WO2018186321A1 - 低サイクル疲労特性に優れるFe-Mn-Si系合金鋳造材 - Google Patents
低サイクル疲労特性に優れるFe-Mn-Si系合金鋳造材 Download PDFInfo
- Publication number
- WO2018186321A1 WO2018186321A1 PCT/JP2018/014043 JP2018014043W WO2018186321A1 WO 2018186321 A1 WO2018186321 A1 WO 2018186321A1 JP 2018014043 W JP2018014043 W JP 2018014043W WO 2018186321 A1 WO2018186321 A1 WO 2018186321A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- phase
- alloy
- cast material
- casting
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D3/00—Pig or like casting
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D5/00—Heat treatments of cast-iron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Definitions
- the present invention relates to an Fe—Mn—Si alloy cast material excellent in low cycle fatigue life.
- Casting is an ancient metal processing method that can be processed into various shapes by heating the metal to a liquid at a temperature higher than the melting point, pouring it into a mold, cooling it and solidifying it into the desired shape. Even in modern times, casting is widely used in the production of small-volume products, such as many transportation equipment parts and machined body parts, to mass-produced parts. Casting is used to manufacture hard materials, brittle materials, and products with complex shapes that are difficult to manufacture by plastic processing or cutting.
- casting materials produced by casting may contain casting defects such as voids, segregation, and inclusions due to solidification shrinkage and redistribution of constituent elements due to the volume difference between the solid and liquid. Since these casting defects usually significantly reduce the mechanical properties of the cast material, the solidification is conventionally controlled to produce a defect-free product. Still, in the case of some important parts of structural metal materials, use them after homogenizing heat treatment and plastic processing such as forging and rolling to promote homogenization to remove casting defects and make the material uniform. It is done. Machine parts used for special applications such as corrosion resistance and wear resistance are often made by casting because of their poor machinability, but these parts are subjected to uniform heat treatment after casting, and the material is It may be used after being made uniform.
- the safety factor is set higher than a material homogenized by forging and rolling, etc., and the stress generated in the cast material to prevent fatigue failure is defined as the elastic range. It is uneconomical because, for example, building materials can only be used for members that are used in the elastic range even in the event of a large earthquake, and it is not possible to use materials efficiently with sufficient strength. .
- Patent Document 1 an Fe—Mn—Si based alloy has been proposed in Patent Document 1 as a core material of a vibration damper for construction.
- This alloy is said to exhibit excellent low cycle fatigue life.
- This Fe—Mn—Si based alloy has a martensitic transformation from a face-centered cubic (FCC) structure ⁇ austenite phase to a close-packed hexagonal (HCP) structure ⁇ martensite phase by plastic deformation in a certain direction.
- FCC face-centered cubic
- HCP hexagonal
- the reverse martensitic transformation from the ⁇ martensite phase to the ⁇ austenite phase due to plastic deformation in the reverse direction which occurs alternately and reversibly, allows the change in atomic arrangement due to repeated plastic deformation to be reversible. Therefore, it is said that the low cycle fatigue life is remarkably superior to that of the conventional material because lattice defects that cause metal fatigue are less likely to accumulate.
- Non-Patent Document 1 describes, as a design guideline for improving the low cycle fatigue life of Fe—Mn—Si alloys, (A) reducing the free energy difference between the ⁇ phase and the ⁇ phase, and (B) body core. Three conditions of suppressing the formation of a cubic ⁇ ′ martensite phase and (C) adding about 4 mass% Si are disclosed. And in patent document 1, Mn equivalent ([% Mn] eq) given by the following formula
- the condition that the Fe—Mn—Si based alloy exhibits a significantly higher low cycle fatigue life than that of a normal steel material is 0 mass centered on the optimum Si concentration of 4 mass% in the condition (C). % ⁇ Si ⁇ 6.5% by mass, and more preferably 2% by mass ⁇ Si ⁇ 6% by mass.
- Non-Patent Document 2 based on the above design guidelines, an Fe-15Mn-10Cr-8Ni-4Si alloy having a low cycle fatigue life of 10 times that of the prior art has been developed. It is used as a damper and is expected as a highly functional vibration damper with excellent durability against long-period ground motion. Such excellent fatigue durability is expected to be utilized not only for shear panel type vibration dampers but also for various members.
- Patent Document 1 and Non-Patent Documents 1 and 2 are formed into a plate shape by forging, rolling and heat-treating the ingot, and are coarse and have crystal orientation. By making a highly uniform cast structure into a uniform fine random equiaxed crystal structure, the material has few defects.
- Patent Document 1 and Non-Patent Documents 1 and 2 the low cycle fatigue characteristics of the cast material are as follows. There is no disclosure or suggestion.
- Patent Document 2 As an Fe—Mn—Si alloy casting material, a fastening member of an Fe—Mn—Si shape memory alloy is disclosed in Patent Document 2.
- Patent Document 2 after casting into an element member having a shape close to the target product member, by performing appropriate heat treatment, it is a simple manufacturing process without a hot working process, and conventionally, There is provided a method capable of easily obtaining a fastening member having a decorative or complicated shape which has not been obtained.
- patent document 3 in the joint for iron-type shape memory alloy pipes manufactured by the centrifugal casting method, in the macrostructure in the cross section, the area ratio of the columnar crystals is set to 50% or more, which is high. It is disclosed that an inner diameter shrinkage can be obtained.
- Patent Documents 2 and 3 suggest that Fe—Mn—Si shape memory alloy joints manufactured by casting into a mold or continuous casting have sufficient deformability to exhibit a shape memory effect. However, there is no disclosure or suggestion about durability against low cycle fatigue deformation.
- Similar cast materials widely used as structural materials include high Mn wear resistant cast steel and high Mn nonmagnetic cast steel.
- High Mn wear-resistant cast steel is excellent in wear resistance and strength, and is used for rail points and the like. Since the strength and work hardening rate are high and molding by plastic working is difficult, it is produced by casting.
- Patent Document 4 also discloses that the austenite phase in high-Mn wear-resistant cast steel exhibits high durability against crack propagation.
- Patent Document 5 discloses a continuous casting method for high C high Mn nonmagnetic steel.
- Patent Documents 4 and 5 show that the mechanical properties of high-Mn cast steel are excellent and that mass production technology is sufficiently established, and also suggest high fatigue durability. However, there is no disclosure or suggestion as to whether or not a low cycle fatigue life of 10 times that obtained with a Fe—Mn—Si thick plate can be obtained.
- Patent Document 6 Si is 4.7 to 5.7% by mass, Cr is 0.8 to 2.2% by mass, Mn is 2.0 to 5.5% by mass, Ni is 11 to 14% by mass, Cu An austenitic casting containing 0.8 to 1.8% by mass is disclosed. However, since the casting of Patent Document 6 contains 2.1 to 3.1% by mass of C, it corresponds to cast iron, and is a material that is completely different from the classification of cast steel in which C is less than 2.1% by mass. In addition, the document does not mention fatigue durability.
- Patent Document 7 discloses a high-Mn nonmagnetic cast body containing 1.0% by mass or less of Si, 10 to 20% by mass of Mn, 15.0 to 20.0% by mass of Cr, and 2.5 to 6.0% by mass of Ni. Yes. However, although the cast body in Patent Document 7 is classified as cast steel from the C content, the Si content is low, and the literature does not suggest fatigue durability.
- Patent Document 8 discloses a high-temperature wear resistant material containing Si 0.2 to 1.5 mass%, Mn 10 to 24 mass%, Cr 12 to 20 mass%, and Ni less than 4 mass%. This high-temperature wear-resistant material is a material classified as cast steel because it has a C content of 0.2 to 0.5 mass%, but Patent Document 8 mentions that it has excellent wear resistance and crack resistance. However, there is no description about low cycle fatigue life.
- Cast materials have been widely used in construction and civil engineering structures. The reason for this is that complex shapes and large-sized ones can be easily made at low cost, and geometrically complex variable cross-section members (thickness and width can be varied) without heavy use of welding. Manufacturable (columns, joints, nodes, etc.), man-hours are reduced (improving assembly accuracy), leading to lower costs, and if casting is used (for example, die casting), it can be used with little post-processing, This is because there is a great advantage such as that the assembly accuracy is improved and mass production is possible as long as the mold has a lifetime. Furthermore, when casting materials are used for pillars, etc., they have been used in the right place because they have great practical advantages such as the ability to arrange joints with complex beams and realize a variety of architectural plan plans. .
- the cast material includes casting defects such as segregation, voids, and inclusions, the fatigue characteristics are clearly inferior to that of a rolled material having the same composition.
- a building member is used in an elastic range even during a large earthquake. The range of use was limited, such as being usable only for members.
- the present invention eliminates the problems of the prior art, pays attention to the unique deformation behavior of the Fe—Mn—Si alloy, and is useful as a structural building material, etc.
- the object is to provide a new cast material with excellent characteristics.
- the Fe—Mn—Si alloy casting material of the present invention is characterized by the following.
- Mn and Si are contained as essential additive elements, and one or more of Cr, Ni, Al, and C are contained as optional additive elements.
- the component composition is 25% by mass ⁇ Mn ⁇ 35% by mass, 2% by mass ⁇ Si ⁇ 6% by mass, 0% by mass ⁇ Cr ⁇ 8% by mass, 0% by mass ⁇ Al ⁇ 3% by mass, 0% by mass ⁇ C ⁇ 0.2% by mass, The balance is Fe and inevitable impurities.
- the component composition is: 10% by mass ⁇ Mn ⁇ 20% by mass, 2% by mass ⁇ Si ⁇ 6% by mass, 5% by mass ⁇ Cr ⁇ 15% by mass, 5 mass% ⁇ Ni ⁇ 10 mass, 0% by mass ⁇ C ⁇ 0.2% by mass, The balance is Fe and inevitable impurities.
- the component composition is: 5% by mass ⁇ Mn ⁇ 8% by mass, 2% by mass ⁇ Si ⁇ 6% by mass, 9% by mass ⁇ Cr ⁇ 15% by mass, 9% by mass ⁇ Ni ⁇ 15% by mass, 0% by mass ⁇ C ⁇ 0.4% by mass, The balance is Fe and inevitable impurities.
- a vibration damping device using the above-mentioned Fe—Mn—Si based alloy cast material is provided.
- a steel structure or a reinforced concrete structure using the above-described Fe—Mn—Si alloy cast material is provided.
- a cast material for a vibration damping device using the above-described Fe—Mn—Si based alloy cast material is provided.
- a cast product with very excellent fatigue characteristics is provided. That is, in the present invention, as specifically shown in the examples described later, a cast material is realized that has fatigue resistance comparable to or surpassing that of general steel (three times or more). This is a performance that far surpasses the conventional ultra-low yield point steel as a damping material.
- the Fe—Mn—Si based alloy cast material of the present invention has a very small influence on various performance deteriorations (stability, deformation performance, fatigue durability, etc.) even if it contains defects of a size that is normally conceivable. Use strength effectively.
- the Fe—Mn—Si based alloy cast material of the present invention can be used in an elastoplastic region beyond the conventional concept, including columns, beams, cast steel nodes, etc. that are subject to large deformation during a large earthquake, Even the damping member can expand the application object.
- (c) ⁇ phase 001 pole diagram Deformation structure after low cycle fatigue rupture of Fe-15Mn-10Cr-8Ni-4Si alloy casting.
