WO2018186192A1 - 固体撮像装置、及び電子機器 - Google Patents

固体撮像装置、及び電子機器 Download PDF

Info

Publication number
WO2018186192A1
WO2018186192A1 PCT/JP2018/011565 JP2018011565W WO2018186192A1 WO 2018186192 A1 WO2018186192 A1 WO 2018186192A1 JP 2018011565 W JP2018011565 W JP 2018011565W WO 2018186192 A1 WO2018186192 A1 WO 2018186192A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
solid
wiring layer
state imaging
imaging device
Prior art date
Application number
PCT/JP2018/011565
Other languages
English (en)
French (fr)
Inventor
庄子 礼二郎
雅希 羽根田
堀越 浩
石田 実
隆季 亀嶋
生枝 三橋
日出登 橋口
匡 飯島
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN202311395129.2A priority Critical patent/CN117558738A/zh
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to KR1020237020289A priority patent/KR102671085B1/ko
Priority to KR1020197027324A priority patent/KR102545846B1/ko
Priority to DE112018001862.8T priority patent/DE112018001862T5/de
Priority to US16/497,084 priority patent/US11289526B2/en
Priority to CN202311394464.0A priority patent/CN117558737A/zh
Priority to CN201880021143.7A priority patent/CN110574164B/zh
Priority to JP2019511147A priority patent/JPWO2018186192A1/ja
Priority to KR1020247017693A priority patent/KR20240091074A/ko
Publication of WO2018186192A1 publication Critical patent/WO2018186192A1/ja
Priority to US17/592,025 priority patent/US11955500B2/en
Priority to JP2023022003A priority patent/JP2023057137A/ja
Priority to US18/594,924 priority patent/US20240274641A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/782Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, each consisting of a single circuit element
    • H01L21/786Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, each consisting of a single circuit element the substrate being other than a semiconductor body, e.g. insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L24/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08135Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/08137Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08135Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/08145Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked

