 is disposed at the output end of the second DC/DC 600 (ie, the second DC/DC 600 end is connected to the fifth switch K5, the other end of the second DC/DC 600 and the ninth switch K9);
  • the tenth switch K10 is disposed between the eighth switch K8 and the ninth switch K9.
  • the same battery is selected as the first energy storage battery 200, the second energy storage battery 300, and the power battery 400, and the advantages are as follows:
  • the range of motion of the electric mobile charging car is small, the user distribution is compact.
  • the cruising range of the electric mobile charging car itself is low, and the power battery of the electric mobile charging car itself can be used to charge the user;
  • the charging interface 100 can be the first energy storage battery 200 and the second energy storage battery. 300 and the power battery 400 are charged, and the battery can be controlled by the charging interface 100 by turning off any one of the first switch K1, the second switch K2 and the third switch K3, wherein the first switch K1 is at the same time. Only one of the second switch K2 and the third switch K3 is closed, and the state of all the switches is confirmed between each action.
  • the first energy storage battery 200 can be charged from the charging interface 100 by merely closing the first switch K1; the second energy storage battery 300 can be charged from the charging interface 100 by only closing the second switch K2; The third switch K3 is closed, and the power battery 400 can be charged from the charging interface 100.
  • the electric mobile charging car of the present invention can simultaneously output two direct currents to charge two users, at this time, the tenth switch K10 is turned off, and the fourth switch K4 and the eighth switch K8 are closed. One way of direct current, the fifth switch K5 and the ninth switch K9 are closed to output one direct current.
  • the eighth switch K8 and the tenth switch K10 are closed and K9 is turned off; or the ninth switch K9 and the tenth switch K10 are closed and disconnected.
  • the eighth switch K8 can provide a faster charging service for the user by using two DC/DC system associations.
  • the three switches of the first switch K1, the second switch K2 and the third switch K3 are used to realize charging of three batteries in one shot, and at the first In the embodiment, only one charging interface 100 is needed to supplement the energy storage battery and the power battery, thereby simplifying the operation process, simplifying the circuit structure, and saving cost.
  • FIG. 2 is a circuit configuration diagram showing a circuit of a part of the electric type mobile charging vehicle according to the second embodiment of the present invention.
  • the circuit configuration diagram of the electric type mobile charging vehicle shown in Fig. 2 is such that the monitor 800 is additionally provided in the circuit configuration shown in Fig. 1.
  • the circuit of the right side portion of Fig. 1 is omitted in Fig. 2.
  • One end of the monitor 8000 is connected to the charging interface 100, and the other end is connected to the first energy storage battery 200, the second energy storage battery 300, and the power battery 400, respectively.
  • the so-called recharge operation refers to charging the energy storage battery and the power battery of the electric mobile charging vehicle.
  • the three switches of the first switch K1, the second switch K2, and the third switch K3 one shot can be used to charge three batteries, which is only for the operator.
  • a single gun operation is required and is performed by the monitor 800 in accordance with its charge decision control.
  • the monitor 800 controls the charge-up operation based on the SOCs of the first energy storage battery 200, the second energy storage battery 300, and the power battery 400. details as follows:
  • the monitor 800 acquires the SOCs of the three batteries of the first energy storage battery 200, the second energy storage battery 300, and the power battery 400, and preferentially charges the power battery 400, and firstly supplies power to the power battery 400.
  • the switch K1 and the second switch K2 are turned off, and the third switch K3 is closed. After the power supply 400 is completed, the third switch K3 is turned off, and the power-on monitoring automatically restarts;
  • the monitor 800 again acquires the SOCs of the three batteries of the first energy storage battery 200, the second energy storage battery 300, and the power battery 400.
  • the power battery 400 is in a fully charged state, and for the energy storage battery, priority is given to the SOC.
  • the smaller energy storage battery is charged.
  • the monitor 800 again acquires the SOCs of the three batteries of the first energy storage battery 200, the second energy storage battery 300, and the power battery 400. At this time, only one battery has a small SOC, and the last battery is charged.
  • the switch state operation is similar to the above. When the charging is completed, the current switch is turned off, and the power-on monitoring is automatically restarted;
  • the monitor 800 again acquires the SOCs of the three batteries of the first energy storage battery 200, the second energy storage battery 300, and the power battery 400. At this time, it is detected that all three batteries are fully charged, and then the operator is sent The message that the charging is completed.
  • FIG. 3 is a circuit configuration diagram showing another part of the electric circuit of the electric type mobile charging vehicle according to the second embodiment of the present invention.
  • the so-called service operation refers to the electric mobile charging vehicle operating the charging service of the user's electric vehicle.
  • the service operation is divided into the following cases:
  • the first energy storage battery 200 is used to charge the user 1