- A Phase distribution diagram (white: ⁇ phase, gray: ⁇ phase), (b) ⁇ phase reverse pole orientation diagram, (c) ⁇ phase reverse pole orientation diagram, (d) ⁇ phase 001 pole diagram, (e) ⁇ -phase 0001 pole figure Formation of shrinkage cavities in deformed structure after low cycle fatigue fracture of Fe-15Mn-10Cr-8Ni-4Si alloy casting.
- A Wide-area phase distribution map, (b) Phase distribution map around shrinkage nest (white: ⁇ phase, gray: ⁇ phase) Element concentration distribution around shrinkage cavities in an Fe-15Mn-10Cr-8Ni-4Si alloy casting.
- the present invention as described above, attention was paid to the unique deformation behavior of the Fe—Mn—Si based alloy in order to develop a cast material excellent in low cycle fatigue life. And the weak point of cast material against metal fatigue is casting defects such as voids and inclusions, etc. If these casting defects do not generate fatigue cracks, reversible ⁇ austenite phase and ⁇ martensite phase The present invention has been completed from the viewpoint that a low cycle fatigue life is expected to be improved even in a cast material if a fatigue resistance mechanism due to martensitic transformation during operation can be activated.
- the Fe—Mn—Si alloy cast material contains Fe as a main component and Mn and Si as essential additive elements as a component composition, and the metal structure after casting is 85% by volume. It has the above ⁇ -austenite phase, and the ⁇ -austenite phase has dendrite-like component concentration segregation, and unavoidable voids and inclusions are dispersed and formed in the micro final solidification zone between the dendrite-like component concentration segregation
- the resulting Fe-Mn-Si alloy cast material has a deformation structure change when repeatedly subjected to tensile compression deformation, and the reversible ⁇ austenite phase and ⁇ martensite phase of the dendritic component concentration segregation part Fatigue from voids and inclusions, which are caused by martensitic transformation during the process and dispersed and formed in the micro solidification zone between the dendritic component concentration segregation Crack Initiation is suppressed, and wherein the amplitude of
- Low cycle fatigue life is affected not only by the material and strain amplitude, but also by various conditions such as sample shape, surface condition, defects, and deformation control accuracy. The value is often lower than the original performance, and the statistical variation is large.
- the low cycle fatigue life of commercially available steel materials with an amplitude of ⁇ 1% reported in various literatures is at most 2000 cycles, regardless of the type of material, even when experimental conditions are considered very carefully.
- Non-Patent Document 3 Since cast materials containing casting defects usually exhibit a much lower cycle fatigue life than this, in the present invention, 3000 cycles obtained by multiplying 2000 cycles by a safety factor of 1.5 are significantly greater than conventional materials. The standard for excellent low cycle fatigue life.
- the fatigue resistance mechanism is activated by the martensitic transformation between the ⁇ austenite phase and the ⁇ martensite phase. That is, due to the martensitic transformation between the reversible ⁇ austenite phase and the ⁇ martensite phase on the slip surface of the ⁇ phase inclined with respect to the tensile / compression deformation axis in the dendritic segregation part solidified in advance.
- the fatigue resistance mechanism is activated to create a state in which the ⁇ phase of the micro solidification zone between dendritic segregations is not deformed. Thereby, crack generation is suppressed from voids and inclusions contained in the micro final solidified portion.
- the plastic deformation mechanism in ⁇ -austenitic alloys is not limited to the slip movement of lattice dislocations, which is a general plastic deformation mechanism of metals, but to slip of extended dislocations in which the lattice dislocations are decomposed into two partial dislocations and a stacking fault between them. It takes various forms such as motion, ⁇ twin deformation, ⁇ martensite transformation, ⁇ ′ martensite transformation, and usually multiple plastic deformation mechanisms are manifested simultaneously.
- the structural change due to the tensile and compressive plastic deformation is controlled between the ⁇ austenite phase and the ⁇ martensite phase by adjusting the mixing ratio of Mn, Si and other additive elements.
- the bi-directional martensitic transformation that occurs in the process creates a reversibly progressing state that suppresses repeated curing and increases the number of repeated fractures. Then, as shown in the schematic diagram of the structure that improves the low cycle fatigue life of the Fe—Mn—Si alloy cast material of FIG.
- the ⁇ phase generated by the martensitic transformation from the ⁇ phase due to the initial deformation is arranged in parallel with the plate surface inclined to the tension / compression axis, so the crystallographic basal plane of the ⁇ phase (// plate surface)
- the sliding deformation that occurs above and the bi-directional martensitic transformation between the ⁇ phase and the ⁇ phase occur reversibly with respect to tensile and compression deformation, and are not affected by voids or inclusions at all. ⁇ Progress can be delayed.
- the state before deformation is a single phase of ⁇ -austenite
- the plastic deformation mechanism of the dendritic segregation part proceeds mainly by ⁇ -martensite transformation, and the concentration of components in the micro-final solidification part is ⁇ -martensite transformation. It is desirable to occur on the suppression side.
- some of twin deformation, lattice dislocation slip, and extended dislocation slip that are unavoidably simultaneously accompanied by ⁇ martensite transformation of the dendritic segregation part may be included, but ⁇ ′ martensite transformation is an alloy. Generation must be suppressed because it hardens.
- the state before deformation is preferably a ⁇ -austenite single phase, but may contain an ⁇ -martensite phase, a ⁇ -ferrite phase, and an ⁇ ′-martensite phase as long as the amount is small.
- An alloy adjusted to a state in which ⁇ martensite transformation is likely to be induced by deformation may cause an ⁇ martensite phase to be formed unintentionally due to environmental temperature changes or processing effects.
- ⁇ -martensite phase ⁇ -ferrite phase
- ⁇ ′-martensite phase are against the growth of deformation-induced ⁇ -martensite phase that occurs on specific crystal planes tilted with respect to the tension / compression axis. Since it becomes a barrier and can become a fatigue crack generation source, in order to prevent this, the volume ratio of the main phase ⁇ austenite is set to 85 volume% or more.
- the ingot after casting is forged or rolled, or the crystal phase is changed by heat treatment. Not included in its significance.
- crystal structure and the change in the cast material of the present invention can be confirmed by a normal refracting means such as a scanning electron microscope and a backscattered electron diffraction method.
- Fe—Mn—Si alloy refers to an alloy containing iron (Fe) as a main component and containing manganese (Mn) and silicon (Si).
- Manganese (Mn) is an essential element that has a central influence on the plastic deformation mechanism of Fe-Mn-Si alloys. Mn stabilizes the ⁇ austenite phase in the iron-based alloy and lowers the stacking fault energy to create a state in which martensitic transformation from the ⁇ austenite phase to the ⁇ martensite phase is likely to occur.
- the amount of Mn added is in the range of 5% by mass ⁇ Mn ⁇ 35% by mass.
- Mn substitute elements Cr, Ni, and Al may be added as Mn substitute elements, and the effect of Mn, Cr, Ni, and Al on the plastic deformation mechanism is the same as that of Mn, which gives an equivalent effect. It can be represented by mass% (Mn equivalent: [% Mn] eq).
- Mn equivalent [% Mn] eq)
- the relational expression is further corrected in consideration of the effects of the component elements Si and C, and the Mn equivalent is expressed by the following formula (1) using the addition amount (% by mass) of each component element.
- Mn equivalent ([% Mn] eq) [% Mn] +0.3 [% Si] +0.7 [% Cr] +2.4 [% Ni] +5.2 [% Al] +28 [% C] (1)
- [% Mn], [% Si], [% Al], [% Cr], [% Ni], and [% C] are used as chemical components of the Fe—Mn—Si alloy casting material. It means the mass% of Mn, Si, Al, Cr, Ni, C.
- the range of the Mn equivalent for expressing the bi-directional martensitic transformation between the ⁇ austenite phase and the ⁇ martensite phase is set to the condition expressed by the following formula (2). 37 ⁇ [% Mn] eq ⁇ 45 (2)
- the thermodynamic stability of the ⁇ martensite phase becomes very high, so that the ⁇ phase between dendritic segregations also undergoes ⁇ martensite transformation, and fatigue from voids and inclusions occurs. The probability of cracking increases and the low cycle fatigue life decreases.
- the Mn equivalent is 45 or more, the stacking fault energy is increased and ⁇ martensite is not formed in the dendritic segregation portion, the fatigue resistance mechanism is not activated, and the low cycle fatigue life is reduced.
- This action of Si is effective even in a cast material, but when Si is added excessively, the number of repeated fractures of the cast material decreases.
- Si is added in excess of 6.5% by mass, the alloy is significantly hardened, the stress amplitude of repeated tensile and compressive deformation is increased, or a silicide-based intermetallic compound is formed and the alloy becomes brittle.
- the amount of Si added is less than 1.5% by mass, dislocations cross and rearrange in a cell shape, and the crack initiation propagation is accelerated. From the above, in the present invention, the amount of Si added is 1.5 mass% ⁇ Si ⁇ 6.5 mass%, more preferably 2 mass% ⁇ Si ⁇ 6 mass%. In particular, when the added amount of Si is around 4% by mass, the effect of Si is most effectively exhibited.
- Fe—Mn—Si based alloy of the present invention Cr, Ni, Al and C may be added as optional component elements.
- Nickel (Ni) is an element that substitutes for the austenite stabilizing action of Mn.
- Mn addition amount of Mn
- a ⁇ -austenite single phase can be obtained as a state before deformation by adding 2% by mass or more of Ni as an austenite stabilizing element.
- the addition amount of Ni exceeds 15% by mass, formation of FeNi silicide and NiMn silicide becomes remarkable, and the alloy becomes brittle.
- the amount of Ni added is in the range of 0% by mass ⁇ Ni ⁇ 15% by mass.
- Aluminum (Al) is an element that affects the Mn equivalent with a coefficient of 5.2, as shown in the above formula (1), and therefore may be added as an alternative element for Mn. However, if the added amount of Al exceeds 3% by mass, a low cycle life is likely to be reduced due to ferrite formation. Further, when heat-treated in the atmosphere, Al having high affinity with nitrogen may form a nitride and embrittle the alloy. As described above, Al is effective for adjusting the Mn equivalent even in a small amount, but has an adverse effect when excessively added, and therefore, in the present invention, the amount of Al added is 0 mass% ⁇ Al ⁇ 3 mass%. Range.
- Carbon (C) is an element that substitutes for the austenite stabilizing action of Mn, but when the amount of C exceeds 0.4 mass%, carbide is formed and the low cycle fatigue life is reduced. From the above, in the present invention, the amount of C added is in the range of 0% by mass ⁇ C ⁇ 0.4% by mass.
- the added amounts of Mn and Si as essential component elements and Cr, Ni, Al, and C as optional component elements are stabilized so that the metal structure before deformation becomes a ⁇ -austenite single phase. It is important to adjust the balance between the total amount of elements Ni, C, and Mn and the total amount of Cr, Si, and Al that are ferrite stabilizing elements.
- both the ferrite stabilizing element concentration and the austenite stabilizing element concentration are low, the ⁇ ′ martensite phase is easily formed. Become.
- [% Ni], [% C], [% Mn], [% Cr], [% Si], and [% Al] in the formula are used as chemical components of the Fe—Mn—Si alloy casting material. It means mass% of Ni, C, Mn, Cr, Si, Al.