Definitions

  • the present disclosure relates to a solid-state imaging device and an electronic device.
  • Patent Document 1 discloses a three-layer stacked solid in which a pixel chip, a logic chip, and a memory chip on which a memory circuit that holds a pixel signal acquired in a pixel portion of the pixel chip is mounted.
  • An imaging device is disclosed.
  • a semiconductor substrate on which a pixel chip, a logic chip, or a memory chip is formed and a multilayer wiring layer formed on the semiconductor substrate are combined.
  • This configuration is also referred to as “substrate”.
  • the “substrate” is referred to as “first substrate”, “second substrate”, “third substrate” in order from the upper side (side on which the observation light is incident) to the lower side in the laminated structure. ⁇ These are called and distinguished from each other.
  • the stacked solid-state imaging device is manufactured by dicing each substrate into a plurality of stacked solid-state imaging devices (stacked solid-state imaging device chips) after the substrates are stacked in a wafer state.
  • the “substrate” may mean the state of the wafer before dicing, and may also mean the state of the chip after dicing.
  • the present disclosure proposes a new and improved solid-state imaging device and electronic apparatus that can further improve performance.
  • a first substrate having a first semiconductor substrate on which a pixel portion in which pixels are arranged is formed, and a first multilayer wiring layer stacked on the first semiconductor substrate, and a predetermined function
  • a first connection structure for electrically connecting the first substrate and the second substrate is bonded to the first multilayer wiring layer and the second multilayer wiring layer so as to face each other. Exists on the bonding surface of the second substrate, and each has a shape on the bonding surface. Electrodes between which is comprises an electrode junction structure, which are joined in direct contact, the solid-state imaging device is provided.
  • a solid-state imaging device that electronically captures an observation target
  • the solid-state imaging device including a first semiconductor substrate on which a pixel unit in which pixels are arranged is formed, and the first semiconductor A first substrate having a first multilayer wiring layer stacked on the substrate; a second semiconductor substrate having a circuit having a predetermined function; and a second multilayer wiring stacked on the second semiconductor substrate.
  • a third substrate having a layer, a third semiconductor substrate on which a circuit having a predetermined function is formed, and a third multilayer wiring layer stacked on the third semiconductor substrate, Are stacked in this order, and the first substrate and the second substrate are bonded so that the first multilayer wiring layer and the second multilayer wiring layer face each other, and the first substrate and the second substrate
  • a first connection structure for electrically connecting two substrates is the first connection structure.
  • electrodes of which are respectively formed on the bonded surface electrode junction structure are joined in direct contact, including an electronic device is provided.
  • the first substrate and the second substrate which are pixel substrates are bonded together face-to-face (details will be described later)
  • a first connection structure for electrically connecting signal lines and power supply lines provided on the first substrate to signal lines and power supply lines provided on the second substrate, the first substrate and the second substrate, respectively.
  • an electrode bonding structure in which the electrodes formed on the bonding surface are bonded in direct contact with each other.
  • the second connection structure for electrically connecting the signal line and the power line provided on the second substrate and the signal line and the power line provided on the third substrate, respectively, and / or the first substrate.
  • connection structure is provided by providing various connection structures as a third connection structure for electrically connecting the signal line and the power supply line provided to the signal line and the power supply line provided on the third substrate. Can be realized. Therefore, an excellent solid-state imaging device that can further improve performance can be realized.
  • the performance of the solid-state imaging device can be further improved.
  • the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with the above effects or instead of the above effects. May be played.
  • FIG. 3A It is a figure for demonstrating the further another example of arrangement
  • FIG. 3A It is a figure for demonstrating the parasitic capacitance between PWELL and power supply wiring in the solid-state imaging device shown to FIG. 3A.
  • FIG. 4 is a diagram for describing a parasitic capacitance between PWELL and a power supply wiring in the solid-state imaging device shown in FIG. 3B. It is a figure which shows roughly arrangement
  • FIG. 3B is a diagram schematically showing the arrangement of power supply wiring and GND wiring in the solid-state imaging device shown in FIG. 3B. It is a figure which shows one structural example for reducing the impedance in the solid-state imaging device shown to FIG. 5A. It is a figure for demonstrating the manufacturing method (1st manufacturing method) of the solid-state imaging device which concerns on the 6th structural example of this embodiment.
  • FIG. 16 is an explanatory diagram illustrating a configuration example of a video camera to which the technology according to the present disclosure can be applied. It is a figure which shows an example of a schematic structure of an endoscopic surgery system.
  • FIG. 1 is a longitudinal sectional view illustrating a schematic configuration of a solid-state imaging device according to an embodiment of the present disclosure.
  • the solid-state imaging device 1 according to the present embodiment includes a three-layer stacked solid that is configured by stacking a first substrate 110A, a second substrate 110B, and a third substrate 110C.
  • a broken line AA indicates a bonding surface between the first substrate 110A and the second substrate 110B
  • a broken line BB indicates a bonding surface between the second substrate 110B and the third substrate 110C.
  • the first substrate 110A is a pixel substrate provided with a pixel portion.
  • the second substrate 110B and the third substrate 110C are provided with circuits for performing various signal processes related to the operation of the solid-state imaging device 1.
  • the second substrate 110B and the third substrate 110C are, for example, a logic substrate on which a logic circuit is provided or a memory substrate on which a memory circuit is provided.
  • the solid-state imaging device 1 is a backside illumination type CMOS (Complementary Metal-Oxide-Semiconductor) image sensor that photoelectrically converts light incident from the backside, which will be described later, of the first substrate 110A in a pixel portion.
  • CMOS Complementary Metal-Oxide-Semiconductor
  • each circuit can be more appropriately configured so as to correspond to the function of each substrate. Therefore, it is possible to easily achieve higher functionality of the solid-state imaging device 1. it can.
  • the pixel portion in the first substrate 110A and the logic circuit or the memory circuit in the second substrate 110B and the third substrate 110C may be appropriately configured so as to correspond to the function of each substrate. Therefore, a highly functional solid-state imaging device 1 can be realized.
  • the stacking direction of the first substrate 110A, the second substrate 110B, and the third substrate 110C is also referred to as a z-axis direction.
  • the direction in which the first substrate 110A is located in the z-axis direction is defined as the positive direction of the z-axis.
  • Two directions orthogonal to each other on a plane (horizontal plane) perpendicular to the z-axis direction are also referred to as an x-axis direction and a y-axis direction, respectively.
  • a surface on which a functional component such as a transistor is provided, or the functional component, out of two surfaces provided in the semiconductor substrate 101, 121, 131, which will be described later, facing the substrate main surface direction.
  • a surface on which a multilayer wiring layer 105, 125, 135, which will be described later, is operated is also called a front surface (front side surface), and the other surface facing the surface is a back surface (back side surface). Also called. And in each board
  • the first substrate 110A mainly includes a semiconductor substrate 101 made of, for example, silicon (Si) and a multilayer wiring layer 105 formed on the semiconductor substrate 101.
  • a pixel portion in which pixels are arranged two-dimensionally and a pixel signal processing circuit that processes pixel signals are mainly formed on the semiconductor substrate 101.
  • Each pixel includes a photodiode (PD) that receives and photoelectrically converts light (observation light) from an observation target, a transistor for reading an electrical signal (pixel signal) corresponding to the observation light acquired by the PD, and the like. And a drive circuit having the same.
  • PD photodiode
  • AD conversion analog-digital conversion
  • the pixel unit is not limited to a pixel that is configured in a two-dimensional array, and may be configured in a three-dimensional array of pixels.
  • a substrate formed of a material other than a semiconductor may be used instead of the semiconductor substrate 101.
  • a sapphire substrate may be used instead of the semiconductor substrate 101.
  • a form in which a pixel is formed by depositing a film (for example, an organic photoelectric conversion film) that performs photoelectric conversion on the sapphire substrate may be applied.
  • An insulating film 103 is laminated on the surface of the semiconductor substrate 101 on which the pixel portion and the pixel signal processing circuit are formed.
  • a multilayer wiring layer 105 including a signal line wiring for transmitting various signals such as a pixel signal and a driving signal for driving a transistor of a driving circuit is formed in the insulating film 103.
  • the multilayer wiring layer 105 further includes power supply wiring, ground wiring (GND wiring), and the like.
  • the signal line wiring may be simply referred to as a signal line.
  • the power supply wiring and the GND wiring may be collectively referred to as a power supply line.
  • the lowermost wiring of the multilayer wiring layer 105 can be electrically connected to the pixel portion or the pixel signal processing circuit by a contact 107 in which a conductive material such as tungsten (W) is embedded.
  • a plurality of wiring layers can be formed by repeating the formation of an interlayer insulating film having a predetermined thickness and the formation of a wiring layer.
  • the interlayer insulating films of the layers are collectively referred to as the insulating film 103, and the plurality of wiring layers are collectively referred to as the multilayer wiring layer 105.
  • An electrode is formed on the uppermost layer of the multilayer wiring layer 105 so that the metal surface is exposed from the insulating film 103. As will be described later, this electrode constitutes an electrode bonding structure 159 for electrically connecting the wirings in these substrates when the first substrate 110A and the second substrate 110B are bonded together. Note that in this specification, for the sake of simplicity, a wiring in one substrate and a wiring in another substrate are electrically connected to each other. May be abbreviated to be. At this time, the wiring electrically connected when the substrates are electrically connected may be a signal line or a power supply line.
  • the second substrate 110B is, for example, a logic substrate.
  • the second substrate 110 ⁇ / b> B mainly includes a semiconductor substrate 121 made of, for example, Si and a multilayer wiring layer 125 formed on the semiconductor substrate 121.
  • a logic circuit is formed on the semiconductor substrate 121.
  • various signal processing related to the operation of the solid-state imaging device 1 is executed. For example, in the logic circuit, control of a drive signal for driving the pixel portion of the first substrate 110A (that is, drive control of the pixel portion) and exchange of signals with the outside can be controlled.
  • a substrate formed of a material other than a semiconductor may be used instead of the semiconductor substrate 121.
  • a sapphire substrate may be used instead of the semiconductor substrate 121.
  • a form in which a semiconductor film (for example, Si film) is deposited on the sapphire substrate and a logic circuit is formed in the semiconductor film may be applied.
  • An insulating film 123 is laminated on the surface of the semiconductor substrate 121 on which the logic circuit is formed.
  • a multilayer wiring layer 125 for transmitting various signals related to the operation of the logic circuit is formed inside the insulating film 123.
  • the multilayer wiring layer 125 further includes power supply wiring, GND wiring, and the like.
  • the lowermost wiring of the multilayer wiring layer 125 can be electrically connected to the logic circuit by a contact 127 in which a conductive material such as W is embedded.
  • the insulating film 123 is a general term for a plurality of interlayer insulating films in the second substrate 110B
  • the multilayer wiring layer 125 is a wiring of a plurality of layers. It can be a generic term for layers.
  • the multilayer wiring layer 125 may be formed with pads 151 that function as external input / output units (I / O units) for exchanging various signals with the outside.
  • the pad 151 can be provided along the outer periphery of the chip.
  • the third substrate 110C is, for example, a memory substrate.
  • the third substrate 110 ⁇ / b> C mainly includes a semiconductor substrate 131 made of, for example, Si and a multilayer wiring layer 135 formed on the semiconductor substrate 131.
  • a memory circuit is formed on the semiconductor substrate 131.
  • the pixel signal acquired by the pixel portion of the first substrate 110A and subjected to AD conversion by the pixel signal processing circuit is temporarily held.
  • a global shutter system is realized, and the pixel signal can be read from the solid-state imaging device 1 to the outside at a higher speed. Therefore, even during high-speed shooting, it is possible to take a higher quality image with suppressed distortion.
  • a substrate formed of a material other than a semiconductor may be used instead of the semiconductor substrate 131.
  • a sapphire substrate may be used instead of the semiconductor substrate 131.
  • a mode in which a film (for example, a phase change material film) for forming a memory element is deposited on the sapphire substrate and a memory circuit is formed using the film may be applied.
  • An insulating film 133 is stacked on the surface of the semiconductor substrate 131 on which the memory circuit is formed.
  • a multilayer wiring layer 135 for transmitting various signals related to the operation of the memory circuit is formed inside the insulating film 133.
  • the multilayer wiring layer 135 further includes power supply wiring, GND wiring, and the like.
  • the lowermost wiring of the multilayer wiring layer 135 can be electrically connected to the memory circuit by a contact 137 in which a conductive material such as W is embedded.
  • the insulating film 133 is also a generic term for a plurality of interlayer insulating films in the third substrate 110C, and the multilayer wiring layer 135 is a wiring of a plurality of layers. It can be a generic term for layers.
  • a pad 151 that functions as an I / O unit for exchanging various signals with the outside can be formed.
  • the pad 151 can be provided along the outer periphery of the chip.
  • the first substrate 110A, the second substrate 110B, and the third substrate 110C are each fabricated in a wafer state. Then, these are bonded together, and each process for establishing electrical connection between signal lines and power supply lines provided on each substrate is performed.
  • the surface of the semiconductor substrate 101 of the first substrate 110A in the wafer state (the surface on the side where the multilayer wiring layer 105 is provided) and the surface of the semiconductor substrate 121 of the second substrate 110B in the wafer state (
  • the first substrate 110 ⁇ / b> A and the second substrate 110 ⁇ / b> B are bonded to each other so as to face the surface on which the multilayer wiring layer 125 is provided.
  • Face to Face FtoF
  • the metal surface of the uppermost electrode of the multilayer wiring layer 105 of the first substrate 110A and the metal surface of the uppermost electrode of the multilayer wiring layer 125 of the second substrate 110B are in contact with each other.
  • the substrate 110A and the second substrate 110B are bonded together.
  • the electrodes are joined to each other, and the signal line and the power line provided in the first substrate 110A are electrically connected to the signal line and the power line provided in the second substrate 110B, respectively.
  • an electrode bonding structure 159 such a structure in which the electrodes are directly bonded to each other for electrically connecting the signal lines and the power supply lines provided on the substrate.
  • the electrode bonding structure 159 includes an electrode formed on the bonding surface of the first substrate 110A, a via for electrically connecting the electrode to a predetermined wiring in the multilayer wiring layer 105, and the second substrate 110B.
  • the electrode is formed on the bonding surface and vias for electrically connecting the electrode to a predetermined wiring in the multilayer wiring layer 125.
  • these vias are both provided in the insulating film (in the insulating films 103 and 123).
  • one of the vias may be a via that penetrates the semiconductor substrate (so-called TSV (the first substrate 110A, the second substrate 110B, or the third substrate 110C).
  • TSV the first substrate 110A, the second substrate 110B, or the third substrate 110C.
  • vias provided through at least one of the semiconductor substrates 101, 121, and 131)) for example, in the electrode bonding structure 159b shown in FIG.
  • the via is provided through the semiconductor substrate 121).
  • a substrate made of a material other than a semiconductor can be used instead of the semiconductor substrates 101, 121, and 131.
  • a substrate made of a material other than such a semiconductor is used.
  • the via provided through the hole is also referred to as TSV.
  • the back surface of the semiconductor substrate 121 of the second substrate 110B in the wafer state (the surface opposite to the side on which the multilayer wiring layer 125 is provided) and the surface of the semiconductor substrate 131 of the third substrate 110C in the wafer state ( The third substrate 110C is further bonded to the stacked structure of the first substrate 110A and the second substrate 110B such that the surface on which the multilayer wiring layer 135 is provided is opposed to the multilayer substrate 135B.
  • the semiconductor substrate 121 is thinned before the bonding step, and an insulating film 129 having a predetermined thickness is formed on the back side thereof.
  • Face to Back FtoB
  • the semiconductor substrate 101 of the first substrate 110A is thinned, and an insulating film 109 is formed on the back surface thereof.
  • a color filter layer 111 (CF layer 111) and a microlens array 113 (ML array 113) are formed on the back surface side of the semiconductor substrate 101 of the first substrate 110A via the insulating film 109.
  • the CF layer 111 is configured by two-dimensionally arranging a plurality of CFs.
  • the ML array 113 is configured by arranging a plurality of MLs in a two-dimensional manner.
  • the CF layer 111 and the ML array 113 are formed immediately above the pixel portion, and one CF and one ML are disposed for one pixel PD.
  • Each CF of the CF layer 111 has, for example, one of red, green, and blue.
  • the observation light that has passed through the CF is incident on the PD of the pixel and the pixel signal is acquired, whereby the pixel signal of the color component of the color filter is acquired for the observation target (that is, in color) Imaging is possible).
  • one pixel corresponding to one CF functions as a subpixel, and one pixel can be formed by a plurality of subpixels.
  • a pixel provided with a red CF ie, a red pixel
  • a pixel provided with a green CF ie, a green pixel
  • a blue CF ie, a blue pixel
  • One pixel can be formed by sub-pixels of four colors, that is, a pixel) and a pixel not provided with CF (that is, a white pixel).
  • a subpixel and a pixel are not distinguished from each other, and a configuration corresponding to one subpixel is also simply referred to as a pixel.
  • the CF arrangement method is not particularly limited, and may be various arrangements such as a delta arrangement, a stripe arrangement, a diagonal arrangement, or a rectangle arrangement, for example.
  • the ML array 113 is formed so that each ML is located immediately above each CF.
  • the observation light collected by the ML is incident on the PD of the pixel via the CF, so that the collection efficiency of the observation light is improved and the sensitivity as the solid-state imaging device 1 is improved. The effect which improves can be acquired.
  • a pad opening 153a is then exposed to expose the multilayer wiring layer 125 of the second substrate 110B and the pad 151 provided on the multilayer wiring layer 135 of the third substrate 110C.
  • 153b are formed.
  • the pad opening 153a is formed from the back surface side of the first substrate 110A so as to penetrate the first substrate 110A and reach the metal surface of the pad 151 provided in the multilayer wiring layer 125 of the second substrate 110B.
  • the pad opening 153b is formed so as to penetrate from the back side of the first substrate 110A to the metal surface of the pad 151 provided in the multilayer wiring layer 135 of the third substrate 110C through the first substrate 110A and the second substrate 110B. Is done.
  • the pad 151 and other external circuits are electrically connected through the pad openings 153a and 153b, for example, by wire bonding. That is, the signal lines and the power supply lines provided on each of the second substrate 110B and the third substrate 110C can be electrically connected via the other external circuit.
  • the pad openings 153 when there are a plurality of pad openings 153 in the drawing, for convenience, the pad openings 153a, the pad openings 153b,...
  • the pad openings 153 are distinguished from each other by giving different alphabets.
  • the solid-state imaging device 1 is completed by dicing the laminated wafer structure laminated and processed in a wafer state for each solid-state imaging device 1.
  • the signal bonding lines and the power supply lines included in each of the first substrate 110A and the second substrate 110B are electrically connected by the electrode bonding structure 159, and the pad openings 153a and 153b are connected.
  • the signal lines provided on each of the second substrate 110B and the third substrate 110C are connected to each other by connecting the pads 151 exposed by the first and second pads via electrical connection means such as wirings and substrates provided outside the solid-state imaging device 1.
  • the power supply lines can be electrically connected to each other.
  • the signal lines and the power lines provided on each of the first substrate 110A, the second substrate 110B, and the third substrate 110C are electrically connected to each other through the electrode bonding structure 159, the pad 151, and the pad openings 153a and 153b. Can be connected to.
  • a structure that can electrically connect signal lines and power supply lines provided on each of the substrates, such as the electrode bonding structure 159, the pad 151, and the pad openings 153a and 153b shown in FIG. This is also collectively referred to as a connection structure.
  • a TSV157 twin contact type or a shared contact type TSV described later
  • the multilayer wiring layer 105 of the first substrate 110A, the multilayer wiring layer 125 of the second substrate 110B, and the multilayer wiring layer 135 of the third substrate 110C are formed of a plurality of first metals having a relatively low resistance.
  • the first metal wiring layer 141 may be laminated.
  • the first metal is, for example, copper (Cu). By using Cu wiring, signals can be exchanged at a higher speed.
  • the pad 151 can be formed of a second metal different from the first metal in consideration of the adhesiveness to the wire of wire bonding and the like.
  • the multilayer wiring layer 125 of the second substrate 110B provided with the pad 151 and the multilayer wiring layer 135 of the third substrate 110C are formed of the second metal in the same layer as the pad 151.
  • the second metal wiring layer 143 is included.
  • the second metal is, for example, aluminum (Al).
  • Al wiring can be used as, for example, a power supply wiring or a GND wiring that is generally formed as a wide wiring.
  • first metal and the second metal are not limited to Cu and Al exemplified above.
  • Various metals may be used as the first metal and the second metal.
  • each wiring layer of the multilayer wiring layers 105, 125, and 135 may be formed of a conductive material other than metal. These wiring layers may be formed of a conductive material, and the material is not limited. Instead of using two types of conductive materials, all of the multilayer wiring layers 105, 125, and 135 including the pads 151 may be formed of the same conductive material.
  • the TSV 157 described later and the electrodes and vias constituting the electrode bonding structure 159 are also formed of the first metal (for example, Cu).
  • the first metal for example, Cu
  • these structures can be formed by a damascene method or a dual damascene method.
  • this embodiment is not limited to such an example, and some or all of these structures may be other metals different from any of the second metal, the first metal, and the second metal, or other It may be formed of a non-metallic conductive material.
  • the vias constituting the TSV 157 and the electrode bonding structure 159 may be formed by embedding a metal material having a good embedding property such as W in the opening.
  • the TSV 157 does not necessarily have to be formed by burying a conductive material in a through hole (an opening that penetrates at least one semiconductor substrate), and a conductive material is formed on the inner wall (side wall and bottom) of the through hole. May be formed.
  • conductive materials such as the first metal and the second metal are formed on the semiconductor substrates 101, 121, and 131.
  • the insulating material for electrically insulating both of these exists.
  • the insulating material may be various known materials such as silicon oxide (SiO 2 ) or silicon nitride (SiN).
  • the insulating material may exist so as to be interposed between the conductive material and the semiconductor substrates 101, 121, 131, or exist inside the semiconductor substrates 101, 121, 131 away from the contact portions between the two. Also good.
  • an insulating material is provided between the inner wall of the through hole provided in the semiconductor substrates 101, 121, and 131 and the conductive material embedded in the through hole. (Ie, an insulating material may be deposited on the inner wall of the through hole).
  • the TSVs constituting the TSV 157 and the electrode bonding structure 159 are portions separated by a predetermined distance in a horizontal plane direction from through holes provided in the semiconductor substrates 101, 121, 131, and the semiconductor substrate 101, An insulating material may be present in the portions 121 and 131.
  • the first metal is Cu
  • Cu is the semiconductor substrate 101, 121, 131 or the insulating film 103, 109
  • Barrier metals are present at portions in contact with 123, 129, and 133 in order to prevent Cu diffusion.
  • the barrier metal various known materials such as titanium nitride (TiN) or tantalum nitride (TaN) may be used.
  • each configuration formed on the semiconductor substrates 101, 121, and 131 of each substrate (a pixel portion and a pixel signal processing circuit provided in the first substrate 110A, a logic circuit provided in the second substrate 110B, and a third substrate 110C)
  • the specific configuration and formation method of the provided memory circuit), the multilayer wiring layers 105, 125, and 135 and the insulating films 103, 109, 123, 129, and 133 may be the same as various known ones. Detailed description is omitted here.
  • the insulating films 103, 109, 123, 129, and 133 may be formed using an insulating material, and the material is not limited.
  • the insulating films 103, 109, 123, 129, 133 can be formed of, for example, SiO 2 or SiN.
  • each of the insulating films 103, 109, 123, 129, and 133 may not be formed of one type of insulating material, and may be formed by stacking a plurality of types of insulating materials.
  • a low-k material having an insulating property may be used for a region where a wiring that is required to transmit a signal at a higher speed is formed. By using the low-k material, the parasitic capacitance between the wirings can be reduced, which can contribute to high-speed signal transmission.
  • the pixel signal processing circuit that performs signal processing such as AD conversion on the pixel signal is mounted on the first substrate 110A.
  • the present embodiment is not limited to this example.
  • Some or all of the functions of the pixel signal processing circuit may be provided on the second substrate 110B. In this case, for example, in a pixel array in which a plurality of pixels are arranged in an array so as to be arranged in both the column (row) direction and the row (row) direction, the pixel is obtained by the PD provided in each pixel.
  • a pixel signal is transmitted to the pixel signal processing circuit of the second substrate 110B for each pixel, and AD conversion is performed for each pixel, so-called a pixel-by-pixel analog-digital conversion (pixel ADC) type solid-state imaging device 1 is realized.
  • pixel ADC pixel-by-pixel analog-digital conversion
  • one AD conversion circuit is provided for each column of the pixel array, and AD conversion of a plurality of pixels included in the column is sequentially performed, and solid-state imaging of a general analog-digital conversion (column ADC) method for each column.
  • the solid-state imaging device 1 is configured so that the pixel ADC can be executed, a connection structure that electrically connects the signal lines provided on each of the first substrate 110A and the second substrate 110B is provided for each pixel. It will be.
  • the second substrate 110B is a logic substrate and the third substrate 110C is a memory substrate has been described, but the present embodiment is not limited to this example.
  • the second substrate 110B and the third substrate 110C may be substrates having functions other than the pixel substrate, and the functions may be arbitrarily determined.
  • the solid-state imaging device 1 may not have a memory circuit.
  • both the second substrate 110B and the third substrate 110C can function as a logic substrate.
  • the logic circuit and the memory circuit may be formed in a distributed manner on the second substrate 110B and the third substrate 110C, and these substrates may cooperate to serve as a logic substrate and a memory substrate.
  • the second substrate 110B may be a memory substrate
  • the third substrate 110C may be a logic substrate.
  • Si substrates are used as the semiconductor substrates 101, 121, and 131 in each substrate, but the present embodiment is not limited to this example.
  • the semiconductor substrates 101, 121, and 131 for example, other types of semiconductor substrates such as a gallium arsenide (GaAs) substrate and a silicon carbide (SiC) substrate may be used.
  • GaAs gallium arsenide
  • SiC silicon carbide
  • a substrate formed of a material other than a semiconductor, such as a sapphire substrate may be used.
  • connection structure As described with reference to FIG. 1, in the solid-state imaging device 1, signal lines and / or power supply lines provided on each substrate can be electrically connected to each other across a plurality of substrates via a connection structure. .
  • the arrangement of these connection structures in the horizontal plane can be appropriately determined so that the performance of the solid-state imaging device 1 as a whole can be improved in consideration of the configuration and performance of each substrate (each chip).
  • some variations of the arrangement in the horizontal plane of the connection structure in the solid-state imaging device 1 will be described.
  • 2A and 2B are diagrams for explaining an example of the arrangement of the connection structure in the solid-state imaging device 1 in the horizontal plane.
  • 2A and 2B show the arrangement of connection structures when, for example, the solid-state imaging device 1 includes a pixel signal processing circuit that performs processing such as AD conversion on pixel signals on the first substrate 110A. Yes.
  • FIG. 2A schematically shows the first substrate 110A, the second substrate 110B, and the third substrate 110C constituting the solid-state imaging device 1. Then, the electrical connection through the connection structure between the lower surface of the first substrate 110A (the surface facing the second substrate 110B) and the upper surface of the second substrate 110B (the surface facing the first substrate 110A) is simulated by a broken line. The electrical connection through the connection structure between the lower surface of the second substrate 110B (the surface facing the third substrate 110C) and the upper surface of the third substrate 110C (the surface facing the second substrate 110B) is simulated by a solid line. Is shown.
  • connection structure 201 functions as an I / O unit for exchanging various signals such as a power supply signal and a GND signal with the outside.
  • the connection structure 201 may be a pad 151 provided on the upper surface of the first substrate 110A.
  • the connection structure 201 may be a pad opening 153 provided to expose the pad 151.
  • the connection structure 201 can be a lead wire opening 155 described later.
  • the pixel portion 206 is provided in the center of the chip, and the connection structure 201 constituting the I / O portion is arranged around the pixel portion 206 (that is, the outer periphery of the chip). Along).
  • a pixel signal processing circuit can also be disposed around the pixel portion 206.
  • connection structure 202 In FIG. 2B, the position of the connection structure 202 on the lower surface of the first substrate 110A, the position of the connection structure 203 on the upper surface of the second substrate 110B, the position of the connection structure 204 on the lower surface of the second substrate 110B, and the upper surface of the third substrate 110C.
  • These connection structures 202 to 205 can be a TSV 157 (described later) provided between the substrates or the electrode bonding structure 159 described above.
  • the connection structure 202 to 205 is connected.
  • connection structures 202 to 205 are shown in conformity with the linear form representing the electrical connection shown in FIG. 2A. That is, the connection structure 202 on the lower surface of the first substrate 110A and the connection structure 203 on the upper surface of the second substrate 110B are indicated by broken lines, and the connection structure 204 on the lower surface of the second substrate 110B and the connection on the upper surface of the third substrate 110C.
  • the structure 205 is indicated by a solid line.
  • the pixel signal processing circuit is mounted around the pixel portion 206 of the first substrate 110A. Therefore, in the first substrate 110A, the pixel signal acquired by the pixel unit 206 is subjected to processing such as AD conversion in the pixel signal processing circuit, and then transmitted to the circuit provided in the second substrate 110B. Further, as described above, in the first substrate 110A, the connection structure 201 constituting the I / O portion is also arranged around the pixel portion 206 of the first substrate 110A. Therefore, as shown in FIG. 2B, the connection structure 202 on the lower surface of the first substrate 110A is used to electrically connect the pixel signal processing circuit and the I / O unit to the circuit included in the second substrate 110B.
  • connection structure 203 on the upper surface of the second substrate 110B is also arranged along the outer periphery of the chip.
  • connection structure 204 on the lower surface of the second substrate 110B and the connection structure 205 on the upper surface of the third substrate 110C are arranged over the entire surface of the chip.
  • 2C and 2D are diagrams for explaining another example of the arrangement of the connection structure in the solid-state imaging device 1 in the horizontal plane.
  • 2C and 2D show the arrangement of the connection structure when the solid-state imaging device 1 is configured to be able to execute the pixel ADC, for example.
  • the pixel signal processing circuit is mounted not on the first substrate 110A but on the second substrate 110B.
  • FIG. 2C schematically shows the first substrate 110A, the second substrate 110B, and the third substrate 110C that constitute the solid-state imaging device 1, as in FIG. 2A.
  • the electrical connection through the connection structure between the lower surface of the first substrate 110A (the surface facing the second substrate 110B) and the upper surface of the second substrate 110B (the surface facing the first substrate 110A) is indicated by a broken line or a dotted line.
  • the electrical connection through the connection structure between the lower surface of the second substrate 110B (the surface facing the third substrate 110C) and the upper surface of the third substrate 110C (the surface facing the second substrate 110B) is schematically shown. This is simulated.
  • the broken line indicates the electrical connection related to, for example, the I / O portion that also exists in FIG. These show the electrical connections for the pixel ADC that did not exist in FIG. 2A.
  • connection structures 202 to 205 are shown in conformity with the linear form representing the electrical connection shown in FIG. 2C. That is, of the connection structure 202 on the lower surface of the first substrate 110A and the connection structure 203 on the upper surface of the second substrate 110B, the one corresponding to the electrical connection related to, for example, the I / O portion that also exists in FIG. Those that can correspond to the electrical connection of the pixel ADC are indicated by dotted lines.
  • the connection structure 204 on the lower surface of the second substrate 110B and the connection structure 205 on the upper surface of the third substrate 110C are indicated by solid lines.
  • the pixel signal processing circuit is mounted on the second substrate 110B, and the pixel ADC is configured. That is, the pixel signal acquired in each pixel of the pixel unit 206 is transmitted to the pixel signal processing circuit mounted on the second substrate 110B immediately below for each pixel, and processing such as AD conversion is performed in the pixel signal processing circuit. Done. Therefore, as shown in FIGS. 2C and 2D, in the configuration example, the connection structure 202 on the lower surface of the first substrate 110A transmits the signal from the I / O unit to the circuit provided in the second substrate 110B.
  • connection structure 202 indicated by a broken line in the figure
  • pixel signals from each pixel of the pixel part 206 are applied to the second substrate 110B.
  • the pixel portion 206 is disposed over the entire region (connection structure 202 indicated by a dotted line in the figure).
  • connection structure 204 on the lower surface of the second substrate 110B and the connection structure 205 on the upper surface of the third substrate 110C are arranged over the entire surface of the chip.
  • 2E and 2F are diagrams for explaining still another example of the arrangement of the connection structure in the solid-state imaging device 1 in the horizontal plane.
  • 2E and 2F show the arrangement of the connection structure when, for example, a memory circuit is mounted on the second substrate 110B.
  • FIG. 2E schematically shows the first substrate 110A, the second substrate 110B, and the third substrate 110C that constitute the solid-state imaging device 1, as in FIG. 2A.
  • the electrical connection through the connection structure between the lower surface of the first substrate 110A (the surface facing the second substrate 110B) and the upper surface of the second substrate 110B (the surface facing the first substrate 110A) is indicated by a broken line or a dotted line.
  • the electrical connection through the connection structure between the lower surface of the second substrate 110B (the surface facing the third substrate 110C) and the upper surface of the third substrate 110C (the surface facing the second substrate 110B) is schematically shown. Or it is simulating with a dotted line.
  • the broken line indicates the electrical connection related to, for example, the I / O portion that also exists in FIG. These show the electrical connections for the memory circuit that did not exist in FIG. 2A.
  • the solid line is a signal that is also present in FIG. 2A and is not directly related to the operation of the memory circuit, for example.
  • the dotted line indicates the electrical connection related to the memory circuit that did not exist in FIG. 2A.
  • connection structures 202 to 205 are shown in conformity with the linear form representing the electrical connection shown in FIG. 2E. That is, of the connection structure 202 on the lower surface of the first substrate 110A and the connection structure 203 on the upper surface of the second substrate 110B, the one corresponding to the electrical connection related to, for example, the I / O portion that also exists in FIG.
  • connection structure 204 on the lower surface of the second substrate 110B and the connection structure 205 on the upper surface of the third substrate 110C for example, an electric signal related to a signal that does not directly relate to the operation of the memory circuit, which also exists in FIG.
  • Those corresponding to the electrical connection are indicated by solid lines, and those that can correspond to the electrical connection relating to the memory circuit are indicated by dotted lines.
  • the memory circuit is mounted on the second substrate 110B.
  • the pixel signal processing circuit is mounted on the first substrate 110A, and the pixel signal acquired by the pixel unit 206 and AD-converted by the pixel signal processing circuit on the first substrate 110A is the memory circuit of the second substrate 110B. Can be transmitted and held. Then, in order to read out the pixel signal held in the memory circuit of the second substrate 110B, for example, to the outside, signal transmission is performed between the memory circuit of the second substrate 110B and the logic circuit of the third substrate 110C.
  • connection structure 202 on the lower surface of the first substrate 110A has the I / O unit and the pixel in order to transmit signals from the I / O unit and the pixel signal processing circuit to the second substrate 110B.
  • connection structure 202 indicated by a broken line in the figure the AD converted pixel signal is transmitted to the memory circuit of the second substrate 110B
  • connection structure 202 shown by a dotted line in the figure is arranged.
  • connection structures 202 to 205 for exchanging can be centrally provided near the center in the horizontal plane. However, if the wiring length can be made substantially uniform, the connection structures 202 to 205 are not necessarily provided near the center in the horizontal plane as in the illustrated example.
  • connection structure in the solid-state imaging device 1 in the horizontal plane has been described. Note that the present embodiment is not limited to the example described above.
  • the configuration mounted on each substrate in the solid-state imaging device 1 may be appropriately determined, and the arrangement of the connection structure in the solid-state imaging device 1 in the horizontal plane may be appropriately determined according to the configuration.
  • Various well-known things may be applied as a structure mounted in each board
  • the connection structure 201 constituting the I / O unit is arranged along the three sides of the outer periphery of the chip.
  • the present embodiment is not limited to this example.
  • Various well-known things may be applied also about arrangement
  • the connection structure 201 constituting the I / O unit may be arranged along one side, two sides, or four sides of the outer periphery of the chip.
  • the solid-state imaging device 1 In the configuration example shown in FIG. 1, in the solid-state imaging device 1, the first substrate 110A and the second substrate 110B are bonded together by FtoF (that is, the surface side of the second substrate 110B faces the first substrate 110A). ) On the other hand, the solid-state imaging device 1 may be configured by bonding the first substrate 110A and the second substrate 110B with FtoB (that is, the surface side of the second substrate 110B faces the third substrate 110C). Also good).
  • the direction of the second substrate 110B may be determined as appropriate so that the performance of the solid-state imaging device 1 as a whole can be improved in consideration of, for example, the configuration and performance of each substrate (each chip). .
  • two concepts for determining the direction of the second substrate 110B will be described.
  • FIG. 3A is a longitudinal sectional view showing a schematic configuration of the solid-state imaging device 1 in which the first substrate 110A and the second substrate 110B are bonded together by FtoF, similarly to the configuration example shown in FIG.
  • FIG. 3B is a longitudinal sectional view showing a schematic configuration of the solid-state imaging device 1a in which the first substrate 110A and the second substrate 110B are bonded together by FtoB, unlike the configuration example shown in FIG.
  • the configuration of the solid-state imaging device 1a is the same as that of the solid-state imaging device 1 shown in FIG. 1 except that the direction of the second substrate 110B is opposite.
  • FIGS. 3A and 3B the function (signal line, GND wiring, or power supply wiring) of each wiring included in the multilayer wiring layers 105, 125, and 135 is expressed by superimposing different hatching on these wirings.
  • the hatching of each wiring shown in FIGS. 3A and 3B is different from the hatching of each wiring shown in FIG. 1 in that the hatching indicating the function of the wiring shown in the legend shown in FIGS. 3A and 3B is used. (The same applies to FIGS. 4A and 4B described later).
  • terminals (corresponding to the above-described pads 151) for leading out signal lines, GND wirings, and power supply wirings are provided along the outer periphery of the chip. .
  • Each of these terminals is provided in pairs at a position sandwiching the pixel portion 206 in the horizontal plane. Therefore, in the solid-state imaging device 1, 1a, the signal line, the GND wiring, and the power supply wiring are extended so as to connect these terminals, and are stretched in the horizontal plane.
  • the PD provided in each pixel of the pixel unit is a PD in which an N-type diffusion region is formed in PWELL in order to read out electrons generated as a result of photoelectric conversion. Since the transistor of the drive circuit provided in each pixel for reading out the generated electrons is an N-type MOS transistor, the WELL of the pixel portion is PWELL.
  • the logic circuit and the memory circuit provided on the second substrate 110B and the third substrate 110C are composed of CMOS circuits, so that PMOS and NMOS are mixed. Therefore, PWELL and NWELL exist, for example, in the same area. Therefore, in the illustrated configuration example, the area of the PWELL is larger in the first substrate 110A than in the second substrate 110B and the third substrate 110C.
  • a GND potential can be applied to PWELL. Therefore, when there is a configuration in which the PWELL and the power supply wiring face each other with an insulator interposed therebetween, a parasitic capacitance is formed between them.
  • FIG. 4A is a diagram for describing the parasitic capacitance between the PWELL and the power supply wiring in the solid-state imaging device 1 shown in FIG. 3A.
  • the parasitic capacitance between the PWELL and the power supply wiring is schematically shown by a two-dot chain line with respect to the solid-state imaging device 1 shown in FIG. 3A. As shown in FIG.
  • the solid-state imaging device 1 since the first substrate 110A and the second substrate 110B are bonded together by FtoF, as shown, the PWELL of the pixel portion of the first substrate 110A and the second substrate
  • the power supply wiring in the 110B multilayer wiring layer 125 is opposed to the insulating film 103, 123 with the insulator interposed therebetween. Therefore, a parasitic capacitance can be formed between the two in the region.
  • FIG. 4B is a diagram for explaining the parasitic capacitance between the PWELL and the power supply wiring in the solid-state imaging device 1a shown in FIG. 3B.
  • the parasitic capacitance between the PWELL and the power supply wiring is schematically shown by a two-dot chain line with respect to the solid-state imaging device 1a shown in FIG. 3B. As shown in FIG.
  • the parasitic capacitance is considered to increase as the PWELL area increases. Therefore, in the configuration example shown in FIGS. 4A and 4B, the configuration in which the first substrate 110A and the second substrate 110B shown in FIG. 4A are bonded to each other by FtoF is the first substrate 110A and the second substrate shown in FIG. 4B.
  • the parasitic capacitance is larger than the configuration in which the two substrates 110B are bonded to each other by FtoB.
  • the parasitic capacitance related to the power supply wiring in the second substrate 110B is large, the impedance of the current path of the power supply-GND in the second substrate 110B decreases. Therefore, the power supply system in the second substrate 110B can be further stabilized. Specifically, for example, even when the power consumption fluctuates with fluctuations in the operation of the circuit in the second substrate 110B, fluctuations in the power supply level due to fluctuations in the power consumption can be suppressed. Therefore, even when the circuit related to the second substrate 110B is operated at high speed, the operation can be further stabilized, and the performance of the entire solid-state imaging device 1 can be improved.
  • the solid-state imaging device 1 in which the first substrate 110A and the second substrate 110B are bonded to each other with FtoF is more suitable for the first substrate 110A.
  • the solid-state imaging device 1a in which the second substrate 110B and the second substrate 110B are bonded together by FtoB a larger parasitic capacitance is formed in the power supply wiring of the second substrate 110B, and high stability can be obtained when operating at high speed. That is, it can be said that the solid-state imaging device 1 is a more preferable configuration.
  • the third substrate 110C may have a larger PWELL area than the first substrate 110A.
  • the configuration of the solid-state imaging device 1a in which a larger parasitic capacitance is formed between the power supply wiring of the second substrate 110B and the PWELL of the third substrate 110C is faster than the solid-state imaging device 1. It is considered that high stability can be obtained when it is used.
  • the surface of the second substrate 110B is preferably configured so that the side faces the first substrate 110A, that is, the first substrate 110A and the second substrate 110B are bonded together by FtoF.
  • the surface side of the second substrate 110B faces the third substrate 110C, that is, the first substrate 110A.
  • the solid-state imaging device 1a is configured such that the second substrate 110B and the second substrate 110B are bonded together by FtoB.
  • the direction of the second substrate 110B may be determined from the viewpoint based on the area of the PWELL.
  • the solid-state imaging devices 1 to 11f according to the present embodiment shown in FIG. 1 and FIGS. 10A to 19F described later have, for example, a PWELL area of the first substrate 110A larger than an PWELL area of the third substrate 110C. Accordingly, the first substrate 110A and the second substrate 110B are configured to be bonded together by FtoF. Therefore, according to the solid-state imaging devices 1 to 11f, it is possible to obtain high operational stability even during high-speed operation.
  • the first substrate 110A includes a PD for reading electrons generated as a result of photoelectric conversion, and Only the pixel portion provided with the NMOS transistor for reading electrons from the PD in the PWELL is mounted, and various circuits (pixel signal processing circuit, logic circuit, memory circuit, etc.) are mounted on the second substrate 110B and the third substrate 110C. May be installed.
  • the PWELL area of the third substrate 110C is larger than the PWELL area of the first substrate 110A, for example, both the pixel portion and various circuits are mounted on the first substrate 110A. It is conceivable that the area occupied by the various circuits is relatively large.
  • FIG. 5A is a diagram schematically showing the arrangement of the power supply wiring and the GND wiring in the solid-state imaging device 1 shown in FIG. 3A.
  • FIG. 5B is a diagram schematically showing the arrangement of power supply wiring and GND wiring in the solid-state imaging device 1a shown in FIG. 3B.
  • 5A and 5B the structure of the solid-state imaging device 1 or 1a is illustrated in a simplified manner, and the schematic arrangement of the power supply wiring and the GND wiring is indicated by a two-dot chain line, and the GND wiring is indicated by a one-dot chain line. It is shown by showing.
  • the size of the arrow in the figure schematically represents the amount of current flowing through the power supply wiring and the GND wiring.
  • the power supply wiring is a vertical power supply wiring extending in the z-axis direction from a power supply terminal (VCC) provided on the upper surface of the first substrate 110A (that is, the upper surface of the solid-state imaging device 1, 1a).
  • VCC power supply terminal
  • the vertical power supply wiring 303 and the horizontal power supply wiring 304 are collectively referred to as power supply wirings 303 and 304.
  • the horizontal power supply wiring 304 may also exist in the multilayer wiring layer 105 of the first substrate 110A and the multilayer wiring layer 125 of the second substrate 110B. However, in FIG. 5A and FIG. The illustration is omitted, and only the horizontal power supply wiring 304 in the multilayer wiring layer 135 of the third substrate 110C is illustrated.
  • the GND wiring includes a vertical GND wiring 305 extending in the z-axis direction from a GND terminal provided on the upper surface of the first substrate 110A, a multilayer wiring layer 105 of the first substrate 110A, a multilayer wiring layer 125 of the second substrate 110B, And the horizontal GND wiring 306 extending in the horizontal direction in the multilayer wiring layer 135 of the third substrate 110C.
  • the vertical GND wiring 305 and the horizontal GND wiring 306 are collectively referred to as GND wirings 305 and 306.
  • the horizontal GND wiring 306 of the first substrate 110A is also referred to as a horizontal GND wiring 306a
  • the horizontal GND wiring 306 of the second substrate 110B is also referred to as a horizontal GND wiring 306b
  • 306 is also referred to as a horizontal GND wiring 306c.
  • the third substrate 110C is assumed to be a logic substrate.
  • the logic circuit is divided into a plurality of circuit blocks, and the circuit block that operates depends on the contents to be processed. That is, the place where the solid-state imaging device 1 or 1a mainly operates during a series of operations can vary. Therefore, there is a bias in the place where the power supply current flows in the logic circuit (for example, the power supply current is generated due to charging / discharging of the transistor gate capacitance and the wiring capacitance accompanying the operation of the circuit), and the location varies. Can do.
  • FIGS. 5A and 5B attention is paid to the two circuit blocks 301 and 302 in the logic circuit of the third substrate 110C.
  • a current path of power supply terminal-power supply wiring 303, 304-circuit block 301, 302-GND wiring 305, 306-GND terminal is formed.
  • the power consumption at a certain timing is larger in the circuit block 301 than in the circuit block 302.
  • the amount of current flowing through the vertical GND wiring 305 via the circuit blocks 301 and 302 is also described as a vertical GND wiring 305 near the circuit block 301 (for the sake of distinction, also referred to as a vertical GND wiring 305a).
  • Is larger than the vertical GND wiring 305 near the circuit block 302 also referred to as a vertical GND wiring 305b for the sake of distinction).
  • the imbalance in the amount of current between the vertical GND wirings 305a and 305b is directed to the GND terminal on the upper surface of the first substrate 110A.
  • the horizontal GND wirings 306a and 306b of the first substrate 110A and the second substrate 110B are eliminated. That is, current flows through the horizontal GND wirings 306a and 306b of the first substrate 110A and the second substrate 110B so as to eliminate the imbalance of the current amount between the vertical GND wirings 305a and 305b.
  • the solid-state imaging devices 1 and 1a include the horizontal power supply wiring 304, the circuit block 301, 302, the horizontal GND wiring 306c, the vertical GND wiring 305a, and the horizontal GND wiring 306a as shown by solid arrows in FIGS. 5A and 5B.
  • 306b is formed as a loop current path.
  • the horizontal GND wirings 306a and 306b of the first substrate 110A and the second substrate 110B are In either case, the third substrate 110C is disposed relatively far from the horizontal power supply wiring 304. Accordingly, the opening width of the loop is increased in the loop-shaped current path, thereby increasing the inductance in the loop-shaped current path. That is, the impedance is increased. Therefore, the stability of the power supply current is lowered, and the performance of the solid-state imaging device 1 as a whole may be lowered.
  • the horizontal GND wiring 306a of the first substrate 110A is the horizontal power supply wiring of the third substrate 110C.
  • the horizontal GND wiring 306b of the second substrate 110B is disposed relatively close to the horizontal power supply wiring 304 of the third substrate 110C. Therefore, in the loop-shaped current path, the opening width of the loop is decreased, and thereby the inductance in the loop-shaped current path is decreased. That is, the impedance is lowered. Therefore, the power supply current can be further stabilized, and the performance of the solid-state imaging device 1 as a whole can be further improved.
  • the horizontal GND wiring 306b of the second substrate 110B can be disposed on the first substrate 110A and the second substrate 110B. It is considered that more stable operation can be realized than the solid-state imaging device 1 in which and are bonded by FtoF. That is, it can be said that the solid-state imaging device 1a is a more preferable configuration.
  • the first substrate 110A may consume more power than the third substrate 110C.
  • the configuration of the solid-state imaging device 1 that can make the distance between the horizontal power supply wiring of the first substrate 110A and the horizontal GND wiring 306b of the second substrate 110B closer than the solid-state imaging device 1a. It is considered that more stable operation can be expected.
  • the solid-state imaging device 1 is configured such that the surface side of the first substrate 110A faces the first substrate 110A, that is, the first substrate 110A and the second substrate 110B are bonded together by FtoF.
  • the surface side of the second substrate 110B faces the third substrate 110C, that is, the first substrate 110A and the first substrate 110A.
  • the solid-state imaging device 1a is preferably configured so that the two substrates 110B are bonded to each other with FtoB.
  • the direction of the second substrate 110B may be determined from the viewpoint based on the power consumption and the arrangement of the GND wiring.
  • the solid-state imaging devices 1 to 11f according to this embodiment shown in FIG. 1 and FIGS. 10A to 19F to be described later are configured such that, for example, the power consumption of the first substrate 110A is larger than the power consumption of the third substrate 110C. Accordingly, the first substrate 110A and the second substrate 110B are configured to be bonded by FtoF. Therefore, according to the solid-state imaging devices 1 to 11f, more stable operation can be realized.
  • the power consumption of the third substrate 110C is larger than the power consumption of the first substrate 110A
  • only the pixel portion is mounted on the first substrate 110A, and more on the second substrate 110B and the third substrate 110C.
  • these circuits for example, a pixel signal processing circuit, a logic circuit, and a memory circuit
  • the pixel portion is mounted on the first substrate 110A
  • the pixel signal processing circuit and the memory circuit are mounted on the second substrate 110B
  • the logic is mounted on the third substrate 110C.
  • a configuration in which a circuit is mounted can be considered.
  • a digital circuit for example, a digital circuit that generates a reference voltage for AD conversion
  • a memory circuit with high access frequency for example, a memory circuit in which pixel signals are written or read multiple times in one frame
  • the power consumption of the third substrate 110C is expected to grow.
  • the power consumption of the first substrate 110A is larger than the power consumption of the third substrate 110C
  • both the pixel portion and various circuits are mounted on the first substrate 110A. It can be considered that the area occupied by the circuit is relatively large.
  • a memory circuit with low access frequency for example, a memory circuit in which a pixel signal is written or read out once per frame
  • the power consumption of the third substrate 110C is relatively increased.
  • the power consumption itself may be compared, or another index that may represent the magnitude of the power consumption may be compared.
  • the other indicators include the number of gates (for example, 100 gates and 1M gates) mounted on the circuit of each substrate, the operating frequencies of the circuits of each substrate (for example, 100 MHz and 1 GHz), and the like.
  • FIG. 5C is a diagram illustrating a configuration example for reducing the impedance in the solid-state imaging device 1 illustrated in FIG. 5A. 5C is different from the solid-state imaging device 1 shown in FIG.
  • the horizontal GND wiring 306a of the first substrate 110A and the horizontal GND wiring 306b of the second substrate 110B are arranged in a plurality of vertical directions.
  • the other configurations are the same as those of the solid-state imaging device 1 corresponding to those connected by the GND wiring.
  • the horizontal GND wirings 306a and 306b are strengthened, and the impedance in the loop-shaped current path can be reduced, so that the performance of the solid-state imaging device 1b as a whole is further improved. Will be possible.
  • FIG. 5C the horizontal GND wirings 306a and 306b are strengthened, and the impedance in the loop-shaped current path can be reduced, so that the performance of the solid-state imaging device 1b as a whole is further improved. Will be possible.
  • the power consumption of the third substrate 110C is larger than the power consumption of the first substrate 110A and the first substrate 110A and the second substrate 110B are bonded to each other by FtoF
  • the configuration can reduce the impedance of the loop-shaped current path
  • the power consumption of the first substrate 110A is larger than the power consumption of the third substrate 110C
  • the first substrate 110A and the second substrate 110B are In the case of bonding by FtoB, in order to reduce the impedance of the loop-shaped current path, a plurality of gaps between the horizontal GND wiring 306b of the second substrate 110B and the horizontal GND wiring 306c of the third substrate 110C are provided. What is necessary is just to connect with a vertical GND wiring.
  • the connection structure for connecting the GND wirings to the multilayer wiring layer 105 of the first substrate 110A and the multilayer wiring layer 125 of the second substrate 110B.
  • the arrangement of the GND wiring in the multilayer wiring layers 105 and 125 and the arrangement of the other wiring are subject to restrictions considering that the connection structure is provided.
  • the vertical GND wiring and the connection structure for connecting them between the substrates are only in the outer peripheral portion of the chip in the horizontal plane. In other words, the distribution is more distributed in the central portion of the chip, and it is necessary to arrange each wiring in consideration of this fact. That is, the degree of freedom in designing each wiring in the multilayer wiring layers 105 and 125 is lowered.
  • the impedance of the loop current path is reduced by adjusting the direction of the second substrate 110B. Therefore, unlike the configuration shown in FIG. 5C, the vertical GND wirings can be arranged so that the vertical GND wirings are distributed more in the outer periphery of the chip in the horizontal plane. Therefore, the impedance in the current path can be reduced, that is, the operation of the solid-state imaging device 1 or 1a can be stabilized without reducing the degree of freedom of design of each wiring in the multilayer wiring layers 105 and 125.
  • the density of the arrangement of the vertical GND wirings in the outer peripheral portion of the chip in the horizontal plane and the central portion of the chip can be determined as follows, for example. For example, in nine areas in which the chip is equally divided into 3 ⁇ 3 areas in the horizontal plane, the number of vertical GND wirings existing in one central area is larger than the number of vertical GND wirings existing in the eight surrounding areas. If there are too many, it can be determined that the number of vertical GND wirings in the center of the chip is large (that is, it can be determined that the configuration of the solid-state imaging device 1b shown in FIG. 5C may be applied).
  • the number of vertical GND wirings existing in one central region is smaller than the number of vertical GND wirings existing in the eight surrounding regions, the number of vertical GND wirings in the outer peripheral portion of the chip is large. (That is, it can be determined that the configuration of the solid-state imaging device 1 or 1a shown in FIGS. 5A and 5B may be applied).
  • the case where the chip is equally divided into nine regions in the horizontal plane has been described as an example, but the number of regions to be divided is not limited to this example, and 4 ⁇ 4 16 regions or 5 ⁇ 5 25
  • the number of areas may be changed as appropriate.
  • the density may be determined by the number of vertical GND wirings in the four central regions and the 12 surrounding regions.
  • the chip is divided into 25 regions of 5 ⁇ 5, one central region and 24 surrounding regions, or nine central regions and 16 surrounding regions, The density may be determined by the number of vertical GND wirings in FIG.
  • the configuration of the solid-state imaging device 1 illustrated in FIG. 1 is an example of the solid-state imaging device according to the present embodiment.
  • the solid-state imaging device according to the present embodiment may be configured to have a connection structure different from that shown in FIG.
  • Such configuration variations first configuration example to tenth configuration example
  • Such configuration variations due to the difference in connection structure in the solid-state imaging device will be described later in (5.
  • Configuration variations of the solid-state imaging device As an example, some of the configuration examples of the solid-state imaging device according to the present embodiment described below (5. Variations of the configuration of the solid-state imaging device) (fourth configuration example to sixth configuration example) The manufacturing method will be described.
  • first substrate 110A, the second substrate 110B, and the third substrate 110C have already been manufactured, and the subsequent first substrate 110A, second substrate 110B, The step of stacking the third substrate 110C will be mainly described.
