WO2022263967A1 - 撮像装置および電子機器 - Google Patents

撮像装置および電子機器 Download PDF

Info

Publication number
WO2022263967A1
WO2022263967A1 PCT/IB2022/055227 IB2022055227W WO2022263967A1 WO 2022263967 A1 WO2022263967 A1 WO 2022263967A1 IB 2022055227 W IB2022055227 W IB 2022055227W WO 2022263967 A1 WO2022263967 A1 WO 2022263967A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive layer
circuit
transistor
conductive
Prior art date
Application number
PCT/IB2022/055227
Other languages
English (en)
French (fr)
Inventor
池田隆之
大貫達也
加藤清
山崎舜平
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to CN202280041851.3A priority Critical patent/CN117480611A/zh
Priority to KR1020237044999A priority patent/KR20240021835A/ko
Priority to JP2023529146A priority patent/JPWO2022263967A1/ja
Publication of WO2022263967A1 publication Critical patent/WO2022263967A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Definitions

  • One aspect of the present invention relates to an imaging device.
  • one embodiment of the present invention is not limited to the above technical field.
  • a technical field of one embodiment of the invention disclosed in this specification and the like relates to a product, a method, or a manufacturing method.
  • one aspect of the invention relates to a process, machine, manufacture, or composition of matter. Therefore, the technical field of one embodiment of the present invention disclosed in this specification more specifically includes semiconductor devices, display devices, liquid crystal display devices, light-emitting devices, lighting devices, power storage devices, storage devices, imaging devices, and the like.
  • Driving methods or their manufacturing methods can be mentioned as an example.
  • a semiconductor device in this specification and the like refers to all devices that can function by utilizing semiconductor characteristics.
  • a transistor and a semiconductor circuit are modes of a semiconductor device.
  • Storage devices, display devices, imaging devices, and electronic devices may include semiconductor devices.
  • Patent Document 1 discloses an imaging device in which a transistor including an oxide semiconductor and having extremely low off-state current is used in a pixel circuit.
  • Imaging devices such as CMOS image sensors can easily capture high-quality images due to technological development. In the next generation, imaging devices are required to have higher functionality.
  • imaging devices are incorporated into various devices, there is also a demand for downsizing. Therefore, it is desirable to reduce the size of the sensor chip even when adding functions. Therefore, it is preferable to stack and arrange the elements for adding functions to the imaging device.
  • an object of one embodiment of the present invention is to provide a highly functional imaging device. Another object is to provide an imaging device that can be manufactured in a small number of steps. Another object is to provide an imaging device that can be manufactured with high yield. Another object is to provide a compact imaging device. Another object is to provide an imaging device or the like that can operate at high speed. Another object is to provide a highly reliable imaging device. Another object is to provide a novel imaging device or the like. Another object of the present invention is to provide a method for driving the imaging device. Another object is to provide a novel semiconductor device or the like.
  • One embodiment of the present invention relates to a high-performance imaging device that can be manufactured with fewer steps.
  • a first aspect of the present invention has a first layer, a second layer, a third layer, a fourth layer, and a fifth layer having overlapping regions;
  • the second layer, the third layer and the fourth layer are provided between the first layer and the fifth layer, and the second layer is between the first layer and the third layer.
  • a fourth layer is provided between the third layer and the fifth layer, and the first layer includes a readout circuit, a first driver circuit, and a second driver circuit.
  • a second layer having a first transistor forming a first memory circuit
  • a third layer having a second transistor forming a second memory circuit and a first conductive layer.
  • the fourth layer has a third transistor forming a pixel circuit, a third conductive layer, and a fourth conductive layer;
  • the layer has a photoelectric conversion device that constitutes a pixel circuit, the pixel circuit is electrically connected to the readout circuit through the first conductive layer and the third conductive layer, and the pixel circuit is connected to the second It is electrically connected to the first driver circuit through the conductive layer and the fourth conductive layer, and the first memory circuit and the second memory circuit are electrically connected to the reading circuit and the second driver circuit.
  • the first transistor, the second transistor, and the third transistor each have a metal oxide in a channel forming region, a first conductive layer and a third conductive layer, a second conductive layer, and a fourth conductive layer;
  • Each of the layers is a directly bonded imager.
  • the first to fourth conductive layers are made of the same metal material, and the metal material is preferably Cu, Al, W, or Au.
  • a second aspect of the invention has a first layer, a second layer, a third layer, a fourth layer, and a fifth layer having overlapping regions;
  • the second layer, the third layer and the fourth layer are provided between the first layer and the fifth layer, and the second layer is between the first layer and the third layer.
  • a fourth layer is provided between the third layer and the fifth layer, and the first layer includes a readout circuit, a first driver circuit, a second driver circuit, and a third driver circuit.
  • It has one conductive layer, a second conductive layer, a third conductive layer, a fourth conductive layer, a fifth conductive layer, and a sixth conductive layer, the second layer being , a first transistor, a seventh conductive layer, an eighth conductive layer, a ninth conductive layer, a tenth conductive layer, and an eleventh conductive layer, which constitute the first memory circuit; a 12th conductive layer, the third layer having a second transistor forming a second memory circuit, a 13th conductive layer, and a 14th conductive layer;
  • the 4th layer has a third transistor, a 15th conductive layer, and a 16th conductive layer that configure the pixel circuit, and the 5th layer has a photoelectric conversion device that configures the pixel circuit.
  • the pixel circuit is electrically connected to the readout circuit through the first conductive layer, the seventh conductive layer, the thirteenth conductive layer, and the fifteenth conductive layer, and the pixel circuit is connected to the second conductive layer.
  • the eighth conductive layer, the fourteenth conductive layer and the sixteenth conductive layer, and the first memory circuit is electrically connected to the first drive circuit through the third conductive layer and the ninth conductive layer.
  • the first memory circuit is electrically connected to the second drive circuit through the fourth conductive layer and the tenth conductive layer, and the second memory
  • the circuit is electrically connected to the readout circuit through the fifth and eleventh conductive layers, and the second memory circuit is electrically connected to the second through the sixth and twelfth conductive layers.
  • the first transistor, the second transistor, and the third transistor which are electrically connected to the driver circuit, have metal oxide in channel formation regions, and include a first conductive layer, a seventh conductive layer, and a second transistor. and eighth conductive layers, third and ninth conductive layers, fourth and tenth conductive layers, fifth and eleventh conductive layers, sixth conductive layers Each of the layers and the 12th conductive layer, the 13th and 15th conductive layer, the 14th conductive layer and the 16th conductive layer are directly bonded imaging devices.
  • the first to twelfth conductive layers are made of the same metal material
  • the thirteenth to sixteenth conductive layers are made of the same metal material
  • the metal materials are Cu, Al, W, or Au.
  • the second layer has a support region comprising a monocrystalline silicon substrate, and the seventh to twelfth conductive layers can be provided on the support region.
  • the first layer has an arithmetic circuit, and the arithmetic circuit can be electrically connected to the second driver circuit.
  • a third aspect of the present invention has a first layer, a second layer, a third layer, a fourth layer, and a fifth layer having overlapping regions;
  • the second layer, the third layer and the fourth layer are provided between the first layer and the fifth layer, and the second layer is between the first layer and the third layer.
  • a fourth layer is provided between the third layer and the fifth layer, and the first layer includes a readout circuit, a first driver circuit, a second driver circuit, and an arithmetic circuit.
  • a circuit, and the second layer includes a first transistor forming the first memory circuit, a first conductive layer, a second conductive layer, a third conductive layer, and a fourth transistor.
  • a conductive layer comprising a second transistor forming the second memory circuit, a fifth conductive layer, a sixth conductive layer, a seventh conductive layer, It has an eighth conductive layer, a ninth conductive layer, and a tenth conductive layer, and the fourth layer includes the third transistor, the eleventh conductive layer, and the 12 conductive layers, a fifth layer having a photoelectric conversion device forming a pixel circuit, the pixel circuit comprising the first conductive layer, the fifth conductive layer, the ninth conductive layer and the It is electrically connected to the readout circuit through the tenth conductive layer, and the pixel circuit is connected to the first through the second conductive layer, the sixth conductive layer, the tenth conductive layer, and the twelfth conductive layer.
  • the driver circuit is electrically connected, the first memory circuit is electrically connected to the arithmetic circuit, and the second memory circuit is electrically connected to the readout circuit via the third conductive layer and the seventh conductive layer.
  • the second memory circuit is electrically connected to the second drive circuit via the fourth conductive layer and the eighth conductive layer, and the first transistor, the second transistor and the third memory circuit are electrically connected to each other; has a metal oxide in a channel formation region, and includes a first conductive layer, a fifth conductive layer, a second conductive layer, a sixth conductive layer, a third conductive layer, and a seventh conductive layer.
  • the fourth and eighth conductive layers, the ninth and tenth conductive layers, and the tenth and twelfth conductive layers are directly bonded imagers.
  • the first to eighth conductive layers are made of the same metal material
  • the ninth to twelfth conductive layers are made of the same metal material
  • the metal materials are Cu, Al, W, or Au.
  • the third layer has a support region comprising a monocrystalline silicon substrate, and the fifth to eighth conductive layers can be provided on the support region.
  • the first layer and the fifth layer can have single crystal silicon substrates.
  • the metal oxide may include In, Zn, and M (where M is one or more of Al, Ti, Ga, Ge, Sn, Y, Zr, La, Ce, Nd, or Hf). can.
  • a highly functional imaging device can be provided.
  • An imaging device that can be manufactured in a small number of steps can be provided.
  • an imaging device that can be manufactured with high yield can be provided.
  • a compact imaging device can be provided.
  • an imaging device or the like capable of high-speed operation can be provided.
  • a highly reliable imaging device can be provided.
  • a new imaging device or the like can be provided.
  • a novel semiconductor device or the like can be provided.
  • FIG. 1 is a cross-sectional perspective view for explaining an imaging device.
  • 2A to 2C are diagrams for explaining a method of manufacturing a laminate.
  • 3A to 3D are diagrams for explaining a method of manufacturing a laminate.
  • 4A to 4C are block diagrams illustrating imaging devices.
  • 5A and 5B are block diagrams illustrating an imaging device.
  • FIG. 6 is a block diagram illustrating an imaging device.
  • 7A and 7B are block diagrams illustrating an imaging device.
  • 8A and 8B are block diagrams illustrating an imaging device.
  • 9A and 9B are block diagrams illustrating an imaging device.
  • 10A and 10B are block diagrams illustrating an imaging device.
  • 11A and 11B are circuit diagrams illustrating pixel circuits.
  • FIG. 12A is a diagram explaining the operation of the rolling shutter.
  • FIG. 12B is a diagram explaining the operation of the global shutter.
  • 13A and 13B are timing charts explaining the operation of the pixel circuit.
  • 14A and 14B are circuit diagrams illustrating pixel circuits.
  • FIG. 15 is a circuit diagram and block diagram illustrating a read circuit.
  • FIG. 16A is a diagram illustrating a memory circuit; 16B to 16E are diagrams illustrating memory cells.
  • FIG. 17A is a diagram illustrating a memory circuit; 17B and 17C are diagrams illustrating memory cells.
  • FIG. 18A is a diagram explaining hysteresis characteristics of a ferroelectric layer.
  • FIG. 18B is a timing chart explaining the operation of the memory cell.
  • FIG. 19 is a cross-sectional view explaining a pixel.
  • FIGS. 20A to 20C are diagrams illustrating a Si transistor.
  • 21A to 21D are diagrams illustrating an OS transistor.
  • FIG. 22 is a cross-sectional view explaining a pixel.
  • FIG. 23 is a cross-sectional view explaining a pixel.
  • FIG. 24 is a cross-sectional view explaining a pixel.
  • FIG. 25 is a cross-sectional view explaining a pixel.
  • FIG. 26 is a cross-sectional view explaining a pixel.
  • 27A to 27C are perspective views (cross-sectional views) illustrating pixels.
  • FIG. 28A is a diagram illustrating a package containing an imaging device.
  • FIG. 28B is a diagram illustrating a module containing an imaging device.
  • 29A to 29F are diagrams illustrating electronic devices.
  • 30A and 30B are diagrams for explaining the moving object.
  • the element may be composed of a plurality of elements as long as there is no functional problem.
  • multiple transistors operating as switches may be connected in series or in parallel.
  • the capacitor may be divided and arranged at a plurality of positions.
  • one conductor may have multiple functions such as wiring, electrode, and terminal, and multiple names may be used for the same element in this specification. Also, even if the circuit diagram shows that the elements are directly connected, the elements may actually be connected via one or more conductors. , such a configuration is also included in the category of direct connection in this specification.
  • One embodiment of the present invention is an imaging device having multiple stacked devices.
  • the imaging device is formed by laminating a plurality of layers or laminates having devices. Therefore, even with a configuration in which a plurality of circuits having different functions are laminated, the polishing process and the bonding process can be reduced, and the yield can be improved.
  • a pixel circuit can be provided in the first layer, a memory circuit can be provided in the second layer, and a pixel driver circuit and a memory circuit driver circuit can be provided in the third layer.
  • a compact imaging device can be formed. Further, by stacking each circuit, wiring delay and the like can be suppressed, and high-speed operation can be performed.
  • FIG. 1 is a cross-sectional perspective view illustrating an imaging device of one embodiment of the present invention.
  • the imager has layers 201 , 202 a , 202 b , 203 , 204 and 205 .
  • the imaging device is divided into a plurality of layers for clarity of explanation, but the types, quantities, and positions of the elements included in each layer are not limited to the description of this embodiment. .
  • elements such as insulating layers, wirings, and plugs near the boundaries between layers may belong to layers different from those described in this embodiment. Alternatively, elements different from these may be included.
  • the imaging device may have layers other than those described above.
  • Layer 201 has region 210 .
  • the region 210 can be provided with, for example, a readout circuit for the pixel circuit, a driver circuit for the pixel circuit, a driver circuit for the memory circuit, an arithmetic circuit, and the like.
  • Layer 202a has region 220a.
  • a first memory circuit or the like can be provided in the region 220a.
  • Layer 202b has regions 220b.
  • a second memory circuit or the like can be provided in the region 220b.
  • Layer 203 has region 230 .
  • pixel circuits excluding photoelectric conversion devices
  • part of the driver circuit of the pixel circuit included in the region 210 may be provided in the region 230 .
  • Layer 204 has regions in which photoelectric conversion devices 240 are provided.
  • a photodiode or the like can be used for the photoelectric conversion device 240 .
  • the photoelectric conversion device 240 can also be called an element of a pixel circuit.
  • Layer 205 has areas in which optical conversion layer 250 is provided. For example, a color filter or the like can be used for the optical conversion layer 250 . Layer 205 may also have a microlens array 255 .
  • the imaging device of one embodiment of the present invention includes the photoelectric conversion device 240, the pixel circuit provided in the region 230, the first memory circuit provided in the region 220a, the second memory circuit provided in the region 220b,
  • the region 210 includes a reading circuit for the pixel circuit, a driver circuit for the pixel circuit, a driver circuit for the memory circuit, an arithmetic circuit, and the like. Note that, for example, an image processing circuit or the like can be applied as the arithmetic circuit.
  • the photoelectric conversion device 240 preferably has sensitivity to visible light.
  • a Si photodiode using single crystal silicon for a photoelectric conversion layer can be used for the photoelectric conversion device 240 .
  • a photodiode with a photoelectric conversion layer made of single-crystal silicon has relatively wide spectral sensitivity characteristics from ultraviolet light to near-infrared light, and can detect light of various wavelengths by combining it with an optical conversion layer described later. can be done.
  • a photodiode having a photoelectric conversion layer made of single crystal silicon can also function as a highly sensitive avalanche photodiode by applying a relatively high voltage.
  • a compound semiconductor may be used as the photoelectric conversion layer of the pn junction photodiode.
  • compound semiconductors include gallium-arsenic-phosphorus compounds (GaAsP), gallium-phosphorus compounds (GaP), indium-gallium-arsenic compounds (InGaAs), lead-sulfur compounds (PbS), lead-selenium compounds (PbSe ), indium-arsenic compound (InAs), indium-antimony compound (InSb), mercury-cadmium-tellurium compound (HgCdTe), and the like can be used.
  • GaAsP gallium-arsenic-phosphorus compounds
  • GaP gallium-phosphorus compounds
  • InGaAs indium-gallium-arsenic compounds
  • PbS lead-sulfur compounds
  • PbSe lead-selenium compounds
  • InAs indium-arsenic compound
  • InSb indium-antimony compound
  • a compound semiconductor As a compound semiconductor, a compound semiconductor (also referred to as a 3-5 group compound semiconductor) having a group 13 element (aluminum, gallium, indium, etc.) and a group 15 element (nitrogen, phosphorus, arsenic, antimony, etc.), or a group 12 element (magnesium, zinc, cadmium, mercury, etc.) and a group 16 element (oxygen, sulfur, selenium, tellurium, etc.) (also referred to as a group 2-6 compound semiconductor).
  • group 13 element aluminum, gallium, indium, etc.
  • a group 15 element nitrogen, phosphorus, arsenic, antimony, etc.
  • a group 12 element magnesium, zinc, cadmium, mercury, etc.
  • a group 16 element oxygen, sulfur, selenium, tellurium, etc.
  • Compound semiconductors can change the bandgap depending on the combination of constituent elements or their atomic ratio, so photodiodes with sensitivity in various wavelength ranges from ultraviolet light to infrared light can be formed. .