  • the second energy storage battery 300 is used to charge the user 2
  • the fourth switch K5, the fifth switch K5, the first The eight switch K8 and the ninth switch K9 are closed, and at the same time, the tenth switch K10 is turned off, thereby supplying charging from the first energy storage battery 200 to the user 1 through the first DC/DC 500, and from the second energy storage battery 300 through the second DC/DC 600 supplies charging to user 2 to charge two users;
  • the first energy storage battery 200 and the second energy storage battery 300 can be used to charge the same user together, and the switch states are the fourth switch K4, the fifth switch K5, and the tenth switch K10. Closing, at the same time, one of closing the eighth switch K8 or the ninth switch K9 is selected according to the actual insertion of the charging gun. In addition, when a user is charged with two batteries at the same time, the second energy storage battery 300 can be preferentially discharged.
  • the power battery 300 can also be used to charge the user.
  • the power supply of the charging car itself needs to be turned off, that is, the fourth switch K4 and the fifth switch K5 are turned off, the seventh switch K7 is closed, and the user is charged by the second DC/DC 600 by the power battery 400.
  • the SOC of each energy storage battery and the power battery can be monitored by the monitor 800, and the energy storage battery and the power battery can be charged according to the monitoring result.
  • the power battery is preferentially supplemented, and when the power battery is completed, the energy storage battery with a relatively small SOC is preferentially recharged, thereby ensuring that the power battery is supplemented with priority.
  • the power battery and the energy storage battery of the mobile charging car are charged in an intelligent and efficient manner.
  • the first energy storage battery 200 and the second energy storage battery 300 can simultaneously provide charging to two users, and on the other hand, the first energy storage can also be utilized.
  • the battery 200 and the second energy storage battery 300 together provide charging to the same user.
  • the power battery 400 can be used to provide charging to the user. Therefore, the electric type mobile charging vehicle according to the second embodiment of the present invention can provide various charging methods according to the actual situation of the application, and the charging method is various and the charging efficiency is high.
  • the number of energy storage batteries is not limited, and the energy storage battery may be N blocks, where N is a natural number.
  • the electric type mobile charging vehicle includes one charging port for connecting to an external charging facility that replenishes the mobile charging car itself, first to Nth energy storage batteries, and a power battery.
  • the first energy storage battery to the Nth energy storage battery are the same battery
  • the charging interface is configured to selectively and only the first to Nth energy storage when charging the mobile charging vehicle itself A battery and one of the power batteries are connected.
  • the electric mobile charging vehicle according to a modification of the present invention further includes:
  • the first switch to the Nth switch are respectively disposed between each of the first to seventh energy storage batteries and the charging interface, and
  • a power battery switch disposed between the power battery and the charging interface
  • the mobile charging vehicle itself In the case where the mobile charging vehicle itself is charged, it is selectively turned on only one of the first to Nth switches.
  • the electric type mobile charging vehicle further includes a monitor for monitoring the SOC of the first switch to the Nth switch and the power battery, and controlling the first switch to the Nth switch according to the monitoring result. And one of the power battery switches is turned on.
  • the monitor is configured to monitor the SOC of the first energy storage battery to the Nth energy storage battery and the power battery, and control according to the following monitoring results:
  • the power battery switch is preferentially turned on to charge the power battery
  • the switches connected to the storage battery of the SOC from small to large are sequentially turned on, so as to sequentially charge the energy storage battery with the SOC from small to large;
  • the monitor is further configured to control the electric type mobile charging vehicle to provide a charging service to the user according to the monitoring result.
  • the monitor is arranged to implement control of one of the following modes:
  • the mobile charging vehicle of the present invention and the charging and discharging method based on the mobile charging vehicle can simplify the power supply of the power battery and the energy storage battery by using one charging interface by setting the power battery and the energy storage battery to be the same. Operational processes and system structure save costs. Moreover, the SOC of each energy storage battery and the power battery can be monitored by the monitor, and the energy storage battery and the power battery can be supplemented according to the monitoring result, so that the power battery can be preferentially supplemented, and the intelligent and efficient power can be realized.
  • the method is to recharge the power battery and the energy storage battery of the mobile charging car. Furthermore, various charging methods can be provided according to the actual situation of the application, and the charging methods are various and the charging efficiency is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种电动型移动充电车。该充电车具备:一个充电接口;第一储能电池;第二储能电池以及动力电池,所述充电接口设置为在对移动充电车本身进行补电时有选择性地仅与所述第一储能电池、所述第二储能电池以及所述动力电池中的一块电池连接。本发明的移动充电车以及基于该移动充电车的充放电方法通过将动力电池与储能电池的设置为相同,能够用一个充电接口为动力电池与储能电池补充电能,能够简化操作流程以及系统结构,节省了成本。