  • the first manufacturing method corresponds to a method for manufacturing solid-state imaging devices 7a to 7j according to a sixth configuration example shown in FIGS. 15A to 15J described later.
  • FIGS. 6A to 6E a method of manufacturing the solid-state imaging device according to the sixth configuration example of this embodiment will be described.
  • 6A to 6E are views for explaining a manufacturing method (first manufacturing method) of the solid-state imaging device according to the sixth configuration example of the present embodiment.
  • 6A to 6E schematically show cross sections parallel to the z-axis direction of a partial region of the solid-state imaging device according to the sixth configuration example in the order of steps in the manufacturing method of the solid-state imaging device. The process flow in the said manufacturing method is represented.
  • the first substrate 110A and the second substrate 110B are bonded together by FtoF (FIG. 6A).
  • the electrode formed on the surface side of the first substrate 110A and the electrode formed on the surface side of the second substrate 110B are in direct contact with the bonding surface of the first substrate 110A and the second substrate 110A.
  • the substrate 110B is attached. That is, the electrode bonding structure 159a is formed between the first substrate 110A and the second substrate 110B.
  • the electrode bonding structure 159a can be formed by performing heat treatment while the electrodes are in contact with each other, but here, for convenience, the structures before and after the heat treatment are both electrode bonding structures 159a. It is called.
  • the heat treatment may be performed immediately after the step illustrated in FIG. 6A, or may be performed simultaneously on the electrode bonding structures 159a and 159b after the step illustrated in FIG. 6D described later.
  • the via 401 is electrically connected to a predetermined wiring in the multilayer wiring layer 125 and reaches a predetermined depth from the surface of the semiconductor substrate 121. Is formed.
  • the via 401 finally forms a via of the electrode bonding structure 159b that electrically connects the signal lines and the power supply lines provided in each of the second substrate 110B and the third substrate 110C.
  • the via 401 is formed of a first metal (for example, Cu).
  • the present embodiment is not limited to such an example, and the via 401 may be formed of another conductive material.
  • the semiconductor substrate 121 of the second substrate 110B is thinned from the back side (FIG. 6B).
  • the semiconductor substrate 121 is thinned until the tip of the via 401 is exposed.
  • various methods generally used in wafer thinning processing such as grinding by a grinder and CMP (Chemical Mechanical Polishing) may be applied.
  • a redistribution line is formed on the back side of the semiconductor substrate 121 of the second substrate 110B (FIG. 6C). Specifically, an insulating film 129 is formed on the back side of the semiconductor substrate 121, and a wiring pattern is formed inside the insulating film 129.
  • the wiring pattern is formed of a first metal (for example, Cu) by using, for example, a damascene method.
  • the wiring pattern is formed of Cu
  • a process of forming an insulating film such as SiO 2 by a CVD (Chemical Vapor Deposition) method processing the insulating film by photolithography and dry etching, and wiring
  • the process of removing the excess metal film that is, the metal film in the region other than the region where the wiring trench is formed
  • the process of removing the excess metal film that is, the metal film in the region other than the region where the wiring trench is formed
  • a step of forming a barrier metal for suppressing the diffusion of Cu by a sputtering method or a CVD method Cu called a seed layer is formed by a sputtering method.
  • a step of forming a film and a step of forming a Cu film by a plating film forming method may be sequentially performed.
  • the seed layer is a film that is a starting point of growth necessary for plating.
  • the CMP method is generally used in consideration of planarization.
  • an electrode 402 electrically connected to the via 401 is formed as the wiring pattern.
  • the electrode 402 is formed such that its metal surface is exposed from the insulating film 129.
  • illustration is omitted, other wiring patterns may be formed in the other insulating film 129 together.
  • the second substrate 110B and the third substrate 110C are bonded with FtoB (FIG. 6D).
  • the multilayer wiring layer 135 is formed so that the electrode 403 is exposed on the front surface side of the insulating film 133, and the electrode 402 formed on the back surface side of the second substrate 110B and the third substrate
  • the second substrate 110B and the third substrate 110C are bonded so that the electrode 403 formed on the surface side of 110C is in direct contact with the bonding surface.
  • heat treatment is performed to form an electrode bonding structure 159b in which both electrodes 402 and 403 are bonded between the second substrate 110B and the third substrate 110C.
  • the semiconductor substrate 101 of the first substrate 110A is thinned from the back side.
  • the thinning process may be performed by various known methods.
  • an insulating film 109 is formed on the thinned back surface of the semiconductor substrate 101.
  • the insulating film 109 is formed, for example, by depositing SiO 2 by a CVD method.
  • a CF layer 111 and an ML array 113 are formed in a region corresponding to the pixel portion on the insulating film 109.
  • the solid-state imaging device 1c according to the sixth configuration example is completed (FIG. 6E).
  • the solid-state imaging device 1c can be provided with a pad opening 153 or a lead-line opening 155 as an I / O unit. .
  • the second manufacturing method also corresponds to a manufacturing method of solid-state imaging devices 7a to 7j according to a sixth configuration example shown in FIGS. 15A to 15J described later.
  • the second manufacturing method corresponds to a manufacturing method different from the first manufacturing method for the solid-state imaging device according to the sixth configuration example.
  • FIGS. 7A to 7E another method for manufacturing the solid-state imaging device according to the sixth configuration example of the present embodiment will be described.
  • 7A to 7E are diagrams for explaining another manufacturing method (second manufacturing method) of the solid-state imaging device according to the sixth configuration example of the present embodiment.
  • 7A to 7E schematically show cross sections parallel to the z-axis direction of a partial region of the solid-state imaging device according to the sixth configuration example in the order of steps in the manufacturing method of the solid-state imaging device.
  • the process flow in the said manufacturing method is represented.
  • the first substrate 110A and the second substrate 110B are bonded together by FtoF (FIG. 7A).
  • FtoF FtoF
  • an electrode bonding structure 159a is formed between the first substrate 110A and the second substrate 110B.
  • This step is the same as the step shown in FIG. 6A related to the first manufacturing method described above.
  • the via 401 is not formed in the second substrate 110B.
  • the semiconductor substrate 121 of the second substrate 110B is thinned from the back side (FIG. 7B).
  • the process is the same as the process shown in FIG. 6B according to the first manufacturing method described above.
  • rewiring is formed on the back side of the semiconductor substrate 121 of the second substrate 110B (FIG. 7C). Specifically, an insulating film 129 is formed on the back side of the semiconductor substrate 121, and a wiring pattern is formed inside the insulating film 129. At this time, a via 411 that penetrates the semiconductor substrate 121 is formed from the back side of the semiconductor substrate 121, and an electrode 412 that is electrically connected to the via 411 is formed in the wiring pattern. As a method for forming the via 411 and the electrode 412, various known methods such as a dual damascene method may be used.
  • the subsequent steps are the same as in the first manufacturing method described above.
  • the second substrate 110B and the third substrate 110C are bonded by FtoB (FIG. 7D).
  • the second substrate 110B is arranged such that the electrode 412 formed on the back surface side of the second substrate 110B and the electrode 413 formed on the front surface side of the third substrate 110C are in direct contact with the bonding surface.
  • the third substrate 110C are bonded together.
  • an electrode bonding structure 159b in which both electrodes 412 and 413 are bonded is formed between the second substrate 110B and the third substrate 110C.
  • the semiconductor substrate 101 of the first substrate 110A is thinned from the back side.
  • an insulating film 109 is formed on the thinned back surface of the semiconductor substrate 101.
  • the insulating film 109 is formed, for example, by depositing SiO 2 by a CVD method.
  • a CF layer 111 and an ML array 113 are formed in a region corresponding to the pixel portion on the insulating film 109.
  • the solid-state imaging device 1d according to the sixth configuration example is completed (FIG. 7E).
  • the solid-state imaging device 1d can be provided with a pad opening 153 or a lead line opening 155 as an I / O unit. .
  • the third manufacturing method corresponds to a method for manufacturing solid-state imaging devices 6a to 6f according to a fifth configuration example shown in FIGS. 14A to 14F described later.
  • FIGS. 8A to 8F a method of manufacturing the solid-state imaging device according to the fifth configuration example of the present embodiment will be described.
  • FIG. 8A to FIG. 8F are diagrams for explaining a manufacturing method (third manufacturing method) of the solid-state imaging device according to the fifth configuration example of the present embodiment.
  • 8A to 8F schematically show cross sections parallel to the z-axis direction of a partial region of the solid-state imaging device according to the fifth configuration example in the order of steps in the method of manufacturing the solid-state imaging device. The process flow in the said manufacturing method is represented.
  • the first substrate 110A and the second substrate 110B are bonded together by FtoF (FIG. 8A).
  • FtoF FtoF
  • an electrode bonding structure 159 is formed between the first substrate 110A and the second substrate 110B. This step is the same as the step shown in FIG. 7A related to the second manufacturing method described above.
  • the semiconductor substrate 121 of the second substrate 110B is thinned from the back side (FIG. 8B). This step is the same as the step shown in FIG. 6B related to the first manufacturing method and the step shown in FIG. 7B related to the second manufacturing method.
  • an insulating film 129 is formed on the back side of the semiconductor substrate 121 of the second substrate 110B (FIG. 8C).
  • the insulating film 129 is formed, for example, by depositing SiO 2 by a CVD method.
  • the second substrate 110B and the third substrate 110C are bonded with FtoB (FIG. 8D).
  • electrodes are not formed on the back surface side of the second substrate 110B and the front surface side of the third substrate 110C, and the second substrate 110B, the third substrate 110C, No electrode junction structure is formed between the two.
  • the semiconductor substrate 101 of the first substrate 110A is thinned from the back side (FIG. 8E).
  • the thinning process may be performed by various known methods.
  • an insulating film 109 is formed on the back surface of the semiconductor substrate 101 of the first substrate 110A.
  • the insulating film 109 is formed, for example, by depositing SiO 2 by a CVD method. Thereafter, from above the insulating film 109 (that is, from the back surface side of the first substrate 110A), penetrates the semiconductor substrate 101 and the second substrate 110B of the first substrate 110A, and the multilayer wiring layer 135 of the third substrate 110C.
  • a TSV 421 reaching a predetermined wiring is formed.
  • the TSV 421 exposes predetermined wiring in the multilayer wiring layer 135 of the third substrate 110C while exposing a part of the predetermined wiring in the multilayer wiring layer 125 of the second substrate 110B from the back side of the first substrate 110A.
  • a conductive material in the illustrated example, a first metal (for example, Cu) is embedded in one through hole provided so as to have a structure. That is, the predetermined wiring in the multilayer wiring layer 125 of the second substrate 110B and the predetermined wiring in the multilayer wiring layer 135 of the third substrate 110C can be electrically connected by the TSV 421.
  • a TSV that electrically connects wirings of a plurality of substrates through one through hole is also called a shared contact. By using the shared contact, there is an advantage that the TSV structure can be realized with a relatively simple process and a relatively small area.
  • the solid-state imaging device 1e according to the fifth configuration example is completed (FIG. 8F).
  • the solid-state imaging device 1d can be provided with a pad opening 153 or a lead-line opening 155 as an I / O unit. .
  • the TSV 421 is a connection structure that electrically connects the signal lines and the power supply lines provided on each of the second substrate 110B and the third substrate 110C.
  • the signal line and the power line in the multilayer wiring layer 105 may be formed so as to be electrically connected to the signal line and the power line in the multilayer wiring layer 135 of the third substrate 110C, respectively.
  • 110A signal lines and power lines in the multilayer wiring layer 105, signal lines and power lines in the multilayer wiring layer 125 of the second substrate 110B, and signal lines and power lines in the multilayer wiring layer 135 of the third substrate 110C. May be formed to be electrically connected to each other.
  • the fourth manufacturing method corresponds to a method for manufacturing solid-state imaging devices 5a to 5c according to a fourth configuration example shown in FIGS. 13A to 13C described later.
  • FIGS. 9A to 9G a method of manufacturing the solid-state imaging device according to the fourth configuration example of this embodiment will be described.
  • FIG. 9A to FIG. 9G are diagrams for explaining a manufacturing method (fourth manufacturing method) of the solid-state imaging device according to the fourth configuration example of the present embodiment.
  • FIG. 9A to FIG. 9G schematically show cross sections parallel to the z-axis direction of a partial region of the solid-state imaging device according to the fourth configuration example in the order of steps in the manufacturing method of the solid-state imaging device. The process flow in the said manufacturing method is represented.
  • the support substrate 431 is bonded to the surface side of the second substrate 110B (FIG. 9A).
  • the semiconductor substrate 121 of the second substrate 110B is thinned from the back side (FIG. 9B).
  • the thinning process may be performed by various known methods, similar to the steps shown in FIGS. 6B, 7B, and 8B.
  • an insulating film 129 is formed on the back side of the semiconductor substrate 121 of the second substrate 110B (FIG. 9C).
  • the insulating film 129 is formed, for example, by depositing SiO 2 by a CVD method.
  • the support substrate 431 is peeled from the second substrate 110B (FIG. 9D).
  • no electrode is formed on the back surface of the second substrate 110B and the front surface side of the third substrate 110C, and between the second substrate 110B and the third substrate 110C.
  • the electrode bonding structure 159 is not formed.
  • the TSV 432 is a via that penetrates the second substrate 110B from the surface side of the second substrate 110B and reaches a predetermined wiring of the multilayer wiring layer 135 of the third substrate 110C.
  • the TSV 432 exposes a predetermined wiring in the multilayer wiring layer 135 of the third substrate 110C while exposing a part of the predetermined wiring in the multilayer wiring layer 125 of the second substrate 110B from the surface side of the second substrate 110B.
  • a conductive material in the illustrated example, a first metal (for example, Cu) is embedded in one through hole provided so as to have a structure. That is, the predetermined wiring in the multilayer wiring layer 125 of the second substrate 110B and the predetermined wiring in the multilayer wiring layer 135 of the third substrate 110C can be electrically connected by the TSV 432.
  • the TSV 432 is a shared contact, similar to the TSV 421 described above.
  • the electrode 433 is formed integrally with the TSV 432 so that the metal surface is exposed from the insulating film 123. That is, the TSV 432 and the electrode 433 are formed by embedding a conductive material in one through hole corresponding to the TSV 432 and the electrode 433.
  • the electrode 433 can finally form an electrode bonding structure 159 that electrically connects signal lines and power supply lines provided in each of the first substrate 110A and the second substrate 110B. That is, in this configuration example, the shared contact type TSV 432 is a via that electrically connects the signal lines and the power supply lines provided in each of the substrates, and is also a via that constitutes the electrode bonding structure 159.
  • the electrode 435 is formed so that the metal surface is exposed from the insulating film 123, and the via 434 is formed so as to electrically connect the electrode 435 and a predetermined wiring in the multilayer wiring layer 125. .
  • the via 434 and the electrode 435 may finally form an electrode bonding structure 159 that electrically connects the signal lines and the power supply lines included in each of the first substrate 110A and the second substrate 110B.
  • various known methods such as a dual damascene method may be used.
  • the first substrate 110A and the second substrate 110B are bonded with FtoF (FIG. 9F).
  • the multilayer wiring layer 105 is formed so that the electrodes 436 and 437 are exposed from the surface side of the insulating film 103, and the electrodes 436 and 437 formed on the surface side of the first substrate 110A and The first substrate 110A and the second substrate 110B are bonded so that the electrodes 433 and 435 formed on the surface side of the second substrate 110B are in direct contact with the bonding surface.
  • an electrode bonding structure 159 in which these electrodes 433, 435, 436, and 437 are bonded is formed between the first substrate 110A and the second substrate 110B.
  • the semiconductor substrate 101 of the first substrate 110A is thinned from the back side.
  • the thinning process may be performed by various known methods.
  • an insulating film 109 is formed on the thinned back surface of the semiconductor substrate 101.
  • the insulating film 109 is formed, for example, by depositing SiO 2 by a CVD method.
  • a CF layer 111 and an ML array 113 are formed in a region corresponding to the pixel portion on the insulating film 109.
  • the solid-state imaging device 1f according to the fourth configuration example is completed (FIG. 9G).
  • the solid-state imaging device 1f can be provided with a pad opening 153 or a lead-line opening 155 as an I / O unit. .
  • the signal lines and the power lines provided on each of the first substrate 110A and the second substrate 110B are electrically connected to each other.
  • an electrode bonding structure 159 is provided.
  • the connection structures for electrically connecting the signal lines and the power supply lines provided on each of the second substrate 110B and the third substrate 110C are solid-state imaging devices 1c and 1d and solid-state imaging devices 1e and 1f. , Have different connection structure.
  • the solid-state imaging devices 1c and 1d have a connection structure between the second substrate 110B and the third substrate 110C, and between the signal lines provided on each of the second substrate 110B and the third substrate 110C. And an electrode bonding structure 159b for electrically connecting the power supply lines.
  • the solid-state imaging devices 1c and 1d have shared contact type TSVs 421 and 432 that electrically connect signal lines and power supply lines provided on the second substrate 110B and the third substrate 110C, respectively, as a connection structure.
  • the solid-state imaging devices 1c and 1d require a process for forming the electrode bonding structure 159b, the number of processes tends to increase compared to the solid-state imaging devices 1e and 1f. Therefore, from the viewpoint of reducing the number of steps and reducing the manufacturing cost, it is preferable to employ the third or fourth manufacturing method capable of manufacturing the solid-state imaging devices 1e and 1f.
  • the TSV 421 is collectively formed after the three substrates 110A, 110B, and 110C are stacked, so that the number of processes can be greatly reduced. it can.
  • the TSV 421 is formed from the back side of the semiconductor substrate 101 (eg, Si substrate) of the first substrate 110A. Therefore, since it is necessary to align through the semiconductor substrate 101, the technical difficulty is high.
  • the TSV 421 is formed before the CF layer 111 and the ML array 113 are formed.
  • a resin material is used. Since it is necessary to form the TSV 421 under a predetermined temperature constraint so as not to damage these configurations that can be formed, the technical difficulty increases.
  • the fourth manufacturing method is a manufacturing method that is less technically difficult than the third manufacturing method.
  • the solid-state imaging device 1c manufactured by the first manufacturing method and the solid-state imaging device 1d manufactured by the second manufacturing method have substantially the same structure as the final structure. However, both of them form the semiconductor substrate 121 of the second substrate 110B that constitutes the electrode bonding structure 159b for electrically connecting the signal lines and the power supply lines provided in each of the second substrate 110B and the third substrate 110C.
  • the formation method of vias 401 and 411 that is, TSVs 401 and 411) provided through is different.
  • the via 401 reaching a predetermined depth from the surface side of the semiconductor substrate 121 is formed in advance when the second substrate 110B is formed.
  • vias 411 are formed from the back side of semiconductor substrate 121 of second substrate 110B after bonding first substrate 110A and second substrate 110B.
  • the second manufacturing method similarly to the above-described third manufacturing method, it is necessary to perform alignment through the semiconductor substrate 121, so there is a concern that the technical difficulty level is increased.
  • the first manufacturing method since the via 401 is formed in advance before the first substrate 110A and the second substrate 110B are bonded together, such a problem regarding alignment does not occur. Therefore, it can be said that the first manufacturing method is a manufacturing method that is less technically difficult than the second manufacturing method.
  • the manufacturing method of the solid-state imaging device according to the present embodiment is not limited to the above-described method, and may be another method.
  • the solid-state imaging device according to the present embodiment may be manufactured by various known methods.
  • the solid-state imaging device is classified into ten categories (first configuration example to tenth configuration example).
  • the solid-state imaging device electrically connects the signal lines and the power supply lines provided on each of the first substrate 110A and the second substrate 110B as in the solid-state imaging device 1 shown in FIG.
  • There is at least an electrode bonding structure 159 (a structure in which the electrodes formed on the bonding surfaces of the first substrate 110A and the second substrate 110B are bonded in a state of being in direct contact with each other) as a connection structure to be connected to each other.
  • all of the signal lines and the power supply lines included in each of the first substrate 110A, the second substrate 110B, and the third substrate 110C need to be electrically connected.
  • connection structure for electrically connecting the signal lines and the power supply lines included in each of the first substrate 110A and the third substrate 110C and / or the second substrate 110B and the second substrate 110C.
  • a connection structure for electrically connecting signal lines and power supply lines provided on each of the three substrates 110C may be provided.
  • the solid-state imaging devices are classified into 10 categories according to the specific types of these connection structures.
  • an electrode bonding structure 159 provided between the first substrate 110A and the second substrate 110B is provided as a connection structure.
  • This is a configuration example in which the contact-type TSV 157 and other electrode bonding structure 159 (that is, the electrode bonding structure 159 provided between the second substrate 110B and the third substrate 110C) do not exist. Therefore, in the solid-state imaging device according to the first configuration example, the signal lines and the power lines provided in each of the first substrate 110A and the third substrate 110C are electrically connected and / or the second substrate 110B and the third substrate 110C.
  • the electrical connection between the signal lines and the power supply lines provided on each of the substrates 110C is realized via the I / O unit.
  • the electrode bonding structure 159 provided between the first substrate 110A and the second substrate 110B, as well as the first substrate 110A and the third substrate as other connection structures.
  • the signal lines and power lines that can be electrically connected to each other and the signal lines and power lines of 110C and / or the signal lines and power lines of each of the second substrate 110B and the third substrate 110C can be electrically connected to each other.
  • a possible pad 151 is provided. Note that the solid-state imaging device 1 shown in FIG. 1 is also included in the first configuration example.
  • the second configuration example includes an electrode joint structure 159 provided between the first substrate 110A and the second substrate 110B, as well as another connection structure between two layers of a twin contact type described later.
  • This is a configuration example in which a TSV 157 is provided.
  • the twin contact is a first through hole exposing a predetermined wiring, a second through hole different from the first through hole exposing another wiring different from the predetermined wiring, This is a via having a structure in which a conductive material is embedded or a structure in which a conductive material is formed on the inner walls of the first and second through holes.
  • the TSV between the two layers refers to the signal lines and the power lines provided on each of two adjacent substrates among the first substrate 110A, the second substrate 110B, and the third substrate 110C.
  • the third configuration example includes an electrode joint structure 159 provided between the first substrate 110A and the second substrate 110B, as well as another connection structure between three layers of a twin contact type described later.
  • the TSV between the three layers means a TSV extending across all of the first substrate 110A, the second substrate 110B, and the third substrate 110C.
  • the twin contact type three-layer TSV 157 formed from the back side of the first substrate 110A toward the third substrate 110C has a structure in which the signal lines and the power supply provided on each of the first substrate 110A and the third substrate 110C are provided.
  • the signal lines and the power lines provided in each of the lines or in each of the second substrate 110B and the third substrate 110C can be electrically connected.
  • the TSV 157 between the three layers of the twin contact type formed from the back surface side of the third substrate 110C toward the first substrate 110A has a structure in which the signal lines provided on each of the first substrate 110A and the second substrate 110B are connected to each other.
  • signal lines and power lines provided on each of the first substrate 110A and the third substrate 110C can be electrically connected to each other.
  • the fourth configuration example includes an electrode bonding structure 159 provided between the first substrate 110A and the second substrate 110B, and other connection structures between shared contact type two layers described later.
  • This is a configuration example in which a TSV 157 is provided.
  • the shared contact means that a conductive material is embedded in one through hole provided so as to expose a predetermined wiring in another substrate while exposing a part of the predetermined wiring in one substrate.
  • a via having a structure or a structure in which a conductive material is formed on the inner wall of the through hole.
  • the TSVs 421 and 432 shown in FIGS. 8F and 9G described above are types of shared contacts in which a conductive material is embedded.
  • the shared contact type TSV157 that electrically connects the signal lines and the power supply lines provided on each of the first substrate 110A and the second substrate 110B is formed from the back side of the first substrate 110A.
  • two equipotential wirings arranged side by side with a predetermined interval in the multilayer wiring layer 105 of the first substrate 110A and the first in the multilayer wiring layer 125 of the second substrate 110B.
  • the wiring located immediately below the space between the two equipotential wirings in the multilayer wiring layer 105 of the substrate 110A the two equipotential wirings from the back side of the first substrate 110A.
  • a through hole having a diameter larger than the space between them is formed directly above the two equipotential wirings by dry etching.
  • the through hole having the large diameter is formed so as not to expose the two equipotential wirings.
  • a second substrate in which a through hole having a smaller diameter than the space between the two equipotential wirings is located immediately below the space between the two equipotential wirings The wiring in the multilayer wiring layer 125 of 110B is formed to be exposed.
  • a part of the two equipotential wirings in the multilayer wiring layer 105 of the first substrate 110A is exposed by growing a through hole having a large diameter by etch back.
  • the through hole is located immediately below the space between the two wirings while exposing a part of the two equipotential wirings in the multilayer wiring layer 105 of the first substrate 110A.
  • the wiring in the multilayer wiring layer 125 of the second substrate 110B is exposed.
  • a shared contact type TSV 157 can be formed by embedding a conductive material in the through hole or by depositing a conductive material on the inner wall of the through hole. According to such a method, when forming a through hole having a large diameter and a through hole having a small diameter, dry etching is not performed on the two equipotential wirings. It is possible to suppress the occurrence of scraping and the occurrence of contamination. Therefore, a more reliable solid-state imaging device 1 can be realized.
  • the shared contact type TSV 157 that electrically connects the signal lines and the power supply lines provided in each of the first substrate 110A and the second substrate 110B is formed from the back side of the first substrate 110A.
  • the shared contact type TSV 157 that electrically connects the signal lines and the power supply lines provided on each of the second substrate 110B and the third substrate 110C can be provided from the surface side of the second substrate 110B or the second substrate 110B. The same applies to the case where it is formed from the back side of the three substrates 110C and the case where a shared contact type three-layer TSV 157 described later is formed from the back side of the first substrate 110A or from the back side of the third substrate 110C.
  • the through hole is provided so as to pass through the space between the two wirings arranged side by side with a predetermined interval.
  • a ring shape having an opening is provided.
  • a through hole may be provided so as to form a wiring and pass through the opening of the wiring.
  • the shared contact TSV157 can be formed by a method different from the above method.
  • the shared contact type TSV 157 that electrically connects the signal lines and the power supply lines of each of the first substrate 110A and the second substrate 110B is formed from the back surface side of the first substrate 110A.
  • a through-hole having a diameter larger than the space between two equipotential wirings in the multilayer wiring layer 105 of the first substrate 110A from the back surface side of the first substrate 110A is removed by dry etching.
  • the dry etching is not stopped halfway so as not to expose the two equipotential wirings, but a part of the two equipotential wirings is exposed as it is. Dry etching may be continued.
  • the 2 in the through-hole is selected according to the etching selectivity between the conductive material (for example, Cu) constituting the two equipotential wirings and the insulating material (for example, SiO 2 ) for constituting the insulating film 103.
  • Etching hardly proceeds for the same equipotential wiring, and etching for the insulating film 103 can proceed in the space between the two equipotential wirings.
  • the through hole exposes a part of the two wirings in the multilayer wiring layer 105 of the first substrate 110 ⁇ / b> A, and is located immediately below the space between the two wirings.
  • the wiring in the multilayer wiring layer 125 of the substrate 110B is exposed.
  • the shared contact type TSV 157 may be formed by embedding a conductive material in the through hole formed in this manner or by depositing a conductive material on the inner wall of the through hole.
  • the shared contact type TSV 157 is not necessarily provided so as to pass through a space between two equipotential wirings or an opening of a ring-shaped wiring.
  • the wiring located in the upper layer in the above example, the wiring in the multilayer wiring layer 105 of the first substrate 110A
  • the shared contact type TSV157 that electrically connects the signal lines and the power supply lines provided in each of the first substrate 110A and the second substrate 110B is replaced with the first substrate 110A.
  • a through hole may be formed so as to have Then, the shared contact type TSV 157 may be formed by embedding a conductive material in the through hole or by depositing a conductive material on the inner wall of the through hole.
  • there is a single upper layer wiring for example, there is a misalignment compared to the case where there are two higher layer wirings or a ring shape having an opening as described above.
  • an electrode joint structure 159 provided between the first substrate 110A and the second substrate 110B is used as another connection structure between shared contact type three layers to be described later.
  • the shared contact type three-layer TSV 157 has a structure in which signal lines and power lines provided on at least any two of the first substrate 110A, the second substrate 110B, and the third substrate 110C are connected to each other. Can be electrically connected.
  • the sixth configuration example includes an electrode bonding structure 159 provided between the first substrate 110A and the second substrate 110B, and other connection structures such as the second substrate 110B and the third substrate 110C.
  • the electrode bonding structure 159 exists on both of the two bonding surfaces, it exists between the first substrate 110A and the second substrate 110B.
  • the seventh configuration example includes an electrode bonding structure 159a provided between the first substrate 110A and the second substrate 110B, and other connection structures such as the second substrate 110B and the third substrate 110C.
  • the eighth configuration example includes an electrode bonding structure 159a provided between the first substrate 110A and the second substrate 110B, and other connection structures such as the second substrate 110B and the third substrate 110C.
  • This is a configuration example in which an electrode joint structure 159b provided between and a TSV 157 between the twin contact type three layers described later is provided.
  • the ninth configuration example includes an electrode bonding structure 159a provided between the first substrate 110A and the second substrate 110B, and other connection structures such as the second substrate 110B and the third substrate 110C.
  • This is a configuration example in which an electrode joint structure 159b provided between and TSV157 between two layers of a shared contact type described later is provided.
  • the seventh configuration example includes, as an electrode connection structure 159a provided between the first substrate 110A and the second substrate 110B, as another connection structure, the second substrate 110B and the third substrate 110C.
  • This is a configuration example in which an electrode joint structure 159b provided between and TSV157 between three layers of a shared contact type described later is provided.
  • the first to tenth configuration examples will be described in order.
  • an example of a connection structure included in at least the solid-state imaging device according to the present embodiment is illustrated.
  • the configurations shown in the following drawings do not mean that the solid-state imaging device according to the present embodiment has only the connection structure shown in the drawing, and the solid-state imaging device has a connection structure other than the connection structure shown in the drawing as appropriate.
  • the first metal wiring layer is, for example, a Cu wiring layer
  • the second metal wiring layer is, for example, an Al wiring layer.
  • FIGS. 10A to 10E are longitudinal sectional views showing a schematic configuration of the solid-state imaging apparatus according to the first configuration example of the present embodiment.
  • the solid-state imaging device according to this embodiment can have the configuration shown in FIGS. 10A to 10E.
  • the solid-state imaging device 2a shown in FIG. 10A has an electrode bonding structure 159 provided between the first substrate 110A and the second substrate 110B as a connection structure, and a pad 151 provided in the multilayer wiring layer 105 of the first substrate 110A. And a pad opening 153a exposing the pad 151, a pad 151 provided in the multilayer wiring layer 135 of the third substrate 110C, and a pad opening 153b exposing the pad 151.
  • the electrode bonding structure 159 the signal lines and the power supply lines provided in each of the first substrate 110A and the second substrate 110B are electrically connected. Further, the signal lines and the power supply lines provided on each of the first substrate 110A and the third substrate 110C can be electrically connected by the pad 151 and the pad openings 153a and 153b.
  • the solid-state imaging device 2b illustrated in FIG. 10B has, as a connection structure, an electrode bonding structure 159 provided between the first substrate 110A and the second substrate 110B, and predetermined wiring in the multilayer wiring layer 105 of the first substrate 110A.
  • the lead line opening 155a to be drawn out, the lead line opening 155b to pull out a predetermined wiring in the multilayer wiring layer 135 of the third substrate 110C, and the lead line opening are arranged on the back surface side of the first substrate 110A.
  • a pad 151 electrically connected to the predetermined wiring by a conductive material constituting 155a and 155b.
  • the lead-out openings 155a and 155b are used to lead out predetermined wirings in the substrates 110A, 110B, and 110C (predetermined wirings in the first substrate 110A and the third substrate 110C in the illustrated example) to the outside. It is an opening.
  • the lead line openings 155a and 155b have a structure in which a conductive material (for example, W) is formed on the inner wall of the opening formed so as to expose the wiring to be drawn.
  • the film made of the conductive material extends from the inside of the lead-out openings 155a and 155b to the surface on the back surface side of the first substrate 110A as shown in the figure.
  • the pad 151 is formed on the extended film made of a conductive material, and is electrically connected to the wiring in the substrate drawn out by the lead line openings 155a and 155b by the film made of the conductive material.
  • the lead line openings 155a and 155b lead out predetermined wirings in the first metal wiring layer in the multilayer wiring layer 105 of the first substrate 110A and in the multilayer wiring layer 135 of the third substrate 110C. It is configured as follows. Note that the conductive material formed on the inner wall of the opening in the lead wire opening 155 is not limited to W, and various known conductive materials may be used as the conductive material.
  • FIG. 10B a structure in which a pad 151 disposed on the back surface side of the first substrate 110A is electrically connected to the wiring drawn out by the lead line openings 155a and 155b. Also referred to as a drawer pad structure. Further, in this specification, a structure in which a pad opening 153a is provided for a pad 151 formed in a substrate as shown in FIG. 10A, for example, corresponding to the lead pad structure is also referred to as a buried pad structure. (The structure shown in FIG. 1 is also an embedded pad structure).
  • the lead pad structure is a structure in which the pad 151 formed in the substrate in the embedded pad structure is pulled out of the substrate (on the back surface side of the first substrate 110A).
  • the lead line openings 155a when there are a plurality of lead line openings 155 in the drawing, for convenience, the lead line openings 155a, the lead line openings 155b,.
  • the plurality of lead wire openings 155 are distinguished from each other by attaching different alphabets to the end of each.
  • each of the wirings drawn out by the two lead line openings 155a and 155b is electrically connected to the same pad 151.
  • the present embodiment is not limited to such an example, and a plurality of pads 151 may be provided so as to correspond to each of the wirings drawn out by the lead line openings 155a and 155b.
  • the solid-state imaging device 2c shown in FIG. 10C corresponds to the solid-state imaging device 2b shown in FIG. 10B in which the configuration of the drawer pad structure is changed. Specifically, in the configuration shown in FIG. 10C, only one lead line opening 155 for a predetermined wiring in the multilayer wiring layer 135 of the third substrate 110C is provided. In the configuration shown in FIG. 10C, the second metal wiring layer is provided in the multilayer wiring layer 135 of the third substrate 110C, and the lead line opening 155 leads out a predetermined wiring of the second metal wiring layer. It is configured as follows.
  • the solid-state imaging device 2d shown in FIG. 10D corresponds to the solid-state imaging device 2c shown in FIG. 10C in which the arrangement of the pads 151 is changed.
  • the conductive material constituting the lead line opening 155 is extended to the surface on the back side of the first substrate 110A, and the extended conductive material is used.
  • the pad 151 is formed on the conductive material film 501 extended in the first substrate 110A for other purposes regardless of the lead line opening 155. 151 is formed. Then, by electrically connecting the conductive material constituting the lead line opening 155 and the conductive material film 501, the wiring drawn out by the lead line opening 155 and the pad 151 are electrically connected.
  • the CF and the back surface of the semiconductor substrate 101 that is, between the CF and the diffusion layer of the semiconductor substrate 101.
  • a light-shielding film made of a metal material having an opening corresponding to each pixel can be provided between the PD and the pixel) (the pixels are two-dimensionally arranged. The material will be present only between the pixels, ie in a grid). For example, W can be used as the metal material.
  • the metal material constituting the light shielding film is extended to a position where the I / O portion on the outer periphery of the chip is formed and functions as the conductive material film 501 described above (not shown).
  • the conductive material film 501 functioning as a light shielding film also exists in the pixel portion).
  • a resin film 503 made of an insulating resin material is formed on the conductive material film 501 (that is, the light shielding film) so that the conductive material film 501 is not exposed.
  • a film is formed.
  • the material of the resin film 503 is not limited, for example, the resin film 503 can be formed of the same material as CF. In this case, since the resin film 503 can be formed simultaneously with the CF layer 111, the process can be simplified.
  • the pad 151 is formed by being embedded in the resin film 503 so that the bottom thereof is in contact with the conductive material film 501.
  • the lead line opening 155 is formed on the side wall of the opening so that the conductive material deposited on the side wall can be in contact with the conductive material film 501.
  • the wiring drawn out by the lead wire opening 155 and the pad 151 are electrically connected.
  • the lead line opening 155 is configured to lead out a predetermined wiring of the first metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C.
  • the solid-state imaging device 2e shown in FIG. 10E corresponds to the solid-state imaging device 2d shown in FIG. 10D in which the arrangement of the pads 151 is changed. Specifically, in the solid-state imaging device 2e as well, like the solid-state imaging device 2d, the wiring drawn out by the lead-out opening 155 and the pad 151 are electrically connected through the conductive material film 501. In the solid-state imaging device 2e, the conductive material constituting the lead line opening 155 is extended on the conductive material film 501 so as to be in contact with the conductive material film 501, and is made of the extended conductive material. A pad 151 is formed on the film. That is, the lead pad structure shown in FIG.
  • the lead line opening 155 is configured to lead out a predetermined wiring of the second metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C.
  • the extraction pad structure in which the pad 151 is embedded in the film on the back surface of the first substrate 110 ⁇ / b> A is referred to as an embedded type extraction pad. Also called structure.
  • the embedded lead pad structure includes a structure in which the pad 151 is embedded in the insulating film 109 as in the configuration shown in 11E described later.
  • a lead pad structure in which the pad 151 is not embedded in the film on the back surface of the first substrate 110A as shown in FIGS. 10B and 10C is a non-embedded structure. It is also called a mold drawer pad structure.
  • the embedded pad structure and / or the drawing pad are provided in the first substrate 110A and / or the second substrate 110B.
  • a structure is provided. With these structures, the signal lines and the power lines provided on each of the first substrate 110A and the third substrate 110C and / or the signal lines and the power lines provided on each of the second substrate 110B and the third substrate 110C are provided. It can be electrically connected.
  • the solid-state imaging device is provided with a conductive material film 501 that can function as a light shielding film, as shown in FIGS. 10D and 10E. Can be.
  • FIGS. 11A to 11E are longitudinal sectional views showing a schematic configuration of a solid-state imaging apparatus according to the second configuration example of the present embodiment.
  • the solid-state imaging device according to this embodiment may have the configuration shown in FIGS. 11A to 11E.
  • the solid-state imaging device 3a shown in FIG. 11A is connected to the electrode bonding structure 159 provided between the first substrate 110A and the second substrate 110B, the twin contact TSV157, and the second substrate 110B.
  • An embedded pad structure that is, a pad 151 provided in the multilayer wiring layer 125 of the second substrate 110B and a pad opening 153 exposing the pad 151).
  • the electrode bonding structure 159 By the electrode bonding structure 159, the signal lines and the power supply lines provided in each of the first substrate 110A and the second substrate 110B are electrically connected.
  • the TSV 157 electrically connects the signal lines and the power supply lines provided on each of the second substrate 110B and the third substrate 110C from the surface side of the second substrate 110B toward the third substrate 110C.
  • the TSV 157 causes the predetermined wiring of the second metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B and the second metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C. The predetermined wiring is electrically connected.
  • the solid-state imaging device 3b shown in FIG. 11B corresponds to the solid-state imaging device 3a shown in FIG. 11A in which the type (material) of wiring electrically connected by the twin contact TSV157 is changed.
  • the TSV 157 causes the predetermined wiring of the second metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B and the first wiring in the multilayer wiring layer 135 of the third substrate 110C.
  • a predetermined wiring of the metal wiring layer is electrically connected.
  • the solid-state image pickup device 3c shown in FIG. 11C is different from the solid-state image pickup device 3a shown in FIG. 11A in that the pad type and the type of wiring electrically connected by the twin contact TSV157 are changed.
  • a non-embedded extraction pad structure for a predetermined wiring in the multilayer wiring layer 105 of the first substrate 110A (that is, the multilayer of the first substrate 110A).
  • a lead line opening 155 for a predetermined wiring in the wiring layer 105 and a pad 151) on the back surface of the first substrate 110A are provided.
  • the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B and the second metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C.
  • the predetermined wiring is electrically connected.
  • the solid-state imaging device 3d shown in FIG. 11D corresponds to the solid-state imaging device 3c shown in FIG. 11C in which the type of wiring electrically connected by the twin contact TSV157 is changed.
  • the TSV 157 causes the first wiring in the multilayer wiring layer 135 of the third substrate 110C and the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B.
  • a predetermined wiring of the metal wiring layer is electrically connected.
  • FIG. 11E corresponds to the solid-state imaging device 3e shown in FIG. 11E in which the configuration of the drawer pad structure is changed with respect to the solid-state imaging device 3d shown in FIG. 11D.
  • the lead pad structure a film made of a conductive material constituting the lead line opening 155 and a pad 151 formed on the film are both in the insulating film 109.
  • An embedded embedded drawer pad structure is provided.
  • each configuration shown in FIGS. 11A to 11E the type of wiring to which the twin contact TSV 157 is connected is not limited.
  • the TSV 157 may be connected to a predetermined wiring of the first metal wiring layer or may be connected to a predetermined wiring of the second metal wiring layer.
  • one or both of the wirings to which the TSV 157 is connected may be changed to a predetermined wiring of the second metal wiring layer.
  • each multilayer wiring layer 105, 125, 135 may be configured only by the first metal wiring layer, may be configured only by the second metal wiring layer, or may be configured such that both of them are mixed. May be.
  • the TSV 157 is formed from the surface side of the second substrate 110B toward the third substrate 110C, but the present embodiment is not limited to such an example.
  • the TSV 157 may be formed from the back surface side of the third substrate 110C toward the second substrate 110B.
  • FIGS. 12A to 12K are longitudinal sectional views showing a schematic configuration of a solid-state imaging apparatus according to the third configuration example of the present embodiment.
  • the solid-state imaging device according to this embodiment may have the configuration shown in FIGS. 12A to 12K.
  • the solid-state imaging device 4a shown in FIG. 12A is connected to an electrode bonding structure 159 provided between the first substrate 110A and the second substrate 110B, a twin-contact type TSV 157 between three layers, and the second substrate 110B.
  • An embedded pad structure that is, a pad 151 provided in the multilayer wiring layer 125 of the second substrate 110B and a pad opening 153 exposing the pad 151).
  • the electrode bonding structure 159 the signal lines and the power supply lines provided in each of the first substrate 110A and the second substrate 110B are electrically connected.
  • the TSV 157 is formed from the back side of the first substrate 110A, and is provided so as to electrically connect the signal lines and the power lines provided in each of the second substrate 110B and the third substrate 110C.
  • the TSV 157 causes the predetermined wiring of the second metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B and the second metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C.
  • the predetermined wiring is electrically connected.
  • the solid-state imaging device 4b shown in FIG. 12B corresponds to the solid-state imaging device 4a shown in FIG. 12A in which the structure of the TSV157 of the twin contact type three layers is changed.
  • the TSV 157 is provided so as to electrically connect the signal lines and the power supply lines provided in each of the first substrate 110A and the third substrate 110C.
  • the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B and the second metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C. The predetermined wiring is electrically connected.
  • the solid-state image pickup device 4c shown in FIG. 12C is different from the solid-state image pickup device 4a shown in FIG. 12A in that the pad type and the type of wiring electrically connected by the twin contact TSV157 are changed.
  • a non-embedded extraction pad structure for a predetermined wiring in the multilayer wiring layer 105 of the first substrate 110A ie, the multilayer of the first substrate 110A.
  • a lead line opening 155 for a predetermined wiring in the wiring layer 105 and a pad 151) on the back surface of the first substrate 110A are provided.
  • the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B and the second metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C.
  • the predetermined wiring is electrically connected.
  • the solid-state imaging device 4d shown in FIG. 12D corresponds to the solid-state imaging device 4c shown in FIG. 12C in which the structure of the TSV157 between the twin contact type three layers is changed.
  • the TSV 157 is provided so as to electrically connect the signal lines and the power supply lines provided in each of the first substrate 110A and the third substrate 110C.
  • the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the first substrate 110A and the second metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C. The predetermined wiring is electrically connected.
  • the solid-state imaging device 4e shown in FIG. 12E is different from the solid-state imaging device 4c shown in FIG. 12C in the configuration of the lead pad structure and the type of wiring electrically connected by the TSV157 between the three contact type layers. Corresponds to that. Specifically, in the configuration shown in FIG. 12E, an embedded drawer pad structure is provided as a drawer pad structure in place of the non-embedded drawer pad structure. In the configuration shown in FIG. 12E, the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B and the first metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C. The predetermined wiring is electrically connected.
  • the solid-state imaging device 4f shown in FIG. 12F is different from the solid-state imaging device 4d shown in FIG. 12D in the configuration of the lead pad structure and the type of wiring electrically connected by the TSV157 between the three contact type layers. Corresponds to that. Specifically, in the configuration shown in FIG. 12F, an embedded-type drawer pad structure is provided instead of the non-embedded-type drawer pad structure as the drawer pad structure. In the configuration shown in FIG. 12F, the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the first substrate 110A and the first metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C. The predetermined wiring is electrically connected.
  • the solid-state imaging device 4g shown in FIG. 12G corresponds to the solid-state imaging device 4a shown in FIG. 12A in which the structure of the TSV157 of the twin contact type three layers is changed.
  • the TSV 157 electrically connects the signal lines and the power lines provided on each of the first substrate 110A and the third substrate 110C from the back side of the third substrate 110C. It is provided as follows.
  • the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the first substrate 110A and the first metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C. The predetermined wiring is electrically connected.
  • the solid-state imaging device 4h shown in FIG. 12H corresponds to the solid-state imaging device 4g shown in FIG. Specifically, in the configuration shown in FIG. 12H, a non-embedded extraction pad structure for a predetermined wiring in the multilayer wiring layer 105 of the first substrate 110A is provided instead of the embedded pad structure.
  • the solid-state imaging device 4i shown in FIG. 12I corresponds to the solid-state imaging device 4h shown in FIG. 12H in which the configuration of the multilayer wiring layer 135 of the third substrate 110C is changed.
  • the multilayer wiring layer 135 is configured by mixing the first metal wiring layer and the second metal wiring layer.
  • the layer 135 is configured only by the first metal wiring layer.
  • the solid-state imaging device 4j shown in FIG. 12J corresponds to the solid-state imaging device 4h shown in FIG. Specifically, in the configuration shown in FIG. 12J, an embedded drawer pad structure is provided instead of the non-embedded drawer pad structure as the drawer pad structure.
  • the solid-state imaging device 4k shown in FIG. 12K corresponds to the solid-state imaging device 4j shown in FIG. 12J in which the configuration of the multilayer wiring layer 135 of the third substrate 110C is changed.
  • the multilayer wiring layer 135 is configured by mixing the first metal wiring layer and the second metal wiring layer.
  • the layer 135 is configured only by the first metal wiring layer.
  • each multilayer wiring layer 105, 125, 135 may be configured only by the first metal wiring layer, may be configured only by the second metal wiring layer, or may be configured such that both of them are mixed. May be.
  • the multilayer wiring layer 135 of the third substrate 110C may be configured so that the first metal wiring layer and the second metal wiring layer are mixed.
  • the TSV 157 between the three layers of the twin contact type is configured so that the signal lines provided on any two of the first substrate 110A, the second substrate 110B, and the third substrate 110C and The power lines may be electrically connected to each other, and the substrate on which the signal lines and the power lines are electrically connected by the TSV 157 may be arbitrarily changed.
  • FIGS. 13A to 13C are longitudinal sectional views showing a schematic configuration of a solid-state imaging apparatus according to the fourth configuration example of the present embodiment.
  • the solid-state imaging device according to this embodiment may have the configuration shown in FIGS. 13A to 13C.
  • the solid-state imaging device 5a shown in FIG. 13A is connected to an electrode bonding structure 159 provided between the first substrate 110A and the second substrate 110B, a shared contact type two-layer TSV 157, and the second substrate 110B.
  • An embedded pad structure that is, a pad 151 provided in the multilayer wiring layer 125 of the second substrate 110B and a pad opening 153 exposing the pad 151).
  • the electrode bonding structure 159 the signal lines and the power supply lines provided in each of the first substrate 110A and the second substrate 110B are electrically connected.
  • the TSV 157 is formed from the surface side of the second substrate 110B toward the third substrate 110C, and electrically connects the signal lines and the power supply lines provided on the second substrate 110B and the third substrate 110C, respectively.
  • the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B and the first metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C.
  • the predetermined wiring is electrically connected.
  • a solid-state imaging device 5b shown in FIG. 13B corresponds to a solid-state imaging device 5a shown in FIG. 13A in which the embedded pad structure is changed.
  • a non-embedded extraction pad structure for a predetermined wiring in the multilayer wiring layer 105 of the first substrate 110A that is, the multilayer of the first substrate 110A.
  • a lead line opening 155 for a predetermined wiring in the wiring layer 105 and a pad 151) on the back surface of the first substrate 110A are provided.
  • a solid-state imaging device 5c shown in FIG. 13C corresponds to a solid-state imaging device 5b shown in FIG. 13B in which the configuration of the drawer pad structure is changed. Specifically, in the configuration shown in FIG. 13C, an embedded-type drawer pad structure is provided instead of the non-embedded-type drawer pad structure as the drawer pad structure.
  • each configuration shown in FIGS. 13A to 13C the type of wiring to which the shared contact type TSV 157 between two layers is connected is not limited.
  • the TSV 157 may be connected to a predetermined wiring of the first metal wiring layer or may be connected to a predetermined wiring of the second metal wiring layer.
  • one or both of the wirings to which the TSV 157 is connected may be changed to a predetermined wiring of the second metal wiring layer.
  • each multilayer wiring layer 105, 125, 135 may be configured only by the first metal wiring layer, may be configured only by the second metal wiring layer, or may be configured such that both of them are mixed. May be.
  • the TSV 157 is formed from the surface side of the second substrate 110B toward the third substrate 110C.
  • the present embodiment is not limited to this example.
  • the TSV 157 may be formed from the back surface side of the third substrate 110C toward the second substrate 110B.
  • Fifth configuration example 14A to 14F are longitudinal sectional views showing a schematic configuration of a solid-state imaging apparatus according to the fifth configuration example of the present embodiment.
  • the solid-state imaging device according to this embodiment can have the configuration shown in FIGS. 14A to 14F.
  • the solid-state imaging device 6a shown in FIG. 14A is connected to an electrode bonding structure 159 provided between the first substrate 110A and the second substrate 110B, a shared contact type three-layer TSV 157, and the second substrate 110B.
  • An embedded pad structure that is, a pad 151 provided in the multilayer wiring layer 125 of the second substrate 110B and a pad opening 153 exposing the pad 151).
  • the electrode bonding structure 159 the signal lines and the power supply lines provided in each of the first substrate 110A and the second substrate 110B are electrically connected.
  • the TSV 157 is formed from the back side of the third substrate 110C, and is provided so as to electrically connect the first substrate 110A, the second substrate 110B, and the third substrate 110C. In the configuration shown in FIG.
  • a predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the first substrate 110A and the first metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B are set by the TSV 157.
  • the predetermined wiring and the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C are electrically connected.
  • the solid-state imaging device 6b shown in FIG. 14B corresponds to a solid-state imaging device 6a shown in FIG. 14A in which the embedded pad structure is changed.
  • a non-embedded extraction pad structure for a predetermined wiring in the multilayer wiring layer 105 of the first substrate 110A that is, the multilayer of the first substrate 110A.
  • a lead line opening 155 for a predetermined wiring in the wiring layer 105 and a pad 151) on the back surface of the first substrate 110A are provided.
  • FIG. 14C corresponds to the solid-state imaging device 6c shown in FIG. 14C in which the configuration of the drawer pad structure is changed with respect to the solid-state imaging device 6b shown in FIG. 14B. Specifically, in the configuration shown in FIG. 14C, an embedded-type drawer pad structure is provided instead of the non-embedded-type drawer pad structure as the drawer pad structure.
  • the solid-state imaging device 6d shown in FIG. 14D corresponds to the solid-state imaging device 6a shown in FIG. 14A in which the structure of the shared contact type three-layer TSV157 is changed.
  • the TSV 157 is formed from the back side of the first substrate 110A, and the signal lines and the power lines provided on each of the first substrate 110A, the second substrate 110B, and the third substrate 110C. It is provided so as to electrically connect each other.
  • the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the first substrate 110A and the second metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B.
  • the predetermined wiring and the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C are electrically connected.
  • the solid-state imaging device 6e shown in FIG. 14E is different from the solid-state imaging device 6d shown in FIG. 14D in that the pad type and the type of wiring electrically connected by the TSV157 between the three layers of the shared contact type are changed.
  • a non-embedded extraction pad structure for a predetermined wiring in the multilayer wiring layer 105 of the first substrate 110A (that is, the multilayer of the first substrate 110A).
  • a lead line opening 155 for a predetermined wiring in the wiring layer 105 and a pad 151) on the back surface of the first substrate 110A are provided.
  • the TSV 157 allows the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the first substrate 110A, the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B, and the first wiring.
  • the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 135 of the three substrates 110C is electrically connected.
  • FIG. 14F corresponds to the solid-state imaging device 6f illustrated in FIG. 14F in which the configuration of the drawer pad structure is changed with respect to the solid-state imaging device 6e illustrated in FIG. 14E.
  • an embedded drawer pad structure is provided as a drawer pad structure in place of the non-embedded drawer pad structure.
  • the type of wiring to which the shared contact type TSV 157 between the three layers is connected is not limited.
  • the TSV 157 may be connected to a predetermined wiring of the first metal wiring layer or may be connected to a predetermined wiring of the second metal wiring layer.
  • the wiring of the first metal wiring layer to which TSV157 is connected may be changed to the wiring of the second metal wiring layer, or the second metal to which TSV157 is connected.
  • the wiring of the wiring layer may be changed to the wiring of the first metal wiring layer.
  • each multilayer wiring layer 105, 125, 135 may be configured only by the first metal wiring layer, may be configured only by the second metal wiring layer, or may be configured such that both of them are mixed. May be.
  • the multilayer wiring layer 135 of the third substrate 110C may be configured such that the first metal wiring layer and the second metal wiring layer are mixed.
  • the shared contact type three-layer TSV 157 electrically connects signal lines and power lines provided on each of at least two of the first substrate 110A, the second substrate 110B, and the third substrate 110C.
  • the substrate to which the signal line and the power line are electrically connected by the TSV 157 may be arbitrarily changed.
  • FIGS. 15A to 15J are longitudinal sectional views showing a schematic configuration of a solid-state imaging apparatus according to the sixth configuration example of the present embodiment.
  • the solid-state imaging device according to this embodiment may have the configuration shown in FIGS. 15A to 15J.
  • the solid-state imaging device 7a illustrated in FIG. 15A is provided between an electrode bonding structure 159a provided between the first substrate 110A and the second substrate 110B, and between the second substrate 110B and the third substrate 110C.