  • the wavelength of ultraviolet light is from about 0.01 ⁇ m to about 0.38 ⁇ m
  • the wavelength of visible light is from about 0.38 ⁇ m to about 0.75 ⁇ m
  • the wavelength of near-infrared light is from about 0.75 ⁇ m to 2.5 ⁇ m. (near)
  • the wavelength of mid-infrared light can be generally defined as about 2.5 ⁇ m to about 4 ⁇ m
  • the wavelength of far-infrared light can be generally defined as about 4 ⁇ m to about 1000 ⁇ m.
  • GaP or the like can be used for the photoelectric conversion layer.
  • silicon, GaAsP, or the like described above can be used for the photoelectric conversion layer.
  • InGaAs or the like can be used for the photoelectric conversion layer in order to form a photodiode having photosensitivity from visible light to mid-infrared light.
  • PbS, InAs, or the like can be used for the photoelectric conversion layer in order to form a photodiode having photosensitivity from near-infrared light to mid-infrared light.
  • PbSe, InSb, HgCdTe, or the like can be used for the photoelectric conversion layer in order to form a photodiode having photosensitivity from mid-infrared light to far-infrared light.
  • the photodiode using the above compound semiconductor may be a pin junction as well as a pn junction.
  • the pn junction and the pin junction are not limited to homojunction structures, and may be heterojunction structures.
  • a first compound semiconductor in a heterojunction, can be used for one layer of the pn junction structure, and a second compound semiconductor different from the first compound semiconductor can be used for the other layer.
  • the first compound semiconductor can be used for any one layer or two layers of the pin junction structure, and the second compound semiconductor different from the first compound semiconductor can be used for the other layers.
  • One of the first compound semiconductor and the second compound semiconductor may be a single semiconductor such as silicon.
  • the photoelectric conversion layer of the photodiode may be formed using different materials for each pixel.
  • an imaging device having two or three types of pixels selected from pixels that detect ultraviolet light, pixels that detect visible light, and pixels that detect infrared light is formed. can do.
  • a pn junction photodiode having a photoelectric conversion layer made of a selenium-based material may be used as the photoelectric conversion device 240 .
  • a photoelectric conversion device using a selenium-based material has a characteristic of high external quantum efficiency for visible light.
  • the photoelectric conversion device by using avalanche multiplication, it is possible to increase the amplification of electrons with respect to the amount of incident light.
  • the selenium-based material has a high light absorption coefficient, it has advantages in terms of production, such as the fact that the photoelectric conversion layer can be produced as a thin film.
  • a thin film of a selenium-based material can be formed using a vacuum deposition method, a sputtering method, or the like.
  • selenium-based material crystalline selenium (single crystal selenium, polycrystalline selenium) and amorphous selenium can be used. They have photosensitivity from ultraviolet to visible light.
  • a copper-indium-selenium compound (CIS) or a copper-indium-gallium-selenium compound (CIGS) can be used. These have photosensitivity from ultraviolet light to near-infrared light.
  • a transistor including a metal oxide for a channel formation region (hereinafter referred to as an OS transistor) is preferably used as a component of the pixel circuit.
  • the OS transistor has extremely low off-state current, and can suppress unnecessary outflow of data from the pixel circuit. Therefore, it is possible to perform a global shutter operation in which a plurality of pixel circuits acquire data all at once and sequentially read out the data with a simple circuit configuration.
  • a pixel driver circuit can be formed in a common process with a pixel circuit.
  • the OS transistor has a higher drain breakdown voltage than the Si transistor.
  • An avalanche photodiode is preferably operated by applying a relatively high voltage (for example, 10 V or higher). Therefore, when an avalanche photodiode is used in combination with an OS transistor, an imaging device with high reliability can be obtained.
  • a light-blocking layer is preferably provided between the avalanche photodiode and the OS transistor in the pixel.
  • the light-blocking layer can suppress a change in characteristics due to light irradiation of the OS transistor. In addition, it is possible to suppress stray light from entering other pixels by reflection of light irradiated near the OS transistor.
  • the light shielding layer can be formed of, for example, a metal layer, and may function as an electrode of the avalanche photodiode. Moreover, by using a metal for the light shielding layer, the light reaching the light shielding layer is reflected, and the sensitivity of the avalanche photodiode can be enhanced.
  • an OS transistor also for the first memory circuit and the second memory circuit (hereinafter sometimes referred to as memory circuits when the two are not distinguished).
  • OS transistor As a cell transistor in a memory circuit, unnecessary outflow of data can be suppressed, and the frequency of refresh can be suppressed. Therefore, power consumption can be suppressed.
  • a transistor having silicon in a channel formation region can also be used as a cell transistor of the memory circuit.
  • a ferroelectric capacitor may be used for a memory cell included in the memory circuit. Since the data held in the ferroelectric capacitor is non-volatile and no refresh operation is required, power consumption can be suppressed.
  • a readout circuit of a pixel circuit, a driver circuit of a pixel circuit, a driver circuit of a memory circuit, an arithmetic circuit, and the like are required to operate at high speed; therefore, transistors with high mobility are preferably used.
  • transistors with high mobility are preferably used.
  • Si transistors include transistors containing amorphous silicon, transistors containing crystalline silicon (microcrystalline silicon, low-temperature polysilicon, single-crystal silicon), and the like.
  • the pixel circuit may be formed of Si transistors.
  • the memory circuit (large-capacity memory) can be arranged near the driver circuit and the arithmetic circuit; thus, data can be exchanged at high speed and with low power consumption.
  • an arithmetic circuit can store data and perform arithmetic processing without accessing an external memory circuit.
  • the arithmetic circuit when shooting a high-resolution, high-frame-rate moving image, the arithmetic circuit must access the memory circuit at high speed. Therefore, data is stored in a primary storage device provided inside the arithmetic circuit. Therefore, the shooting time is limited by the capacity of the primary storage device.
  • a large-capacity memory circuit is provided at a position where an arithmetic circuit or the like can be accessed at high speed, and the memory circuit functions like a primary storage device provided inside the arithmetic circuit. be able to.
  • the primary storage device increases in capacity, the amount of data that can be stored increases, enabling higher frame rates, higher resolutions, and longer motion shooting.
  • the memory circuit included in the imaging device of one embodiment of the present invention is not limited to the above applications, and can be used as a primary memory device or a secondary memory device outside the arithmetic circuit.
  • An OS transistor can be formed on a Si device (Si transistor, Si photodiode) via an insulating layer without using complicated processes such as bonding and bump bonding.
  • layer 202a is formed on layer 201 and layer 202b is formed on layer 202a.
  • layer 201 is a layer having a silicon substrate and regions 210 are formed with circuits having Si transistors.
  • a memory circuit having an OS transistor is formed in each of the region 220a of the layer 202a and the region 220b of the layer 202b.
  • layer 203 is formed over layer 204, as shown in FIG. 2B.
  • the layer 204 is a layer having a silicon substrate, and a Si photodiode is formed on the layer 204 as the photoelectric conversion device 240 .
  • a pixel circuit having an OS transistor is formed in the region 230 of the layer 203 .
  • FIG. 2C shows a configuration in which a layer 205 is further provided on the layer 204 of the laminate shown in FIG. 2C.
  • the polishing step and the bonding step are required at least a plurality of times.
  • the step of combining can be performed once.
  • the stack configuration shown in FIG. 3D differs from that shown in FIG. 2C in that it has position B between layers 201 and 202a.
  • the thin film devices provided in the region 220a of the layer 202a and the region 220b of the layer 202b shown in FIG. 3B are difficult to handle individually, so they are provided on the supporting region 208 of the layer 202a.
  • the support region 208 can have, for example, a single crystal silicon substrate and an insulating layer provided on the single crystal silicon substrate. Note that, instead of the single crystal silicon substrate, other semiconductor single crystal substrates, quartz substrates, glass substrates, ceramic substrates, or the like can be used for the support region 208 .
  • the bonding process is performed twice, but since a good product can be selected for each structure shown in FIGS. 3A to 3C, the manufacturing cost can be reduced.
  • the configuration of FIG. 2A if a device provided on layer 202a or layer 202b is defective, the entire device is defective even if layer 201 is non-defective.
  • loss of the layer 201 can be prevented even if a similar defect occurs.
  • FIG. 4A is a simplified block diagram for explaining circuits and the like formed in each layer and their electrical connections in the configuration shown in FIG. 2C. Note that electrical connections are not shown here because the photoelectric conversion device 240 included in the layer 204 is included in the pixel circuit 331 (PIX) in terms of circuitry.
  • PIX pixel circuit 331
  • a plurality of pixel circuits 331 are arranged in a matrix on the layer 203 .
  • the pixel circuit 331 is electrically connected to the readout circuit 311 (RC) included in the layer 201 through the conductive layers 11 and 13 .
  • the pixel circuit 331 is electrically connected to the driver circuit 332 (PD) included in the layer 201 through the conductive layers 12 and 14 .
  • conductive layer 11 and conductive layer 12 are provided on layer 202b.
  • Conductive layer 13 and conductive layer 14 are provided on layer 203 .
  • the conductive layers 11 and 13 and the conductive layers 12 and 14 are directly bonded. Therefore, the conductive layers 11 to 14 are preferably made of the same metal material.
  • the readout circuit 311 may have a correlated double sampling circuit (CDS circuit) to reduce noise and an A/D converter to convert analog data to digital data.
  • CDS circuit correlated double sampling circuit
  • the drive circuit 332 can control the data acquisition operation, selection operation, and the like of the pixel circuit 331 .
  • the drive circuit 332 can have, for example, a gate driver 343 (GD) and a source driver 344 (SD), as shown in FIG. 4B.
  • a shift register or the like can be used for the gate driver 343 and the source driver 344, for example.
  • the gate driver can be called a row driver
  • the source driver can be called a column driver.
  • the reading circuit 311 is electrically connected to a memory circuit 321a (MEM) in the layer 202a and a memory circuit 321b (MEM) in the layer 202b.
  • the memory circuits 321 a and 321 b can hold digital data output from the reading circuit 311 .
  • digital data can be output from the reading circuit 311 to the outside.
  • the memory circuits 321a and 321b are large-capacity memories each having a memory cell array.
  • Memory circuit 321a and memory circuit 321b are electrically connected to drive circuit 312 (MD).
  • the drive circuit 312 can have, for example, a row driver 341 (RD) and a column driver 342 (CD), as shown in FIG. 4C.
  • RD row driver 341
  • CD column driver 342
  • a decoder or the like can be used for the row driver 341 and column driver 342, for example, a decoder or the like can be used.
  • Data read from the memory circuit 321 a or the memory circuit 321 b by the driver circuit 312 can be input to an arithmetic circuit 314 electrically connected to the driver circuit 312 .
  • the arithmetic circuit 314 can perform pixel processing, for example, and output the processed data to the outside.
  • the number of readout circuits 311 can be the same as the number of pixel circuits 331 , and one readout circuit 311 is electrically connected to one pixel circuit 331 .
  • the reading circuit 311 is connected to a plurality of wirings 353, and each wiring 353 is electrically connected to one memory cell 322 included in the memory circuit 321a or one memory cell 323 included in the memory circuit 321b. Note that data holding circuits may be provided between the reading circuit 311 and the memory cell 322 and between the reading circuit 311 and the memory cell 323 .
  • the A/D converter included in the reading circuit 311 parallel-outputs binary data for a predetermined number of bits. Therefore, the A/D converter is connected to the memory cells 322 or 323 corresponding to the number of bits. For example, when the output of the A/D converter is 8 bits, it is electrically connected to 8 memory cells 322 or 8 memory cells 323 .
  • FIGS. 4 and 5A show examples in which the readout circuit 311 is connected to the memory circuits 321a and 321b, but the configuration of these connections is not limited to this.
  • the readout circuit 311 may be connected to the memory circuits 321a and 321b via the arithmetic circuit 314.
  • the reading circuit 311 may be connected to the memory circuits 321 a and 321 b through an arithmetic circuit different from the arithmetic circuit 314 .
  • the arithmetic circuit can also use part of the memory circuit 321a and the memory circuit 321b as a cache memory. Note that this configuration can also be applied to other configuration examples described in this embodiment.
  • analog data obtained by all the pixel circuits 331 can be A/D-converted in parallel, and the converted digital data can be stored in the memory circuit 321a or the memory.
  • Circuit 321b can be written directly. In other words, the process from imaging to storage in the memory circuit can be performed at high speed. It is also possible to perform the imaging operation, the A/D conversion operation, and the readout operation in parallel.
  • FIG. 6 is a simplified block diagram for explaining circuits and the like formed in each layer and their electrical connections in the configuration shown in FIG. 3D. Note that electrical connections are not shown here because the photoelectric conversion device 240 included in the layer 204 is included in the pixel circuit 331 (PIX) in terms of circuitry. Also, the description of elements common to Configuration Example 1 and the illustration of the support region 208 are omitted.
  • a plurality of pixel circuits 331 are arranged in a matrix on the layer 203 .
  • the pixel circuit 331 is electrically connected to the readout circuit 311 (RC) included in the layer 201 through the conductive layers 13 , 11 , 21 and 15 .
  • the pixel circuit 331 is electrically connected to a driver circuit 332 (PD) included in the layer 201 through the conductive layers 14, 12, 26, and 20.
  • the reading circuit 311 is electrically connected through the conductive layers 16 and 22 to a memory circuit 321a (MEM) included in the layer 202a. In addition, the reading circuit 311 is electrically connected to the memory circuit 321b (MEM) included in the layer 202b through the conductive layers 17 and 23 .
  • MEM memory circuit 321a
  • MEM memory circuit 321b
  • Memory circuit 321 a is electrically connected to drive circuit 312 (MD) through conductive layers 18 and 24 .
  • the memory circuit 321b is electrically connected to the drive circuit 312 (MD) through the conductive layers 19 and 25.
  • conductive layer 11 and conductive layer 12 are provided on layer 202b.
  • Conductive layer 13 and conductive layer 14 are provided on layer 203 .
  • the conductive layers 11 and 13 and the conductive layers 12 and 14 are directly bonded. Therefore, the conductive layers 11 to 14 are preferably made of the same metal material.
  • the conductive layers 15 to 20 are provided over the layer 201 .
  • the conductive layers 21-26 are provided on the support region 208 of the layer 202a.
  • Conductive layer 26 is directly bonded. Therefore, the conductive layers 15 to 26 are preferably made of the same metal material.
  • a circuit can be provided in the support region 208 as well.
  • a memory circuit driver circuit 313 may be provided in the support region 208, and the memory circuits 321a and 321b and the driver circuit 313 of the support region 208 may be electrically connected.
  • the driver circuit 312 may not be provided in the layer 201 .
  • one of the memory circuits 321 a and 321 b is electrically connected to the driver circuit 313 of the support region 208 and the other of the memory circuits 321 a and 321 b is electrically connected to the driver circuit 312 of the layer 201 .
  • FIG. 8A shows layer 201 and layer 203 in a laminate of layers 204 and 203 laminated together at position A, and layer 201 and layer 202b in a laminate in which layer 202a and layer 202b are laminated on layer 206. This is a configuration in which they are bonded together at position B.
  • FIG. 8A shows layer 201 and layer 203 in a laminate of layers 204 and 203 laminated together at position A, and layer 201 and layer 202b in a laminate in which layer 202a and layer 202b are laminated on layer 206. This is a configuration in which they are bonded together at position B.
  • layer 206 comprises a monocrystalline silicon substrate and region 260 may be provided with memory circuitry comprising Si transistors. With this configuration, the memory capacity can be further increased.
  • FIG. 8B is a simplified block diagram for explaining circuits and the like formed in each layer and their electrical connections in the configuration shown in FIG. 8A. Note that electrical connections are not shown here because the photoelectric conversion device 240 included in the layer 204 is included in the pixel circuit 331 (PIX) in terms of circuitry. Further, description of elements common to Configuration Example 1 and the like will be omitted.
  • a plurality of pixel circuits 331 are arranged in a matrix on the layer 203 .
  • the pixel circuit 331 is electrically connected to the readout circuit 311 (RC) included in the layer 201 through the conductive layers 33 and 31 .
  • the pixel circuit 331 is electrically connected to a driver circuit 332 (PD) included in the layer 201 through the conductive layers 34 and 32 .
  • the reading circuit 311 is electrically connected through the conductive layers 35 and 39 to the memory circuit 321b (MEM) included in the layer 202b. In addition, the reading circuit 311 is electrically connected to the memory circuit 321a (MEM) included in the layer 202a through the conductive layers 36 and 40 . In addition, the reading circuit 311 is electrically connected to the memory circuit 325 (MEM) included in the layer 206 through the conductive layers 37 and 41 .
  • Memory circuit 321a, memory circuit 321b and memory circuit 325 are electrically connected to drive circuit 312 (MD).
  • the drive circuit 312 is electrically connected to the arithmetic circuit 314 via the conductive layers 42 and 38 .
  • conductive layer 31 and conductive layer 32 are provided on layer 202b.
  • Conductive layer 33 and conductive layer 34 are provided on layer 203 .
  • the conductive layers 31 and 33 and the conductive layers 32 and 34 are directly bonded. Therefore, the conductive layers 31 to 34 are preferably made of the same metal material.
  • the conductive layers 35 to 38 are provided over the layer 201 .
  • the conductive layers 39 to 42 are provided in the layer 202b. Through the bonding process, the conductive layers 35 and 39, the conductive layers 36 and 40, the conductive layers 37 and 41, and the conductive layers 38 and 42 are directly bonded. Therefore, the conductive layers 35 to 42 are preferably made of the same metal material.