Description

电动型移动充电车及基于该电动型移动充电车的充放电方法 技术领域
本发明涉及新能源充电装置,具体地涉及一种电动型移动充电车的电路系统以及基于该电动型移动充电车的充放电方法。
背景技术
随着世界环保问题和能源危急的日益突出,寻找没有污染或者污染较少的汽车早就成为人们追求的目标,在这大背景下新能源电动汽车未来发展成为了必然。另一方面,随着电动汽车的发展,电动汽车充电难、充电不方便的问题日益突出,为了解决这样的充电难的问题,已经出现了电动型移动充电车,电动型移动充电车可灵活机动的为用户提供便捷的充电服务。
然而,目前电动型移动充电车的还不成熟,充电接口复杂,不便于操作,移动充电车本身的电池充电与车上储能电池充电的充电接口并没有统一,无论是交流充电还是直流充电都用单独的充电接口,将来充电桩的功率可以越做越大,电池的充电速度也不断的提高,这样就没有必要用多个充电枪给车本身,还有车载储能电池充电。
发明内容
鉴于上述问题,本发明旨在提供能够简化充电车本身结构并且能够简化充电时的人工操作步骤的移动充电车以及基于该移动充电车的充放电方法以及补电方法。
本发明第一方面的电动型移动充电车,其特征在于,具备:一个充电接口;第一储能电池;第二储能电池以及动力电池,
所述充电接口设置为在对移动充电车本身进行补电时有选择性地仅与所述第一储能电池、所述第二储能电池以及所述动力电池中的一块电池连接。
可选地,所述动力电池、所述第一储能电池与第二储能电池为相同的电池,所述充电接口用于连接到外部的充电设施。
可选地,所述充电接口用于与外部的直流充电桩、交流充电桩、无线充电发射装置中的任意一种设备连接。
可选地,进一步具备:
第一开关,设置在所述第一储能电池与所述充电接口之间;
第二开关,设置在所述第二储能电池与所述充电接口之间;
第三开关,设置在所述动力电池与所述充电接口之间,
其中,在对移动充电车本身进行补电时,有选择性地仅使得所述第一开关、第二开关以及第三开关中的一个开关导通。
可选地,进一步具备:
监控器,用于监测所述第一储能电池、所述第二储能电池以及所述动力电池的SOC并且根据监测结果控制所述第一开关、第二开关以及第三开关中的一个开关导通。
可选地,所述监控器用于监测所述第一储能电池、所述第二储能电池以及所述动力电池的SOC,并且根据下述监测结果进行控制:
若所述动力电池的SOC为不满电状态则优先使得第三开关导通以对所述动力电池进行补电;
若所述动力电池的SOC为满电状态则优先使得与所述第一储能电池、所述第二储能电池中SOC较小的一块储能电池连接的开关导通;
在对SOC较小的储能电池补电完毕的情况下接着使得与另一块SOC较大的储能电池连接的开关导通;
若所述第一储能电池、所述第二储能电池以及所述动力电池的SOC都为满电状态,则补电动作结束。
可选地,所述监控器进一步用于根据监测结果控制电动型移动充电车对用户提供充电服务。
可选地,所述监控器设置为实施以下方式之一的控制:
利用第一储能电池和第二储能电池分别为两个用户提供充电服务;
利用第一储能电池和第二储能电池一起为同一个用户提供充电服务;以及
利用动力电池为一个用户提供充电服务。
本发明的对电动型移动充电车进行补电的补电方法,其特征在于,包括下 述步骤:
监测所述第一储能电池、所述第二储能电池以及所述动力电池的SOC;
若所述动力电池的SOC为不满电状态则优先对所述动力电池进行补电;
若所述动力电池的SOC为满电状态则优先对所述第一储能电池、所述第二储能电池中SOC较小的一块储能电池补电;
在对SOC较小的储能电池补电完毕的情况下,对另一块SOC较大的储能电池进行补电;
若所述第一储能电池、所述第二储能电池以及所述动力电池的SOC都为满电状态,则发出充电完毕的提示。
本发明第二方面的电动型移动充电车,其特征在于,具备:一个充电接口;第1~第N储能电池;动力电池,
所述充电接口设置为在对移动充电车本身进行补电时有选择性地仅与所述第1~第N储能电池以及所述动力电池中的一块电池连接,其中,N为自然数。
可选地,所述第1储能电池~第N块储能电池为相同的电池,所述充电接口用于连接到对移动充电车本身进行补电的外部的充电设施。
可选地,所述充电接口用于与外部的直流充电桩、交流充电桩、无线充电发射装置中的任意一种设备连接。
可选地,进一步具备:
第1开关~第N开关,分别设置在所述第1储能电池~第N储能电池的每一个与所述充电接口之间,以及
动力电池开关,设置在所述动力电池与所述充电接口之间,
其中,在对移动充电车本身进行补电时,有选择性地仅使得所述第1开关~第N开关中的一个开关导通。
可选地,进一步具备:
监控器,用于监测第1开关~第N开关以及所述动力电池的SOC并且根据监测结果控制所述第1开关~第N开关以及所述动力电池开关中的一个开关导通。