- the composition 1 satisfies the conditions of the formulas (1) and (2), and is determined by considering the influence of each component element on the cast structure and the repeatedly deformed structure as described above. This is a preferred embodiment of the composition of the Fe—Mn—Si based alloy.
- Composition 2 is most effective in improving the low cycle fatigue life by setting the amount of Mn to be 25% by mass ⁇ Mn ⁇ 35% by mass and the amount of Si being 2% by mass ⁇ Si ⁇ 6% by mass. This is a range of components that are effectively exhibited.
- the addition amount of other component elements for satisfying the conditions of the formulas (1) and (2) is 0 mass% ⁇ Cr ⁇ 8 mass%, 0 mass% ⁇ Al ⁇ 3 mass%, 0 mass. % ⁇ C ⁇ 0.2 mass%.
- Composition 3 is a component for facilitating dissolution in an electric furnace by considering mass production from a more practical point of view and making the addition amount of Mn relatively low to 10 mass% ⁇ Mn ⁇ 20 mass%. It is a range. The range of the addition amount of other component elements is determined by the conditions of the formulas (1) and (2).
- Composition 4 is a component range for obtaining an effect of improving corrosion resistance by further reducing the amount of Mn added while increasing the amount of Cr and Ni added.
- the range of the addition amount of other component elements is determined by the conditions of the formulas (1) and (2).
- the casting may be performed by melting the metal component of the raw material.
- the Fe—Mn—Si alloy cast material of the present invention is excellent in fatigue characteristics, it can be applied as a cast member that can be used not only in the conventional elastic region but also in the plastic region.
- the Fe—Mn—Si alloy cast material of the present invention is particularly suitable for use as a cast material for a vibration damping device.
- the vibration damping device, the steel structure and the reinforced concrete structure using the Fe—Mn—Si alloy cast material of the present invention exhibit significantly lower low cycle fatigue life than the conventional material.
- Fe-15Mn-10Cr-8Ni-4Si alloy an alloy having an inevitable impurity composition (hereinafter referred to as Fe-15Mn-10Cr-8Ni-4Si alloy). ) was prepared by high-frequency vacuum induction melting.
- a low cycle fatigue test piece with a parallel part diameter of 8 mm was prepared by lathe processing so that the deformation axis was perpendicular to the columnar crystals developed during casting, Medium, 0.4% / second triangular wave, amplitude ⁇ 1% tensile compression strain controlled low cycle fatigue test was conducted, and the structure was observed before and after the fatigue test using a scanning electron microscope-backscattered electron diffraction method. Moreover, the phase was identified by X-ray diffraction, and the volume fraction of the constituent phases was evaluated by Rietveld analysis.
- FIG. 2 shows the structure of the Fe-15Mn-10Cr-8Ni-4Si alloy cast material before the low cycle fatigue test (as cast) analyzed by backscattered electron diffraction.
- FIG. 2A is a phase distribution diagram, in which the ⁇ phase is white, the ⁇ phase is gray, and the ⁇ ′ phase is dark gray and the distribution state is represented.
- the white ⁇ -austenite phase is dominant and the slightly gray ⁇ -martensite phase is scattered, but its volume fraction is less than 3%.
- the ⁇ phase is developed in a columnar shape in the vertical direction.
- FIG. 2B is a ⁇ -phase reverse pole orientation diagram, and as shown by the direction of the cubic model in the figure, the columnar crystals develop along the 001 orientation of the ⁇ -phase. This is a common feature found in the cast structure of FCC (face centered cubic lattice structure) metal.
- FIG. 2C is a ⁇ -phase 001 pole figure, and it is confirmed that the 001 orientation is parallel to the columnar crystal growth direction.
- FIG. 3 shows the deformation structure of the Fe-15Mn-10Cr-8Ni-4Si alloy cast material after low cycle fatigue fracture. From the phase distribution diagram of FIG. 3A, it can be seen that the ⁇ phase (gray) is formed inside the ⁇ phase (white) during repeated tensile and compressive deformation. The residual ⁇ phase is a columnar crystal (FIGS. 3B and 3D) grown along the 001 orientation, and the dendritic ⁇ phase (FIG. 3C) formed therein also has a specific 0001 base surface. It can be seen from the pole figure (FIG. 3 (e)) that it is distributed in the azimuth range. According to Non-Patent Document 2, once the ⁇ phase is formed, it repeatedly disappears by reverse transformation if the deformation direction is reversed. Ascend slowly.
- FIG. 4 (a) shows solidification shrinkage called shrinkage as a distribution state (wide area phase distribution diagram) in the structure after a low cycle fatigue fracture of a cast alloy of Fe-15Mn-10Cr-8Ni-4Si.
- FIG. 4B is an enlarged view around the shrinkage nest. The space around the void is a residual ⁇ phase, and the presence of the void is hardly seen in the portion where the ⁇ phase is generated. It can also be seen that the dendritic ⁇ phase is formed by stacking thin plate ⁇ phases.
- FIG. 5 shows the result of analysis of the component element concentration distribution around the shrinkage nest of FIG. 4B by energy dispersive X-ray analysis.
- FIGS. 5A to 5F show that a region where Fe and Cr are concentrated and a region where Mn, Ni and Si are concentrated are caused by solidification segregation.
- FIG. 6 is a diagram showing the liquid phase concentration tendency of each component element in the Fe-15Mn-10Cr-8Ni-4Si alloy, calculated using the thermodynamic calculation software Pandat.
- the Lever rule in FIG. 6A is a model that assumes sufficient elemental diffusion to achieve a thermodynamic equilibrium state
- the Scheil rule in FIG. 6B is a model that assumes that the liquid phase concentration is uniform and there is no diffusion. is there.