  • ⁇ Configuration example 4> 9A shows a structure in which the layer 202b and the layer 203 in the laminate of the layers 204 and 203 are attached at position A, and the layer 202a and the layer 202b are attached at position B in a configuration in which the layer 202a is provided on the layer 201. It is a combined configuration.
  • layer 202b has support regions 208.
  • This structure is an example in which the memory circuit 324 included in the layer 202 a is used as a primary storage device for the arithmetic circuit 314 .
  • the memory circuit is used as the primary storage device of the arithmetic circuit 314. It is preferable to shorten the wiring length between the memory circuit and the arithmetic circuit 314 as much as possible. Therefore, it is preferable to electrically connect the memory circuit 324 and the arithmetic circuit without using a bonding structure.
  • FIG. 9B is a simplified block diagram for explaining circuits and the like formed in each layer and their electrical connections in the configuration shown in FIG. 9A. Note that electrical connections are not shown here because the photoelectric conversion device 240 included in the layer 204 is included in the pixel circuit 331 (PIX) in terms of circuitry. Further, description of elements common to Configuration Example 1 and the like will be omitted.
  • a plurality of pixel circuits 331 are arranged in a matrix on the layer 203 .
  • the pixel circuit 331 is electrically connected to the readout circuit 311 (RC) included in the layer 201 through the conductive layers 13 , 11 , 59 and 55 .
  • the pixel circuit 331 is electrically connected to a driver circuit 332 (PD) included in the layer 201 through the conductive layers 14, 12, 62, and 58.
  • the reading circuit 311 is electrically connected through the conductive layers 56 and 60 to the memory circuit 321b (MEM) included in the layer 202b.
  • MEM memory circuit 321b
  • Memory circuit 321 b is electrically connected to drive circuit 312 (MD) through conductive layer 61 and conductive layer 57 . Further, the driving circuit 312 is electrically connected to the arithmetic circuit 314 . The arithmetic circuit 314 is electrically connected to the memory circuit 324 included in the layer 202a. Note that the memory circuit 324 and the driver circuit 312 may be electrically connected and the memory circuit 324 may be driven by the driver circuit 312 .
  • conductive layer 11 and conductive layer 12 are provided on layer 202b.
  • Conductive layer 13 and conductive layer 14 are provided on layer 203 .
  • the conductive layers 11 and 13 and the conductive layers 12 and 14 are directly bonded. Therefore, the conductive layers 11 to 14 are preferably made of the same metal material.
  • the conductive layers 55 to 58 are provided in the layer 202a.
  • the conductive layers 59 to 62 are provided in the support region 208 included in the layer 202b.
  • the conductive layers 55 and 59, the conductive layers 56 and 60, the conductive layers 57 and 61, and the conductive layers 58 and 62 are directly bonded. Therefore, the conductive layers 55 to 62 are preferably made of the same metal material.
  • a circuit can be provided in the support region 208 as well.
  • a memory circuit driver circuit 313 may be provided in the support region 208, and the memory circuit 321b and the driver circuit 313 of the support region 208 may be electrically connected.
  • the driver circuit 312 may not be provided in the layer 201 .
  • FIG. 10A shows the layer 202b and the layer 203 in the laminate of the layers 204 and 203 attached at the position A, and the layer 201 and the layer 202b attached at the position B in the structure in which the layer 202a is provided on the layer 201. It is a combined configuration.
  • layer 202b has support regions 208.
  • FIG. 10A shows the layer 202b and the layer 203 in the laminate of the layers 204 and 203 attached at the position A, and the layer 201 and the layer 202b attached at the position B in the structure in which the layer 202a is provided on the layer 201. It is a combined configuration.
  • layer 202b has support regions 208.
  • This configuration is an example of using the memory circuit 324 included in the layer 202 a exclusively for the primary storage circuit of the arithmetic circuit 314 . Further, by arranging the layer 202a on the bottom side and providing an electrode (which may be a bump) exposed to the outside, mounting on a printed circuit board or the like can be facilitated. Alternatively, it can be attached to a laminate having other circuits or the like.
  • FIG. 10B is a simple block diagram for explaining circuits and the like formed in each layer and electrical connections thereof in the configuration shown in FIG. 10A. Note that electrical connections are not shown here because the photoelectric conversion device 240 included in the layer 204 is included in the pixel circuit 331 (PIX) in terms of circuitry. Further, description of elements common to Configuration Example 1 and the like will be omitted.
  • a plurality of pixel circuits 331 are arranged in a matrix on the layer 203 .
  • the pixel circuit 331 is electrically connected to the readout circuit 311 (RC) included in the layer 201 through the conductive layers 13 , 11 , 79 and 75 .
  • the pixel circuit 331 is electrically connected to a driver circuit 332 (PD) included in the layer 201 through the conductive layers 14, 12, 82, and 78.
  • the readout circuit 311 is electrically connected to the memory circuit 321b (MEM) included in the layer 202b through the conductive layers 76 and 80 .
  • MEM memory circuit 321b
  • Memory circuit 321 b is electrically connected to drive circuit 312 (MD) through conductive layer 81 and conductive layer 77 . Further, the driving circuit 312 is electrically connected to the arithmetic circuit 314 . The arithmetic circuit 314 is electrically connected to the memory circuit 324 included in the layer 202a. Note that the memory circuit 324 and the driver circuit 312 may be electrically connected and the memory circuit 324 may be driven by the driver circuit 312 .
  • the reading circuit 311 is electrically connected to the conductive layer 83 provided in the layer 202a.
  • the arithmetic circuit is electrically connected to a conductive layer 84 provided on layer 202a.
  • the conductive layers 83 and 84 function as terminals for outputting data to the outside.
  • the conductive layers 83 and 84 can also be used as terminals for mounting on a printed circuit board or the like, or as conductive layers for bonding to layers or laminates having other circuits.
  • conductive layer 11 and conductive layer 12 are provided on layer 202b.
  • Conductive layer 13 and conductive layer 14 are provided on layer 203 .
  • the conductive layers 11 and 13 and the conductive layers 12 and 14 are directly bonded. Therefore, the conductive layers 11 to 14 are preferably made of the same metal material.
  • the conductive layers 75 to 78 are provided over the layer 201 .
  • the conductive layers 79 to 82 are provided in the support region 208 included in the layer 202b.
  • the conductive layers 75 and 79, the conductive layers 76 and 80, the conductive layers 77 and 81, and the conductive layers 78 and 82 are directly bonded. Therefore, the conductive layers 75 to 82 are preferably made of the same metal material.
  • a circuit can be provided in the support region 208 as well.
  • a memory circuit driver circuit 313 may be provided in the support region 208, and the memory circuit 321b and the driver circuit 313 of the support region 208 may be electrically connected.
  • the driver circuit 312 may not be provided in the layer 201 .
  • FIG. 11A is a circuit diagram illustrating an example of the pixel circuit 331.
  • FIG. Pixel circuit 331 can include photoelectric conversion device 240 , transistor 103 , transistor 104 , transistor 105 , transistor 106 and capacitor 108 . Note that a configuration in which the capacitor 108 is not provided may be employed. In this specification, the configuration excluding the photoelectric conversion device 240 among the above elements may be referred to as a pixel circuit.
  • One electrode (cathode) of the photoelectric conversion device 240 is electrically connected to one of the source and drain of the transistor 103 .
  • the other of the source and drain of transistor 103 is electrically connected to one of the source and drain of transistor 104 .
  • One of the source and drain of transistor 104 is electrically connected to one electrode of capacitor 108 .
  • One electrode of capacitor 108 is electrically connected to the gate of transistor 105 .
  • One of the source and drain of transistor 105 is electrically connected to one of the source and drain of transistor 106 .
  • a wiring connecting the other of the source or drain of the transistor 103, one electrode of the capacitor 108, and the gate of the transistor 105 is a node FD.
  • the node FD can function as a charge detection portion.
  • the other electrode (anode) of the photoelectric conversion device 240 is electrically connected to the wiring 121 .
  • a gate of the transistor 103 is electrically connected to the wiring 127 .
  • the other of the source and drain of the transistor 104 is electrically connected to the wiring 122 .
  • the other of the source and drain of the transistor 105 is electrically connected to the wiring 123 .
  • a gate of the transistor 104 is electrically connected to the wiring 126 .
  • a gate of the transistor 106 is electrically connected to the wiring 128 .
  • the other electrode of capacitor 108 is electrically connected to a reference potential line such as GND wiring, for example.
  • the other of the source and the drain of transistor 106 is electrically connected to wiring 352 .
  • the wirings 127, 126, and 128 can function as signal lines that control conduction of each transistor.
  • the wiring 352 can function as an output line.
  • the wirings 121, 122, and 123 can function as power supply lines.
  • the cathode side of the photoelectric conversion device 240 is electrically connected to the transistor 103, and the node FD is reset to a high potential for operation. high potential).
  • FIG. 11A shows a configuration in which the cathode of photoelectric conversion device 240 is electrically connected to node FD
  • the anode side of photoelectric conversion device 240 is electrically connected to either the source or the drain of transistor 103 as shown in FIG. 11B. It is good also as a structure which connects.
  • the wiring 122 is set to a low potential (a potential lower than that of the wiring 121).
  • the transistor 103 has a function of controlling the potential of the node FD.
  • the transistor 104 has a function of resetting the potential of the node FD.
  • the transistor 105 functions as an element of a source follower circuit and can output the potential of the node FD to the wiring 352 as image data.
  • the transistor 106 has a function of selecting a pixel for outputting image data.
  • OS transistors are preferably used for the transistors 103 to 106 included in the pixel circuit 331 .
  • An OS transistor has a characteristic of extremely low off-state current.
  • transistors with low off-state current for the transistors 103 and 104 the period in which the node FD can hold charge can be extremely long. Therefore, it is possible to apply a global shutter method in which electric charges are accumulated simultaneously in all pixels without complicating the circuit configuration and operation method.
  • FIG. 12A is a schematic diagram of a rolling shutter method of operation
  • FIG. 12B is a schematic diagram of a global shutter method of operation.
  • En represents the exposure (accumulation operation) of the nth column (n is a natural number)
  • Rn represents the readout operation of the nth column.
  • FIGS. 12A and 12B show operations from the 1st line to the Mth line (M is a natural number).
  • the rolling shutter method is an operation method in which exposure and data readout are sequentially performed, and is a method in which a readout period for a certain row overlaps an exposure period for another row. Since the readout operation is performed immediately after exposure, imaging can be performed even with a circuit configuration having a relatively short data retention period. However, since one frame image is composed of data with no synchronism of imaging, distortion occurs in the image when imaging a moving object.
  • the global shutter method is an operation method in which all pixels are exposed simultaneously, data is held in each pixel, and data is read out row by row. Therefore, even when imaging a moving object, an image without distortion can be obtained.
  • the rolling shutter method is often used because charges tend to flow out from the charge detection portion.
  • a transistor having a relatively high off-state current such as a Si transistor
  • the rolling shutter method is often used because charges tend to flow out from the charge detection portion.
  • complicated operations such as storing data in a separate memory circuit must be performed at high speed.
  • an OS transistor is used in the pixel circuit, almost no electric charge flows out from the electric charge detection section, so the global shutter method can be easily implemented.
  • the imaging device of one embodiment of the present invention can also be operated with a rolling shutter method.
  • the pixel circuit 331 may have a configuration in which an OS transistor and a Si transistor are arbitrarily combined. Alternatively, all transistors may be Si transistors.
  • the transistor 104 is turned off and the supply of the reset potential is cut off. Further, the potential of the node FD is lowered according to the operation of the photoelectric conversion device 240 (accumulation operation).
  • the pixel circuit 331 shown in FIG. 11B can be operated according to the timing chart of FIG. 13B. Note that the wirings 121 and 123 are always supplied with "H” and the wiring 122 is always supplied with "L". The basic operation is the same as the description of the timing chart of FIG. 13A above.
  • a transistor may have a back gate as illustrated in FIGS. 14A and 14B.
  • FIG. 14A shows a configuration in which the back gate is electrically connected to the front gate, which has the effect of increasing the ON current.
  • FIG. 14B shows a structure in which the back gate is electrically connected to a wiring capable of supplying a constant potential, and the threshold voltage of the transistor can be controlled by the potential of the back gate.
  • each transistor can operate appropriately, such as a combination of FIGS. 14A and 14B, may be employed.
  • the pixel circuit 331 may include a transistor with no back gate.
  • FIG. 15 is a diagram illustrating an example of the readout circuit 311 connected to the pixel circuit 331, and shows a circuit diagram of the CDS circuit 400 and a block diagram of the A/D converter 410 electrically connected to the CDS circuit 400.
  • FIG. ing Note that the CDS circuit and the A/D converter shown in FIG. 15 are examples, and other configurations may be used. Further, the reading circuit 311 may have another element for writing data to the memory circuit.
  • CDS circuit 400 includes resistor 401 for voltage conversion, capacitor 402 for capacitive coupling, transistor 403 for supplying potential V0, transistor 404 for holding the potential supplied to A/D converter 410, and capacitor 405 for holding potential. It can be configured to have.
  • the CDS circuit 400 has an input electrically connected to the pixel circuit 331 and an output electrically connected to the comparator circuit (COMP) of the A/D converter 410 .
  • COMP comparator circuit
  • the potential of the wiring 352 is V res (the pixel circuit 331 is in a reset state)
  • the potential of the node N (connection point of the transistors 403 and 404 and the capacitor 402) is V 0 .
  • the potential of the node N becomes V 0 +V data ⁇ V res . Therefore, in the CDS circuit 400, the potential in the reset state can be subtracted from the potential of the imaging data output by the pixel circuit 331, and noise components can be reduced.
  • the A/D converter 410 can be configured to have a comparator circuit (COMP) and a counter circuit (COUNTER).
  • the A/D converter 410 compares the signal potential input from the CDS circuit 400 to the comparator circuit (COMP) with the swept reference potential (RAMP). Then, the counter circuit (COUNTER) operates according to the output of the comparator circuit (COMP), and digital signals are output to the plurality of wirings 353 .
  • FIG. 16A is a diagram illustrating a memory circuit 321m that can be applied to the memory circuit 321a, the memory circuit 321b, or the memory circuit 324.
  • FIG. 16A also shows the connection relationship between the memory cell 321c included in the memory circuit 321m and the row driver 341 (RD) and the column driver 342 (CD) included in the driver circuit 312.
  • FIG. A row driver 341 and a column driver 342 are driving circuits for the memory cell 321c. Note that a sense amplifier or the like may be used for reading data.
  • the memory circuit 321m has m (m is an integer of 1 or more) in one column and n (n is an integer of 1 or more) in one row, a total of m ⁇ n memory cells 321c, and the memory cells 321c are arranged in a matrix. are placed in
  • 16B to 16D are diagrams illustrating memory cells 321c1 to 321c3 that can be applied to the memory cell 321c. Note that bit lines can be connected to the column driver 342 in the following description. Also, the word lines can be connected to the row driver 341 .
  • Decoders or shift registers can be used for the row driver 341 and the column driver 342 .
  • a plurality of row drivers 341 and column drivers 342 may be provided.
  • FIG. 16B shows a circuit configuration example of a DRAM-type memory cell 321c1.
  • the memory cell 321c1 has a transistor 271 and a capacitor 274.
  • One of the source and the drain of the transistor 271 is connected to one electrode of the capacitor 274, the other of the source and the drain of the transistor 271 is connected to the wiring BIL, the gate of the transistor 271 is connected to the wiring WL, and the transistor 271 is connected to the wiring WL. is connected to the wiring BGL.
  • the other electrode of capacitor 274 is connected to line GNDL.
  • the wiring GNDL is a wiring that supplies a low-level potential (reference potential).
  • the wiring BIL functions as a bit line.
  • the wiring WL functions as a word line.
  • the wiring BGL functions as a wiring for applying a potential to the back gate of the transistor 271 .
  • the threshold voltage of the transistor 271 can be increased or decreased.
  • the wiring BGL may be electrically connected to the wiring WL.
  • Data is written and read by applying a high-level potential to the wiring WL to turn on the transistor 271 and electrically connecting the wiring BIL and one electrode of the capacitor 274 .
  • a sense amplifier is electrically connected to the wiring BIL, and the potential of the wiring BIL can be amplified and read by the sense amplifier.
  • An OS transistor or a Si transistor can be used as the transistor 271 .
  • a DRAM using an OS transistor is called a DOSRAM (Dynamic Oxide Semiconductor Random Access Memory).
  • An OS transistor including an oxide semiconductor containing indium, gallium, and zinc has a characteristic of extremely low off-state current.
  • leakage current of the transistor 271 can be extremely low. In other words, since written data can be held for a long time by the transistor 271, the frequency of refreshing the memory cell can be reduced. Alternatively, the refresh operation of the memory cells can be made unnecessary.
  • FIG. 16C shows a circuit configuration example of a gain cell type (also referred to as “2Tr1C type”) memory cell 321c2 having two transistors and one capacitor.
  • the memory cell 321 c 2 has a transistor 273 , a transistor 272 and a capacitor 275 .
  • One of the source and the drain of the transistor 273 is connected to one electrode of the capacitor 275, the other of the source and the drain of the transistor 273 is connected to the wiring WBL, the gate of the transistor 273 is connected to the wiring WL, and the transistor 273 is connected to the wiring WL. is connected to the wiring BGL.