可选地,所述监控器用于监测所述第1储能电池~第N储能电池以及所述动力电池的SOC,并且根据下述监测结果进行控制:
若所述动力电池的SOC为不满电状态则优先使得所述动力电池开关导通以对所 述动力电池进行补电;
若所述动力电池的SOC为满电状态则,依次使得与SOC由小到大的储能电池连接的开关导通,以依次对SOC由小到大的储能电池进行补电;
若所述第1储能电池~第N储能电池以及所述动力电池的SOC都为满电状态,则补电动作结束。
可选地,所述监控器进一步用于根据监测结果控制电动型移动充电车对用户提供充电服务。
可选地,所述监控器设置为实施以下方式之一的控制:
利用第一~第N储能电池分别为N个用户提供充电服务;
利用用第一~第N储能电池一起为同一个用户提供充电服务;以及
利用动力电池为一个用户提供充电服务。
本发明第二方面对电动型移动充电车进行补电的补电方法,其特征在于,包括下述步骤:
监测所述第1储能电池~第N储能电池以及所述动力电池的SOC;
若所述动力电池的SOC为不满电状态则优先对所述动力电池进行补电;
若所述动力电池的SOC为满电状态,依次对SOC由小到大的储能电池进行补电;
若所测所述第1储能电池~第N储能电池以及所述动力电池的SOC都为满电状态,则补电动作结束。
如上所述,本发明的移动充电车以及基于该移动充电车的充放电方法通过将动力电池与储能电池的设置为相同,能够用一个充电接口为动力电池与储能电池补充电能,简化了操作流程,简化了系统结构,节省了成本。而且,能够利用监控器对各储能电池以及动力电池的SOC进行监控,根据监控结果对储能电池以及动力电池进行补电,能够保证优先对动力电池进行补电,能够实现以智能、高效的方式对移动充电车的动力电池和储能电池进行补电。再者,能够按照应用的实际情况提供多种充电方式,充电方式多样,充电效率高。
附图说明
图1是表示本发明第一实施方式的电动型移动充电车的电路构造图。
图2是表示本发明第二实施方式的电动型移动充电车的一部分的电路的电路构造图。
图3是表示本发明第二实施方式的电动型移动充电车的另一部分电路的电路构造图。
具体实施方式
下面介绍的是本发明的多个实施例中的一些,旨在提供对本发明的基本了解。并不旨在确认本发明的关键或决定性的要素或限定所要保护的范围。
第一实施方式
首先,对于本发明的第一实施方式的电动型移动充电车的电路构造进行说明。
图1是表示本发明第一实施方式的电动型移动充电车的电路构造图。
如图1所示,本发明第一实施方式的电动型移动充电车至少具备:连接到外部的充电设施的一个充电接口100;第一储能电池200;第二储能电池300以及动力电池400。
其中,第一储能电池200;第二储能电池300以及动力电池400为相同的电池。这里为相同的电池是指容量、电压范围、电池的材料相同。
在本发明中仅设置一个充电接口100,充电接口100设置为在对移动充电车进行补电时有选择性地仅与第一储能电池200、第二储能电池300以及动力电池400中的一个连接。充电接口100用于与外部的充电设备连接以对电动型移动充电车进行充电。例如,充电接口100用于与外部的直流充电桩、交流充电桩、无线充电发射装置中的任意一种设备连接。
接着,根据图1对本发明一实施方式的电动型移动充电车的电路构造进行具体说明。
在具备一个充电接口100、第一储能电池200、第二储能电池300以及动力电池400的基础上,在图1的电动型移动充电车的电路构造中还具备下述部件:
第一开关K1,设置在第一储能电池200与充电接口100之间;
第二开关K2,设置在第二储能电池300与充电接口100之间;
第三开关K3,设置在动力电池400与充电接口100之间;
第一DC/DC 500,用于对第一储能电池200的输出进行直流变换,其中DC/DC是指直流到直流的变换器;
第二DC/DC 600,用于对第一储能电池300的输出进行直流变换;以及
电机驱动器700,用于将动力电池400输出的直流电压变成驱动电机的电压。
进一步,在图1的电动型移动充电车的电路构造中还具备下述开关:
第四开关K4,设置在第一储能电池200和第一DC/DC500之间;
第五开关K5,设置在第二储能电池300和第二DC/DC600之间;
第六开关K6,设置在动力电池400和电机驱动器700之间;
第七开关K7,设置在第五开关K5和第六开关K6之间;
第八开关K8,设置在第一DC/DC500的输出端(即第一DC/DC500一端与第四开关K4连接,第一DC/DC500的另一端与第八开关K8);
第九开关K9,设置在第二DC/DC600的输出端(即第二DC/DC600一端与第五开关K5连接,第二DC/DC600的另一端与第九开关K9);以及
第十开关K10,设置在第八开关K8和第九开关K9之间。