  • the electrode bonding structure 159a By the electrode bonding structure 159a, the signal lines and the power lines provided in each of the first substrate 110A and the second substrate 110B are electrically connected. In addition, the signal bonding lines and the power supply lines included in each of the second substrate 110B and the third substrate 110C are electrically connected by the electrode bonding structure 159b. Furthermore, the signal lines and the power supply lines included in each of the second substrate 110B and the third substrate 110C can be electrically connected by the two embedded pad structures.
  • FIG. 15B corresponds to the solid-state imaging device 7b illustrated in FIG. 15B in which the embedded pad structure is changed with respect to the solid-state imaging device 7a illustrated in FIG. 15A. Specifically, in the configuration shown in FIG. 15B, only the embedded pad structure for the pad 151 of the second substrate 110B is provided.
  • the solid-state imaging device 7c shown in FIG. 15C corresponds to the solid-state imaging device 7b shown in FIG. 15B in which the embedded pad structure is changed. Specifically, in the configuration shown in FIG. 15C, instead of the embedded pad structure, a non-embedded extraction pad structure for a predetermined wiring in the multilayer wiring layer 105 of the first substrate 110A (that is, the multilayer of the first substrate 110A). A lead line opening 155 for a predetermined wiring in the wiring layer 105 and a pad 151) on the back surface of the first substrate 110A are provided.
  • the solid-state imaging device 7d shown in FIG. 15D corresponds to a solid-state imaging device 7c shown in FIG. 15C in which the configuration of the drawer pad structure is changed. Specifically, in the configuration illustrated in FIG. 15D, an embedded-type drawer pad structure is provided instead of the non-embedded-type drawer pad structure as the drawer pad structure.
  • the solid-state imaging device 7e shown in FIG. 15E corresponds to a solid-state imaging device 7a shown in FIG. 15A in which the structure of the electrode bonding structures 159a and 159b is changed.
  • the electrode bonding structures 159a and 159b are wirings in different substrates, and electrically connect wirings existing at substantially the same position in a horizontal plane.
  • the electrode bonding structure 159a is formed such that, of the electrodes constituting the electrode bonding structure 159a, a part of the electrode on the first substrate 110A side extends in the horizontal plane direction.
  • the wiring in the multilayer wiring layer 105 of the first substrate 110A and the wiring in the multilayer wiring layer 125 of the second substrate 110B that are present at different positions in the horizontal plane are electrically connected. Yes.
  • the electrode bonding structure 159b is formed such that, of the electrodes constituting the electrode bonding structure 159b, a part of the electrodes on the second substrate 110B side extend in the horizontal plane direction, and at different positions in the horizontal plane.
  • the wiring in the multilayer wiring layer 125 of the existing second substrate 110B and the wiring in the multilayer wiring layer 135 of the third substrate 110C are configured to be electrically connected.
  • the electrodes extending in the horizontal plane direction among the electrodes constituting the electrode bonding structures 159a and 159b can have a function as a wiring as well as a function as an electrode. That is, since the electrodes constituting the electrode bonding structures 159a and 159b can also be used as wiring, the degree of freedom of wiring design in each of the substrates 110A, 110B, and 110C is improved.
  • the electrode joint structures 159a and 159b are formed so that some of the electrodes extend in the horizontal plane direction, and are different from each other.
  • the wirings in the substrate are electrically connected to each other at different positions in the horizontal plane.
  • the electrode joint structures 159a and 159b are formed such that some of the electrodes extend in the horizontal plane direction, and are different from each other.
  • the wirings in the substrate are electrically connected to each other at different positions in the horizontal plane.
  • the multilayer wiring layer 135 of the third substrate 110C is changed with respect to the solid-state imaging device 7g illustrated in FIG. 15G.
  • the multilayer wiring layer 135 is configured only from the first metal wiring layer.
  • the multilayer wiring layer 135 is configured from the first metal wiring layer.
  • the second metal wiring layer is mixed.
  • the electrode bonding structures 159a and 159b corresponds to the solid-state imaging device 7i shown in FIG. 15I in which the structure of the electrode bonding structures 159a and 159b is changed with respect to the solid-state imaging device 7d shown in FIG. 15D.
  • the electrode bonding structures 159a and 159b are formed so that some of the electrodes extend in the horizontal plane direction, and are different from each other.
  • the wirings in the substrate are electrically connected to each other at different positions in the horizontal plane.
  • a solid-state imaging device 7j shown in FIG. 15J corresponds to a solid-state imaging device 7i shown in FIG. 15I in which the configuration of the multilayer wiring layer 135 of the third substrate 110C is changed.
  • the multilayer wiring layer 135 is composed of only the first metal wiring layer.
  • the multilayer wiring layer 135 is composed of the first metal wiring layer.
  • the second metal wiring layer is mixed.
  • each multilayer wiring layer 105, 125, 135 may be configured only by the first metal wiring layer or may be configured only by the second metal wiring layer. However, both of them may be mixed.
  • the multilayer wiring layer 135 of the third substrate 110C is composed of only the first metal wiring layer. The first metal wiring layer and the second metal wiring layer may be mixed.
  • FIGS. 16A to 16F are longitudinal sectional views showing a schematic configuration of a solid-state imaging apparatus according to the seventh configuration example of the present embodiment.
  • the solid-state imaging device according to this embodiment may have the configuration shown in FIGS. 16A to 16F.
  • the solid-state imaging device 8a shown in FIG. 16A is provided as a connection structure between an electrode bonding structure 159a provided between the first substrate 110A and the second substrate 110B, and between the second substrate 110B and the third substrate 110C.
  • the electrode junction structure 159b, the twin contact TSV 157, and the embedded pad structure for the second substrate 110B that is, the pad 151 provided in the multilayer wiring layer 125 of the second substrate 110B and the pad 151 are exposed) Pad opening 153b).
  • the electrode bonding structure 159a the signal lines and the power lines provided in each of the first substrate 110A and the second substrate 110B are electrically connected.
  • the signal bonding lines and the power supply lines included in each of the second substrate 110B and the third substrate 110C are electrically connected by the electrode bonding structure 159b.
  • the TSV 157 is formed from the surface side of the second substrate 110B toward the third substrate 110C, and electrically connects the signal lines and the power supply lines provided on the second substrate 110B and the third substrate 110C, respectively. To be provided. In the configuration shown in FIG. 16A, the TSV 157 causes the predetermined wiring of the second metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B and the second metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C. The predetermined wiring is electrically connected.
  • the TSV 157 corresponds to the solid-state imaging device 8b shown in FIG. 16A in which the structure of the TSV157 between the twin contact type two layers is changed with respect to the solid-state imaging device 8a shown in FIG. 16A.
  • the TSV 157 is formed from the back side of the third substrate 110C toward the second substrate 110B.
  • the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B and the second metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C.
  • the predetermined wiring is electrically connected.
  • the solid-state image pickup device 8c shown in FIG. 16C is obtained by changing the type of wiring electrically connected to the solid-state image pickup device 8a shown in FIG. 16A by an embedded pad structure and a twin contact TSV157.
  • a non-embedded extraction pad structure for a predetermined wiring in the multilayer wiring layer 105 of the first substrate 110A (that is, the multilayer of the first substrate 110A).
  • a lead line opening 155 for a predetermined wiring in the wiring layer 105 and a pad 151) on the back surface of the first substrate 110A are provided.
  • the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B and the second metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C.
  • the predetermined wiring is electrically connected.
  • the solid-state imaging device 8d shown in FIG. 16D corresponds to a solid-state imaging device 8c shown in FIG. 16C in which the structure of the TSV157 between the two layers of the twin contact type is changed.
  • the TSV 157 is formed from the back surface side of the third substrate 110C toward the second substrate 110B.
  • the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B and the first metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C.
  • the predetermined wiring is electrically connected.
  • the solid-state imaging device 8e shown in FIG. 16E is different from the solid-state imaging device 8c shown in FIG. 16C in the configuration of the lead pad structure and the type of wiring electrically connected by the TSV157 between the two layers of the twin contact type. Corresponds to that. Specifically, in the configuration shown in FIG. 16E, an embedded type lead pad structure is provided instead of the non-embedded type lead pad structure as the lead pad structure. In the configuration shown in FIG. 16E, the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B and the first metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C. The predetermined wiring is electrically connected.
  • the solid-state imaging device 8f shown in FIG. 16F corresponds to a solid-state imaging device 8e shown in FIG. 16E in which the structure of the TSV157 of twin contact type two layers is changed. Specifically, in the configuration illustrated in FIG. 16F, the TSV 157 is formed from the back surface side of the third substrate 110C toward the second substrate 110B.
  • each configuration shown in FIGS. 16A to 16F the type of wiring to which the TSV 157 between the twin contact type two layers is connected is not limited.
  • the TSV 157 may be connected to a predetermined wiring of the first metal wiring layer or may be connected to a predetermined wiring of the second metal wiring layer.
  • each multilayer wiring layer 105, 125, 135 may be configured only by the first metal wiring layer, may be configured only by the second metal wiring layer, or may be configured such that both of them are mixed. May be.
  • FIGS. 17A to 17L are longitudinal sectional views showing a schematic configuration of a solid-state imaging apparatus according to the eighth configuration example of the present embodiment.
  • the solid-state imaging device according to this embodiment may have the configuration shown in FIGS. 17A to 17L.
  • the solid-state imaging device 9a shown in FIG. 17A is provided as a connection structure between an electrode bonding structure 159a provided between the first substrate 110A and the second substrate 110B, and between the second substrate 110B and the third substrate 110C.
  • the electrode bonding structure 159a the signal lines and the power lines provided in each of the first substrate 110A and the second substrate 110B are electrically connected.
  • the electrode bonding structure 159b electrically connects the signal lines and the power supply lines included in each of the second substrate 110B and the third substrate 110C.
  • the TSV 157 is formed from the back side of the first substrate 110A, and is provided so as to electrically connect the signal lines and the power lines provided in each of the second substrate 110B and the third substrate 110C.
  • the TSV 157 causes the predetermined wiring of the second metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B and the second metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C.
  • the predetermined wiring is electrically connected.
  • the solid-state imaging device 9b shown in FIG. 17B corresponds to the solid-state imaging device 9a shown in FIG. 17A in which the structure of the TSV157 between the twin contact type three layers is changed.
  • the TSV 157 is provided so as to electrically connect the signal lines and the power supply lines provided in each of the first substrate 110A and the third substrate 110C.
  • the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 105 of the first substrate 110A and the second metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C. The predetermined wiring is electrically connected.
  • the solid-state image pickup device 9c shown in FIG. 17C is different from the solid-state image pickup device 9a shown in FIG. 17A in that the embedded pad structure and the type of wiring electrically connected by the TSV157 between the three contact layers are changed.
  • a non-embedded extraction pad structure for a predetermined wiring in the multilayer wiring layer 105 of the first substrate 110A (that is, the multilayer of the first substrate 110A).
  • a lead line opening 155 for a predetermined wiring in the wiring layer 105 and a pad 151) on the back surface of the first substrate 110A are provided.
  • the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B and the second metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C.
  • the predetermined wiring is electrically connected.
  • the solid-state imaging device 9d shown in FIG. 17D corresponds to the solid-state imaging device 9c shown in FIG. 17C in which the structure of the TSV157 of the twin contact type three layers is changed. Specifically, in the configuration illustrated in FIG. 17D, the TSV 157 is provided so as to electrically connect the signal lines and the power supply lines included in each of the first substrate 110A and the third substrate 110C.
  • the solid-state imaging device 9e shown in FIG. 17E is different from the solid-state imaging device 9c shown in FIG. 17C in the configuration of the lead pad structure and the type of wiring electrically connected by the TSV157 between the three contact type layers. Corresponds to that. Specifically, in the configuration illustrated in FIG. 17E, an embedded drawer pad structure is provided as a drawer pad structure in place of the non-embedded drawer pad structure. In the configuration shown in FIG. 17E, the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B and the first metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C. The predetermined wiring is electrically connected.
  • the solid-state imaging device 9f shown in FIG. 17F corresponds to the solid-state imaging device 9e shown in FIG. 17E in which the structure of the TSV157 of three-layer TSV157 is changed. Specifically, in the configuration illustrated in FIG. 17F, the TSV 157 is provided so as to electrically connect the signal lines and the power supply lines included in each of the first substrate 110A and the third substrate 110C.
  • the solid-state imaging device 9g shown in FIG. 17G corresponds to the solid-state imaging device 9a shown in FIG. 17A in which the structure of the TSV157 between the three layers of the twin contact type is changed.
  • the TSV 157 electrically connects the signal lines and the power supply lines provided on each of the first substrate 110A and the third substrate 110C from the back side of the third substrate 110C. It is provided as follows.
  • the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the first substrate 110A and the first metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C. The predetermined wiring is electrically connected.
  • the solid-state imaging device 9h shown in FIG. 17H corresponds to the solid-state imaging device 9g shown in FIG. 17G in which the structure of the TSV157 between the three layers of the twin contact type is changed.
  • the TSV 157 is provided so as to electrically connect the signal lines and the power supply lines provided in each of the first substrate 110A and the second substrate 110B.
  • the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 105 of the first substrate 110A and the first metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B. The predetermined wiring is electrically connected.
  • a solid-state imaging device 9i shown in FIG. 17I corresponds to a solid-state imaging device 9g shown in FIG. Specifically, in the configuration shown in FIG. 17I, instead of the embedded pad structure, a non-embedded extraction pad structure for a predetermined wiring in the multilayer wiring layer 105 of the first substrate 110A (that is, the multilayer of the first substrate 110A). A lead line opening 155 for a predetermined wiring in the wiring layer 105 and a pad 151) on the back surface of the first substrate 110A are provided.
  • the solid-state imaging device 9j shown in FIG. 17J corresponds to the solid-state imaging device 9i shown in FIG. 17I in which the structure of the TSV157 of the twin contact type three layers is changed.
  • the TSV 157 is provided so as to electrically connect the signal lines and the power supply lines provided in each of the first substrate 110A and the second substrate 110B.
  • the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 105 of the first substrate 110A and the first metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B. The predetermined wiring is electrically connected.
  • the solid-state imaging device 9k shown in FIG. 17K corresponds to the solid-state imaging device 9i shown in FIG. 17I in which the configuration of the drawer pad structure is changed. Specifically, in the configuration illustrated in FIG. 17K, an embedded drawer pad structure is provided instead of the non-embedded drawer pad structure as the drawer pad structure.
  • FIG. 17L corresponds to the solid-state imaging device 9l shown in FIG. 17L in which the configuration of the drawer pad structure is changed with respect to the solid-state imaging device 9j shown in FIG. 17J.
  • an embedded type lead pad structure is provided instead of the non-embedded type lead pad structure as the lead pad structure.
  • each configuration shown in FIGS. 17A to 17L the type of wiring to which the TSV 157 between the twin contact type three layers is connected is not limited.
  • the TSV 157 may be connected to a predetermined wiring of the first metal wiring layer or may be connected to a predetermined wiring of the second metal wiring layer.
  • each multilayer wiring layer 105, 125, 135 may be configured only by the first metal wiring layer, may be configured only by the second metal wiring layer, or may be configured such that both of them are mixed. May be.
  • the TSV 157 between the three layers of the twin contact type is provided with signal lines provided on any two of the first substrate 110A, the second substrate 110B, and the third substrate 110C, depending on the direction in which the twin contact type TSV 157 is formed. What is necessary is just to electrically connect each other and power supply lines, and the board
  • FIGS. 18A to 18C are longitudinal sectional views showing a schematic configuration of a solid-state imaging apparatus according to the ninth configuration example of the present embodiment.
  • the solid-state imaging device according to this embodiment may have the configuration shown in FIGS. 18A to 18C.
  • the solid-state imaging device 10a illustrated in FIG. 18A is provided between an electrode bonding structure 159a provided between the first substrate 110A and the second substrate 110B, and between the second substrate 110B and the third substrate 110C.
  • the electrode junction structure 159b, the TSV 157 between the shared contact type two layers, and the embedded pad structure for the second substrate 110B (that is, the pad 151 provided in the multilayer wiring layer 125 of the second substrate 110B, and the pad 151 are exposed. Pad opening 153).
  • the electrode bonding structure 159a the signal lines and the power lines provided in each of the first substrate 110A and the second substrate 110B are electrically connected.
  • the signal bonding lines and the power supply lines included in each of the second substrate 110B and the third substrate 110C are electrically connected by the electrode bonding structure 159b.
  • the TSV 157 is formed from the surface side of the second substrate toward the third substrate, and is provided so as to electrically connect the signal lines and the power supply lines provided in each of the second substrate 110B and the third substrate 110C. It is done. In the configuration shown in FIG. 18A, the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B and the first metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C. The predetermined wiring is electrically connected.
  • FIG. 18B corresponds to the solid-state imaging device 10b shown in FIG. 18A in which the embedded pad structure is changed with respect to the solid-state imaging device 10a shown in FIG. 18A.
  • a non-embedded extraction pad structure for a predetermined wiring in the multilayer wiring layer 105 of the first substrate 110A (that is, the multilayer of the first substrate 110A).
  • a lead line opening 155 for a predetermined wiring in the wiring layer 105 and a pad 151) on the back surface of the first substrate 110A are provided.
  • FIG. 18C corresponds to the solid-state imaging device 10c shown in FIG. 18B in which the configuration of the drawer pad structure is changed with respect to the solid-state imaging device 10b shown in FIG. 18B.
  • an embedded drawer pad structure is provided instead of the non-embedded drawer pad structure as the drawer pad structure.
  • the type of wiring to which the shared contact type TSV 157 between the two layers is connected is not limited.
  • the TSV 157 may be connected to a predetermined wiring of the first metal wiring layer or may be connected to a predetermined wiring of the second metal wiring layer.
  • one or both of the wirings to which the TSV 157 is connected may be changed to a predetermined wiring of the second metal wiring layer.
  • each multilayer wiring layer 105, 125, 135 may be configured only by the first metal wiring layer, may be configured only by the second metal wiring layer, or may be configured such that both of them are mixed. May be.
  • the TSV 157 is formed from the surface side of the second substrate 110B toward the third substrate 110C, but the present embodiment is not limited to such an example.
  • the TSV 157 may be formed from the back surface side of the third substrate 110C toward the second substrate 110B.
  • Tenth configuration example 19A to 19F are longitudinal sectional views showing a schematic configuration of a solid-state imaging apparatus according to the tenth configuration example of the present embodiment.
  • the solid-state imaging device according to the present embodiment may have the configuration shown in FIGS. 19A to 19F.
  • the solid-state imaging device 11a illustrated in FIG. 19A is provided as an electrode connection structure 159a provided between the first substrate 110A and the second substrate 110B, and between the second substrate 110B and the third substrate 110C as a connection structure.
  • the electrode junction structure 159b, the shared contact type three-layer TSV 157, and the embedded pad structure for the second substrate 110B that is, the pad 151 provided in the multilayer wiring layer 125 of the second substrate 110B, and the pad 151 are exposed. Pad opening 153).
  • the electrode bonding structure 159a By the electrode bonding structure 159a, the signal lines and the power lines provided in each of the first substrate 110A and the second substrate 110B are electrically connected.
  • the signal bonding lines and the power supply lines included in each of the second substrate 110B and the third substrate 110C are electrically connected by the electrode bonding structure 159b.
  • the TSV 157 is formed from the back side of the third substrate 110C, and is provided so as to electrically connect the signal lines and the power lines provided on each of the first substrate 110A, the second substrate 110B, and the third substrate 110C. It is done.
  • the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the first substrate 110A and the first metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B.
  • the predetermined wiring and the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C are electrically connected.
  • FIG. 19B corresponds to the solid-state imaging device 11b shown in FIG. 19A in which the embedded pad structure is changed with respect to the solid-state imaging device 11a shown in FIG. 19A.
  • a non-embedded extraction pad structure for a predetermined wiring in the multilayer wiring layer 105 of the first substrate 110A (that is, the multilayer of the first substrate 110A).
  • a lead line opening 155 for a predetermined wiring in the wiring layer 105 and a pad 151) on the back surface of the first substrate 110A are provided.
  • FIG. 19C corresponds to the solid-state imaging device 11c shown in FIG. 19C in which the configuration of the drawer pad structure is changed with respect to the solid-state imaging device 11b shown in FIG. 19B.
  • an embedded drawer pad structure is provided as a drawer pad structure in place of the non-embedded drawer pad structure.
  • the TSV 157 corresponds to the solid-state imaging device 11d shown in FIG. 19D in which the structure of the shared contact type three-layer TSV 157 is changed.
  • the TSV 157 is formed from the back side of the first substrate 110A, and the signal lines and the power lines provided on each of the first substrate 110A, the second substrate 110B, and the third substrate 110C. It is provided so as to electrically connect each other.
  • the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the first substrate 110A and the second metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B.
  • the predetermined wiring and the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C are electrically connected.
  • the solid-state imaging device 11e shown in FIG. 19E is different from the solid-state imaging device 11d shown in FIG. 19D in that the type of wiring electrically connected by the embedded pad structure and the TSV157 between the three layers of the shared contact type is changed.
  • a non-embedded extraction pad structure for a predetermined wiring in the multilayer wiring layer 105 of the first substrate 110A is provided instead of the embedded pad structure.
  • the TSV 157 causes the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 125 of the first substrate 110A and the first metal wiring layer in the multilayer wiring layer 125 of the second substrate 110B.
  • the predetermined wiring and the predetermined wiring of the first metal wiring layer in the multilayer wiring layer 135 of the third substrate 110C are electrically connected.
  • FIG. 19F corresponds to the solid-state imaging device 11f shown in FIG. 19F in which the configuration of the drawer pad structure is changed with respect to the solid-state imaging device 11e shown in FIG. 19E.
  • an embedded drawer pad structure is provided as a drawer pad structure in place of the non-embedded drawer pad structure.
  • the type of wiring to which the shared contact type TSV 157 between the three layers is connected is not limited.
  • the TSV 157 may be connected to a predetermined wiring of the first metal wiring layer or may be connected to a predetermined wiring of the second metal wiring layer.
  • the wiring of the first metal wiring layer to which the TSV 157 is connected may be changed to the wiring of the second metal wiring layer, or the second metal to which the TSV 157 is connected.
  • the wiring of the wiring layer may be changed to the wiring of the first metal wiring layer.
  • each multilayer wiring layer 105, 125, 135 may be configured only by the first metal wiring layer, may be configured only by the second metal wiring layer, or may be configured such that both of them are mixed. May be.
  • the multilayer wiring layer 135 of the third substrate 110C may be configured such that the first metal wiring layer and the second metal wiring layer are mixed.
  • the shared contact type three-layer TSV 157 electrically connects signal lines and power lines provided on each of at least two of the first substrate 110A, the second substrate 110B, and the third substrate 110C.
  • the substrate to which the signal line and the power line are electrically connected by the TSV 157 may be arbitrarily changed.
  • the upper end is on the back side of the first substrate 110A or the back side of the third substrate 110C.
  • TSV157 can be formed so as to be exposed.
  • the upper end of the TSV 157 thus exposed can function as an electrode for electrically connecting a circuit included in the solid-state imaging device to an external circuit.
  • a solder bump or the like may be provided on the exposed upper end of the TSV 157 to electrically connect the solid-state imaging device and an external device.
  • TSV 157 In the configuration example described above, only one TSV 157 is provided in the second to fourth configuration examples and the seventh to tenth configuration examples. However, the present embodiment is not limited to this example. A plurality of TSVs 157 may be provided. The plurality of TSVs 157 provided may be different in form (whether they are twin contacts or shared contacts, or which substrate wirings are connected to each other).
  • a buried pad structure or a drawer pad structure may be applied.
  • a drawer pad structure either a non-embedded drawer pad structure or a buried drawer pad structure may be applied.
  • FIG. 20A is a diagram illustrating an appearance of a smartphone as an example of an electronic apparatus to which the solid-state imaging devices 1 to 11f according to the present embodiment can be applied.
  • a smartphone 901 is configured with buttons, an operation unit 903 that receives an operation input by a user, a display unit 905 that displays various types of information, and a housing, and electronically captures an observation target.
  • an imaging unit (not shown). The imaging unit can be configured by the solid-state imaging devices 1 to 11f.
  • FIGS. 20B and 20C are views showing the appearance of a digital camera, which is another example of an electronic apparatus to which the solid-state imaging devices 1 to 11f according to the present embodiment can be applied.
  • FIG. 20B shows an appearance of the digital camera 911 viewed from the front (subject side)
  • FIG. 20C shows an appearance of the digital camera 911 viewed from the rear.
  • the digital camera 911 displays a main body (camera body) 913, an interchangeable lens unit 915, a grip portion 917 held by a user at the time of shooting, and various types of information.
  • the imaging unit can be configured by the solid-state imaging devices 1 to 11f.
  • the electronic devices to which the solid-state imaging devices 1 to 11f according to the present embodiment can be applied are not limited to those exemplified above, and the solid-state imaging devices 1 to 11f include a video camera, a glasses-type wearable device, an HMD (Head Mounted Display),
  • the present invention can be applied as an imaging unit mounted on any electronic device such as a tablet PC or a game device.
  • FIG. 21A is a cross-sectional view illustrating a configuration example of a solid-state imaging device to which the technology according to the present disclosure can be applied.
  • a PD (photodiode) 20019 receives incident light 20001 incident from the back surface (upper surface in the drawing) side of the semiconductor substrate 20018.
  • a planarizing film 20013, a CF (color filter) 20012, and a microlens 20011 are provided above the PD 20019, and incident light 20001 incident through each part is received by the light receiving surface 20017 to perform photoelectric conversion. Is called.
  • the n-type semiconductor region 20020 is formed as a charge accumulation region for accumulating charges (electrons).
  • the n-type semiconductor region 20020 is provided inside the p-type semiconductor regions 20016 and 20041 of the semiconductor substrate 20018.
  • a p-type semiconductor region 20009 having a higher impurity concentration than the back surface (upper surface) side is provided on the front surface (lower surface) side of the semiconductor substrate 20018 in the n-type semiconductor region 20020.
  • the PD 20019 has a HAD (Hole-Accumulation-Diode) structure, and a p-type semiconductor is used to suppress the generation of dark current at each interface between the upper surface side and the lower surface side of the n-type semiconductor region 20020. Regions 20061 and 20041 are formed.
  • HAD Hole-Accumulation-Diode
  • a pixel separation unit 20030 for electrically separating a plurality of pixels 20010 is provided, and a PD 20019 is provided in a region partitioned by the pixel separation unit 20030.
  • the pixel separation unit 20030 is formed in a lattice shape so as to be interposed between a plurality of pixels 20010, for example, and the PD 20001 includes the pixel separation unit 20030. It is formed in a region partitioned by
  • each PD20019 the anode is grounded, and in the solid-state imaging device, signal charges (for example, electrons) accumulated in the PD20019 are read out via a transfer Tr (MOS FET) (not shown) and the like as an electrical signal. It is output to a VSL (vertical signal line) (not shown).
  • MOS FET transfer Tr
  • VSL vertical signal line
  • the wiring layer 20050 is provided on the surface (lower surface) opposite to the back surface (upper surface) on which each part such as the light shielding film 20014, CF20012, and microlens 20011 is provided in the semiconductor substrate 20018.
  • the wiring layer 20050 includes a wiring 20051 and an insulating layer 20052, and the wiring 20051 is formed in the insulating layer 20052 so as to be electrically connected to each element.
  • the wiring layer 20050 is a so-called multilayer wiring layer, and is formed by alternately stacking an interlayer insulating film constituting the insulating layer 20052 and the wiring 20051 a plurality of times.
  • wiring 20051 wiring to the Tr for reading out charges from the PD 20019 such as the transfer Tr and wirings such as VSL are stacked via the insulating layer 20052.
  • a support substrate 20061 is provided on the surface of the wiring layer 20050 opposite to the side on which the PD 20019 is provided.
  • a substrate made of a silicon semiconductor having a thickness of several hundred ⁇ m is provided as the support substrate 20061.
  • the light shielding film 20014 is provided on the back surface (upper surface in the drawing) side of the semiconductor substrate 20018.
  • the light shielding film 20014 is configured to shield a part of incident light 20001 from the upper side of the semiconductor substrate 20018 toward the back surface of the semiconductor substrate 20018.
  • the light shielding film 20014 is provided above the pixel separation unit 20030 provided inside the semiconductor substrate 20018.
  • the light shielding film 20014 is provided on the back surface (upper surface) of the semiconductor substrate 20018 so as to protrude in a convex shape through an insulating film 20015 such as a silicon oxide film.
  • the light shielding film 20014 is not provided and is opened so that the incident light 20001 enters the PD 20019.
  • the planar shape of the light shielding film 20014 is a lattice shape, and an opening through which incident light 20001 passes to the light receiving surface 20017 is formed.
  • the light shielding film 20014 is formed of a light shielding material that shields light.
  • a light shielding film 20014 is formed by sequentially stacking a titanium (Ti) film and a tungsten (W) film.
  • the light-shielding film 20014 can be formed by sequentially stacking a titanium nitride (TiN) film and a tungsten (W) film, for example.
  • the light shielding film 20014 is covered with a planarizing film 20013.
  • the planarization film 20013 is formed using an insulating material that transmits light.
  • the pixel separation portion 20030 includes a groove portion 20031, a fixed charge film 20032, and an insulating film 20033.
  • the fixed charge film 20032 is formed on the back surface (upper surface) side of the semiconductor substrate 20018 so as to cover the groove portions 20031 partitioning the plurality of pixels 20010.
  • the fixed charge film 20032 is provided so as to cover the inner surface of the groove portion 20031 formed on the back surface (upper surface) side of the semiconductor substrate 20018 with a certain thickness. Then, an insulating film 20003 is provided (filled) so as to fill the inside of the groove part 20031 covered with the fixed charge film 20032.
  • the fixed charge film 20032 is made of a high dielectric material having a negative fixed charge so that a positive charge (hole) accumulation region is formed at the interface with the semiconductor substrate 20018 and generation of dark current is suppressed. Is formed.
  • the fixed charge film 20032 By forming the fixed charge film 20032 to have a negative fixed charge, an electric field is applied to the interface with the semiconductor substrate 20018 by the negative fixed charge, and a positive charge (hole) accumulation region is formed.
  • the fixed charge film 20032 can be formed of, for example, a hafnium oxide film (HfO 2 film).
  • the fixed charge film 20032 can be formed to include at least one of oxides such as hafnium, zirconium, aluminum, tantalum, titanium, magnesium, yttrium, and a lanthanoid element.
  • FIG. 21B shows a schematic configuration of a solid-state imaging device to which the technology according to the present disclosure can be applied.
  • the solid-state imaging device 30001 includes an imaging unit (so-called pixel unit) 30003 in which a plurality of pixels 30002 are two-dimensionally arranged with regularity, and peripheral circuits arranged around the imaging unit 30003, that is, a vertical driving unit 30004, a horizontal transfer unit. 30005 and an output unit 30006.
  • the pixel 30002 includes a photodiode 30021 that is one photoelectric conversion element and a plurality of pixel transistors (MOS transistors) Tr1, Tr2, Tr3, and Tr4.
  • the photodiode 30021 has a region for photoelectrically converting light incident and accumulating signal charges generated by the photoelectric conversion.
  • the plurality of pixel transistors include four MOS transistors, that is, a transfer transistor Tr1, a reset transistor Tr2, an amplification transistor Tr3, and a selection transistor Tr4.
  • the transfer transistor Tr1 is a transistor that reads out signal charges accumulated in the photodiode 30021 to a floating diffusion (FD) region 30022 described later.
  • the reset transistor Tr2 is a transistor for setting the potential of the FD region 30022 to a specified value.
  • the amplification transistor Tr3 is a transistor for electrically amplifying the signal charge read to the FD region 30022.
  • the selection transistor Tr4 is a transistor for selecting one row of pixels and reading out a pixel signal to the vertical signal line 30008.
  • the source of the transfer transistor Tr1 is connected to the photodiode 30021, and the drain thereof is connected to the source of the reset transistor Tr2.
  • An FD region 30022 (corresponding to a drain region of the transfer transistor and a source region of the reset transistor) serving as charge-voltage conversion means between the transfer transistor Tr1 and the reset transistor Tr2 is connected to the gate of the amplification transistor Tr3.
  • the source of the amplification transistor Tr3 is connected to the drain of the selection transistor Tr4.
  • the drain of the reset transistor Tr2 and the drain of the amplification transistor Tr3 are connected to the power supply voltage supply unit.
  • the source of the selection transistor Tr4 is connected to the vertical signal line 30008.
  • a row reset signal ⁇ RST applied in common to the gates of the reset transistors Tr2 of the pixels arranged in one row from the vertical drive unit 30004 is also applied in common to the gates of the transfer transistors Tr1 of the pixels in one row.
  • a row selection signal ⁇ SEL, to which the transfer signal ⁇ TRG is applied in common to the gates of the selection transistors Tr4 in one row, is supplied.
  • the horizontal transfer unit 30005 includes an amplifier or an analog / digital converter (ADC) connected to the vertical signal line 30008 of each column, in this example, an analog / digital converter 30009, a column selection circuit (switch means) 30007, a horizontal And a transfer line (for example, a bus line composed of the same number of lines as the data bit lines) 30010.
  • the output unit 30006 includes an amplifier, an analog / digital converter and / or a signal processing circuit, in this example, a signal processing circuit 30011 for processing an output from the horizontal transfer line 30010, and an output buffer 30012. .
  • the signals of the pixels 30002 in each row are subjected to analog / digital conversion by the analog / digital converters 30009, read out to the horizontal transfer line 30010 through the sequentially selected column selection circuit 30007, and sequentially horizontal. Transferred.
  • the image data read to the horizontal transfer line 30010 is output from the output buffer 30012 through the signal processing circuit 30011.
  • the gate of the transfer transistor Tr1 and the gate of the reset transistor Tr2 are turned on to empty all the charges of the photodiode 30021.
  • the gate of the transfer transistor Tr1 and the gate of the reset transistor Tr2 are turned off to perform charge accumulation.
  • the gate of the reset transistor Tr2 is turned on to reset the potential of the FD region 30022.
  • the gate of the reset transistor Tr2 is turned off and the gate of the transfer transistor Tr1 is turned on to transfer the charge from the photodiode 30021 to the FD region 30022.
  • the amplification transistor Tr3 electrically amplifies the signal charge in response to the charge being applied to the gate.
  • the selection transistor Tr4 is turned on only for the pixel to be read from the time of FD reset immediately before the reading, and the charge-voltage converted image signal from the corresponding intra-pixel amplification transistor Tr3 is read to the vertical signal line 30008. .
  • FIG. 21C is an explanatory diagram illustrating a configuration example of a video camera to which the technology according to the present disclosure can be applied.
  • the camera 10000 in this example includes a solid-state imaging device 10001, an optical system 10002 that guides incident light to a light receiving sensor unit of the solid-state imaging device 10001, a shutter device 10003 provided between the solid-state imaging device 10001 and the optical system 10002, and a solid-state imaging device.
  • the camera 10000 further includes a signal processing circuit 10005 that processes an output signal of the solid-state imaging device 10001.
  • the optical system (optical lens) 10002 forms image light (incident light) from a subject on an imaging surface (not shown) of the solid-state imaging device 10001. As a result, signal charges are accumulated in the solid-state imaging device 10001 for a certain period.
  • the optical system 10002 may be configured by an optical lens group including a plurality of optical lenses.
  • the shutter device 10003 controls the light irradiation period and the light shielding period of the incident light to the solid-state imaging device 10001.
  • the drive circuit 10004 supplies drive signals to the solid-state imaging device 10001 and the shutter device 10003.
  • the drive circuit 10004 controls the signal output operation to the signal processing circuit 10005 of the solid-state imaging device 10001 and the shutter operation of the shutter device 10003 based on the supplied drive signal. That is, in this example, a signal transfer operation from the solid-state imaging device 10001 to the signal processing circuit 10005 is performed by a drive signal (timing signal) supplied from the drive circuit 10004.
  • the signal processing circuit 10005 performs various types of signal processing on the signal transferred from the solid-state imaging device 10001.
  • the signal (AV-SIGNAL) subjected to various signal processing is stored in a storage medium (not shown) such as a memory, or is output to a monitor (not shown).
  • the technology according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 21D is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system to which the technology (present technology) according to the present disclosure can be applied.
  • FIG. 21D shows a state where an operator (doctor) 11131 is performing an operation on a patient 11132 on a patient bed 11133 using an endoscopic operation system 11000.
  • an endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as an insufflation tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 that supports the endoscope 11100. And a cart 11200 on which various devices for endoscopic surgery are mounted.
  • the endoscope 11100 includes a lens barrel 11101 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the proximal end of the lens barrel 11101.
  • a lens barrel 11101 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the proximal end of the lens barrel 11101.
  • an endoscope 11100 configured as a so-called rigid mirror having a rigid lens barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible lens barrel. Good.
  • An opening into which the objective lens is fitted is provided at the tip of the lens barrel 11101.
  • a light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101. Irradiation is performed toward the observation target in the body cavity of the patient 11132 through the lens.
  • the endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
  • An optical system and an image sensor are provided inside the camera head 11102, and reflected light (observation light) from the observation target is condensed on the image sensor by the optical system. Observation light is photoelectrically converted by the imaging element, and an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted to a camera control unit (CCU: “Camera Control Unit”) 11201 as RAW data.
  • the CCU 11201 is a CPU (Central Processing Unit) or GPU (Graphics). Processing Unit) and the like, and comprehensively control operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102 and performs various kinds of image processing for displaying an image based on the image signal, such as development processing (demosaic processing), for example.
  • image processing for example, development processing (demosaic processing), for example.
  • the display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under the control of the CCU 11201.
  • the light source device 11203 includes a light source such as an LED (light emitting diode), and supplies irradiation light to the endoscope 11100 when photographing a surgical site or the like.
  • a light source such as an LED (light emitting diode)
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • a user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
  • the treatment instrument control device 11205 controls the drive of the energy treatment instrument 11112 for tissue ablation, incision, blood vessel sealing, or the like.
  • the pneumoperitoneum device 11206 passes gas into the body cavity via the pneumoperitoneum tube 11111.
  • the recorder 11207 is an apparatus capable of recording various types of information related to surgery.
  • the printer 11208 is a device that can print various types of information related to surgery in various formats such as text, images, or graphs.
  • the light source device 11203 that supplies the irradiation light when the surgical site is imaged to the endoscope 11100 can be configured by, for example, a white light source configured by an LED, a laser light source, or a combination thereof.
  • a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out.
  • the driving of the light source device 11203 may be controlled so as to change the intensity of the output light every predetermined time. Synchronously with the timing of changing the intensity of the light, the drive of the image sensor of the camera head 11102 is controlled to acquire an image in a time-sharing manner, and the image is synthesized, so that high dynamic without so-called blackout and overexposure A range image can be generated.
  • the light source device 11203 may be configured to be able to supply light of a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of light absorption in body tissue, the surface of the mucous membrane is irradiated by irradiating light in a narrow band compared to irradiation light (ie, white light) during normal observation.
  • a so-called narrow-band light observation (Narrow Band Imaging) is performed in which a predetermined tissue such as a blood vessel is imaged with high contrast.
  • fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light.
  • the body tissue is irradiated with excitation light to observe fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally administered to the body tissue and applied to the body tissue. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 can be configured to be able to supply narrowband light and / or excitation light corresponding to such special light observation.
  • FIG. 21E is a block diagram illustrating an example of a functional configuration of the camera head 11102 and the CCU 11201 illustrated in FIG. 21D.
  • the camera head 11102 includes a lens unit 11401, an imaging unit 11402, a drive unit 11403, a communication unit 11404, and a camera head control unit 11405.
  • the CCU 11201 includes a communication unit 11411, an image processing unit 11412, and a control unit 11413.
  • the camera head 11102 and the CCU 11201 are connected to each other by a transmission cable 11400 so that they can communicate with each other.
  • the lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101. Observation light taken from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401.
  • the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the imaging device constituting the imaging unit 11402 may be one (so-called single plate type) or plural (so-called multi-plate type).
  • image signals corresponding to RGB may be generated by each imaging element, and a color image may be obtained by combining them.
  • the imaging unit 11402 may be configured to include a pair of imaging elements for acquiring right-eye and left-eye image signals corresponding to 3D (dimensional) display. By performing the 3D display, the operator 11131 can more accurately grasp the depth of the living tissue in the surgical site.
  • a plurality of lens units 11401 can be provided corresponding to each imaging element.
  • the imaging unit 11402 is not necessarily provided in the camera head 11102.
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the driving unit 11403 is configured by an actuator, and moves the zoom lens and the focus lens of the lens unit 11401 by a predetermined distance along the optical axis under the control of the camera head control unit 11405. Thereby, the magnification and the focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
  • the communication unit 11404 is configured by a communication device for transmitting and receiving various types of information to and from the CCU 11201.
  • the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
  • the communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405.
  • the control signal includes, for example, information for designating the frame rate of the captured image, information for designating the exposure value at the time of imaging, and / or information for designating the magnification and focus of the captured image. Contains information about the condition.
  • the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. Good.
  • a so-called AE (Auto-Exposure) function, AF (Auto-Focus) function, and AWB (Auto-White Balance) function are mounted on the endoscope 11100.
  • the camera head control unit 11405 controls driving of the camera head 11102 based on a control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is configured by a communication device for transmitting and receiving various types of information to and from the camera head 11102.
  • the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102.
  • the image signal and the control signal can be transmitted by electrical communication, optical communication, or the like.
  • the image processing unit 11412 performs various types of image processing on the image signal that is RAW data transmitted from the camera head 11102.
  • the control unit 11413 performs various types of control related to imaging of the surgical site by the endoscope 11100 and display of a captured image obtained by imaging of the surgical site. For example, the control unit 11413 generates a control signal for controlling driving of the camera head 11102.
  • control unit 11413 causes the display device 11202 to display a picked-up image showing the surgical part or the like based on the image signal subjected to the image processing by the image processing unit 11412.
  • the control unit 11413 may recognize various objects in the captured image using various image recognition techniques.
  • the control unit 11413 detects surgical tools such as forceps, specific biological parts, bleeding, mist when using the energy treatment tool 11112, and the like by detecting the shape and color of the edge of the object included in the captured image. Can be recognized.
  • the control unit 11413 may display various types of surgery support information superimposed on the image of the surgical unit using the recognition result. Surgery support information is displayed in a superimposed manner and presented to the operator 11131, thereby reducing the burden on the operator 11131 and allowing the operator 11131 to proceed with surgery reliably.
  • the transmission cable 11400 for connecting the camera head 11102 and the CCU 11201 is an electric signal cable corresponding to electric signal communication, an optical fiber corresponding to optical communication, or a composite cable thereof.
  • communication is performed by wire using the transmission cable 11400.
  • communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
  • the technology according to the present disclosure is realized as a device that is mounted on any type of mobile body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, personal mobility, an airplane, a drone, a ship, and a robot. May be.
  • FIG. 21F is a block diagram illustrating a schematic configuration example of a vehicle control system that is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, a sound image output unit 12052, and an in-vehicle network I / F (Interface) 12053 are illustrated as a functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 includes a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism that adjusts and a braking device that generates a braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a blinker, or a fog lamp.
  • the body control unit 12020 can be input with radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives input of these radio waves or signals, and controls a door lock device, a power window device, a lamp, and the like of the vehicle.
  • the vehicle outside information detection unit 12030 detects information outside the vehicle on which the vehicle control system 12000 is mounted.
  • the imaging unit 12031 is connected to the vehicle exterior information detection unit 12030.
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image outside the vehicle and receives the captured image.
  • the vehicle outside information detection unit 12030 may perform an object detection process or a distance detection process such as a person, a car, an obstacle, a sign, or a character on a road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal corresponding to the amount of received light.
  • the imaging unit 12031 can output an electrical signal as an image, or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared rays.
  • the vehicle interior information detection unit 12040 detects vehicle interior information.
  • a driver state detection unit 12041 that detects a driver's state is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the vehicle interior information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated or it may be determined whether the driver is asleep.
  • the microcomputer 12051 calculates a control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside / outside the vehicle acquired by the vehicle outside information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit A control command can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, following traveling based on inter-vehicle distance, vehicle speed maintenance traveling, vehicle collision warning, or vehicle lane departure warning. It is possible to perform cooperative control for the purpose.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of automatic driving that autonomously travels without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on information outside the vehicle acquired by the vehicle outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamp according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of anti-glare, such as switching from a high beam to a low beam. It can be carried out.
  • the sound image output unit 12052 transmits an output signal of at least one of sound and image to an output device capable of visually or audibly notifying information to a vehicle occupant or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 21G is a diagram illustrating an example of an installation position of the imaging unit 12031.
  • the imaging unit 12031 includes imaging units 12101, 12102, 12103, 12104, and 12105.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as a front nose, a side mirror, a rear bumper, a back door, and an upper part of a windshield in the vehicle interior of the vehicle 12100.
  • the imaging unit 12101 provided in the front nose and the imaging unit 12105 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided in the side mirror mainly acquire an image of the side of the vehicle 12100.
  • the imaging unit 12104 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 12100.
  • the imaging unit 12105 provided on the upper part of the windshield in the passenger compartment is mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 1022 shows an example of the shooting range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of the imaging part 12104 provided in the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, an overhead image when the vehicle 12100 is viewed from above is obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 based on the distance information obtained from the imaging units 12101 to 12104, the distance to each three-dimensional object in the imaging range 12111 to 12114 and the temporal change in this distance (relative speed with respect to the vehicle 12100).
  • a solid object that travels at a predetermined speed (for example, 0 km / h or more) in the same direction as the vehicle 12100, particularly the closest three-dimensional object on the traveling path of the vehicle 12100. it can.
  • the microcomputer 12051 can set an inter-vehicle distance to be secured in advance before the preceding vehicle, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like.
  • automatic brake control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • cooperative control for the purpose of autonomous driving or the like autonomously traveling without depending on the operation of the driver can be performed.
  • the microcomputer 12051 converts the three-dimensional object data related to the three-dimensional object to other three-dimensional objects such as a two-wheeled vehicle, a normal vehicle, a large vehicle, a pedestrian, and a utility pole based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles.
  • the microcomputer 12051 identifies obstacles around the vehicle 12100 as obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see.
  • the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 is connected via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration or avoidance steering via the drive system control unit 12010, driving assistance for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether a pedestrian is present in the captured images of the imaging units 12101 to 12104. Such pedestrian recognition is, for example, whether or not the user is a pedestrian by performing a pattern matching process on a sequence of feature points indicating the outline of an object and a procedure for extracting feature points in the captured images of the imaging units 12101 to 12104 as infrared cameras. It is carried out by the procedure for determining.
  • the audio image output unit 12052 When the microcomputer 12051 determines that there is a pedestrian in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 has a rectangular contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to be superimposed and displayed.
  • voice image output part 12052 may control the display part 12062 so that the icon etc. which show a pedestrian may be displayed on a desired position.
  • the technology according to the present disclosure can be applied to the imaging unit 12031 and the like among the configurations described above.
  • the technique according to the present disclosure to the imaging unit 12031, it is possible to obtain a captured image that is easier to see, and thus it is possible to reduce driver fatigue.
  • the accuracy of driving support can be improved.
  • the configurations of the solid-state imaging device according to the present embodiment described above are combined with each other as much as possible. May be.
  • the solid-state imaging device configured by combining the components in this way can also be included in the solid-state imaging device according to the present embodiment.
  • each solid-state imaging device according to the present embodiment described above is merely an example of a technique according to the present disclosure.
  • a solid-state imaging device having various connection structures not included in the above-described embodiments can be provided.
  • the first substrate and the second substrate are bonded so that the first multilayer wiring layer and the second multilayer wiring layer face each other,
  • the first connection structure for electrically connecting the first substrate and the second substrate exists on the bonding surface of the first substrate and the second substrate, and is formed on the bonding surface, respectively.
  • Solid-state imaging device Including electrode joining structures that are joined in a state where the electrodes are in direct contact with each other, Solid-state imaging device.
  • the second connection structure includes an opening provided through at least the first substrate from the back side of the first substrate so as to expose a predetermined wiring in the second multilayer wiring layer, and the third An opening provided at least through the first substrate and the second substrate from the back surface side of the first substrate so as to expose a predetermined wiring in the multilayer wiring layer;
  • the predetermined wiring in the second multilayer wiring layer and the predetermined wiring in the third multilayer wiring layer exposed by the opening are pads functioning as I / O portions;
  • a conductive material is formed on the inner wall of the opening, The predetermined wiring in the second multilayer wiring layer and the predetermined wiring in the third multilayer wiring layer exposed by the opening are electrically connected to the pad by the conductive material.
  • the predetermined wiring in the second multilayer wiring layer and the predetermined wiring in the third multilayer wiring layer are electrically connected to the same pad by the conductive material;
  • the predetermined wiring in the second multilayer wiring layer and the predetermined wiring in the third multilayer wiring layer are electrically connected to different pads by the conductive material, respectively.
  • the second substrate and the third substrate are bonded so that the second semiconductor substrate and the third multilayer wiring layer face each other,
  • the second connection structure is provided so as to penetrate at least the second substrate from the surface side of the second substrate, and a predetermined wiring in the second multilayer wiring layer and a predetermined wiring in the third multilayer wiring layer.
  • Vias that electrically connect the wirings, or at least the third substrate from the back side of the third substrate, the predetermined wiring in the second multilayer wiring layer, and the third multilayer A via that electrically connects the predetermined wiring in the wiring layer
  • the solid-state imaging device according to any one of (1) to (6).
  • the via is different from the first through hole exposing the predetermined wiring in the second multilayer wiring layer and the first through hole exposing the predetermined wiring in the third multilayer wiring layer.
  • the via is one through hole provided so as to expose the predetermined wiring in the third multilayer wiring layer while exposing a part of the predetermined wiring in the second multilayer wiring layer, or the first A structure in which a conductive material is embedded in one through hole provided so as to expose the predetermined wiring in the second multilayer wiring layer while exposing a part of the predetermined wiring in the three multilayer wiring layers; Or a structure in which a conductive material is formed on the inner wall of the through hole.
  • the second substrate and the third substrate are bonded so that the second semiconductor substrate and the third multilayer wiring layer face each other,
  • the third connection structure is provided so as to penetrate at least the first substrate and the second substrate from the back surface side of the first substrate, and a predetermined wiring in the first multilayer wiring layer and the third multilayer Vias electrically connecting predetermined wirings in the wiring layer, or provided through the third substrate and the second substrate at least from the back side of the third substrate, and in the first multilayer wiring layer A via that electrically connects the predetermined wiring and the predetermined wiring in the third multilayer wiring layer,
  • the solid-state imaging device according to any one of (1) to (9).
  • the via is different from the first through hole exposing the predetermined wiring in the first multilayer wiring layer and the first through hole exposing the predetermined wiring in the third multilayer wiring layer.
  • the via is one through hole provided so as to expose the predetermined wiring in the third multilayer wiring layer while exposing a part of the predetermined wiring in the first multilayer wiring layer, or the first A structure in which a conductive material is embedded in one through hole provided to expose the predetermined wiring in the first multilayer wiring layer while exposing a part of the predetermined wiring in the three multilayer wiring layers; Or a structure in which a conductive material is formed on the inner wall of the through hole.
  • (13) The via is electrically connected to a predetermined wiring in the second multilayer wiring layer;
  • a second connection structure for electrically connecting the second substrate and the third substrate including, The solid-state imaging device according to any one of (1) to (13).
  • the second substrate and the third substrate temporarily hold a pixel circuit acquired by each of the logic circuit that executes various signal processing related to the operation of the solid-state imaging device and the pixels of the first substrate.
  • a memory circuit having at least one of The solid-state imaging device according to any one of (1) to (14).
  • the second substrate has a pixel signal processing circuit that AD converts a pixel signal acquired by each of the pixels of the first substrate,
  • the first connection structure exists corresponding to each of the pixels in order to transmit the pixel signal to the pixel signal processing circuit.
  • the solid-state imaging device according to any one of (1) to (15).
  • a solid-state imaging device that electronically captures an observation target;
  • the solid-state imaging device A first substrate having a first semiconductor substrate on which a pixel portion in which pixels are arranged is formed, and a first multilayer wiring layer stacked on the first semiconductor substrate;
  • a second substrate having a second semiconductor substrate on which a circuit having a predetermined function is formed, and a second multilayer wiring layer stacked on the second semiconductor substrate;
  • a third substrate having a third semiconductor substrate on which a circuit having a predetermined function is formed, and a third multilayer wiring layer stacked on the third semiconductor substrate;
  • the first substrate and the second substrate are bonded so that the first multilayer wiring layer and the second multilayer wiring layer face each other,
  • a second connection structure for electrically connecting the second substrate and the third substrate; and Having at least two of the third connection structures for electrically connecting the first substrate and the third substrate;
  • the first connection structure exists on a bonding surface of the first substrate and the

