WO2018186205A1 - 二次電池およびその製造方法 - Google Patents

二次電池およびその製造方法 Download PDF

Info

Publication number
WO2018186205A1
WO2018186205A1 PCT/JP2018/011653 JP2018011653W WO2018186205A1 WO 2018186205 A1 WO2018186205 A1 WO 2018186205A1 JP 2018011653 W JP2018011653 W JP 2018011653W WO 2018186205 A1 WO2018186205 A1 WO 2018186205A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
outermost layer
electrode assembly
partial
view
Prior art date
Application number
PCT/JP2018/011653
Other languages
English (en)
French (fr)
Inventor
英高 柴田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019511156A priority Critical patent/JP6841323B2/ja
Priority to CN201880023182.0A priority patent/CN110495045B/zh
Publication of WO2018186205A1 publication Critical patent/WO2018186205A1/ja
Priority to US16/530,226 priority patent/US11417912B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • H01G11/76Terminals, e.g. extensions of current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery and a manufacturing method thereof.
  • Secondary batteries that can be repeatedly charged and discharged have been used for various purposes.
  • the secondary battery is used as a power source for electronic devices such as smartphones and notebook computers.
  • Patent Document 1 discloses that an electrode assembly that is a constituent element of a secondary battery has a planar laminated structure in which a plurality of electrode constituent layers including a positive electrode, a negative electrode, and a separator are laminated in a sectional view.
  • a positive electrode and a negative electrode of the electrode assembly that is, an electrode of the electrode assembly includes a current collector and an electrode material layer coated with an active material on a main surface of the current collector in a cross-sectional view.
  • the electrode material layer is provided only on one main surface of the current collector in a cross-sectional view. It is disclosed.
  • the inventor of the present application has found that in the outermost electrode layer, when the electrode material layer is provided only on one main surface of the current collector in a cross-sectional view, the following problem may occur.
  • an electrode assembly 100 ′ having a planar stacked structure (such as a rectangular electrode assembly 100X ′ and a non-rectangular electrode assembly 100Y ′ in a plan view) is separated from the separator 50 ′ along the stacking direction.
  • the film is obtained by performing hot pressing (also referred to as hot pressing) to connect the layers.
  • Each of the plurality of electrodes 10 ′ provided along the stacking direction is subjected to a pressure treatment for obtaining a desired density after applying and drying the electrode material layer 12 ′ on at least one main surface of the current collector 11 ′. It is obtained by doing.
  • the electrode 10 ′ located in the inner region of the electrode assembly 100 ′ is used to obtain a desired density after applying and drying the electrode material layer 12 ′ on both main surfaces of the current collector 11 ′. It is obtained by performing a pressure treatment.
  • the electrode 10 ′ located in the outermost layer region of the electrode assembly 100 ′ is used to obtain a desired density after applying and drying the electrode material layer 12 ′ only on one main surface of the current collector 11 ′. It is obtained by performing a pressure treatment.
  • the current collector 11 ′ is mainly composed of a metal foil, that is, a metal member, while the electrode material layer 12 ′ mainly includes an active material and a binder (polymer compound). That is, the current collector 11 ′ and the electrode material layer 12 ′ are different from each other in the types of constituent materials.
  • the difference in material type between the current collector 11 ′ and the electrode material layer 12 ′ is that when the pressure treatment for obtaining each electrode 10 ′ having a desired density is performed, the current collector 11 ′ and the electrode material This can lead to a difference in the degree of stretching of the layer 12 '. Specifically, due to the difference in the degree of extension, the electrode material 12 ′ is more relative to the current collector 11 ′ during the pressing process for obtaining the electrode 10 ′ (corresponding to a single-sided electrode) positioned in the outermost layer. Tend to stretch greatly. In particular, in the electrode 10 ′ (corresponding to a single-sided electrode) positioned in the outermost layer, the electrode material layer 12 ′ is provided only on one side of the main surface of the current collector 11 ′.
  • Warpage stress is likely to occur in the electrode 10 ′ (corresponding to a single-sided electrode) positioned in the outermost layer.
  • production of this curvature stress can lead to the curvature of electrode 10 '(equivalent to a single-sided electrode) located in the outermost layer (refer the lower left part of FIG. 12).
  • the warpage of the electrode 10 ′ positioned at the outermost layer (corresponding to a single-sided electrode) is caused by the separator 50 ′ positioned between the electrode 10 ′ in the inner region (corresponding to a double-sided electrode) when the electrode assembly 100 ′ is configured. It may not be possible to favorably bond the electrode 10 'to be positioned as a whole. Therefore, there is a possibility that the outermost electrode 10 'may not function as a component of the electrode assembly 100'. As a result, the secondary battery including the electrode assembly 100 ′ as a whole may not be able to exhibit desired battery characteristics.
  • the present invention has been devised in view of such circumstances.
  • the present invention includes an electrode assembly that can suitably suppress the generation of the warping stress of the outermost layer electrode in which the electrode material layer is provided on one main surface of the current collector in a cross-sectional view. It is an object of the present invention to provide a secondary battery and a manufacturing method thereof.
  • a secondary battery comprising an electrode assembly having a planar laminated structure in which a plurality of electrode constituent layers each having a separator disposed between electrodes are laminated,
  • the electrode assembly includes a double-sided electrode in which an electrode material layer is provided on both main surfaces of the current collector in an inner region of the electrode assembly, and a partial electrode assembly that forms a part of the electrode assembly.
  • the outermost electrode located in the outermost layer region of the electrode assembly includes a single-sided electrode in which an electrode material layer is provided on one main surface of the current collector, and at least a part of the partial electrode assembly in a cross-sectional view
  • a secondary battery is provided that surrounds the partial electrode assembly along a contour.
  • a method of manufacturing a secondary battery comprising an electrode assembly having a planar laminated structure in which a plurality of electrode constituent layers each having a separator disposed between electrodes are laminated, Forming a partial electrode assembly forming a part of an electrode assembly having a double-sided electrode obtained by providing an electrode material layer on both main surfaces of the current collector in a cross-sectional view, Using the outermost layer electrode of the electrode assembly including a single-sided electrode obtained by providing an electrode material layer on one main surface of the current collector, a part along the outline of at least a part of the partial electrode assembly in a sectional view A method of manufacturing a secondary battery is further provided, further comprising surrounding the electrode assembly.
  • the present invention it is possible to suppress the occurrence of warping stress of the outermost layer electrode in which the electrode material layer is provided on one main surface of the current collector in a cross-sectional view.
  • FIG. 1 is a schematic view of an electrode assembly of a secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a detailed cross-sectional view of an electrode assembly of a secondary battery according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a manufacturing flow of an electrode assembly of a secondary battery according to an embodiment of the present invention.
  • FIG. 4 is a schematic view of an electrode assembly of a secondary battery according to another embodiment of the present invention.
  • FIG. 5 is a schematic view of an electrode assembly of a secondary battery according to still another embodiment of the present invention.
  • FIG. 6 is a schematic view of an electrode assembly of a secondary battery according to still another embodiment of the present invention.
  • FIG. 1 is a schematic view of an electrode assembly of a secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a detailed cross-sectional view of an electrode assembly of a secondary battery according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a manufacturing flow of an
  • FIG. 7 is a schematic view of an electrode assembly of a secondary battery according to still another embodiment of the present invention.
  • FIG. 8 is a schematic view of an electrode assembly of a secondary battery according to still another embodiment of the present invention.
  • FIG. 9 is a schematic view of an electrode assembly of a secondary battery according to still another embodiment of the present invention.
  • FIG. 10 is a schematic view of an electrode assembly of a secondary battery according to still another embodiment of the present invention.
  • FIG. 11 is a cross-sectional view schematically showing the basic configuration of the electrode constituent layer.
  • FIG. 12 is a schematic diagram showing a technical problem found by the inventor of the present application.
  • the term “secondary battery” in this specification refers to a battery that can be repeatedly charged and discharged.
  • the “secondary battery” is not excessively bound by the name, and may include, for example, “electric storage device”.
  • the “plan view” in the present specification refers to a state when the object is viewed from the upper side or the lower side along the thickness direction based on the stacking direction of the electrode materials constituting the secondary battery.
  • the “cross-sectional view” as used in the present specification refers to a state when viewed from a direction substantially perpendicular to the thickness direction based on the stacking direction of the electrode materials constituting the secondary battery.
  • vertical direction and horizontal direction used directly or indirectly in the present specification correspond to the vertical direction and horizontal direction in the drawing, respectively. Unless otherwise specified, the same symbols or symbols indicate the same members / parts or the same meaning. In a preferable aspect, it can be understood that the downward direction in the vertical direction (that is, the direction in which gravity works) corresponds to the “down direction” and the reverse direction corresponds to the “up direction”.
  • a secondary battery In the present invention, a secondary battery is provided.
  • the “secondary battery” in the present specification refers to a battery that can be repeatedly charged and discharged. Therefore, the secondary battery of the present invention is not excessively bound by its name, and for example, “electric storage device” can also be included in the subject of the present invention.
  • the secondary battery has a structure in which an electrode assembly and an electrolyte are accommodated and enclosed in an exterior body.
  • the electrode assembly has a planar laminated structure in which a plurality of electrode constituent layers including a positive electrode, a negative electrode, and a separator are laminated.
  • the exterior body may take the form of a conductive hard case or a flexible case (such as a pouch).
  • each of the plurality of positive electrodes is connected to the positive electrode external terminal via the positive electrode current collecting lead.
  • the external terminal for positive electrode is fixed to the exterior body by a seal portion, and the seal portion prevents electrolyte leakage.
  • each of the plurality of negative electrodes is connected to a negative electrode external terminal via a negative electrode current collecting lead.
  • the external terminal for negative electrode is fixed to the exterior body by a seal portion, and the seal portion prevents electrolyte leakage.
  • the present invention is not limited thereto, and the positive electrode current collector lead connected to each of the plurality of positive electrodes may have the function of a positive electrode external terminal, and the negative electrode current collector connected to each of the plurality of negative electrodes.
  • the lead may have a function of an external terminal for negative electrode.
  • each of the plurality of positive electrodes is connected to a positive electrode external terminal via a positive electrode current collecting lead.
  • the external terminal for positive electrode is fixed to the exterior body by a seal portion, and the seal portion prevents electrolyte leakage.
  • the positive electrode 10A is composed of at least a positive electrode current collector 11A and a positive electrode material layer 12A (see FIG. 11), and a positive electrode material layer 12A is provided on at least one side of the positive electrode current collector 11A.
  • a positive electrode side extraction tab is positioned at a position where the positive electrode material layer 12A is not provided, that is, at an end of the positive electrode current collector 11A.
  • the positive electrode material layer 12A contains a positive electrode active material as an electrode active material.
  • the negative electrode 10B includes at least a negative electrode current collector 11B and a negative electrode material layer 12B (see FIG. 11), and a negative electrode material layer 12B is provided on at least one surface of the negative electrode current collector 11B.
  • a negative electrode side extraction tab is positioned at a portion of the negative electrode current collector 11B where the negative electrode material layer 12B is not provided, that is, at an end of the negative electrode current collector 11B.
  • the negative electrode material layer 12B contains a negative electrode active material as an electrode active material.
  • the positive electrode active material contained in the positive electrode material layer 12A and the negative electrode active material contained in the negative electrode material layer 12B are materials directly involved in the transfer of electrons in the secondary battery, and are the main positive and negative electrodes responsible for charge / discharge, that is, the battery reaction. It is a substance. More specifically, ions are brought into the electrolyte due to “the positive electrode active material contained in the positive electrode material layer 12A” and “the negative electrode active material contained in the negative electrode material layer 12B”, and these ions are converted into the positive electrode 10A and the negative electrode. 10B is transferred to and delivered from 10B, and charging / discharging is performed.
  • the positive electrode material layer 12A and the negative electrode material layer 12B are particularly preferably layers that can occlude and release lithium ions.
  • a secondary battery in which lithium ions move between the positive electrode 10A and the negative electrode 10B through the electrolyte and the battery is charged and discharged is preferable.
  • the secondary battery corresponds to a so-called “lithium ion battery”.
  • the positive electrode active material of the positive electrode material layer 12A is made of, for example, a granular material
  • a binder is contained in the positive electrode material layer 12A in order to more sufficiently contact the particles and maintain the shape.
  • a conductive additive may be included in the positive electrode material layer 12A in order to facilitate the transmission of electrons that promote the battery reaction.