在图1所示的电动型移动充电车中,如上所述,选择相同的电池作为第一储能电池200、第二储能电池300以及动力电池400,这样做的好处是:
A.当电动型移动充电车的活动范围较小时,用户分布紧凑对电动型移动充电车本身的续航里程要求低,可利用电动型移动充电车本身的动力电池给用户充电;
B.当电动型移动充电车的活动范围较大时,用户分布较为分散、野外救援的情形等,这时可利用储能电池的电量为充电车充电续航。
另一方面,在图1所示的电动型移动充电车中,当本发明的电动型移动充电车需要补电时,可通过将充电接口100为第一储能电池200、第二储能电池300以及动力电池400进行充电,通过将第一开关K1、第二开关K2以及第三开关K3中的任意一个关闭闭合可以控制充电接口100为哪一块电池充电,其中,在同一时刻第一开关K1、第二开关K2以及第三开关K3中只能有一个开关闭合,每次动作之间要确认所有开关的状态。例如,通过仅闭合第一开关K1,能够从充电接口100对第一储能电池200进行充电;通过仅闭合第二开关K2,能够从充电接口100对第二储能电池300进行充电;通过仅闭合第三开关K3,能够从充电接口100对动力电池400进行充电。
另一方面,对于图1所示的电动型移动充电车,当该电动型充电车为用户充电时:
A.如果两个用户在同一地点,本发明的电动型移动充电车可以同时输出两路直 流电为两个用户充电,这时断开第十开关K10,闭合第四开关K4和第八开关K8输出一路直流电,闭合第五开关K5和第九开关K9输出一路直流电。
B.当只有一个用户需要服务时,在本发明的电动型移动充电车中,闭合第八开关K8和第十开关K10并断开K9;或者闭合第九开关K9、第十开关K10并断开第八开关K8,这样可以利用两路DC/DC系统关联为用户提供更为快速的充电服务。
根据本发明第一实施方式的电动型移动充电车,利用第一开关K1、第二开关K2以及第三开关K3这三个切换开关来实现一次插枪可给三块电池充电,而且在第一实施方式中只需要设置一个充电接口100就能够为各储能电池与动力电池进行补电,有效简化操作流程,简化了电路结构,节省成本。
第二实施方式
接着,对于本发明的第二实施方式的电动型移动充电车进行说明。
图2是表示本发明第二实施方式的电动型移动充电车的一部分的电路的电路构造图。
图2所示的电动型移动充电车的电路构造图是在图1所示的电路构造中增加设置了监控器800。为了简化电路图,在图2中省略了图1中的右侧部分的电路。监控器8000的一端与充电接口100连接,另一端分别连接到第一储能电池200、第二储能电池300以及动力电池400。
参照图2对于对本发明的电动型移动充电车进行补电操作的情形进行说明。所谓补电操是指为电动型移动充电车的储能电池与动力电池充电。在上述图1的电动型移动充电车中通过利用第一开关K1、第二开关K2以及第三开关K3这三个切换开关来实现一次插枪可给三块电池充电,对操作人员来说只需要一次插枪操作,由监控器800根据它的充电决策控制完成。
以下,对于由监控器800控制的补电操作进行具体说明。
监控器800根据第一储能电池200、第二储能电池300以及动力电池400的SOC控制补电操作。具体如下:
A.监控器800获取第一储能电池200、第二储能电池300以及动力电池400这三块电池的SOC,优先对动力电池400进行补电,在给动力电池400进行 补电时第一开关K1、第二开关K2断开,第三开关K3闭合,在给动力电池400补电完成后,第三开关K3断开,这时补电监控自动重启;
B.监控器800再次获取第一储能电池200、第二储能电池300以及动力电池400这三块电池的SOC,这时动力电池400为满电状态,对于储能电池,优先给其中SOC较小的储能电池充电,充电时只有电池对应的开关闭合,其他开关断开,当前电池充电完成,断开当前相应的开关,补电监控自动重启;
C.监控器800再次获取第一储能电池200、第二储能电池300以及动力电池400这三块电池的SOC,这时只有一块电池的SOC较小,则给最后一块电池补电,其开关状态操作与上述类似情况。当充电完成,断开当前开关,补电监控自动重启动;
D.监控器800再次获取第一储能电池200、第二储能电池300以及动力电池400这三块电池的SOC,这时检测到三块电池都是满电状态,这时向操作人员发送充电完毕的消息。
图3是表示本发明第二实施方式的电动型移动充电车的另一部分电路的电路构造图。
接着,参照图3对于本发明第二实施方式的电动型移动充电车的服务操作进行说明。所谓服务操作就是指电动型移动充电车对用户的电动车进行充电服务操作。
在本实施方式中,服务操作分以下几种情况:
(1)同时给两个用户充电的情况下,利用第一储能电池200给用户1充电、利用第二储能电池300给用户2充电,这时第四开关K5、第五开关K5、第八开关K8以及第九开关K9闭合,同时,第十开关K10断开,由此从第一储能电池200通过第一DC/DC500向用户1供给充电,从第二储能电池300通过第二DC/DC600向用户2供给充电为给两个用户充电;
(2)仅给一个用户充电的情况下,可以利用第一储能电池200和第二储能电池300一起为同一用户充电,开关状态为第四开关K4、第五开关K5以及第十开关K10闭合,同时,根据实际插充电枪的情况来选择闭合第八开关K8或者第九开关K9中的一个。另外,在用两块电池同时给一个用户充电时,可优先对第二储能电池300放电。
(3)当充电车活动范围较小时,在第一储能电池200、第二储能电池300都没有电量可用的情况下,还可以利用动力电池300为用户充电。这时需要关闭充电车本身电源,即断开第四开关K4、第五开关K5,闭合第七开关K7,利用动力电池400通过第二DC/DC600为用户充电。
如上所述,根据本发明第二实施方式的电动型移动充电车,能够利用监控器800对各储能电池以及动力电池的SOC进行监控,根据监控结果对储能电池以及动力电池进行补电,其中,优先对动力电池进行补电,在动力电池完成补电的情况下,再优先对SOC相对较小的储能电池进行补电,由此,能够保证优先对动力电池进行补电,能够实现以智能、高效的方式对移动充电车的动力电池和储能电池进行补电。
而且,根据本发明第二实施方式的电动型移动充电车,利用第一储能电池200以及第二储能电池300能够同时给两个用户提供充电,另一方面,也可以利用第一储能电池200以及第二储能电池300一起给同一个用户提供充电。而且,还能够利用动力电池400给用户提供充电,因此,本发明第二实施方式的电动型移动充电车能够按照应用的实际情况提供多种充电方式,充电方式多样,充电效率高。
变形例
最后,对于本发明的变形例电动型移动充电车的电路构造进行说明。
在第一实施方式和第二实施方式中,对于储能电池为两块的情况进行了说明。但是,本发明中不对储能电池的数量进行限定,储能电池可以为N块,其中N为自然数。
具体地,本发明的变形例的电动型移动充电车具备:用于连接到对移动充电车本身进行补电的外部的充电设施的一个充电接口;第1~第N储能电池;动力电池。
其中,第1储能电池~第N块储能电池为相同的电池,所述充电接口设置为在对移动充电车本身进行补电时有选择性地仅与所述第1~第N储能电池以及所述动力电池中的一块电池连接。
进一步,本发明的变形例的电动型移动充电车进一步具备:
第1开关~第N开关,分别设置在所述第1储能电池~第N储能电池的每一个与 所述充电接口之间,以及
动力电池开关,设置在所述动力电池与所述充电接口之间,
其中,在对移动充电车本身进行补电时,有选择性地仅使得所述第1开关~第N开关中的一个开关导通。
进一步,本发明的变形例的电动型移动充电车进一步具备:监控器,用于监测第1开关~第N开关以及所述动力电池的SOC并且根据监测结果控制所述第1开关~第N开关以及所述动力电池开关中的一个开关导通。
所述监控器用于监测所述第1储能电池~第N储能电池以及所述动力电池的SOC,并且根据下述监测结果进行控制:
若所述动力电池的SOC为不满电状态则优先使得所述动力电池开关导通以对所述动力电池进行补电;
若所述动力电池的SOC为满电状态则,依次使得与SOC由小到大的储能电池连接的开关导通,以依次对SOC由小到大的储能电池进行补电;
若所述第1储能电池~第N储能电池以及所述动力电池的SOC都为满电状态,则补电动作结束。
另一方面,述监控器进一步用于根据监测结果控制电动型移动充电车对用户提供充电服务。具体地,所述监控器设置为实施以下方式之一的控制:
利用第一~第N储能电池分别为N个用户提供充电服务;
利用用第一~第N储能电池一起为同一个用户提供充电服务;以及
利用动力电池为一个用户提供充电服务。
如上所述,本发明的移动充电车以及基于该移动充电车的充放电方法通过将动力电池与储能电池的设置为相同,能够用一个充电接口为动力电池与储能电池补充电能,能够简化操作流程以及系统结构,节省了成本。而且,能够利用监控器对各储能电池以及动力电池的SOC进行监控,根据监控结果对储能电池以及动力电池进行补电,能够保证优先对动力电池进行补电,能够实现以智能、高效的方式对移动充电车的动力电池和储能电池进行补电。再者,能够按照应用的实际情况提供多种充电方式,充电方式多样,充电效率高。
以上例子主要说明了本发明的移动充电车以及基于该移动充电车的充放电方法。尽管只对其中一些本发明的具体实施方式进行了描述,但是本领域普通 技术人员应当了解,本发明可以在不偏离其主旨与范围内以许多其他的形式实施。因此,所展示的例子与实施方式被视为示意性的而非限制性的,在不脱离如所附各权利要求所定义的本发明精神及范围的情况下,本发明可能涵盖各种的修改与替换。