- the Fe and Cr enriched region is the arm tip of the dendrite-like region solidified in advance, and Mn, Ni and Si enriched. It can be seen that the region is the final solidified part.
- the ⁇ martensite phase is formed only in the Fe and Cr enriched regions, and the Mn, Ni, and Si enriched regions remain in the ⁇ austenite phase without undergoing ⁇ transformation due to deformation. I understand.
- FIG. 1 it is considered that a mechanism has been realized in which voids that are likely to be the origin of crack initiation are preserved undeformed under repeated deformation.
- Table 1 shows Fe—Mn—Si alloy ingot specimens of each component composition prepared by the same method, with a triangular wave of 0.4% / second, tensile strength of ⁇ 1% in air at room temperature. The low cycle fatigue life measured by compressive strain control is shown.
- the cast materials of Examples 1 to 11 have a common feature that a ⁇ -austenite phase having a volume ratio of 85% or more is shown before deformation, and the volume ratio of the ⁇ -martensite phase is increased after fatigue fracture, and The low cycle fatigue life exceeds 3000 cycles. This indicates that the martensitic transformation between the reversible ⁇ austenite phase and the ⁇ martensite phase is effective in improving the low cycle fatigue life.
- the cast materials of Comparative Examples 1 to 8 have a martensite between a reversible ⁇ austenite phase and an ⁇ martensite phase because plastic deformation is caused by slip deformation of ⁇ phase or ⁇ ′ martensite transformation.
- the low cycle fatigue life is less than 3000 cycles.
- the Fe—Mn—Si alloy casting material of the present invention which has excellent fatigue characteristics, as a cast member that can be used not only in the elastic region but also in the plastic region, structural members for structural and civil engineering structures, vibration damping
- the effects of casting materials such as dampers, machine parts, and various fasteners are expected to dramatically expand industrially.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Abstract
本発明は、構造用建築材等として有用な、低サイクル疲労特性に優れた新しいFe-Mn-Si系合金鋳造材を提供する。本発明の一実施形態に係るFe-Mn-Si系合金鋳造材は、MnおよびSiを必須成分元素として含有し、かつ、Cr、Ni、Al、Cのうちの1種以上を任意成分元素として含有し、成分組成が、5質量%≦Mn≦35質量%、1.5質量%≦Si≦6.5質量%、0質量%≦Cr≦15質量%、0質量%≦Ni≦15質量%、0質量%≦Al≦3質量%、0質量%≦C≦0.4質量%、残部Fe及び不可避不純物であるFe-Mn-Si系合金鋳造材であって、式(ア):37<[%Mn]+0.3[%Si]+0.7[%Cr]+2.4[%Ni]+5.2[%Al]+28[%C]<45、かつ、式(イ):[%Ni]+30[%C]+0.5[%Mn]>0.75[%Cr]+1.125[%Si]+2[%Al]の条件を満足することを特徴とする。
Description
本発明は、低サイクル疲労寿命に優れるFe-Mn-Si系合金鋳造材に関する。
鋳造は古代からある金属の加工方法であり、金属を融点より高い温度で熱して液体にした後、型に流し込み、冷やして目的の形状に固めることで、様々な形状に加工することができる。現代でも、鋳造は多くの輸送機器部品や機械工作の躯体部品など少量生産品から大量生産部品などの製造に幅広く用いられている。また鋳造は塑性加工や切削加工では製造が難しい硬い材料、脆性的な材料、複雑な形状の製品の製造に利用されている。
ただ、鋳造により製造された鋳造材は固液の体積差に起因する凝固収縮や成分元素の再分配により、空隙、偏析、介在物などの鋳造欠陥を含む場合がある。これら鋳造欠陥は通常鋳造材の機械的特性を著しく低下させるため、従来より、凝固を制御して欠陥のない製品を生み出すようにしている。それでも一部の構造用金属材料の重要部品などの場合には、均一化熱処理や、均一化を促進させる鍛造・圧延等の塑性加工を施して、鋳造欠陥を取り除き、材質を均一化してから用いられる。耐食性や、耐摩耗性などの特殊な用途に用いる機械部品などは一般に機械加工性が悪いため鋳造により作製される場合が多いが、このような部品は、鋳造後均一化熱処理を行い、材質を均一化してから用いることもある。
しかしながら、従来より鋳造欠陥の克服について様々な工夫、改善がなされてきているものの、低サイクル疲労変形のように、大きな塑性ひずみを繰り返し負荷する場合には、鋳造欠陥が疲労き裂の発生源となるために、容易に疲労破壊してしまい、均一化処理した金属材料と比較して鋳造材の低サイクル疲労寿命は著しく短いという課題があった。
このため、鋳造材を強度部材として使用する際には鍛造・圧延等で均質化された材料に比べ安全率を高めに設定し、疲労破壊を防止するために鋳造材に生じる応力を弾性範囲とするなどの配慮が必要であり、例えば、建築部材では大地震時にも弾性範囲で使用する部材にしか使えないなど、強度を十分に生かした効率的な素材の使い方ができないため不経済であった。
このような背景において、近年になって建築用制振ダンパーの心材としてFe-Mn-Si系合金が特許文献1において提案されている。この合金は優れた低サイクル疲労寿命を示すとされている。そして、このFe-Mn-Si系合金は、ある方向への塑性変形による、面心立方(FCC)構造のγオーステナイト相から最密六方(HCP)構造のεマルテンサイト相へのマルテンサイト変態と、これに続く逆方向への塑性変形によるεマルテンサイト相からγオーステナイト相への逆マルテンサイト変態が、交互に、かつ、可逆的に発生する仕組みにより、繰り返し塑性変形による原子配列の変化が可逆的に生じ、金属疲労の原因となる格子欠陥の蓄積が起こりにくいために、従来材より飛躍的に優れた低サイクル疲労寿命を示すとされている。
非特許文献1には、Fe-Mn-Si系合金の低サイクル疲労寿命を改善するための設計指針として、(A)γ相とε相の自由エネルギー差を小さくすること、(B)体心立方構造のα’マルテンサイト相の形成を抑制すること、(C)約4質量%のSiを添加すること、の三条件が開示されている。そして、特許文献1では、(A)の条件を満足させるための成分設計指針として、以下の式(X)で与えられるMn当量([%Mn]eq)を定義して、化学成分としてのMn、Cr、Ni、Alの質量%([%Mn]、[%Cr]、[%Ni]、[%Al])の配合割合が式(Y)を満足すべきであることが開示されている。
[%Mn]eq =[%Mn]+[%Cr]+2[%Ni]+5[%Al] (X)
37<[%Mn]eq<45 (Y)
[%Mn]eq =[%Mn]+[%Cr]+2[%Ni]+5[%Al] (X)
37<[%Mn]eq<45 (Y)
また、特許文献1では、条件(B)を満足させるための成分設計指針として、いわゆるシェフラー状態図の概念を取り入れ、Mn、Cr、Ni、Si、Alの質量%([%Mn]、[%Cr]、[%Ni]、[%Si]、[%Al])の配合割合が、以下の式(Z)を満足すべきであるとしている。
[%Ni]+0.5[%Mn]>0.75[%Cr]+1.125[%Si]+2[%Al] (Z)
[%Ni]+0.5[%Mn]>0.75[%Cr]+1.125[%Si]+2[%Al] (Z)
さらに、特許文献1では、条件(C)の最適Si濃度4質量%を中心に、Fe-Mn-Si系合金が、通常の鋼材よりも有意に高い低サイクル疲労寿命を示す条件が、0質量%<Si<6.5質量%、さらに望ましくは、2質量%≦Si≦6質量%であるとしている。
非特許文献2によれば、以上の設計指針を基に、従来比10倍の低サイクル疲労寿命を有するFe-15Mn-10Cr-8Ni-4Si合金が開発され、超高層ビルのせん断パネル型制振ダンパーとして採用されており、長周期地震動に対する耐久性にも優れた高機能制振ダンパーとして期待されている。このような優れた疲労耐久性は、せん断パネル型制振ダンパーのみならず、様々な部材への活用が期待されるとしている。
しかし、特許文献1、非特許文献1、2で開示されているFe-Mn-Si系合金は、鋳塊を鍛造・圧延して熱処理することにより、板状に成形するとともに、粗大で結晶配向性が高い鋳造組織を均一微細なランダム等軸晶組織にすることで、欠陥の少ない材質としたものであり、特許文献1、非特許文献1、2では、鋳造材の低サイクル疲労特性については開示も示唆もされていない。
Fe-Mn-Si系合金鋳造材としては、Fe-Mn-Si系形状記憶合金の締結部材が特許文献2に開示されている。特許文献2では、目的とする製品部材に近い形状の素部材に鋳造した後、適宜加熱処理を施すことで、熱間加工工程を経ることなく簡略な製造工程で、かつ、従来では簡単には得られなかった装飾的なもしくは複雑な形状の締結部材をも、容易に得ることができる方法が提供されている。また、特許文献3では、遠心鋳造法により製作された鉄系形状記憶合金製パイプ用継手において、横断面内のマクロ組織の中で、柱状晶の面積率を50%以上とすることにより、高い内径収縮率が得られることが開示されている。
だが、特許文献2および3は、鋳型への鋳造、または連続鋳造で製造したFe-Mn-Si系形状記憶合金継手が、形状記憶効果を発現させるために十分な変形能を有することを示唆しているが、低サイクル疲労変形に対する耐久性については開示も示唆もされていない。
構造用材料として広く用いられている類似の鋳造材としては、高Mn耐摩耗鋳鋼や高Mn非磁性鋳鋼が挙げられる。高Mn耐摩耗鋳鋼は、耐摩耗性や強度に優れ、レールポイントなどに使用されている。強度や加工硬化率が高く、塑性加工による成形が難しいため、鋳造により作製される。特許文献4には、高Mn耐摩耗鋳鋼中のオーステナイト相がき裂進展に対する高い耐久性を示すことも開示されている。また、特許文献5には、高C高Mn非磁性鋼の連続鋳造法が開示されている。
特許文献4および5は、高Mn鋳鋼の力学特性が優れていることと、その大量生産技術が十分確立していることを示すものであり、疲労耐久性の高さについても示唆するものであるが、Fe-Mn-Si系厚板で得られた従来比10倍もの低サイクル疲労寿命が得られるかどうかについては開示も示唆もされていない。
特許文献6では、Siを4.7~5.7質量%、Crを0.8~2.2質量%、Mnを2.0~5.5質量%、Niを11~14質量%、Cuを0.8~1.8質量%含むオーステナイト系鋳物が開示されている。ただ、特許文献6の鋳物はCを2.1~3.1質量%を含むため、鋳鉄に相当し、Cが2.1質量%よりも少ない鋳鋼の分類とは全く異なる材料である。また、同文献には疲労耐久性についての言及はない。
特許文献7には、Si1.0質量%以下、Mn10~20質量%、Cr15.0~20.0質量%、Ni2.5~6.0質量%を含む高Mn非磁性鋳造体が開示されている。だが、特許文献7での鋳造体はCの含有量から鋳鋼に分類されるもののSi含有量が低く、同文献には疲労耐久性については示唆されていない。