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】固体撮像装置の性能をより向上させる。 【解決手段】画素が配列された画素部が形成された第1半導体基板と、前記第1半導体基板上に積層された第1多層配線層と、を有する第1基板と、所定の機能を有する回路が形成された第2半導体基板と、前記第2半導体基板上に積層された第2多層配線層と、を有する第2基板と、所定の機能を有する回路が形成された第3半導体基板と、前記第3半導体基板上に積層された第3多層配線層と、を有する第3基板と、がこの順に積層されて構成され、前記第1基板と前記第2基板とは、前記第1多層配線層と前記第2多層配線層とが対向するように貼り合わされ、前記第1基板と前記第2基板とを電気的に接続するための第1の接続構造は、前記第1基板及び前記第2基板の貼り合わせ面に存在し、前記貼り合わせ面にそれぞれ形成される電極同士が直接接触した状態で接合している電極接合構造、を含む、固体撮像装置を提供する。

Description

固体撮像装置、及び電子機器
 本開示は、固体撮像装置、及び電子機器に関する。
 固体撮像装置として、画素部が設けられる画素チップと、固体撮像装置の動作に係る各種の信号処理を実行するロジック回路が搭載されるロジックチップ等と、が積層された構造を有するものが開発されている。例えば、特許文献1には、画素チップと、ロジックチップと、画素チップの画素部において取得された画素信号を保持するメモリ回路が搭載されるメモリチップと、が積層された3層積層型の固体撮像装置が開示されている。
 なお、本明細書では、固体撮像装置の構造について説明する際に、画素チップ、ロジックチップ、又はメモリチップが形成される半導体基板と、当該半導体基板上に形成される多層配線層と、を合わせた構成を、「基板」とも呼称する。そして、当該「基板」のことを、積層構造における上側(観察光が入射する側)から下側に向かって、順に、「第1基板」、「第2基板」、「第3基板」、・・・と、それぞれ呼称して、区別する。なお、積層型の固体撮像装置は、各基板がウエハの状態で積層された後、複数個の積層型固体撮像装置(積層型固体撮像装置チップ)へとダイシングされることにより、製造される。本明細書では、便宜的に、「基板」とは、ダイシング前のウエハの状態も意味し得るし、ダイシング後のチップの状態も意味し得ることとする。
特開2014-99582号公報
 特許文献1に記載されているような積層型の固体撮像装置においては、上下の基板に備わる信号線間及び電源線間の電気的な接続方法として、いくつかの方法が考案されている。例えば、パッドを介してチップの外部で接続する方法や、TSV(Through-Silicon Via)によってチップの内部で接続する方法等が存在する。これまで、この基板に備わる信号線間及び電源線間の電気的な接続方法のバリエーションについては、必ずしも詳細な検討が行われているとは言えなかった。かかるバリエーションについて詳細に検討を行うことにより、より高性能な固体撮像装置を得るための適切な構造についての知見が得られる可能性がある。
 そこで、本開示では、性能をより向上させることが可能な、新規かつ改良された固体撮像装置及び電子機器を提案する。
 本開示によれば、画素が配列された画素部が形成された第1半導体基板と、前記第1半導体基板上に積層された第1多層配線層と、を有する第1基板と、所定の機能を有する回路が形成された第2半導体基板と、前記第2半導体基板上に積層された第2多層配線層と、を有する第2基板と、所定の機能を有する回路が形成された第3半導体基板と、前記第3半導体基板上に積層された第3多層配線層と、を有する第3基板と、がこの順に積層されて構成され、前記第1基板と前記第2基板とは、前記第1多層配線層と前記第2多層配線層とが対向するように貼り合わされ、前記第1基板と前記第2基板とを電気的に接続するための第1の接続構造は、前記第1基板及び前記第2基板の貼り合わせ面に存在し、前記貼り合わせ面にそれぞれ形成される電極同士が直接接触した状態で接合している電極接合構造、を含む、固体撮像装置が提供される。
 また、本開示によれば、観察対象を電子的に撮影する固体撮像装置、を備え、前記固体撮像装置は、画素が配列された画素部が形成された第1半導体基板と、前記第1半導体基板上に積層された第1多層配線層と、を有する第1基板と、所定の機能を有する回路が形成された第2半導体基板と、前記第2半導体基板上に積層された第2多層配線層と、を有する第2基板と、所定の機能を有する回路が形成された第3半導体基板と、前記第3半導体基板上に積層された第3多層配線層と、を有する第3基板と、がこの順に積層されて構成され、前記第1基板と前記第2基板とは、前記第1多層配線層と前記第2多層配線層とが対向するように貼り合わされ、前記第1基板と前記第2基板とを電気的に接続するための第1の接続構造は、前記第1基板及び前記第2基板の貼り合わせ面に存在し、前記貼り合わせ面にそれぞれ形成される電極同士が直接接触した状態で接合している電極接合構造、を含む、電子機器が提供される。
 本開示によれば、3つの基板が積層されて構成される固体撮像装置において、画素基板である第1基板と第2基板とがフェイストゥフェイス(詳細については後述する)で貼り合わせられるとともに、当該第1基板に備わる信号線及び電源線と当該第2基板に備わる信号線間及び電源線とをそれぞれ電気的に接続するための第1の接続構造として、当該第1基板と当該第2基板との貼り合わせ面に、当該貼り合わせ面にそれぞれ形成される電極同士が直接接触した状態で接合している電極接合構造が設けられる。当該構成によれば、第2基板に備わる信号線及び電源線と第3基板に備わる信号線及び電源線とをそれぞれ電気的に接続するための第2の接続構造、及び/又は第1基板に備わる信号線及び電源線と第3基板に備わる信号線及び電源線とをそれぞれ電気的に接続するための第3の接続構造として、各種の接続構造を設けることにより、接続構造についての多様なバリエーションを実現することができる。よって、性能をより向上させ得るような、優れた固体撮像装置が実現され得る。
 以上説明したように本開示によれば、固体撮像装置の性能をより向上させることが可能になる。なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、又は上記の効果に代えて、本明細書に示されたいずれかの効果、又は本明細書から把握され得る他の効果が奏されてもよい。
本開示の一実施形態に係る固体撮像装置の概略構成を示す縦断面図である。 固体撮像装置における接続構造の水平面内での配置の一例について説明するための図である。 固体撮像装置における接続構造の水平面内での配置の一例について説明するための図である。 固体撮像装置における接続構造の水平面内での配置の他の例について説明するための図である。 固体撮像装置における接続構造の水平面内での配置の他の例について説明するための図である。 固体撮像装置における接続構造の水平面内での配置の更に他の例について説明するための図である。 固体撮像装置における接続構造の水平面内での配置の更に他の例について説明するための図である。 第1基板と第2基板とがFtoFで貼り合わされた固体撮像装置の概略構成を示す縦断面図である。 第1基板と第2基板とがFtoBで貼り合わされた固体撮像装置の概略構成を示す縦断面図である。 図3Aに示す固体撮像装置における、PWELLと電源配線との間の寄生容量について説明するための図である。 図3Bに示す固体撮像装置における、PWELLと電源配線との間の寄生容量について説明するための図である。 図3Aに示す固体撮像装置における、電源配線及びGND配線の配置を概略的に示す図である。 図3Bに示す固体撮像装置における、電源配線及びGND配線の配置を概略的に示す図である。 図5Aに示す固体撮像装置におけるインピーダンスを低下させるための一構成例を示す図である。 本実施形態の第6の構成例に係る固体撮像装置の製造方法(第1の製造方法)について説明するための図である。 本実施形態の第6の構成例に係る固体撮像装置の製造方法(第1の製造方法)について説明するための図である。 本実施形態の第6の構成例に係る固体撮像装置の製造方法(第1の製造方法)について説明するための図である。 本実施形態の第6の構成例に係る固体撮像装置の製造方法(第1の製造方法)について説明するための図である。 本実施形態の第6の構成例に係る固体撮像装置の製造方法(第1の製造方法)について説明するための図である。 本実施形態の第6の構成例に係る固体撮像装置の他の製造方法(第2の製造方法)について説明するための図である。 本実施形態の第6の構成例に係る固体撮像装置の他の製造方法(第2の製造方法)について説明するための図である。 本実施形態の第6の構成例に係る固体撮像装置の他の製造方法(第2の製造方法)について説明するための図である。 本実施形態の第6の構成例に係る固体撮像装置の他の製造方法(第2の製造方法)について説明するための図である。 本実施形態の第6の構成例に係る固体撮像装置の他の製造方法(第2の製造方法)について説明するための図である。 本実施形態の第5の構成例に係る固体撮像装置の製造方法(第3の製造方法)について説明するための図である。 本実施形態の第5の構成例に係る固体撮像装置の製造方法(第3の製造方法)について説明するための図である。 本実施形態の第5の構成例に係る固体撮像装置の製造方法(第3の製造方法)について説明するための図である。 本実施形態の第5の構成例に係る固体撮像装置の製造方法(第3の製造方法)について説明するための図である。 本実施形態の第5の構成例に係る固体撮像装置の製造方法(第3の製造方法)について説明するための図である。 本実施形態の第5の構成例に係る固体撮像装置の製造方法(第3の製造方法)について説明するための図である。 本実施形態の第4の構成例に係る固体撮像装置の製造方法(第4の製造方法)について説明するための図である。 本実施形態の第4の構成例に係る固体撮像装置の製造方法(第4の製造方法)について説明するための図である。 本実施形態の第4の構成例に係る固体撮像装置の製造方法(第4の製造方法)について説明するための図である。 本実施形態の第4の構成例に係る固体撮像装置の製造方法(第4の製造方法)について説明するための図である。 本実施形態の第4の構成例に係る固体撮像装置の製造方法(第4の製造方法)について説明するための図である。 本実施形態の第4の構成例に係る固体撮像装置の製造方法(第4の製造方法)について説明するための図である。 本実施形態の第4の構成例に係る固体撮像装置の製造方法(第4の製造方法)について説明するための図である。 本実施形態の第1の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第1の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第1の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第1の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第1の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第2の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第2の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第2の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第2の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第2の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第3の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第3の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第3の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第3の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第3の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第3の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第3の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第3の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第3の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第3の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第3の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第4の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第4の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第4の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第5の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第5の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第5の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第5の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第5の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第5の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第6の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第6の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第6の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第6の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第6の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第6の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第6の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第6の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第6の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第6の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第7の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第7の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第7の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第7の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第7の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第7の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第8の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第8の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第8の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第8の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第8の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第8の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第8の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第8の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第8の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第8の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第8の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第8の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第9の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第9の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第9の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第10の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第10の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第10の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第10の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第10の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態の第10の構成例に係る固体撮像装置の概略構成を示す縦断面図である。 本実施形態に係る固体撮像装置が適用され得る電子機器の一例である、スマートフォンの外観を示す図である。 本実施形態に係る固体撮像装置が適用され得る電子機器の他の例である、デジタルカメラの外観を示す図である。 本実施形態に係る固体撮像装置が適用され得る電子機器の他の例である、デジタルカメラの外観を示す図である。 本開示に係る技術を適用し得る固体撮像装置の構成例を示す断面図である。 本開示に係る技術が適用され得る固体撮像装置の概略構成を示す説明図である。 本開示に係る技術が適用され得るビデオカメラの構成例を示す説明図である。 内視鏡手術システムの概略的な構成の一例を示す図である。 カメラヘッド及びCCUの機能構成の一例を示すブロック図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
 以下に添付図面を参照しながら、本開示の好適な実施形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、以下に示す各図面では、説明のため、一部の構成部材の大きさを誇張して表現している場合がある。各図面において図示される各構成部材の相対的な大きさは、必ずしも実際の構成部材間における大小関係を正確に表現するものではない。
 なお、説明は以下の順序で行うものとする。
 1.固体撮像装置の全体構成
 2.接続構造の配置について
 3.第2基板の方向について
  3-1.PWELLの面積に基づく検討
  3-2.消費電力及びGND配線の配置に基づく検討
 4.製造方法
  4-1.第1の製造方法
  4-2.第2の製造方法
  4-3.第3の製造方法
  4-4.第4の製造方法
  4-5.まとめ
 5.固体撮像装置の構成のバリエーション
  5-1.第1の構成例
  5-2.第2の構成例
  5-3.第3の構成例
  5-4.第4の構成例
  5-5.第5の構成例
  5-6.第6の構成例
  5-7.第7の構成例
  5-8.第8の構成例
  5-9.第9の構成例
  5-10.第10の構成例
  5-11.まとめ
 6.適用例
 7.補足
 (1.固体撮像装置の全体構成)
 図1は、本開示の一実施形態に係る固体撮像装置の概略構成を示す縦断面図である。図1に示すように、本実施形態に係る固体撮像装置1は、第1基板110Aと、第2基板110Bと、第3基板110Cと、が積層されて構成される、3層積層型の固体撮像装置である。図中において、破線A-Aは、第1基板110Aと第2基板110Bとの貼り合わせ面を示しており、破線B-Bは、第2基板110Bと第3基板110Cとの貼り合わせ面を示している。第1基板110Aは、画素部が設けられる画素基板である。第2基板110B及び第3基板110Cには、固体撮像装置1の動作に係る各種の信号処理を行うための回路が設けられる。第2基板110B及び第3基板110Cは、例えば、ロジック回路が設けられるロジック基板又はメモリ回路が設けられるメモリ基板である。固体撮像装置1は、第1基板110Aの後述する裏面側から入射した光を画素部において光電変換する、裏面照射型のCMOS(Complementary Metal-Oxide-Semiconductor)イメージセンサである。なお、以下、図1についての説明では、一例として、第2基板110Bがロジック基板であり、第3基板110Cがメモリ基板である場合について説明する。
 積層型の固体撮像装置1では、各基板の機能に対応するように、各回路をより適切に構成することが可能であるため、固体撮像装置1の高機能化をより容易に実現することができる。図示する構成例であれば、第1基板110Aにおける画素部と、第2基板110B及び第3基板110Cにおけるロジック回路又はメモリ回路と、を各基板の機能に対応するように適切に構成することができるため、高機能な固体撮像装置1を実現することができる。
 なお、以下では、第1基板110A、第2基板110B及び第3基板110Cの積層方向をz軸方向とも呼称する。また、z軸方向において第1基板110Aが位置する方向をz軸の正方向と定義する。また、z軸方向と垂直な面(水平面)上において互いに直交する2方向を、それぞれ、x軸方向及びy軸方向とも呼称する。また、以下では、各基板において、後述する半導体基板101、121、131が基板主面方向に対向して備える2つの面のうち、トランジスタ等の機能部品が設けられる側の面、又は当該機能部品を動作させるための後述する多層配線層105、125、135が設けられる側の面を、表面(フロントサイドサーフェイス)とも呼称し、当該表面に対向するもう一方の面を、裏面(バックサイドサーフェイス)とも呼称する。そして、各基板において、当該表面を備える側を表面側(フロントサイド)とも呼称し、当該裏面を備える側を裏面側(バックサイド)とも呼称する。
 第1基板110Aは、例えばシリコン(Si)からなる半導体基板101と、当該半導体基板101上に形成される多層配線層105と、を主に有する。半導体基板101上には、画素が2次元状に並べられた画素部と、画素信号を処理する画素信号処理回路と、が主に形成される。各画素は、観察対象からの光(観察光)を受光し光電変換するフォトダイオード(PD)と、当該PDによって取得された観察光に対応する電気信号(画素信号)を読み出すためのトランジスタ等を有する駆動回路と、から主に構成される。画素信号処理回路において、画素信号に対して、例えばアナログ-デジタル変換(AD変換)等の各種の信号処理が実行される。なお、本実施形態では、画素部は、画素が2次元状に配列されて構成されるものに限定されず、画素が3次元状に配列されて構成されてもよい。また、本実施形態では、半導体基板101に代えて、半導体以外の材料によって形成される基板が用いられてもよい。例えば、半導体基板101に代えてサファイア基板が用いられてもよい。この場合、当該サファイア基板の上に光電変換を行う膜(例えば有機光電変換膜)が堆積されて画素が形成される形態が適用されてもよい。
 画素部及び画素信号処理回路が形成された半導体基板101の表面には、絶縁膜103が積層される。絶縁膜103の内部には、画素信号、及び駆動回路のトランジスタを駆動するための駆動信号等の各種の信号を伝達するための信号線配線を含む多層配線層105が形成される。多層配線層105には、更に、電源配線やグランド配線(GND配線)等が含まれる。なお、以下では、簡単のため、信号線配線のことを単に信号線と記載することがある。また、電源配線及びGND配線を併せて電源線と記載することがある。多層配線層105の最下層の配線は、例えばタングステン(W)等の導電材料が埋め込まれたコンタクト107によって、画素部又は画素信号処理回路と電気的に接続され得る。なお、実際には、所定の厚さの層間絶縁膜の形成と、配線層の形成と、を繰り返すことにより、複数層の配線層が形成され得るが、図1では、簡単のため、これら複数層の層間絶縁膜を絶縁膜103と総称し、複数層の配線層を多層配線層105と総称する。
 なお、多層配線層105の最上層には、絶縁膜103からその金属面が露出するように、電極が形成される。かかる電極は、後述するように、第1基板110Aと第2基板110Bとを貼り合わせる際に、これらの基板内の配線同士を電気的に接続するための電極接合構造159を構成する。なお、本明細書では、簡単のため、一の基板内の配線と他の基板内の配線とが電気的に接続されることを、単に、一の基板と他の基板とが電気的に接続される、と略記することがある。このとき、基板同士が電気的に接続される際に電気的に接続される配線は、信号線であってもよいし、電源線であってもよい。
 第2基板110Bは、例えばロジック基板である。第2基板110Bは、例えばSiからなる半導体基板121と、当該半導体基板121上に形成される多層配線層125と、を主に有する。半導体基板121上には、ロジック回路が形成される。当該ロジック回路では、固体撮像装置1の動作に係る各種の信号処理が実行される。例えば、当該ロジック回路では、第1基板110Aの画素部を駆動するための駆動信号の制御(すなわち、画素部の駆動制御)や、外部との信号のやり取りが制御され得る。なお、本実施形態では、半導体基板121に代えて、半導体以外の材料によって形成される基板が用いられてもよい。例えば、半導体基板121に代えてサファイア基板が用いられてもよい。この場合、当該サファイア基板の上に半導体膜(例えばSi膜)が堆積され、当該半導体膜においてロジック回路が形成される形態が適用されてもよい。
 ロジック回路が形成された半導体基板121の表面には、絶縁膜123が積層される。絶縁膜123の内部には、ロジック回路の動作に係る各種の信号を伝達するための多層配線層125が形成される。多層配線層125には、更に、電源配線やGND配線等が含まれる。多層配線層125の最下層の配線は、例えばW等の導電材料が埋め込まれたコンタクト127によって、ロジック回路と電気的に接続され得る。なお、第1基板110Aの絶縁膜103及び多層配線層105と同様に、第2基板110Bについても、絶縁膜123は複数層の層間絶縁膜の総称であり、多層配線層125は複数層の配線層の総称であり得る。
 なお、多層配線層125の最上層には、絶縁膜123からその金属面が露出するように、電極が形成される。かかる電極は、後述するように、第1基板110Aと第2基板110Bとを貼り合わせる際に、これらの基板に備わる信号線同士及び電源線同士を電気的に接続するための電極接合構造159を構成する。また、多層配線層125には、外部との間で各種の信号のやり取りを行うための外部入出力部(I/O部)として機能するパッド151が形成され得る。パッド151は、チップの外周に沿って設けられ得る。
 第3基板110Cは、例えばメモリ基板である。第3基板110Cは、例えばSiからなる半導体基板131と、当該半導体基板131上に形成される多層配線層135と、を主に有する。半導体基板131上には、メモリ回路が形成される。当該メモリ回路では、第1基板110Aの画素部で取得され、画素信号処理回路によってAD変換された画素信号が、一時的に保持される。メモリ回路に画素信号を一旦保持することにより、グローバルシャッター方式が実現されるとともに、固体撮像装置1から外部への当該画素信号の読み出しをより高速で行うことが可能になる。従って、高速撮影時においても、歪みの抑制された、より高品質な画像を撮影することが可能になる。なお、本実施形態では、半導体基板131に代えて、半導体以外の材料によって形成される基板が用いられてもよい。例えば、半導体基板131に代えてサファイア基板が用いられてもよい。この場合、当該サファイア基板の上にメモリ素子を形成するための膜(例えば相変化材料膜)が堆積され、当該膜を用いてメモリ回路が形成される形態が適用されてもよい。
 メモリ回路が形成された半導体基板131の表面には、絶縁膜133が積層される。絶縁膜133の内部には、メモリ回路の動作に係る各種の信号を伝達するための多層配線層135が形成される。多層配線層135には、更に、電源配線やGND配線等が含まれる。多層配線層135の最下層の配線は、例えばW等の導電材料が埋め込まれたコンタクト137によって、メモリ回路と電気的に接続され得る。なお、第1基板110Aの絶縁膜103及び多層配線層105と同様に、第3基板110Cについても、絶縁膜133は複数層の層間絶縁膜の総称であり、多層配線層135は複数層の配線層の総称であり得る。
 なお、多層配線層135には、外部との間で各種の信号のやり取りを行うためのI/O部として機能するパッド151が形成され得る。パッド151は、チップの外周に沿って設けられ得る。
 第1基板110A、第2基板110B、及び第3基板110Cが、それぞれウエハの状態で作製される。その後、これらが貼り合わされ、各基板に備わる信号線同士及び電源線同士の電気的な接続を取るための各工程が行われる。
 具体的には、まず、ウエハ状態である第1基板110Aの半導体基板101の表面(多層配線層105が設けられる側の面)と、ウエハ状態である第2基板110Bの半導体基板121の表面(多層配線層125が設けられる側の面)と、が対向するように、当該第1基板110Aと当該第2基板110Bとが貼り合わされる。以下では、このような、2つの基板が、その半導体基板の表面同士を対向させて貼り合わされる状態を、Face to Face(FtoF)ともいう。
 この際、第1基板110Aの多層配線層105の最上層の電極の金属面と、第2基板110Bの多層配線層125の最上層の電極の金属面と、が接触するように、当該第1基板110Aと当該第2基板110Bとが貼り合わされる。そして、熱処理が行われることにより、電極同士が接合し、第1基板110Aに備わる信号線及び電源線と第2基板110Bに備わる信号線及び電源線とがそれぞれ電気的に接続される。本明細書では、このような、基板に備わる信号線同士及び電源線同士を電気的に接続するための、電極同士が直接接合される構造のことを、電極接合構造159とも呼称する。つまり、電極接合構造159は、第1基板110Aにおいて貼り合わせ面に形成される電極、及び当該電極を多層配線層105内の所定の配線に電気的に接続するためのビア、並びに第2基板110Bにおいて貼り合わせ面に形成される電極、及び当該電極を多層配線層125内の所定の配線に電気的に接続するためのビア、によって構成される。図示する例では、第1基板110Aと当該第2基板110BとがFtoFで貼り合わされているため、これらのビアは、いずれも、絶縁膜内(絶縁膜103、123内)に設けられているが、基板同士の貼り合わせの方向によっては、いずれか一方のビアは半導体基板を貫通するビア(いわゆるTSV(第1基板110A、第2基板110B、及び第3基板110Cのうちのいずれかの基板の一面から、半導体基板101、121、131のうちの少なくとも1つの半導体基板を貫通して設けられるビア))となり得る(例えば、後述する図15Aに示す電極接合構造159bでは、第2基板110Bの当該ビアは、半導体基板121を貫通して設けられている)。なお、本実施形態では、上述したように、半導体基板101、121、131に代えて半導体以外の材料からなる基板も用いられ得るが、本明細書では、このような半導体以外の材料からなる基板を貫通して設けられるビアのことも、便宜上、TSVと呼称する。
 次に、ウエハ状態である第2基板110Bの半導体基板121の裏面(多層配線層125が設けられる側とは逆側の面)と、ウエハ状態である第3基板110Cの半導体基板131の表面(多層配線層135が設けられる側の面)と、が対向するように、第1基板110A及び第2基板110Bの積層構造体に対して、当該第3基板110Cが更に貼り合わされる。なお、この際、第2基板110Bについては、貼り合わせ工程の前に、半導体基板121が薄肉化され、その裏面側に所定の厚さの絶縁膜129が形成される。以下では、このような、2つの基板がその半導体基板の表面と裏面とを対向させて貼り合わされる状態を、Face to Back(FtoB)ともいう。
 次に、第1基板110Aの半導体基板101が薄肉化され、その裏面上に絶縁膜109が形成される。そして、第1基板110Aの半導体基板101の裏面側に、当該絶縁膜109を介して、カラーフィルタ層111(CF層111)及びマイクロレンズアレイ113(MLアレイ113)が形成される。
 CF層111は、複数のCFが2次元状に配列されて構成される。MLアレイ113は、複数のMLが2次元状に配列されて構成される。CF層111及びMLアレイ113は、画素部の直上に形成され、1つの画素のPDに対して1つのCF及び1つのMLが配設される。
 CF層111の各CFは、例えば赤色、緑色、及び青色のいずれかの色を有する。CFを通過した観察光が画素のPDに入射し、画素信号が取得されることにより、観察対象について、当該カラーフィルタの色の成分の画素信号が取得されることとなる(すなわち、カラーでの撮像が可能となる)。実際には、1つのCFに対応する1つの画素が副画素として機能し、複数の副画素によって1つの画素が形成され得る。例えば、固体撮像装置1では、赤色のCFが設けられる画素(すなわち、赤色の画素)、緑色のCFが設けられる画素(すなわち、緑色の画素)、青色のCFが設けられる画素(すなわち、青色の画素)、及びCFが設けられない画素(すなわち、白色の画素)の4色の副画素によって、1つの画素が形成され得る。ただし、本明細書では、説明のため、便宜的に、副画素と画素を区別せず、1つの副画素に対応する構成のことも、単に画素と呼称することとする。なお、CFの配列方法は特に限定されず、例えば、デルタ配列、ストライプ配列、ダイアゴナル配列、又はレクタングル配列等、各種の配列であってよい。
 MLアレイ113は、各CFの直上に各MLが位置するように形成される。MLアレイ113が設けられることにより、MLによって集光された観察光がCFを介して画素のPDに入射することとなるため、観察光の集光効率を向上させ、固体撮像装置1としての感度を向上させる効果を得ることができる。
 CF層111及びMLアレイ113が形成されたら、次に、第2基板110Bの多層配線層125、及び第3基板110Cの多層配線層135に設けられるパッド151を露出させるために、パッド開口部153a、153bが形成される。パッド開口部153aは、第1基板110Aの裏面側から、第1基板110Aを貫通し、第2基板110Bの多層配線層125に設けられるパッド151の金属面まで達するように形成される。パッド開口部153bは、第1基板110Aの裏面側から、第1基板110A及び第2基板110Bを貫通し、第3基板110Cの多層配線層135に設けられるパッド151の金属面まで達するように形成される。パッド開口部153a、153bを介して、例えばワイヤボンディングによって、パッド151と外部の他の回路とが電気的に接続される。つまり、当該外部の他の回路を介して、第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士が電気的に接続され得る。
 なお、本明細書では、図1に示すように図中にパッド開口部153が複数存在する場合に、便宜的に、パッド開口部153a、パッド開口部153b、・・・と、符号の末尾にそれぞれ異なるアルファベットを付すことにより、これら複数のパッド開口部153を区別することとする。
 そして、ウエハ状態で積層され加工された積層ウエハ構造体を、個々の固体撮像装置1ごとにダイシングすることにより、固体撮像装置1が完成する。
 以上、固体撮像装置1の概略構成について説明した。以上説明したように、固体撮像装置1では、電極接合構造159によって第1基板110A及び第2基板110Bの各々に備わる信号線同士及び電源線同士が電気的に接続され、パッド開口部153a、153bによって露出させられるパッド151同士を、固体撮像装置1の外部に備わる配線や基板等の電気的接続手段を介して接続することによって、第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士が電気的に接続され得る。つまり、電極接合構造159、パッド151、及びパッド開口部153a、153bを介して、第1基板110A、第2基板110B、及び第3基板110Cの各々に備わる信号線同士及び電源線同士が電気的に接続され得る。なお、本明細書では、図1に示す電極接合構造159、パッド151、及びパッド開口部153a、153bのような、基板の各々に備わる信号線同士及び電源線同士を電気的に接続し得る構造のことを、接続構造とも総称する。図1に示す構成では用いられていないが、後述するTSV157(後述するツインコンタクト型又はシェアードコンタクト型のTSV)も接続構造に含まれる。
 なお、第1基板110Aの多層配線層105、第2基板110Bの多層配線層125、及び第3基板110Cの多層配線層135は、比較的低抵抗である第1の金属によって形成される複数の第1金属配線層141が積層されて構成され得る。第1の金属は例えば銅(Cu)である。Cu配線を用いることにより、より高速での信号のやり取りが可能となる。ただし、パッド151については、ワイヤボンディングのワイヤとの接着性等を考慮して、第1の金属とは異なる第2の金属によって形成され得る。従って、図示する構成例では、パッド151が設けられる第2基板110Bの多層配線層125及び第3基板110Cの多層配線層135には、当該パッド151と同層に、第2の金属によって形成される第2金属配線層143が含まれる。第2の金属は例えばアルミニウム(Al)である。Al配線は、パッド151の他、例えば、一般的に幅広な配線として形成される電源配線やGND配線として用いられ得る。
 また、第1の金属及び第2の金属は、上記で例示したCu及びAlに限定されない。第1の金属及び第2の金属としては、各種の金属が用いられてよい。あるいは、多層配線層105、125、135の各配線層は、金属以外の導電材料によって形成されてもよい。これらの配線層は、導電材料によって形成されればよく、その材料は限定されない。また、2種類の導電材料を用いるのではなく、パッド151を含む多層配線層105、125、135の全てが同一の導電材料によって形成されてもよい。
 また、本実施形態では、後述するTSV157、並びに電極接合構造159を構成する電極及びビアも、第1の金属(例えばCu)によって形成される。例えば、第1の金属がCuである場合、これらの構造は、ダマシン法、又はデュアルダマシン法によって形成され得る。ただし、本実施形態はかかる例に限定されず、これらの構造のうちの一部又は全てが、第2の金属、第1の金属及び第2の金属のいずれとも異なる他の金属、又は他の非金属の導電材料によって形成されてもよい。例えば、TSV157及び電極接合構造159を構成するビアは、開口部にW等の埋め込み性が良い金属材料を埋め込むことにより形成されてもよい。ビア径が比較的小さい場合には、埋め込み性を考慮して、かかるWを用いた構造が好適に適用され得る。また、TSV157は、必ずしも貫通孔(少なくとも一の半導体基板を貫通する開口部)に導電材料が埋め込まれて形成されなくてもよく、貫通孔の内壁(側壁及び底部)に導電材料が成膜されることによって形成されてもよい。
 また、図1及び以降の各図面においては図示を省略している場合があるが、固体撮像装置1において、第1の金属及び第2の金属等の導電材料が半導体基板101、121、131と接触しているように図示されている部位については、この両者を電気的に絶縁するための絶縁材料が存在している。当該絶縁材料は、例えば、シリコン酸化物(SiO)又はシリコン窒化物(SiN)等、各種の公知の材料であってよい。当該絶縁材料は、導電材料と半導体基板101、121、131との間に介在するように存在してもよいし、両者の接触部位から離れた半導体基板101、121、131の内部に存在してもよい。例えば、後述するTSV157及び電極接合構造159を構成するTSVについては、半導体基板101、121、131に設けられる貫通孔の内側壁と、当該貫通孔に埋め込まれる導電材料との間に、絶縁材料が存在し得る(すなわち、当該貫通孔の内側壁に絶縁材料が成膜され得る)。あるいは、当該TSV157及び当該電極接合構造159を構成するTSVについては、半導体基板101、121、131に設けられる貫通孔から水平面内方向に所定の距離だけ離れた部位であって、当該半導体基板101、121、131の内部の部位に、絶縁材料が存在していてもよい。また、図1及び以降の各図面においては図示を省略している場合があるが、第1の金属がCuである場合には、Cuが半導体基板101、121、131又は絶縁膜103、109、123、129、133と接触している部位については、Cuの拡散を防止するためにバリアメタルが存在している。当該バリアメタルとしては、例えばチタン窒化物(TiN)又はタンタル窒化物(TaN)等、各種の公知の材料が用いられてよい。
 また、各基板の半導体基板101、121、131に形成される各構成(第1基板110Aに設けられる画素部及び画素信号処理回路、第2基板110Bに設けられるロジック回路、及び第3基板110Cに設けられるメモリ回路)、多層配線層105、125、135、並びに絶縁膜103、109、123、129、133の具体的な構成や、形成方法は、各種の公知のものと同様であってよいため、ここでは詳細な説明を省略する。
 例えば、絶縁膜103、109、123、129、133は、絶縁性を有する材料によって形成されればよく、その材料は限定されない。絶縁膜103、109、123、129、133は、例えば、SiO又はSiN等によって形成され得る。また、絶縁膜103、109、123、129、133のそれぞれは、1つの種類の絶縁材料によって形成されなくてもよく、複数の種類の絶縁材料が積層されて形成されてもよい。また、例えば、絶縁膜103、123、133において、より高速での信号の伝達が求められる配線が形成される領域については、絶縁性を有するLow-k材料が用いられてもよい。Low-k材料を用いることにより、配線間の寄生容量を小さくすることができるため、信号の高速伝送により寄与することが可能になる。
 その他、各基板の半導体基板101、121、131に形成される各構成、多層配線層105、125、135、及び絶縁膜103、109、123、129、133の具体的な構成や形成方法については、例えば、本願出願人による先行出願である特許文献1に記載のものを適宜適用することができる。
 また、以上説明した構成例では、第1基板110Aに、画素信号に対してAD変換等の信号処理を行う画素信号処理回路が搭載されていたが、本実施形態はかかる例に限定されない。当該画素信号処理回路の機能のうちの一部又は全てが、第2基板110Bに設けられてもよい。この場合には、例えば、複数個の画素を列(カラム)方向と行(ロウ)方向の双方に向かって並べるようにアレイ状に配置した画素アレイにおいて、各画素に備えられるPDによって取得された画素信号が、画素ごとに第2基板110Bの画素信号処理回路に伝送されて、画素ごとにAD変換が行われる、いわゆる画素ごとアナログ-デジタルコンバージョン(画素ADC)方式の固体撮像装置1が実現され得る。これにより、画素アレイの列ごとに1つのAD変換回路を備えて、列に含まれる複数個の画素のAD変換を逐次行う、一般的なカラムごとアナログ-デジタルコンバージョン(カラムADC)方式の固体撮像装置1に比べて、より高速で画素信号のAD変換及び読み出しを行うことが可能となる。なお、画素ADCを実行可能に固体撮像装置1を構成する場合には、画素ごとに、第1基板110A及び第2基板110Bの各々に備わる信号線同士を電気的に接続する接続構造が設けられることとなる。
 また、以上説明した構成例では、第2基板110Bがロジック基板であり、第3基板110Cがメモリ基板である場合について説明したが、本実施形態はかかる例に限定されない。第2基板110B及び第3基板110Cは画素基板以外の機能を有する基板であればよく、その機能は任意に決定されてよい。例えば、固体撮像装置1は、メモリ回路を有しなくてもよい。この場合には、例えば、第2基板110B及び第3基板110Cは、いずれもロジック基板として機能し得る。あるいは、ロジック回路及びメモリ回路が、第2基板110B及び第3基板110Cに分散して形成され、これらの基板が協働して、ロジック基板及びメモリ基板としての機能を果たしてもよい。あるいは、第2基板110Bがメモリ基板であり、第3基板110Cがロジック基板であってもよい。
 また、以上説明した構成例では、各基板において、半導体基板101、121、131としてSi基板が用いられていたが、本実施形態はかかる例に限定されない。半導体基板101、121、131としては、例えば、ガリウムヒ素(GaAs)基板や、シリコンカーバイド(SiC)基板等、他の種類の半導体基板が用いられてもよい。あるいは、上述したように、半導体基板101、121、131に代えて、例えばサファイア基板等、半導体以外の材料によって形成される基板が用いられてもよい。
 (2.接続構造の配置について)
 図1を参照して説明したように、固体撮像装置1では、接続構造を介して、各基板に備わる信号線及び/又は電源線が、複数の基板に渡って相互に電気的に接続され得る。これらの接続構造の水平面内での配置は、各基板(各チップ)の構成、性能等を考慮して、固体撮像装置1全体としての性能が向上し得るように、適宜決定され得る。ここでは、固体撮像装置1における接続構造の水平面内での配置のいくつかのバリエーションについて説明する。
 図2A及び図2Bは、固体撮像装置1における接続構造の水平面内での配置の一例について説明するための図である。図2A及び図2Bは、例えば、固体撮像装置1において、第1基板110Aに画素信号に対してAD変換等の処理を行う画素信号処理回路が搭載される場合における、接続構造の配置を示している。
 図2Aでは、固体撮像装置1を構成する第1基板110A、第2基板110B、及び第3基板110Cを概略的に示している。そして、第1基板110Aの下面(第2基板110Bと対向する面)と第2基板110Bの上面(第1基板110Aと対向する面)との接続構造を介した電気的接続を破線で模擬的に示し、第2基板110Bの下面(第3基板110Cと対向する面)と第3基板110Cの上面(第2基板110Bと対向する面)との接続構造を介した電気的接続を実線で模擬的に示している。
 第1基板110Aの上面には、画素部206及び接続構造201の位置を示している。接続構造201は、電源信号及びGND信号等の各種の信号を外部とやり取りするためのI/O部として機能する。具体的には、接続構造201は、第1基板110Aの上面に設けられるパッド151であり得る。あるいは、図1に示すように、第1基板110Aの多層配線層105、第2基板110Bの多層配線層125、又は第3基板110Cの多層配線層135内にパッド151が埋め込まれている場合には、接続構造201は、当該パッド151を露出させるように設けられるパッド開口部153であり得る。あるいは、当該接続構造201は、後述する引き出し線開口部155であり得る。図2Aに示すように、第1基板110Aでは、そのチップの中央に画素部206が設けられ、I/O部を構成する接続構造201は、当該画素部206の周囲に(すなわち、チップの外周に沿って)配置されている。また、図示しないが、画素信号処理回路も、当該画素部206の周囲に配置され得る。
 図2Bでは、第1基板110Aの下面における接続構造202の位置、第2基板110Bの上面における接続構造203の位置、第2基板110Bの下面における接続構造204の位置、及び第3基板110Cの上面における接続構造205の位置を概略的に示している。これら接続構造202~205は、基板間に設けられる後述するTSV157又は上述した電極接合構造159であり得る。あるいは、図1に示すように、第2基板110Bの多層配線層125、又は第3基板110Cの多層配線層135内にパッド151が埋め込まれている場合には、接続構造202~205のうち接続構造201の直下に位置するものは、当該パッド151を露出させるように設けられるパッド開口部153であり得る。あるいは、当該接続構造202~205は、後述する引き出し線開口部155であり得る。なお、図2Bでは、図2Aに示す電気的な接続を表す直線の形態に合わせて、接続構造202~205を示している。つまり、第1基板110Aの下面における接続構造202、及び第2基板110Bの上面における接続構造203については破線で示し、第2基板110Bの下面における接続構造204、及び第3基板110Cの上面における接続構造205については実線で示している。
 上述したように、図示する構成例では、画素信号処理回路が、第1基板110Aの画素部206の周囲に搭載されている。従って、第1基板110Aにおいて、画素部206で取得された画素信号は、当該画素信号処理回路においてAD変換等の処理が行われた後、第2基板110Bに備わる回路に伝送される。また、上述したように、第1基板110Aにおいては、I/O部を構成する接続構造201も、第1基板110Aの画素部206の周囲に配置されている。よって、図2Bに示すように、第1基板110Aの下面における接続構造202は、画素信号処理回路及びI/O部を第2基板110Bに備わる回路と電気的に接続するために、当該画素信号処理回路及び当該I/O部が存在する領域に対応して、チップの外周に沿って配置される。また、これに対応して、第2基板110Bの上面における接続構造203も、チップの外周に沿って配置される。
 一方、第2基板110B及び第3基板110Cに搭載されるロジック回路又はメモリ回路は、チップの全面に形成され得るため、この回路が搭載される位置に対応して、図2Bに示すように、第2基板110Bの下面における接続構造204、及び第3基板110Cの上面における接続構造205は、チップの全面に渡って配置される。
 図2C及び図2Dは、固体撮像装置1における接続構造の水平面内での配置の他の例について説明するための図である。図2C及び図2Dは、例えば、固体撮像装置1が画素ADCを実行可能に構成される場合における、接続構造の配置を示している。この場合、画素信号処理回路が、第1基板110Aではなく、第2基板110Bに搭載されることとなる。
 図2Cでは、図2Aと同様に、固体撮像装置1を構成する第1基板110A、第2基板110B、及び第3基板110Cを概略的に示している。そして、第1基板110Aの下面(第2基板110Bと対向する面)と第2基板110Bの上面(第1基板110Aと対向する面)との接続構造を介した電気的接続を破線又は点線で模擬的に示し、第2基板110Bの下面(第3基板110Cと対向する面)と第3基板110Cの上面(第2基板110Bと対向する面)との接続構造を介した電気的接続を実線で模擬的に示している。第1基板110Aの下面と第2基板110Bの上面との電気的接続を示す線のうち、破線は、図2Aにおいても存在した、例えばI/O部に係る電気的接続を示しており、点線は、図2Aにおいては存在していなかった、画素ADCに係る電気的接続を示している。
 図2Dでは、図2Bと同様に、第1基板110Aの下面における接続構造202の位置、第2基板110Bの上面における接続構造203の位置、第2基板110Bの下面における接続構造204の位置、及び第3基板110Cの上面における接続構造205の位置を概略的に示している。なお、図2Dでは、図2Cに示す電気的な接続を表す直線の形態に合わせて、接続構造202~205を示している。つまり、第1基板110Aの下面における接続構造202及び第2基板110Bの上面における接続構造203のうち、図2Aにおいても存在した、例えばI/O部に係る電気的接続に対応するものについては破線で示し、画素ADCに係る電気的接続に対応し得るものについては点線で示している。また、第2基板110Bの下面における接続構造204、及び第3基板110Cの上面における接続構造205については実線で示している。
 上述したように、図示する構成例では、画素信号処理回路が第2基板110Bに搭載されており、画素ADCが可能に構成されている。つまり、画素部206の各画素で取得された画素信号は、画素ごとに、直下の第2基板110Bに搭載される画素信号処理回路に伝送され、当該画素信号処理回路においてAD変換等の処理が行われる。従って、図2C及び図2Dに示すように、当該構成例では、第1基板110Aの下面における接続構造202は、I/O部からの信号を第2基板110Bに備わる回路に伝送するために、当該I/O部が存在する領域に対応してチップの外周に沿って配置されるとともに(図中破線で示す接続構造202)、画素部206の各画素からの画素信号を第2基板110Bに備わる回路に伝送するために、当該画素部206が存在する領域の全体に渡って配置されることとなる(図中点線で示す接続構造202)。
 第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士の電気的な接続については、図2A及び図2Bに示す構成例と同様であるため、図2C及び図2Dに示すように、第2基板110Bの下面における接続構造204、及び第3基板110Cの上面における接続構造205は、チップの全面に渡って配置される。
 図2E及び図2Fは、固体撮像装置1における接続構造の水平面内での配置の更に他の例について説明するための図である。図2E及び図2Fは、例えば、第2基板110Bにメモリ回路が搭載される場合における、接続構造の配置を示している。
 図2Eでは、図2Aと同様に、固体撮像装置1を構成する第1基板110A、第2基板110B、及び第3基板110Cを概略的に示している。そして、第1基板110Aの下面(第2基板110Bと対向する面)と第2基板110Bの上面(第1基板110Aと対向する面)との接続構造を介した電気的接続を破線又は点線で模擬的に示し、第2基板110Bの下面(第3基板110Cと対向する面)と第3基板110Cの上面(第2基板110Bと対向する面)との接続構造を介した電気的接続を実線又は点線で模擬的に示している。第1基板110Aの下面と第2基板110Bの上面との電気的接続を示す線のうち、破線は、図2Aにおいても存在した、例えばI/O部に係る電気的接続を示しており、点線は、図2Aにおいては存在していなかったメモリ回路に係る電気的接続を示している。また、第2基板110Bの下面と第3基板110Cの上面との電気的接続を示す線のうち、実線は、図2Aにおいても存在した、例えばメモリ回路の動作とは直接的には関係しない信号に係る電気的接続を示しており、点線は、図2Aにおいては存在していなかったメモリ回路に係る電気的接続を示している。
 図2Fでは、図2Bと同様に、第1基板110Aの下面における接続構造202の位置、第2基板110Bの上面における接続構造203の位置、第2基板110Bの下面における接続構造204の位置、及び第3基板110Cの上面における接続構造205の位置を概略的に示している。なお、図2Fでは、図2Eに示す電気的な接続を表す直線の形態に合わせて、接続構造202~205を示している。つまり、第1基板110Aの下面における接続構造202及び第2基板110Bの上面における接続構造203のうち、図2Aにおいても存在した、例えばI/O部に係る電気的接続に対応するものについては破線で示し、メモリ回路に係る電気的接続に対応し得るものについては点線で示している。また、第2基板110Bの下面における接続構造204及び第3基板110Cの上面における接続構造205のうち、図2Aにおいても存在した、例えばメモリ回路の動作とは直接的には関係しない信号に係る電気的接続に対応するものについては実線で示し、メモリ回路に係る電気的接続に対応し得るものについては点線で示している。
 上述したように、図示する構成例では、メモリ回路が第2基板110Bに搭載されている。この場合、画素信号処理回路は第1基板110Aに搭載されており、第1基板110Aにおいて画素部206によって取得され当該画素信号処理回路によってAD変換された画素信号が、第2基板110Bのメモリ回路に伝送され、保持され得る。そして、第2基板110Bのメモリ回路に保持された画素信号を例えば外部に読み出すために、第2基板110Bのメモリ回路と第3基板110Cのロジック回路との間で信号の伝送が行われる。
 従って、当該構成例では、第1基板110Aの下面における接続構造202としては、I/O部及び画素信号処理回路からの信号を第2基板110Bに伝送するために、当該I/O部及び画素信号処理回路が搭載される領域に対応してチップの外周に沿って配置されるもの(図中破線で示す接続構造202)とともに、AD変換された画素信号を第2基板110Bのメモリ回路に伝送するためのもの(図中点線で示す接続構造202)が配置されることとなる。このとき、遅延時間を揃えるために、第1基板110Aの回路から第2基板110Bのメモリ回路への画素信号の伝送経路の配線長、及び第2基板110Bのメモリ回路と第3基板110Cのロジック回路との間の信号の伝送経路の配線長は、それぞれ、できるだけ均等であることが望ましい。従って、例えば、図2Fに示すように、第1基板110Aの回路と第2基板110Bのメモリ回路との間、及び第2基板110Bのメモリ回路と第3基板110Cの回路との間で信号をやり取りするための接続構造202~205は、水平面内の中央付近に集中的に設けられ得る。ただし、配線長を略均一にできるのであれば、接続構造202~205は、必ずしも図示する例のように水平面内の中央付近に設けられなくてもよい。
 以上、固体撮像装置1における接続構造の水平面内での配置のいくつかの例について説明した。なお、本実施形態は以上説明した例に限定されない。固体撮像装置1において各基板に搭載される構成は適宜決定されてよく、その構成に応じて、固体撮像装置1における接続構造の水平面内での配置も適宜決定されてよい。各基板に搭載される構成、及びそれに応じた接続構造の水平面内での配置としては、各種の公知のものが適用されてよい。また、図2A~図2Fに示す例では、I/O部を構成する接続構造201が、チップの外周の3辺に沿うように配置されていたが、本実施形態はかかる例に限定されない。I/O部の配置についても、各種の公知のものが適用されてよい。例えば、I/O部を構成する接続構造201は、チップの外周の1辺、2辺又は4辺に沿うように配置されてもよい。
 (3.第2基板の方向について)
 図1に示す構成例では、固体撮像装置1において、第1基板110Aと第2基板110BとがFtoFで貼り合わされていた(すなわち、第2基板110Bの表面側は第1基板110Aの方を向いていた)。一方、固体撮像装置1は、第1基板110Aと第2基板110BとがFtoBで貼り合わされて構成されてもよい(すなわち、第2基板110Bの表面側は第3基板110Cの方を向いていてもよい)。
 第2基板110Bの方向をどちらにするかは、例えば各基板(各チップ)の構成、性能等を考慮して、固体撮像装置1全体としての性能が向上し得るように、適宜決定されてよい。ここでは、例として、第2基板110Bの方向を決定する際の2つの考え方について説明する。
 (3-1.PWELLの面積に基づく検討)
 図3Aは、図1に示す構成例と同様に、第1基板110Aと第2基板110BとがFtoFで貼り合わされた固体撮像装置1の概略構成を示す縦断面図である。図3Bは、図1に示す構成例とは異なり、第1基板110Aと第2基板110BとがFtoBで貼り合わされた固体撮像装置1aの概略構成を示す縦断面図である。固体撮像装置1aの構成は、第2基板110Bの方向が逆向きであること以外は、図1に示す固体撮像装置1と同様である。
 図3A及び図3Bでは、多層配線層105、125、135に含まれる各配線の機能(信号線、GND配線又は電源配線)を、これらの配線に異なるハッチングを重畳して付与することにより表現している(つまり、図3A及び図3Bに記載の各配線のハッチングは、図1に記載の各配線のハッチングに対して、図3A及び図3Bに記載の凡例に示す配線の機能を表すハッチングを重ねたものとなっている(後述する図4A及び図4Bについても同様である))。図示するように、固体撮像装置1、1aにおいては、信号線、GND配線及び電源配線を外部に引き出すための端子(上述したパッド151に対応する)が、チップの外周に沿って設けられている。これらの端子のそれぞれは、水平面内において画素部206を挟む位置に、対になって設けられる。従って、固体撮像装置1、1aの内部においては、信号線、GND配線及び電源配線が、これらの端子間を接続するように延設されることとなり、水平面内に張り巡らされることとなる。
 また、図3A及び図3Bでは、第1基板110A、第2基板110B、及び第3基板110Cに設けられるPWELLに「P」を、NWELLに「N」を付している。例えば、図示する構成では、画素部の各画素に備えられるPDは、光電変換の結果発生した電子を読み出すために、PWELL中にN型拡散領域が形成されたPDとなっており、当該PDで発生した電子を読み出すために各画素に備えられる駆動回路のトランジスタはN型MOSトランジスタであるため、当該画素部のWELLはPWELLである。一方、第2基板110B及び第3基板110Cに設けられるロジック回路及びメモリ回路については、CMOS回路で構成されるため、PMOS及びNMOSが混在する。そのため、PWELL及びNWELLが、例えば同程度の面積で存在している。従って、図示する構成例では、第1基板110Aの方が、第2基板110B及び第3基板110Cよりも、PWELLの面積が大きい。
 ここで、固体撮像装置1、1aにおいては、PWELLにはGND電位が与えられ得る。従って、PWELLと電源配線とが絶縁体を挟んで対向する構成が存在すると、両者の間に寄生容量が形成されることとなる。
 このPWELLと電源配線との間に形成される寄生容量について、図4A及び図4Bを参照して説明する。図4Aは、図3Aに示す固体撮像装置1における、PWELLと電源配線との間の寄生容量について説明するための図である。図4Aでは、図3Aに示す固体撮像装置1に対して、PWELLと電源配線との間の寄生容量を、模擬的に二点鎖線で示している。図4Aに示すように、固体撮像装置1では、第1基板110Aと第2基板110BとがFtoFで貼り合わされるため、図示するように、第1基板110Aの画素部のPWELLと、第2基板110Bの多層配線層125内の電源配線とが、絶縁膜103、123を構成する絶縁体を挟んで対向することとなる。従って、当該領域において、両者の間に寄生容量が形成され得る。
 一方、図4Bは、図3Bに示す固体撮像装置1aにおける、PWELLと電源配線との間の寄生容量について説明するための図である。図4Bでは、図3Bに示す固体撮像装置1aに対して、PWELLと電源配線との間の寄生容量を、模擬的に二点鎖線で示している。図4Bに示すように、固体撮像装置1aでは、第2基板110Bと第3基板110CとがFtoFで貼り合わされるため、図示するように、第3基板110Cのロジック回路又はメモリ回路のPWELLと、第2基板110Bの多層配線層125内の電源配線とが、絶縁膜123、133を構成する絶縁体を挟んで対向することとなる。従って、当該領域において、両者の間に寄生容量が形成され得る。
 上記寄生容量は、PWELLの面積が大きいほど大きくなると考えられる。従って、図4A及び図4Bに示す構成例であれば、図4Aに示す第1基板110Aと第2基板110BとがFtoFで貼り合わされる構成の方が、図4Bに示す第1基板110Aと第2基板110BとがFtoBで貼り合わされる構成よりも、寄生容量が大きくなる。
 第2基板110Bにおける電源配線に係る寄生容量が大きければ、当該第2基板110Bにおける電源-GNDの電流経路についてのインピーダンスが低下する。従って、当該第2基板110Bにおける電源系をより安定化することが可能になる。具体的には、例えば第2基板110Bにおける回路の動作の変動に伴って消費電力が変動した場合であっても、その消費電力の変動による電源レベルの揺らぎが抑制され得る。よって、第2基板110Bに係る回路を高速で動作させた場合であっても、その動作をより安定化させることができ、固体撮像装置1全体の性能の向上を図ることが可能になる。
 このように、PWELLの面積に注目すると、図3A~図4Bに示す構成例では、第1基板110Aと第2基板110BとがFtoFで貼り合わされる固体撮像装置1の方が、第1基板110Aと第2基板110BとがFtoBで貼り合わされる固体撮像装置1aよりも、第2基板110Bの電源配線についてより大きな寄生容量が形成され、高速動作させた際に高い安定性を得ることができる。つまり、固体撮像装置1の方がより好ましい構成であると言える。
 ただし、各基板の設計によっては、第3基板110Cの方が第1基板110AよりもPWELLの面積が大きい場合もあり得る。この場合には、第2基板110Bの電源配線と第3基板110CのPWELLとの間により大きな寄生容量が形成される、固体撮像装置1aの構成の方が、固体撮像装置1よりも、高速動作させた際に高い安定性を得ることができると考えられる。
 まとめると、第2基板110Bの方向について、PWELLの面積に基づいて検討すると、第1基板110AのPWELLの面積が第3基板110CのPWELLの面積よりも大きい場合には、第2基板110Bの表面側が第1基板110Aの方を向くように、すなわち第1基板110Aと第2基板110BとがFtoFで貼り合わされるように、固体撮像装置1が構成されることが好ましい。逆に、第3基板110CのPWELLの面積が第1基板110AのPWELLの面積よりも大きい場合には、第2基板110Bの表面側が第3基板110Cの方を向くように、すなわち第1基板110Aと第2基板110BとがFtoBで貼り合わされるように、固体撮像装置1aが構成されることが好ましい。
 本実施形態では、このようなPWELLの面積に基づく観点から、第2基板110Bの方向が決定されてよい。図1及び後述する図10A~図19Fに示す本実施形態に係る固体撮像装置1~11fは、例えば、第1基板110AのPWELLの面積が第3基板110CのPWELLの面積よりも大きく構成されており、それに応じて、第1基板110Aと第2基板110BとがFtoFで貼り合わされるように構成されている。従って、固体撮像装置1~11fによれば、高速動作時においても高い動作安定性を得ることが可能になる。
 なお、第1基板110AのPWELLの面積が第3基板110CのPWELLの面積よりも大きい場合としては、例えば、第1基板110Aには、光電変換の結果発生した電子を読み出すためのPD、及び当該PDから電子を読み出すためのNMOSトランジスタ、をPWELL中に備えた画素部のみが搭載され、第2基板110B及び第3基板110Cに各種の回路(画素信号処理回路、ロジック回路、及びメモリ回路等)が搭載される場合が考えられる。一方、第3基板110CのPWELLの面積が第1基板110AのPWELLの面積よりも大きい場合としては、例えば、第1基板110Aに、画素部及び各種の回路がともに搭載され、第1基板110Aにおける当該各種の回路が占める面積が比較的大きい場合が考えられる。
 (3-2.消費電力及びGND配線の配置に基づく検討)
 図3Aに示す固体撮像装置1と図3Bに示す固体撮像装置1aについて、上記ではPWELLの面積に注目したが、ここでは、各基板における消費電力とGND配線の配置に注目する。
 図5Aは、図3Aに示す固体撮像装置1における、電源配線及びGND配線の配置を概略的に示す図である。図5Bは、図3Bに示す固体撮像装置1aにおける、電源配線及びGND配線の配置を概略的に示す図である。図5A及び図5Bでは、固体撮像装置1、1aの構造を簡易的に図示するとともに、電源配線及びGND配線の概略的な配置を、電源配線を二点鎖線で示し、GND配線を一点鎖線で示すことで表している。また、図中の矢印の大きさは、電源配線及びGND配線を流れる電流量を模擬的に表している。
 図5A及び図5Bに示すように、電源配線は、第1基板110Aの上面(すなわち、固体撮像装置1、1aの上面)に設けられる電源端子(VCC)からz軸方向に延伸する垂直電源配線303と、第1基板110Aの多層配線層105、第2基板110Bの多層配線層125、及び第3基板110Cの多層配線層135内において水平方向に延伸する水平電源配線304と、から主に構成されるとみなすことができる。以下、垂直電源配線303及び水平電源配線304を総称して電源配線303、304とも記載する。なお、実際には、第1基板110Aの多層配線層105及び第2基板110Bの多層配線層125内にも水平電源配線304が存在し得るが、図5A及び図5Bでは、簡単のため、その図示を省略し、第3基板110Cの多層配線層135内の水平電源配線304のみを図示している。