  • the negative electrode active material of the negative electrode material layer 12B is made of, for example, a granular material, and it is preferable that a binder is included for more sufficient contact between the particles and shape retention, facilitating the transfer of electrons that promote the battery reaction.
  • the conductive support agent may be contained in the negative electrode material layer 12B.
  • the positive electrode material layer 12A and the negative electrode material layer 12B can also be referred to as “positive electrode mixture layer” and “negative electrode mixture layer”, respectively.
  • the positive electrode active material is preferably a material that contributes to occlusion and release of lithium ions.
  • the positive electrode active material is preferably, for example, a lithium-containing composite oxide.
  • the positive electrode active material is preferably a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese, and iron. That is, such a lithium transition metal composite oxide is preferably included as a positive electrode active material in the positive electrode material layer 12A of the secondary battery.
  • the positive electrode active material may be lithium cobaltate, lithium nickelate, lithium manganate, lithium iron phosphate, or a part of those transition metals replaced with another metal. Although such a positive electrode active material may be included as a single species, two or more types may be included in combination.
  • the positive electrode active material contained in the positive electrode material layer 12A is lithium cobalt oxide.
  • the binder that can be included in the positive electrode material layer 12A is not particularly limited, but poly (vinylidene fluoride), vinylidene fluoride-hexafluoropropylene copolymer, and vinylidene fluoride-tetrafluoroethylene copolymer. And at least one selected from the group consisting of polytetrafluoroethylene and the like.
  • the conductive aid that can be included in the positive electrode material layer 12A is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and gas phase There may be mentioned at least one selected from carbon fibers such as grown carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives.
  • the binder of the positive electrode material layer 12A may be polyvinylidene fluoride.
  • the conductive support agent of 12 A of positive electrode material layers is carbon black.
  • the binder and conductive additive of the positive electrode material layer 12A may be a combination of polyvinylidene fluoride and carbon black.
  • the negative electrode active material is preferably a material that contributes to occlusion and release of lithium ions. From this point of view, the negative electrode active material is preferably, for example, various carbon materials, oxides, or lithium alloys.
  • Examples of various carbon materials of the negative electrode active material include graphite (natural graphite, artificial graphite), soft carbon, hard carbon, diamond-like carbon, and the like. In particular, graphite is preferable because it has high electron conductivity and excellent adhesion to the negative electrode current collector 11B.
  • Examples of the oxide of the negative electrode active material include at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and the like.
  • the lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium.
  • Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn It may be a binary, ternary or higher alloy of a metal such as La and lithium.
  • Such an oxide is preferably amorphous in its structural form. This is because deterioration due to non-uniformity such as crystal grain boundaries or defects is less likely to be caused.
  • the negative electrode active material of the negative electrode material layer 12B may be artificial graphite.
  • the binder that can be included in the negative electrode material layer 12B is not particularly limited, but is at least one selected from the group consisting of styrene butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide resin, and polyamideimide resin. Species can be mentioned.
  • the binder contained in the negative electrode material layer 12B may be styrene butadiene rubber.
  • the conductive auxiliary agent that can be included in the negative electrode material layer 12B is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and gas phase There may be mentioned at least one selected from carbon fibers such as grown carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives.
  • the negative electrode material layer 12B may contain a component resulting from a thickener component (for example, carboxymethyl cellulose) used during battery manufacture.
  • the negative electrode active material and binder in the negative electrode material layer 12B may be a combination of artificial graphite and styrene butadiene rubber.
  • the positive electrode current collector 11A and the negative electrode current collector 11B used for the positive electrode 10A and the negative electrode 10B are members that contribute to collecting and supplying electrons generated in the active material due to the battery reaction.
  • a current collector may be a sheet-like metal member and may have a porous or perforated form.
  • the current collector may be a metal foil, a punching metal, a net or an expanded metal.
  • the positive electrode current collector 11A used for the positive electrode 10A is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel and the like, and may be, for example, an aluminum foil.
  • the negative electrode current collector 11B used in the negative electrode 10B is preferably made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel, and the like, and may be, for example, a copper foil.
  • the separator 50 is a member provided from the viewpoints of preventing a short circuit due to contact between the positive and negative electrodes and holding the electrolyte.
  • the separator 50 can be said to be a member that allows ions to pass through while preventing electronic contact between the positive electrode 10A and the negative electrode 10B.
  • the separator 50 is a porous or microporous insulating member and has a film form due to its small thickness.
  • a polyolefin microporous film may be used as the separator.
  • the microporous film used as the separator 50 may include, for example, only polyethylene (PE) or only polypropylene (PP) as the polyolefin.
  • the separator 50 may be a laminate composed of “PE microporous membrane” and “PP microporous membrane”.
  • the surface of the separator 50 may be covered with an inorganic particle coat layer and / or an adhesive layer.
  • the surface of the separator may have adhesiveness.
  • the separator 50 is not particularly restricted by its name, and may be a solid electrolyte, a gel electrolyte, insulating inorganic particles, or the like having the same function. In addition, it is preferable that the separator 50 and the electrode (positive electrode 10A / negative electrode 10B) are bonded from the viewpoint of further improving the handling of the electrode.
  • the separator 50 is bonded to the electrode by using an adhesive separator as the separator 50, applying an adhesive binder on the electrode material layer (positive electrode material layer 12A / negative electrode material layer 12B) and / or thermocompression bonding, or the like. Can be done.
  • Examples of the adhesive binder material that provides adhesiveness to the separator 50 or the electrode material layer include polyvinylidene fluoride, a vinylidene fluoride-hexafluoropropylene polymer, and an acrylic resin.
  • the thickness of the adhesive layer by applying an adhesive binder or the like may be 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the electrolyte is preferably a “non-aqueous” electrolyte such as an organic electrolyte and / or an organic solvent (that is, the electrolyte is a non-aqueous electrolyte).
  • the electrolyte metal ions released from the electrodes (the positive electrode 10A and the negative electrode 10B) are present, and therefore, the electrolyte assists the movement of the metal ions in the battery reaction.
  • a non-aqueous electrolyte is an electrolyte containing a solvent and a solute.
  • a solvent containing at least carbonate is preferable.
  • Such carbonates may be cyclic carbonates and / or chain carbonates.
  • examples of the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC). be able to.
  • chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dipropyl carbonate (DPC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DPC dipropyl carbonate
  • a Li salt such as LiPF 6 or LiBF 4
  • a Li salt such as LiPF 6 and / or LiBF 4 is preferably used.
  • any current collecting lead used in the field of secondary batteries can be used.
  • a current collecting lead may be made of a material that can achieve electron movement, and is made of a conductive material such as aluminum, nickel, iron, copper, and stainless steel.
  • the positive electrode current collector lead is preferably composed of aluminum, and the negative electrode current collector lead is preferably composed of nickel.
  • the form of the positive electrode current collector lead and the negative electrode current collector lead is not particularly limited, and may be, for example, a wire or a plate.
  • any external terminal used in the field of secondary batteries can be used.
  • Such an external terminal may be made of a material capable of achieving electron movement, and is usually made of a conductive material such as aluminum, nickel, iron, copper, and stainless steel.
  • the external terminal 5 may be electrically and directly connected to the substrate, or may be electrically and indirectly connected to the substrate via another device.
  • the present invention is not limited to this, and the positive electrode current collector lead connected to each of the plurality of positive electrodes may have the function of the positive electrode external terminal, and the negative electrode current collector connected to each of the plurality of negative electrodes.
  • the lead may have a function of an external terminal for negative electrode.
  • the exterior body may have the form of a conductive hard case or a flexible case (such as a pouch) as described above.
  • the conductive hard case consists of a main body and a lid.
  • a main-body part consists of the bottom part and side part which comprise the bottom face of the said exterior body.
  • the main body and the lid are sealed after the electrode assembly, the electrolyte, the current collecting lead, and the external terminal are accommodated.
  • the sealing method is not particularly limited, and examples thereof include a laser irradiation method.
  • a material constituting the main body part and the lid part any material capable of constituting a hard case type exterior body in the field of secondary batteries can be used.
  • Such a material may be any material that can achieve electron transfer, and examples thereof include conductive materials such as aluminum, nickel, iron, copper, and stainless steel.
  • the dimensions of the main body and the lid are mainly determined according to the dimensions of the electrode assembly.
  • the dimensions are such that the electrode assembly is prevented from moving (displacement) within the exterior body. It is preferable to have. By preventing the movement of the electrode assembly, the electrode assembly is prevented from being destroyed, and the safety of the secondary battery is improved.
  • the flexible case is composed of a soft sheet.
  • the soft sheet only needs to have a degree of softness that can achieve bending of the seal portion, and is preferably a plastic sheet.
  • the plastic sheet is a sheet having a characteristic that the deformation due to the external force is maintained when the external sheet is applied and then removed.
  • a so-called laminate film can be used.
  • a flexible pouch made of a laminate film can be produced, for example, by laminating two laminate films and heat-sealing the peripheral edge.
  • the laminate film a film obtained by laminating a metal foil and a polymer film is generally used. Specifically, a film having a three-layer structure including an outer layer polymer film / metal foil / inner layer polymer film is exemplified.
  • the outer layer polymer film is for preventing damage to the metal foil due to permeation and contact of moisture and the like, and polymers such as polyamide and polyester can be suitably used.
  • the metal foil is for preventing the permeation of moisture and gas, and a foil of copper, aluminum, stainless steel or the like can be suitably used.
  • the inner layer polymer film is for protecting the metal foil from the electrolyte accommodated therein, and for melting and sealing at the time of heat sealing, and polyolefin or acid-modified polyolefin can be suitably used.
  • the inventor of the present application diligently studied a countermeasure for suppressing the warping stress of the outermost electrode in which the electrode material layer is provided on one main surface of the current collector in a cross-sectional view. As a result, the present invention has been devised.
  • the “partial electrode assembly” as used in the present specification is a stage before an electrode assembly (finished product) is finally obtained by providing an outermost layer electrode, and corresponds to a precursor of the electrode assembly. Point to.
  • the “overlap region of the outermost layer electrode” as used in this specification refers to a predetermined outermost layer electrode having a two-layer structure formed by winding the outermost layer electrode around the partial electrode assembly more than one turn. Point to the point.
  • the “outer part of the overlapping region of the outermost layer electrode” as used herein is a part located outside of a predetermined portion of the outermost layer electrode having a two-layer structure in a cross-sectional view, and is a main surface of the electrode assembly The part that is exposed to.
  • the “inner part of the overlapping region of the outermost layer electrode” as used in the present specification is a part located on the inner side of a predetermined portion of the outermost layer electrode having a two-layer structure in a sectional view, and is a main surface of the electrode assembly This refers to the part that is not exposed.
  • the “separator having an extended portion” in this specification is a separator longer than the separator provided on the main surface of the electrode material layer of the outermost electrode, and extends from the end of the outermost electrode. Refers to a separator configured to be present.
  • the term “double-sided electrode” as used herein refers to an electrode material layer provided on both main surfaces of the current collector, which is positioned in the inner region of the electrode assembly.
  • the term “single-sided electrode” as used in the present specification refers to one in which an electrode material layer is provided on one main surface of a current collector that is positioned in the outermost layer region of the electrode assembly.
  • the present invention has been devised from a different viewpoint from the conventional electrode assembly having a planar laminated structure in which a plurality of electrode constituent layers in which separators are arranged between electrodes are laminated.
  • the present invention is devised based on the technical idea of winding the outermost layer electrode 10 (single-sided electrode) around the partial electrode assembly 90.
  • the present invention provides an electrode in which the outermost layer electrode 10 in which (only) the electrode material layer 12 is provided on one main surface of the current collector 11 is finally obtained in a sectional view.
  • the partial electrode assembly 90 is surrounded along the outline of at least a part of the partial electrode assembly 90 as a component of the assembly 100 (see FIG. 1).
  • Such a feature is advantageous in that it is not an extension of the common general technical knowledge of those skilled in the art of laminating the planar outermost layer electrode 10 in the electrode assembly 100 of the conventional planar laminated structure type.