  • the other electrode of capacitor 275 is connected to line RL.
  • One of the source and the drain of the transistor 273 is connected to the wiring RBL, the other of the source and the drain of the transistor 273 is connected to the wiring SL, and the gate of the transistor 272 is connected to one electrode of the capacitor 274 .
  • the wiring WBL functions as a write bit line.
  • the wiring RBL functions as a read bit line.
  • the wiring WL functions as a word line.
  • Line RL functions as a line for applying a predetermined potential to the other electrode of capacitor 274 . It is preferable to apply a reference potential to the wiring RL during data writing and during data retention.
  • the wiring BGL functions as a wiring for applying a potential to the back gate of the transistor 273 .
  • the threshold voltage of the transistor 273 can be increased or decreased.
  • the wiring BGL may be electrically connected to the wiring WL. By applying the same potential to the wiring BGL as that of the wiring WL, current characteristics of the transistor 273 can be improved.
  • Data is written by applying a high-level potential to the wiring WL, turning on the transistor 273, and electrically connecting the wiring WBL and one electrode of the capacitor 274 to each other. Specifically, when the transistor 273 is on, a potential corresponding to information to be recorded is applied to the wiring WBL, and the potential is written to one electrode of the capacitor 275 and the gate of the transistor 272 . After that, the potential of one electrode of the capacitor 275 and the potential of the gate of the transistor 272 are held by applying a low-level potential to the wiring WL to turn off the transistor 273 .
  • Data is read by applying a predetermined potential to the wiring RL and the wiring SL.
  • the current flowing between the source and drain of the transistor 272 and the potential of either the source or the drain of the transistor 273 are determined by the potential of the gate of the transistor 272 and the potential of the other of the source or the drain of the transistor 273 . Therefore, by reading the potential of the wiring RBL connected to one of the source and drain of the transistor 273, the potential held at one electrode of the capacitor 275 (or the gate of the transistor 272) can be read. That is, information written in this memory cell can be read from the potential held at one electrode of the capacitor 275 (or the gate of the transistor 272). Alternatively, the presence or absence of information written in this memory cell can be known.
  • the wiring WBL and the wiring RBL may be combined into one wiring BIL.
  • the wiring WBL and the wiring RBL of the memory cell 321c2 are used as one wiring BIL, and the other of the source and drain of the transistor 273 and one of the source and drain of the transistor 273 are connected to the wiring BIL. It is configured as In other words, the memory cell 321c3 has a configuration in which the write bit line and the read bit line operate as one wiring BIL.
  • an OS transistor is preferably used as the transistor 273 in the memory cells 321c2 and 321c3 as well.
  • a memory device in which an OS transistor is used as the transistor 273 and 2Tr1C memory cells such as the memory cells 321c and 321d are used is called NOSRAM (Non-volatile Oxide Semiconductor Random Access Memory). Note that the circuit configuration of the memory cell can be changed as appropriate.
  • FIG. 16E also shows a memory cell 321d that can be used in the memory circuit 325.
  • FIG. Memory circuit 325 is a DRAM and memory cell 321 d has transistor 278 and capacitor 279 .
  • Memory cell 321d can operate similarly to memory cell 321c1. Note that since the transistor 276 is a Si transistor, the wiring BGL and the back gate of the transistor are not provided.
  • ⁇ Memory circuit 2> 17A may be used for the memory circuit 321a, the memory circuit 321b, the memory circuit 324, the memory circuit 325, and their driver circuits.
  • the memory cell 321e shown in FIG. 17B can be used for the memory circuit 321n having the structure shown in FIG. 17A.
  • Memory cell 321 e has transistor 276 and capacitor 277 .
  • One of the source and the drain of the transistor 276 is connected to one electrode of the capacitor 277, the other of the source and the drain of the transistor 276 is connected to the wiring BIL, and the gate of the transistor 276 is connected to the wiring WL. Also, the other electrode of the capacitor 277 is connected to the wiring PL.
  • the wiring BIL functions as a bit line.
  • the wiring WL functions as a word line.
  • a wiring PL is a wiring that supplies the capacitor 277 with a plate potential required for data writing or data reading.
  • a circuit 345 shown in FIG. 17A is a circuit that supplies a plate potential, and can be provided in the region 210 of the layer 201 in the same manner as the row driver 341 and the column driver 342 .
  • a sense amplifier may be electrically connected to the wiring BIL. The sense amplifier can amplify and read the potential of the wiring BIL.
  • An OS transistor, a Si transistor, or the like can be used as the transistor 276 .
  • a back gate electrically connected to the wiring BGL is preferably provided as illustrated in FIG. 13C.
  • the threshold voltage of the transistor 271 can be increased or decreased.
  • the wiring BGL may be electrically connected to the wiring WL.
  • the OS transistor has a characteristic of high withstand voltage. Therefore, by using an OS transistor as the transistor 276, a high voltage can be applied to the transistor 276 even if the transistor 276 is miniaturized. By miniaturizing the transistor 276, the area occupied by the memory cell 321e can be reduced.
  • Capacitor 277 has a material that can have ferroelectric properties as a dielectric layer between two electrodes.
  • the dielectric layer of the capacitor 277 is hereinafter referred to as a ferroelectric layer.
  • a capacitor having a ferroelectric layer can be called a ferroelectric capacitor.
  • a configuration in which a switch such as a transistor and a ferroelectric capacitor are combined can be called a ferroelectric memory.
  • Materials that can have ferroelectricity include hafnium oxide, zirconium oxide, HfZrO x (X is a real number greater than 0), hafnium oxide, and element J1 (here, element J1 is zirconium (Zr), silicon (Si), aluminum (Al), gadolinium (Gd), yttrium (Y), lanthanum (La), strontium (Sr), etc.), element J2 in zirconium oxide (element J2 here is hafnium) (Hf), silicon (Si), aluminum (Al), gadolinium (Gd), yttrium (Y), lanthanum (La), strontium (Sr), etc.).
  • ferroelectricity Materials that can have ferroelectricity include lead titanate (PT), barium strontium titanate (BST), strontium titanate, lead zirconate titanate (PZT), strontium bismuthate tantalate (SBT), and bismuth.
  • Piezoelectric ceramics having a perovskite structure such as ferrite (BFO) and barium titanate may also be used.
  • a material that can have ferroelectricity for example, a mixture or a compound containing a plurality of materials selected from the materials listed above can be used.
  • the ferroelectric layer can have a laminated structure composed of a plurality of materials selected from the materials listed above.
  • a material containing hafnium oxide or hafnium oxide and zirconium oxide can have ferroelectricity even if it is processed into a thin film of several nm. Since the ferroelectric layer can be made thinner, it is possible to improve compatibility with the transistor miniaturization process.
  • HfZrO X when used as a material capable of having ferroelectricity, it is preferable to use an atomic layer deposition (ALD) method, particularly a thermal ALD method, for film formation. Further, in the case of forming a film of a material that can have ferroelectricity by using the thermal ALD method, it is preferable to use a material that does not contain hydrocarbon (hydrocarbon, also called HC) as a precursor. When one or both of hydrogen and carbon are contained in the material that can have ferroelectricity, crystallization of the material that can have ferroelectricity may be inhibited.
  • ALD atomic layer deposition
  • hydrocarbon-free precursors include chlorine-based materials.
  • HfZrO x hafnium oxide and zirconium oxide
  • HfCl 4 and/or ZrCl 4 may be used as the precursor.
  • impurities in the film here at least one of hydrogen, hydrocarbon, and carbon, are thoroughly eliminated to achieve high purity.
  • Films with intrinsic ferroelectricity can be formed. Note that a highly purified intrinsic ferroelectric film and a highly purified intrinsic oxide semiconductor described in an embodiment described later have very high compatibility in manufacturing processes. Therefore, a method for manufacturing a semiconductor device with high productivity can be provided.
  • HfZrOx is used as a material capable of having ferroelectricity
  • H 2 O or O 3 can be used as an oxidizing agent.
  • the oxidizing agent for the thermal ALD method is not limited to this.
  • the oxidizing agent for thermal ALD may include any one or more selected from O 2 , O 3 , N 2 O, NO 2 , H 2 O, and H 2 O 2 .
  • the crystal structure of the material that can have ferroelectricity is not particularly limited.
  • the crystal structure of a material that can have ferroelectricity may be one or more selected from a cubic system, a tetragonal system, a rectangular system, and a monoclinic system.
  • a material that can have ferroelectricity it is preferable to have a cubic crystal structure because ferroelectricity is exhibited.
  • a composite structure having an amorphous structure and a crystalline structure may be used as a material capable of having ferroelectricity.
  • FIG. 18A is a graph showing an example of hysteresis characteristics of a ferroelectric layer;
  • the horizontal axis indicates the voltage applied to the ferroelectric layer.
  • the voltage can be the difference between the potential of one electrode of the capacitor 277 and the potential of the other electrode of the capacitor 277, for example.
  • the vertical axis indicates the amount of polarization of the ferroelectric layer.
  • the hysteresis characteristics of the ferroelectric layer can be represented by curves 91 and 92, as shown in FIG. 18A. Let the voltages at the intersections of curves 91 and 92 be VSP and -VSP. VSP and -VSP can be said to have different polarities.
  • VSP and -VSP can be said to be saturation polarization voltages.
  • VSP may be called a first saturation polarization voltage
  • -VSP may be called a second saturation polarization voltage.
  • the absolute value of the first saturated polarization voltage and the absolute value of the second saturated polarization voltage are equal, but they may be different.
  • Vc is the voltage (coercive voltage) at which the polarization of the ferroelectric layer becomes 0 when the polarization of the ferroelectric layer changes according to the curve 91 .
  • the voltage (coercive voltage) at which the polarization of the ferroelectric layer becomes 0 when the polarization of the ferroelectric layer changes according to the curve 92 is -Vc.
  • the values of Vc and -Vc can be said to be values between -VSP and VSP.
  • Vc may be called a first coercive voltage
  • -Vc may be called a second coercive voltage.
  • FIG. 18A shows an example in which the absolute value of the first coercive voltage and the absolute value of the second coercive voltage are equal, they may be different.
  • the voltage applied to the ferroelectric layer of capacitor 277 can be represented by the difference between the potential of one electrode of capacitor 277 and the potential of the other electrode of capacitor 277 .
  • the other electrode of capacitor 277 is electrically connected to line PL. Therefore, by controlling the potential of the wiring PL, the voltage applied to the ferroelectric layer of the capacitor 277 can be controlled.
  • the voltage applied to the ferroelectric layer of the capacitor 277 is the difference between the potential of one electrode of the capacitor 277 and the potential of the other electrode (line PL) of the capacitor 277 .
  • the transistor 276 is an n-channel transistor.
  • FIG. 18B is a timing chart showing an example of a method of driving the memory cell 321e shown in FIG. 17B.
  • FIG. 18B shows an example of writing and reading binary digital data in the memory cell 321e.
  • a sense amplifier is electrically connected to the wiring BIL, and Vref is supplied as a reference potential to the sense amplifier. For example, when the potential of the wiring BIL is higher than Vref, data "1" can be read. Further, when the potential of the wiring BIL is lower than Vref, data "0" can be read.
  • Vw is preferably greater than or equal to VSP, and can be equal to VSP, for example.
  • GND can be, for example, the ground potential or 0 V, but may be another potential.
  • the voltage applied to the ferroelectric layer of the capacitor 277 becomes 0V.
  • the polarization amount of the ferroelectric layer of the capacitor 277 is It changes to the 0V position according to the curve 92 shown in FIG. 18A.
  • the polarization orientation is maintained in the ferroelectric layer of capacitor 277 .
  • Vref is higher than GND and lower than Vw in the example, it may be higher than Vw, for example.
  • the potential of the wiring BIL and the potential of the wiring PL are set to GND.
  • the potential of the wiring WL is set to the low potential L.
  • FIG. As a result, the rewrite operation is completed, and data "1" is held in the memory cell 321e.
  • the potential of the wiring WL is set to the high potential H, and the potential of the wiring PL is set to Vw. Since data "1" is held in the memory cell 321e, the potential of the wiring BIL becomes higher than Vref, and data "1" held in the memory cell 321e is read.
  • the potential of the wiring BIL is set to GND. Since the transistor 276 is on, the potential of one electrode of the capacitor 277 becomes GND. In addition, the potential of the wiring PL is Vw. From the above, the voltage applied to the ferroelectric layer of the capacitor 277 is "GND-Vw". Therefore, data "0" can be written to the memory cell 321e.
  • the voltage applied to the ferroelectric layer of the capacitor 277 becomes 0V.
  • the voltage "GND-Vw" applied to the ferroelectric layer of the capacitor 277 from time T12 to time T13 is -VSP or less
  • the polarization amount of the ferroelectric layer of the capacitor 277 from time T13 to time T14 is as shown in FIG. 18A to the 0V position according to the curve 91 shown in FIG.
  • the polarization orientation is maintained in the ferroelectric layer of capacitor 277 .
  • the voltage applied to the ferroelectric layer of the capacitor 277 becomes "GND-Vw", which is the same as when data is written. Therefore, the amount of current flowing through the wiring BIL is smaller than that in the case where polarization reversal occurs in the ferroelectric layer of the capacitor 277 . Therefore, the width of rise in the potential of the wiring BIL is also reduced. Specifically, the potential of the wiring BIL becomes lower than or equal to Vref, and the data "0" held in the memory cell 321e can be read by the operation of the sense amplifier.
  • the potential of the wiring WL is set to the high potential H, and the potential of the wiring PL is set to Vw. Since data “0” is held in the memory cell 321e, the potential of the wiring BIL becomes lower than Vref, and data “0” held in the memory cell 321e is read.
  • the potential of the wiring BIL is set to Vw. Since the transistor 276 is on, the potential of one electrode of the capacitor 277 becomes Vw. Further, the potential of the wiring PL is set to GND. As a result, the voltage applied to the ferroelectric layer of the capacitor 277 becomes "Vw-GND". Therefore, data "1" can be written to the memory cell 321e.
  • FIG. 19 is an example of a cross-sectional view of the laminate shown in FIGS. 2C and 4A. Note that layer 205 is also illustrated in FIG.
  • the layer 201 has a readout circuit 311 , a driver circuit 312 , a driver circuit 332 and an arithmetic circuit 314 provided on a silicon substrate 211 .
  • the capacitor 402 and the transistor 403 included in the CDS circuit of the readout circuit 311, the transistor 115 included in the readout circuit 311, and the transistor 116 included in the driver circuit 332 are shown as part of the above circuits.
  • One electrode of the capacitor 402 and one of the source and drain of the transistor 403 are electrically connected.
  • Layer 201 is provided with insulating layers 212 , 213 , 214 , 215 , 216 , 217 , 218 .
  • the insulating layer 212 functions as a protective film.
  • the insulating layers 213, 214, 215 and 217 function as interlayer insulating films and planarizing films.
  • Insulating layer 216 functions as a dielectric layer for capacitor 402 .
  • the insulating layer 218 functions as a blocking film.
  • the protective film for example, a silicon nitride film, a silicon oxide film, an aluminum oxide film, or the like can be used.
  • the interlayer insulating film and the planarizing film for example, an inorganic insulating film such as a silicon oxide film, or an organic insulating film such as an acrylic resin or a polyimide resin can be used.
  • a silicon nitride film, a silicon oxide film, an aluminum oxide film, or the like can be used as the dielectric layer of the capacitor.
  • the blocking film it is preferable to use a film having a function of preventing diffusion of hydrogen.
  • the blocking film examples include aluminum oxide, aluminum oxynitride, gallium oxide, gallium oxynitride, yttrium oxide, yttrium oxynitride, hafnium oxide, hafnium oxynitride, yttria-stabilized zirconia (YSZ), and the like.
  • the Si transistor shown in FIG. 19 is of a fin type having a channel forming region in a silicon substrate 211, and a cross section in the channel width direction (a cross section along A1-A2 shown in FIG. 19) is shown in FIG. 20A. Note that the Si transistor may be of a planar type as shown in FIG. 20B.
  • the semiconductor layer 545 can be, for example, single crystal silicon (SOI (silicon on insulator)) formed on an insulating layer 546 on the silicon substrate 211 .
  • SOI silicon on insulator
  • Conductors that can be used as wiring, electrodes, and plugs used for electrical connection between devices include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, and hafnium. , vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, lanthanum, etc.; etc. may be appropriately selected and used.
  • the conductor is not limited to a single layer, and may be a plurality of layers made of different materials.
  • Layer 202 a is formed on layer 201 .
  • Layer 202a has memory circuitry 321a with an OS transistor.
  • a transistor 271 and a capacitor 274 included in the memory cell 321c1 shown in FIG. 16B are shown as part of the memory circuit 321a.
  • the memory cell 321c2 shown in FIG. 16C, the memory cell 321c3 shown in FIG. 16D, or the memory cell 321e shown in FIGS. 17B and 17C can also be used for the memory circuit 321a.
  • Insulating layers 221 , 222 , 223 , 224 , 225 , 227 , 228 are provided on the layer 202 a.
  • the insulating layers 221, 224, 225, 227, and 228 function as interlayer insulating films and planarizing films.
  • the insulating layer 222 functions as a gate insulating film.
  • the insulating layer 223 functions as a protective film. A silicon oxide film or the like can be used as the gate insulating film.
  • One of the source or drain of transistor 271 is electrically connected to one of the source or drain of transistor 115 in layer 201 .
  • the gate of transistor 271 is electrically connected to one of the source or drain of transistor 116 in layer 201 .