特許文献8には、Si0.2~1.5質量%、Mn10~24質量%、Cr12~20質量%、Ni4質量%未満を含有する高温耐摩耗材が開示されている。この高温耐摩耗材は、C含有量0.2~0.5質量%であるため鋳鋼に分類される材料であるが、特許文献8には耐摩耗性、耐割れ性に優れることに言及されているものの、低サイクル疲労寿命に関する記載はない。
T. Sawaguchi, I. Nikulin, K. Ogawa, K. Sekido, S. Takamori, T. Maruyama, Y. Chiba, A. Kushibe, Y. Inoue, K. Tsuzaki, Designing Fe-Mn-Si alloys with improved low-cycle fatigue lives, Scripta Mater., 99 (2015) 49-52.
T. Sawaguchi, T. Maruyama, H. Otsuka, A. Kushibe, Y. Inoue, K. Tsuzaki, Design Concept and Applications of Fe-Mn-Si-Based Alloys --from Shape Memory to Seismic Response Control, Mater. Trans., 57 (2016) 283-293.
幡中憲治、金属材料の繰り返し応力-ひずみ特性と低サイクル疲労寿命、日本機械学会論文集(A編)、50、(1984)、831.
鋳造材は、これまで建築・土木構造物において汎用されてきた。その理由は、複雑な形状のものや大型のものなどを、容易に安価に作ることができること、溶接を多用することなく幾何学的に複雑な変断面形状部材(板厚、板幅可変)の製造が可能(柱、ジョイント、ノードなど)で、工数が減り(組立精度向上)、低コスト化にもつながること、鋳造を採用すれば(例えば、ダイカストなど)、殆ど後加工無しに使用できること、および組立精度が向上して鋳型の寿命がある限り大量生産が可能であることなど大きな利点があったなどの理由による。さらに、鋳造材を柱等に利用する場合、複雑な梁との接合部の配置が可能で建築的に多様な平面プランを実現できるなど、実用上のメリットも大きいため適材適所で活用されてきた。
しかしながら、鋳造材は、偏析、空隙、介在物などの鋳造欠陥を含むために同一組成の圧延材等に比べ、疲労特性が明確に劣り、例えば、建築部材では大地震時にも弾性範囲で使用する部材にしか使えないなど、使用範囲は限定されていた。
このような背景から、本発明は、従来技術の問題点を解消し、前記のFe-Mn-Si系合金の特異な変形挙動に注目して、構造用建築材等として有用な、低サイクル疲労特性に優れた新しい鋳造材を提供することを課題としている。
すなわち、本発明のFe-Mn-Si系合金鋳造材は、以下のことを特徴としている。
本発明の一局面では、MnおよびSiを必須添加元素として含有し、かつ、Cr、Ni、Al、Cのうちの1種以上を任意添加元素として含有し、成分組成が、
5質量%≦Mn≦35質量%、
1.5質量%≦Si≦6.5質量%、
0質量%≦Cr≦15質量%、
0質量%≦Ni≦15質量%、
0質量%≦Al≦3質量%、
0質量%≦C≦0.4質量%、
残部Fe及び不可避不純物であるFe-Mn-Si系合金鋳造材であって、次式(ア)
37<[%Mn]+0.3[%Si]+0.7[%Cr]+2.4[%Ni]+5.2[%Al]+28[%C]<45 (ア)
かつ、次式(イ)
[%Ni]+30[%C]+0.5[%Mn]>0.75[%Cr]+1.125[%Si]+2[%Al] (イ)
(式中[%Mn]、[%Si]、[%Cr]、[%Ni]、[%Al]、[%C]は、Mn、Si、Cr、Ni、Al、Cの質量%を意味する)
の条件を満足することを特徴とする。
5質量%≦Mn≦35質量%、
1.5質量%≦Si≦6.5質量%、
0質量%≦Cr≦15質量%、
0質量%≦Ni≦15質量%、
0質量%≦Al≦3質量%、
0質量%≦C≦0.4質量%、
残部Fe及び不可避不純物であるFe-Mn-Si系合金鋳造材であって、次式(ア)
37<[%Mn]+0.3[%Si]+0.7[%Cr]+2.4[%Ni]+5.2[%Al]+28[%C]<45 (ア)
かつ、次式(イ)
[%Ni]+30[%C]+0.5[%Mn]>0.75[%Cr]+1.125[%Si]+2[%Al] (イ)
(式中[%Mn]、[%Si]、[%Cr]、[%Ni]、[%Al]、[%C]は、Mn、Si、Cr、Ni、Al、Cの質量%を意味する)
の条件を満足することを特徴とする。
本発明の別の局面では、上記のFe-Mn-Si系合金鋳造材において、成分組成が、
25質量%≦Mn≦35質量%、
2質量%≦Si≦6質量%、
0質量%≦Cr≦8質量%、
0質量%≦Al≦3質量%、
0質量%≦C≦0.2質量%、
残部Fe及び不可避不純物であることを特徴とする。
25質量%≦Mn≦35質量%、
2質量%≦Si≦6質量%、
0質量%≦Cr≦8質量%、
0質量%≦Al≦3質量%、
0質量%≦C≦0.2質量%、
残部Fe及び不可避不純物であることを特徴とする。
また、本発明の別の局面では、上記のFe-Mn-Si系合金鋳造材において、成分組成が、
10質量%≦Mn≦20質量%、
2質量%≦Si≦6質量%、
5質量%≦Cr≦15質量%、
5質量%≦Ni≦10質量、
0質量%≦C≦0.2質量%、
残部Fe及び不可避不純物であることを特徴とする。
10質量%≦Mn≦20質量%、
2質量%≦Si≦6質量%、
5質量%≦Cr≦15質量%、
5質量%≦Ni≦10質量、
0質量%≦C≦0.2質量%、
残部Fe及び不可避不純物であることを特徴とする。
また、本発明の別の局面では、上記のFe-Mn-Si系合金鋳造材において、成分組成が、
5質量%≦Mn≦8質量%、
2質量%≦Si≦6質量%、
9質量%≦Cr≦15質量%、
9質量%≦Ni≦15質量%、
0質量%≦C≦0.4質量%、
残部Fe及び不可避不純物であることを特徴とする。
5質量%≦Mn≦8質量%、
2質量%≦Si≦6質量%、
9質量%≦Cr≦15質量%、
9質量%≦Ni≦15質量%、
0質量%≦C≦0.4質量%、
残部Fe及び不可避不純物であることを特徴とする。
また、本発明の別の局面では、上記のFe-Mn-Si系合金鋳造材を用いた制振装置が提供される。
また、本発明の別の局面では、上記のFe-Mn-Si系合金鋳造材を用いた鉄骨構造物または鉄筋コンクリート構造物が提供される。
また、本発明の別の局面では、上記のFe-Mn-Si系合金鋳造材を用いた制振装置用鋳造材が提供される。
また、本発明の別の局面では、上記のFe-Mn-Si系合金鋳造材の制振装置、鉄骨構造物または鉄筋コンクリート構造物への使用が提供される。
本発明によれば、疲労特性に非常に優れた鋳造品が提供される。すなわち、本発明では、後述する実施例において具体的に示されるように、一般鋼材に匹敵あるいは凌駕する(3倍以上)耐疲労性能が得られる鋳造材を実現している。これは、制振材料としても従来の極低降伏点鋼をはるかに凌ぐほどの性能である。本発明のFe-Mn-Si系合金鋳造材は、通常考えられるサイズの欠陥を内包していても、各種性能劣化(安定性、変形性能、疲労耐久性等)に対する影響が極めて少ないため、素材強度を有効に使える。
したがって、本発明のFe-Mn-Si系合金鋳造材は、従来の概念を超えて弾塑性領域で使用可能であり、大地震時に大変形を受けるような柱、梁、鋳鋼ノード等をはじめ、制振部材でさえも適用の対象を広げることができる。
本発明では、前記のとおり、低サイクル疲労寿命に優れる鋳造材を開発するために、Fe-Mn-Si系合金の特異な変形挙動に着目した。そして、鋳造材の金属疲労に対する弱点は、空隙や介在物などの鋳造欠陥であるが、もし、これら鋳造欠陥から疲労き裂を発生させることなく、可逆的なγオーステナイト相とεマルテンサイト相との間のマルテンサイト変態による、耐疲労メカニズムを作動させることができれば、鋳造材でも低サイクル疲労寿命の改善が期待されるとの観点から検討を行い、本発明を完成した。
すなわち、本発明の一実施形態では、Fe-Mn-Si系合金鋳造材は、成分組成としてFeを主成分としMnおよびSiを必須添加元素として含有し、鋳造後の金属組織が、85体積%以上のγオーステナイト相を有し、かつ、γオーステナイト相がデンドライト状の成分濃度偏析を有するとともに、不可避的な空隙や介在物が前記デンドライト状の成分濃度偏析間のミクロ最終凝固部に分散・形成されてなるFe-Mn-Si系合金鋳造材であって、繰り返し引張圧縮変形したときの変形組織変化が、前記デンドライト状の成分濃度偏析部の可逆的なγオーステナイト相とεマルテンサイト相との間のマルテンサイト変態で起こり、前記デンドライト状の成分濃度偏析間のミクロ最終凝固部に分散・形成された、空隙や介在物からの疲労き裂発生が抑制されて、振幅±1%の低サイクル疲労寿命が3000サイクル以上であることを特徴とする。
低サイクル疲労寿命は、材質やひずみ振幅のみならず、サンプル形状、表面状態、欠陥、変形制御の精度など、様々な条件に影響されるため、実験者が制御可能な条件外の原因によって、材料本来の性能よりも低い値となることが多く、統計的ばらつきも大きい。しかるに、各種文献で報告されている、市販鋼材の振幅±1%の低サイクル疲労寿命は、極めて慎重に実験条件が配慮された場合であっても、材料種によらず、たかだか2000サイクルである(非特許文献3)。鋳造欠陥を含む鋳造材はこれよりはるかに低い低サイクル疲労寿命を示すのが通常であるので、本発明では、2000サイクルに安全率1.5を乗じた3000サイクルを、従来材よりも有意に優れた低サイクル疲労寿命の基準とする。
本発明では、Fe-Mn-Si系合金鋳造材において、凝固時の液相への成分濃縮による偏析を積極的に利用することにより、鋳造欠陥から疲労き裂を発生させることなく、可逆的なγオーステナイト相とεマルテンサイト相との間のマルテンサイト変態による、耐疲労メカニズムを作動させるようにしている。すなわち、先行して凝固したデンドライト状偏析部中、引張・圧縮変形軸に対して傾斜したγ相のすべり面上で、可逆的なγオーステナイト相とεマルテンサイト相との間のマルテンサイト変態による、耐疲労メカニズムを作動させ、デンドライト状偏析間のミクロ最終凝固部のγ相が変形を受けないような状態を作り出す。これにより、ミクロ最終凝固部に含まれる空隙や介在物からき裂発生を抑制する。
γオーステナイト合金における塑性変形機構は、一般的な金属の塑性変形機構である格子転位のすべり運動のほかに、格子転位が二つの部分転位とその間の積層欠陥に分解して運動する拡張転位のすべり運動、γ双晶変形、εマルテンサイト変態、α’マルテンサイト変態などの多様な形態をとり、通常複数の塑性変形機構が同時に発現する。
本発明のFe-Mn-Si系合金鋳造材では、Mn、Si、その他の添加元素の配合割合を調整することにより、引張圧縮塑性変形による構造変化が、γオーステナイト相とεマルテンサイト相の間で生じる二方向マルテンサイト変態によって、可逆的に進行する状態を作り出し、繰り返し硬化の抑制と破断繰り返し数の増加をはかる。そして、図1のFe-Mn-Si系合金鋳造材の低サイクル疲労寿命を向上させる組織の模式図に示すように、そのような可逆的な塑性変形が、デンドライト状偏析部でのみ進行し、凝固収縮の結果形成される空隙や、成分濃縮の結果形成される介在物が多数存在する、デンドライト状偏析間のミクロ最終凝固部は、この変形に寄与せずにγ相として残留する状況を作り出すことで、空隙や介在物からのき裂の発生を抑制する。初期の変形によりγ相からマルテンサイト変態によって生じたε相は、板面が引張・圧縮軸に傾いた状態で平行に配列するので、ε相の結晶学的な基底面(//板面)上で生じるすべり変形や、γ相とε相の間の二方向マルテンサイト変態は、引張・圧縮変形に対して可逆的に生じ、空隙や介在物の影響を全く受けずに、き裂の発生・進展を遅延させることができる。
そのためには、変形前の状態がγオーステナイト単相で、デンドライト状偏析部の塑性変形機構は主としてεマルテンサイト変態によって進行すること、および、ミクロ最終凝固部への成分濃縮はεマルテンサイト変態を抑制する側に生じることが望ましい。その際、デンドライト状偏析部のεマルテンサイト変態に伴い、不可避的に同時発生する双晶変形、格子転位すべり、拡張転位すべりは一部含まれていてもよいが、α’マルテンサイト変態は合金を著しく硬化させるので発生を抑制しなければならない。
変形前の状態はγオーステナイト単相が望ましいが、少量であればεマルテンサイト相、δフェライト相、α’マルテンサイト相が含まれてもよい。変形によりεマルテンサイト変態が誘起されやすい状態に調整された合金は、環境の温度変化や加工の影響等により、意図せずにεマルテンサイト相が形成される場合がある。
これら意図せずに形成されたεマルテンサイト相、δフェライト相、α’マルテンサイト相は、引張・圧縮軸に対して傾斜した特定の結晶面上に生じる、変形誘起εマルテンサイト相の成長に対する障壁となり、疲労き裂発生源となり得るので、これを防ぐため、主相γオーステナイトの体積率は85体積%以上とする。
また、鋳造材には、空隙や介在物などの鋳造欠陥のほか、多元系では意図せずに形成された析出物が疲労き裂発生の起点となることも懸念される。しかし、そのような析出物も、ミクロ最終凝固部への成分濃縮の結果形成したものであれば、空隙や介在物と同様に、周辺のγ相は変形をあまり受けないため、き裂発生源となる心配はない。