  • the outermost electrode 10 surrounds the partial electrode assembly 90 along the outline of at least a part of the partial electrode assembly 90 in a cross-sectional view. Since the partial electrode assembly 90 has a substantially rectangular shape in cross-sectional view, in order for the partial electrode assembly 90 having a substantially rectangular shape in cross-sectional view to be “enclosed” by the outermost layer electrode, the outermost layer The electrode 10 needs to be positioned so as to straddle at least two bent portions of the partial electrode assembly 90. When the outermost layer electrode 10 straddles at least two bent portions of the partial electrode assembly 90, tensile stress is easily applied to the outermost layer electrode 10 due to its shape. That is, a predetermined tension can be applied to the outermost layer electrode 10.
  • the warping stress that can be generated during the pressure treatment for obtaining the electrode 10 ′ positioned in the outermost layer is specifically caused by the electrode material layer 12 ′ stretching relatively larger than the current collector 11 ′.
  • the stress is such that the main surface of the electrode material layer 12 ′ can be an outer curved surface and the main surface of the current collector 11 ′ can be an inner curved surface (see the lower left portion of FIG. 12).
  • the predetermined form (shape) of the outermost layer electrode 10 can be held by the tension.
  • the secondary battery including the electrode assembly 100 as a whole can preferably exhibit desired battery characteristics.
  • the warp stress that can occur in the outermost layer electrode 10 can be suppressed as described above, it is not necessary to take the following warp stress suppression measures that have become common technical knowledge for those skilled in the art. Specifically, since the warping stress can be generated by pressure treatment to obtain a desired density at the time of forming the outermost layer electrode, in order to suppress the warping stress according to the common general technical knowledge of those skilled in the art, Compared to the thickness of the current collector of the double-sided electrode (the electrode material layer is provided on both main surfaces of the current collector) provided in the inner region of the electrode assembly, the thickness of the current collector of the outermost layer electrode It may need to be relatively large.
  • the energy density of the battery can be reduced due to the increase in the thickness of the current collector of the outermost layer electrode.
  • the warping stress that can be generated in the outermost layer electrode 10 can be suppressed by another means as described above. It is not necessary to relatively increase the thickness of the current collector 11 of the outermost layer electrode 10 as compared to the provided double-sided electrode. Therefore, the difference between the thickness of the current collector 11 of the outermost layer electrode 10 and the thickness of the current collectors of the other double-sided electrodes can be reduced, that is, substantially the same.
  • the warping stress that can be generated in the outermost layer electrode 10 can be suppressed by another means as described above, and therefore, when forming the double-sided electrode provided in the inner region of the electrode assembly. It is not necessary to make the applied pressure relatively small at the time of forming the outermost layer electrode (single-sided electrode) as compared with the applied pressure in.
  • one embodiment of the present invention does not require an increase in the thickness of the current collector 11 of the outermost layer electrode 10 and / or a reduction in the pressure applied to the outermost layer electrode 10. It is also advantageous in that it is possible to suppress a decrease in energy density.
  • the secondary battery according to an embodiment of the present invention preferably adopts the following aspects.
  • the separator 50 with an adhesive layer that is in contact with the outermost layer electrode 10 and the partial electrode assembly 90 is positioned between the outermost layer electrode 10 and the partial electrode assembly 90 in a sectional view. Preferred (see bottom of FIG. 1).
  • the separator 50 is positioned between the outermost layer electrode 10 and the partial electrode assembly 90 in a sectional view.
  • the separator 50 is provided so as to contact both the outermost electrode 10 and the partial electrode assembly 90, and the separator 50 is provided with an adhesive layer having an adhesive function on both main surfaces (not shown). ). That is, the separator 50 is “the separator 50 with an adhesive layer”.
  • the adhesive layer provided on one main surface of the separator 50 is bonded to the electrode material layer 12 of the outermost layer electrode 10.
  • the adhesive layer provided on the other main surface of the separator 50 is bonded to the partial electrode assembly 90.
  • the outermost layer electrode 10 and the partial electrode assembly 90 can be suitably integrated via the “separator 50 with an adhesive layer”.
  • the outermost layer electrode 10 is along the contours of both main surfaces 90 ⁇ of the partial electrode assembly 90 and at least one side surface 90 ⁇ of the partial electrode assembly 90 continuous with the two main surfaces 90 ⁇ in a cross-sectional view. It preferably surrounds the partial electrode assembly 90 (see FIGS. 1 and 2).
  • the outermost layer electrode 10 In order to apply tension to the outermost layer electrode 10 as described above, the outermost layer electrode 10 needs to straddle at least two bent portions of the partial electrode assembly 90.
  • the straddle extends along the outline of at least one main surface 90 ⁇ of the partial electrode assembly 90 and at least one side surface 90 ⁇ of the partial electrode assembly 90 continuous with the two main surfaces 90 ⁇ in a cross-sectional view. This can be realized when the partial electrode assembly 90 is surrounded.
  • the outermost layer electrode 10 can be preferably “pulled”, whereby tension can be applied to the outermost layer electrode 10. Since the predetermined form (shape) of the outermost layer electrode 10 can be maintained by the tension, it is possible to suppress the occurrence of warping stress that may be generated in the outermost layer electrode 10 due to this.
  • the outermost layer electrode 10 has an entire outline including both main surfaces 90 ⁇ of the partial electrode assembly 90 and both side surfaces 90 ⁇ of the partial electrode assembly 90 continuous with the main surface 90 ⁇ in a sectional view. A side surface surrounding the partial electrode assembly 90 is shown. That is, FIGS. 1 and 2 show a mode in which the outermost layer electrode 10 surrounds the partial electrode assembly 90 so as to straddle all the bent portions of the partial electrode assembly 90 in a sectional view. Is not limited to this mode as long as it extends over at least two bent portions of the partial electrode assembly 90.
  • the outermost electrode 10 is a partial electrode along the outline of both main surfaces 90 ⁇ of the partial electrode assembly 90 and only one side surface 90 ⁇ of the partial electrode assembly 90 continuous with the two main surfaces 90 ⁇ in a cross-sectional view.
  • the assembly 90 may be surrounded (see FIG. 4).
  • the outermost electrode 10 made a overlapping region 10X that is provided so as to overlap each other in cross section, the outer portion 10X 1 of the overlapping region 10X of the outermost electrode 10, in cross section It is preferable that only the current collector 11 is provided (see FIG. 5).
  • the overlapping region 10X of the outermost electrode 10, and the outer portion 10X 1 and the inner portion 10X 2 of the outermost layer electrode 10 is in the stacked state in a sectional view.
  • the electrode material on the outer portion 10X 1 of the overlapping region 10X of the outermost electrode 10 layer 12 Even if a conductive foreign substance is mixed in the battery and an internal short circuit occurs due to the absence of the battery, the short circuit state can be terminated with only slight heat generation. That is, it is possible to suitably suppress the short-circuit current from flowing to the inner region of the electrode assembly 100. As a result, the safety of the battery can be maintained and improved.
  • the separator 50 is longer than the outermost layer electrode 10, and has an extended portion 50 ⁇ / b> X extending from one end 10 a of the outermost layer electrode 10. However, it is preferable to be fixed to the outermost layer electrode 10 located inside the separator 50 in a sectional view (see FIG. 6).
  • This embodiment is based on the premise that the separator 50 is longer than the outermost layer electrode 10 and has an extended portion 50X extending from the one end portion 10a of the outermost layer electrode 10.
  • the separator 50 is usually provided from the viewpoint of preventing a short circuit due to contact between the positive and negative electrodes.
  • the separator 50 is compared with a case where the outermost layer electrodes 10 have overlapping regions that overlap each other in a sectional view (see FIG. 1). Thus, only the separator 50 is provided in the portion corresponding to the outer portion of the overlapping region of the outermost layer electrode 10 without providing the current collector 11 and the electrode material layer 12.
  • the absence of the current collector 11 and the electrode material layer 12 is present.
  • the thickness of the current collector 11 and the electrode material layer 12 in the overlapping region of the outermost layer electrode 10 can be relatively reduced.
  • a decrease in the energy density of the battery due to the thickness reduction of the current collector 11 and the electrode material layer 12 can be suppressed.
  • the outermost layer electrode 10 in the portion facing the side surface 90 ⁇ of the partial electrode assembly 90 has a single-sided electrode structure in a cross-sectional view, and the outermost layer electrode 10 is preferably a negative electrode (see FIG. 1). ).
  • the electrode material is also applied to the portion facing the side surface 90 ⁇ of the partial electrode assembly 90.
  • Layer 11 will be positioned.
  • the negative electrode material layer can function as a layer capable of receiving lithium ions. Lithium ions that can move in 90 side regions can be suitably received. Therefore, it is possible to suitably suppress lithium deposition on the negative electrode end portion of the partial electrode assembly 90 due to lithium ion movement. Therefore, as a result of suppressing lithium precipitation, the safety of the battery can be improved.
  • the outermost layer electrode 10 in a portion facing the side surface 90 ⁇ of the partial electrode assembly 90 may include only the current collector 11 in a cross-sectional view (see FIG. 7).
  • the electrode material layer 12 does not exist in the outermost layer electrode 10 at the portion facing the side surface 90 ⁇ of the partial electrode assembly 90. Therefore, compared with the case where the outermost layer electrode 10 includes the electrode material layer 12, the width dimension of the electrode assembly 100 finally obtained due to the absence of the electrode material layer 12 is relatively reduced. be able to. Therefore, the size of the secondary battery including the electrode assembly 100 can be relatively reduced.
  • the positive electrode material layer does not substantially function as a layer capable of receiving lithium ions, and therefore, due to lithium ions that can move in the side region of the partial electrode assembly 90. It is difficult to suppress lithium deposition on the negative electrode end of the partial electrode assembly 90. Therefore, when the outermost layer electrode 10 is used as a positive electrode, it is preferable that the outermost layer electrode 10 in the portion facing the side surface 90 ⁇ of the partial electrode assembly 90 has only the current collector 11 in a sectional view.
  • the current collector 11 of the outermost layer electrode 10 is positioned on the inner side than the end portions of the tabs 20 (the positive electrode tab 20A and the negative electrode tab 20B) provided to the double-sided electrodes of the partial electrode assembly 90 in plan view. It is preferable that it is (refer FIG. 8).
  • the current collector 11 of the outermost layer electrode 10 is positioned on the inner side of the end 20 ⁇ of the tab 20 provided to the partial electrode assembly 90 in plan view.
  • the “end portion 20 ⁇ of the drawer tab 20” herein refers to a protruding end portion located on the outermost side of the drawer tab 20 in a plan view. Due to the inner arrangement of the current collector 11 of the outermost layer electrode 10, the end 20 ⁇ of the extraction tab 20 provided to the partial electrode assembly 90 when the end of the current collector 11 is provided in plan view. Compared with the case of being on substantially the same plane, the extraction tab 20 provided in the partial electrode assembly 90 can be more easily exposed.
  • a part of the current collector 11 exposed at the end portion of the outermost layer electrode 10 can be preferably easily welded to the extraction tab 20.
  • Such suitable welding can contribute to suitable electrical connection between the lead portion (welded portion) and the external terminal via the leads.
  • the positive electrode of the partial electrode assembly 90 from the viewpoint of preventing a short circuit caused by a part of the negative electrode current collector facing the positive electrode tab in plan view.
  • the tab 20A is preferably protected with a tape.
  • the outermost electrode 10 has a tab, and only the tab of the outermost electrode 10 is positioned so as to locally overlap the tab of the partial electrode assembly 90 in a plan view ( (See FIG. 9).
  • the outermost layer electrode 10 wound around the partial electrode assembly 90 via the separator 50 has a substantially rectangular shape before winding.
  • the positive electrode tab 20A and the negative electrode side collector of the partial electrode assembly 90 are viewed in plan view when the outermost layer electrode 10 is wound around the partial electrode assembly 90.
  • a short circuit may occur due to a part of the electric bodies facing each other.
  • the negative electrode tab 20B 1 provided on the outermost layer electrode 10 only the negative electrode tab 20B 1 is viewed in plane it is preferable to be positioned to overlap the negative electrode tab 20B 2 and the local portion the electrode assembly 90.
  • the positive electrode tab 20A of the partial electrode assembly 90 and a part of the negative electrode side current collector face each other in plan view.
  • the safety of the battery can be improved as a result of avoiding the occurrence of such a short circuit.
  • the separator 50 is longer than the outermost layer electrode 10, and has extended portions 50 ⁇ / b> X extending from both end portions 10 a of the outermost layer electrode 10. It is preferable that they are connected to each other (see FIG. 10).
  • This embodiment is based on the premise that the separator 50 is longer than the outermost layer electrode 10 and has extended portions 50X extending from both end portions 10a of the outermost layer electrode 10.
  • a part of the partial electrode assembly 90 is surrounded by the outermost layer electrode 10 in a cross-sectional view, and the remaining part of the partial electrode assembly 90 is surrounded only by the extending part 50 ⁇ / b> X of the separator 50. That is, this aspect is characterized in that only the separator 50 is positioned at a predetermined position of the contour of the partial electrode assembly 90. This means that the current collector 11 and the electrode material layer 12 do not exist at a predetermined position on the contour of the partial electrode assembly 90.
  • the current collector 11 and the outermost layer electrode 10 including the current collector 11 and the electrode material layer 12 are provided along the entire contour of the partial electrode assembly 90.
  • the thicknesses of the current collector 11 and the electrode material layer 12 can be relatively reduced.
  • the energy density of the battery can be improved due to the thickness reduction of the current collector 11 and the electrode material layer 12.
  • a part of the current collector 11 of the outermost layer electrode 10 is exposed, and a part of the exposed current collector 11 is positioned outside the separator 50 and the electrode material layer 12 in a plan view. It is preferable (see the top of FIG. 1 and the like).