 また、GND配線は、第1基板110Aの上面に設けられるGND端子からz軸方向に延伸する垂直GND配線305と、第1基板110Aの多層配線層105、第2基板110Bの多層配線層125、及び第3基板110Cの多層配線層135内において水平方向に延伸する水平GND配線306と、から主に構成されるとみなすことができる。以下、垂直GND配線305及び水平GND配線306を総称してGND配線305、306とも記載する。なお、区別のため、第1基板110Aの水平GND配線306を水平GND配線306aとも記載し、第2基板110Bの水平GND配線306を水平GND配線306bとも記載し、第3基板110Cの水平GND配線306を水平GND配線306cとも記載することとする。
 ここでは、一例として、第1基板110Aの消費電力よりも、第3基板110Cの消費電力の方が大きい場合について考える。例えば、第3基板110Cは、ロジック基板であるとする。ロジック回路は、複数の回路ブロックに分かれており、処理する内容によって動作する回路ブロックも変化する。つまり、固体撮像装置1、1aにおける一連の動作中に、ロジック回路内において主に動作する場所は変動し得る。従って、ロジック回路内において電源電流が流れる場所には偏りがあり(例えば、電源電流は、回路の動作に伴うトランジスタゲート容量と配線容量の充放電に起因して発生する)、しかもその場所は変動し得る。
 今、図5A及び図5Bに示すように、第3基板110Cのロジック回路内の2つの回路ブロック301、302に注目する。これら2つの回路ブロック301、302が動作する際には、電源端子-電源配線303、304-回路ブロック301、302-GND配線305、306-GND端子の電流経路が形成される。
 ここで、あるタイミングでの消費電力について、回路ブロック301の方が回路ブロック302よりも大きいとする。この場合、図5A及び図5Bに示すように、当該タイミングでは、電源配線303、304から、回路ブロック301に対して、回路ブロック302よりも多くの電流が供給されることとなる。この消費電力の差に起因して、回路ブロック301、302を介して垂直GND配線305に流れる電流量についても、回路ブロック301の近くの垂直GND配線305(区別のため、垂直GND配線305aとも記載することとする)の方が、回路ブロック302の近くの垂直GND配線305(区別のため、垂直GND配線305bとも記載することとする)よりも大きくなる。
 第1基板110A及び第2基板110Bには、水平GND配線306a、306bが存在するから、この垂直GND配線305a、305b間における電流量の不均衡は、第1基板110Aの上面のGND端子に向かう途中で、第1基板110A及び第2基板110Bの当該水平GND配線306a、306bによって解消される。つまり、垂直GND配線305a、305b間における電流量の不均衡を解消するように、第1基板110A及び第2基板110Bの水平GND配線306a、306bに電流が流れることとなる。従って、固体撮像装置1、1aには、図5A及び図5Bにおいて実線の矢印で示すように、水平電源配線304-回路ブロック301、302-水平GND配線306c-垂直GND配線305a-水平GND配線306a、306bというループ状の電流経路が形成される。
 このとき、図5Aに示すように、第1基板110Aと第2基板110BとがFtoFで貼り合わされる固体撮像装置1では、第1基板110A及び第2基板110Bの水平GND配線306a、306bが、いずれも、第3基板110Cの水平電源配線304から比較的遠いところに配置されることとなる。従って、上記ループ状の電流経路において、ループの開口幅が大きくなり、これにより当該ループ状の電流経路におけるインダクタンスが大きくなる。つまり、インピーダンスが高くなる。よって、電源電流の安定性が低下し、固体撮像装置1全体としての性能が低下してしまう恐れがある。
 一方、図5Bに示すように、第1基板110Aと第2基板110BとがFtoBで貼り合わされる固体撮像装置1aでは、第1基板110Aの水平GND配線306aは、第3基板110Cの水平電源配線304から比較的遠いところに配置されるものの、第2基板110Bの水平GND配線306bは、第3基板110Cの水平電源配線304から比較的近いところに配置されることとなる。従って、上記ループ状の電流経路において、ループの開口幅が小さくなり、これにより当該ループ状の電流経路におけるインダクタンスが小さくなる。つまり、インピーダンスが低くなる。よって、電源電流をより安定化させることができ、固体撮像装置1全体としての性能をより向上させることが可能となる。
 このように、消費電力及びGND配線の配置に注目すると、第3基板110Cの消費電力が第1基板110Aの消費電力よりも大きい場合には、当該第3基板110Cの水平電源配線304のより近くに第2基板110Bの水平GND配線306bを配置させることができる、第1基板110Aと第2基板110BとがFtoBで貼り合わされる固体撮像装置1aの方が、第1基板110Aと第2基板110BとがFtoFで貼り合わされる固体撮像装置1よりも、より安定的な動作が実現できると考えられる。つまり、固体撮像装置1aの方がより好ましい構成であると言える。
 ただし、各基板の設計によっては、第1基板110Aの方が第3基板110Cよりも消費電力が大きい場合もあり得る。この場合には、第1基板110Aの水平電源配線と第2基板110Bの水平GND配線306bとの距離をより近くすることができる、固体撮像装置1の構成の方が、固体撮像装置1aよりも、より安定的な動作が期待できると考えられる。
 まとめると、第2基板110Bの方向について、消費電力及びGND配線の配置に基づいて検討すると、第1基板110Aの消費電力が第3基板110Cの消費電力よりも大きい場合には、第2基板110Bの表面側が第1基板110Aの方を向くように、すなわち第1基板110Aと第2基板110BとがFtoFで貼り合わされるように、固体撮像装置1が構成されることが好ましい。逆に、第3基板110Cの消費電力が第1基板110Aの消費電力よりも大きい場合には、第2基板110Bの表面側が第3基板110Cの方を向くように、すなわち第1基板110Aと第2基板110BとがFtoBで貼り合わされるように、固体撮像装置1aが構成されることが好ましい。
 本実施形態では、このような消費電力及びGND配線の配置に基づく観点から、第2基板110Bの方向が決定されてよい。図1及び後述する図10A~図19Fに示す本実施形態に係る固体撮像装置1~11fは、例えば、第1基板110Aの消費電力が第3基板110Cの消費電力よりも大きく構成されており、それに応じて、第1基板110Aと第2基板110BとがFtoFで貼り合わされるように構成されている。従って、固体撮像装置1~11fによれば、より安定的な動作が実現され得る。
 なお、第3基板110Cの消費電力が第1基板110Aの消費電力よりも大きい場合としては、例えば、第1基板110Aには画素部のみが搭載され、第2基板110B及び第3基板110Cに多くの回路(例えば、画素信号処理回路、ロジック回路、及びメモリ回路等)が搭載される場合が考えられる。このような構成としては、具体的には、例えば、第1基板110Aには画素部のみが搭載され、第2基板110Bには画素信号処理回路及びメモリ回路が搭載され、第3基板110Cにロジック回路が搭載される構成等が考えられる。この際、画素信号処理回路におけるデジタル回路(例えば、AD変換のための参照電圧を生成するデジタル回路等)は、第3基板110Cに搭載されてもよい。あるいは、第3基板110Cに、アクセス頻度の高いメモリ回路(例えば、1フレームに複数回、画素信号が書き込み又は読み出しされるメモリ回路)が搭載される場合にも、当該第3基板110Cの消費電力は大きくなると考えられる。
 一方、第1基板110Aの消費電力が第3基板110Cの消費電力よりも大きい場合としては、例えば、第1基板110Aに、画素部及び各種の回路がともに搭載され、第1基板110Aにおける当該各種の回路が占める面積が比較的大きい場合が考えられる。あるいは、第3基板110Cに、アクセス頻度の低いメモリ回路(例えば、1フレームに1回だけ、画素信号が書き込み又は読み出しされるメモリ回路)が搭載される場合にも、第3基板110Cの消費電力が小さくなり、相対的に第1基板110Aの消費電力が大きくなると考えられる。
 なお、第1基板110A及び第3基板110Cの消費電力を比較する際には、消費電力そのものが比較されてもよいし、消費電力の大小を表し得る他の指標が比較されてもよい。当該他の指標としては、例えば、各基板の回路に搭載されるゲート数(例えば、100ゲートと1Mゲート)や、各基板の回路の動作周波数(例えば、100MHzと1GHz)等が挙げられる。
 ここで、図5Aに示す、第1基板110Aと第2基板110BとがFtoFで貼り合わされる固体撮像装置1において、上記ループ状の電流経路におけるインピーダンスを低下させるための方法として、図5Cに示すように、第1基板110Aの水平GND配線306aと、第2基板110Bの水平GND配線306bとの間を、z軸方向に延伸する複数の配線(すなわち、垂直GND配線)で接続する方法が考えられる。図5Cは、図5Aに示す固体撮像装置1におけるインピーダンスを低下させるための一構成例を示す図である。なお、図5Cに示す固体撮像装置1bは、図5Aに示す固体撮像装置1に対して、第1基板110Aの水平GND配線306aと、第2基板110Bの水平GND配線306bとを、複数の垂直GND配線で接続したものに対応し、その他の構成は固体撮像装置1と同様である。
 図5Cに示す構成を採用することにより、水平GND配線306a、306bが強化され、上記ループ状の電流経路におけるインピーダンスを低下させることができるため、固体撮像装置1b全体としての性能をより向上させることが可能となると考えられる。なお、図5Cでは、一例として、第3基板110Cの消費電力が第1基板110Aの消費電力よりも大きく、かつ、第1基板110Aと第2基板110BとがFtoFで貼り合わされる場合において、そのループ状の電流経路のインピーダンスを低下させ得る構成を示しているが、第1基板110Aの消費電力が第3基板110Cの消費電力よりも大きく、かつ、第1基板110Aと第2基板110BとがFtoBで貼り合わされる場合において、そのループ状の電流経路のインピーダンスを低下させるためには、第2基板110Bの水平GND配線306bと、第3基板110Cの水平GND配線306cとの間を、複数の垂直GND配線で接続すればよい。
 しかしながら、図5Cに示す構成を実現するためには、第1基板110Aの多層配線層105と、第2基板110Bの多層配線層125に、そのGND配線同士を接続するための接続構造を設ける必要がある。従って、多層配線層105、125内におけるGND配線の配置、及び他の配線の配置が、当該接続構造が設けられることを考慮した制約を受けることとなる。具体的には、図5Cに示す構成では、第1基板110A及び第2基板110Bにおいて、垂直GND配線、及びそれらを基板間で接続するための接続構造が、水平面内におけるチップの外周部だけでなく、チップの中央部にもより多く分布することとなるため、そのことを考慮して各配線を配置させる必要がある。つまり、多層配線層105、125における各配線の設計の自由度が低下する。
 これに対して、上述したように、本実施形態では、第2基板110Bの向きを調整することにより、上記ループ状の電流経路のインピーダンスを低下させる。従って、図5Cに示す構成とは異なり、水平面内において、垂直GND配線がチップの外周部により多く分布するように、当該垂直GND配線を配置させることができる。よって、多層配線層105、125における各配線の設計の自由度を低下させることなく、電流経路におけるインピーダンスの低下、すなわち固体撮像装置1、1aの動作の安定化を図ることができる。
 なお、水平面内のチップの外周部及びチップの中央部における垂直GND配線の配置の疎密については、例えば以下のように判断できる。例えば、チップを水平面内で3×3の領域に等分した9つの領域において、中央の1つの領域に存在する垂直GND配線の数が、周囲の8つの領域に存在する垂直GND配線の数よりも多い場合には、チップの中央部における垂直GND配線の数が多いと判断できる(すなわち、図5Cに示す固体撮像装置1bの構成が適用されている可能性があると判断できる)。一方、中央の1つの領域に存在する垂直GND配線の数が、周囲の8つの領域に存在する垂直GND配線の数よりも少ない場合には、チップの外周部における垂直GND配線の数が多いと判断できる(すなわち、図5A及び図5Bに示す固体撮像装置1、1aの構成が適用されている可能性があると判断できる)。
 ここでは一例としてチップを水平面内で9つの領域に等分した場合について説明したが、分割する領域の数はかかる例に限定されず、4×4の16個の領域、又は5×5の25個の領域等、適宜変更されてよい。例えば、チップを4×4の16個の領域に分割する場合には、中央の4つの領域と、その周囲の12個の領域と、における垂直GND配線の数で、粗密を判断すればよい。あるいは、チップを5×5の25個の領域に分割する場合には、中央の1つの領域とその周囲の24個の領域と、又は中央の9つの領域とその周囲の16個の領域と、における垂直GND配線の数で、粗密を判断すればよい。
 (4.製造方法)
 本実施形態に係る固体撮像装置の製造方法について説明する。なお、図1に示す固体撮像装置1の構成は、本実施形態に係る固体撮像装置の一例である。本実施形態に係る固体撮像装置は、図1に示すものとは異なる接続構造を有するように構成されてもよい。このような、固体撮像装置における接続構造の違いによる構成のバリエーション(第1の構成例~第10の構成例)については、下記(5.固体撮像装置の構成のバリエーション)で後述する。ここでは、一例として、下記(5.固体撮像装置の構成のバリエーション)で説明する本実施形態に係る固体撮像装置の構成例のうちのいくつか(第4の構成例~第6の構成例)について、その製造方法を説明する。なお、以下の各製造方法の説明においては、第1基板110A、第2基板110B、及び第3基板110Cは既に作製されているものとし、その後のこれらの第1基板110A、第2基板110B、及び第3基板110Cを積層する工程について主に説明する。
 (4-1.第1の製造方法)
 第1の製造方法は、後述する図15A~図15Jに示す第6の構成例に係る固体撮像装置7a~7jの製造方法に対応している。図6A~図6Eを参照して、本実施形態の第6の構成例に係る固体撮像装置の製造方法について説明する。図6A~図6Eは、本実施形態の第6の構成例に係る固体撮像装置の製造方法(第1の製造方法)について説明するための図である。図6A~図6Eは、第6の構成例に係る固体撮像装置の一部領域のz軸方向と平行な断面を、当該固体撮像装置の製造方法における工程順に概略的に図示したものであり、当該製造方法におけるプロセスフローを表すものである。
 第6の構成例に係る固体撮像装置の製造方法では、まず、第1基板110Aと第2基板110Bとが、FtoFで貼り合わされる(図6A)。このとき、第1基板110Aの表面側に形成される電極と、第2基板110Bの表面側に形成される電極と、がその貼り合わせ面で直接接触するように、第1基板110Aと第2基板110Bとが貼り合わされる。つまり、第1基板110Aと第2基板110Bとの間に電極接合構造159aが形成される。なお、厳密には、電極同士が接触している状態で熱処理が行われることにより電極接合構造159aが形成され得るが、ここでは、便宜的に、熱処理前後の構造を、いずれも電極接合構造159aと呼称する。熱処理は、図6Aに示す工程の直後に行われてもよいし、後述する図6Dに示す工程の後に、電極接合構造159a、159bについて同時に行われてもよい。
 ここで、第2基板110Bにおいては、多層配線層125を形成する際に、当該多層配線層125内の所定の配線と電気的に接続され、半導体基板121の表面から所定の深さまで達するビア401が形成されている。当該ビア401は、最終的に、第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続する電極接合構造159bのビアを構成することとなる。当該ビア401は、第1の金属(例えばCu)によって形成される。ただし、本実施形態はかかる例に限定されず、ビア401は、他の導電材料によって形成されてもよい。
 次に、第2基板110Bの半導体基板121が裏面側から薄化される(図6B)。当該薄化処理では、図6Bに示すように、ビア401の先端が露出されるまで、半導体基板121が薄化される。なお、具体的な薄化処理の方法としては、例えば、グラインダによる研削及びCMP(Chemical Mechanical Polishing)等、一般的にウエハの薄化処理において用いられている各種の方法が適用されてよい。
 次に、第2基板110Bの半導体基板121の裏面側に、再配線(RDL:Redistribution Line)が形成される(図6C)。具体的には、半導体基板121の裏面側に絶縁膜129が形成されるとともに、当該絶縁膜129の内部に配線パターンが形成される。当該配線パターンは、第1の金属(例えばCu)によって、例えばダマシン法を用いて形成される。当該配線パターンがCuによって形成される場合、具体的には、SiO等の絶縁膜をCVD(Chemical Vapor Deposition)法によって成膜する工程、当該絶縁膜をフォトリソグラフィー及びドライエッチングによって加工し、配線層となる領域に溝(配線溝)を形成する工程、形成した配線溝に金属を埋め込むように金属膜を成膜する工程、及び配線層となる領域(すなわち、配線溝が形成された領域)のみに金属膜を残すために余剰の金属膜(すなわち、配線溝が形成された領域以外の領域の金属膜)を除去する工程、が順次行われることにより、絶縁膜129及び当該配線パターンが形成され得る。このとき、上記金属膜を成膜する工程では、具体的には、Cuの拡散を抑制するためのバリアメタルをスパッタリング法又はCVD法で成膜する工程、seed層と言われるCuをスパッタリング法で成膜する工程、及びめっき成膜法(例えば、ECD(Electro-Chemical Deposition)めっき成膜法)によってCu膜を成膜する工程、が順次行われ得る。seed層は、めっきを行うために必要な、成長の起点となる膜である。また、余剰の金属膜を除去する工程において、配線溝以外の領域に形成されるCu膜を除去する際には、平坦化も考慮して、CMP法が用いられることが一般的である。ここで、図示するように、第1の製造方法では、当該配線パターンとして、ビア401と電気的に接続される電極402が形成される。電極402は、その金属面が絶縁膜129から露出するように形成される。なお、図示は省略するが、他の絶縁膜129内には他の配線パターンが併せて形成されてもよい。
 次に、第2基板110Bと第3基板110Cとが、FtoBで貼り合わされる(図6D)。第3基板110Cにおいては、絶縁膜133の表面側において電極403が露出するように多層配線層135が形成されており、第2基板110Bの裏面側に形成される上記電極402と、第3基板110Cの表面側に形成される当該電極403と、がその貼り合わせ面で直接接触するように、第2基板110Bと第3基板110Cとが貼り合わされる。その後、熱処理が行われることにより、第2基板110Bと第3基板110Cとの間に、両電極402、403が接合された電極接合構造159bが形成される。
 次に、第1基板110Aの半導体基板101が裏面側から薄化される。当該工程では、上記図6Bに示す工程と同様に、各種の公知の方法によって薄化処理が行われてよい。そして、薄化された当該半導体基板101の裏面上に絶縁膜109が形成される。絶縁膜109は、例えば、SiOをCVD法によって成膜することによって形成される。当該絶縁膜109上の画素部に対応する領域にCF層111及びMLアレイ113が形成される。これにより、第6の構成例に係る固体撮像装置1cが完成する(図6E)。実際には、後述する図15A~図15Jに示す固体撮像装置7a~7jのように、固体撮像装置1cには、I/O部として、パッド開口部153又は引き出し線開口部155が設けられ得る。
 (4-2.第2の製造方法)
 第2の製造方法も、第1の製造方法と同様に、後述する図15A~図15Jに示す第6の構成例に係る固体撮像装置7a~7jの製造方法に対応している。ただし、第2の製造方法は、当該第6の構成例に係る固体撮像装置についての、第1の製造方法とは異なる製造方法に対応する。
 図7A~図7Eを参照して、本実施形態の第6の構成例に係る固体撮像装置の他の製造方法について説明する。図7A~図7Eは、本実施形態の第6の構成例に係る固体撮像装置の他の製造方法(第2の製造方法)について説明するための図である。図7A~図7Eは、第6の構成例に係る固体撮像装置の一部領域のz軸方向と平行な断面を、当該固体撮像装置の製造方法における工程順に概略的に図示したものであり、当該製造方法におけるプロセスフローを表すものである。
 第6の構成例に係る固体撮像装置の他の製造方法では、まず、第1基板110Aと第2基板110Bとが、FtoFで貼り合わされる(図7A)。当該工程により、第1基板110Aと第2基板110Bとの間に電極接合構造159aが形成される。当該工程は、上述した第1の製造方法に係る図6Aに示す工程と同様である。ただし、第2の製造方法では、第2基板110Bにおいてビア401は形成されない。
 次に、第2基板110Bの半導体基板121が裏面側から薄化される(図7B)。当該工程は、上述した第1の製造方法に係る図6Bに示す工程と同様である。
 次に、第2基板110Bの半導体基板121の裏面側に、再配線が形成される(図7C)。具体的には、半導体基板121の裏面側に絶縁膜129が形成されるとともに、当該絶縁膜129の内部に配線パターンが形成される。このとき、半導体基板121の裏面側から、当該半導体基板121を貫通するビア411が形成され、上記配線パターンにおいては、当該ビア411と電気的に接続される電極412が形成される。ビア411及び電極412の形成方法としては、例えばデュアルダマシン法等の、各種の公知の方法が用いられてよい。
 後の工程は、上述した第1の製造方法と同様である。具体的には、次に、第2基板110Bと第3基板110Cとが、FtoBで貼り合わされる(図7D)。このとき、第2基板110Bの裏面側に形成される上記電極412と、第3基板110Cの表面側に形成される電極413と、がその貼り合わせ面で直接接触するように、第2基板110Bと第3基板110Cとが貼り合わされる。その後、熱処理が行われることにより、第2基板110Bと第3基板110Cとの間に、両電極412、413が接合された電極接合構造159bが形成される。
 次に、第1基板110Aの半導体基板101が裏面側から薄化される。そして、薄化された当該半導体基板101の裏面上に絶縁膜109が形成される。絶縁膜109は、例えば、SiOをCVD法によって成膜することによって形成される。当該絶縁膜109上の画素部に対応する領域にCF層111及びMLアレイ113が形成される。これにより、第6の構成例に係る固体撮像装置1dが完成する(図7E)。実際には、後述する図15A~図15Jに示す固体撮像装置7a~7jのように、固体撮像装置1dには、I/O部として、パッド開口部153又は引き出し線開口部155が設けられ得る。
 (4-3.第3の製造方法)
 第3の製造方法は、後述する図14A~図14Fに示す第5の構成例に係る固体撮像装置6a~6fの製造方法に対応している。図8A~図8Fを参照して、本実施形態の第5の構成例に係る固体撮像装置の製造方法について説明する。図8A~図8Fは、本実施形態の第5の構成例に係る固体撮像装置の製造方法(第3の製造方法)について説明するための図である。図8A~図8Fは、第5の構成例に係る固体撮像装置の一部領域のz軸方向と平行な断面を、当該固体撮像装置の製造方法における工程順に概略的に図示したものであり、当該製造方法におけるプロセスフローを表すものである。
 第5の構成例に係る固体撮像装置の製造方法では、まず、第1基板110Aと第2基板110Bとが、FtoFで貼り合わされる(図8A)。当該工程により、第1基板110Aと第2基板110Bとの間に電極接合構造159が形成される。当該工程は、上述した第2の製造方法に係る図7Aに示す工程と同様である。
 次に、第2基板110Bの半導体基板121が裏面側から薄化される(図8B)。当該工程は、上述した第1の製造方法に係る図6Bに示す工程及び第2の製造方法に係る図7Bに示す工程と同様である。
 次に、第2基板110Bの半導体基板121の裏面側に、絶縁膜129が形成される(図8C)。絶縁膜129は、例えば、SiOをCVD法によって成膜することによって形成される。
 次に、第2基板110Bと第3基板110Cとが、FtoBで貼り合わされる(図8D)。このとき、第1及び第2の製造方法とは異なり、第2基板110Bの裏面側及び第3基板110Cの表面側には電極は形成されておらず、第2基板110Bと第3基板110Cとの間には電極接合構造は形成されない。
 次に、第1基板110Aの半導体基板101が裏面側から薄化される(図8E)。当該工程では、上記図8Bに示す工程と同様に、各種の公知の方法によって薄化処理が行われてよい。
 次に、第1基板110Aの半導体基板101の裏面上に絶縁膜109が形成される。絶縁膜109は、例えば、SiOをCVD法によって成膜することによって形成される。その後、当該絶縁膜109上から(すなわち、第1基板110Aの裏面側から)、当該第1基板110Aの半導体基板101、及び第2基板110Bを貫通し、第3基板110Cの多層配線層135の所定の配線に至るTSV421が形成される。当該TSV421は、第1基板110Aの裏面側から、第2基板110Bの多層配線層125内の所定の配線の一部を露出させつつ第3基板110Cの多層配線層135内の所定の配線を露出させるように設けられる1つの貫通孔に、導電材料(図示する例では第1の金属(例えばCu))が埋め込まれた構造を有する。つまり、TSV421によって、第2基板110Bの多層配線層125内の当該所定の配線と、第3基板110Cの多層配線層135内の当該所定の配線と、が電気的に接続され得る。なお、このように、1つの貫通孔によって複数の基板の配線間を電気的に接続するTSVは、シェアードコンタクトとも呼称される。シェアードコンタクトを用いることにより、比較的簡易な工程で、かつ、比較的小さい面積でTSV構造を実現することができるというメリットが得られる。
 その後、半導体基板101の裏面側の絶縁膜109上の画素部に対応する領域に、CF層111及びMLアレイ113が形成される。これにより、第5の構成例に係る固体撮像装置1eが完成する(図8F)。実際には、後述する図14A~図14Fに示す固体撮像装置6a~6fのように、固体撮像装置1dには、I/O部として、パッド開口部153又は引き出し線開口部155が設けられ得る。
 なお、図示する例では、TSV421は、第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続する接続構造であるが、TSV421は、第1基板110Aの多層配線層105内の信号線及び電源線と、第3基板110Cの多層配線層135内の信号線及び電源線と、をそれぞれ電気的に接続するように形成されてもよいし、第1基板110Aの多層配線層105内の信号線及び電源線と、第2基板110Bの多層配線層125内の信号線及び電源線と、第3基板110Cの多層配線層135内の信号線及び電源線と、をそれぞれ電気的に接続するように形成されてもよい。
 (4-4.第4の製造方法)
 第4の製造方法は、後述する図13A~図13Cに示す第4の構成例に係る固体撮像装置5a~5cの製造方法に対応している。図9A~図9Gを参照して、本実施形態の第4の構成例に係る固体撮像装置の製造方法について説明する。図9A~図9Gは、本実施形態の第4の構成例に係る固体撮像装置の製造方法(第4の製造方法)について説明するための図である。図9A~図9Gは、第4の構成例に係る固体撮像装置の一部領域のz軸方向と平行な断面を、当該固体撮像装置の製造方法における工程順に概略的に図示したものであり、当該製造方法におけるプロセスフローを表すものである。
 第4の構成例に係る固体撮像装置の製造方法では、まず、第2基板110Bの表面側に支持基板431が貼り合わされる(図9A)。
 次に、第2基板110Bの半導体基板121が裏面側から薄化される(図9B)。当該工程では、上記図6B、図7B、及び8Bに示す工程と同様に、各種の公知の方法によって薄化処理が行われてよい。
 次に、第2基板110Bの半導体基板121の裏面側に、絶縁膜129が形成される(図9C)。絶縁膜129は、例えば、SiOをCVD法によって成膜することによって形成される。
 次に、第2基板110Bと第3基板110Cとが、FtoBで貼り合わされた後、第2基板110Bから支持基板431が剥離される(図9D)。このとき、第3の製造方法と同様に、第2基板110Bの裏面及び第3基板110Cの表面側には電極は形成されておらず、第2基板110Bと第3基板110Cとの間には電極接合構造159は形成されない。
 次に、第2基板110Bの表面側から(すなわち、絶縁膜123上から)、TSV432及び電極433、並びにビア434及び電極435が形成される。TSV432は、第2基板110Bの表面側から、当該第2基板110Bを貫通し、第3基板110Cの多層配線層135の所定の配線に至るビアである。当該TSV432は、第2基板110Bの表面側から、第2基板110Bの多層配線層125内の所定の配線の一部を露出させつつ第3基板110Cの多層配線層135内の所定の配線を露出させるように設けられる1つの貫通孔に、導電材料(図示する例では第1の金属(例えばCu))が埋め込まれた構造を有する。つまり、TSV432によって、第2基板110Bの多層配線層125内の当該所定の配線と、第3基板110Cの多層配線層135内の当該所定の配線と、が電気的に接続され得る。TSV432は、上述したTSV421と同様に、シェアードコンタクトである。
 また、電極433は、絶縁膜123からその金属面が露出するように、TSV432と一体的に形成される。つまり、TSV432及び電極433は、当該TSV432及び当該電極433に対応する1つの貫通孔に、導電材料が埋め込まれることによって形成される。当該電極433は、最終的に、第1基板110A及び第2基板110Bの各々に備わる信号線同士及び電源線同士を電気的に接続する電極接合構造159を構成し得る。つまり、本構成例では、シェアードコンタクト型のTSV432は、基板の各々に備わる信号線同士及び電源線同士を電気的に接続するビアであるとともに、電極接合構造159を構成するビアでもある。
 また、電極435は、絶縁膜123からその金属面が露出するように形成され、ビア434は、当該電極435と多層配線層125内の所定の配線とを電気的に接続するように形成される。当該ビア434及び電極435は、最終的に、第1基板110A及び第2基板110Bの各々に備わる信号線同士及び電源線同士を電気的に接続する電極接合構造159を構成し得る。なお、TSV432及び電極433、並びにビア434及び電極435の形成方法としては、例えばデュアルダマシン法等の、各種の公知の方法が用いられてよい。
 次に、第1基板110Aと第2基板110Bとが、FtoFで貼り合わされる(図9F)。第1基板110Aにおいては、絶縁膜103の表面側から電極436、437が露出するように多層配線層105が形成されており、第1基板110Aの表面側に形成される当該電極436、437と、第2基板110Bの表面側に形成される上記電極433、435と、がその貼り合わせ面で直接接触するように、第1基板110Aと第2基板110Bとが貼り合わされる。その後、熱処理が行われることにより、第1基板110Aと第2基板110Bとの間に、これらの電極433、435、436、437が接合された電極接合構造159が形成される。
 次に、第1基板110Aの半導体基板101が裏面側から薄化される。当該工程では、上記図9Bに示す工程と同様に、各種の公知の方法によって薄化処理が行われてよい。そして、薄化された当該半導体基板101の裏面上に絶縁膜109が形成される。絶縁膜109は、例えば、SiOをCVD法によって成膜することによって形成される。当該絶縁膜109上の画素部に対応する領域にCF層111及びMLアレイ113が形成される。これにより、第4の構成例に係る固体撮像装置1fが完成する(図9G)。実際には、後述する図13A~図13Cに示す固体撮像装置5a~5cのように、固体撮像装置1fには、I/O部として、パッド開口部153又は引き出し線開口部155が設けられ得る。
 (4-5.まとめ)
 以上、本実施形態に係る固体撮像装置についての、いくつかの製造方法について説明した。ここで、以上説明した第1~4の製造方法によって製造された固体撮像装置1c~1fは、いずれも、第1基板110A及び第2基板110Bの各々に備わる信号線同士及び電源線同士を電気的に接続する接続構造として、電極接合構造159を有する。ただし、第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続する接続構造としては、固体撮像装置1c、1dと、固体撮像装置1e、1fと、で、異なる接続構造を有する。具体的には、固体撮像装置1c、1dは、接続構造として、第2基板110Bと第3基板110Cとの間にも、更に、第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続する電極接合構造159bを有する。一方、固体撮像装置1c、1dは、接続構造として、第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続するシェアードコンタクト型のTSV421、432を有する。
 固体撮像装置1c、1dでは、電極接合構造159bを形成するための工程が必要となるため、固体撮像装置1e、1fよりも、工程数が増加する傾向がある。従って、工程数を削減し、製造コストを低減させる観点からは、固体撮像装置1e、1fを製造し得る、第3又は第4の製造方法を採用することが好ましい。特に、固体撮像装置1eを第3の製造方法によって製造する際には、3つの基板110A、110B、110Cを積層した後に、一括してTSV421を形成するため、工程数を大幅に低減することができる。
 一方、第3の製造方法では、TSV421は、第1基板110Aの半導体基板101(例えばSi基板)の裏面側から形成される。従って、半導体基板101を透過してアライメントを取る必要があるため、技術的な難易度が高い。また、上述した手順例では、CF層111及びMLアレイ113を形成する前にTSV421が形成されていたが、CF層111及びMLアレイ113を形成した後にTSV421を形成する場合には、樹脂材料によって形成され得るこれらの構成を破損しないように、所定の温度制約下で当該TSV421を形成する必要があるため、技術的な難易度は上がる。
 これに対して、第4の製造方法では、TSV432は、第2基板110Bの表面側から形成される。従って、上記のようなアライメントに関する問題は生じない。また、TSV432は、第1基板110Aが貼り合わされる前に形成されるから、上述した温度制約の問題も生じない。このように、第4の製造方法は、第3の製造方法に比べて、より技術的な難易度が低い製造方法であると言える。
 ここで、第1の製造方法によって製造された固体撮像装置1c、及び第2の製造方法によって製造された固体撮像装置1dは、最終的な構造としては、略同様の構造を有する。ただし、両者は、第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続するための電極接合構造159bを構成する、第2基板110Bの半導体基板121を貫通して設けられるビア401、411(すなわち、TSV401、411)の形成方法が異なる。
 具体的には、第1の製造方法では、第2基板110Bを作成する際に、予め半導体基板121の表面側から所定の深さに達するビア401が形成される。一方、第2の製造方法では、第1基板110Aと第2基板110Bとを貼り合わせた後に、第2基板110Bの半導体基板121の裏面側から、ビア411が形成される。
 第2の製造方法では、上述した第3の製造方法と同様に、半導体基板121を透過してアライメントを取る必要があるため、技術的な難易度が高くなることが懸念される。一方、第1の製造方法では、第1基板110Aと第2基板110Bとを貼り合わせる前に、予めビア401が形成されるため、このようなアライメントに関する問題は生じない。従って、第1の製造方法は、第2の製造方法に比べて、より技術的な難易度が低い製造方法であると言える。
 本実施形態に係る固体撮像装置を製造する際に、いずれの方法を用いるかは、以上説明したメリット及びデメリットを考慮して、適宜決定されてよい。なお、本実施形態に係る固体撮像装置の製造方法は、以上説明したものに限定されず、他の方法であってもよい。本実施形態に係る固体撮像装置は、各種の公知の方法によって製造されてよい。
 (5.固体撮像装置の構成のバリエーション)
 本実施形態に係る固体撮像装置の、接続構造が異なる他の構成例について説明する。なお、以下に説明する各固体撮像装置の構成は、図1に示す固体撮像装置1の構成の一部を変更したものに対応する。従って、図1を参照して既に説明している構成については、その詳細な説明を省略する。また、以下に説明する各固体撮像装置の概略構成を示す各図面については、図面が煩雑になることを避けるために、図1では付していた一部の符号を省略している。また、図1及び以下の各図面について、同一の種類のハッチングを付している部材は、同一の材料によって形成されていることを表す。
 ここでは、本実施形態に係る固体撮像装置を、10個のカテゴリ(第1の構成例~第10の構成例)に分類する。
 本実施形態に係る固体撮像装置は、いずれの構成においても、図1に示す固体撮像装置1のように、第1基板110A及び第2基板110Bの各々に備わる信号線同士及び電源線同士を電気的に接続する接続構造として、電極接合構造159(第1基板110A及び第2基板110Bの貼り合わせ面にそれぞれ形成される電極同士が直接接触した状態で接合している構造)が少なくとも存在する。固体撮像装置では、第1基板110A、第2基板110B、及び第3基板110Cの各々に備わる信号線同士及び電源線同士の全てが電気的に接続される必要があるから、当該固体撮像装置には、上記電極接合構造159以外に、第1基板110A及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続するための接続構造、及び/又は第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続するための接続構造が設けられ得る。本実施形態では、これらの接続構造の具体的な構造の種類に応じて、固体撮像装置を10個のカテゴリに分類する。
 第1の構成例(図10A~図10E)は、接続構造として、この第1基板110Aと第2基板110Bとの間に設けられる電極接合構造159は設けられるが、後述するツインコンタクト型又はシェアードコンタクト型のTSV157、及び他の電極接合構造159(すなわち、第2基板110Bと第3基板110Cとの間に設けられる電極接合構造159)が存在しない構成例である。そのため、第1の構成例に係る固体撮像装置では、第1基板110A及び第3基板110Cの各々に備わる信号線同士及び電源線同士の電気的な接続、及び/又は第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士の電気的な接続は、I/O部を介して実現される。つまり、第1の構成例に係る固体撮像装置では、第1基板110Aと第2基板110Bとの間に設けられた電極接合構造159とともに、他の接続構造として、第1基板110A及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続し得るパッド151、及び/又は第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続し得るパッド151が設けられる。なお、図1に示す固体撮像装置1も、第1の構成例に含まれる。
 第2の構成例(図11A~図11E)は、第1基板110Aと第2基板110Bとの間に設けられる電極接合構造159とともに、他の接続構造として、後述するツインコンタクト型の2層間のTSV157が設けられた構成例である。ここで、ツインコンタクトとは、所定の配線を露出させる第1の貫通孔と、当該所定の配線とは異なる他の配線を露出させる当該第1の貫通孔とは異なる第2の貫通孔と、に導電材料が埋め込まれた構造、又は当該第1及び第2の貫通孔の内壁に導電材料が成膜された構造、を有するビアのことをいう。また、本明細書において、2層間のTSVとは、第1基板110A、第2基板110B、及び第3基板110Cのうち、隣り合う2つの基板の各々に設けられた信号線同士及び電源線同士を電気的に接続し得るように設けられるTSVのことを意味する。
 第3の構成例(図12A~図12K)は、第1基板110Aと第2基板110Bとの間に設けられる電極接合構造159とともに、他の接続構造として、後述するツインコンタクト型の3層間のTSV157が設けられた構成例である。なお、本明細書において、3層間のTSVとは、第1基板110A、第2基板110B、及び第3基板110Cの全てに跨って延在するTSVのことを意味する。第1基板110Aの裏面側から第3基板110Cに向かって形成されるツインコンタクト型の3層間のTSV157は、その構造上、第1基板110A及び第3基板110Cの各々に備わる信号線同士及び電源線同士、又は第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続し得る。また、第3基板110Cの裏面側から第1基板110Aに向かって形成されるツインコンタクト型の3層間のTSV157は、その構造上、第1基板110A及び第2基板110Bの各々に備わる信号線同士及び電源線同士、又は第1基板110A及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続し得る。
 第4の構成例(図13A~図13C)は、第1基板110Aと第2基板110Bとの間に設けられる電極接合構造159とともに、他の接続構造として、後述するシェアードコンタクト型の2層間のTSV157が設けられた構成例である。ここで、シェアードコンタクトとは、一の基板内の所定の配線の一部を露出させつつ他の基板内の所定の配線を露出させるように設けられる1つの貫通孔に、導電材料が埋め込まれた構造、又は当該貫通孔の内壁に導電材料が成膜された構造、を有するビアのことをいう。上述した図8F及び図9Gに示すTSV421、432は、導電材料が埋め込まれたタイプのシェアードコンタクトである。
 例えば、第1基板110A及び第2基板110Bの各々に備わる信号線同士及び電源線同士を電気的に接続するシェアードコンタクト型のTSV157を、当該第1基板110Aの裏面側から形成する場合であれば、まず、当該第1基板110Aの多層配線層105内において所定の間隔を有して並べられて配置される2本の同電位配線と、当該第2基板110Bの多層配線層125内において第1基板110Aの多層配線層105内の当該2本の同電位配線の間のスペースの直下に位置する配線と、に対して、当該第1基板110Aの裏面側から、当該2本の同電位配線の間のスペースよりも大きい径を有する貫通孔が、ドライエッチングにより当該2本の同電位配線の直上から形成される。この際、当該大きい径を有する貫通孔は、当該2本の同電位配線を露出させないように形成される。次に、フォトリソグラフィー及びドライエッチングにより、当該2本の同電位配線の間のスペースよりも小さい径を有する貫通孔が、当該2本の同電位配線の間のスペースの直下に位置する第2基板110Bの多層配線層125内の配線を露出させるように形成される。次に、エッチバックによって、大きい径を有する貫通孔を成長させることにより、第1基板110Aの多層配線層105内の当該2本の同電位配線の一部を露出させる。以上の工程により、結果として、貫通孔は、第1基板110Aの多層配線層105内の2本の同電位配線の一部を露出させつつ、当該2本の配線の間のスペースの直下に位置する第2基板110Bの多層配線層125内の配線を露出させる形状を有することとなる。そして、かかる貫通孔に対して導電材料を埋め込むことにより、又は当該貫通孔の内壁に導電材料を成膜することにより、シェアードコンタクト型のTSV157が形成され得る。かかる方法によれば、大きい径を有する貫通孔及び小さい径を有する貫通孔を形成する際に、2本の同電位配線に対するドライエッチングが行われないため、当該2本の同電位配線の角が削れてしまう事態や、コンタミネーションの発生を抑制することができる。従って、より信頼性の高い固体撮像装置1が実現され得る。
 なお、上記の例では、第1基板110A及び第2基板110Bの各々に備わる信号線同士及び電源線同士を電気的に接続するシェアードコンタクト型のTSV157を当該第1基板110Aの裏面側から形成する場合について説明したが、第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続するシェアードコンタクト型のTSV157を当該第2基板110Bの表面側から又は当該第3基板110Cの裏面側から形成する場合や、後述するシェアードコンタクト型の3層間のTSV157を第1基板110Aの裏面側から又は第3基板110Cの裏面側から形成する場合も、同様である。また、上記の例では、所定の間隔を有して並べられて配置される2本の配線の間のスペースを通過するように貫通孔が設けられていたが、例えば、開口を有するリング形状の配線を形成し、当該配線の開口を通過するように貫通孔が設けられてもよい。
 また、上記の方法とは異なる方法によってシェアードコンタクト型のTSV157を形成することも可能である。例えば、上記と同様に、第1基板110A及び第2基板110Bの各々に備わる信号線同士及び電源線同士を電気的に接続するシェアードコンタクト型のTSV157を、当該第1基板110Aの裏面側から形成する場合において、第1基板110Aの裏面側から、当該第1基板110Aの多層配線層105内の2本の同電位配線の間のスペースよりも大きい径を有する貫通孔を、ドライエッチングにより当該2本の同電位配線の直上から形成する際に、当該2本の同電位配線を露出させないようにドライエッチングを途中で止めるのではなく、当該2本の同電位配線の一部を露出させつつそのままドライエッチングを継続してもよい。この場合、当該2本の同電位配線を構成する導電材料(例えばCu)と、絶縁膜103を構成する絶縁材料(例えばSiO)とのエッチングの選択比により、当該貫通孔については、当該2本の同電位配線についてはエッチングがほとんど進まず、当該2本の同電位配線の間のスペースにおいては絶縁膜103に対するエッチングが進行し得る。従って、結果的に、当該貫通孔は、第1基板110Aの多層配線層105内の2本の配線の一部を露出させつつ、当該2本の配線の間のスペースの直下に位置する第2基板110Bの多層配線層125内の配線を露出させる形状を有することとなる。このようにして形成された貫通孔に対して導電材料を埋め込むことにより、又は当該貫通孔の内壁に導電材料を成膜することにより、シェアードコンタクト型のTSV157が形成されてもよい。
 また、シェアードコンタクト型のTSV157は、必ずしも、2本の同電位配線の間のスペース、又はリング形状の配線の開口を通過するように設けられなくてもよい。例えば、貫通孔を形成する際に、より上層に位置する配線(上記の例であれば第1基板110Aの多層配線層105内の配線)は、1本の配線であってもよい。具体的には、例えば、上記と同様に、第1基板110A及び第2基板110Bの各々に備わる信号線同士及び電源線同士を電気的に接続するシェアードコンタクト型のTSV157を、当該第1基板110Aの裏面側から形成する場合であれば、第1基板110Aの多層配線層105内の1本の配線の一部を露出させつつ、第2基板110Bの多層配線層125内の配線を露出させる形状を有するように、貫通孔が形成されてもよい。そして、当該貫通孔に対して導電材料を埋め込むことにより、又は当該貫通孔の内壁に導電材料を成膜することにより、シェアードコンタクト型のTSV157が形成されてもよい。ただし、この形態においては、より上層の配線が1本であることにより、上述したより上層の配線が2本である場合、又は開口を有するリング形状である場合に比べて、例えばアライメントのずれ等により、より上層の配線が露出しないように貫通孔が形成されてしまい、コンタクト不良が生じやすくなることが懸念される。従って、かかる配線が1本である形態は、TSV157と当該1本の配線とのコンタクト性が確保され得るように、貫通孔と当該1本の配線との重なりに十分なマージンを取ることができる場合に適用されることが好ましい。
 第5の構成例(図14A~図14F)は、第1基板110Aと第2基板110Bとの間に設けられる電極接合構造159とともに、他の接続構造として、後述するシェアードコンタクト型の3層間のTSV157が設けられた構成例である。シェアードコンタクト型の3層間のTSV157は、その構造上、第1基板110A、第2基板110B、及び第3基板110Cのうちの少なくともいずれか2つの基板に設けられた信号線同士及び電源線同士を電気的に接続し得る。
 第6の構成例(図15A~図15J)は、第1基板110Aと第2基板110Bとの間に設けられる電極接合構造159とともに、他の接続構造として、第2基板110Bと第3基板110Cとの間に更に電極接合構造159が設けられた構成例である。なお、本明細書では、第6の構成例のように、2つの貼り合わせ面の両方に電極接合構造159が存在する場合には、第1基板110Aと第2基板110Bとの間に存在するものを電極接合構造159aと記載し、第2基板110Bと第3基板110Cとの間に存在するものを電極接合構造159bと記載して両者を区別する。
 第7の構成例(図16A~図16F)は、第1基板110Aと第2基板110Bとの間に設けられる電極接合構造159aとともに、他の接続構造として、第2基板110Bと第3基板110Cとの間に設けられる電極接合構造159bと、後述するツインコンタクト型の2層間のTSV157が、設けられた構成例である。
 第8の構成例(図17A~図17L)は、第1基板110Aと第2基板110Bとの間に設けられる電極接合構造159aとともに、他の接続構造として、第2基板110Bと第3基板110Cとの間に設けられる電極接合構造159bと、後述するツインコンタクト型の3層間のTSV157が、設けられた構成例である。
 第9の構成例(図18A~図18C)は、第1基板110Aと第2基板110Bとの間に設けられる電極接合構造159aとともに、他の接続構造として、第2基板110Bと第3基板110Cとの間に設けられる電極接合構造159bと、後述するシェアードコンタクト型の2層間のTSV157が、設けられた構成例である。
 第7の構成例(図19A~図19F)は、第1基板110Aと第2基板110Bとの間に設けられる電極接合構造159aとともに、他の接続構造として、第2基板110Bと第3基板110Cとの間に設けられる電極接合構造159bと、後述するシェアードコンタクト型の3層間のTSV157が、設けられた構成例である。
 以下、第1~第10の構成例について順に説明する。なお、以下の各図では、本実施形態に係る固体撮像装置が少なくとも有する接続構造の例を示している。以下の各図に示す構成は、本実施形態に係る固体撮像装置が、図示する接続構造しか有しないことを意味するものではなく、当該固体撮像装置は、図示する接続構造以外の接続構造も適宜有し得る。また、以下の各図の説明において、第1金属配線層は例えばCu配線層であり、第2金属配線層は例えばAl配線層である。
 (5-1.第1の構成例)
 図10A~図10Eは、本実施形態の第1の構成例に係る固体撮像装置の概略構成を示す縦断面図である。本実施形態に係る固体撮像装置は、図10A~図10Eに示す構成を有し得る。
 図10Aに示す固体撮像装置2aは、接続構造として、第1基板110Aと第2基板110Bとの間に設けられる電極接合構造159と、第1基板110Aの多層配線層105内に設けられるパッド151、及び当該パッド151を露出させるパッド開口部153aと、第3基板110Cの多層配線層135内に設けられるパッド151、及び当該パッド151を露出させるパッド開口部153bと、を有する。電極接合構造159によって、第1基板110A及び第2基板110Bの各々に備わる信号線同士及び電源線同士が電気的に接続される。また、パッド151、及びパッド開口部153a、153bによって、第1基板110A及び第3基板110Cの各々に備わる信号線同士及び電源線同士が電気的に接続され得る。
 図10Bに示す固体撮像装置2bは、接続構造として、第1基板110Aと第2基板110Bとの間に設けられる電極接合構造159と、第1基板110Aの多層配線層105内の所定の配線を引き出す引き出し線開口部155aと、第3基板110Cの多層配線層135内の所定の配線を引き出す引き出し線開口部155bと、第1基板110Aの裏面側の面上に配置され、これら引き出し線開口部155a、155bを構成する導電材料によって当該所定の配線と電気的に接続されるパッド151と、を有する。
 ここで、引き出し線開口部155a、155bとは、基板110A、110B、110C内の所定の配線(図示する例では第1基板110A及び第3基板110C内の所定の配線)を外部に引き出すための開口部である。引き出し線開口部155a、155bは、その引き出す対象である配線を露出させるように形成される開口部の内壁に、導電材料(例えばW)が成膜された構造を有する。この導電材料からなる膜は、引き出し線開口部155a、155bの内部から、図示するように、第1基板110Aの裏面側の面上にまで延設される。パッド151は、この延設された導電材料からなる膜上に形成されており、当該導電材料からなる膜によって、引き出し線開口部155a、155bによって引き出された基板内の配線と電気的に接続される。図10Bに示す構成では、引き出し線開口部155a、155bは、第1基板110Aの多層配線層105内、及び第3基板110Cの多層配線層135内の第1金属配線層の所定の配線を引き出すように構成されている。なお、引き出し線開口部155において、開口部の内壁に成膜される導電材料は、Wに限定されず、当該導電材料としては、各種の公知の導電材料が用いられてよい。
 本明細書では、図10Bに示すように、引き出し線開口部155a、155bによって引き出された配線に、第1基板110Aの裏面側に配置されたパッド151が電気的に接続されている構造を、引き出しパッド構造とも呼称する。また、本明細書では、引き出しパッド構造に対応して、例えば図10Aに示すような基板内に形成されているパッド151に対してパッド開口部153aが設けられた構造を、埋め込みパッド構造とも呼称する(図1に示す構造も埋め込みパッド構造である)。引き出しパッド構造は、埋め込みパッド構造において基板内に形成されているパッド151を、基板の外(第1基板110Aの裏面側の面上)に引き出した構造であると言える。なお、本明細書では、図6Dに示すように図中に引き出し線開口部155が複数存在する場合に、便宜的に、引き出し線開口部155a、引き出し線開口部155b、・・・と、符号の末尾にそれぞれ異なるアルファベットを付すことにより、これら複数の引き出し線開口部155を区別することとする。
 また、図10Bに示す構成では、2つの引き出し線開口部155a、155bによって引き出された配線のそれぞれが、同一のパッド151に電気的に接続されている。ただし、本実施形態はかかる例に限定されず、各引き出し線開口部155a、155bによって引き出された配線のそれぞれに対応するように、複数のパッド151が設けられてもよい。
 図10Cに示す固体撮像装置2cは、図10Bに示す固体撮像装置2bに対して、引き出しパッド構造の構成が変更されたものに対応する。具体的には、図10Cに示す構成では、第3基板110Cの多層配線層135内の所定の配線に対する引き出し線開口部155が1つだけ設けられる。また、図10Cに示す構成では、第3基板110Cの多層配線層135内に第2金属配線層が設けられており、引き出し線開口部155は、この第2金属配線層の所定の配線を引き出すように構成されている。
 図10Dに示す固体撮像装置2dは、図10Cに示す固体撮像装置2cに対して、パッド151の配置が変更されたものに対応する。具体的には、図10Cに示す固体撮像装置2cでは、引き出し線開口部155を構成する導電材料を第1基板110Aの裏面側の面上にまで延設し、その延設された導電材料からなる膜上にパッド151が形成されていたが、固体撮像装置2dでは、引き出し線開口部155とは関わりなく他の目的で第1基板110A内に延設されている導電材料膜501上にパッド151を形成する。そして、引き出し線開口部155を構成する導電材料と、当該導電材料膜501とを電気的に接続させることにより、引き出し線開口部155によって引き出される配線と、パッド151とを電気的に接続する。
 例えば、第1基板110Aの画素部には、隣接する画素間での光の漏れ込みを抑制するために、CFと半導体基板101の裏面との間(すなわち、CFと半導体基板101の拡散層のPDとの間)に、各画素に対応する部分が開口された金属材料からなる遮光膜が設けられ得る(画素は2次元状に配列されるから、画素部においては、遮光膜を構成する金属材料が画素間にのみ存在する、すなわち格子状に存在することとなる)。当該金属材料としては、例えばWが用いられ得る。
 図10Dに示す構成例では、この遮光膜を構成する金属材料を、チップ外周のI/O部が形成される位置にまで延設させ、上述した導電材料膜501として機能させる(図示は省略しているが、図10D及び後述する図10Eでは、画素部にも遮光膜として機能する導電材料膜501が存在している)。このとき、画素部以外の領域については、導電材料膜501(すなわち、遮光膜)の上に、当該導電材料膜501を露出させないように、絶縁性を有する樹脂材料によって構成される樹脂膜503が成膜される。樹脂膜503の材料は限定されないが、例えば、樹脂膜503は、CFと同じ材料によって形成され得る。この場合、CF層111と同時に樹脂膜503の形成を行うことができるため、工程を簡略化することができる。
 パッド151は、その底部が導電材料膜501と接するように、樹脂膜503に埋め込まれて形成される。そして、引き出し線開口部155は、その開口部の側壁において、当該側壁に成膜される導電材料と導電材料膜501とが接触し得るように形成される。これにより、引き出し線開口部155によって引き出される配線と、パッド151とが、電気的に接続される。なお、図10Dに示す構成では、引き出し線開口部155は、第3基板110Cの多層配線層135内の第1金属配線層の所定の配線を引き出すように構成されている。
 図10Eに示す固体撮像装置2eは、図10Dに示す固体撮像装置2dに対して、パッド151の配置が変更されたものに対応する。具体的には、固体撮像装置2eにおいても、固体撮像装置2dと同様に、導電材料膜501を介して、引き出し線開口部155によって引き出される配線と、パッド151とが電気的に接続されるが、固体撮像装置2eでは、引き出し線開口部155を構成する導電材料が、当該導電材料膜501の上に、当該導電材料膜501と接するように延設され、その延設された導電材料からなる膜の上に、パッド151が形成される。つまり、図10Eに示す引き出しパッド構造は、図示するように、引き出し線開口部155を構成する導電材料、及びパッドが、樹脂膜503の内部に埋め込まれた構造を有する。なお、図10Eに示す構成では、引き出し線開口部155は、第3基板110Cの多層配線層135内の第2金属配線層の所定の配線を引き出すように構成されている。
 なお、本明細書では、図10D及び図10Eに示すような、パッド151が第1基板110Aの裏面側の面上において膜内に埋め込まれている引き出しパッド構造のことを、埋め込み型の引き出しパッド構造ともいう。埋め込み型の引き出しパッド構造は、後述する11Eに示す構成のように、絶縁膜109内にパッド151が埋め込まれた構造も含む。また、これに対応して、図10B及び図10Cに示すような、パッド151が第1基板110Aの裏面側の面上において膜内に埋め込まれずに配置される引き出しパッド構造のことを、非埋め込み型の引き出しパッド構造ともいう。
 ここで、図示は省略しているが、図10C~図10Eに示す構成では、図示する引き出しパッド構造以外に、第1基板110A及び/又は第2基板110Bにおいて、埋め込みパッド構造及び/又は引き出しパッド構造が設けられている。これらの構造によって、第1基板110A及び第3基板110Cの各々に備わる信号線同士及び電源線同士、及び/又は第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士が電気的に接続され得ることとなる。
 また、他の図面では図示を省略しているが、本実施形態に係る固体撮像装置には、いずれも、図10D及び図10Eに示すように、遮光膜として機能し得る導電材料膜501が設けられ得る。
 (5-2.第2の構成例)
 図11A~図11Eは、本実施形態の第2の構成例に係る固体撮像装置の概略構成を示す縦断面図である。本実施形態に係る固体撮像装置は、図11A~図11Eに示す構成を有し得る。
 図11Aに示す固体撮像装置3aは、接続構造として、第1基板110Aと第2基板110Bとの間に設けられる電極接合構造159と、ツインコンタクト型の2層間のTSV157と、第2基板110Bに対する埋め込みパッド構造(すなわち、第2基板110Bの多層配線層125内に設けられるパッド151、及び当該パッド151を露出させるパッド開口部153)と、を有する。電極接合構造159によって、第1基板110A及び第2基板110Bの各々に備わる信号線同士及び電源線同士が電気的に接続される。また、TSV157は、第2基板110Bの表面側から第3基板110Cに向かって、当該第2基板110B及び当該第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続するように設けられる。なお、図11Aに示す構成では、TSV157によって、第2基板110Bの多層配線層125内の第2金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第2金属配線層の所定の配線と、が電気的に接続されている。
 図11Bに示す固体撮像装置3bは、図11Aに示す固体撮像装置3aに対して、ツインコンタクト型の2層間のTSV157によって電気的に接続される配線の種類(材料)が変更されたものに対応する。具体的には、図11Bに示す構成では、TSV157によって、第2基板110Bの多層配線層125内の第2金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第1金属配線層の所定の配線と、が電気的に接続されている。
 図11Cに示す固体撮像装置3cは、図11Aに示す固体撮像装置3aに対して、埋め込みパッド構造、及びツインコンタクト型の2層間のTSV157によって電気的に接続される配線の種類が変更されたものに対応する。具体的には、図11Cに示す構成では、埋め込みパッド構造に代えて、第1基板110Aの多層配線層105内の所定の配線に対する非埋め込み型の引き出しパッド構造(すなわち、第1基板110Aの多層配線層105内の所定の配線に対する引き出し線開口部155、及び第1基板110Aの裏面側の面上のパッド151)が設けられる。また、図11Cに示す構成では、TSV157によって、第2基板110Bの多層配線層125内の第1金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第2金属配線層の所定の配線と、が電気的に接続されている。
 図11Dに示す固体撮像装置3dは、図11Cに示す固体撮像装置3cに対して、ツインコンタクト型の2層間のTSV157によって電気的に接続される配線の種類が変更されたものに対応する。具体的には、図11Dに示す構成では、TSV157によって、第2基板110Bの多層配線層125内の第1金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第1金属配線層の所定の配線と、が電気的に接続されている。
 図11Eに示す固体撮像装置3eは、図11Dに示す固体撮像装置3dに対して、引き出しパッド構造の構成が変更されたものに対応する。具体的には、図11Eに示す構成では、引き出しパッド構造として、引き出し線開口部155を構成する導電材料からなる膜、及び当該膜上に形成されるパッド151が、ともに、絶縁膜109内に埋め込まれた埋め込み型の引き出しパッド構造が設けられる。
 なお、図11A~図11Eに示す各構成において、ツインコンタクト型の2層間のTSV157が接続される配線の種類は限定されない。当該TSV157は、第1金属配線層の所定の配線に接続されてもよいし、第2金属配線層の所定の配線に接続されてもよい。例えば、図11Eに示す構成において、TSV157が接続される配線の一方又は両方が、第2金属配線層の所定の配線に変更されてもよい。また、各多層配線層105、125、135は、第1金属配線層のみによって構成されてもよいし、第2金属配線層のみによって構成されてもよいし、その両方が混在するように構成されてもよい。
 また、図11A~図11Eに示す各構成では、TSV157は、第2基板110Bの表面側から第3基板110Cに向かって形成されていたが、本実施形態はかかる例に限定されない。TSV157は、第3基板110Cの裏面側から第2基板110Bに向かって形成されてもよい。
 (5-3.第3の構成例)
 図12A~図12Kは、本実施形態の第3の構成例に係る固体撮像装置の概略構成を示す縦断面図である。本実施形態に係る固体撮像装置は、図12A~図12Kに示す構成を有し得る。
 図12Aに示す固体撮像装置4aは、接続構造として、第1基板110Aと第2基板110Bとの間に設けられる電極接合構造159と、ツインコンタクト型の3層間のTSV157と、第2基板110Bに対する埋め込みパッド構造(すなわち、第2基板110Bの多層配線層125内に設けられるパッド151、及び当該パッド151を露出させるパッド開口部153)と、を有する。電極接合構造159によって、第1基板110A及び第2基板110Bの各々に備わる信号線同士及び電源線同士が電気的に接続される。また、TSV157は、第1基板110Aの裏面側から形成され、第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続するように設けられる。なお、図12Aに示す構成では、TSV157によって、第2基板110Bの多層配線層125内の第2金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第2金属配線層の所定の配線と、が電気的に接続されている。
 図12Bに示す固体撮像装置4bは、図12Aに示す固体撮像装置4aに対して、ツインコンタクト型の3層間のTSV157の構造が変更されたものに対応する。具体的には、図12Bに示す構成では、TSV157は、第1基板110A及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続するように設けられる。また、図12Bに示す構成では、TSV157によって、第2基板110Bの多層配線層125内の第1金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第2金属配線層の所定の配線と、が電気的に接続されている。
 図12Cに示す固体撮像装置4cは、図12Aに示す固体撮像装置4aに対して、埋め込みパッド構造、及びツインコンタクト型の3層間のTSV157によって電気的に接続される配線の種類が変更されたものに対応する。具体的には、図12Cに示す構成では、埋め込みパッド構造に代えて、第1基板110Aの多層配線層105内の所定の配線に対する非埋め込み型の引き出しパッド構造(すなわち、第1基板110Aの多層配線層105内の所定の配線に対する引き出し線開口部155、及び第1基板110Aの裏面側の面上のパッド151)が設けられる。また、図12Cに示す構成では、TSV157によって、第2基板110Bの多層配線層125内の第1金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第2金属配線層の所定の配線と、が電気的に接続されている。
 図12Dに示す固体撮像装置4dは、図12Cに示す固体撮像装置4cに対して、ツインコンタクト型の3層間のTSV157の構造が変更されたものに対応する。具体的には、図12Dに示す構成では、TSV157は、第1基板110A及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続するように設けられる。また、図12Dに示す構成では、TSV157によって、第1基板110Aの多層配線層125内の第1金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第2金属配線層の所定の配線と、が電気的に接続されている。
 図12Eに示す固体撮像装置4eは、図12Cに示す固体撮像装置4cに対して、引き出しパッド構造の構成、及びツインコンタクト型の3層間のTSV157によって電気的に接続される配線の種類が変更されたものに対応する。具体的には、図12Eに示す構成では、引き出しパッド構造として、非埋め込み型の引き出しパッド構造に代えて埋め込み型の引き出しパッド構造が設けられる。また、図12Eに示す構成では、TSV157によって、第2基板110Bの多層配線層125内の第1金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第1金属配線層の所定の配線と、が電気的に接続されている。
 図12Fに示す固体撮像装置4fは、図12Dに示す固体撮像装置4dに対して、引き出しパッド構造の構成、及びツインコンタクト型の3層間のTSV157によって電気的に接続される配線の種類が変更されたものに対応する。具体的には、図12Fに示す構成では、引き出しパッド構造として、非埋め込み型の引き出しパッド構造に代えて埋め込み型の引き出しパッド構造が設けられる。また、図12Fに示す構成では、TSV157によって、第1基板110Aの多層配線層125内の第1金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第1金属配線層の所定の配線と、が電気的に接続されている。