なお、本発明における上記の「鋳造材」の用語においては、本発明の特徴として当然のことであるが、鋳造後の鋳塊を鍛造や圧延したものや熱処理により結晶相を変化させたものをその意義に含まない。
また、本発明の鋳造材における結晶組織やその変化については、走査型電子顕微鏡並びに後方散乱電子回折法等の通常の解折手段によって確認される。
以下、本発明のFe-Mn-Si系合金鋳造材を構成する成分元素について説明する。なお、本発明において、「Fe-Mn-Si系合金」との用語は、鉄(Fe)を主成分として、マンガン(Mn)およびケイ素(Si)を含有させた合金を指すものとする。
マンガン(Mn)は、Fe-Mn-Si系合金の塑性変形機構に中心的な影響をおよぼす必須成分元素である。Mnは鉄基合金においてγオーステナイト相を安定化させるとともに、積層欠陥エネルギーを低下させてγオーステナイト相からεマルテンサイト相へのマルテンサイト変態が生じやすい状態を作り出す作用がある。
したがって、本発明の鋳造材では、Mnの添加量を調整することにより、引張圧縮塑性変形時に、変形誘起γからεマルテンサイト変態とこの逆変態を交互発生させ、かつ、α’マルテンサイト相の形成を抑制して、疲労特性を改善することができる。
Mnの添加量が35質量%を超えると、他の元素の添加量をどのように調整しても、γ相が反強磁性化して強く安定化されるので、εマルテンサイトが得られなくなる。また、Mnの添加量が5質量%未満になると、疲労特性に有害なα’マルテンサイト相の形成を避けることができない場合がある。そのため、本発明では、Mnの添加量は、5質量%≦Mn≦35質量%の範囲とする。
また、特許文献1に記載されるように、Cr、Ni、AlもMn代替元素として添加してよく、Mn、Cr、Ni、Alが塑性変形機構におよぼす効果は、同等の効果を与えるMnの質量%(Mn当量: [%Mn]eq)で代表させることができる。本発明では、さらに、成分元素Si、Cの影響を考慮して関係式に修正を加え、Mn当量を、各成分元素の添加量(質量%)を用いて以下の式(1)で表す。
Mn当量([%Mn]eq)=[%Mn]+0.3[%Si]+0.7[%Cr]+2.4[%Ni]+5.2[%Al]+28[%C] (1)
Mn当量([%Mn]eq)=[%Mn]+0.3[%Si]+0.7[%Cr]+2.4[%Ni]+5.2[%Al]+28[%C] (1)
なお、式中の[%Mn]、[%Si]、[%Al]、[%Cr]、[%Ni]、[%C]は、Fe-Mn-Si系合金鋳造材の化学成分としてのMn、Si、Al、Cr、Ni、Cの質量%を意味する。
また、本発明では、γオーステナイト相-εマルテンサイト相間の二方向のマルテンサイト変態を発現させるためのMn当量の範囲は、以下の式(2)で表す条件とする。
37<[%Mn]eq<45 (2)
37<[%Mn]eq<45 (2)
Mn当量が37以下になると、εマルテンサイト相の熱力学的安定性が非常に高くなるため、デンドライト状偏析間のγ相もεマルテンサイト変態を受けるようになり、空隙や介在物からの疲労き裂発生の確率が高まり、低サイクル疲労寿命が低下する。
また、Mn当量が45以上になると、積層欠陥エネルギーが上昇してデンドライト状偏析部にεマルテンサイトが形成されなくなり、耐疲労メカニズムが作動しなくなって、低サイクル疲労寿命が低下する。
一方、本発明のFe-Mn-Si系合金におけるもう一つの必須成分元素であるケイ素(Si)は、Mn当量にはほとんど影響しないが、γオーステナイト相とεマルテンサイト相との二方向マルテンサイト変態の可逆性を向上させることが、特許文献1、非特許文献1、2に開示されている。Siの持つこの作用は、鋳造材においても有効であるが、Siを過度に添加すると、鋳造材の破断繰り返し数が低下する。特に、Siを6.5質量%を超えて添加すると合金が著しく硬化して、繰り返し引張圧縮変形の応力振幅が上昇したり、シリサイド系金属間化合物が形成して合金が脆化したりするなどの問題が生じる場合がある。また、Siの添加量を1.5質量%未満とすると、転位が交差すべりしてセル状に再配列し、き裂発生伝ぱを加速する。以上より、本発明では、Siの添加量は、1.5質量%≦Si≦6.5質量%とし、より好ましくは2質量%≦Si≦6質量%とする。特に、Siの添加量が4質量%付近であると、Siの作用が最も効果的に発揮される。
また、本発明のFe-Mn-Si系合金では、任意成分元素として、Cr、Ni、AlおよびCを添加してもよい。
クロム(Cr)は、γオーステナイト相の積層欠陥エネルギーを低下させ、εマルテンサイト相へのマルテンサイト変態を促進して、本発明の鋳造材の疲労特性を向上させる元素である。また、更に耐食性や耐高温酸化性の向上にも寄与する。しかし、Crの添加量が15質量%を超えると、フェライトやα’マルテンサイトが形成されやすくなり、低サイクル疲労寿命が低下する。以上より、本発明では、Crの添加量は、0質量%≦Cr≦15質量%の範囲とする。
ニッケル(Ni)は、Mnのオーステナイト安定化作用を代替する元素である。特に、Mnの添加量を20質量%未満とする場合には、オーステナイト安定化元素としてのNiを2質量%以上添加することにより、変形前の状態としてγオーステナイト単相を得ることができる。一方、Niの添加量が15質量%を超えると、FeNiシリサイドや、NiMnシリサイドの形成が顕著になり、合金が脆化する。以上より、本発明では、Niの添加量は、0質量%≦Ni≦15質量%の範囲とする。
アルミニウム(Al)は、上記式(1)に示されるように、Mn当量に係数5.2で影響する元素であるので、Mnの代替元素として添加してもよい。しかし、Alの添加量が3質量%を超えると、フェライト形成による低サイクル寿命低下が生じやすくなる。また、大気中で熱処理すると、窒素と親和性が高いAlが窒化物を形成して合金を脆化させる可能性もある。このように、Alは微量でもMn当量の調整に有効である一方で、過剰添加した場合には弊害もあるため、本発明では、Alの添加量は、0質量%≦Al≦3質量%の範囲とする。
炭素(C)は、Mnのオーステナイト安定化作用を代替する元素であるが、Cの添加量が0.4質量%を超えると、炭化物が形成されて低サイクル疲労寿命が低下する。以上より、本発明では、Cの添加量は、0質量%≦C≦0.4質量%の範囲とする。
本発明において、必須成分元素としてのMn、Si、および任意成分元素としてのCr、Ni、Al、Cの添加量については、変形前の金属組織がγオーステナイト単相となるように、オーステナイト安定化元素であるNi、C、Mnの総量と、フェライト安定化元素であるCr、Si、Alの総量のバランス調整が重要である。フェライト安定化元素濃度が高く、オーステナイト安定化元素濃度が低くなるほどδフェライト相が形成されやすく、フェライト安定化元素濃度とオーステナイト安定化元素濃度がともに低い場合にはα’マルテンサイト相が形成されやすくなる。
発明者らの実験の結果、本発明のFe-Mn-Si系合金において、鋳造後の状態、または鋳造後、1000℃、1分以上、均一化熱処理後、水冷または徐冷した場合に、δフェライト相形成を抑制してγオーステナイト単相を得るために成分元素の添加量が満足すべき条件は、以下の式(3)で与えられることが判明した。
[%Ni]+30[%C]+0.5[%Mn]>0.75[%Cr]+1.125[%Si]+2[%Al] (3)
[%Ni]+30[%C]+0.5[%Mn]>0.75[%Cr]+1.125[%Si]+2[%Al] (3)
なお、式中の[%Ni]、[%C]、[%Mn]、[%Cr]、[%Si]、[%Al]は、Fe-Mn-Si系合金鋳造材の化学成分としてのNi、C、Mn、Cr、Si、Alの質量%を意味する。
以上のことを踏まえ、本発明のFe-Mn-Si系合金鋳造材の成分組成について好ましい形態を例示すると以下のとおりである。
<組成1>
Feを主成分として、MnおよびSiを必須成分元素として含有し、かつ、Cr、Ni、Al、Cのうちの1種以上を任意成分元素として含有し、成分組成が、
5質量%≦Mn≦35質量%、
1.5質量%≦Si≦6.5質量%、
0質量%≦Cr≦15質量%、
0質量%≦Ni≦15質量%、
0質量%≦Al≦3質量%、
0質量%≦C≦0.4質量%、
残部Fe及び不可避不純物であって、次式(ア)
37<[%Mn]+0.3[%Si]+0.7[%Cr]+2.4[%Ni]+5.2[%Al]+28[%C]<45 (ア)
かつ、次式(イ)
[%Ni]+30[%C]+0.5[%Mn]>0.75[%Cr]+1.125[%Si]+2[%Al] (イ)
(式中[%Mn]、[%Si]、[%Cr]、[%Ni]、[%Al]、[%C]は、Mn、Si、Cr、Ni、Al、Cの質量%を意味する)
の条件を満足する。
Feを主成分として、MnおよびSiを必須成分元素として含有し、かつ、Cr、Ni、Al、Cのうちの1種以上を任意成分元素として含有し、成分組成が、
5質量%≦Mn≦35質量%、
1.5質量%≦Si≦6.5質量%、
0質量%≦Cr≦15質量%、
0質量%≦Ni≦15質量%、
0質量%≦Al≦3質量%、
0質量%≦C≦0.4質量%、
残部Fe及び不可避不純物であって、次式(ア)
37<[%Mn]+0.3[%Si]+0.7[%Cr]+2.4[%Ni]+5.2[%Al]+28[%C]<45 (ア)
かつ、次式(イ)
[%Ni]+30[%C]+0.5[%Mn]>0.75[%Cr]+1.125[%Si]+2[%Al] (イ)
(式中[%Mn]、[%Si]、[%Cr]、[%Ni]、[%Al]、[%C]は、Mn、Si、Cr、Ni、Al、Cの質量%を意味する)
の条件を満足する。
<組成2>
Feを主成分として、MnおよびSiを必須成分元素として含有し、かつ、Cr、Al、Cのうちの1種以上を任意成分元素として含有し、成分組成が、
25質量%≦Mn≦35質量%、
2質量%≦Si≦6質量%、
0質量%≦Cr≦8質量%、
0質量%≦Al≦3質量%、
0質量%≦C≦0.2質量%、
残部Fe及び不可避不純物であって、次式(ア’)
37<[%Mn]+0.3[%Si]+0.7[%Cr]+5.2[%Al]+28[%C]<45 (ア’)
かつ、次式(イ’)
30[%C]+0.5[%Mn]>0.75[%Cr]+1.125[%Si]+2[%Al] (イ’)
(式中[%Mn]、[%Si]、[%Cr]、[%Al]、[%C]は、Mn、Si、Cr、Al、Cの質量%を意味する)
の条件を満足する。
Feを主成分として、MnおよびSiを必須成分元素として含有し、かつ、Cr、Al、Cのうちの1種以上を任意成分元素として含有し、成分組成が、
25質量%≦Mn≦35質量%、
2質量%≦Si≦6質量%、
0質量%≦Cr≦8質量%、
0質量%≦Al≦3質量%、
0質量%≦C≦0.2質量%、
残部Fe及び不可避不純物であって、次式(ア’)
37<[%Mn]+0.3[%Si]+0.7[%Cr]+5.2[%Al]+28[%C]<45 (ア’)
かつ、次式(イ’)
30[%C]+0.5[%Mn]>0.75[%Cr]+1.125[%Si]+2[%Al] (イ’)
(式中[%Mn]、[%Si]、[%Cr]、[%Al]、[%C]は、Mn、Si、Cr、Al、Cの質量%を意味する)
の条件を満足する。
<組成3>
Feを主成分として、MnおよびSiを必須成分元素として含有し、かつ、Cr、Ni、Cのうちの1種以上を任意成分元素として含有し、成分組成が、
10質量%≦Mn≦20質量%、
2質量%≦Si≦6質量%、
5質量%≦Cr≦15質量%、
5質量%≦Ni≦10質量、
0質量%≦C≦0.2質量%、
残部Fe及び不可避不純物であって、次式(ア’’)
37<[%Mn]+0.3[%Si]+0.7[%Cr]+2.4[%Ni]+28[%C]<45 (ア’’)
かつ、次式(イ’’)
[%Ni]+30[%C]+0.5[%Mn]>0.75[%Cr]+1.125[%Si] (イ’’)
(式中[%Mn]、[%Si]、[%Cr]、[%Ni]、[%C]は、Mn、Si、Cr、Ni、Cの質量%を意味する)
の条件を満足する。
Feを主成分として、MnおよびSiを必須成分元素として含有し、かつ、Cr、Ni、Cのうちの1種以上を任意成分元素として含有し、成分組成が、
10質量%≦Mn≦20質量%、
2質量%≦Si≦6質量%、
5質量%≦Cr≦15質量%、
5質量%≦Ni≦10質量、
0質量%≦C≦0.2質量%、
残部Fe及び不可避不純物であって、次式(ア’’)
37<[%Mn]+0.3[%Si]+0.7[%Cr]+2.4[%Ni]+28[%C]<45 (ア’’)
かつ、次式(イ’’)
[%Ni]+30[%C]+0.5[%Mn]>0.75[%Cr]+1.125[%Si] (イ’’)
(式中[%Mn]、[%Si]、[%Cr]、[%Ni]、[%C]は、Mn、Si、Cr、Ni、Cの質量%を意味する)
の条件を満足する。
<組成4>
Feを主成分として、MnおよびSiを必須成分元素として含有し、かつ、Cr、Ni、Cのうちの1種以上を任意成分元素として含有し、成分組成が、
5質量%≦Mn≦8質量%、
2質量%≦Si≦6質量%、
9質量%≦Cr≦15質量%、
9質量%≦Ni≦15質量、
0質量%≦C≦0.4質量%、
残部Fe及び不可避不純物であって、次式(ア’’)
37<[%Mn]+0.3[%Si]+0.7[%Cr]+2.4[%Ni]+28[%C]<45 (ア’’)
かつ、次式(イ’’)
[%Ni]+30[%C]+0.5[%Mn]>0.75[%Cr]+1.125[%Si] (イ’’)
(式中[%Mn]、[%Si]、[%Cr]、[%Ni]、[%C]は、Mn、Si、Cr、Ni、Cの質量%を意味する)
の条件を満足する。