  • the present invention is characterized in that the outermost electrode 10 surrounds the partial electrode assembly 90 in a sectional view, and both the outermost electrode 10 and the partial electrode assembly 90 are components of the electrode assembly 100. Therefore, in order for the electrode assembly 100 to function properly as a whole, the tab 20 of the double-sided electrode in the partial electrode assembly 90 and a part of the current collector 11 of the outermost layer electrode 10 can be electrically connected. It is necessary to be in a proper state. That is, it is necessary to arrange the tab 20 of the double-sided electrode in the partial electrode assembly 90 and a part of the current collector 11 of the outermost layer electrode 10 so as to face each other in plan view. Therefore, it is necessary to expose a part of the current collector 11 of the outermost layer electrode 10 in a plan view.
  • a part of the exposed current collector 11 is positioned outside the separator 50 and the electrode material layer 12 in a plan view. Accordingly, a part of the current collector 11 can be preferably opposed to the tab 20 of the double-sided electrode in the partial electrode assembly 90 in plan view. Therefore, the tab 20 of the double-sided electrode in the partial electrode assembly 90 and a part of the current collector 11 where the outermost layer electrode 10 is exposed can be electrically and suitably connected. As a result, the electrode assembly 100 is entirely connected. As a result, it can function properly.
  • the manufacturing method of the present invention has been devised from a viewpoint different from the conventional method of forming an electrode assembly having a planar laminated structure by laminating a plurality of electrode constituent layers obtained by arranging separators between electrodes. .
  • the outermost layer electrode 10 obtained by providing (only) the electrode material layer 12 on one main surface of the current collector 11 is at least a part of the partial electrode assembly 90 in a sectional view. It has the technical idea of winding around the partial electrode assembly 90 along the contour. That is, this technical idea is advantageous in that it is not an extension of the conventional technical knowledge of those skilled in the art of stacking electrodes including the outermost layer electrode to obtain an electrode assembly.
  • the technical idea of the present invention is to surround the partial electrode assembly 90 along the outline of at least a part of the partial electrode assembly 90 in a sectional view using the outermost layer electrode 10. That is, the technical idea of the present invention is that the outermost electrode 10 is wound around the partial electrode assembly 90 (see FIGS. 3 (ii) and (iii)). Since the partial electrode assembly 90 has a substantially rectangular shape in cross-sectional view, in order for the partial electrode assembly 90 having a substantially rectangular shape in cross-sectional view to be “enclosed” by the outermost layer electrode, the outermost layer The electrode 10 needs to be positioned so as to straddle at least two bent portions of the partial electrode assembly 90.
  • the warping stress that can be generated during the pressure treatment for obtaining the electrode 10 ′ positioned in the outermost layer is, specifically, that the electrode material layer 12 ′ expands relatively larger than the current collector 11 ′. This is a stress that can cause the main surface of the electrode material layer 12 ′ to be an outer curved surface and the main surface of the current collector 11 ′ to be an inner curved surface (see the lower left part of FIG. 12).
  • the manufacturing method according to an embodiment of the present invention it is possible to provide a predetermined tension to the outermost layer electrode 10, and therefore the predetermined form (shape) of the outermost layer electrode 10 can be held by the tension.
  • the predetermined form (shape) of the outermost layer electrode 10 can be held by the tension.
  • the outermost electrode 10 can be prevented from being partially separated from the partial electrode assembly 90 in a sectional view.
  • the electrode assembly 100 can be obtained mainly through the following steps.
  • the separator 50 is provided on the main surface of the electrode material layer 12 of the elongate outermost layer electrode 10 (the electrode material layer 12 is provided on one main surface of the current collector 11) (FIG. 3 (i)). .
  • the separator 50 it is preferable to use a separator having adhesive layers on both main surfaces thereof. The presence of the adhesive layer makes it possible to bond the long outermost layer electrode 10 and the separator 50 to obtain the outermost electrode 10 with the long separator 50.
  • the partial electrode assembly 90 is surrounded by the outermost layer electrode 10 with the separator 50 along the outline of at least a part of the partial electrode assembly 90 in a cross-sectional view (FIGS. 3 (ii) and 3 (iii)).
  • the outermost layer electrode 10 with the separator 50 is wound around the partial electrode assembly 90 along the outline of at least a part of the partial electrode assembly 90 in a sectional view.
  • the partial electrode assembly 90 is provided on the central region of the separator 50 of the outermost electrode 10 with the long separator 50.
  • the outermost electrode 10 with the long separator 50 is wound and bonded to one side surface of the partial electrode assembly 90 and a top surface continuous with the one side surface in a cross-sectional view (FIG. 3 (ii)).
  • the separator having the adhesive layers on both main surfaces thereof is used as the separator 50 as described above, the outermost layer electrode with the separator 50 due to the presence of the adhesive layer when the outermost layer electrode 10 is wound. 10 can be bonded to the partial electrode assembly 90. Then, the remaining long separator 50 is attached on the outermost electrode 10 with the separator 50 adhered to the other side surface of the partial electrode assembly 90 and the upper surface of the partial electrode assembly 90 in FIG. The outermost layer electrode 10 is wound and bonded (FIG. 3 (iii)). Thereby, the precursor 101 of the electrode assembly 100 provided with the outermost layer electrode 10 and the partial electrode assembly 90 is obtained. Next, a heat and pressure treatment is performed on the precursor 101 of the electrode assembly 100 (FIG. 3 (iv)). Thus, the desired electrode assembly 100 is finally obtained.
  • the manufacturing method according to an embodiment of the present invention preferably adopts the following aspects.
  • the outermost layer electrode 10 follows the contour formed by at least one side surface of the partial electrode assembly 90 in which the outermost layer electrode 10 is continuous with both main surfaces of the partial electrode assembly 90 in a cross-sectional view. It is preferable to surround the partial electrode assembly 90 (see FIGS. 3 (ii) and (iii)).
  • the outermost layer electrode 10 In order to apply tension to the outermost layer electrode 10 as described above, the outermost layer electrode 10 needs to straddle at least two bent portions of the partial electrode assembly 90.
  • the straddle is a partial electrode along the outline of at least one main surface of the partial electrode assembly 90 and at least one side surface 90 ⁇ of the partial electrode assembly 90 continuous with the two main surfaces in a cross-sectional view. This can be realized when the assembly 90 is surrounded.
  • the outermost electrode 10 can be preferably “pulled”. That is, it is possible to suitably apply tension to the outermost layer electrode 10.
  • the outermost layer electrode 10 and the partial electrode assembly 90 are integrated using the separator 50 with an adhesive layer to form the precursor 101 of the electrode assembly 100, and the precursor of the electrode assembly 100 is formed. It is preferable to apply heat and pressure to 101 (see FIG. 3 (iv)).
  • the separator 50 it is preferable to use a separator having adhesive layers on both principal surfaces thereof as the separator 50.
  • the separator 50 with the adhesive layer is used, the outermost layer electrode 10 and the partial electrode assembly 90 are caused by the fact that the separator 50 with the adhesive layer is positioned between the outermost layer electrode 10 and the partial electrode assembly 90.
  • Can be suitably integrated when heat and pressure are applied to the precursor 101 of the electrode assembly 100 obtained by integration, the inter-layer connectivity (adhesion) can be improved. It becomes possible to perform more suitable integration with the solid 90.
  • the main surface of the electrode material layer 12 can be an outer curved surface in the outermost layer electrode 10, and the main surface of the current collector 11 can be an inner curved surface. It is possible to more suitably suppress the occurrence of warping stress.
  • the outermost layer electrode 10 includes forming outermost layer electrodes having overlapping regions that overlap each other in a sectional view, and an outer portion of the overlapping region 10X of the outermost layer electrode 10 in a sectional view. It is preferable to provide only the current collector 11 (see FIG. 5).
  • One embodiment includes providing a separator 50 that is longer than the outermost layer electrode 10 and has an extended portion 50X extending from one end of the outermost layer electrode 10, and includes an extended portion 50X of the separator 50. Is preferably fixed to the outermost electrode 10 located inside the separator 50 in a sectional view (see FIG. 6).
  • the separator 50 is provided in the portion corresponding to the outer portion of the overlapping region of the outermost layer electrode 10 without providing the current collector 11 and the electrode material layer 12.
  • the current collector 11 and the electrode material layer 12 do not exist.
  • the thickness of the current collector 11 and the electrode material layer 12 in the overlapping region of the outermost layer electrode 10 can be relatively reduced. Therefore, a decrease in the energy density of the battery due to the thickness reduction of the current collector 11 and the electrode material layer 12 can be suppressed.
  • the outermost layer electrode 10 at a portion facing the side surface 90 ⁇ of the partial electrode assembly 90 has a single-sided electrode structure in a cross-sectional view and the outermost layer electrode 10 is used as a negative electrode (see FIG. 1).
  • the electrode material is also applied to the portion facing the side surface 90 ⁇ of the partial electrode assembly 90.
  • Layer 11 will be positioned.
  • the negative electrode material layer can function as a layer capable of receiving lithium ions. Therefore, lithium ions that can move in the side region of the partial electrode assembly 90 are used. It can be suitably received. Therefore, it is possible to suitably suppress lithium deposition on the negative electrode end portion of the partial electrode assembly 90 due to the movement of lithium ions, thereby improving the safety of the battery.
  • the outermost layer electrode 10 at the portion facing the side surface 90 ⁇ of the partial electrode assembly 90 may have a structure having only the current collector 11 in a sectional view (see FIG. 7). According to such a structure, since the electrode material layer 12 does not exist in the outermost layer electrode 10 in the portion facing the side surface 90 ⁇ of the partial electrode assembly 90, the outermost layer electrode 10 includes the electrode material layer 12. The width dimension of the finally obtained electrode assembly 100 can be relatively reduced as compared with the above.
  • the current collector 11 of the outermost layer electrode 10 be positioned on the inner side of the tab end portion used for the double-sided electrode of the partial electrode assembly 90 in plan view (see FIG. 8).
  • the current collector 11 of the outermost layer electrode 10 is located on the inner side of the end 20 ⁇ of the tab 20 that provides the partial electrode assembly 90 in plan view (the projecting end of the tab 20 located on the outermost side in plan view). Position. Due to the inner arrangement of the current collector 11 of the outermost layer electrode 10, the end 20 ⁇ of the extraction tab 20 provided to the partial electrode assembly 90 when the end of the current collector 11 is provided in plan view. Compared with the case of being on substantially the same plane, the extraction tab 20 provided to the partial electrode assembly 90 can be more easily exposed. Therefore, a part of the current collector 11 exposed at the end portion of the outermost layer electrode 10 can be easily welded to the extraction tab 20.
  • a negative electrode tab is provided on the outermost layer electrode 10 from the viewpoint of preventing the short circuit, and only the negative electrode tab is provided in the partial electrode assembly 90 in plan view. It is preferable to overlap locally with the negative electrode tab. Thereby, after winding, it can avoid that the positive electrode tab of the partial electrode assembly 90 and a part of negative electrode side current collector mutually oppose by planar view. Also from the above, by avoiding such mutual facing, it is possible to avoid occurrence of a short circuit due to the positive electrode tab of the partial electrode assembly 90 and a part of the negative electrode side current collector facing each other in plan view. it can. Therefore, the safety of the battery can be improved.
  • the present invention includes providing a separator 50 that is longer than the outermost layer electrode 10 and has extended portions 50X that extend from both ends of the outermost layer electrode 10, and includes an extended portion 50X of the separator 50. It is preferable to connect each other (see FIG. 10).
  • a part of the partial electrode assembly 90 is surrounded by the outermost layer electrode 10 in a cross-sectional view, and the remaining part of the partial electrode assembly 90 is surrounded only by the extended portion 50X of the separator 50. That is, in this aspect, only the separator 50 is positioned at a predetermined position on the contour of the partial electrode assembly 90. That is, in this aspect, the current collector 11 and the electrode material layer 12 do not exist at predetermined locations on the contour of the partial electrode assembly 90. Therefore, in this aspect, the current collector is provided at a location where only the separator 50 is provided, as compared with the case where the outermost layer electrode 10 including the current collector 11 and the electrode material layer 12 is provided along the entire contour of the partial electrode assembly 90. 11 and the electrode material layer 12 can be relatively reduced in thickness. As a result, the energy density of the battery can be improved.
  • the secondary battery according to an embodiment of the present invention can be used in various fields where power storage is assumed.
  • the secondary battery according to an embodiment of the present invention particularly the non-aqueous electrolyte secondary battery, is merely an example, and the electric / information / communication field (for example, a mobile phone, a smart phone, a notebook)
  • Mobile devices such as personal computers and digital cameras, activity meters, arm computers, and electronic paper
  • home and small industrial applications eg, power tools, golf carts, home, nursing and industrial robots
  • large industries Applications eg, forklifts, elevators, bay harbor cranes
  • transportation systems eg, hybrid vehicles, electric vehicles, buses, trains, electric assist bicycles, electric motorcycles
  • power system applications eg, various power generation
  • IoT field space and deep sea applications (for example, spacecraft, areas such as submersible research vessel) and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本発明の一実施形態では、電極10A、10B間にセパレータ50が配置された電極構成層が複数積層された平面積層構造の電極組立体100を備えた二次電池であって、電極組立体100は、電極組立体100の内側領域に集電体11の両主面に電極材層12が設けられた両面電極を有して成り、かつ電極組立体100の一部を成す部分電極組立体90を備え、電極組立体100の最外層領域に位置する最外層電極10は、集電体11の一方の主面に電極材層12が設けられた片面電極を含み、および断面視にて部分電極組立体90の少なくとも一部の輪郭に沿って部分電極組立体90を取り囲んでいる、二次電池が提供される。