 図12Gに示す固体撮像装置4gは、図12Aに示す固体撮像装置4aに対して、ツインコンタクト型の3層間のTSV157の構造が変更されたものに対応する。具体的には、図12Gに示す構成では、TSV157は、第3基板110Cの裏面側から、第1基板110A及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続するように設けられる。なお、図12Gに示す構成では、TSV157によって、第1基板110Aの多層配線層125内の第1金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第1金属配線層の所定の配線と、が電気的に接続されている。
 図12Hに示す固体撮像装置4hは、図12Gに示す固体撮像装置4gに対して、埋め込みパッド構造が変更されたものに対応する。具体的には、図12Hに示す構成では、埋め込みパッド構造に代えて、第1基板110Aの多層配線層105内の所定の配線に対する非埋め込み型の引き出しパッド構造が設けられる。
 図12Iに示す固体撮像装置4iは、図12Hに示す固体撮像装置4hに対して、第3基板110Cの多層配線層135の構成が変更されたものに対応する。具体的には、上記図12Hに示す構成では、多層配線層135は、第1金属配線層、及び第2金属配線層が混在して構成されているが、図12Iに示す構成では、多層配線層135は、第1金属配線層のみによって構成される。
 図12Jに示す固体撮像装置4jは、図12Hに示す固体撮像装置4hに対して、引き出しパッド構造の構成が変更されたものに対応する。具体的には、上記図12Jに示す構成では、引き出しパッド構造として、非埋め込み型の引き出しパッド構造に代えて埋め込み型の引き出しパッド構造が設けられる。
 図12Kに示す固体撮像装置4kは、図12Jに示す固体撮像装置4jに対して、第3基板110Cの多層配線層135の構成が変更されたものに対応する。具体的には、上記図12Jに示す構成では、多層配線層135は、第1金属配線層、及び第2金属配線層が混在して構成されているが、図12Kに示す構成では、多層配線層135は、第1金属配線層のみによって構成される。
 なお、図12A~図12Kに示す各構成において、ツインコンタクト型の3層間のTSV157が接続される配線の種類は限定されない。当該TSV157は、第1金属配線層の所定の配線に接続されてもよいし、第2金属配線層の所定の配線に接続されてもよい。また、各多層配線層105、125、135は、第1金属配線層のみによって構成されてもよいし、第2金属配線層のみによって構成されてもよいし、その両方が混在するように構成されてもよい。例えば、図12Gに示す構成において、第3基板110Cの多層配線層135は、第1金属配線層及び第2金属配線層が混在するように構成されてもよい。
 また、ツインコンタクト型の3層間のTSV157は、その形成される方向に応じて、第1基板110A、第2基板110B、及び第3基板110Cのうちのいずれか2つの基板に備わる信号線同士及び電源線同士をそれぞれ電気的に接続すればよく、当該TSV157によって信号線及び電源線がそれぞれ電気的に接続される基板は、任意に変更されてよい。
 (5-4.第4の構成例)
 図13A~図13Cは、本実施形態の第4の構成例に係る固体撮像装置の概略構成を示す縦断面図である。本実施形態に係る固体撮像装置は、図13A~図13Cに示す構成を有し得る。
 図13Aに示す固体撮像装置5aは、接続構造として、第1基板110Aと第2基板110Bとの間に設けられる電極接合構造159と、シェアードコンタクト型の2層間のTSV157と、第2基板110Bに対する埋め込みパッド構造(すなわち、第2基板110Bの多層配線層125内に設けられるパッド151、及び当該パッド151を露出させるパッド開口部153)と、を有する。電極接合構造159によって、第1基板110A及び第2基板110Bの各々に備わる信号線同士及び電源線同士が電気的に接続される。また、TSV157は、第2基板110Bの表面側から第3基板110Cに向かって形成され、当該第2基板110B及び当該第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続するように設けられる。なお、図13Aに示す構成では、TSV157によって、第2基板110Bの多層配線層125内の第1金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第1金属配線層の所定の配線と、が電気的に接続されている。
 図13Bに示す固体撮像装置5bは、図13Aに示す固体撮像装置5aに対して、埋め込みパッド構造が変更されたものに対応する。具体的には、図13Bに示す構成では、埋め込みパッド構造に代えて、第1基板110Aの多層配線層105内の所定の配線に対する非埋め込み型の引き出しパッド構造(すなわち、第1基板110Aの多層配線層105内の所定の配線に対する引き出し線開口部155、及び第1基板110Aの裏面側の面上のパッド151)が設けられる。
 図13Cに示す固体撮像装置5cは、図13Bに示す固体撮像装置5bに対して、引き出しパッド構造の構成が変更されたものに対応する。具体的には、図13Cに示す構成では、引き出しパッド構造として、非埋め込み型の引き出しパッド構造に代えて、埋め込み型の引き出しパッド構造が設けられる。
 なお、図13A~図13Cに示す各構成において、シェアードコンタクト型の2層間のTSV157が接続される配線の種類は限定されない。当該TSV157は、第1金属配線層の所定の配線に接続されてもよいし、第2金属配線層の所定の配線に接続されてもよい。例えば、図13A~図13Cに示す各構成において、TSV157が接続される配線の一方又は両方が、第2金属配線層の所定の配線に変更されてもよい。また、各多層配線層105、125、135は、第1金属配線層のみによって構成されてもよいし、第2金属配線層のみによって構成されてもよいし、その両方が混在するように構成されてもよい。
 また、図13A~図13Cに示す各構成では、TSV157は、第2基板110Bの表面側から第3基板110Cに向かって形成されていたが、本実施形態はかかる例に限定されない。TSV157は、第3基板110Cの裏面側から第2基板110Bに向かって形成されてもよい。
 (5-5.第5の構成例)
 図14A~図14Fは、本実施形態の第5の構成例に係る固体撮像装置の概略構成を示す縦断面図である。本実施形態に係る固体撮像装置は、図14A~図14Fに示す構成を有し得る。
 図14Aに示す固体撮像装置6aは、接続構造として、第1基板110Aと第2基板110Bとの間に設けられる電極接合構造159と、シェアードコンタクト型の3層間のTSV157と、第2基板110Bに対する埋め込みパッド構造(すなわち、第2基板110Bの多層配線層125内に設けられるパッド151、及び当該パッド151を露出させるパッド開口部153)と、を有する。電極接合構造159によって、第1基板110A及び第2基板110Bの各々に備わる信号線同士及び電源線同士が電気的に接続される。また、TSV157は、第3基板110Cの裏面側から形成され、第1基板110Aと、第2基板110Bと、第3基板110Cと、を電気的に接続するように設けられる。なお、図14Aに示す構成では、TSV157によって、第1基板110Aの多層配線層125内の第1金属配線層の所定の配線と、第2基板110Bの多層配線層125内の第1金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第1金属配線層の所定の配線と、が電気的に接続されている。
 図14Bに示す固体撮像装置6bは、図14Aに示す固体撮像装置6aに対して、埋め込みパッド構造が変更されたものに対応する。具体的には、図14Bに示す構成では、埋め込みパッド構造に代えて、第1基板110Aの多層配線層105内の所定の配線に対する非埋め込み型の引き出しパッド構造(すなわち、第1基板110Aの多層配線層105内の所定の配線に対する引き出し線開口部155、及び第1基板110Aの裏面側の面上のパッド151)が設けられる。
 図14Cに示す固体撮像装置6cは、図14Bに示す固体撮像装置6bに対して、引き出しパッド構造の構成が変更されたものに対応する。具体的には、図14Cに示す構成では、引き出しパッド構造として、非埋め込み型の引き出しパッド構造に代えて埋め込み型の引き出しパッド構造が設けられる。
 図14Dに示す固体撮像装置6dは、図14Aに示す固体撮像装置6aに対して、シェアードコンタクト型の3層間のTSV157の構造が変更されたものに対応する。具体的には、図14Dに示す構成では、TSV157は、第1基板110Aの裏面側から形成され、第1基板110A、第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続するように設けられる。なお、図14Dに示す構成では、TSV157によって、第1基板110Aの多層配線層125内の第1金属配線層の所定の配線と、第2基板110Bの多層配線層125内の第2金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第1金属配線層の所定の配線と、が電気的に接続されている。
 図14Eに示す固体撮像装置6eは、図14Dに示す固体撮像装置6dに対して、埋め込みパッド構造、及びシェアードコンタクト型の3層間のTSV157によって電気的に接続される配線の種類が変更されたものに対応する。具体的には、図14Eに示す構成では、埋め込みパッド構造に代えて、第1基板110Aの多層配線層105内の所定の配線に対する非埋め込み型の引き出しパッド構造(すなわち、第1基板110Aの多層配線層105内の所定の配線に対する引き出し線開口部155、及び第1基板110Aの裏面側の面上のパッド151)が設けられる。また、TSV157によって、第1基板110Aの多層配線層125内の第1金属配線層の所定の配線と、第2基板110Bの多層配線層125内の第1金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第1金属配線層の所定の配線と、が電気的に接続されている。
 図14Fに示す固体撮像装置6fは、図14Eに示す固体撮像装置6eに対して、引き出しパッド構造の構成が変更されたものに対応する。具体的には、図14Fに示す構成では、引き出しパッド構造として、非埋め込み型の引き出しパッド構造に代えて埋め込み型の引き出しパッド構造が設けられる。
 なお、図14A~図14Fに示す各構成において、シェアードコンタクト型の3層間のTSV157が接続される配線の種類は限定されない。当該TSV157は、第1金属配線層の所定の配線に接続されてもよいし、第2金属配線層の所定の配線に接続されてもよい。例えば、図14A~図14Fに示す各構成において、TSV157が接続される第1金属配線層の配線は、第2金属配線層の配線に変更されてもよいし、TSV157が接続される第2金属配線層の配線は、第1金属配線層の配線に変更されてもよい。また、各多層配線層105、125、135は、第1金属配線層のみによって構成されてもよいし、第2金属配線層のみによって構成されてもよいし、その両方が混在するように構成されてもよい。例えば、図14A~図14Fに示す各構成において、第3基板110Cの多層配線層135は、第1金属配線層及び第2金属配線層が混在するように構成されてもよい。
 また、シェアードコンタクト型の3層間のTSV157は、第1基板110A、第2基板110B、及び第3基板110Cのうちの少なくともいずれか2つの基板の各々に備わる信号線同士及び電源線同士を電気的に接続すればよく、当該TSV157によって信号線及び電源線がそれぞれ電気的に接続される基板は、任意に変更されてよい。
 (5-6.第6の構成例)
 図15A~図15Jは、本実施形態の第6の構成例に係る固体撮像装置の概略構成を示す縦断面図である。本実施形態に係る固体撮像装置は、図15A~図15Jに示す構成を有し得る。
 図15Aに示す固体撮像装置7aは、接続構造として、第1基板110Aと第2基板110Bとの間に設けられる電極接合構造159aと、第2基板110Bと第3基板110Cとの間に設けられる電極接合構造159bと、第2基板110Bに対する埋め込みパッド構造(すなわち、第2基板110Bの多層配線層125内に設けられるパッド151、及び当該パッド151を露出させるパッド開口部153b)と、第3基板110Cに対する埋め込みパッド構造(すなわち、第3基板110Cの多層配線層135内に設けられるパッド151、及び当該パッド151を露出させるパッド開口部153a)と、を有する。電極接合構造159aによって、第1基板110A及び第2基板110Bの各々に備わる信号線同士及び電源線同士が電気的に接続される。また、電極接合構造159bによって、第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士が電気的に接続される。更に、2つの埋め込みパッド構造によって、第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士が電気的に接続され得る。
 図15Bに示す固体撮像装置7bは、図15Aに示す固体撮像装置7aに対して、埋め込みパッド構造が変更されたものに対応する。具体的には、図15Bに示す構成では、第2基板110Bのパッド151に対する埋め込みパッド構造のみが設けられる。
 図15Cに示す固体撮像装置7cは、図15Bに示す固体撮像装置7bに対して、埋め込みパッド構造が変更されたものに対応する。具体的には、図15Cに示す構成では、埋め込みパッド構造に代えて、第1基板110Aの多層配線層105内の所定の配線に対する非埋め込み型の引き出しパッド構造(すなわち、第1基板110Aの多層配線層105内の所定の配線に対する引き出し線開口部155、及び第1基板110Aの裏面側の面上のパッド151)が設けられる。
 図15Dに示す固体撮像装置7dは、図15Cに示す固体撮像装置7cに対して、引き出しパッド構造の構成が変更されたものに対応する。具体的には、図15Dに示す構成では、引き出しパッド構造として、非埋め込み型の引き出しパッド構造に代えて埋め込み型の引き出しパッド構造が設けられる。
 図15Eに示す固体撮像装置7eは、図15Aに示す固体撮像装置7aに対して、電極接合構造159a、159bの構造が変更されたものに対応する。具体的には、上記図15Aに示す構成では、電極接合構造159a、159bは、互いに異なる基板内の配線同士であって、水平面内において略同じ位置に存在する配線同士を電気的に接続するように設けられていた。これに対して、図15Eに示す構成では、電極接合構造159aは、当該電極接合構造159aを構成する電極のうち、第1基板110A側の電極の一部が水平面内方向に延伸するように形成され、水平面内において互いに異なる位置に存在する第1基板110Aの多層配線層105内の配線と、第2基板110Bの多層配線層125内の配線と、を電気的に接続するように構成されている。同様に、電極接合構造159bは、当該電極接合構造159bを構成する電極のうち、第2基板110B側の電極の一部が水平面内方向に延伸するように形成され、水平面内において互いに異なる位置に存在する第2基板110Bの多層配線層125内の配線と、第3基板110Cの多層配線層135内の配線と、を電気的に接続するように構成されている。
 かかる構成によれば、電極接合構造159a、159bを構成する電極のうち水平面内方向に延伸されるものは、電極としての機能とともに、配線としての機能も併せ持つことができる。つまり、電極接合構造159a、159bを構成する電極を配線としても利用することができるため、各基板110A、110B、110Cにおける配線の設計の自由度が向上する。
 図15Fに示す固体撮像装置7fは、図15Bに示す固体撮像装置7bに対して、電極接合構造159a、159bの構造が変更されたものに対応する。具体的には、図15Fに示す構成では、図15Eに示す構成と同様に、電極接合構造159a、159bは、その電極のうちの一部が水平面内方向に延伸するように形成され、互いに異なる基板内の配線同士であって、水平面内において互いに異なる位置に存在する配線同士を電気的に接続するように構成されている。
 図15Gに示す固体撮像装置7gは、図15Cに示す固体撮像装置7cに対して、電極接合構造159a、159bの構造が変更されたものに対応する。具体的には、図15Gに示す構成では、図15Eに示す構成と同様に、電極接合構造159a、159bは、その電極のうちの一部が水平面内方向に延伸するように形成され、互いに異なる基板内の配線同士であって、水平面内において互いに異なる位置に存在する配線同士を電気的に接続するように構成されている。
 図15Hに示す固体撮像装置7hは、図15Gに示す固体撮像装置7gに対して、第3基板110Cの多層配線層135の構成が変更されたものに対応する。具体的には、上記図15Gに示す構成では、多層配線層135は、第1金属配線層のみから構成されていたが、図15Hに示す構成では、多層配線層135は、第1金属配線層及び第2金属配線層が混在するように構成される。
 図15Iに示す固体撮像装置7iは、図15Dに示す固体撮像装置7dに対して、電極接合構造159a、159bの構造が変更されたものに対応する。具体的には、図15Iに示す構成では、図15Eに示す構成と同様に、電極接合構造159a、159bは、その電極のうちの一部が水平面内方向に延伸するように形成され、互いに異なる基板内の配線同士であって、水平面内において互いに異なる位置に存在する配線同士を電気的に接続するように構成されている。
 図15Jに示す固体撮像装置7jは、図15Iに示す固体撮像装置7iに対して、第3基板110Cの多層配線層135の構成が変更されたものに対応する。具体的には、上記図15Iに示す構成では、多層配線層135は、第1金属配線層のみから構成されていたが、図15Jに示す構成では、多層配線層135は、第1金属配線層及び第2金属配線層が混在するように構成される。
 なお、図15A~図15Jに示す各構成において、各多層配線層105、125、135は、第1金属配線層のみによって構成されてもよいし、第2金属配線層のみによって構成されてもよいし、その両方が混在するように構成されてもよい。例えば、図15A~図15Dに示す各構成について、図示する例では、第3基板110Cの多層配線層135は、第1金属配線層のみから構成されているが、当該多層配線層135は、第1金属配線層及び第2金属配線層が混在するように構成されてもよい。
 (5-7.第7の構成例)
 図16A~図16Fは、本実施形態の第7の構成例に係る固体撮像装置の概略構成を示す縦断面図である。本実施形態に係る固体撮像装置は、図16A~図16Fに示す構成を有し得る。
 図16Aに示す固体撮像装置8aは、接続構造として、第1基板110Aと第2基板110Bとの間に設けられる電極接合構造159aと、第2基板110Bと第3基板110Cとの間に設けられる電極接合構造159bと、ツインコンタクト型の2層間のTSV157と、第2基板110Bに対する埋め込みパッド構造(すなわち、第2基板110Bの多層配線層125内に設けられるパッド151、及び当該パッド151を露出させるパッド開口部153b)と、を有する。電極接合構造159aによって、第1基板110A及び第2基板110Bの各々に備わる信号線同士及び電源線同士が電気的に接続される。また、電極接合構造159bによって、第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士が電気的に接続される。また、TSV157は、第2基板110Bの表面側から第3基板110Cに向かって形成され、当該第2基板110B及び当該第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続するように設けられる。なお、図16Aに示す構成では、TSV157によって、第2基板110Bの多層配線層125内の第2金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第2金属配線層の所定の配線と、が電気的に接続されている。
 図16Bに示す固体撮像装置8bは、図16Aに示す固体撮像装置8aに対して、ツインコンタクト型の2層間のTSV157の構造が変更されたものに対応する。具体的には、図16Bに示す構成では、TSV157は、第3基板110Cの裏面側から第2基板110Bに向かって形成される。また、図16Bに示す構成では、TSV157によって、第2基板110Bの多層配線層125内の第1金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第2金属配線層の所定の配線と、が電気的に接続されている。
 図16Cに示す固体撮像装置8cは、図16Aに示す固体撮像装置8aに対して、埋め込みパッド構造、及びツインコンタクト型の2層間のTSV157によって電気的に接続される配線の種類が変更されたものに対応する。具体的には、図16Cに示す構成では、埋め込みパッド構造に代えて、第1基板110Aの多層配線層105内の所定の配線に対する非埋め込み型の引き出しパッド構造(すなわち、第1基板110Aの多層配線層105内の所定の配線に対する引き出し線開口部155、及び第1基板110Aの裏面側の面上のパッド151)が設けられる。また、図16Cに示す構成では、TSV157によって、第2基板110Bの多層配線層125内の第1金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第2金属配線層の所定の配線と、が電気的に接続されている。
 図16Dに示す固体撮像装置8dは、図16Cに示す固体撮像装置8cに対して、ツインコンタクト型の2層間のTSV157の構造が変更されたものに対応する。具体的には、図16Dに示す構成では、TSV157は、第3基板110Cの裏面側から第2基板110Bに向かって形成される。また、図16Dに示す構成では、TSV157によって、第2基板110Bの多層配線層125内の第1金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第1金属配線層の所定の配線と、が電気的に接続されている。
 図16Eに示す固体撮像装置8eは、図16Cに示す固体撮像装置8cに対して、引き出しパッド構造の構成、及びツインコンタクト型の2層間のTSV157によって電気的に接続される配線の種類が変更されたものに対応する。具体的には、図16Eに示す構成では、引き出しパッド構造として、非埋め込み型の引き出しパッド構造に代えて埋め込み型の引き出しパッド構造が設けられる。また、図16Eに示す構成では、TSV157によって、第2基板110Bの多層配線層125内の第1金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第1金属配線層の所定の配線と、が電気的に接続されている。
 図16Fに示す固体撮像装置8fは、図16Eに示す固体撮像装置8eに対して、ツインコンタクト型の2層間のTSV157の構造が変更されたものに対応する。具体的には、図16Fに示す構成では、TSV157は、第3基板110Cの裏面側から第2基板110Bに向かって形成される。
 なお、図16A~図16Fに示す各構成において、ツインコンタクト型の2層間のTSV157が接続される配線の種類は限定されない。当該TSV157は、第1金属配線層の所定の配線に接続されてもよいし、第2金属配線層の所定の配線に接続されてもよい。また、各多層配線層105、125、135は、第1金属配線層のみによって構成されてもよいし、第2金属配線層のみによって構成されてもよいし、その両方が混在するように構成されてもよい。
 (5-8.第8の構成例)
 図17A~図17Lは、本実施形態の第8の構成例に係る固体撮像装置の概略構成を示す縦断面図である。本実施形態に係る固体撮像装置は、図17A~図17Lに示す構成を有し得る。
 図17Aに示す固体撮像装置9aは、接続構造として、第1基板110Aと第2基板110Bとの間に設けられる電極接合構造159aと、第2基板110Bと第3基板110Cとの間に設けられる電極接合構造159bと、ツインコンタクト型の3層間のTSV157と、第2基板110Bに対する埋め込みパッド構造(すなわち、第2基板110Bの多層配線層125内に設けられるパッド151、及び当該パッド151を露出させるパッド開口部153)と、を有する。電極接合構造159aによって、第1基板110A及び第2基板110Bの各々に備わる信号線同士及び電源線同士が電気的に接続される。電極接合構造159bによって、第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士が電気的に接続される。また、TSV157は、第1基板110Aの裏面側から形成され、第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続するように設けられる。なお、図17Aに示す構成では、TSV157によって、第2基板110Bの多層配線層125内の第2金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第2金属配線層の所定の配線と、が電気的に接続されている。
 図17Bに示す固体撮像装置9bは、図17Aに示す固体撮像装置9aに対して、ツインコンタクト型の3層間のTSV157の構造が変更されたものに対応する。具体的には、図17Bに示す構成では、TSV157は、第1基板110A及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続するように設けられる。なお、図17Bに示す構成では、TSV157によって、第1基板110Aの多層配線層105内の第1金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第2金属配線層の所定の配線と、が電気的に接続されている。
 図17Cに示す固体撮像装置9cは、図17Aに示す固体撮像装置9aに対して、埋め込みパッド構造、及びツインコンタクト型の3層間のTSV157によって電気的に接続される配線の種類が変更されたものに対応する。具体的には、図17Cに示す構成では、埋め込みパッド構造に代えて、第1基板110Aの多層配線層105内の所定の配線に対する非埋め込み型の引き出しパッド構造(すなわち、第1基板110Aの多層配線層105内の所定の配線に対する引き出し線開口部155、及び第1基板110Aの裏面側の面上のパッド151)が設けられる。また、図17Cに示す構成では、TSV157によって、第2基板110Bの多層配線層125内の第1金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第2金属配線層の所定の配線と、が電気的に接続されている。
 図17Dに示す固体撮像装置9dは、図17Cに示す固体撮像装置9cに対して、ツインコンタクト型の3層間のTSV157の構造が変更されたものに対応する。具体的には、図17Dに示す構成では、TSV157は、第1基板110A及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続するように設けられる。
 図17Eに示す固体撮像装置9eは、図17Cに示す固体撮像装置9cに対して、引き出しパッド構造の構成、及びツインコンタクト型の3層間のTSV157によって電気的に接続される配線の種類が変更されたものに対応する。具体的には、図17Eに示す構成では、引き出しパッド構造として、非埋め込み型の引き出しパッド構造に代えて埋め込み型の引き出しパッド構造が設けられる。また、図17Eに示す構成では、TSV157によって、第2基板110Bの多層配線層125内の第1金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第1金属配線層の所定の配線と、が電気的に接続されている。
 図17Fに示す固体撮像装置9fは、図17Eに示す固体撮像装置9eに対して、ツインコンタクト型の3層間のTSV157の構造が変更されたものに対応する。具体的には、図17Fに示す構成では、TSV157は、第1基板110A及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続するように設けられる。
 図17Gに示す固体撮像装置9gは、図17Aに示す固体撮像装置9aに対して、ツインコンタクト型の3層間のTSV157の構造が変更されたものに対応する。具体的には、図17Gに示す構成では、TSV157は、第3基板110Cの裏面側から、第1基板110A及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続するように設けられる。また、図17Gに示す構成では、TSV157によって、第1基板110Aの多層配線層125内の第1金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第1金属配線層の所定の配線と、が電気的に接続されている。
 図17Hに示す固体撮像装置9hは、図17Gに示す固体撮像装置9gに対して、ツインコンタクト型の3層間のTSV157の構造が変更されたものに対応する。具体的には、図17Hに示す構成では、TSV157は、第1基板110A及び第2基板110Bの各々に備わる信号線同士及び電源線同士を電気的に接続するように設けられる。また、図17Hに示す構成では、TSV157によって、第1基板110Aの多層配線層105内の第1金属配線層の所定の配線と、第2基板110Bの多層配線層125内の第1金属配線層の所定の配線と、が電気的に接続されている。
 図17Iに示す固体撮像装置9iは、図17Gに示す固体撮像装置9gに対して、埋め込みパッド構造が変更されたものに対応する。具体的には、図17Iに示す構成では、埋め込みパッド構造に代えて、第1基板110Aの多層配線層105内の所定の配線に対する非埋め込み型の引き出しパッド構造(すなわち、第1基板110Aの多層配線層105内の所定の配線に対する引き出し線開口部155、及び第1基板110Aの裏面側の面上のパッド151)が設けられる。
 図17Jに示す固体撮像装置9jは、図17Iに示す固体撮像装置9iに対して、ツインコンタクト型の3層間のTSV157の構造が変更されたものに対応する。具体的には、図17Jに示す構成では、TSV157は、第1基板110A及び第2基板110Bの各々に備わる信号線同士及び電源線同士を電気的に接続するように設けられる。また、図17Jに示す構成では、TSV157によって、第1基板110Aの多層配線層105内の第1金属配線層の所定の配線と、第2基板110Bの多層配線層125内の第1金属配線層の所定の配線と、が電気的に接続されている。
 図17Kに示す固体撮像装置9kは、図17Iに示す固体撮像装置9iに対して、引き出しパッド構造の構成が変更されたものに対応する。具体的には、図17Kに示す構成では、引き出しパッド構造として、非埋め込み型の引き出しパッド構造に代えて埋め込み型の引き出しパッド構造が設けられる。
 図17Lに示す固体撮像装置9lは、図17Jに示す固体撮像装置9jに対して、引き出しパッド構造の構成が変更されたものに対応する。具体的には、図17Lに示す構成では、引き出しパッド構造として、非埋め込み型の引き出しパッド構造に代えて埋め込み型の引き出しパッド構造が設けられる。
 なお、図17A~図17Lに示す各構成において、ツインコンタクト型の3層間のTSV157が接続される配線の種類は限定されない。当該TSV157は、第1金属配線層の所定の配線に接続されてもよいし、第2金属配線層の所定の配線に接続されてもよい。また、各多層配線層105、125、135は、第1金属配線層のみによって構成されてもよいし、第2金属配線層のみによって構成されてもよいし、その両方が混在するように構成されてもよい。
 また、ツインコンタクト型の3層間のTSV157は、その形成される方向に応じて、第1基板110A、第2基板110B、及び第3基板110Cのうちのいずれか2つの基板の各々に備わる信号線同士及び電源線同士を電気的に接続すればよく、当該TSV157によって信号線及び電源線がそれぞれ電気的に接続される基板は、任意に変更されてよい。
 (5-9.第9の構成例)
 図18A~図18Cは、本実施形態の第9の構成例に係る固体撮像装置の概略構成を示す縦断面図である。本実施形態に係る固体撮像装置は、図18A~図18Cに示す構成を有し得る。
 図18Aに示す固体撮像装置10aは、接続構造として、第1基板110Aと第2基板110Bとの間に設けられる電極接合構造159aと、第2基板110Bと第3基板110Cとの間に設けられる電極接合構造159bと、シェアードコンタクト型の2層間のTSV157と、第2基板110Bに対する埋め込みパッド構造(すなわち、第2基板110Bの多層配線層125内に設けられるパッド151、及び当該パッド151を露出させるパッド開口部153)と、を有する。電極接合構造159aによって、第1基板110A及び第2基板110Bの各々に備わる信号線同士及び電源線同士が電気的に接続される。また、電極接合構造159bによって、第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士が電気的に接続される。また、TSV157は、第2基板の表面側から第3基板に向かって形成され、第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続するように設けられる。なお、図18Aに示す構成では、TSV157によって、第2基板110Bの多層配線層125内の第1金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第1金属配線層の所定の配線と、が電気的に接続されている。
 図18Bに示す固体撮像装置10bは、図18Aに示す固体撮像装置10aに対して、埋め込みパッド構造が変更されたものに対応する。具体的には、図18Bに示す構成では、埋め込みパッド構造に代えて、第1基板110Aの多層配線層105内の所定の配線に対する非埋め込み型の引き出しパッド構造(すなわち、第1基板110Aの多層配線層105内の所定の配線に対する引き出し線開口部155、及び第1基板110Aの裏面側の面上のパッド151)が設けられる。
 図18Cに示す固体撮像装置10cは、図18Bに示す固体撮像装置10bに対して、引き出しパッド構造の構成が変更されたものに対応する。具体的には、図18Cに示す構成では、引き出しパッド構造として、非埋め込み型の引き出しパッド構造に代えて、埋め込み型の引き出しパッド構造が設けられる。
 なお、図18A~図18Cに示す各構成において、シェアードコンタクト型の2層間のTSV157が接続される配線の種類は限定されない。当該TSV157は、第1金属配線層の所定の配線に接続されてもよいし、第2金属配線層の所定の配線に接続されてもよい。例えば、図18A~図18Cに示す各構成において、TSV157が接続される配線の一方又は両方が、第2金属配線層の所定の配線に変更されてもよい。また、各多層配線層105、125、135は、第1金属配線層のみによって構成されてもよいし、第2金属配線層のみによって構成されてもよいし、その両方が混在するように構成されてもよい。
 また、図18A~図18Cに示す各構成では、TSV157は、第2基板110Bの表面側から第3基板110Cに向かって形成されていたが、本実施形態はかかる例に限定されない。TSV157は、第3基板110Cの裏面側から第2基板110Bに向かって形成されてもよい。
 (5-10.第10の構成例)
 図19A~図19Fは、本実施形態の第10の構成例に係る固体撮像装置の概略構成を示す縦断面図である。本実施形態に係る固体撮像装置は、図19A~図19Fに示す構成を有し得る。
 図19Aに示す固体撮像装置11aは、接続構造として、第1基板110Aと第2基板110Bとの間に設けられる電極接合構造159aと、第2基板110Bと第3基板110Cとの間に設けられる電極接合構造159bと、シェアードコンタクト型の3層間のTSV157と、第2基板110Bに対する埋め込みパッド構造(すなわち、第2基板110Bの多層配線層125内に設けられるパッド151、及び当該パッド151を露出させるパッド開口部153)と、を有する。電極接合構造159aによって、第1基板110A及び第2基板110Bの各々に備わる信号線同士及び電源線同士が電気的に接続される。また、電極接合構造159bによって、第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士が電気的に接続される。また、TSV157は、第3基板110Cの裏面側から形成され、第1基板110A、第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続するように設けられる。なお、図19Aに示す構成では、TSV157によって、第1基板110Aの多層配線層125内の第1金属配線層の所定の配線と、第2基板110Bの多層配線層125内の第1金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第1金属配線層の所定の配線と、が電気的に接続されている。
 図19Bに示す固体撮像装置11bは、図19Aに示す固体撮像装置11aに対して、埋め込みパッド構造が変更されたものに対応する。具体的には、図19Bに示す構成では、埋め込みパッド構造に代えて、第1基板110Aの多層配線層105内の所定の配線に対する非埋め込み型の引き出しパッド構造(すなわち、第1基板110Aの多層配線層105内の所定の配線に対する引き出し線開口部155、及び第1基板110Aの裏面側の面上のパッド151)が設けられる。
 図19Cに示す固体撮像装置11cは、図19Bに示す固体撮像装置11bに対して、引き出しパッド構造の構成が変更されたものに対応する。具体的には、図19Cに示す構成では、引き出しパッド構造として、非埋め込み型の引き出しパッド構造に代えて埋め込み型の引き出しパッド構造が設けられる。
 図19Dに示す固体撮像装置11dは、図19Aに示す固体撮像装置11aに対して、シェアードコンタクト型の3層間のTSV157の構造が変更されたものに対応する。具体的には、図19Dに示す構成では、TSV157は、第1基板110Aの裏面側から形成され、第1基板110A、第2基板110B及び第3基板110Cの各々に備わる信号線同士及び電源線同士を電気的に接続するように設けられる。なお、図19Dに示す構成では、TSV157によって、第1基板110Aの多層配線層125内の第1金属配線層の所定の配線と、第2基板110Bの多層配線層125内の第2金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第1金属配線層の所定の配線と、が電気的に接続されている。
 図19Eに示す固体撮像装置11eは、図19Dに示す固体撮像装置11dに対して、埋め込みパッド構造、及びシェアードコンタクト型の3層間のTSV157によって電気的に接続される配線の種類が変更されたものに対応する。具体的には、図19Eに示す構成では、埋め込みパッド構造に代えて、第1基板110Aの多層配線層105内の所定の配線に対する非埋め込み型の引き出しパッド構造が設けられる。また、図19Eに示す構成では、TSV157によって、第1基板110Aの多層配線層125内の第1金属配線層の所定の配線と、第2基板110Bの多層配線層125内の第1金属配線層の所定の配線と、第3基板110Cの多層配線層135内の第1金属配線層の所定の配線と、が電気的に接続されている。
 図19Fに示す固体撮像装置11fは、図19Eに示す固体撮像装置11eに対して、引き出しパッド構造の構成が変更されたものに対応する。具体的には、図19Fに示す構成では、引き出しパッド構造として、非埋め込み型の引き出しパッド構造に代えて埋め込み型の引き出しパッド構造が設けられる。
 なお、図19A~図19Fに示す各構成において、シェアードコンタクト型の3層間のTSV157が接続される配線の種類は限定されない。当該TSV157は、第1金属配線層の所定の配線に接続されてもよいし、第2金属配線層の所定の配線に接続されてもよい。例えば、図19A~図19Fに示す各構成において、TSV157が接続される第1金属配線層の配線は、第2金属配線層の配線に変更されてもいし、当該TSV157が接続される第2金属配線層の配線は、第1金属配線層の配線に変更されてもよい。また、各多層配線層105、125、135は、第1金属配線層のみによって構成されてもよいし、第2金属配線層のみによって構成されてもよいし、その両方が混在するように構成されてもよい。例えば、図19A~図19Fに示す各構成において、第3基板110Cの多層配線層135は、第1金属配線層及び第2金属配線層が混在するように構成されてもよい。
 また、シェアードコンタクト型の3層間のTSV157は、第1基板110A、第2基板110B、及び第3基板110Cのうちの少なくともいずれか2つの基板の各々に備わる信号線同士及び電源線同士を電気的に接続すればよく、当該TSV157によって信号線及び電源線がそれぞれ電気的に接続される基板は、任意に変更されてよい。
 (5-11.まとめ)
 以上、本実施形態に係る固体撮像装置のいくつかの構成例について説明した。
 なお、以上説明した各構成例のうち、第2~第4の構成例及び第7~第10の構成例においては、第1基板110Aの裏面側、又は第3基板110Cの裏面側において上端が露出するように、TSV157を形成することができる。このように露出されたTSV157の上端を、固体撮像装置が備える回路を外部回路と電気的に接続するための電極として機能させることができる。例えば、当該TSV157の露出した上端に、はんだバンプ等を設け、固体撮像装置と外部の機器とを電気的に接続してもよい。
 また、以上説明した構成例では、第2~第4の構成例及び第7~第10の構成例において、TSV157は1つしか設けられていなかったが、本実施形態はかかる例に限定されない。TSV157は複数設けられてもよい。また、複数設けられるTSV157は、その形態(ツインコンタクトであるかシェアードコンタクトであるか、又はどの基板の配線同士を接続しているか等)が互いに異なるものであってもよい。
 また、以上説明した各構成例について、各基板110A、110B、110Cに対してパッド151を設ける際には、埋め込みパッド構造、又は引き出しパッド構造のいずれの構造が適用されてもよい。また、引き出しパッド構造については、非埋め込み型の引き出しパッド構造又は埋め込み型の引き出しパッド構造のいずれの構造が適用されてもよい。
 (6.適用例)
 (電子機器への応用)
 以上説明した本実施形態に係る固体撮像装置1~11fの適用例について説明する。ここでは、固体撮像装置1~11fが適用され得る電子機器のいくつかの例について説明する。
 図20Aは、本実施形態に係る固体撮像装置1~11fが適用され得る電子機器の一例である、スマートフォンの外観を示す図である。図20Aに示すように、スマートフォン901は、ボタンから構成されユーザによる操作入力を受け付ける操作部903と、各種の情報を表示する表示部905と、筐体内に設けられ、観察対象を電子的に撮影する撮像部(図示せず)と、を有する。当該撮像部が、固体撮像装置1~11fによって構成され得る。
 図20B及び図20Cは、本実施形態に係る固体撮像装置1~11fが適用され得る電子機器の他の例である、デジタルカメラの外観を示す図である。図20Bは、デジタルカメラ911を前方(被写体側)から眺めた外観を示しており、図20Cは、デジタルカメラ911を後方から眺めた外観を示している。図20B及び図20Cに示すように、デジタルカメラ911は、本体部(カメラボディ)913と、交換式のレンズユニット915と、撮影時にユーザによって把持されるグリップ部917と、各種の情報を表示するモニタ919と、撮影時にユーザによって観察されるスルー画を表示するEVF921と、筐体内に設けられ、観察対象を電子的に撮影する撮像部(図示せず)と、を有する。当該撮像部が、固体撮像装置1~11fによって構成され得る。
 以上、本実施形態に係る固体撮像装置1~11fが適用され得る電子機器のいくつかの例について説明した。なお、固体撮像装置1~11fが適用され得る電子機器は上記で例示したものに限定されず、当該固体撮像装置1~11fは、ビデオカメラ、眼鏡型のウェアラブルデバイス、HMD(Head Mounted Display)、タブレットPC、又はゲーム機器等、あらゆる電子機器に搭載される撮像部として適用することが可能である。
 (固体撮像装置の他の構造への応用)
 なお、本開示に係る技術は、図21Aで示す固体撮像装置に適用されてもよい。図21Aは、本開示に係る技術を適用し得る固体撮像装置の構成例を示す断面図である。
 固体撮像装置では、PD(フォトダイオード)20019が、半導体基板20018の裏面(図では上面)側から入射する入射光20001を受光する。PD20019の上方には、平坦化膜20013,CF(カラーフィルタ)20012,マイクロレンズ20011が設けられており、各部を順次介して入射した入射光20001を、受光面20017で受光して光電変換が行われる。
 例えば、PD20019は、n型半導体領域20020が、電荷(電子)を蓄積する電荷蓄積領域として形成されている。PD20019においては、n型半導体領域20020は、半導体基板20018のp型半導体領域20016,20041の内部に設けられている。n型半導体領域20020の、半導体基板20018の表面(下面)側には、裏面(上面)側よりも不純物濃度が高いp型半導体領域20041が設けられている。つまり、PD20019は、HAD(Hole-Accumulation Diode)構造になっており、n型半導体領域20020の上面側と下面側との各界面において、暗電流が発生することを抑制するように、p型半導体領域20016,20041が形成されている。
 半導体基板20018の内部には、複数の画素20010の間を電気的に分離する画素分離部20030が設けられており、この画素分離部20030で区画された領域に、PD20019が設けられている。図中、上面側から、固体撮像装置を見た場合、画素分離部20030は、例えば、複数の画素20010の間に介在するように格子状に形成されており、PD20019は、この画素分離部20030で区画された領域内に形成されている。
 各PD20019では、アノードが接地されており、固体撮像装置において、PD20019が蓄積した信号電荷(例えば、電子)は、図示せぬ転送Tr(MOS FET)等を介して読み出され、電気信号として、図示せぬVSL(垂直信号線)へ出力される。
 配線層20050は、半導体基板20018のうち、遮光膜20014、CF20012、マイクロレンズ20011等の各部が設けられた裏面(上面)とは反対側の表面(下面)に設けられている。
 配線層20050は、配線20051と絶縁層20052とを含み、絶縁層20052内において、配線20051が各素子に電気的に接続するように形成されている。配線層20050は、いわゆる多層配線の層になっており、絶縁層20052を構成する層間絶縁膜と配線20051とが交互に複数回積層されて形成されている。ここでは、配線20051としては、転送Tr等のPD20019から電荷を読み出すためのTrへの配線や、VSL等の各配線が、絶縁層20052を介して積層されている。
 配線層20050の、PD20019が設けられている側に対して反対側の面には、支持基板20061が設けられている。例えば、厚みが数百μmのシリコン半導体からなる基板が、支持基板20061として設けられている。
 遮光膜20014は、半導体基板20018の裏面(図では上面)の側に設けられている。
 遮光膜20014は、半導体基板20018の上方から半導体基板20018の裏面へ向かう入射光20001の一部を、遮光するように構成されている。
 遮光膜20014は、半導体基板20018の内部に設けられた画素分離部20030の上方に設けられている。ここでは、遮光膜20014は、半導体基板20018の裏面(上面)上において、シリコン酸化膜等の絶縁膜20015を介して、凸形状に突き出るように設けられている。これに対して、半導体基板20018の内部に設けられたPD20019の上方においては、PD20019に入射光20001が入射するように、遮光膜20014は、設けられておらず、開口している。
 つまり、図中、上面側から、固体撮像装置を見た場合、遮光膜20014の平面形状は、格子状になっており、入射光20001が受光面20017へ通過する開口が形成されている。
 遮光膜20014は、光を遮光する遮光材料で形成されている。例えば、チタン(Ti)膜とタングステン(W)膜とを、順次、積層することで、遮光膜20014が形成されている。この他に、遮光膜20014は、例えば、窒化チタン(TiN)膜とタングステン(W)膜とを、順次、積層することで形成することができる。
 遮光膜20014は、平坦化膜20013によって被覆されている。平坦化膜20013は、光を透過する絶縁材料を用いて形成されている。
 画素分離部20030は、溝部20031、固定電荷膜20032、及び、絶縁膜20033を有する。
 固定電荷膜20032は、半導体基板20018の裏面(上面)の側において、複数の画素20010の間を区画している溝部20031を覆うように形成されている。
 具体的には、固定電荷膜20032は、半導体基板20018において裏面(上面)側に形成された溝部20031の内側の面を一定の厚みで被覆するように設けられている。そして、その固定電荷膜20032で被覆された溝部20031の内部を埋め込むように、絶縁膜20033が設けられている(充填されている)。
 ここでは、固定電荷膜20032は、半導体基板20018との界面部分において正電荷(ホール)蓄積領域が形成されて暗電流の発生が抑制されるように、負の固定電荷を有する高誘電体を用いて形成されている。固定電荷膜20032が負の固定電荷を有するように形成されていることで、その負の固定電荷によって、半導体基板20018との界面に電界が加わり、正電荷(ホール)蓄積領域が形成される。
 固定電荷膜20032は、例えば、ハフニウム酸化膜(HfO膜)で形成することができる。また、固定電荷膜20032は、その他、例えば、ハフニウム、ジルコニウム、アルミニウム、タンタル、チタン、マグネシウム、イットリウム、ランタノイド元素等の酸化物の少なくとも1つを含むように形成することができる。
 また、本開示に係る技術は、図21Bで示す固体撮像装置に適用されてもよい。図21Bは、本開示に係る技術が適用され得る固体撮像装置の概略構成を示す。
 固体撮像装置30001は、複数の画素30002が規則性をもって2次元配列された撮像部(いわゆる画素部)30003と、撮像部30003の周辺に配置された周辺回路、すなわち垂直駆動部30004、水平転送部30005及び出力部30006とを有して構成される。画素30002は、1つの光電変換素子であるフォトダイオード30021と、複数の画素トランジスタ(MOSトランジスタ)Tr1、Tr2、Tr3、Tr4とにより構成される。
 フォトダイオード30021は、光入射で光電変換され、その光電変換で生成された信号電荷を蓄積する領域を有して成る。複数の画素トランジスタは、本例では転送トランジスタTr1、リセットトランジスタTr2、増幅トランジスタTr3及び選択トランジスタTr4の4つのMOSトランジスタを有している。転送トランジスタTr1は、フォトダイオード30021に蓄積された信号電荷を後述するフローティングディフージョン(FD)領域30022に読み出すトランジスタである。リセットトランジスタTr2は、FD領域30022の電位を規定の値に設定するためのトランジスタである。増幅トランジスタTr3は、FD領域30022に読み出された信号電荷を電気的に増幅するためのトランジスタである。選択トランジスタTr4は、画素1行を選択して画素信号を垂直信号線30008に読み出すためのトランジスタである。
 なお、図示しないが、選択トランジスタTr4を省略した3トランジスタとフォトダイオードPDで画素を構成することも可能である。
 画素30002の回路構成では、転送トランジスタTr1のソースがフォトダイオード30021に接続され、そのドレインがリセットトランジスタTr2のソースに接続される。転送トランジスタTr1とリセットトランジスタTr2間の電荷-電圧変換手段となるFD領域30022(転送トランジスタのドレイン領域、リセットトランジスタのソース領域に相当する)が増幅トランジスタTr3のゲートに接続される。増幅トランジスタTr3のソースは選択トランジスタTr4のドレインに接続される。リセットトランジスタTr2のドレイン及び増幅トランジスタTr3のドレインは、電源電圧供給部に接続される。また、選択トランジスタTr4のソースが垂直信号線30008に接続される。
 垂直駆動部30004からは、1行に配列された画素のリセットトランジスタTr2のゲートに共通に印加される行リセット信号φRSTが、同じく1行の画素の転送トランジスタTr1のゲートに共通に印加される行転送信号φTRGが、同じく1行の選択トランジスタTr4のゲートに共通に印加される行選択信号φSELが、それぞれ供給されるようになされる。
 水平転送部30005は、各列の垂直信号線30008に接続された増幅器またはアナログ/デジタル変換器(ADC)、本例ではアナログ/デジタル変換器30009と、列選択回路(スイッチ手段)30007と、水平転送線(例えばデータビット線と同数の配線で構成されたバス配線)30010とを有して構成される。出力部30006は、増幅器又は、アナログ/デジタル変換器及び/又は信号処理回路、本例では水平転送線30010からの出力を処理する信号処理回路30011と、出力バッファ30012とを有して構成される。
 この固体撮像装置30001では、各行の画素30002の信号が各アナログ/デジタル変換器30009にてアナログ/デジタル変換され、順次選択される列選択回路30007を通じて水平転送線30010に読み出され、順次に水平転送される。水平転送線30010に読み出された画像データは、信号処理回路30011を通じて出力バッファ30012より出力される。
 画素3002における一般的な動作は、最初に転送トランジスタTr1のゲートとリセットトランジスタTr2のゲートをオン状態にしてフォトダイオード30021の電荷を全て空にする。次いで、転送トランジスタTr1のゲートとリセットトランジスタTr2のゲートをオフ状態にして電荷蓄積を行う。次に、フォトダイオード30021の電荷を読み出す直前にリセットトランジスタTr2のゲートをオン状態にしてFD領域30022の電位をリセットする。その後、リセットトランジスタTr2のゲートをオフ状態にし、転送トランジスタTr1のゲートをオン状態にしてフォトダイオード30021からの電荷をFD領域30022へ転送する。増幅トランジスタTr3ではゲートに電荷が印加されたことを受けて信号電荷を電気的に増幅する。一方、選択トランジスタTr4は前記読み出し直前のFDリセット時から読み出し対象画素のみオン状態になり、該当画素内増幅トランジスタTr3からの電荷-電圧変換された画像信号が垂直信号線30008に読み出されることになる。
 以上、本開示に係る技術が適用され得る固体撮像装置の他の構造例について説明した。
 (カメラへの適用例)
 上述の固体撮像装置は、例えば、デジタルカメラやビデオカメラ等のカメラシステム、撮像機能を有する携帯電話、又は、撮像機能を備えた他の機器などの電子機器に適用することができる。以下、電子機器の一構成例として、カメラを例に挙げ説明する。図21Cは、本開示に係る技術が適用され得るビデオカメラの構成例を示す説明図である。
 この例のカメラ10000は、固体撮像装置10001と、固体撮像装置10001の受光センサ部に入射光を導く光学系10002と、固体撮像装置10001及び光学系10002間に設けられたシャッタ装置10003と、固体撮像装置10001を駆動する駆動回路10004とを備える。さらに、カメラ10000は、固体撮像装置10001の出力信号を処理する信号処理回路10005を備える。
 光学系(光学レンズ)10002は、被写体からの像光(入射光)を固体撮像装置10001の撮像面(不図示)上に結像させる。これにより、固体撮像装置10001内に、一定期間、信号電荷が蓄積される。なお、光学系10002は、複数の光学レンズを含む光学レンズ群で構成してもよい。また、シャッタ装置10003は、入射光の固体撮像装置10001への光照射期間及び遮光期間を制御する。
 駆動回路10004は、固体撮像装置10001及びシャッタ装置10003に駆動信号を供給する。そして、駆動回路10004は、供給した駆動信号により、固体撮像装置10001の信号処理回路10005への信号出力動作、及び、シャッタ装置10003のシャッタ動作を制御する。すなわち、この例では、駆動回路10004から供給される駆動信号(タイミング信号)により、固体撮像装置10001から信号処理回路10005への信号転送動作を行う。
 信号処理回路10005は、固体撮像装置10001から転送された信号に対して、各種の信号処理を施す。そして、各種信号処理が施された信号(AV-SIGNAL)は、メモリなどの記憶媒体(不図示)に記憶される、又は、モニタ(不図示)に出力される。
 以上、本開示に係る技術が適用され得るカメラの一例について説明した。
 (内視鏡手術システムへの適用例)
 例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
 図21Dは、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
 図21Dでは、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics
Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。
 光源装置11203は、例えばLED(light emitting diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
 図21Eは、図21Dに示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。
 撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、カメラヘッド11102の撮像部11402に適用され得る。撮像部11402に本開示に係る技術を適用することにより、より鮮明な術部画像を得ることができるため、術者が術部を確実に確認することが可能になる。
 なお、ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。
 (移動体への適用例)
 例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図21Fは、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図21Fに示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(Interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図21Fの例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図21Gは、撮像部12031の設置位置の例を示す図である。
 図21Gでは、撮像部12031として、撮像部12101、12102、12103、12104、12105を有する。
 撮像部12101、12102、12103、12104、12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102、12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図1022には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031等に適用され得る。撮像部12031に本開示に係る技術を適用することにより、より見やすい撮影画像を得ることができるため、ドライバの疲労を軽減することが可能になる。また、より認識しやすい撮影画像を得ることができるため、運転支援の精度を向上させることができる。
 (7.補足)
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 例えば、以上説明した本実施形態に係る固体撮像装置が有する各構成(例えば図1、及び図10A~図19Fに示す固体撮像装置1~11fが有する各構成)は、可能な範囲で互いに組み合わされてもよい。このように各構成が組み合わされて構成される固体撮像装置も、本実施形態に係る固体撮像装置に含まれ得る。
 また、以上説明した本実施形態に係る各固体撮像装置の構成は、本開示に係る技術の一例に過ぎない。本開示では、他の実施形態として、以上説明した実施形態には含まれない各種の接続構造を有する固体撮像装置が提供され得る。
 また、本明細書に記載された効果は、あくまで説明的又は例示的なものであって限定的なものではない。つまり、本開示に係る技術は、上記の効果とともに、又は上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏し得る。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 画素が配列された画素部が形成された第1半導体基板と、前記第1半導体基板上に積層された第1多層配線層と、を有する第1基板と、
 所定の機能を有する回路が形成された第2半導体基板と、前記第2半導体基板上に積層された第2多層配線層と、を有する第2基板と、
 所定の機能を有する回路が形成された第3半導体基板と、前記第3半導体基板上に積層された第3多層配線層と、を有する第3基板と、
 がこの順に積層されて構成され、
 前記第1基板と前記第2基板とは、前記第1多層配線層と前記第2多層配線層とが対向するように貼り合わされ、
 前記第1基板と前記第2基板とを電気的に接続するための第1の接続構造は、前記第1基板及び前記第2基板の貼り合わせ面に存在し、前記貼り合わせ面にそれぞれ形成される電極同士が直接接触した状態で接合している電極接合構造、を含む、
 固体撮像装置。
(2)
 前記第2基板と前記第3基板とを電気的に接続するための第2の接続構造を更に有し、
 前記第2の接続構造は、前記第2多層配線層内の所定の配線を露出させるように前記第1基板の裏面側から少なくとも前記第1基板を貫通して設けられる開口部、及び前記第3多層配線層内の所定の配線を露出させるように前記第1基板の裏面側から少なくとも前記第1基板及び前記第2基板を貫通して設けられる開口部、を含む、
 前記(1)に記載の固体撮像装置。
(3)
 前記開口部によって露出させられる前記第2多層配線層内の前記所定の配線及び前記第3多層配線層内の前記所定の配線は、I/O部として機能するパッドである、
 前記(2)に記載の固体撮像装置。
(4)
 前記第1基板の裏面側の面上にI/O部として機能するパッドが存在し、
 前記開口部の内壁には導電材料が成膜されており、
 前記導電材料によって、前記開口部によって露出させられる前記第2多層配線層内の前記所定の配線及び前記第3多層配線層内の前記所定の配線が、前記パッドと電気的に接続されている、
 前記(2)に記載の固体撮像装置。
(5)
 前記第2多層配線層内の前記所定の配線及び前記第3多層配線層内の前記所定の配線が、前記導電材料によって、同一の前記パッドと電気的に接続される、
 前記(4)に記載の固体撮像装置。
(6)
 前記第2多層配線層内の前記所定の配線及び前記第3多層配線層内の前記所定の配線が、前記導電材料によって、それぞれ異なる前記パッドと電気的に接続される、
 前記(4)に記載の固体撮像装置。
(7)
 前記第2基板と前記第3基板とを電気的に接続するための第2の接続構造を更に有し、
 前記第2基板と前記第3基板とは、前記第2半導体基板と前記第3多層配線層とが対向するように貼り合わされ、
 前記第2の接続構造は、前記第2基板の表面側から少なくとも前記第2基板を貫通して設けられ、前記第2多層配線層内の所定の配線と、前記第3多層配線層内の所定の配線と、を電気的に接続するビア、又は前記第3基板の裏面側から少なくとも前記第3基板を貫通して設けられ、前記第2多層配線層内の所定の配線と、前記第3多層配線層内の所定の配線と、を電気的に接続するビア、を含む、
 前記(1)~(6)のいずれか1項に記載の固体撮像装置。
(8)
 前記ビアは、前記第2多層配線層内の前記所定の配線を露出させる第1の貫通孔と、前記第3多層配線層内の前記所定の配線を露出させる前記第1の貫通孔とは異なる第2の貫通孔と、に導電材料が埋め込まれた構造、又は前記第1の貫通孔及び前記第2の貫通孔の内壁に導電材料が成膜された構造、を有する、
 前記(7)に記載の固体撮像装置。
(9)
 前記ビアは、前記第2多層配線層内の前記所定の配線の一部を露出させつつ前記第3多層配線層内の前記所定の配線を露出させるように設けられる1つの貫通孔、又は前記第3多層配線層内の前記所定の配線の一部を露出させつつ前記第2多層配線層内の前記所定の配線を露出させるように設けられる1つの貫通孔に、導電材料が埋め込まれた構造、又は前記貫通孔の内壁に導電材料が成膜された構造、を有する、
 前記(7)に記載の固体撮像装置。
(10)
 前記第1基板と前記第3基板とを電気的に接続するための第3の接続構造を更に有し、
 前記第2基板と前記第3基板とは、前記第2半導体基板と前記第3多層配線層とが対向するように貼り合わされ、
 前記第3の接続構造は、前記第1基板の裏面側から少なくとも前記第1基板及び前記第2基板を貫通して設けられ、前記第1多層配線層内の所定の配線と、前記第3多層配線層内の所定の配線と、を電気的に接続するビア、又は前記第3基板の裏面側から少なくとも前記第3基板及び前記第2基板を貫通して設けられ、前記第1多層配線層内の所定の配線と、前記第3多層配線層内の所定の配線と、を電気的に接続するビア、を含む、
 前記(1)~(9)のいずれか1項に記載の固体撮像装置。
(11)
 前記ビアは、前記第1多層配線層内の前記所定の配線を露出させる第1の貫通孔と、前記第3多層配線層内の前記所定の配線を露出させる前記第1の貫通孔とは異なる第2の貫通孔と、に導電材料が埋め込まれた構造、又は前記第1の貫通孔及び前記第2の貫通孔の内壁に導電材料が成膜された構造、を有する、
 前記(10)に記載の固体撮像装置。
(12)
 前記ビアは、前記第1多層配線層内の前記所定の配線の一部を露出させつつ前記第3多層配線層内の前記所定の配線を露出させるように設けられる1つの貫通孔、又は前記第3多層配線層内の前記所定の配線の一部を露出させつつ前記第1多層配線層内の前記所定の配線を露出させるように設けられる1つの貫通孔に、導電材料が埋め込まれた構造、又は前記貫通孔の内壁に導電材料が成膜された構造、を有する、
 前記(10)に記載の固体撮像装置。
(13)
 前記ビアは、前記第2多層配線層内の所定の配線とも電気的に接続されている、
 前記(12)に記載の固体撮像装置。
(14)
 前記第2基板と前記第3基板とを電気的に接続するための第2の接続構造を更に有し、
 前記第2の接続構造は、前記第2基板及び前記第3基板の貼り合わせ面に存在し、前記貼り合わせ面にそれぞれ形成される電極同士が直接接触した状態で接合している電極接合構造、を含む、
 前記(1)~(13)のいずれか1項に記載の固体撮像装置。
(15)
 前記第2基板及び前記第3基板は、前記固体撮像装置の動作に係る各種の信号処理を実行するロジック回路、及び前記第1基板の前記画素の各々によって取得された画素信号を一時的に保持するメモリ回路、の少なくともいずれかを有する、
 前記(1)~(14)のいずれか1項に記載の固体撮像装置。
(16)
 前記第2基板は、前記第1基板の前記画素の各々によって取得された画素信号をAD変換する画素信号処理回路を有し、
 前記第1の接続構造は、前記画素信号を前記画素信号処理回路に伝送するために、前記画素の各々に対応して存在する、
 前記(1)~(15)のいずれか1項に記載の固体撮像装置。
(17)
 観察対象を電子的に撮影する固体撮像装置、を備え、
 前記固体撮像装置は、
 画素が配列された画素部が形成された第1半導体基板と、前記第1半導体基板上に積層された第1多層配線層と、を有する第1基板と、
 所定の機能を有する回路が形成された第2半導体基板と、前記第2半導体基板上に積層された第2多層配線層と、を有する第2基板と、
 所定の機能を有する回路が形成された第3半導体基板と、前記第3半導体基板上に積層された第3多層配線層と、を有する第3基板と、
 がこの順に積層されて構成され、
 前記第1基板と前記第2基板とは、前記第1多層配線層と前記第2多層配線層とが対向するように貼り合わされ、
 前記第1基板と前記第2基板とを電気的に接続するための第1の接続構造、前記第2基板と前記第3基板とを電気的に接続するための第2の接続構造、及び前記第1基板と前記第3基板とを電気的に接続するための第3の接続構造のうちの少なくとも2つを有し、
 前記第1の接続構造は、前記第1基板及び前記第2基板の貼り合わせ面に存在し、前記貼り合わせ面にそれぞれ形成される電極同士が直接接触した状態で接合している電極接合構造、を含む、
 電子機器。
 1、1a~1f、2a~2e、3a~3e、4a~4k、5a~5c、6a~6f、7a~7j、8a~8f、9a~9l、10a~10c、11a~11f  固体撮像装置
 101、121、131  半導体基板
 103、109、123、129、133  絶縁膜
 105、125、135  多層配線層
 110A  第1基板
 110B  第2基板
 110C  第3基板
 111  CF層
 113  MLアレイ
 151  パッド
 153、153a、153b  パッド開口部
 155  引き出し線開口部
 157  TSV
 159、159a、159b  電極接合構造
 501  導電材料膜
 503  樹脂膜
 901  スマートフォン(電子機器)
 911  デジタルカメラ(電子機器)