Feを主成分として、MnおよびSiを必須成分元素として含有し、かつ、Cr、Ni、Cのうちの1種以上を任意成分元素として含有し、成分組成が、
5質量%≦Mn≦8質量%、
2質量%≦Si≦6質量%、
9質量%≦Cr≦15質量%、
9質量%≦Ni≦15質量、
0質量%≦C≦0.4質量%、
残部Fe及び不可避不純物であって、次式(ア’’)
37<[%Mn]+0.3[%Si]+0.7[%Cr]+2.4[%Ni]+28[%C]<45 (ア’’)
かつ、次式(イ’’)
[%Ni]+30[%C]+0.5[%Mn]>0.75[%Cr]+1.125[%Si] (イ’’)
(式中[%Mn]、[%Si]、[%Cr]、[%Ni]、[%C]は、Mn、Si、Cr、Ni、Cの質量%を意味する)
の条件を満足する。
組成1は、式(1)、(2)の条件を満足するものであり、上述したように各成分元素が鋳造組織や繰り返し変形組織に及ぼす影響を考慮することによって決定される、本発明のFe-Mn-Si系合金の組成の好適な実施形態である。
組成2は、Mnの添加量を、25質量%≦Mn≦35質量%、およびSiの添加量を、2質量%≦Si≦6質量%とすることにより、低サイクル疲労寿命の改善効果が最も効果的に発揮される成分範囲である。この場合に、式(1)、(2)の条件を満足するための他の成分元素の添加量は、0質量%≦Cr≦8質量%、0質量%≦Al≦3質量%、0質量%≦C≦0.2質量%、となる。
組成3は、より実用的な観点から大量生産を考慮し、Mnの添加量を比較的低くして10質量%≦Mn≦20質量%とすることで、電気炉溶解を容易とするための成分範囲である。他の成分元素の添加量の範囲は、式(1)、(2)の条件によって決定される。
組成4は、さらにMnの添加量を低下させて、一方でCr、Niの添加量を高めることにより、耐食性の改善効果を得るための成分範囲である。他の成分元素の添加量の範囲は、式(1)、(2)の条件によって決定される。
以上のとおりの本発明のFe-Mn-Si系合金鋳造材については、その鋳造は、原材料の金属成分を融解してなされたものであってよい。
また、本発明のFe-Mn-Si系合金鋳造材は、疲労特性に優れているので、従来の弾性領域のみならず塑性領域でも使用できる鋳造部材としての用途に適用することができる。具体的には、例えば、本発明のFe-Mn-Si系合金鋳造材は、制振装置用鋳造材としての用途に特に適している。また、本発明のFe-Mn-Si系合金鋳造材を用いた制振装置、鉄骨構造物および鉄筋コンクリート構造物は、従来材よりも有意に優れた低サイクル疲労寿命を示す。
以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
Mn:15質量%、Cr:10質量%、Ni:8質量%、Si:4質量%、残部Fe及び不可避不純物の成分組成の合金(以下、Fe-15Mn-10Cr-8Ni-4Si合金と称する。)を、高周波真空誘導溶解により作製した。このFe-15Mn-10Cr-8Ni-4Si合金鋳塊から、旋盤加工により平行部直径8mmでの低サイクル疲労試験片を、変形軸が鋳造時に発達した柱状晶と直交する向きに作製し、室温大気中、0.4%/秒の三角波、振幅±1%の引張圧縮ひずみ制御低サイクル疲労試験を行い、走査型電子顕微鏡-後方散乱電子回折法により、疲労試験前後の組織観察を行った。また、X線回折による相の同定を行い、リートベルト解析法によって構成相の体積分率を評価した。
図2は、後方散乱電子回折法により分析した、Fe-15Mn-10Cr-8Ni-4Si合金鋳造材の低サイクル疲労試験前(鋳造まま材)の組織である。図2(a)は相分布図であり、γ相を白色、ε相を灰色、α’相を濃灰色で分布状態を表している。図2(a)の組織では、白色のγオーステナイト相が支配的で、わずかに灰色のεマルテンサイト相が散在するが、その体積率は3%に満たない。また、γ相は縦方向に柱状に発達している。図2(b)はγ相逆極点方位図であり、図中立方体模型の向きで示すように、柱状晶はγ相の001方位に沿って発達している。これは、FCC(面心立方格子構造)金属の鋳造組織に見られる一般的な特徴である。図2(c)はγ相001極点図であり、001方位が柱状晶発達方向に平行であることが確認される。
図3は、Fe-15Mn-10Cr-8Ni-4Si合金鋳造材の低サイクル疲労破断後の変形組織である。図3(a)の相分布図からは、γ相(白色)内部にε相(灰色)が繰り返し引張圧縮変形の間に形成されていることがわかる。残留γ相は001方位に沿って成長した柱状晶(図3(b)、(d))で、その中に形成した樹枝状ε相(図3(c))も、0001基底面が特定の方位範囲に分布していることが極点図(図3(e))からわかる。非特許文献2によれば、ε相はいったん形成しても、変形方向が反転すれば逆変態により消滅することを繰り返すが、引張圧縮変形を繰り返す間、徐々に安定化されて累積体積率がゆっくり上昇する。
図4(a)は、引け巣と呼ばれる凝固収縮を、Fe-15Mn-10Cr-8Ni-4Si合金鋳造材の低サイクル疲労破断後の組織中の分布状態(広域相分布図)として示したものであり、図4(b)は引け巣周りの拡大図である。空隙周りは残留γ相となっており、ε相が発生している箇所には空隙の存在はほとんど見られない。また、デンドライト状ε相は、薄板状のε相が積み重なって形成されている様子も読み取れる。
以上の組織分析結果は、Fe-15Mn-10Cr-8Ni-4Si合金の鋳造まま材が、図1の模式図に描いた構造と変形様式を示すことを証明するものである。
図5は、図4(b)の引け巣周辺の成分元素濃度分布をエネルギー分散型X線分析で解析した結果である。図5(a)~(f)は、Fe、Crが濃化している領域と、Mn、Ni、Siが濃化している領域が、凝固偏析によって生じていることを示している。
図6は、熱力学計算ソフトPandatを用いて計算した、Fe-15Mn-10Cr-8Ni-4Si合金中の各成分元素の液相濃縮傾向を示す図である。図6(a)のLever則は熱力学平衡状態を実現するのに十分な元素拡散を仮定したモデル、(b)のScheil則は液相濃度が一様で拡散がないことを仮定したモデルである。これらのモデルを用いることにより、現実の材料はこれらのモデルの中間の状態にあると想定して、凝固途中の固液共存状態で、元素が液相に濃縮しやすいかどうかを議論することができる。この解析結果から、Mn、Siは液相濃縮の傾向が強く、すなわち最終凝固部に濃縮しやすいことがわかる。
すなわち、図5(a)~(f)で示される成分元素の偏析からは、Fe、Cr濃化領域が、先行して凝固したデンドライト状領域のアーム先端であり、Mn、Ni、Si濃化領域が最終凝固部であることがわかる。また、図4との対比から、εマルテンサイト相はFe、Cr濃化領域にのみ形成し、Mn、Ni、Si濃化領域は変形によってε変態せずに、γオーステナイト相のままであることがわかる。凝固収縮に起因する空隙は、最終凝固部のMn、Ni、Si濃化領域に形成する結果、ε変態によるせん断変形を受けないので、Fe-15Mn-10Cr-8Ni-4Si合金鋳造材においては、図1の模式図に示したように、本来き裂発生の起点となりやすい空隙が、繰り返し変形下で未変形のまま保存されるメカニズムが実現されたと考えられる。
以下の表1に、同様の方法で作製した、各成分組成のFe-Mn-Si系合金鋳塊の試験片について、室温大気中、0.4%/秒の三角波、振幅±1%の引張圧縮ひずみ制御で測定した、低サイクル疲労寿命を示す。
実施例1~11の鋳造材は、変形前に体積率85%以上のγオーステナイト相を示し、疲労破断後にはεマルテンサイト相の体積率が増加していることが共通の特徴であり、かつ、低サイクル疲労寿命がいずれも3000サイクルを超えている。これは可逆的なγオーステナイト相とεマルテンサイト相との間のマルテンサイト変態が、低サイクル疲労寿命の向上に有効であることを示している。
一方、比較例1~8の鋳造材は、塑性変形がγ相のすべり変形か、α’マルテンサイト変態によってなされるために、可逆的なγオーステナイト相とεマルテンサイト相との間のマルテンサイト変態による耐疲労メカニズムが有効に作動しない結果、低サイクル疲労寿命が3000サイクル未満となっている。
また、実施例1のFe-15Mn-10Cr-8Ni-4Si合金、および実施例2のFe-30Mn-4Si-2Al合金の鋳造材を、1000℃で1時間、または24時間、均一化熱処理した場合に、いずれも、より優れた低サイクル疲労寿命が得られることが確認されている(データ示さず)。
疲労特性に非常に優れた本発明のFe-Mn-Si系合金鋳造材を使用することにより、弾性領域のみならず塑性領域でも使用できる鋳造部材として、建築・土木構造用の構造部材、制振ダンパー、機械部品、各種締結品など、産業的に鋳造材の用途が飛躍的に広がる効果が期待される。
Claims (8)
- MnおよびSiを必須成分元素として含有し、かつ、Cr、Ni、Al、Cのうちの1種以上を任意成分元素として含有し、成分組成が、
5質量%≦Mn≦35質量%、
1.5質量%≦Si≦6.5質量%、
0質量%≦Cr≦15質量%、
0質量%≦Ni≦15質量%、
0質量%≦Al≦3質量%、
0質量%≦C≦0.4質量%、
残部Fe及び不可避不純物であるFe-Mn-Si系合金鋳造材であって、次式(ア)
37<[%Mn]+0.3[%Si]+0.7[%Cr]+2.4[%Ni]+5.2[%Al]+28[%C]<45 (ア)
かつ、次式(イ)
[%Ni]+30[%C]+0.5[%Mn]>0.75[%Cr]+1.125[%Si]+2[%Al] (イ)
(式中[%Mn]、[%Si]、[%Cr]、[%Ni]、[%Al]、[%C]は、Mn、Si、Cr、Ni、Al、Cの質量%を意味する)
の条件を満足することを特徴とするFe-Mn-Si系合金鋳造材。 - 成分組成が、
25質量%≦Mn≦35質量%、
2質量%≦Si≦6質量%、
0質量%≦Cr≦8質量%、
0質量%≦Al≦3質量%、
0質量%≦C≦0.2質量%、
残部Fe及び不可避不純物であることを特徴とする請求項1に記載のFe-Mn-Si系合金鋳造材。 - 成分組成が、
10質量%≦Mn≦20質量%、
2質量%≦Si≦6質量%、
5質量%≦Cr≦15質量%、
5質量%≦Ni≦10質量、
0質量%≦C≦0.2質量%、
残部Fe及び不可避不純物であることを特徴とする請求項1に記載のFe-Mn-Si系合金鋳造材。 - 成分組成が、
5質量%≦Mn≦8質量%、
2質量%≦Si≦6質量%、
9質量%≦Cr≦15質量%、
9質量%≦Ni≦15質量%、
0質量%≦C≦0.4質量%、
残部Fe及び不可避不純物であることを特徴とする請求項1に記載のFe-Mn-Si系合金鋳造材。 - 請求項1~4のいずれか一項に記載のFe-Mn-Si系合金鋳造材を用いた制振装置。
- 請求項1~4のいずれか一項に記載のFe-Mn-Si系合金鋳造材を用いた鉄骨構造物または鉄筋コンクリート構造物。
- 請求項1~4のいずれか一項に記載のFe-Mn-Si系合金鋳造材を用いた制振装置用鋳造材。
- 請求項1~4のいずれか一項に記載のFe-Mn-Si系合金鋳造材の制振装置、鉄骨構造物または鉄筋コンクリート構造物への使用。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197027743A KR102460872B1 (ko) | 2017-04-04 | 2018-04-02 | 저사이클 피로 특성이 우수한 Fe-Mn-Si계 합금 주조재 |
EP18780586.6A EP3608435B1 (en) | 2017-04-04 | 2018-04-02 | Fe-mn-si-based alloy casting material having excellent low-cycle fatigue properties |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-074517 | 2017-04-04 | ||
JP2017074517A JP6887642B2 (ja) | 2017-04-04 | 2017-04-04 | 低サイクル疲労特性に優れるFe−Mn−Si系合金鋳造材 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018186321A1 true WO2018186321A1 (ja) | 2018-10-11 |
Family
ID=63712177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/014043 WO2018186321A1 (ja) | 2017-04-04 | 2018-04-02 | 低サイクル疲労特性に優れるFe-Mn-Si系合金鋳造材 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3608435B1 (ja) |
JP (1) | JP6887642B2 (ja) |
KR (1) | KR102460872B1 (ja) |
WO (1) | WO2018186321A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109266973B (zh) * | 2018-11-28 | 2020-09-01 | 上海材料研究所 | Fe-Mn-Si-Ni-C系弹塑性阻尼钢及其制造方法与应用 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62112751A (ja) * | 1985-11-09 | 1987-05-23 | Nippon Steel Corp | 鉄基形状記憶合金薄板・線の製造方法 |