Description

二次電池およびその製造方法
 本発明は、二次電池およびその製造方法に関する。
 従前より充放電が繰り返し可能な二次電池が様々な用途に用いられている。例えば、二次電池は、スマートフォン、ノートパソコン等の電子機器の電源として用いられている。
 近年、当該電子機器の薄型化および小型化の要求が一層高まっていることに伴い、薄型化・小型化かつ高容量の二次電池が要求されている。かかる要求に応えるため、特許文献1には、二次電池の構成要素である電極組立体が、断面視にて正極、負極およびセパレータを含む電極構成層が複数積層された平面積層構造を有する旨が開示されている。当該電極組立体の正極および負極、すなわち電極組立体の電極は、断面視にて集電体および集電体の主面に活物質が塗工された電極材層を備えている。特許文献1には、積層方向に沿って設けられた複数の電極のうちの最外層の電極では、電極材層が断面視にて集電体の一方の主面にのみ供されている旨が開示されている。
特開2014-120456号公報
 ここで、本願発明者は、最外層の電極において、電極材層が断面視にて集電体の一方の主面にのみ供されている場合、以下の問題が生じ得ることを見出した。
 図12に示すように、平面積層構造の電極組立体100’(平面視で矩形形状の電極組立体100X’および非矩形形状の電極組立体100Y’等)は、積層方向に沿ってセパレータ50’を挟んで正極10A’と負極10B’とを交互に配置した後、層間相互の接続を行うために熱加圧(ホットプレスともいう)を行うことによって得られる。積層方向に沿って設けられる複数の電極10’の各々は、集電体11’の少なくとも一方の主面に電極材層12’を塗布および乾燥後、所望の密度を得るための加圧処理を行うことで得られる。具体的には、電極組立体100’の内側領域に位置する電極10’は、集電体11’の両主面に電極材層12’を塗布および乾燥した後、所望の密度を得るための加圧処理を行うことで得られる。一方、電極組立体100’の最外層領域に位置する電極10’は、集電体11’の一方の主面にのみ電極材層12’を塗布および乾燥した後、所望の密度を得るための加圧処理を行うことで得られる。また、集電体11’は主として金属箔、すなわち金属部材から構成される一方、電極材層12’は、主として活物質およびバインダー(高分子系化合物)を含む。つまり、集電体11’と電極材層12’とでは、その構成材料の種類が相互に異なっている。
 かかる集電体11’と電極材層12’との材料の種類の違いは、所望の密度を有する各電極10’を得るための加圧処理を施す際において、集電体11’と電極材層12’の伸張度の違いにつながり得る。具体的には、その伸張度の違いに起因して、最外層に位置付ける電極10’(片面電極に相当)を得るための加圧処理時に電極材12’は集電体11’よりも相対的に大きく伸張する傾向にある。特に、最外層に位置付ける電極10’(片面電極に相当)では電極材層12’が集電体11’の主面の一方の側にのみ設けられるため、当該伸張度の違いに起因して、最外層に位置付ける電極10’(片面電極に相当)には反り応力が生じ易い。かかる反り応力の発生は、最外層に位置付ける電極10’(片面電極に相当)の反りにつながり得る(図12の左下部参照)。
 最外層に位置付ける電極10’(片面電極に相当)の反りは、電極組立体100’の構成時に、内側領域の電極10’(両面電極に相当)との間に位置付けるセパレータ50’に最外層に位置付ける電極10’を全体として好適に接着できないことになり得る。そのため、最外層の電極10’が電極組立体100’の構成要素として好適に機能しない虞がある。その結果、全体として当該電極組立体100’を含む二次電池は、所望の電池特性を好適に発揮できない虞がある。
 本発明は、かかる事情に鑑みて案出されたものである。具体的には、本発明は、電極材層が断面視にて集電体の一方の主面に供されている最外層電極の反り応力の発生を好適に抑制可能な電極組立体を備えた二次電池およびその製造方法を提供することを目的とする。
 上記目的を達成するために、本発明の一実施形態では、
 電極間にセパレータが配置された電極構成層が複数積層された平面積層構造の電極組立体を備えた二次電池であって、
 電極組立体は、電極組立体の内側領域に集電体の両主面に電極材層が設けられた両面電極を有して成り、かつ電極組立体の一部を成す部分電極組立体を備え、
 電極組立体の最外層領域に位置する最外層電極は、集電体の一方の主面に電極材層が設けられた片面電極を含み、および断面視にて部分電極組立体の少なくとも一部の輪郭に沿って部分電極組立体を取り囲んでいる、二次電池が提供される。
 上記目的を達成するために、本発明の一実施形態では、
 電極間にセパレータが配置された電極構成層が複数積層された平面積層構造の電極組立体を備えた二次電池の製造方法であって、
 断面視にて、集電体の両主面に電極材層を設けて得られる両面電極を有して成る電極組立体の一部を成す部分電極組立体を形成することを含み、
 集電体の一方の主面に電極材層を設けて得られる片面電極を含む電極組立体の最外層電極を用いて、断面視にて部分電極組立体の少なくとも一部の輪郭に沿って部分電極組立体を取り囲むことを更に含む、二次電池の製造方法が提供される。
 本発明の一実施形態によれば、電極材層が断面視にて集電体の一方の主面に供されている最外層電極の反り応力の発生を抑制可能である。
図1は、本発明の一実施形態に係る二次電池の電極組立体の模式図である。 図2は、本発明の一実施形態に係る二次電池の電極組立体の詳細断面図である。 図3は、本発明の一実施形態に係る二次電池の電極組立体の製造フローの模式図である。 図4は、本発明の別の実施形態に係る二次電池の電極組立体の模式図である。 図5は、本発明の更に別の実施形態に係る二次電池の電極組立体の模式図である。 図6は、本発明の更に別の実施形態に係る二次電池の電極組立体の模式図である。 図7は、本発明の更に別の実施形態に係る二次電池の電極組立体の模式図である。 図8は、本発明の更に別の実施形態に係る二次電池の電極組立体の模式図である。 図9は、本発明の更に別の実施形態に係る二次電池の電極組立体の模式図である。 図10は、本発明の更に別の実施形態に係る二次電池の電極組立体の模式図である。 図11は、電極構成層の基本的構成を模式的に示した断面図である。 図12は、本願発明者が見出した技術的課題を示す模式図である。
 本発明の一実施形態に係る二次電池の製造方法について説明する前に、二次電池の基本的構成について説明しておく。なお、本明細書でいう「二次電池」という用語は充電・放電の繰り返しが可能な電池のことを指す。「二次電池」は、その名称に過度に拘泥されるものではなく、例えば、「蓄電デバイス」なども包含し得る。本明細書でいう「平面視」とは、二次電池を構成する電極材の積層方向に基づく厚み方向に沿って対象物を上側または下側からみたときの状態のことである。又、本明細書でいう「断面視」とは、二次電池を構成する電極材の積層方向に基づく厚み方向に対して略垂直な方向からみたときの状態のことである。本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材・部位または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」に相当し、その逆向きが「上方向」に相当すると捉えることができる。
[二次電池の基本的構成]
 本発明では二次電池が提供される。本明細書でいう「二次電池」とは、充電・放電の繰り返しが可能な電池のことを指している。従って、本発明の二次電池は、その名称に過度に拘泥されるものでなく、例えば“蓄電デバイス”なども本発明の対象に含まれ得る。二次電池は、外装体の内部に電極組立体と電解質とが収容および封入された構造を有して成る。本発明では、電極組立体は、正極、負極およびセパレータを含む電極構成層が複数積層された平面積層構造を有することを前提とする。また、外装体は、導電性ハードケース又はフレキシブルケース(パウチ等)の形態を採ってよい。外装体の形態がフレキシブルケース(パウチ等)である場合、複数の正極の各々は、正極用集電リードを介して、正極用外部端子に連結されている。正極用外部端子はシール部により外装体に固定され、当該シール部は電解質の液漏れを防止する。同様に、複数の負極の各々は、負極用集電リードを介して負極用外部端子に連結されている。負極用外部端子はシール部により外装体に固定され、シール部が電解質の液漏れを防止する。なお、これに限定されず、複数の正極の各々と接続される正極用集電リードは正極用外部端子の機能を備えていてよく、また、複数の負極の各々と接続される負極用集電リードは負極用外部端子の機能を備えていてよい。外装体の形態が導電性ハードケースの場合、複数の正極の各々は、正極用集電リードを介して、正極用外部端子に連結されている。正極用外部端子はシール部により外装体に固定され、当該シール部は電解質の液漏れを防止する。
 正極10Aは、少なくとも正極集電体11Aおよび正極材層12Aから構成されており(図11参照)、正極集電体11Aの少なくとも片面に正極材層12Aが設けられている。当該正極集電体11Aのうち正極材層12Aが設けられていない箇所、すなわち正極集電体11Aの端部には正極側引出しタブが位置付けられている。正極材層12Aには電極活物質として正極活物質が含まれている。負極10Bは少なくとも負極集電体11Bおよび負極材層12Bから構成されており(図11参照)、負極集電体11Bの少なくとも片面に負極材層12Bが設けられている。当該負極集電体11Bのうち負極材層12Bが設けられていない箇所、すなわち負極集電体11Bの端部には負極側引出しタブが位置付けられている。負極材層12Bには電極活物質として負極活物質が含まれている。
 正極材層12Aに含まれる正極活物質および負極材層12Bに含まれる負極活物質は、二次電池において電子の受け渡しに直接関与する物質であり、充放電、すなわち電池反応を担う正負極の主物質である。より具体的には、「正極材層12Aに含まれる正極活物質」および「負極材層12Bに含まれる負極活物質」に起因して電解質にイオンがもたらされ、かかるイオンが正極10Aと負極10Bとの間で移動して電子の受け渡しが行われて充放電がなされる。正極材層12Aおよび負極材層12Bは特にリチウムイオンを吸蔵放出可能な層であることが好ましい。つまり、電解質を介してリチウムイオンが正極10Aと負極10Bとの間で移動して電池の充放電が行われる二次電池が好ましい。充放電にリチウムイオンが関与する場合、二次電池は、いわゆる“リチウムイオン電池”に相当する。
 正極材層12Aの正極活物質は例えば粒状体から成るところ、粒子同士のより十分な接触と形状保持のためにバインダーが正極材層12Aに含まれていることが好ましい。更には、電池反応を推進する電子の伝達を円滑にするために導電助剤が正極材層12Aに含まれていてよい。同様に、負極材層12Bの負極活物質は例えば粒状体から成るところ、粒子同士のより十分な接触と形状保持のためにバインダーが含まれることが好ましく、電池反応を推進する電子の伝達を円滑にするために導電助剤が負極材層12Bに含まれていてよい。このように、複数の成分が含有されて成る形態ゆえ、正極材層12Aおよび負極材層12Bはそれぞれ“正極合材層”および“負極合材層”などと称すこともできる。
 正極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、正極活物質は例えばリチウム含有複合酸化物であることが好ましい。より具体的には、正極活物質は、リチウムと、コバルト、ニッケル、マンガンおよび鉄から成る群から選択される少なくとも1種の遷移金属とを含むリチウム遷移金属複合酸化物であることが好ましい。つまり、二次電池の正極材層12Aにおいては、そのようなリチウム遷移金属複合酸化物が正極活物質として好ましくは含まれている。例えば、正極活物質はコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、または、それらの遷移金属の一部を別の金属で置き換えたものであってよい。このような正極活物質は、単独種として含まれてよいものの、二種以上が組み合わされて含まれていてもよい。より好適な態様では正極材層12Aに含まれる正極活物質がコバルト酸リチウムとなっている。
 正極材層12Aに含まれる得るバインダーとしては、特に制限されるわけではないが、ポリフッ化ビリニデン、ビリニデンフルオライド-ヘキサフルオロプロピレン共重合体、ビリニデンフルオライド-テトラフルオロチレン共重合体およびポリテトラフルオロチレンなどから成る群から選択される少なくとも1種を挙げることができる。正極材層12Aに含まれ得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。例えば、正極材層12Aのバインダーはポリフッ化ビニリデンであってよい。あくまでも例示にすぎないが、正極材層12Aの導電助剤はカーボンブラックである。さらに、正極材層12Aのバインダーおよび導電助剤が、ポリフッ化ビニリデンとカーボンブラックとの組合せとなっていてよい。
 負極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、負極活物質は例えば各種の炭素材料、酸化物、または、リチウム合金などであることが好ましい。
 負極活物質の各種の炭素材料としては、黒鉛(天然黒鉛、人造黒鉛)、ソフトカーボン、ハードカーボン、ダイヤモンド状炭素などを挙げることができる。特に、黒鉛は電子伝導性が高く、負極集電体11Bとの接着性が優れる点などで好ましい。負極活物質の酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛および酸化リチウムなどから成る群から選択される少なくとも1種を挙げることができる。負極活物質のリチウム合金は、リチウムと合金形成され得る金属であればよく、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元、3元またはそれ以上の合金であってよい。このような酸化物は、その構造形態としてアモルファスとなっていることが好ましい。結晶粒界または欠陥といった不均一性に起因する劣化が引き起こされにくくなるからである。あくまでも例示にすぎないが、負極材層12Bの負極活物質が人造黒鉛となっていてよい。
 負極材層12Bに含まれ得るバインダーとしては、特に制限されるわけではないが、スチレンブタジエンゴム、ポリアクリル酸、ポリフッ化ビニリデン、ポリイミド系樹脂およびポリアミドイミド系樹脂から成る群から選択される少なくとも1種を挙げることができる。例えば負極材層12Bに含まれるバインダーはスチレンブタジエンゴムとなっていてよい。負極材層12Bに含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。なお、負極材層12Bには、電池製造時に使用された増粘剤成分(例えばカルボキシルメチルセルロース)に起因する成分が含まれていてもよい。
 あくまでも例示にすぎないが、負極材層12Bにおける負極活物質およびバインダーが人造黒鉛とスチレンブタジエンゴムとの組合せとなっていてよい。
 正極10Aおよび負極10Bに用いられる正極集電体11Aおよび負極集電体11Bは電池反応に起因して活物質で発生した電子を集めたり供給したりするのに資する部材である。このような集電体は、シート状の金属部材であってよく、多孔または穿孔の形態を有していてよい。例えば、集電体は金属箔、パンチングメタル、網またはエキスパンドメタル等であってよい。正極10Aに用いられる正極集電体11Aは、アルミニウム、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えばアルミニウム箔であってよい。一方、負極10Bに用いられる負極集電体11Bは、銅、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えば銅箔であってよい。
 セパレータ50は、正負極の接触による短絡防止および電解質保持などの観点から設けられる部材である。換言すれば、セパレータ50は、正極10Aと負極10Bとの間の電子的接触を防止しつつイオンを通過させる部材であるといえる。好ましくは、セパレータ50は多孔性または微多孔性の絶縁性部材であり、その小さい厚みに起因して膜形態を有している。あくまでも例示にすぎないが、ポリオレフィン製の微多孔膜がセパレータとして用いられてよい。この点、セパレータ50として用いられる微多孔膜は、例えば、ポリオレフィンとしてポリエチレン(PE)のみ又はポリプロピレン(PP)のみを含んだものであってよい。更にいえば、セパレータ50は、“PE製の微多孔膜”と“PP製の微多孔膜”とから構成される積層体であってもよい。セパレータ50の表面は無機粒子コート層および/または接着層等により覆われていてもよい。セパレータの表面は接着性を有していてもよい。
 なお、セパレータ50は、その名称によって特に拘泥されるべきでなく、同様の機能を有する固体電解質、ゲル状電解質、絶縁性の無機粒子などであってもよい。なお、電極の取扱いの更なる向上の観点から、セパレータ50と電極(正極10A/負極10B)は接着されていることが好ましい。セパレータ50と電極との接着は、セパレータ50として接着性セパレータを用いること、電極材層(正極材層12A/負極材層12B)の上に接着性バインダーを塗布および/または熱圧着すること等によって為され得る。セパレータ50または電極材層に接着性を供する接着性バインダーの材料としては、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン重合体、アクリル系樹脂等が挙げられる。接着性バインダー塗布等による接着層の厚みは0.5μm以上5μm以下であってよい。
 正極10Aおよび負極10Bがリチウムイオンを吸蔵放出可能な層を有する場合、電解質は有機電解質および/または有機溶媒などの“非水系”の電解質であることが好ましい(すなわち、電解質が非水電解質となっていることが好ましい)。電解質では電極(正極10A・負極10B)から放出された金属イオンが存在することになり、それゆえ、電解質は電池反応における金属イオンの移動を助力することになる。