  • the other of the source or drain of transistor 276 is electrically connected to one electrode of capacitor 274 .
  • Capacitor 274 has ferroelectric layer 226 between one electrode and the other.
  • FIG. 21A shows details of the OS transistor.
  • the OS transistor illustrated in FIG. 21A is a self-aligned type in which an insulating layer is provided over a stack of an oxide semiconductor layer and a conductive layer, and an opening reaching the oxide semiconductor layer is provided to form a source electrode 705 and a drain electrode 706. is the configuration.
  • the OS transistor can have a structure including a channel formation region 708 , a source region 703 , and a drain region 704 which are formed in the oxide semiconductor layer, a gate electrode 701 , and a gate insulating film 702 . At least a gate insulating film 702 and a gate electrode 701 are provided in the opening. An oxide semiconductor layer 707 may be further provided in the trench.
  • the OS transistor may have a self-aligned structure in which a source region 703 and a drain region 704 are formed in a semiconductor layer using a gate electrode 701 as a mask.
  • FIG. 21C it may be a non-self-aligned top-gate transistor having a region where the source electrode 705 or the drain electrode 706 and the gate electrode 701 overlap.
  • the OS transistor has a structure with a back gate 535, it may have a structure without a back gate.
  • the back gate 535 may be electrically connected to the front gate of the oppositely provided transistor as in the cross-sectional view of the transistor in the channel width direction shown in FIG. 21D.
  • FIG. 21D shows the cross section of B1-B2 shown in FIG. 21A as an example, but the same applies to transistors with other structures.
  • a structure in which a fixed potential different from that of the front gate can be supplied to the back gate 535 may be employed.
  • a metal oxide with an energy gap of 2 eV or more, preferably 2.5 eV or more, more preferably 3 eV or more can be used.
  • an oxide semiconductor containing indium or the like is used, and for example, CAAC-OS or CAC-OS, which will be described later, can be used.
  • a CAAC-OS has stable atoms forming a crystal, and is suitable for a transistor or the like in which reliability is important.
  • CAC-OS exhibits high mobility characteristics, it is suitable for high-speed transistors and the like.
  • an OS transistor Since an OS transistor has a large energy gap in a semiconductor layer, it exhibits extremely low off-current characteristics of several yA/ ⁇ m (current value per 1 ⁇ m channel width).
  • the OS transistor has characteristics different from the Si transistor, such as impact ionization, avalanche breakdown, short channel effect, and the like, and can form a circuit with high breakdown voltage and high reliability.
  • variations in electrical characteristics due to non-uniform crystallinity, which is a problem in Si transistors are less likely to occur in OS transistors.
  • the semiconductor layer included in the OS transistor is, for example, In-M containing indium, zinc, and M (one or more of metals such as aluminum, titanium, gallium, germanium, yttrium, zirconium, lanthanum, cerium, tin, neodymium, and hafnium).
  • a film represented by a -Zn-based oxide can be used.
  • An In-M-Zn-based oxide can be typically formed by a sputtering method. Alternatively, it may be formed using an ALD (atomic layer deposition) method.
  • the atomic ratio of the metal elements in the sputtering target used for forming the In-M-Zn-based oxide by sputtering preferably satisfies In ⁇ M and Zn ⁇ M.
  • the atomic ratio of the semiconductor layers to be deposited includes a variation of plus or minus 40% of the atomic ratio of the metal element contained in the sputtering target.
  • the semiconductor layer has a carrier density of 1 ⁇ 10 17 /cm 3 or less, preferably 1 ⁇ 10 15 /cm 3 or less, more preferably 1 ⁇ 10 13 /cm 3 or less, more preferably 1 ⁇ 10 11 /cm 3 or less. 3 or less, more preferably less than 1 ⁇ 10 10 /cm 3 , and an oxide semiconductor with 1 ⁇ 10 ⁇ 9 /cm 3 or more can be used.
  • Such an oxide semiconductor is called a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor. It can be said that the oxide semiconductor has a low defect state density and stable characteristics.
  • the oxide semiconductor is not limited to these, and an oxide semiconductor having an appropriate composition may be used according to required semiconductor characteristics and electrical characteristics (field-effect mobility, threshold voltage, and the like) of the transistor.
  • the semiconductor layer has appropriate carrier density, impurity concentration, defect density, atomic ratio between metal element and oxygen, interatomic distance, density, and the like. .
  • the concentration of silicon or carbon in the semiconductor layer is set to 2 ⁇ 10 18 atoms/cm 3 or less, preferably 2 ⁇ 10 17 atoms/cm 3 or less.
  • the concentration of alkali metal or alkaline earth metal in the semiconductor layer is 1 ⁇ 10 18 atoms/cm 3 or less, preferably 2 ⁇ 10 16 atoms/cm 3 or less.
  • the nitrogen concentration (concentration obtained by secondary ion mass spectrometry) in the semiconductor layer is preferably 5 ⁇ 10 18 atoms/cm 3 or less.
  • the oxide semiconductor included in the semiconductor layer contains hydrogen
  • hydrogen reacts with oxygen that bonds to a metal atom to form water, which may cause oxygen vacancies in the oxide semiconductor.
  • the transistor may have normally-on characteristics.
  • part of hydrogen may bond with oxygen that bonds with a metal atom to generate an electron that is a carrier. Therefore, a transistor including an oxide semiconductor containing a large amount of hydrogen is likely to be normally on.
  • a defect in which hydrogen enters an oxygen vacancy can function as a donor of an oxide semiconductor.
  • the oxide semiconductor is evaluated based on the carrier concentration instead of the donor concentration. Therefore, in this specification and the like, instead of the donor concentration, the carrier concentration assuming a state in which no electric field is applied is used as a parameter of the oxide semiconductor in some cases.
  • the “carrier concentration” described in this specification and the like may be rephrased as “donor concentration”.
  • the hydrogen concentration obtained by secondary ion mass spectrometry is less than 1 ⁇ 10 20 atoms/cm 3 , preferably 1 ⁇ 10 19 atoms/cm. It is less than 3 , more preferably less than 5 ⁇ 10 18 atoms/cm 3 , still more preferably less than 1 ⁇ 10 18 atoms/cm 3 .
  • the semiconductor layer may also have a non-single-crystal structure, for example.
  • Non-single-crystal structures include, for example, CAAC-OS (C-Axis Aligned Crystalline Oxide Semiconductor) having crystals oriented along the c-axis, polycrystalline structures, microcrystalline structures, or amorphous structures.
  • CAAC-OS C-Axis Aligned Crystalline Oxide Semiconductor
  • the amorphous structure has the highest defect level density
  • the CAAC-OS has the lowest defect level density.
  • An oxide semiconductor film having an amorphous structure for example, has disordered atomic arrangement and no crystalline component.
  • an oxide semiconductor film having an amorphous structure for example, has a completely amorphous structure and does not have a crystal part.
  • the semiconductor layer is a mixed film containing two or more of an amorphous region, a microcrystalline region, a polycrystalline region, a CAAC-OS region, and a single crystal region, good.
  • the mixed film may have, for example, a single-layer structure or a laminated structure containing two or more of the above-described regions.
  • CAC Cloud-Aligned Composite
  • a CAC-OS is, for example, one structure of a material in which elements constituting an oxide semiconductor are unevenly distributed with a size of 0.5 nm to 10 nm, preferably 1 nm to 2 nm, or in the vicinity thereof.
  • the oxide semiconductor one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 2 nm or less, or a size in the vicinity thereof.
  • the mixed state is also called mosaic or patch.
  • the oxide semiconductor preferably contains at least indium. Indium and zinc are particularly preferred. Also, in addition to them, aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, or magnesium, etc. may contain one or more selected from
  • CAC-OS in In-Ga-Zn oxide is indium oxide (hereinafter, InO X1 (X1 is a real number greater than 0), or indium zinc oxide (hereinafter referred to as In X2 Zn Y2 O Z2 (X2, Y2, and Z2 are real numbers greater than 0)) and gallium oxide (hereinafter referred to as GaO X3 (X3 is a real number greater than 0)) or gallium zinc oxide (hereinafter Ga X4 Zn Y4 O Z4 (X4, Y4, and Z4 are real numbers greater than 0); ) and the like, and the material is separated into a mosaic shape, and the mosaic InO X1 or In X2 Zn Y2 O Z2 is uniformly distributed in the film (hereinafter also referred to as a cloud shape).
  • CAC-OS is a composite oxide semiconductor having a structure in which a region containing GaO X3 as its main component and a region containing In X2 ZnY2 O Z2 or InO X1 as its main component are mixed.
  • the first region means that the atomic ratio of In to the element M in the first region is greater than the atomic ratio of In to the element M in the second region. Assume that the concentration of In is higher than that of the region No. 2.
  • IGZO is a common name, and may refer to one compound of In, Ga, Zn, and O. As a representative example, it is represented by InGaO3 (ZnO) m1 (m1 is a natural number) or In (1+x0) Ga (1-x0) O3 ( ZnO) m0 (-1 ⁇ x0 ⁇ 1, m0 is an arbitrary number). Crystalline compounds are mentioned.
  • the crystalline compound has a single crystal structure, a polycrystalline structure, or a CAAC structure.
  • the CAAC structure is a crystal structure in which a plurality of IGZO nanocrystals have c-axis orientation and are connected without being oriented on the ab plane.
  • CAC-OS relates to the material composition of oxide semiconductors.
  • CAC-OS refers to a material structure containing In, Ga, Zn, and O, in which a region that is partially observed as nanoparticles containing Ga as the main component and a region that is partially composed of In as a main component.
  • the regions observed in a pattern refer to a configuration in which the regions are randomly dispersed in a mosaic pattern. Therefore, in CAC-OS, the crystal structure is a secondary factor.
  • CAC-OS does not include a stacked structure of two or more films with different compositions. For example, it does not include a structure consisting of two layers, a film containing In as a main component and a film containing Ga as a main component.
  • a clear boundary cannot be observed between a region containing GaO X3 as a main component and a region containing In X2 ZnY2 O Z2 or InO X1 as a main component.
  • the CAC-OS contains one or more kinds of metal elements
  • the CAC-OS consists of a region that is partly observed as nanoparticles containing the metal element as a main component and a part that is observed as nanoparticles containing In as a main component.
  • the regions observed as particles refer to a configuration in which the regions are randomly dispersed in a mosaic pattern.
  • the CAC-OS can be formed, for example, by a sputtering method under conditions in which the substrate is not intentionally heated.
  • a sputtering method one or more selected from an inert gas (typically argon), oxygen gas, and nitrogen gas is used as the film formation gas. good.
  • an inert gas typically argon
  • oxygen gas typically oxygen gas
  • nitrogen gas is used as the film formation gas. good.
  • the flow rate ratio of oxygen gas to the total flow rate of film formation gas during film formation is preferably as low as possible. .
  • CAC-OS is characterized by the fact that no clear peaks are observed when measured using ⁇ /2 ⁇ scanning by the out-of-plane method, which is one of X-ray diffraction (XRD) measurement methods. have. That is, it can be seen from the X-ray diffraction measurement that no orientation in the a-b plane direction and c-axis direction of the measurement region is observed.
  • XRD X-ray diffraction
  • CAC-OS has a ring-shaped high-brightness region (ring region) and a Multiple bright spots are observed in the area. Therefore, from the electron diffraction pattern, it is found that the crystal structure of CAC-OS has an nc (nano-crystal) structure with no orientation in the planar direction and the cross-sectional direction.
  • GaO X3 is the main component by EDX mapping obtained using energy dispersive X-ray spectroscopy (EDX). It can be confirmed that the region and the region containing In X2 Zn Y2 O Z2 or InO X1 as a main component are unevenly distributed and have a mixed structure.
  • EDX energy dispersive X-ray spectroscopy
  • CAC-OS has a structure different from that of an IGZO compound in which metal elements are uniformly distributed, and has properties different from those of an IGZO compound. That is, the CAC-OS is phase-separated into a region containing GaO X3 or the like as a main component and a region containing In X2 Zn Y2 O Z2 or InO X1 as a main component, and a region containing each element as a main component. has a mosaic structure.
  • the region containing In X2 Zn Y2 O Z2 or InO X1 as the main component has higher conductivity than the region containing GaO X3 or the like as the main component. That is, when carriers flow through a region containing In X2 Zn Y2 O Z2 or InO X1 as a main component, conductivity as an oxide semiconductor is exhibited. Therefore, when regions containing In X2 Zn Y2 O Z2 or InO X1 as a main component are distributed in a cloud shape in the oxide semiconductor, high field-effect mobility ( ⁇ ) can be realized.
  • a region containing GaO 2 X3 or the like as a main component has higher insulating properties than a region containing In X2 Zn Y2 O Z2 or InO 2 X1 as a main component. That is, by distributing a region containing GaOx3 or the like as a main component in the oxide semiconductor, leakage current can be suppressed and favorable switching operation can be realized.
  • the CAC-OS when used for a semiconductor element, the insulating property caused by GaO X3 or the like and the conductivity caused by In X2 Zn Y2 O Z2 or InO X1 act in a complementary manner. On-current (I on ) and high field effect mobility ( ⁇ ) can be achieved.
  • CAC-OS is suitable as a constituent material for various semiconductor devices.
  • Layer 202b is formed over layer 202a.
  • Layer 202b has memory circuitry 321b with OS transistors.
  • the basic configuration of the layer 202b is similar to that of the layer 202a, and only different points will be described.
  • the layer closest to layer 203 in layer 202b is provided with insulating layer 229 and conductive layer 11 .
  • the insulating layer 229 and the conductive layer 11 function as bonding layers. The bonding layer will be described later.
  • Conductive layer 11 is electrically connected to the other electrode of capacitor 402 on layer 201 .
  • Layer 203 is formed over layer 204 .
  • Layer 203 has pixel circuits 331 with OS transistors.
  • the transistor 103 and the transistor 104 are shown as part of the pixel circuit 331 .
  • Layer 203 is provided with insulating layers 231 , 232 , 233 , 234 , 235 , 236 , 237 .
  • a conductive layer 13 is also provided.
  • the insulating layer 231 and the conductive layer 13 function as bonding layers.
  • the insulating layers 232, 233, 234, and 237 function as interlayer insulating films and planarizing films.
  • the insulating layer 235 functions as a protective film.
  • the insulating layer 236 functions as a gate insulating film.
  • the conductive layer 13 is electrically connected to the wiring 352 functioning as the output line of the pixel circuit 331 .
  • Layer 204 has a photovoltaic device 240 and insulating layers 241 , 242 , 245 .
  • the photoelectric conversion device 240 is a pn junction photodiode formed on a silicon substrate and has a p-type region 243 and an n-type region 244 .
  • the photoelectric conversion device 240 is an embedded photodiode, and the thin p-type region 243 provided on the surface side (current extraction side) of the n-type region 244 can suppress dark current and reduce noise.
  • the insulating layer 241 functions as a blocking layer.
  • the insulating layer 242 functions as an element isolation layer.
  • the insulating layer 245 has a function of suppressing outflow of carriers.
  • the silicon substrate is provided with trenches for separating pixels, and the insulating layer 245 is provided on the upper surface of the silicon substrate and in the trenches.
  • the insulating layer 245 By providing the insulating layer 245, it is possible to suppress the outflow of carriers generated in the photoelectric conversion device 240 to adjacent pixels.
  • the insulating layer 245 also has a function of suppressing the entry of stray light. Therefore, the insulating layer 245 can suppress color mixture.
  • An antireflection film may be provided between the upper surface of the silicon substrate and the insulating layer 245 .
  • the element isolation layer can be formed using a LOCOS (LOCal Oxidation of Silicon) method, an STI (Shallow Trench Isolation) method, or the like.
  • LOCOS LOCal Oxidation of Silicon
  • STI Shallow Trench Isolation
  • the insulating layer 245 for example, an inorganic insulating film such as silicon oxide or silicon nitride, or an organic insulating film such as polyimide resin or acrylic resin can be used. Note that the insulating layer 245 may have a multilayer structure.
  • the n-type region 244 (corresponding to the cathode) of photoelectric conversion device 240 is electrically connected to one of the source or drain of transistor 103 in layer 203 .
  • the p-type region 243 (anode) is electrically connected to the wiring 121 of the layer 203 functioning as a power supply line.
  • Layer 205 is formed over layer 204 .
  • Layer 205 has a light blocking layer 251 , an optical conversion layer 250 and a microlens array 255 .
  • the light shielding layer 251 can suppress the inflow of light to adjacent pixels.
  • a metal layer such as aluminum or tungsten can be used for the light shielding layer 251 .
  • the metal layer may be laminated with a dielectric film functioning as an antireflection film.
  • Color filters can be used in the optical conversion layer 250 when the photoelectric conversion device 240 is sensitive to visible light.
  • a color image can be obtained by assigning color filters of colors such as R (red), G (green), B (blue), Y (yellow), C (cyan), and M (magenta) to each pixel.
  • color filters 250R (red), color filters 250G (green), and color filters 250B (blue) can be assigned to different pixels.
  • a wavelength cut filter is used for the optical conversion layer 250 in an appropriate combination of the photoelectric conversion device 240 and the optical conversion layer 250, an imaging device capable of obtaining images in various wavelength regions can be obtained.
  • an infrared filter that blocks light having a wavelength of visible light or less is used for the optical conversion layer 250.
  • an infrared imaging device can be obtained.
  • a filter that blocks light having a wavelength of near-infrared rays or less is used for the optical conversion layer 250.