JPH05255813A (ja) * | 1991-12-24 | 1993-10-05 | Nippon Steel Corp | 加工性と制振性能に優れた高強度合金 |
JPH07197196A (ja) | 1994-01-07 | 1995-08-01 | Kurimoto Ltd | 高マンガン非磁性鋳造体 |
JPH10280061A (ja) | 1997-04-02 | 1998-10-20 | Awaji Sangyo Kk | 鉄系形状記憶合金製鋳造部材の製造方法及び鋳造部材 |
JP2000501778A (ja) * | 1995-07-11 | 2000-02-15 | ウラコ,カリ,マーティ | 含窒素鉄系形状記憶及び振動減衰合金 |
JP2001082642A (ja) | 1999-09-16 | 2001-03-30 | Hiroshi Kubo | 鉄系形状記憶合金製パイプ用継手 |
JP2001140039A (ja) | 1999-11-18 | 2001-05-22 | Kobe Steel Ltd | 耐摩耗鋳鋼及びその製造方法 |
JP2008056987A (ja) * | 2006-08-31 | 2008-03-13 | National Institute For Materials Science | 耐震合金 |
JP2011068921A (ja) | 2009-09-24 | 2011-04-07 | Toyota Industries Corp | オーステナイト系鋳鉄とその製造方法およびオーステナイト系鋳鉄鋳物 |
JP2013173159A (ja) | 2012-02-24 | 2013-09-05 | Nippon Steel & Sumitomo Metal Corp | 高C高Mn非磁性鋼の連続鋳造方法 |
JP2014129567A (ja) | 2012-12-28 | 2014-07-10 | National Institute For Materials Science | 制振合金 |
CN103966529A (zh) * | 2014-05-09 | 2014-08-06 | 曹帅 | 一种高阻尼Mn-Fe基减振合金及其制备方法 |
JP2014183136A (ja) | 2013-03-19 | 2014-09-29 | Mitsubishi Electric Corp | 炭化珪素チップ、炭化珪素ウエハ、炭化珪素チップの試験方法、炭化珪素ウエハの試験方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6455361A (en) * | 1987-08-25 | 1989-03-02 | Takeshi Masumoto | Fe-base shape memory alloy |
-
2017
- 2017-04-04 JP JP2017074517A patent/JP6887642B2/ja active Active
-
2018
- 2018-04-02 EP EP18780586.6A patent/EP3608435B1/en active Active
- 2018-04-02 WO PCT/JP2018/014043 patent/WO2018186321A1/ja unknown
- 2018-04-02 KR KR1020197027743A patent/KR102460872B1/ko active IP Right Grant
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62112751A (ja) * | 1985-11-09 | 1987-05-23 | Nippon Steel Corp | 鉄基形状記憶合金薄板・線の製造方法 |
JPH05255813A (ja) * | 1991-12-24 | 1993-10-05 | Nippon Steel Corp | 加工性と制振性能に優れた高強度合金 |
JPH07197196A (ja) | 1994-01-07 | 1995-08-01 | Kurimoto Ltd | 高マンガン非磁性鋳造体 |
JP2000501778A (ja) * | 1995-07-11 | 2000-02-15 | ウラコ,カリ,マーティ | 含窒素鉄系形状記憶及び振動減衰合金 |
JPH10280061A (ja) | 1997-04-02 | 1998-10-20 | Awaji Sangyo Kk | 鉄系形状記憶合金製鋳造部材の製造方法及び鋳造部材 |
JP2001082642A (ja) | 1999-09-16 | 2001-03-30 | Hiroshi Kubo | 鉄系形状記憶合金製パイプ用継手 |
JP2001140039A (ja) | 1999-11-18 | 2001-05-22 | Kobe Steel Ltd | 耐摩耗鋳鋼及びその製造方法 |
JP2008056987A (ja) * | 2006-08-31 | 2008-03-13 | National Institute For Materials Science | 耐震合金 |
JP2011068921A (ja) | 2009-09-24 | 2011-04-07 | Toyota Industries Corp | オーステナイト系鋳鉄とその製造方法およびオーステナイト系鋳鉄鋳物 |
JP2013173159A (ja) | 2012-02-24 | 2013-09-05 | Nippon Steel & Sumitomo Metal Corp | 高C高Mn非磁性鋼の連続鋳造方法 |
JP2014129567A (ja) | 2012-12-28 | 2014-07-10 | National Institute For Materials Science | 制振合金 |
JP2014183136A (ja) | 2013-03-19 | 2014-09-29 | Mitsubishi Electric Corp | 炭化珪素チップ、炭化珪素ウエハ、炭化珪素チップの試験方法、炭化珪素ウエハの試験方法 |
CN103966529A (zh) * | 2014-05-09 | 2014-08-06 | 曹帅 | 一种高阻尼Mn-Fe基减振合金及其制备方法 |
Non-Patent Citations (4)
Title |
---|
KENJI HATANAKA: "Cyclic Stress-Strain Properties and Low-Cycle Fatigue Life of Metal Material", JOURNAL OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS (EDITION A, vol. 50, 1984, pages 831 |
See also references of EP3608435A4 |
T. SAWAGUCHII. NIKULINK. OGAWAK. SEKIDOS. TAKAMORIT. MARUYAMAY CHIBAA. KUSHIBEY INOUEK. TSUZAKI: "Designing Fe-Mn-Si alloys with improved low-cycle fatigue lives", SCRIPTA MATER., vol. 99, 2015, pages 49 - 52 |
T. SAWAGUCHIT. MARUYAMAH. OTSUKAA. KUSHIBEY INOUEK. TSUZAKI: "Design Concept and Applications of Fe-Mn-Si-Based Alloys-from Shape Memory to Seismic Response Control", MATER. TRANS., vol. 57, 2016, pages 283 - 293 |
Also Published As
Publication number | Publication date |
---|---|
KR20190137084A (ko) | 2019-12-10 |
EP3608435B1 (en) | 2022-05-18 |
EP3608435A1 (en) | 2020-02-12 |
KR102460872B1 (ko) | 2022-10-31 |
EP3608435A4 (en) | 2020-08-05 |
JP6887642B2 (ja) | 2021-06-16 |
JP2018178150A (ja) | 2018-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Current state of Fe-Mn-Al-C low density steels | |
JP6794479B2 (ja) | 銅リッチナノクラスター強化超高強度フェライト鋼およびその製造方法 | |
US20200056272A1 (en) | Twinning/transformation induced plasticity high entropy steels and method of manufacturing the same | |
Ma et al. | Microstructural features and tensile behaviors of the Al0. 5CrCuFeNi2 high-entropy alloys by cold rolling and subsequent annealing | |
Sawaguchi et al. | Designing Fe–Mn–Si alloys with improved low-cycle fatigue lives | |
JP5837487B2 (ja) | 銅系合金及びそれを用いた構造材 | |
JP6492057B2 (ja) | 高い強度を有する銅―ニッケル―錫合金 | |
JP4918632B2 (ja) | 析出強化型ステンレス鋼及びその製造方法 | |
JP4712838B2 (ja) | 耐水素脆化特性および加工性に優れた高強度冷延鋼板 | |
US20210355569A1 (en) | Austenitic wear-resistant steel plate | |
US20150147225A1 (en) | Beta-type titanium alloy having low elastic modulus and high strength | |
Shabani et al. | Investigation of microstructure, texture, and mechanical properties of FeCrCuMnNi multiphase high entropy alloy during recrystallization | |
Ferretto et al. | Shape recovery performance of a (V, C)-containing Fe–Mn–Si–Ni–Cr shape memory alloy fabricated by laser powder bed fusion | |
Sherif | Characterisation and development of nanostructured, ultrahigh strength, and ductile bainitic steels | |
Yang et al. | Strain-controlled low-cycle fatigue behavior of friction stir-welded AZ31 magnesium alloy | |
JP5667504B2 (ja) | 非磁性ステンレス鋼 | |
WO2018186321A1 (ja) | 低サイクル疲労特性に優れるFe-Mn-Si系合金鋳造材 | |
KR20230029598A (ko) | 용접 구조체 및 이것에 사용되는 Fe-Mn-Cr-Ni-Si계 합금 | |
JPH073369A (ja) | 耐水素脆化性高Ni基合金およびその製造方法 | |
JP6485692B2 (ja) | 高温強度に優れた耐熱合金およびその製造方法と耐熱合金ばね | |
Nikulin et al. | Effect of carbon on the low-cycle fatigue resistance and microstructure of the Fe–15Mn–10Cr–8Ni–4Si seismic damping alloy | |
JP5929251B2 (ja) | 鉄合金 | |
JP3384515B2 (ja) | 高熱膨張鋼および高強度高熱膨張ボルト | |
JP5659930B2 (ja) | 鉄合金製制振材の製造方法と鉄合金製制振材 | |
JP2013185249A (ja) | 鉄合金 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18780586 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197027743 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018780586 Country of ref document: EP Effective date: 20191104 |