 非水電解質は、溶媒と溶質とを含む電解質である。具体的な非水電解質の溶媒としては、少なくともカーボネートを含んで成るものが好ましい。かかるカーボネートは、環状カーボネート類および/または鎖状カーボネート類であってもよい。特に制限されるわけではないが、環状カーボネート類としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)から成る群から選択される少なくとも1種を挙げることができる。鎖状カーボネート類としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)およびジプロピルカーボネート(DPC)から成る群から選択される少なくも1種を挙げることができる。あくまでも例示にすぎないが、非水電解質として環状カーボネート類と鎖状カーボネート類との組合せが用いられ、例えばエチレンカーボネートとジエチルカーボネートとの混合物が用いられてよい。また、具体的な非水電解質の溶質としては、好ましくは例えばLiPF、LiBF等のLi塩が用いられる。また、具体的な非水電解質の溶質としては、好ましくは例えばLiPFおよび/またはLiBF等のLi塩が用いられる。
 正極用集電リードおよび負極用集電リードとしては、二次電池の分野で使用されているあらゆる集電リードが使用可能である。そのような集電リードは、電子の移動が達成され得る材料から構成されればよく、例えばアルミニウム、ニッケル、鉄、銅、ステンレスなどの導電性材料から構成される。正極用集電リードはアルミニウムから構成されることが好ましく、負極用集電リードはニッケルから構成されることが好ましい。正極用集電リードおよび負極用集電リードの形態は特に限定されず、例えば、線又はプレート状であってよい。
 外部端子としては、二次電池の分野で使用されているあらゆる外部端子が使用可能である。そのような外部端子は、電子の移動が達成され得る材料から構成されればよく、通常はアルミニウム、ニッケル、鉄、銅、ステンレスなどの導電性材料から構成される。外部端子5は、基板と電気的かつ直接的に接続されてもよいし、または他のデバイスを介して基板と電気的かつ間接的に接続されてもよい。なお、これに限定されず、複数の正極の各々と接続される正極用集電リードが正極用外部端子の機能を備えていてよく、また、複数の負極の各々と接続される負極用集電リードは負極用外部端子の機能を備えていてよい。
 外装体は、上述のように導電性ハードケース又はフレキシブルケース(パウチ等)の形態を有していてよい。
 導電性ハードケースは、本体部および蓋部からなっている。本体部は当該外装体の底面を構成する底部および側面部から成る。本体部と蓋部とは、電極組立体、電解質、集電リードおよび外部端子の収容後に密封される。密封方法としては、特に限定されるものではなく、例えばレーザー照射法等が挙げられる。本体部および蓋部を構成する材料としては、二次電池の分野でハードケース型外装体を構成し得るあらゆる材料が使用可能である。そのような材料は電子の移動が達成され得る材料であればよく、例えばアルミニウム、ニッケル、鉄、銅、ステンレスなどの導電性材料が挙げられる。本体部および蓋部の寸法は、主として電極組立体の寸法に応じて決定され、例えば電極組立体を収容したとき、外装体内での電極組立体の移動(ズレ)が防止される程度の寸法を有することが好ましい。電極組立体の移動を防止することにより、電極組立体の破壊が防止され、二次電池の安全性が向上する。
 フレキシブルケースは、軟質シートから構成される。軟質シートは、シール部の折り曲げを達成できる程度の軟質性を有していればよく、好ましくは可塑性シートである。可塑性シートは、外力を付与した後、除去したとき、外力による変形が維持される特性を有するシートのことであり、例えば、いわゆるラミネートフィルムが使用できる。ラミネートフィルムからなるフレキシブルパウチは例えば、2枚のラミネートフィルムを重ね合わせ、その周縁部をヒートシールすることにより製造できる。ラミネートフィルムとしては、金属箔とポリマーフィルムを積層したフィルムが一般的であり、具体的には、外層ポリマーフィルム/金属箔/内層ポリマーフィルムから成る3層構成のものが例示される。外層ポリマーフィルムは水分等の透過および接触等による金属箔の損傷を防止するためのものであり、ポリアミドおよびポリエステル等のポリマーが好適に使用できる。金属箔は水分およびガスの透過を防止するためのものであり、銅、アルミニウム、ステンレス等の箔が好適に使用できる。内層ポリマーフィルムは、内部に収納する電解質から金属箔を保護するとともに、ヒートシール時に溶融封口させるためのものであり、ポリオレフィンまたは酸変性ポリオレフィンが好適に使用できる。
[本発明の二次電池]
 本発明の一実施形態に係る二次電池の基本的構成を考慮した上で、以下、本発明の一実施形態に係る二次電池の特徴部分について説明する。
 本願発明者は、電極材層が断面視にて集電体の一方の主面に供されている最外層の電極の反り応力を抑制するための対応策について鋭意検討した。その結果、本発明を案出するに至った。
 以下、本発明の特徴部分を説明するに先立って、本明細書で用いる用語の定義付けを行う。本明細書でいう「部分電極組立体」とは、最外層電極を設けて最終的に電極組立体(完成物)を得る前段階のものであって、電極組立体の前駆体に相当するものを指す。本明細書でいう「最外層電極の重複領域」とは、最外層電極が部分電極組立体に1周を超えて巻回されることによって、2層構造が形成されている最外層電極の所定箇所を指す。本明細書でいう「最外層電極の重複領域の外側部分」とは、断面視で2層構造を成す最外層電極の所定箇所のうち外側に位置する部分であって、電極組立体の主面に露出している部分を指す。本明細書でいう「最外層電極の重複領域の内側部分」とは、断面視で2層構造を成す最外層電極の所定箇所のうち内側に位置する部分であって、電極組立体の主面に露出していない部分を指す。本明細書でいう「延在部分を有するセパレータ」とは、最外層電極の電極材層の主面に供されるセパレータよりも長尺状のセパレータであって、最外層電極の端部から延在するように構成されたセパレータを指す。本明細書でいう「両面電極」とは、電極組立体の内側領域に位置付けられる、集電体の両方の主面に電極材層が設けられたものを指す。又、本明細書でいう「片面電極」とは、電極組立体の最外層領域に位置付けられる、集電体の一方の主面に(のみ)電極材層が設けられたものを指す。
 本発明は、これまでの電極間にセパレータが配置された電極構成層が複数積層された平面積層構造の電極組立体とは異なる視点から案出されている。具体的には、本発明は、最外層電極10(片面電極)を部分電極組立体90に巻き付けるという技術的思想に基づき案出されている。かかる技術的思想を実現するために、本発明は、集電体11の一方の主面に(のみ)電極材層12が設けられた最外層電極10が、断面視で最終的に得られる電極組立体100の構成要素としての部分電極組立体90の少なくとも一部の輪郭に沿って部分電極組立体90を取り囲むことを特徴とする(図1参照)。かかる特徴は、これまでの平面積層構造型の電極組立体100にて平面状の最外層電極10を積層するという当業者の技術的常識の延長線上にはない点で有利である。
 本発明では、最外層電極10が断面視で部分電極組立体90の少なくとも一部の輪郭に沿って当該部分電極組立体90を取り囲む。部分電極組立体90は断面視で略矩形状を成しているため、断面視で略矩形状の部分電極組立体90が最外層電極によって「取り囲まれた」状態となるためには、最外層電極10が部分電極組立体90の少なくとも2つの屈曲部分を跨がるように位置する必要がある。最外層電極10が部分電極組立体90の少なくとも2つの屈曲部分を跨がっていると、その形状に起因して最外層電極10に引張応力が供され易くなる。つまり、最外層電極10に所定の張力を供することが可能となる。上述の最外層に位置付ける電極10’を得るための加圧処理時に生じ得る反り応力は、具体的には電極材層12’が集電体11’よりも相対的に大きく伸張することに起因して電極材層12’の主面が外側湾曲面となりかつ集電体11’の主面が内側湾曲面となり得る応力である(図12の左下部参照)。これにつき、本発明の一実施形態では、最外層電極10に所定の張力を供することが可能であるため、当該張力により最外層電極10の所定形態(形状)が保持され得る。これにより、最外層電極10にて電極材層12の主面が外側湾曲面となり集電体11の主面が内側湾曲面となり得る反り応力が生ずることを好適に抑制することが可能となる。つまり、本発明の一実施形態では、かかる反り応力に起因して最外層の電極10に反りが生じることを好適に抑制することが可能となる。この事は、最外層の電極10が断面視で部分電極組立体90から部分的に離隔しようとすることを抑制可能であることを意味する。これにより、最外層電極10を電極組立体100の構成要素として好適に機能させることができる。その結果、全体として当該電極組立体100を含む二次電池は、所望の電池特性を好適に発揮することが可能である。
 又、上記により最外層電極10に生じ得る反り応力を抑制可能であるため、これまで当業者の技術常識となっている下記の反り応力の抑制措置を施す必要がない。具体的には、当該反り応力は最外層電極の形成時における所望の密度を得るための加圧処理により生じ得るため、これまでの当業者の技術常識に従えば反り応力を抑制するために、電極組立体の内側領域に供される両面電極(集電体の両主面に電極材層が設けられたもの)の集電体の厚みと比べて、最外層電極の集電体の厚みを相対的に大きくする必要があり得る。そのため、最外層電極の集電体の厚み増大に起因して電池のエネルギー密度が低下し得る。これにつき、本発明の一実施形態では、本発明の一実施形態では上述のように別の手段にて最外層電極10に生じ得る反り応力を抑制可能であるため、電極組立体の内側領域に供される両面電極と比べて、最外層電極10の集電体11の厚みを相対的に大きくすることを要しない。そのため、最外層電極10の集電体11の厚みを他の両面電極の集電体の厚みとの違いを小さくする、つまり実質的に同一にすることができる。又、これまでの当業者の技術常識に従えば反り応力を抑制するために、最外層電極に対して加圧する力(加圧力)を相対的に小さくする必要がある。そのため、最外層電極に対する加圧力が相対的に小さいことに起因して電池のエネルギー密度が低下し得る。これにつき、本発明の一実施形態では上述のように別の手段にて最外層電極10に生じ得る反り応力を抑制可能であるため、電極組立体の内側領域に供される両面電極の形成時における加圧力と比べて、最外層電極(片面電極)の形成時における加圧力を相対的に小さくする必要がない。つまり、電極組立体の内側領域に供される両面電極の形成時における加圧力と、最外層電極10(片面電極)の形成時における加圧力との違いを小さくすることが可能である。従って、加圧処理により得られる電極組立体の内側領域に供される両面電極の密度と、電極組立体の最外層領域に供される最外層電極10の密度との違いを小さくする、つまり実質的に同一にすることが可能である。以上の事から、本発明の一実施形態は、最外層電極10の集電体11の厚みの増大および/または最外層電極10に対する加圧力の低減を要しないため、これに起因して電池のエネルギー密度の低下を抑制することが可能である点でも有利である。
 本発明の一実施形態に係る二次電池は、下記態様を採ることが好ましい。
 一態様では、断面視にて最外層電極10と部分電極組立体90との間に、最外層電極10と部分電極組立体90とに接する接着剤層付きのセパレータ50が位置付けられていることが好ましい(図1の下部参照)。
 上記では、部分電極組立体90に対する最外層電極10の取囲み(巻付け)により奏される技術的効果について説明したが、詳細には図1の下部に示すように、正負極の接触による短絡防止の観点から最外層電極10と部分電極組立体90との間に断面視でセパレータ50が位置付けられている。当該セパレータ50は最外層電極10と部分電極組立体90の両方に接するように供され、当該セパレータ50には、その両主面に接着機能を有する接着剤層が供されている(図示せず)。つまり、当該セパレータ50は「接着剤層付きセパレータ50」となっている。具体的には、セパレータ50の一方の主面に供される接着材層は最外層電極10の電極材層12に接着している。一方、セパレータ50の他方の主面に供される接着材層は部分電極組立体90に接着している。以上により、「接着剤層付きセパレータ50」を介して最外層電極10と部分電極組立体90とを好適に一体化させることが可能となる。
 一態様では、最外層電極10が、断面視にて部分電極組立体90の両主面90αと当該該両主面90αに連続する部分電極組立体90の少なくとも一方の側面90βの輪郭に沿って部分電極組立体90を取り囲んでいることが好ましい(図1および図2参照)。
 上述のように最外層電極10に張力が供されるためには、最外層電極10が部分電極組立体90の少なくとも2つの屈曲部分に跨がっている必要がある。当該跨がりは、最外層電極10が断面視にて少なくとも部分電極組立体90の両主面90αと当該両主面90αに連続する部分電極組立体90の少なくとも一方の側面90βの輪郭に沿って部分電極組立体90を取り囲んでいる場合に実現され得る。以上により、最外層電極10を好適に“引っ張る”ことができ、それによって、最外層電極10に張力を供することができる。当該張力により最外層電極10の所定形態(形状)が保持され得るため、それに起因して最外層電極10に生じ得る反り応力の発生を抑制することが可能となる。
 なお、図1および図2では、最外層電極10が、断面視にて部分電極組立体90の両主面90αと当該主面90αに連続する部分電極組立体90の両側面90βからなる輪郭全体に沿って部分電極組立体90を取り囲む態様が示されている。すなわち、図1および図2では、最外層電極10が断面視で部分電極組立体90の全ての屈曲部分に跨がるように部分電極組立体90を取り囲む態様が示されるが、最外層電極10が部分電極組立体90の少なくとも2つの屈曲部分に跨がるならば、当該態様に限定されることはない。例えば、最外層電極10が、断面視にて部分電極組立体90の両主面90αと当該両主面90αに連続する部分電極組立体90の一方の側面90βのみとの輪郭に沿って部分電極組立体90を取り囲んでいてよい(図4参照)。
 一態様では、最外層電極10が、断面視にて相互に重なるように供された重複領域10Xを有して成り、最外層電極10の重複領域10Xの外側部分10Xに、断面視にて集電体11のみが供されていることが好ましい(図5参照)。
 本態様では、最外層電極10の重複領域10Xでは、断面視で最外層電極10の外側部分10Xと内側部分10Xとが積層状態にある。かかる積層状態において、最外層電極10の重複領域10Xの外側部分10Xに断面視にて集電体11のみを供すると、最外層電極10の重複領域10Xの外側部分10Xに電極材層12が存在しないことに起因して、電池内に導電性の異物が混入して内部短絡が発生しても、わずかな発熱を生じるのみで短絡状態を終了させることができる。つまり、短絡電流が電極組立体100の内部領域にまで流れることを好適に抑制することができる。その結果、電池の安全性を維持向上させることができる。
 一態様では、セパレータ50が最外層電極10よりも長尺状であって、かつ最外層電極10の一端部10aから延在する延在部分50Xを有しており、セパレータ50の延在部分50Xが、断面視でセパレータ50よりも内側に位置する最外層電極10に固定されていることが好ましい(図6参照)。
 本態様は、セパレータ50が最外層電極10よりも長尺状であって、かつ最外層電極10の一端部10aから延在する延在部分50Xを有していることを前提とする。セパレータ50は正負極の接触による短絡防止の観点から通常供されるところ、本態様では、最外層電極10が断面視にて相互に重なる重複領域を有して成る場合(図1参照)と比べて、最外層電極10の重複領域の外側部分に対応する箇所に、集電体11と電極材層12を設けずにセパレータ50のみが設けられている。これにより、セパレータ50を介して最外層電極10の重複領域の外側部分にも集電体11と電極材層12が供される場合と比べて、集電体11と電極材層12の非存在に起因して、最外層電極10の重複領域における集電体11および電極材層12の厚みを相対的に減じることができる。その結果、かかる集電体11および電極材層12の厚み低減に起因して電池のエネルギー密度の低下を抑制することができる。
 一態様では、部分電極組立体90の側面90βに対向する部分の最外層電極10は断面視にて片面電極の構造を有し、当該最外層電極10が負極であることが好ましい(図1参照)。
 本態様では、部分電極組立体90の側面90βに対向する部分の最外層電極10が断面視にて片面電極の構造を有するため、部分電極組立体90の側面90βに対向する部分にも電極材層11が位置付けられることとなる。最外層電極10として負極が用いられる場合、具体的には電極材層11として負極材層が用いられる場合、当該負極材層がリチウムイオンを受容可能な層として機能し得るため、部分電極組立体90の側面領域にて移動し得るリチウムイオンを好適に受容することができる。従って、リチウムイオン移動に起因した部分電極組立体90の負極端部へのリチウムの析出を好適に抑制することができる。従って、かかるリチウム析出抑制の結果、電池の安全性を向上させることができる。
 なお、これに限定されることなく、一態様では、部分電極組立体90の側面90βに対向する部分の最外層電極10は、断面視にて集電体11のみを有していてよい(図7参照)。
 この場合、部分電極組立体90の側面90βに対向する部分の最外層電極10には、電極材層12が存在しない。そのため、最外層電極10が電極材層12を有して成る場合と比べて、かかる電極材層12の非存在に起因して最終的に得られる電極組立体100の幅寸法を相対的に減じることができる。それ故、電極組立体100を有して成る二次電池の寸法を相対的に減じることができる。
 なお、最外層電極10が正極として用いる場合、正極材層はリチウムイオンを受容可能な層として実質的に機能しないため、部分電極組立体90の側面領域にて移動し得るリチウムイオンに起因して部分電極組立体90の負極端部へのリチウムの析出を抑制しにくい。そのため、最外層電極10が正極として用いる場合、部分電極組立体90の側面90βに対向する部分の最外層電極10は、断面視にて集電体11のみを有することが好ましい。
 一態様では、最外層電極10の集電体11が、平面視にて部分電極組立体90の両面電極に供されたタブ20(正極タブ20A、負極タブ20B)の端部よりも内側に位置付けられていることが好ましい(図8参照)。