  • a far-infrared imaging device can be obtained.
  • an ultraviolet filter that blocks light having a wavelength of visible light or more is used for the optical conversion layer 250, an ultraviolet imaging device can be obtained.
  • a plurality of different optical conversion layers may be arranged in one imaging device.
  • color filters 250R red
  • color filters 250G green
  • color filters 250B blue
  • infrared filters 250IR can be assigned to different pixels. With this configuration, a visible light image and an infrared light image can be acquired at the same time.
  • color filters 250R red
  • color filters 250G green
  • color filters 250B blue
  • ultraviolet filters 250UV can be assigned to different pixels.
  • an imaging device for obtaining an image in which intensity of radiation used for an X-ray imaging device or the like is visualized can be obtained.
  • radiation such as X-rays transmitted through a subject
  • light fluorescence
  • Image data is acquired by detecting the light with the photoelectric conversion device 240 .
  • an imaging device having such a configuration may be used as a radiation detector or the like.
  • a scintillator includes a substance that absorbs the energy of radiation such as X-rays or gamma rays and emits visible light or ultraviolet light.
  • a substance that absorbs the energy of radiation such as X-rays or gamma rays and emits visible light or ultraviolet light.
  • Those dispersed in resin or ceramics can be used.
  • the imaging device can be provided with an inspection function, a security function, a sensor function, and the like.
  • imaging with infrared light enables non-destructive inspection of products, sorting of agricultural products (saccharimeter function, etc.), vein authentication, medical examination, and the like.
  • ultraviolet light it is possible to detect ultraviolet light emitted from a light source or a flame, and it is possible to manage the light source, heat source, production equipment, and the like.
  • a microlens array 255 is provided on the optical conversion layer 250 .
  • the light passing through the individual lenses of the microlens array 255 passes through the optical conversion layer 250 directly below and irradiates the photoelectric conversion device 240 .
  • the microlens array 255 condensed light can be incident on the photoelectric conversion device 240, so photoelectric conversion can be performed efficiently.
  • the microlens array 255 is preferably made of resin, glass, or the like, which is highly translucent to light of a desired wavelength.
  • Layer 202b is provided with insulating layer 229 and conductive layer 11 .
  • Conductive layer 11 has a region embedded in insulating layer 229 .
  • the surfaces of the insulating layer 229 and the conductive layer 11 are flattened so that their heights are the same.
  • Layer 203 is provided with insulating layer 231 and conductive layer 13 .
  • Conductive layer 13 has a region embedded in insulating layer 232 .
  • the surfaces of the insulating layer 231 and the conductive layer 13 are flattened so that their heights are the same.
  • the conductive layer 11 and the conductive layer 13 preferably have the same metal element as the main component.
  • Insulating layer 229 and insulating layer 231 are preferably made of the same component.
  • the conductive layers 11 and 13 can be made of Cu, Al, Sn, Zn, W, Ag, Pt, Au, or the like. Cu, Al, W, or Au is preferably used because of ease of bonding.
  • silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, titanium nitride, or the like can be used.
  • the conductive layer 11 and the conductive layer 13 may have a multi-layered structure of a plurality of layers.
  • the insulating layer 229 and the insulating layer 231 may also have a multi-layered structure, in which case the surface layers (bonding surfaces) may be made of the same insulating material.
  • Electrical connection of the conductive layer 11 and the conductive layer 13 can be obtained by the bonding. Also, a mechanically strong connection of the insulating layer 229 and the insulating layer 231 can be obtained.
  • a surface activation joining method can be used in which an oxide film and an adsorption layer of impurities on the surface are removed by a sputtering process or the like, and the cleaned and activated surfaces are brought into contact with each other for joining.
  • a diffusion bonding method or the like in which surfaces are bonded using both temperature and pressure can be used. In both cases, bonding occurs at the atomic level, so excellent bonding can be obtained not only electrically but also mechanically.
  • the surface of the metal layer is subjected to an anti-oxidation treatment, and then a hydrophilic treatment is performed, followed by bonding.
  • the surface of the metal layer may be made of a hard-to-oxidize metal such as Au and subjected to a hydrophilic treatment.
  • the pixel circuit 331 included in the layer 203 and the readout circuit 311 included in the layer 201 can be electrically connected.
  • FIG. 22 shows a modification in which the configurations of the layers 203 and 204 are different from the laminate structure 1 shown in FIG. Details of the layers 201, 202a, and 202b are omitted.
  • the modification shown in FIG. 22 has a structure in which the transistor 103 included in the pixel circuit 331 is provided in the layer 204 .
  • transistor 103 is formed of a Si transistor.
  • One of the source or drain of transistor 103 is directly connected to photoelectric conversion device 240, and the other of the source or drain acts as node FD.
  • the layer 203 is provided with transistors included in the pixel circuit 331 except for the transistor 103 .
  • transistor 104 and transistor 105 are illustrated.
  • ⁇ Laminate structure 2> 23 is an example of a cross-sectional view of the laminate shown in FIGS. 3D and 6.
  • FIG. Details of the layer 205 are omitted.
  • the basic configuration of the layers 201 to 205 is the same as that of the laminated structure 1, and only different points will be described.
  • Insulating layer 281 and conductive layer 21, conductive layer 22 and conductive layer 24 are provided in the layer 201 closest to layer 202a.
  • the insulating layer 281 and the conductive layer 21, the conductive layer 22 and the conductive layer 24 function as bonding layers.
  • the layers closest to layer 201 in layer 202a are provided with insulating layer 282 and conductive layer 15, conductive layer 16 and conductive layer .
  • the insulating layer 282 and the conductive layer 15, the conductive layer 16 and the conductive layer 18 function as bonding layers.
  • support region 208 having a monocrystalline silicon substrate is provided in layer 202a, between insulating layer 282 and transistor 271.
  • support region 208 having a monocrystalline silicon substrate is provided in layer 202a, between insulating layer 282 and transistor 271.
  • Each of conductive layer 15, conductive layer 16 and conductive layer 18 is electrically connected to one end of through wire 360 penetrating through the single crystal silicon substrate.
  • the other end of the through wire 360 is electrically connected to a wire that is connected to a pixel circuit, memory circuit, or the like.
  • An insulating layer 361 is formed on the side surface of the through wire 360 .
  • the capacitor 402 and the wiring 352 can be electrically connected.
  • the transistor 115 and the transistor 271 can be electrically connected.
  • the transistor 116 and the transistor 271 can be electrically connected.
  • FIG. 24 is an example of a cross-sectional view of the laminate shown in FIGS. 8A and 8B. Details of layer 205 are omitted. The basic configuration of the layers 201 to 204 is the same as that of the laminated structure 1, and only different points will be described. Note that in FIG. 24, layer 201 includes transistor 403, transistor 116, and capacitor 402. In FIG. Also shown in layer 206 are transistor 278 and capacitor 279 provided in silicon substrate 291 . Transistor 278 and capacitor 279 are components of the DRAM.
  • the layer 201 closest to the layer 203 is provided with an insulating layer 283 and a conductive layer 31 .
  • the insulating layer 283 and the conductive layer 31 function as bonding layers.
  • the layer closest to layer 201 in layer 203 is provided with insulating layer 284 and conductive layer 33 .
  • the insulating layer 284 and the conductive layer 33 function as bonding layers.
  • the capacitor 402 and the wiring 352 can be electrically connected.
  • Insulating layer 286 and conductive layer 35 are provided in layer 201 closest to layer 202b.
  • the insulating layer 286 and the conductive layer 35 function as bonding layers.
  • the conductive layer 35 is electrically connected to the transistor 116 via a through wire 362 penetrating through the silicon substrate 211 .
  • the layer closest to layer 201 in layer 202b is provided with insulating layer 285 and conductive layer 39 .
  • the insulating layer 285 and the conductive layer 39 function as bonding layers.
  • the transistor 116 and the transistor 271 can be electrically connected.
  • FIG. 25 is an example of a cross-sectional view of the laminate shown in FIGS. 9A and 9B. Details of layer 205 are omitted.
  • the basic configuration of the layers 201 to 204 is the same as that of the laminated structure 1, and only different points will be described. Note that in FIG. 25, layer 201 includes transistor 403, transistor 115, transistor 117, and capacitor 402. In FIG. Here, the transistor 117 is an element included in the arithmetic circuit.
  • the layers closest to layer 202a in layer 202b are provided with insulating layer 288 and conductive layers 59 and 60.
  • FIG. The insulating layer 288, the conductive layer 59, and the conductive layer 60 function as bonding layers.
  • Insulating layer 287 , conductive layer 55 and conductive layer 56 are provided in layer 202 a closest to layer 202 b.
  • the insulating layer 287, the conductive layer 55, and the conductive layer 56 function as bonding layers.
  • support region 208 having a monocrystalline silicon substrate is provided in layer 202b, between insulating layer 288 and transistor 271, support region 208 having a monocrystalline silicon substrate is provided.
  • Each of conductive layer 59 and conductive layer 60 is electrically connected to one end of through wire 363 penetrating through the single crystal silicon substrate.
  • the other end of the through wiring 363 is electrically connected to a wiring that is connected to a pixel circuit, a memory circuit, or the like.
  • the capacitor 402 and the wiring 352 can be electrically connected.
  • the transistor 115 and the transistor 271 can be electrically connected.
  • the transistor 117 included in the arithmetic circuit provided in the layer 201 is electrically connected to the transistor 371 included in the layer 202a.
  • a transistor 371 and a capacitor 374 in layer 202a are elements of a memory circuit, which can be used as a primary storage device for an arithmetic circuit.
  • FIG. 26 is an example of a cross-sectional view of the laminate shown in FIGS. 10A and 10B. Details of layer 205 are omitted.
  • the basic configuration of the layers 201 to 204 is the same as that of the laminated structure 1, and only different points will be described. Note that in FIG. 25, layer 201 includes transistor 403, transistor 115, transistor 117, and capacitor 402. In FIG. Here, the transistor 117 is an element included in the arithmetic circuit.
  • the layers closest to layer 201 in layer 202b are provided with insulating layer 296 and conductive layers 79 and 80 .
  • the insulating layer 296, the conductive layer 79, and the conductive layer 80 function as bonding layers.
  • the layers in layer 201 closest to layer 202b are provided with insulating layer 295, conductive layer 75 and conductive layer 76.
  • FIG. The insulating layer 295, the conductive layer 75 and the conductive layer 76 function as bonding layers.
  • support region 208 having a monocrystalline silicon substrate is provided in layer 202b, between insulating layer 296 and transistor 271, support region 208 having a monocrystalline silicon substrate is provided.
  • Each of conductive layer 79 and conductive layer 80 is electrically connected to one end of through wire 364 penetrating through the single crystal silicon substrate.
  • the other end of the through-wiring 364 is electrically connected to a wiring connected to a pixel circuit, a memory circuit, or the like.
  • the capacitor 402 and the wiring 352 can be electrically connected.
  • the transistor 115 and the transistor 271 can be electrically connected.
  • the layer 202a is provided with a conductive layer 83 and a conductive layer 84 exposed to the outside.
  • the conductive layers 83 and 84 can be electrically connected to a wiring included in the layer 201 .
  • the wiring can be electrically connected to the reading circuit 311, the arithmetic circuit 314, and the like included in the layer 201.
  • the present invention is not limited to this.
  • a neural network, a communication circuit, a CPU, and the like may be provided in layer 201 or layer 201 .
  • a normally-off CPU (also referred to as a “Noff-CPU”) can be implemented using an OS transistor and a Si transistor. Note that a Noff-CPU is an integrated circuit including a normally-off transistor that is in a non-conducting state (also referred to as an off state) even when the gate voltage is 0 V.
  • the Noff-CPU can stop power supply to a circuit in the Noff-CPU that does not need to operate, and put the circuit in a standby state. Power is not consumed by the circuit in the standby state when the power supply is stopped. Therefore, the Noff-CPU can minimize power consumption.
  • the Noff-CPU can retain information necessary for operation such as setting conditions for a long period of time even when the power supply is stopped. To return from the standby state, it is only necessary to restart power supply to the circuit, and rewriting of setting conditions and the like is unnecessary. That is, high-speed recovery from the standby state is possible. In this way, the Noff-CPU can reduce power consumption without greatly reducing the operating speed.
  • Embodiment 2 In this embodiment, an example of a package containing an image sensor chip and a camera module will be described.
  • the structure of the imaging device of one embodiment of the present invention can be used for the image sensor chip.
  • FIG. 28A is an external perspective view of a package containing an image sensor chip.
  • the package is a CSP (Chip Size Package), and includes an image sensor bare chip 850, a cover glass 840, an adhesive 830 for bonding the two, and the like.
  • CSP Chip Size Package
  • Electrode pads 825 provided outside the pixel array 855 are electrically connected to the back electrode 815 via the through electrodes 820 .
  • the electrode pads 825 are electrically connected to the circuits forming the image sensor by wiring or wires.
  • the bare chip 850 may be a laminated chip in which circuits having various functions are laminated.
  • FIG. 28A exemplifies a BGA (Ball Grid Array) having a structure in which bumps 810 are formed with solder balls on the back electrode 815 .
  • BGA Bit Grid Array
  • LGA Land Grid Array
  • PGA Peripheral Component Interconnect
  • a package in which the bare chip 850 is mounted on a QFN (Quad Flat No-lead package) or a QFP (Quad Flat Package) may be used.
  • FIG. 28B is an external perspective view of the top side of the camera module in which the image sensor chip and the lens are combined.
  • the camera module has a lens cover 860, a plurality of lenses 870, etc. on the configuration of FIG. 28A.
  • An optical filter 880 is provided between the lens 870 and the cover glass 840 to absorb light of a specific wavelength as required.
  • the optical filter 880 for example, an infrared cut filter or the like can be used in the case of an image sensor that mainly captures visible light.
  • the image sensor chip By housing the image sensor chip in the package of the form described above, mounting on a printed circuit board or the like becomes easy, and the image sensor chip can be incorporated into various semiconductor devices and electronic devices.
  • Examples of electronic devices that can use the imaging device according to one aspect of the present invention include display devices, personal computers, image storage devices or image playback devices equipped with recording media, mobile phones, game machines including portable types, and portable data terminals. , E-book terminals, video cameras, cameras such as digital still cameras, goggle-type displays (head-mounted displays), navigation systems, sound playback devices (car audio, digital audio players, etc.), copiers, facsimiles, printers, multi-function printers , automated teller machines (ATMs), vending machines, and the like. Specific examples of these electronic devices are shown in FIGS. 29A to 29F.
  • FIG. 29A shows an example of a mobile phone, which includes a housing 981, a display portion 982, operation buttons 983, an external connection port 984, a speaker 985, a microphone 986, a camera 987, and the like.
  • the mobile phone includes a touch sensor in the display portion 982 . All operations such as making a call or inputting characters can be performed by touching the display portion 982 with a finger, a stylus, or the like.
  • the imaging device of one embodiment of the present invention can be applied to the mobile phone.
  • FIG. 29B shows a portable data terminal including a housing 911, a display portion 912, a speaker 913, a camera 919, and the like.
  • Information can be input/output using the touch panel function of the display portion 912 .
  • a character or the like can be recognized from an image acquired by the camera 919 and the character can be output as voice through the speaker 913 .
  • the imaging device of one embodiment of the present invention can be applied to the portable data terminal.
  • FIG. 29C shows a surveillance camera, which has a support base 951, a camera unit 952, a protective cover 953, and the like.
  • the camera unit 952 is provided with a rotation mechanism or the like, and can be installed on the ceiling to capture an image of the entire surroundings.
  • the imaging device of one embodiment of the present invention can be applied to an element for acquiring an image in the camera unit.
  • surveillance camera is a commonly used name and does not limit its use.
  • a device that functions as a surveillance camera is also called a camera or a video camera.
  • FIG. 29D shows a drive recorder, which has a frame 941, a camera 942, operation buttons 943, mounting parts 944, and the like. By installing it on the front window of an automobile via an attachment part 944, it is possible to record the scenery in front of the vehicle while driving.
  • a display panel for displaying recorded images is provided on the rear surface (not shown).
  • the imaging device of one embodiment of the present invention can be applied to the camera 942 .
  • FIG. 29E shows a digital camera including a housing 961, a shutter button 962, a microphone 963, a light emitting portion 967, a lens 965, and the like.
  • the imaging device of one embodiment of the present invention can be applied to the digital camera.
  • FIG. 29F shows a wristwatch-type information terminal including a display portion 932, a housing/wristband 933, a camera 939, and the like.
  • the display unit 932 includes a touch panel for operating the information terminal.
  • the display portion 932 and the housing/wristband 933 are flexible and are excellent in wearability.
  • the imaging device of one embodiment of the present invention can be applied to the information terminal.
  • FIG. 30A shows a drone, which is an example of a moving object, and has a frame 921, an arm 922, a rotor 923, a blade 924, a camera 925, a battery 926, etc., and has functions such as autonomous flight, stationary in the air, and the like.
  • the imaging device of one embodiment of the present invention can be applied to the camera 925 .
  • FIG. 30B illustrates an external view of an automobile as an example of a moving object.
  • the automobile 890 has a plurality of cameras 891 and the like, and can acquire information on the front, rear, left, right, and above the automobile 890 .
  • the imaging device of one embodiment of the present invention can be applied to the camera 891 .
  • the car 890 also includes various sensors (not shown) such as an infrared radar, a millimeter wave radar, and a laser radar.