Claims (18)

  1. 一种电动型移动充电车,其特征在于,具备:一个充电接口;第一储能电池;第二储能电池以及动力电池,
    所述充电接口设置为在对移动充电车进行补电时有选择性地仅与所述第一储能电池、所述第二储能电池以及所述动力电池中的一块电池连接。
  2. 如权利要求1所述的电动型移动充电车,其特征在于,
    所述动力电池、所述第一储能电池与第二储能电池为相同的电池,
    所述充电接口用于连接到外部的充电设施。
  3. 如权利要求2所述的电动型移动充电车,其特征在于,
    所述充电接口用于与外部的直流充电桩、交流充电桩、无线充电发射装置中的任意一种设备连接。
  4. 如权利要求3所述的电动型移动充电车,其特征在于,
    进一步具备:
    第一开关,设置在所述第一储能电池与所述充电接口之间;
    第二开关,设置在所述第二储能电池与所述充电接口之间;
    第三开关,设置在所述动力电池与所述充电接口之间,
    其中,在对移动充电车进行补电时,有选择性地仅使得所述第一开关、第二开关以及第三开关中的一个开关导通。
  5. 如权利要求4所述的电动型移动充电车,其特征在于,进一步具备:
    监控器,用于监测所述第一储能电池、所述第二储能电池以及所述动力电池的SOC并且根据监测结果控制所述第一开关、第二开关以及第三开关中的一个开关导通。
  6. 如权利要求5所述的电动型移动充电车,其特征在于,
    所述监控器用于监测所述第一储能电池、所述第二储能电池以及所述动力电池的SOC,并且根据下述监测结果进行控制:
    若所述动力电池的SOC为不满电状态则优先使得第三开关导通以对所述动力电 池进行补电;
    若所述动力电池的SOC为满电状态则优先使得与所述第一储能电池、所述第二储能电池中SOC较小的一块储能电池连接的开关导通;
    在对SOC较小的储能电池补电完毕的情况下接着使得与另一块SOC较大的储能电池连接的开关导通;
    若所述第一储能电池、所述第二储能电池以及所述动力电池的SOC都为满电状态,则补电动作结束。
  7. 如权利要求5所述的电动型移动充电车,其特征在于,
    所述监控器进一步用于根据监测结果控制电动型移动充电车对用户提供充电服务。
  8. 如权利要求7所述的电动型移动充电车,其特征在于,
    所述监控器设置为实施以下方式之一的控制:
    利用第一储能电池和第二储能电池分别为两个用户提供充电服务;
    利用第一储能电池和第二储能电池一起为同一个用户提供充电服务;以及
    利用动力电池为一个用户提供充电服务。
  9. 一种对权利要求1~8任意一项的电动型移动充电车进行补电的补电方法,其特征在于,包括下述步骤:
    监测所述第一储能电池、所述第二储能电池以及所述动力电池的SOC;
    若所述动力电池的SOC为不满电状态则优先对所述动力电池进行补电;
    若所述动力电池的SOC为满电状态则优先对所述第一储能电池、所述第二储能电池中SOC较小的一块储能电池补电;
    在对SOC较小的储能电池补电完毕的情况下,对另一块SOC较大的储能电池进行补电;
    若所述第一储能电池、所述第二储能电池以及所述动力电池的SOC都为满电状态,则发出充电完毕的提示。
  10. 一种电动型移动充电车,其特征在于,具备:一个充电接口;第1~第N储能电池;动力电池,
    所述充电接口设置为在对移动充电车本身进行补电时有选择性地仅与所述第1~第N储能电池以及所述动力电池中的一块电池连接,其中,N为自然数。
  11. 如权利要求10所述的电动型移动充电车,其特征在于,
    所述充电接口用于连接到对移动充电车本身进行补电的外部的充电设施,
    所述第1储能电池~第N块储能电池为相同的电池。
  12. 如权利要求11所述的电动型移动充电车,其特征在于,
    所述充电接口用于与外部的直流充电桩、交流充电桩、无线充电发射装置中的任意一种设备连接。
  13. 如权利要求12所述的电动型移动充电车,其特征在于,进一步具备:
    第1开关~第N开关,分别设置在所述第1储能电池~第N储能电池的每一个与所述充电接口之间,以及
    动力电池开关,设置在所述动力电池与所述充电接口之间,
    其中,在对移动充电车本身进行补电时,有选择性地仅使得所述第1开关~第N开关中的一个开关导通。
  14. 如权利要求13所述的电动型移动充电车,其特征在于,进一步具备:
    监控器,用于监测第1开关~第N开关以及所述动力电池的SOC并且根据监测结果控制所述第1开关~第N开关以及所述动力电池开关中的一个开关导通。
  15. 如权利要求14所述的电动型移动充电车,其特征在于,
    所述监控器用于监测所述第1储能电池~第N储能电池以及所述动力电池的SOC,并且根据下述监测结果进行控制:
    若所述动力电池的SOC为不满电状态则优先使得所述动力电池开关导通以对所述动力电池进行补电;
    若所述动力电池的SOC为满电状态则,依次使得与SOC由小到大的储能电池连接的开关导通,以依次对SOC由小到大的储能电池进行补电;
    若所述第1储能电池~第N储能电池以及所述动力电池的SOC都为满电状态,则补电动作结束。
  16. 如权利要求14所述的电动型移动充电车,其特征在于,
    所述监控器进一步用于根据监测结果控制电动型移动充电车对用户提供充电服务。
  17. 如权利要求15所述的电动型移动充电车,其特征在于,
    所述监控器设置为实施以下方式之一的控制:
    利用第一~第N储能电池分别为N个用户提供充电服务;
    利用用第一~第N储能电池一起为同一个用户提供充电服务;以及
    利用动力电池为一个用户提供充电服务。
  18. 一种对权利要求10~17任意一项的电动型移动充电车进行补电的补电方法,其特征在于,包括下述步骤:
    监测所述第1储能电池~第N储能电池以及所述动力电池的SOC;
    若所述动力电池的SOC为不满电状态则优先对所述动力电池进行补电;
    若所述动力电池的SOC为满电状态,依次对SOC由小到大的储能电池进行补电;
    若所测所述第1储能电池~第N储能电池以及所述动力电池的SOC都为满电状态,则补电动作结束。
PCT/CN2018/078212 2017-04-12 2018-03-07 电动型移动充电车及基于该电动型移动充电车的充放电方法 WO2018188433A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710235587.8 2017-04-12
CN201710235587.8A CN107017674A (zh) 2017-04-12 2017-04-12 电动型移动充电车及基于该电动型移动充电车的充放电方法