 本態様では、最外層電極10の集電体11が平面視にて部分電極組立体90に供されたタブ20の端部20αよりも内側に位置付けられている。ここでいう「引出しタブ20の端部20α」とは、平面視で引出しタブ20の最も外側に位置する突出端部を指す。かかる最外層電極10の集電体11の内側配置により、これに起因して当該集電体11の端部が平面視にて部分電極組立体90に供された引出しタブ20の端部20αと略同一面上にある場合と比べて、部分電極組立体90に供された引出しタブ20をより露出し易くすることができる。そのため、当該引出しタブ20に最外層電極10の端部に露出した集電体11の一部を好適に溶着し易くすることができる。かかる好適な溶着は、最終的にリードを介した引出し部(溶着部)と外部端子との好適な電気的接続に貢献し得る。なお、最外層電極10として負極を用いる場合を例にとると、平面視で負極集電体の一部と正極タブとが対向することに起因する短絡防止の観点から部分電極組立体90の正極タブ20Aをテープで保護することが好ましい。
 一態様では、最外層電極10がタブを有して成り、最外層電極10のタブのみが平面視にて部分電極組立体90のタブと局所的に重なるように位置付けられていることが好ましい(図9参照)。
 上記では、セパレータ50を介して部分電極組立体90に巻回される最外層電極10の形状は、巻回前において略矩形状であるものを前提としている。この場合、最外層電極として負極を用いる場合を例にとると、部分電極組立体90への最外層電極10の巻回状態において、平面視で部分電極組立体90の正極タブ20Aと負極側集電体の一部とが相互に対向することに起因して短絡が生じ得る。そこで、本態様では、最外層電極として負極を用いる場合を例にとると、当該短絡防止の観点から、最外層電極10に負極タブ20Bを設け、当該負極タブ20Bのみが平面視にて部分電極組立体90の負極タブ20Bと局所的に重なるように位置付けられることが好ましい。これにより、巻回後において、平面視で部分電極組立体90の正極タブ20Aと負極側集電体の一部とが相互に対向することを回避することができる。かかる相互対向の回避により、平面視で部分電極組立体90の正極タブ20Aと負極側集電体の一部とが相互に対向することに起因する短絡発生を回避することができる。従って、かかる短絡発生の回避の結果、電池の安全性を向上させることができる。
 一態様では、セパレータ50が最外層電極10よりも長尺状であって、かつ最外層電極10の両端部10aから延在する延在部分50Xを有しており、セパレータ50の延在部分50X同士が接続されていることが好ましい(図10参照)。
 本態様は、セパレータ50が最外層電極10よりも長尺状であって、かつ最外層電極10の両端部10aから延在する延在部分50Xを有していることを前提とする。本態様では、断面視で部分電極組立体90の一部が最外層電極10により取り囲まれ、かつ部分電極組立体90の残りの部分がセパレータ50の延在部分50Xのみによって取り囲まれている。つまり、本態様は、部分電極組立体90の輪郭の所定箇所にセパレータ50のみが位置付けられていることを特徴とする。この事は、部分電極組立体90の輪郭の所定箇所に集電体11と電極材層12が存在しないことを意味する。
 以上の事から、本態様では、部分電極組立体90の輪郭全体に沿って集電体11と電極材層12から成る最外層電極10が供されている場合と比べて、集電体11と電極材層12が存在しないセパレータ50のみが供されている箇所において、集電体11および電極材層12の厚みを相対的に減じることができる。その結果、かかる集電体11および電極材層12の厚み低減に起因して電池のエネルギー密度を向上させることができる。
 一態様では、最外層電極10の集電体11の一部が露出しており、露出した集電体11の一部は平面視でセパレータ50および電極材層12よりも外側に位置付けられていることが好ましい(図1の最上部等参照)。
 本発明は最外層電極10が断面視で部分電極組立体90を取り囲むことを特徴とするが、当該最外層電極10および当該部分電極組立体90のいずれも電極組立体100の構成要素である。そのため、電極組立体100を全体として好適に機能させるためには、部分電極組立体90内の両面電極のタブ20と、最外層電極10の集電体11の一部とを電気的に接続可能な状態にする必要がある。つまり、部分電極組立体90内の両面電極のタブ20と最外層電極10の集電体11の一部とを、平面視で相互に対向する配置にする必要がある。そのため、最外層電極10の集電体11の一部を平面視で露出させる必要がある。この点を鑑み、本態様では、露出した集電体11の一部は平面視でセパレータ50および電極材層12よりも外側に位置付けられることが好ましい。これにより、平面視で集電体11の一部を、部分電極組立体90内の両面電極のタブ20と好適に相互に対向させることが可能となる。従って、部分電極組立体90内の両面電極のタブ20と、最外層電極10の露出した集電体11の一部とを電気的に好適に接続可能となり、その結果として電極組立体100を全体として好適に機能させることが可能となる。
[本発明の二次電池の製造方法]
 以下、本発明の一実施形態に係る二次電池の製造方法について説明する。
 本発明の製造方法は、電極間にセパレータを配置して得られる電極構成層を複数積層することによって平面積層構造の電極組立体を形成するという従来の方法とは異なる視点から案出されている。具体的には、本発明は、集電体11の一方の主面に(のみ)電極材層12を供して得られる最外層電極10を、断面視で部分電極組立体90の少なくとも一部の輪郭に沿って部分電極組立体90に巻き付けるという技術的思想を有している。つまり、かかる技術的思想は、最外層電極を含む各電極を積層して電極組立体を得るというこれまでの当業者の技術的常識の延長線上にはない点で有利である。
 上述のように、本発明の技術的思想は、最外層電極10を用いて断面視で部分電極組立体90の少なくとも一部の輪郭に沿って当該部分電極組立体90を取り囲むということである。すなわち、本発明の技術的思想は、最外層電極10を部分電極組立体90に巻き付けるということである(図3(ii)および(iii)参照)。部分電極組立体90は断面視で略矩形状を成しているため、断面視で略矩形状の部分電極組立体90が最外層電極によって「取り囲まれた」状態となるためには、最外層電極10が部分電極組立体90の少なくとも2つの屈曲部分を跨がるように位置する必要がある。最外層電極10が部分電極組立体90の少なくとも2つの屈曲部分を跨がっていると、その形状に起因して最外層電極10に引張応力が供され易くなる。従って、最外層電極10に所定の張力を供することが可能となる。上述のように最外層に位置付ける電極10’を得るための加圧処理時に生じ得る反り応力は、具体的には電極材層12’が集電体11’よりも相対的に大きく伸張することに起因して電極材層12’の主面が外側湾曲面となりかつ集電体11’の主面が内側湾曲面となり得る応力である(図12の左下部参照)。これにつき、本発明の一実施形態に係る製造方法では、最外層電極10に所定の張力を供することが可能であるため、当該張力により最外層電極10の所定形態(形状)を保持し得る。これにより、最外層電極10にて電極材層12の主面が外側湾曲面となり集電体11の主面が内側湾曲面となり得る反り応力が生ずることを好適に抑制することが可能となる。つまり、かかる反り応力に起因して最外層の電極10に反りが生じることを好適に抑制することが可能となる。この事は、最外層の電極10が断面視で部分電極組立体90から部分的に離隔しようとすることを抑制可能であることを意味する。
 なお、具体的には、電極組立体100は主として下記工程を経て得ることができる。
 まず、長尺状の最外層電極10(集電体11の一方の主面に電極材層12を設けたもの)の電極材層12の主面にセパレータ50を設ける(図3(i))。詳細には、当該セパレータ50としては、その両主面に接着剤層を有して成るセパレータを用いることが好ましい。当該接着剤層の存在により、長尺状の最外層電極10とセパレータ50とを接着して長尺状のセパレータ50付き最外層電極10を得ることが可能となる。次いで、断面視で部分電極組立体90の少なくとも一部の輪郭に沿ってセパレータ50付き最外層電極10を用いて部分電極組立体90を取り囲む(図3(ii)、図3(iii))。すなわち、断面視で部分電極組立体90の少なくとも一部の輪郭に沿ってセパレータ50付き最外層電極10を部分電極組立体90に巻き付ける。限定されるものではないが、一例として、長尺状のセパレータ50付き最外層電極10のセパレータ50の中央領域上に部分電極組立体90を設ける。次いで、断面視で部分電極組立体90の一方の側面と当該一方の側面に連続する上面とに長尺状のセパレータ50付き最外層電極10を巻き付け接着させる(図3(ii))。詳細には、上述のようにセパレータ50としてその両主面に接着剤層を有して成るセパレータを用いるため、最外層電極10の巻付け時に当該接着剤層の存在によりセパレータ50付き最外層電極10を部分電極組立体90に接着することが可能となる。次いで、断面視で部分電極組立体90の他方の側面および図3(ii)における部分電極組立体90の上面に接着されたセパレータ50付き最外層電極10上に残りの長尺状のセパレータ50付き最外層電極10を巻き付け接着させる(図3(iii))。これにより、最外層電極10と部分電極組立体90とを備えた電極組立体100の前駆体101が得られる。次いで、当該電極組立体100の前駆体101に熱加圧処理を施す(図3(iv))。以上により、最終的に所望の電極組立体100が得られる。
 本発明の一実施形態の製造方法は、下記態様を採ることが好ましい。
 一態様では、最外層電極10によって、最外層電極10が断面視にて部分電極組立体90の両主面と両主面に連続する部分電極組立体90の少なくとも一方の側面が成す輪郭に沿って部分電極組立体90を取り囲むことが好ましい(図3(ii)および(iii)参照)。
 上述のように最外層電極10に張力が供されるためには、最外層電極10が部分電極組立体90の少なくとも2つの屈曲部分に跨がっている必要がある。当該跨がりは、最外層電極10が断面視にて少なくとも部分電極組立体90の両主面と当該両主面に連続する部分電極組立体90の少なくとも一方の側面90βの輪郭に沿って部分電極組立体90を取り囲んでいる場合に実現され得る。以上により、最外層電極10を好適に“引っ張る”ことができる。つまり、最外層電極10に張力を好適に供することが可能である。
 一態様では、接着剤層付きのセパレータ50を用いて、最外層電極10と部分電極組立体90とを一体化させて電極組立体100の前駆体101を形成し、電極組立体100の前駆体101に熱加圧を施すことが好ましい(図3(iv)参照)。
 上述のように、本発明では、セパレータ50としてその両主面に接着剤層を有して成るセパレータを用いることが好ましい。接着剤層付きセパレータ50を用いると、当該接着剤層付きセパレータ50が最外層電極10と部分電極組立体90との間に位置することに起因して、最外層電極10と部分電極組立体90とを好適に一体化させることが可能である。特に、一体化して得られる電極組立体100の前駆体101に熱加圧を施すと層間相互の接続性(密着性)を向上し得るため、当該熱加圧により最外層電極10と部分電極組立体90とのより好適な一体化を行うことが可能と成る。これにより、最外層電極10に供される所定の張力による最外層電極10の所定形態(形状)の保持を「継続」又は「連続」させることが可能となる。かかる「継続」した又は「連続」した最外層電極10の形態保持により、最外層電極10にて電極材層12の主面が外側湾曲面となり集電体11の主面が内側湾曲面となり得る反り応力が生ずることをより好適に抑制することが可能となる。
 一態様では、最外層電極10として、断面視にて相互に重なる重複領域を有して成る最外層電極を形成することを含み、最外層電極10の重複領域10Xの外側部分に断面視にて集電体11のみを設けることが好ましい(図5参照)。
 本態様では、最外層電極10の重複領域10Xの外側部分10Xに断面視にて集電体11のみを供する。この場合、最外層電極10の重複領域10Xの外側部分10Xに電極材層12が存在しないことに起因して、短絡電流が電極組立体100の内部領域にまで流れることを好適に抑制することができる。その結果、電池の安全性を維持向上させることができる。
 一態様では、最外層電極10よりも長尺状であって、かつ最外層電極10の一端部から延在する延在部分50Xを有するセパレータ50を供することを含み、セパレータ50の延在部分50Xを、断面視でセパレータ50よりも内側に位置する最外層電極10に固定することが好ましい(図6参照)。
 本態様では、最外層電極10の重複領域の外側部分に対応する箇所に、集電体11と電極材層12を設けずにセパレータ50のみを設ける。これにより、セパレータ50を介して最外層電極10の重複領域の外側部分にも集電体11と電極材層12が供される場合と比べて、集電体11と電極材層12が存在しないことに起因して、最外層電極10の重複領域における集電体11および電極材層12の厚みを相対的に減じることができる。それ故、かかる集電体11および電極材層12の厚み低減に起因して電池のエネルギー密度の低下を抑制することができる。
 一態様では、部分電極組立体90の側面90βに対向する部分の最外層電極10を、断面視にて片面電極の構造とし、最外層電極10を負極として用いることが好ましい(図1参照)。
 本態様では、部分電極組立体90の側面90βに対向する部分の最外層電極10を断面視にて片面電極の構造とするため、部分電極組立体90の側面90βに対向する部分にも電極材層11を位置付けることとなる。最外層電極10として負極材層を備えた負極を用いる場合、当該負極材層がリチウムイオンを受容可能な層として機能し得るため、部分電極組立体90の側面領域にて移動し得るリチウムイオンを好適に受容することができる。従って、リチウムイオン移動に起因した部分電極組立体90の負極端部へのリチウムの析出を好適に抑制することができ、それによって、電池の安全性を向上させることができる。
 なお、部分電極組立体90の側面90βに対向する部分の最外層電極10を、断面視にて集電体11のみを有する構造としてよい(図7参照)。かかる構造によれば、部分電極組立体90の側面90βに対向する部分の最外層電極10には、電極材層12が存在しないため、最外層電極10が電極材層12を有して成る場合と比べて最終的に得られる電極組立体100の幅寸法を相対的に減じることができる。
 一態様では、最外層電極10の集電体11を、平面視にて部分電極組立体90の両面電極に供するタブ端部よりも内側に位置付けることが好ましい(図8参照)。
 本態様では、最外層電極10の集電体11を平面視にて部分電極組立体90に供するタブ20の端部20α(平面視で最も外側に位置するタブ20の突出端部)よりも内側に位置付ける。当該最外層電極10の集電体11の内側配置により、これに起因して当該集電体11の端部が平面視にて部分電極組立体90に供される引出しタブ20の端部20αと略同一面上にある場合と比べて、部分電極組立体90に供される引出しタブ20をより露出し易くすることができる。そのため、当該引出しタブ20に最外層電極10の端部に露出する集電体11の一部を溶着し易くすることができる。
 一態様では、最外層電極10に供するタブのみを平面視にて部分電極組立体90のタブと局所的に重ねることが好ましい(図9参照)。
 本態様では、最外層電極として負極を用いる場合を例に挙げれば、当該短絡防止の観点から、最外層電極10に負極タブを設け、当該負極タブのみを平面視にて部分電極組立体90の負極タブと局所的に重ねることが好ましい。これにより、巻回後において、平面視で部分電極組立体90の正極タブと負極側集電体の一部とが相互に対向することを回避することができる。以上の事からも、かかる相互対向の回避により、平面視で部分電極組立体90の正極タブと負極側集電体の一部とが相互に対向することに起因する短絡発生を回避することができる。従って、電池の安全性を向上させることができる。
 一態様では、最外層電極10よりも長尺状であって、かつ最外層電極10の両端部から延在する延在部分50Xを有するセパレータ50を供することを含み、セパレータ50の延在部分50X同士を接続することが好ましい(図10参照)。
 本態様では、断面視で部分電極組立体90の一部を最外層電極10で取り囲み、かつ部分電極組立体90の残りの部分をセパレータ50の延在部分50Xのみで取り囲む。つまり、本態様では、部分電極組立体90の輪郭の所定箇所にセパレータ50のみを位置付ける。つまり、本態様では、部分電極組立体90の輪郭の所定箇所に集電体11と電極材層12が存在しない。従って、本態様では、部分電極組立体90の輪郭全体に沿って集電体11と電極材層12から成る最外層電極10を供する場合と比べて、セパレータ50のみを供する箇所において、集電体11および電極材層12の厚みを相対的に減じることができる。その結果、電池のエネルギー密度を向上させることができる。
 本発明の一実施形態に係る二次電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本発明の一実施形態に係る二次電池、特に非水電解質二次電池は、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパーなどのモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。
10、10’  最外層の電極
10A、10A’ 正極
10B、10B’ 負極
10X     最外層電極の重複領域
10X     最外層電極の重複領域の外側部分
10X     最外層電極の重複領域の内側部分
10a      最外層電極の端部
11、11’   集電体
11α      集電体の端部
12、12’       電極材層
20     タブ
20A    正極タブ   
20B    負極タブ
20α    タブの端部
20B      最外層負極の負極タブ
20B      部分電極組立体の負極タブ
50、50’  セパレータ
50X     セパレータの延在部分
90   部分電極組立体
90α  部分電極組立体の主面
90β  部分電極組立体の側面
100、100’ 電極組立体