  • the automobile 890 can analyze the images acquired by the camera 891 in a plurality of imaging directions 892, determine the surrounding traffic conditions such as the presence or absence of guardrails or pedestrians, and automatically drive. It can also be used in systems for road guidance, danger prediction, and the like.
  • image resolution can be increased, image noise can be reduced, face recognition (for crime prevention purposes, etc.), and object recognition can be performed.
  • image compression for automatic driving purposes, etc.
  • image correction widening the dynamic range
  • image restoration for lensless image sensors, positioning, character recognition, reflection reduction, etc.
  • the automobile may be an automobile having an internal combustion engine, an electric automobile, a hydrogen automobile, or the like.
  • the moving object is not limited to an automobile.
  • moving objects include trains, monorails, ships, and flying objects (helicopters, unmanned aerial vehicles, airplanes, and rockets).
  • flying objects helicopters, unmanned aerial vehicles, airplanes, and rockets.
  • a system that uses intelligence can be granted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

少ない工程で作製することができる高機能の撮像装置に関する。 それぞれにデバイスを有する、複数の層または積層体を貼り合わせて形成される撮像装置である。第1の層に画素回路、第2の層にメモリ回路、第3の層に画素の駆動回路およびメモリ回路の駆動回路などを設けることができる。このような構成とすることで、小型の撮像装置を形成することができる。また、各回路を積層することで配線遅延などを抑制することができ、高速動作を行うことができる。

Description

撮像装置および電子機器
本発明の一態様は、撮像装置に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明装置、蓄電装置、記憶装置、撮像装置、それらの駆動方法、または、それらの製造方法、を一例として挙げることができる。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。トランジスタ、半導体回路は半導体装置の一態様である。また、記憶装置、表示装置、撮像装置、電子機器は、半導体装置を有する場合がある。
基板上に形成された酸化物半導体薄膜を用いてトランジスタを構成する技術が注目されている。例えば、酸化物半導体を有するオフ電流が極めて低いトランジスタを画素回路に用いる構成の撮像装置が特許文献1に開示されている。
特開2011−119711号公報
CMOSイメージセンサなどの撮像装置では、技術発展により高画質な画像が容易に撮影できるようになっている。次世代においては、撮像装置をさらに高機能化することが求められている。
一方で、撮像装置は様々な機器に組み込まれることから、小型化の要求もある。そのため、機能を付加する場合においてもセンサチップは小型化することが望まれる。したがって、撮像装置に機能を付加するための要素は、積層して配置することが好ましい。
しかしながら、半導体デバイスを複数積層する場合は、研磨工程および貼り合わせ工程などを複数回行う必要がある。そのため、歩留まりの向上が課題となっている。
したがって、本発明の一態様では、高機能の撮像装置を提供することを目的の一つとする。または、少ない工程で作製することができる撮像装置を提供することを目的の一つとする。または、高歩留まりで作製することができる撮像装置を提供することを目的の一つとする。または、小型の撮像装置を提供することを目的の一つとする。または、高速動作が可能な撮像装置などを提供することを目的の一つとする。または、信頼性の高い撮像装置を提供することを目的の一つとする。または、新規な撮像装置などを提供することを目的の一つとする。または、上記撮像装置の駆動方法を提供することを目的の一つとする。または、新規な半導体装置などを提供することを目的の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、少ない工程で作製することができる高機能の撮像装置に関する。
本発明の第一の態様は、互いに重なる領域を有する、第1の層と、第2の層と、第3の層と、第4の層と、第5の層と、を有し、第2の層、第3の層および第4の層は、第1の層と第5の層との間に設けられ、第2の層は、第1の層と第3の層との間に設けられ、第4の層は、第3の層と第5の層との間に設けられ、第1の層は、読み出し回路と、第1の駆動回路と、第2の駆動回路と、を有し、第2の層は、第1のメモリ回路を構成する第1のトランジスタを有し、第3の層は、第2のメモリ回路を構成する第2のトランジスタと、第1の導電層と、第2の導電層と、を有し、第4の層は、画素回路を構成する第3のトランジスタと、第3の導電層と、第4の導電層と、を有し、第5の層は、画素回路を構成する光電変換デバイスを有し、画素回路は、第1の導電層および第3の導電層を介して読み出し回路と電気的に接続され、画素回路は、第2の導電層および第4の導電層を介して第1の駆動回路と電気的に接続され、第1のメモリ回路および第2のメモリ回路は、読み出し回路および第2の駆動回路と電気的に接続され、第1のトランジスタ、第2のトランジスタおよび第3のトランジスタは、チャネル形成領域に金属酸化物を有し、第1の導電層および第3の導電層、第2の導電層および第4の導電層のそれぞれは、直接接合している撮像装置である。
第1の導電層乃至第4の導電層は同一の金属材料で構成され、金属材料は、Cu、Al、W、またはAuであることが好ましい。
本発明の第二の態様は、互いに重なる領域を有する、第1の層と、第2の層と、第3の層と、第4の層と、第5の層と、を有し、第2の層、第3の層および第4の層は、第1の層と第5の層との間に設けられ、第2の層は、第1の層と第3の層との間に設けられ、第4の層は、第3の層と第5の層との間に設けられ、第1の層は、読み出し回路と、第1の駆動回路と、第2の駆動回路と、第1の導電層と、第2の導電層と、第3の導電層と、第4の導電層と、第5の導電層と、第6の導電層と、を有し、第2の層は、第1のメモリ回路を構成する第1のトランジスタと、第7の導電層と、第8の導電層と、第9の導電層と、第10の導電層と、第11の導電層と、第12の導電層と、を有し、第3の層は、第2のメモリ回路を構成する第2のトランジスタと、第13の導電層と、第14の導電層と、を有し、第4の層は、画素回路を構成する第3のトランジスタと、第15の導電層と、第16の導電層と、を有し、第5の層は、画素回路を構成する光電変換デバイスを有し、画素回路は、第1の導電層、第7の導電層、第13の導電層および第15の導電層を介して読み出し回路と電気的に接続され、画素回路は、第2の導電層、第8の導電層、第14の導電層および第16の導電層を介して第1の駆動回路と電気的に接続され、第1のメモリ回路は、第3の導電層および第9の導電層を介して読み出し回路と電気的に接続され、第1のメモリ回路は、第4の導電層および第10の導電層を介して第2の駆動回路と電気的に接続され、第2のメモリ回路は、第5の導電層および第11の導電層を介して読み出し回路と電気的に接続され、第2のメモリ回路は、第6の導電層および第12の導電層を介して第2の駆動回路と電気的に接続され、第1のトランジスタ、第2のトランジスタおよび第3のトランジスタは、チャネル形成領域に金属酸化物を有し、第1の導電層および第7の導電層、第2の導電層および第8の導電層、第3の導電層および第9の導電層、第4の導電層および第10の導電層、第5の導電層および第11の導電層、第6の導電層および第12の導電層、第13の導電層および第15の導電層、第14の導電層および第16の導電層のそれぞれは、直接接合している撮像装置である。
第1の導電層乃至第12の導電層は同一の金属材料で構成され、第13の導電層乃至第16の導電層は同一の金属材料で構成され、金属材料は、Cu、Al、W、またはAuであることが好ましい。
本発明の第二の態様において、第2の層は、単結晶シリコン基板を有する支持領域を有し、第7の導電層乃至第12の導電層は、支持領域に設けることができる。
また、本発明の第一の態様および第二の態様において、第1の層は、演算回路を有し、演算回路は、第2の駆動回路と電気的に接続することができる。
本発明の第三の態様は、互いに重なる領域を有する、第1の層と、第2の層と、第3の層と、第4の層と、第5の層と、を有し、第2の層、第3の層および第4の層は、第1の層と第5の層との間に設けられ、第2の層は、第1の層と第3の層との間に設けられ、第4の層は、第3の層と第5の層との間に設けられ、第1の層は、読み出し回路と、第1の駆動回路と、第2の駆動回路と、演算回路と、を有し、第2の層は、第1のメモリ回路を構成する第1のトランジスタと、第1の導電層と、第2の導電層と、第3の導電層と、第4の導電層と、を有し、第3の層は、第2のメモリ回路を構成する第2のトランジスタと、第5の導電層と、第6の導電層と、第7の導電層と、第8の導電層と、第9の導電層と、第10の導電層と、を有し、第4の層は、画素回路を構成する第3のトランジスタと、第11の導電層と、第12の導電層と、を有し、第5の層は、画素回路を構成する光電変換デバイスを有し、画素回路は、第1の導電層、第5の導電層、第9の導電層および第10の導電層を介して読み出し回路と電気的に接続され、画素回路は、第2の導電層、第6の導電層、第10の導電層および第12の導電層を介して第1の駆動回路と電気的に接続され、第1のメモリ回路は、演算回路と電気的に接続され、第2のメモリ回路は、第3の導電層および第7の導電層を介して読み出し回路と電気的に接続され、第2のメモリ回路は、第4の導電層および第8の導電層を介して第2の駆動回路と電気的に接続され、第1のトランジスタ、第2のトランジスタおよび第3のトランジスタは、チャネル形成領域に金属酸化物を有し、第1の導電層および第5の導電層、第2の導電層および第6の導電層、第3の導電層および第7の導電層、第4の導電層および第8の導電層、第9の導電層および第10の導電層、第10の導電層および第12の導電層のそれぞれは、直接接合している撮像装置である。
第1の導電層乃至第8の導電層は同一の金属材料で構成され、第9の導電層乃至第12の導電層は同一の金属材料で構成され、金属材料は、Cu、Al、W、またはAuであることが好ましい。
本発明の第三の態様において、第3の層は、単結晶シリコン基板を有する支持領域を有し、第5の導電層乃至第8の導電層は、支持領域に設けることができる。
本発明の第一の態様乃至第三の態様において、第1の層および第5の層は、単結晶シリコン基板を有することができる。また、金属酸化物は、Inと、Znと、M(MはAl、Ti、Ga、Ge、Sn、Y、Zr、La、Ce、NdまたはHfの一つまたは複数)と、を有することができる。
本発明の一態様を用いることで、高機能の撮像装置を提供することができる。少ない工程で作製することができる撮像装置を提供することができる。または、高歩留まりで作製することができる撮像装置を提供することができる。または、小型の撮像装置を提供することができる。または、高速動作が可能な撮像装置などを提供することができる。または、信頼性の高い撮像装置を提供することができる。または、新規な撮像装置などを提供することができる。または、上記撮像装置の駆動方法を提供することができる。または、新規な半導体装置などを提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。
図1は、撮像装置を説明する断面斜視図である。
図2A乃至図2Cは、積層体の作製方法を説明する図である。
図3A乃至図3Dは、積層体の作製方法を説明する図である。
図4A乃至図4Cは、撮像装置を説明するブロック図である。
図5Aおよび図5Bは、撮像装置を説明するブロック図である。
図6は、撮像装置を説明するブロック図である。
図7Aおよび図7Bは、撮像装置を説明するブロック図である。
図8Aおよび図8Bは、撮像装置を説明するブロック図である。
図9Aおよび図9Bは、撮像装置を説明するブロック図である。
図10Aおよび図10Bは、撮像装置を説明するブロック図である。
図11Aおよび図11Bは、画素回路を説明する回路図である。
図12Aは、ローリングシャッタの動作を説明する図である。図12Bは、グローバルシャッタの動作を説明する図である。
図13Aおよび図13Bは、画素回路の動作を説明するタイミングチャートである。
図14Aおよび図14Bは、画素回路を説明する回路図である。
図15は、読み出し回路を説明する回路図およびブロック図である。
図16Aは、メモリ回路を説明する図である。図16B乃至図16Eは、メモリセルを説明する図である。
図17Aは、メモリ回路を説明する図である。図17Bおよび図17Cは、メモリセルを説明する図である。
図18Aは、強誘電体層のヒステリシス特性を説明する図である。図18Bは、メモリセルの動作を説明するタイミングチャートである。
図19は、画素を説明する断面図である。
図20A乃至図20Cは、Siトランジスタを説明する図である。
図21A乃至図21Dは、OSトランジスタを説明する図である。
図22は、画素を説明する断面図である。
図23は、画素を説明する断面図である。
図24は、画素を説明する断面図である。
図25は、画素を説明する断面図である。
図26は、画素を説明する断面図である。
図27A乃至図27Cは、画素を説明する斜視図(断面図)である。
図28Aは、撮像装置を収めたパッケージを説明する図である。図28Bは、撮像装置を収めたモジュールを説明する図である。
図29A乃至図29Fは、電子機器を説明する図である。
図30Aおよび図30Bは、移動体を説明する図である。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。したがって、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略することがある。なお、図を構成する同じ要素のハッチングを異なる図面間で適宜省略または変更する場合もある。
また、回路図上では単一の要素として図示されている場合であっても、機能的に不都合がなければ、当該要素が複数で構成されてもよい。例えば、スイッチとして動作するトランジスタは、複数が直列または並列に接続されてもよい場合がある。また、キャパシタを分割して複数の位置に配置する場合もある。
また、一つの導電体が、配線、電極および端子のような複数の機能を併せ持っている場合があり、本明細書においては、同一の要素に対して複数の呼称を用いる場合がある。また、回路図上で要素間が直接接続されているように図示されている場合であっても、実際には当該要素間が一つまたは複数の導電体を介して接続されている場合があり、本明細書ではこのような構成でも直接接続の範疇に含める。
(実施の形態1)
本実施の形態では、本発明の一態様である撮像装置について、図面を参照して説明する。
本発明の一態様は、積層された複数のデバイスを有する撮像装置である。当該撮像装置は、デバイスを有する層または積層体を複数貼り合わせることによって形成される。したがって、機能の異なる回路などが複数積層される構成であっても、研磨工程および貼り合わせ工程を削減することができ、歩留まりを向上させることができる。
例えば、第1の層に画素回路、第2の層にメモリ回路、第3の層に画素の駆動回路およびメモリ回路の駆動回路などを設けることができる。このような構成とすることで、小型の撮像装置を形成することができる。また、各回路を積層することで配線遅延などを抑制することができ、高速動作を行うことができる。
<積層構造>
図1は、本発明の一態様の撮像装置を説明する断面斜視図である。撮像装置は、層201、層202a、層202b、層203、層204および層205を有する。
なお、本実施の形態では、説明の明瞭化のため、撮像装置を複数の層に分割して説明するが、それぞれの層に含まれる要素の種類、数量、位置は本実施の説明に限定されない。例えば、層と層の境近傍にある絶縁層、配線およびプラグなど要素は、本実施の形態の説明とは異なる層に属する場合がある。または、これらとは異なる要素が含まれていてもよい。また、撮像装置は、上記以外の層を有する場合もある。
層201は、領域210を有する。領域210には、例えば、画素回路の読み出し回路、画素回路の駆動回路、メモリ回路の駆動回路、演算回路などを設けることができる。
層202aは、領域220aを有する。領域220aには、例えば、第1のメモリ回路などを設けることができる。
層202bは、領域220bを有する。領域220bには、例えば、第2のメモリ回路などを設けることができる。
層203は、領域230を有する。領域230には、例えば、画素回路(光電変換デバイスを除く)などを設けることができる。なお、領域210が有する画素回路の駆動回路の一部を領域230に設けてもよい。
層204は、光電変換デバイス240が設けられる領域を有する。光電変換デバイス240には、例えば、フォトダイオードなどを用いることができる。なお、光電変換デバイス240は、画素回路の要素ということもできる。
層205は、光学変換層250が設けられる領域を有する。光学変換層250には、例えば、カラーフィルタなどを用いることができる。また、層205は、マイクロレンズアレイ255を有することができる。
上述したように、本発明の一態様の撮像装置は、光電変換デバイス240、領域230に設けられる画素回路、領域220aに設けられる第1のメモリ回路、領域220bに設けられる第2のメモリ回路、領域210に設けられる画素回路の読み出し回路、画素回路の駆動回路、メモリ回路の駆動回路、および演算回路等を有する。なお、演算回路としては、例えば、画像処理回路などを適用することができる。
ここで、光電変換デバイス240は、可視光に感度を有することが好ましい。例えば、光電変換デバイス240に単結晶シリコンを光電変換層に用いるSiフォトダイオードを用いることができる。
単結晶シリコンを光電変換層とするフォトダイオードは、紫外光から近赤外光まで比較的広い分光感度特性を有し、後述する光学変換層と組み合わせることで、様々な波長の光を検出することができる。また、単結晶シリコンを光電変換層とするフォトダイオードは、比較的高い電圧を印加することで、高感度のアバランシェフォトダイオードとして機能させることもできる。