Publications (1)

Publication Number Publication Date
WO2018188433A1 true WO2018188433A1 (zh) 2018-10-18

Family

ID=59445949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078212 WO2018188433A1 (zh) 2017-04-12 2018-03-07 电动型移动充电车及基于该电动型移动充电车的充放电方法

Country Status (2)

Country Link
CN (1) CN107017674A (zh)
WO (1) WO2018188433A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107017674A (zh) * 2017-04-12 2017-08-04 蔚来汽车有限公司 电动型移动充电车及基于该电动型移动充电车的充放电方法
CN113013958A (zh) * 2021-04-17 2021-06-22 深圳市鑫嘉恒科技有限公司 一种储能电池的均衡控制系统、方法、存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102844220A (zh) * 2010-04-14 2012-12-26 丰田自动车株式会社 电源系统和装有电源系统的车辆
CN105398350A (zh) * 2015-12-28 2016-03-16 青岛大学 一种负载隔离式混合纯电驱动装置
CN205882826U (zh) * 2016-06-27 2017-01-11 深圳市华思旭科技有限公司 供电组件
CN107017674A (zh) * 2017-04-12 2017-08-04 蔚来汽车有限公司 电动型移动充电车及基于该电动型移动充电车的充放电方法
CN206947969U (zh) * 2017-04-12 2018-01-30 蔚来汽车有限公司 电动型移动充电车

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100459440B1 (ko) * 2002-11-29 2004-12-03 엘지전자 주식회사 충전지 및 충전지의 충전방법과 전원공급방법
KR20150098113A (ko) * 2014-02-19 2015-08-27 자동차부품연구원 이동형 충전 차량의 전력을 인출하는 시스템 및 방법
CN205523730U (zh) * 2015-11-15 2016-08-31 深圳市沃特玛电池有限公司 纯电动移动补电车
CN106080453B (zh) * 2016-08-05 2018-06-19 广东亿鼎新能源汽车有限公司 电动汽车的电池切换系统
CN205971009U (zh) * 2016-08-25 2017-02-22 上海蔚来汽车有限公司 基于梯次电池的移动充电车

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102844220A (zh) * 2010-04-14 2012-12-26 丰田自动车株式会社 电源系统和装有电源系统的车辆
CN105398350A (zh) * 2015-12-28 2016-03-16 青岛大学 一种负载隔离式混合纯电驱动装置
CN205882826U (zh) * 2016-06-27 2017-01-11 深圳市华思旭科技有限公司 供电组件
CN107017674A (zh) * 2017-04-12 2017-08-04 蔚来汽车有限公司 电动型移动充电车及基于该电动型移动充电车的充放电方法
CN206947969U (zh) * 2017-04-12 2018-01-30 蔚来汽车有限公司 电动型移动充电车

Also Published As

Publication number Publication date
CN107017674A (zh) 2017-08-04

Similar Documents

Publication Publication Date Title
CN104641533B (zh) 用于控制电池的装置和方法
CN103770657B (zh) 车辆、电源系统和电源系统的控制方法
WO2018188224A1 (zh) 供电系统、电力驱动装置、纯电动汽车及其工作方法
CN103051019A (zh) 一种电池组间串并联切换控制系统及其充放电控制方法
US20130127418A1 (en) Electric vehicle and charging control method for battery thereof
US9475439B2 (en) Battery system for micro-hybrid vehicles comprising high-efficiency consumers
WO2014174808A1 (ja) 電力供給システム
CN106887879A (zh) 电动型移动充电车对外供电系统及移动充电车
CN206237161U (zh) 电动型移动充电车对外供电系统及移动充电车
EP3613626A2 (en) Electric vehicle power supply system and power supply method
WO2018188433A1 (zh) 电动型移动充电车及基于该电动型移动充电车的充放电方法
CN206947969U (zh) 电动型移动充电车
JP2010119176A (ja) 車載用電源装置
US20120074900A1 (en) Vehicle charging system and vehicle charging method
CN203014427U (zh) 一种可串并联切换的电池组连接控制装置
KR101474392B1 (ko) 확장형 배터리 장치
WO2016090852A1 (zh) 终端电池及其充放电的控制方法
CN202518115U (zh) 一种电动汽车低压供电电源
CN106487064A (zh) 电池充电方法、充电器及充电电池
CN115649091A (zh) 一种自动驾驶汽车高低压能量分配方法、系统、设备及介质
CN109560585A (zh) 一种电池过放重启电路、储能装置和控制方法
CN204236256U (zh) 新能源汽车的电源系统
CN109484246B (zh) 电动汽车电池连接结构
KR20130053553A (ko) 차량 전원을 모니터링하는 배터리 관리 시스템
TWM524000U (zh) 循環充電系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18783721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18783721

Country of ref document: EP

Kind code of ref document: A1