Claims (22)

  1.  電極間にセパレータが配置された電極構成層が複数積層された平面積層構造の電極組立体を備えた二次電池であって、
     前記電極組立体は、該電極組立体の内側領域に集電体の両主面に電極材層が設けられた両面電極を有して成り、かつ該電極組立体の一部を成す部分電極組立体を備え、
     前記電極組立体の最外層領域に位置する最外層電極は、前記集電体の一方の主面に前記電極材層が設けられた片面電極を含み、および断面視にて前記部分電極組立体の少なくとも一部の輪郭に沿って該部分電極組立体を取り囲んでいる、二次電池。
  2.  前記最外層電極が、断面視にて前記部分電極組立体の両主面と該両主面に連続する前記部分電極組立体の少なくとも一方の側面の輪郭に沿って該部分電極組立体を取り囲んでいる、請求項1に記載の二次電池。
  3.  断面視にて前記最外層電極と前記部分電極組立体との間に、該最外層電極と該部分電極組立体とに接する接着剤層付きの前記セパレータが位置付けられている、請求項1又は2に記載の二次電池。
  4.  前記最外層電極が、断面視にて相互に重なるように供された重複領域を有して成り、
     前記最外層電極の前記重複領域の外側部分に、断面視にて前記集電体のみが供されている、請求項1~3のいずれかに記載の二次電池。
  5.  前記セパレータが前記最外層電極よりも長尺状であって、かつ該最外層電極の一端部から延在する延在部分を有しており、該セパレータの該延在部分が、断面視で該セパレータよりも内側に位置する該最外層電極に固定されている、請求項1~3のいずれかに記載の二次電池。
  6.  前記部分電極組立体の前記側面に対向する部分の前記最外層電極は、断面視にて前記片面電極の構造を有し、該最外層電極が負極である、請求項1~5のいずれかに記載の二次電池。
  7.  前記部分電極組立体の前記側面に対向する部分の前記最外層電極は、断面視にて前記集電体のみを有する、請求項1~5のいずれかに記載の二次電池。
  8.  前記最外層電極の前記集電体が、平面視にて前記部分電極組立体の前記両面電極に供されたタブ端部よりも内側に位置付けられている、請求項1~7のいずれかに記載の二次電池。
  9.  前記最外層電極がタブを有して成り、該最外層電極の該タブのみが平面視にて前記部分電極組立体の前記タブと局所的に重なるように位置付けられている、請求項1~7のいずれかに記載の二次電池。
  10.  前記セパレータが前記最外層電極よりも長尺状であって、かつ該最外層電極の両端部から延在する延在部分を有しており、該セパレータの該延在部分同士が接続されている、請求項1~3のいずれかに記載の二次電池。
  11.  前記最外層電極の前記集電体の一部が露出しており、該露出した該集電体の該一部は平面視で前記セパレータおよび前記電極材層よりも外側に位置付けられている、請求項1~10のいずれかに記載の二次電池。
  12.  電極間にセパレータが配置された電極構成層が複数積層された平面積層構造の電極組立体を備えた二次電池の製造方法であって、
     断面視にて、集電体の両主面に電極材層を設けて得られる両面電極を有して成る前記電極組立体の一部を成す部分電極組立体を形成することを含み、
     前記集電体の一方の主面に前記電極材層を設けて得られる片面電極を含む前記電極組立体の最外層電極を用いて、断面視にて前記部分電極組立体の少なくとも一部の輪郭に沿って該部分電極組立体を取り囲むことを更に含む、二次電池の製造方法。
  13.  前記最外層電極によって、該最外層電極が断面視にて前記部分電極組立体の両主面と該両主面に連続する前記部分電極組立体の少なくとも一方の側面が成す輪郭に沿って該部分電極組立体を取り囲む、請求項12に記載の製造方法。
  14.  接着剤層付きの前記セパレータを用いて、前記最外層電極と前記部分電極組立体とを一体化させて前記電極組立体の前駆体を形成し、該電極組立体の該前駆体に熱加圧を施す、請求項12又は13に記載の製造方法。
  15.  前記最外層電極として、断面視にて相互に重なる重複領域を有して成る前記最外層電極を形成することを含み、
     前記最外層電極の前記重複領域の外側部分に断面視にて前記集電体のみを設ける、請求項12~14のいずれかに記載の製造方法。
  16.  前記最外層電極よりも長尺状であって、かつ該最外層電極の一端部から延在する延在部分を有する前記セパレータを供することを含み、該セパレータの該延在部分を、断面視で該セパレータよりも内側に位置する該最外層電極に固定する、請求項12~14のいずれかに記載の製造方法。
  17.  前記部分電極組立体の前記側面に対向する部分の前記最外層電極を、断面視にて前記片面電極の構造とし、該最外層電極を負極として用いる、請求項12~16のいずれかに記載の製造方法。
  18.  前記部分電極組立体の前記側面に対向する部分の前記最外層電極を、断面視にて前記集電体のみを有する構造とする、請求項12~16のいずれかに記載の製造方法。
  19.  前記最外層電極の前記集電体を、平面視にて前記部分電極組立体の前記両面電極に供するタブ端部よりも内側に位置付ける、請求項12~18のいずれかに記載の製造方法。
  20.  前記最外層電極がタブを有して成り、該最外層電極の該タブのみを、平面視にて前記部分電極組立体の前記タブと局所的に重ねる、請求項12~18のいずれかに記載の製造方法。
  21.  前記最外層電極よりも長尺状であって、かつ該最外層電極の両端部から延在する延在部分を有する前記セパレータを供することを含み、該セパレータの該延在部分同士を接続する、請求項12~14のいずれかに記載の製造方法。
  22.  前記正極および前記負極がリチウムイオンを吸蔵放出可能な層を有する、請求項1~11のいずれかに記載の二次電池。
PCT/JP2018/011653 2017-04-07 2018-03-23 二次電池およびその製造方法 WO2018186205A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019511156A JP6841323B2 (ja) 2017-04-07 2018-03-23 二次電池およびその製造方法
CN201880023182.0A CN110495045B (zh) 2017-04-07 2018-03-23 二次电池及其制造方法
US16/530,226 US11417912B2 (en) 2017-04-07 2019-08-02 Secondary battery and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-076954 2017-04-07
JP2017076954 2017-04-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/530,226 Continuation US11417912B2 (en) 2017-04-07 2019-08-02 Secondary battery and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2018186205A1 true WO2018186205A1 (ja) 2018-10-11

Family

ID=63712559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011653 WO2018186205A1 (ja) 2017-04-07 2018-03-23 二次電池およびその製造方法

Country Status (4)

Country Link
US (1) US11417912B2 (ja)
JP (1) JP6841323B2 (ja)
CN (1) CN110495045B (ja)
WO (1) WO2018186205A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230031407A1 (en) * 2019-12-26 2023-02-02 Sanyo Electric Co., Ltd. Secondary battery and production method for same
CN113708010B (zh) * 2021-09-01 2023-03-14 东莞新能安科技有限公司 电化学装置和电子装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101830A (ja) * 1991-10-11 1993-04-23 Asahi Chem Ind Co Ltd 電 池
JPH11121016A (ja) * 1997-10-09 1999-04-30 Yuasa Corp 電 池
JP2013218804A (ja) * 2012-04-04 2013-10-24 Gs Yuasa Corp 電極体、蓄電素子及び電極体の製造方法
JP2014093128A (ja) * 2012-10-31 2014-05-19 Sanyo Electric Co Ltd 非水電解質二次電池
JP2014103082A (ja) * 2012-11-22 2014-06-05 Denso Corp 蓄電素子およびその製造方法
JP2015128018A (ja) * 2013-12-27 2015-07-09 日産自動車株式会社 組電池
US20160293994A1 (en) * 2014-08-13 2016-10-06 Lg Chem, Ltd. Stack-folding type electrode assembly and method of manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195495A (ja) * 1998-12-25 2000-07-14 Mitsubishi Cable Ind Ltd シ―ト電池
JP5315653B2 (ja) * 2006-12-08 2013-10-16 日産自動車株式会社 バイポーラ電池の製造方法
JP4586820B2 (ja) * 2007-05-07 2010-11-24 ソニー株式会社 巻回型非水電解質二次電池
JP6112380B2 (ja) * 2012-03-07 2017-04-12 日産自動車株式会社 正極活物質、電気デバイス用正極及び電気デバイス
JP2014120456A (ja) 2012-12-19 2014-06-30 Nissan Motor Co Ltd 二次電池
JP6286829B2 (ja) * 2013-01-28 2018-03-07 日本電気株式会社 リチウムイオン二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101830A (ja) * 1991-10-11 1993-04-23 Asahi Chem Ind Co Ltd 電 池
JPH11121016A (ja) * 1997-10-09 1999-04-30 Yuasa Corp 電 池
JP2013218804A (ja) * 2012-04-04 2013-10-24 Gs Yuasa Corp 電極体、蓄電素子及び電極体の製造方法
JP2014093128A (ja) * 2012-10-31 2014-05-19 Sanyo Electric Co Ltd 非水電解質二次電池
JP2014103082A (ja) * 2012-11-22 2014-06-05 Denso Corp 蓄電素子およびその製造方法
JP2015128018A (ja) * 2013-12-27 2015-07-09 日産自動車株式会社 組電池
US20160293994A1 (en) * 2014-08-13 2016-10-06 Lg Chem, Ltd. Stack-folding type electrode assembly and method of manufacturing the same

Also Published As

Publication number Publication date
CN110495045B (zh) 2023-09-22
US20190363402A1 (en) 2019-11-28
JPWO2018186205A1 (ja) 2019-11-07
CN110495045A (zh) 2019-11-22
JP6841323B2 (ja) 2021-03-10
US11417912B2 (en) 2022-08-16

Similar Documents

Publication Publication Date Title
US11437653B2 (en) Laminated secondary battery and manufacturing method of the same, and device
US10998600B2 (en) Laminated secondary battery and manufacturing method of the same, and device
WO2018180152A1 (ja) 二次電池
JP2021036484A (ja) 二次電池および二次電池の製造方法
WO2018180599A1 (ja) 二次電池
US11417912B2 (en) Secondary battery and method of manufacturing the same
US20190334210A1 (en) Secondary battery
WO2018155210A1 (ja) 二次電池および二次電池の製造方法
US11417868B2 (en) Manufacturing method for secondary battery
WO2019009207A1 (ja) 組電池および組電池の製造方法
US11387493B2 (en) Secondary battery
US11411241B2 (en) Secondary battery
WO2018163775A1 (ja) 二次電池の製造方法
JP6885410B2 (ja) 二次電池
JP2018206490A (ja) 二次電池およびその製造方法
WO2018221318A1 (ja) 二次電池の製造方法
JP2018181705A (ja) 二次電池およびその製造方法
WO2021020212A1 (ja) 二次電池およびその製造方法
JP2021039818A (ja) 二次電池および二次電池の製造方法
WO2023127726A1 (ja) 二次電池
JP6957952B2 (ja) 二次電池およびその製造方法
JP2018174102A (ja) 二次電池
WO2018105278A1 (ja) 二次電池
WO2018105277A1 (ja) 二次電池
WO2018100846A1 (ja) 二次電池およびデバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511156

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18780910

Country of ref document: EP

Kind code of ref document: A1