Claims (17)

  1.  画素が配列された画素部が形成された第1半導体基板と、前記第1半導体基板上に積層された第1多層配線層と、を有する第1基板と、
     所定の機能を有する回路が形成された第2半導体基板と、前記第2半導体基板上に積層された第2多層配線層と、を有する第2基板と、
     所定の機能を有する回路が形成された第3半導体基板と、前記第3半導体基板上に積層された第3多層配線層と、を有する第3基板と、
     がこの順に積層されて構成され、
     前記第1基板と前記第2基板とは、前記第1多層配線層と前記第2多層配線層とが対向するように貼り合わされ、
     前記第1基板と前記第2基板とを電気的に接続するための第1の接続構造は、前記第1基板及び前記第2基板の貼り合わせ面に存在し、前記貼り合わせ面にそれぞれ形成される電極同士が直接接触した状態で接合している電極接合構造、を含む、
     固体撮像装置。
  2.  前記第2基板と前記第3基板とを電気的に接続するための第2の接続構造を更に有し、
     前記第2の接続構造は、前記第2多層配線層内の所定の配線を露出させるように前記第1基板の裏面側から少なくとも前記第1基板を貫通して設けられる開口部、及び前記第3多層配線層内の所定の配線を露出させるように前記第1基板の裏面側から少なくとも前記第1基板及び前記第2基板を貫通して設けられる開口部、を含む、
     請求項1に記載の固体撮像装置。
  3.  前記開口部によって露出させられる前記第2多層配線層内の前記所定の配線及び前記第3多層配線層内の前記所定の配線は、I/O部として機能するパッドである、
     請求項2に記載の固体撮像装置。
  4.  前記第1基板の裏面側の面上にI/O部として機能するパッドが存在し、
     前記開口部の内壁には導電材料が成膜されており、
     前記導電材料によって、前記開口部によって露出させられる前記第2多層配線層内の前記所定の配線及び前記第3多層配線層内の前記所定の配線が、前記パッドと電気的に接続されている、
     請求項2に記載の固体撮像装置。
  5.  前記第2多層配線層内の前記所定の配線及び前記第3多層配線層内の前記所定の配線が、前記導電材料によって、同一の前記パッドと電気的に接続される、
     請求項4に記載の固体撮像装置。
  6.  前記第2多層配線層内の前記所定の配線及び前記第3多層配線層内の前記所定の配線が、前記導電材料によって、それぞれ異なる前記パッドと電気的に接続される、
     請求項4に記載の固体撮像装置。
  7.  前記第2基板と前記第3基板とを電気的に接続するための第2の接続構造を更に有し、
     前記第2基板と前記第3基板とは、前記第2半導体基板と前記第3多層配線層とが対向するように貼り合わされ、
     前記第2の接続構造は、前記第2基板の表面側から少なくとも前記第2基板を貫通して設けられ、前記第2多層配線層内の所定の配線と、前記第3多層配線層内の所定の配線と、を電気的に接続するビア、又は前記第3基板の裏面側から少なくとも前記第3基板を貫通して設けられ、前記第2多層配線層内の所定の配線と、前記第3多層配線層内の所定の配線と、を電気的に接続するビア、を含む、
     請求項1に記載の固体撮像装置。
  8.  前記ビアは、前記第2多層配線層内の前記所定の配線を露出させる第1の貫通孔と、前記第3多層配線層内の前記所定の配線を露出させる前記第1の貫通孔とは異なる第2の貫通孔と、に導電材料が埋め込まれた構造、又は前記第1の貫通孔及び前記第2の貫通孔の内壁に導電材料が成膜された構造、を有する、
     請求項7に記載の固体撮像装置。
  9.  前記ビアは、前記第2多層配線層内の前記所定の配線の一部を露出させつつ前記第3多層配線層内の前記所定の配線を露出させるように設けられる1つの貫通孔、又は前記第3多層配線層内の前記所定の配線の一部を露出させつつ前記第2多層配線層内の前記所定の配線を露出させるように設けられる1つの貫通孔に、導電材料が埋め込まれた構造、又は前記貫通孔の内壁に導電材料が成膜された構造、を有する、
     請求項7に記載の固体撮像装置。
  10.  前記第1基板と前記第3基板とを電気的に接続するための第3の接続構造を更に有し、
     前記第2基板と前記第3基板とは、前記第2半導体基板と前記第3多層配線層とが対向するように貼り合わされ、
     前記第3の接続構造は、前記第1基板の裏面側から少なくとも前記第1基板及び前記第2基板を貫通して設けられ、前記第1多層配線層内の所定の配線と、前記第3多層配線層内の所定の配線と、を電気的に接続するビア、又は前記第3基板の裏面側から少なくとも前記第3基板及び前記第2基板を貫通して設けられ、前記第1多層配線層内の所定の配線と、前記第3多層配線層内の所定の配線と、を電気的に接続するビア、を含む、
     請求項1に記載の固体撮像装置。
  11.  前記ビアは、前記第1多層配線層内の前記所定の配線を露出させる第1の貫通孔と、前記第3多層配線層内の前記所定の配線を露出させる前記第1の貫通孔とは異なる第2の貫通孔と、に導電材料が埋め込まれた構造、又は前記第1の貫通孔及び前記第2の貫通孔の内壁に導電材料が成膜された構造、を有する、
     請求項10に記載の固体撮像装置。
  12.  前記ビアは、前記第1多層配線層内の前記所定の配線の一部を露出させつつ前記第3多層配線層内の前記所定の配線を露出させるように設けられる1つの貫通孔、又は前記第3多層配線層内の前記所定の配線の一部を露出させつつ前記第1多層配線層内の前記所定の配線を露出させるように設けられる1つの貫通孔に、導電材料が埋め込まれた構造、又は前記貫通孔の内壁に導電材料が成膜された構造、を有する、
     請求項10に記載の固体撮像装置。
  13.  前記ビアは、前記第2多層配線層内の所定の配線とも電気的に接続されている、
     請求項12に記載の固体撮像装置。
  14.  前記第2基板と前記第3基板とを電気的に接続するための第2の接続構造を更に有し、
     前記第2の接続構造は、前記第2基板及び前記第3基板の貼り合わせ面に存在し、前記貼り合わせ面にそれぞれ形成される電極同士が直接接触した状態で接合している電極接合構造、を含む、
     請求項1に記載の固体撮像装置。
  15.  前記第2基板及び前記第3基板は、前記固体撮像装置の動作に係る各種の信号処理を実行するロジック回路、及び前記第1基板の前記画素の各々によって取得された画素信号を一時的に保持するメモリ回路、の少なくともいずれかを有する、
     請求項1に記載の固体撮像装置。
  16.  前記第2基板は、前記第1基板の前記画素の各々によって取得された画素信号をAD変換する画素信号処理回路を有し、
     前記第1の接続構造は、前記画素信号を前記画素信号処理回路に伝送するために、前記画素の各々に対応して存在する、
     請求項1に記載の固体撮像装置。
  17.  観察対象を電子的に撮影する固体撮像装置、を備え、
     前記固体撮像装置は、
     画素が配列された画素部が形成された第1半導体基板と、前記第1半導体基板上に積層された第1多層配線層と、を有する第1基板と、
     所定の機能を有する回路が形成された第2半導体基板と、前記第2半導体基板上に積層された第2多層配線層と、を有する第2基板と、
     所定の機能を有する回路が形成された第3半導体基板と、前記第3半導体基板上に積層された第3多層配線層と、を有する第3基板と、
     がこの順に積層されて構成され、
     前記第1基板と前記第2基板とは、前記第1多層配線層と前記第2多層配線層とが対向するように貼り合わされ、
     前記第1基板と前記第2基板とを電気的に接続するための第1の接続構造は、前記第1基板及び前記第2基板の貼り合わせ面に存在し、前記貼り合わせ面にそれぞれ形成される電極同士が直接接触した状態で接合している電極接合構造、を含む、
     電子機器。
PCT/JP2018/011565 2017-04-04 2018-03-23 固体撮像装置、及び電子機器 WO2018186192A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CN202311394464.0A CN117558737A (zh) 2017-04-04 2018-03-23 固态摄像装置和电子设备
KR1020237020289A KR102671085B1 (ko) 2017-04-04 2018-03-23 고체 촬상 장치 및 전자 기기
KR1020197027324A KR102545846B1 (ko) 2017-04-04 2018-03-23 고체 촬상 장치, 및 전자 기기
DE112018001862.8T DE112018001862T5 (de) 2017-04-04 2018-03-23 Festkörper-bildaufnahmevorrichtung und elektronisches gerät
US16/497,084 US11289526B2 (en) 2017-04-04 2018-03-23 Solid-state imaging device and electronic apparatus
CN202311395129.2A CN117558738A (zh) 2017-04-04 2018-03-23 固态摄像装置和电子设备
CN201880021143.7A CN110574164B (zh) 2017-04-04 2018-03-23 固态摄像装置和电子设备
JP2019511147A JPWO2018186192A1 (ja) 2017-04-04 2018-03-23 固体撮像装置、及び電子機器
KR1020247017693A KR20240091074A (ko) 2017-04-04 2018-03-23 고체 촬상 장치 및 전자 기기
US17/592,025 US11955500B2 (en) 2017-04-04 2022-02-03 Solid-state imaging device and electronic apparatus
JP2023022003A JP2023057137A (ja) 2017-04-04 2023-02-15 固体撮像装置、及び電子機器
US18/594,924 US20240274641A1 (en) 2017-04-04 2024-03-04 Solid-state imaging device and electronic apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017074807 2017-04-04
JP2017-074807 2017-04-04
JP2017-130384 2017-07-03
JP2017130384 2017-07-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/497,084 A-371-Of-International US11289526B2 (en) 2017-04-04 2018-03-23 Solid-state imaging device and electronic apparatus
US17/592,025 Continuation US11955500B2 (en) 2017-04-04 2022-02-03 Solid-state imaging device and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2018186192A1 true WO2018186192A1 (ja) 2018-10-11

Family

ID=63712068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011565 WO2018186192A1 (ja) 2017-04-04 2018-03-23 固体撮像装置、及び電子機器

Country Status (7)

Country Link
US (3) US11289526B2 (ja)
JP (2) JPWO2018186192A1 (ja)
KR (3) KR20240091074A (ja)
CN (3) CN117558738A (ja)
DE (1) DE112018001862T5 (ja)
TW (2) TWI768015B (ja)
WO (1) WO2018186192A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170936A1 (ja) * 2019-02-20 2020-08-27 ソニーセミコンダクタソリューションズ株式会社 撮像装置
KR20210075075A (ko) * 2018-10-17 2021-06-22 소니 세미컨덕터 솔루션즈 가부시키가이샤 촬상 소자 및 전자 기기
WO2021153404A1 (ja) * 2020-01-29 2021-08-05 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子及び電子機器
JP2021141451A (ja) * 2020-03-05 2021-09-16 キヤノン株式会社 半導体装置及び機器
US20220037382A1 (en) * 2018-12-20 2022-02-03 Sony Semiconductor Solutions Corporation Backside-illumination solid-state image pickup apparatus and backside-illumination solid-state image-pickup-apparatus manufacturing method, image pickup apparatus, and electronic equipment
WO2022091607A1 (ja) * 2020-10-27 2022-05-05 ソニーセミコンダクタソリューションズ株式会社 受光装置及び測距装置
WO2022158379A1 (ja) * 2021-01-22 2022-07-28 キヤノン株式会社 光電変換装置、光電変換システム、および移動体
WO2022263967A1 (ja) * 2021-06-17 2022-12-22 株式会社半導体エネルギー研究所 撮像装置および電子機器
WO2023106308A1 (ja) * 2021-12-10 2023-06-15 ソニーセミコンダクタソリューションズ株式会社 受光装置
WO2023120317A1 (ja) * 2021-12-22 2023-06-29 キヤノン株式会社 半導体デバイス、光電変換システム、移動体
WO2023131994A1 (ja) * 2022-01-05 2023-07-13 キヤノン株式会社 光電変換装置、光電変換システム、および移動体
US11735616B2 (en) * 2021-12-29 2023-08-22 Nanya Technology Corporation Optical semiconductor device with integrated dies
DE112021006085T5 (de) 2020-11-20 2023-09-21 Sony Semiconductor Solutions Corporation Festkörperbildgebungselement, herstellungsverfahren und elektronische einrichtung
WO2024101204A1 (ja) * 2022-11-10 2024-05-16 ソニーセミコンダクタソリューションズ株式会社 光検出装置及び積層基板
US12148787B2 (en) 2018-10-17 2024-11-19 Sony Semiconductor Solutions Corporation Image sensor and electronic apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186192A1 (ja) 2017-04-04 2018-10-11 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、及び電子機器
JP2019165312A (ja) * 2018-03-19 2019-09-26 ソニーセミコンダクタソリューションズ株式会社 撮像装置および電子機器
WO2020004011A1 (ja) * 2018-06-29 2020-01-02 ソニーセミコンダクタソリューションズ株式会社 半導体装置および半導体装置の製造方法
TWI852974B (zh) * 2019-02-01 2024-08-21 日商索尼半導體解決方案公司 受光元件、固體攝像裝置及測距裝置
JP2021027277A (ja) * 2019-08-08 2021-02-22 キヤノン株式会社 光電変換装置、光電変換システム
KR20210053392A (ko) * 2019-11-01 2021-05-12 삼성전자주식회사 센서 소자
FR3114439B1 (fr) * 2020-09-18 2022-10-07 Commissariat Energie Atomique Circuit microelectronique tridimensionnel a repartition optimisee de ses fonctions numerique et analogique
EP4345904A3 (en) * 2020-10-29 2024-06-05 Canon Kabushiki Kaisha Photoelectric conversion apparatus, photoelectric conversion system, and moving body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099582A (ja) * 2012-10-18 2014-05-29 Sony Corp 固体撮像装置
JP2015135938A (ja) * 2013-12-19 2015-07-27 ソニー株式会社 半導体装置、半導体装置の製造方法、及び電子機器
JP2016171297A (ja) * 2015-03-12 2016-09-23 ソニー株式会社 固体撮像装置および製造方法、並びに電子機器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094720A (ja) * 2010-10-27 2012-05-17 Sony Corp 固体撮像装置、半導体装置、固体撮像装置の製造方法、半導体装置の製造方法、及び電子機器
US8957358B2 (en) * 2012-04-27 2015-02-17 Taiwan Semiconductor Manufacturing Company, Ltd. CMOS image sensor chips with stacked scheme and methods for forming the same
US10090349B2 (en) * 2012-08-09 2018-10-02 Taiwan Semiconductor Manufacturing Company, Ltd. CMOS image sensor chips with stacked scheme and methods for forming the same
US9711555B2 (en) * 2013-09-27 2017-07-18 Taiwan Semiconductor Manufacturing Company, Ltd. Dual facing BSI image sensors with wafer level stacking
TWI676279B (zh) 2013-10-04 2019-11-01 新力股份有限公司 半導體裝置及固體攝像元件
TWI676280B (zh) * 2014-04-18 2019-11-01 日商新力股份有限公司 固體攝像裝置及具備其之電子機器
KR102464716B1 (ko) * 2015-12-16 2022-11-07 삼성전자주식회사 반도체 장치 및 그 제조 방법
WO2018186192A1 (ja) 2017-04-04 2018-10-11 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、及び電子機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099582A (ja) * 2012-10-18 2014-05-29 Sony Corp 固体撮像装置
JP2015135938A (ja) * 2013-12-19 2015-07-27 ソニー株式会社 半導体装置、半導体装置の製造方法、及び電子機器
JP2016171297A (ja) * 2015-03-12 2016-09-23 ソニー株式会社 固体撮像装置および製造方法、並びに電子機器

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210075075A (ko) * 2018-10-17 2021-06-22 소니 세미컨덕터 솔루션즈 가부시키가이샤 촬상 소자 및 전자 기기
US12148787B2 (en) 2018-10-17 2024-11-19 Sony Semiconductor Solutions Corporation Image sensor and electronic apparatus
KR102720386B1 (ko) * 2018-10-17 2024-10-23 소니 세미컨덕터 솔루션즈 가부시키가이샤 촬상 소자 및 전자 기기
US20220037382A1 (en) * 2018-12-20 2022-02-03 Sony Semiconductor Solutions Corporation Backside-illumination solid-state image pickup apparatus and backside-illumination solid-state image-pickup-apparatus manufacturing method, image pickup apparatus, and electronic equipment
WO2020170936A1 (ja) * 2019-02-20 2020-08-27 ソニーセミコンダクタソリューションズ株式会社 撮像装置
JP7541971B2 (ja) 2019-02-20 2024-08-29 ソニーセミコンダクタソリューションズ株式会社 撮像装置
WO2021153404A1 (ja) * 2020-01-29 2021-08-05 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子及び電子機器
US11990497B2 (en) 2020-01-29 2024-05-21 Sony Semiconductor Solutions Corporation Solid-state imaging element and electronic device
JP2021141451A (ja) * 2020-03-05 2021-09-16 キヤノン株式会社 半導体装置及び機器
JP7551304B2 (ja) 2020-03-05 2024-09-17 キヤノン株式会社 半導体装置及び機器
WO2022091607A1 (ja) * 2020-10-27 2022-05-05 ソニーセミコンダクタソリューションズ株式会社 受光装置及び測距装置
DE112021006085T5 (de) 2020-11-20 2023-09-21 Sony Semiconductor Solutions Corporation Festkörperbildgebungselement, herstellungsverfahren und elektronische einrichtung
WO2022158379A1 (ja) * 2021-01-22 2022-07-28 キヤノン株式会社 光電変換装置、光電変換システム、および移動体
WO2022263967A1 (ja) * 2021-06-17 2022-12-22 株式会社半導体エネルギー研究所 撮像装置および電子機器
WO2023106308A1 (ja) * 2021-12-10 2023-06-15 ソニーセミコンダクタソリューションズ株式会社 受光装置
WO2023120317A1 (ja) * 2021-12-22 2023-06-29 キヤノン株式会社 半導体デバイス、光電変換システム、移動体
US11735616B2 (en) * 2021-12-29 2023-08-22 Nanya Technology Corporation Optical semiconductor device with integrated dies
WO2023131994A1 (ja) * 2022-01-05 2023-07-13 キヤノン株式会社 光電変換装置、光電変換システム、および移動体
WO2024101204A1 (ja) * 2022-11-10 2024-05-16 ソニーセミコンダクタソリューションズ株式会社 光検出装置及び積層基板

Also Published As

Publication number Publication date
KR102671085B1 (ko) 2024-05-31
US11955500B2 (en) 2024-04-09
TW202236658A (zh) 2022-09-16
CN110574164A (zh) 2019-12-13
KR20240091074A (ko) 2024-06-21
DE112018001862T5 (de) 2019-12-19
JPWO2018186192A1 (ja) 2020-02-13
US20210104571A1 (en) 2021-04-08
TW201842660A (zh) 2018-12-01
CN117558737A (zh) 2024-02-13
CN117558738A (zh) 2024-02-13
CN110574164B (zh) 2023-10-24
US20240274641A1 (en) 2024-08-15
US20220157877A1 (en) 2022-05-19
US11289526B2 (en) 2022-03-29
KR102545846B1 (ko) 2023-06-21
JP2023057137A (ja) 2023-04-20
KR20190131489A (ko) 2019-11-26
KR20230096129A (ko) 2023-06-29
TWI768015B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2018186192A1 (ja) 固体撮像装置、及び電子機器
US12002833B2 (en) Light detecting device with multiple substrates
US20220359605A1 (en) Solid-state imaging device and electronic device including coupling structures for electrically interconnecting stacked semiconductor substrates
US12057462B2 (en) Solid-state imaging device and electronic apparatus
US12027558B2 (en) Solid-state imaging device and electronic apparatus
US11804507B2 (en) Solid-state imaging device and electronic apparatus
TW201909440A (zh) 固體攝像裝置
US20220359603A1 (en) Solid-state imaging device and electronic apparatus
WO2018186193A1 (ja) 固体撮像装置、及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511147

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197027324

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18781528

Country of ref document: EP

Kind code of ref document: A1