そのほか、pn接合型フォトダイオードの光電変換層として、化合物半導体を用いてもよい。当該化合物半導体としては、例えば、ガリウム−ヒ素−リン化合物(GaAsP)、ガリウム−リン化合物(GaP)、インジウム−ガリウム−ヒ素化合物(InGaAs)、鉛−硫黄化合物(PbS)、鉛−セレン化合物(PbSe)、インジウム−ヒ素化合物(InAs)、インジウム−アンチモン化合物(InSb)、水銀−カドミウム−テルル化合物(HgCdTe)などを用いることができる。
化合物半導体としては、13族元素(アルミニウム、ガリウム、インジウムなど)および15族元素(窒素、リン、ヒ素、アンチモンなど)を有する化合物半導体(3−5族化合物半導体とも言う)、または、12族元素(マグネシウム、亜鉛、カドミウム、水銀など)および16族元素(酸素、硫黄、セレン、テルルなど)を有する化合物半導体(2−6族化合物半導体とも言う)であることが好ましい。
化合物半導体は、構成元素の組み合わせ、またはその原子数比に応じてバンドギャップを変化させることができるため、紫外光から赤外光まで様々な波長範囲に感度を有するフォトダイオードを形成することができる。
なお、紫外光の波長は、0.01μm近傍乃至0.38μm近傍、可視光の波長は、0.38μm近傍乃至0.75μm近傍、近赤外光の波長は、0.75μm近傍乃至2.5μm近傍)、中赤外光の波長は、2.5μm近傍乃至4μm近傍、遠赤外光の波長は、4μm近傍乃至1000μm近傍、と一般的に定義することができる。
例えば、紫外光から可視光にかけて光感度を有するフォトダイオードを形成するには、光電変換層にGaPなどを用いることができる。また、紫外光から近赤外光にかけて光感度を有するフォトダイオードを形成するには、光電変換層に前述したシリコンまたはGaAsPなどを用いることができる。また、可視光から中赤外光にかけて光感度を有するフォトダイオードを形成するには、光電変換層にInGaAsなどを用いることができる。また、近赤外光から中赤外光にかけて光感度を有するフォトダイオードを形成するには、光電変換層にPbSまたはInAsなどを用いることができる。また、中赤外光から遠赤外光にかけて光感度を有するフォトダイオードを形成するには、光電変換層にPbSe、InSbまたはHgCdTeなどを用いることができる。
なお、上記化合物半導体を用いたフォトダイオードは、pn接合だけでなく、pin接合であってもよい。また、pn接合およびpin接合は、ホモ接合構造に限らず、ヘテロ接合構造であってもよい。
例えば、ヘテロ接合では、pn接合構造の一方の層に第1の化合物半導体を用い、他方の層に第1の化合物半導体とは異なる第2の化合物半導体を用いることができる。また、pin接合構造のいずれか1層または2層に第1の化合物半導体を用い、その他の層に第1の化合物半導体とは異なる第2の化合物半導体を用いることができる。なお、第1の化合物半導体または第2の化合物半導体の一方は、シリコンなどの単体の半導体であってもよい。
なお、画素ごとに異なる材料を用いて、フォトダイオードの光電変換層を形成してもよい。当該構成を用いることで、紫外光を検出する画素、可視光を検出する画素、赤外光を検出する画素などのうち、いずれか2種類の画素、または3種類の画素を有する撮像装置を形成することができる。
また、光電変換デバイス240にセレン系材料を光電変換層としたpn接合型フォトダイオードを用いてもよい。セレン系材料を用いた光電変換デバイスは、可視光に対する外部量子効率が高い特性を有する。当該光電変換デバイスでは、アバランシェ増倍を利用することにより、入射される光の量に対する電子の増幅を大きくすることができる。また、セレン系材料は光吸収係数が高いため、光電変換層を薄膜で作製できるなどの生産上の利点を有する。セレン系材料の薄膜は、真空蒸着法またはスパッタ法などを用いて形成することができる。
セレン系材料としては、結晶性セレン(単結晶セレン、多結晶セレン)、非晶質セレンを用いることができる。これらは、紫外光から可視光にかけて光感度を有する。また、銅、インジウム、セレンの化合物(CIS)、または、銅、インジウム、ガリウム、セレンの化合物(CIGS)などを用いることができる。これらは、紫外光から近赤外光にかけて光感度を有する。
画素回路の構成要素には、チャネル形成領域に金属酸化物を用いたトランジスタ(以下、OSトランジスタ)を用いることが好ましい。OSトランジスタはオフ電流が極めて小さく、画素回路からのデータの不必要な流出を抑えることができる。したがって、複数の画素回路でデータを一斉に取得し、順次読み出しを行うグローバルシャッタ動作を簡易な回路構成で行うことができる。また、画素の駆動回路は、画素回路と共通の工程で形成することができる。
また、OSトランジスタは、Siトランジスタよりもドレイン耐圧の高い特性を有する。アバランシェフォトダイオードでは、比較的高い電圧(例えば、10V以上)を印加して動作させることが好ましい。したがって、アバランシェフォトダイオードを用いる場合はOSトランジスタと組み合わせることで、信頼性の高い撮像装置とすることができる。
なお、画素において、アバランシェフォトダイオードとOSトランジスタとの間には遮光層を設けることが好ましい。遮光層によりOSトランジスタに光が照射されることによる特性変化を抑制することができる。また、OSトランジスタ近傍に照射された光が反射し、他の画素へ侵入する迷光を抑えることもできる。遮光層は、例えば金属層で形成することができ、アバランシェフォトダイオードの電極として機能させてもよい。また、金属を遮光層に用いることで、遮光層に達した光が反射し、アバランシェフォトダイオードの感度を高めることもできる。
第1のメモリ回路および第2のメモリ回路(以下、両者を区別しない場合は、メモリ回路と呼称する場合がある)にもOSトランジスタを用いることが好ましい。メモリ回路のセルトランジスタにOSトランジスタを用いることで、データの不必要な流出を抑えることができ、リフレッシュの頻度を抑えることができる。したがって消費電力を抑えることができる。なお、メモリ回路のセルトランジスタにシリコンをチャネル形成領域に有するトランジスタを用いることもできる。また、メモリ回路が有するメモリセルには、強誘電体キャパシタを用いてもよい。強誘電体キャパシタに保持したデータは不揮発であり、リフレッシュ動作が不要であるため、電力消費を抑えることができる。
画素回路の読み出し回路、画素回路の駆動回路、メモリ回路の駆動回路、演算回路等は、高速動作を要求されるため、移動度の高いトランジスタを用いることが好ましい。例えば、Siトランジスタを用いることが好ましい。Siトランジスタとしては、アモルファスシリコンを有するトランジスタ、結晶性のシリコン(微結晶シリコン、低温ポリシリコン、単結晶シリコン)を有するトランジスタなどが挙げられる。なお、画素回路をSiトランジスタで形成してもよい。
上記に示す本発明の一態様の撮像装置の構成では、メモリ回路(大容量メモリ)を駆動回路および演算回路の近くに配置することができるため、高速かつ低電力なデータのやりとりが可能となる。例えば、演算回路は、外部のメモリ回路にアクセスすることなく、データの保存および演算処理を行うことができる。
具体例としては、例えば、高解像度で高フレームレートの動画を撮影する場合、演算回路は、メモリ回路に高速にアクセスしなければならない。そのため、演算回路内部に設けられる一次記憶装置にデータを保存する。そのため、撮影時間は、当該一次記憶装置の容量に律速される。
本発明の一態様の撮像装置では、大容量のメモリ回路が、演算回路等が高速にアクセスできる位置に設けられており、当該メモリ回路を演算回路内部に設けられる一次記憶装置と同様に機能させることができる。一次記憶装置が大容量になることで、保存できるデータ量が増えるため、より高フレームレート、高解像度、長時間の動作撮影が可能となる。
また、撮像データを人工知能で処理し、人または物体を認識する場合は、膨大なデータを演算処理しなければならない。大容量のメモリ回路を一次記憶装置として用いることで、撮像装置内で膨大な演算処理が可能となる。撮像装置は、演算結果のみを外部に出力すればよいため、撮像データ全てを外部に出力する場合と比べ、消費電力を削減することができる。
なお、本発明の一態様の撮像装置が有するメモリ回路は、上記用途に限らず、演算回路外部にある一次記憶装置、または二次記憶装置としても用いることができる。
半導体デバイスを複数積層する場合、研磨工程および貼り合わせ工程が複数回必要になる。そのため、工程数が多い、専用の装置が必要、低歩留まりなどの課題があり、製造コストも高い。本発明の一態様では、Siデバイス上にOSトランジスタを用いた回路を形成することで、研磨工程および貼り合わせ工程を削減することができる。
OSトランジスタは、貼り合わせおよびバンプ接合などの複雑な工程を用いず、Siデバイス(Siトランジスタ、Siフォトダイオード)上に絶縁層を介して形成することができる。
例えば、図2Aに示すように、層201上に層202aを形成し、層202a上に層202bを形成する。ここで、層201はシリコン基板を有する層とし、領域210にはSiトランジスタを有する回路を形成する。また、層202aの領域220aおよび層202bの領域220bには、それぞれOSトランジスタを有するメモリ回路を形成する。
また、図2Bに示すように、層204上に層203を形成する。層204はシリコン基板を有する層とし、層204に光電変換デバイス240としてSiフォトダイオードを形成する。層203の領域230には、OSトランジスタを有する画素回路を形成する。
そして、図2Cに示すように、層202bと層203とを位置Aで貼り合わせることで、層201、層202a、層202b、層203および層204が当該順序で積層され、それぞれが互いに重なる領域を有する積層構成を作製することができる。なお、図1は、図2Cに示す積層体の層204上に、さらに層205を設けた構成である。
Siデバイスを積層する場合においては、6層の積層であれば、研磨工程および貼り合わせ工程が少なくともそれぞれ複数回必要になるが、本発明の一態様では、研磨工程は1回または2回、貼り合わせ工程は1回とすることができる。
または、図3Aに示す層201と、図3Bに示す層202aおよび層202bの積層体と、図3Cに示す層204および層203の積層体を用いて、図3Dに示す積層構成を作製してもよい。
図3Dに示す積層構成は、層201と層202aとの間に位置Bを有する点が図2Cに示す構成と異なる。図3Bに示す層202aの領域220aおよび層202bの領域220bに設けられる薄膜デバイスは単体でのハンドリングが困難であるため、層202aが有する支持領域208上に設けられる。支持領域208は、例えば、単結晶シリコン基板および当該単結晶シリコン基板上に設けられた絶縁層などを有することができる。なお、単結晶シリコン基板の代わりとして、他の半導体単結晶基板、石英基板、ガラス基板、セラミック基板などを支持領域208に用いることもできる。
図3Dに示す構成では、貼り合わせ工程が2回となるが、図3A乃至図3Cに示す構成ごとに良品を選定することができるため、製造コストを低減させることができる。例えば、図2Aの構成において、層202aまたは層202bに設けられるデバイスに不良あった場合、層201が良品であっても全体では不良品になってしまう。図3Dの構成とすることで、同様の不良が発生した場合でも層201の損失を防ぐことができる。
<構成例1>
図4Aは、図2Cに示す構成について、各層に形成される回路等と、その電気的な接続を説明する簡易的なブロック図である。なお、層204が有する光電変換デバイス240は、回路上では画素回路331(PIX)に含まれるため、ここでは電気的な接続は図示していない。
層203には、複数の画素回路331がマトリクス状に並べて設けられる。画素回路331は、導電層11および導電層13を介して層201が有する読み出し回路311(RC)と電気的に接続される。また、画素回路331は、導電層12および導電層14を介して層201が有する駆動回路332(PD)と電気的に接続される。
ここで、導電層11および導電層12は、層202bに設けられる。導電層13および導電層14は、層203に設けられる。貼り合わせ工程によって、導電層11と導電層13、および導電層12と導電層14は直接接合される。したがって、導電層11乃至導電層14は、同一の金属材料で形成されていることが好ましい。
読み出し回路311は、ノイズを削減する相関二重サンプリング回路(CDS回路)およびアナログデータをデジタルデータに変換するA/Dコンバータを有することができる。
駆動回路332は、画素回路331のデータ取得動作および選択動作などの制御を行うことができる。駆動回路332は、例えば、図4Bに示すように、ゲートドライバ343(GD)およびソースドライバ344(SD)を有することができる。ゲートドライバ343およびソースドライバ344には、例えば、シフトレジスタなどを用いることができる。なお、ゲートドライバはロードライバ、ソースドライバはカラムドライバと言い換えることができる。
読み出し回路311は、層202aが有するメモリ回路321a(MEM)および層202bが有するメモリ回路321b(MEM)と電気的に接続される。メモリ回路321aおよびメモリ回路321bは、読み出し回路311から出力されたデジタルデータを保持することができる。または、読み出し回路311から外部にデジタルデータを出力することもできる。
ここで、メモリ回路321aおよびメモリ回路321bは、それぞれメモリセルアレイを有する大容量メモリである。
メモリ回路321aおよびメモリ回路321bは、駆動回路312(MD)と電気的に接続される。駆動回路312は、例えば、図4Cに示すように、ロードライバ341(RD)およびカラムドライバ342(CD)を有することができる。ロードライバ341およびカラムドライバ342には、例えば、デコーダなどを用いることができる。
駆動回路312によってメモリ回路321aまたはメモリ回路321bから読み出されたデータは、駆動回路312と電気的に接続する演算回路314に入力することができる。演算回路314では、例えば、画素処理などを行うことができ、処理したデータを外部に出力することができる。
画素回路331、読み出し回路311、メモリ回路321aおよびメモリ回路321bの接続関係の詳細を図5Aのブロック図を用いて説明する。読み出し回路311の数は、画素回路331と同数とすることができ、一つの画素回路331につき、一つの読み出し回路311が電気的に接続される。
また、読み出し回路311は複数の配線353と接続され、配線353のそれぞれは、メモリ回路321aが有する一つのメモリセル322、またはメモリ回路321bが有する一つのメモリセル323と電気的に接続される。なお、読み出し回路311とメモリセル322との間、および読み出し回路311とメモリセル323との間にデータ保持回路が設けられていてもよい。
読み出し回路311が有するA/Dコンバータは、所定のビット数分の二値データを並列出力する。したがって、A/Dコンバータは、当該ビット数分のメモリセル322またはメモリセル323と接続される。例えば、A/Dコンバータの出力が8ビットである場合、8個のメモリセル322または8個のメモリセル323と電気的に接続される。
なお、図4および図5Aでは、読み出し回路311がメモリ回路321aおよびメモリ回路321bと接続される例を示したが、これらの接続の構成はこれに限らない。例えば、図5Bに示すように、読み出し回路311が演算回路314を介してメモリ回路321aおよびメモリ回路321bと接続されてもよい。また、読み出し回路311は、演算回路314とは異なる演算回路を介してメモリ回路321aおよびメモリ回路321bと接続されてもよい。また、演算回路は、メモリ回路321aおよびメモリ回路321bの一部をキャッシュメモリとして利用することもできる。なお、当該構成は、本実施の形態で説明する他の構成例にも適用することができる。
上述の構成によって、本発明の一態様の撮像装置では、すべての画素回路331で取得したアナログデータのA/D変換を並列して行うことができ、変換されたデジタルデータをメモリ回路321aまたはメモリ回路321bに直接書き込むことができる。つまり、撮像からメモリ回路への格納までを高速に行うことができる。また、撮像動作、A/D変換動作、読み出し動作を並列して行うことも可能である。
<構成例2>
図6は、図3Dに示す構成について、各層に形成される回路等と、その電気的な接続を説明する簡易的なブロック図である。なお、層204が有する光電変換デバイス240は、回路上では画素回路331(PIX)に含まれるため、ここでは電気的な接続は図示していない。また、構成例1と共通する要素の説明および支持領域208の図示は省略する。
層203には、複数の画素回路331がマトリクス状に並べて設けられる。画素回路331は、導電層13、導電層11、導電層21および導電層15を介して層201が有する読み出し回路311(RC)と電気的に接続される。また、画素回路331は、導電層14、導電層12、導電層26および導電層20を介して層201が有する駆動回路332(PD)と電気的に接続される。
読み出し回路311は、導電層16および導電層22を介して層202aが有するメモリ回路321a(MEM)と電気的に接続される。また、読み出し回路311は、導電層17および導電層23を介して層202bが有するメモリ回路321b(MEM)と電気的に接続される。
メモリ回路321aは、導電層18および導電層24を介して駆動回路312(MD)と電気的に接続される。また、メモリ回路321bは、導電層19および導電層25を介して駆動回路312(MD)と電気的に接続される。
ここで、導電層11および導電層12は、層202bに設けられる。導電層13および導電層14は、層203に設けられる。貼り合わせ工程によって、導電層11と導電層13、および導電層12と導電層14は直接接合される。したがって、導電層11乃至導電層14は、同一の金属材料で形成されていることが好ましい。
また、導電層15乃至導電層20は、層201に設けられる。導電層21乃至導電層26は、層202aの支持領域208に設けられる。貼り合わせ工程によって、導電層15と導電層21、導電層16と導電層22、導電層17と導電層23、導電層18と導電層24、導電層19と導電層25、および導電層20と導電層26は直接接合される。したがって、導電層15乃至導電層26は、同一の金属材料で形成されていることが好ましい。
なお、図6に示す構成において、支持領域208は単結晶シリコン基板を有することができるため、支持領域208に回路を設けることもできる。例えば、図7Aに示すように、支持領域208にメモリ回路の駆動回路313を設け、メモリ回路321aおよびメモリ回路321bと支持領域208が有する駆動回路313とを電気的に接続してもよい。
この場合、層201に駆動回路312を設けなくてもよい。または、メモリ回路321aおよびメモリ回路321bの一方を支持領域208が有する駆動回路313と電気的に接続し、メモリ回路321aおよびメモリ回路321bの他方を層201が有する駆動回路312と電気的に接続してもよい。
<構成例3>
図8Aは、層201と、層204および層203の積層体における層203とを位置Aで貼り合わせ、層201と、層206上に層202aおよび層202bを積層した積層体における層202bとを位置Bで貼り合わせた構成である。
ここで、層206は単結晶シリコン基板を有し、領域260にはSiトランジスタを有するメモリ回路が設けることができる。当該構成では、さらにメモリ容量を増大させることができる。
図8Bは、図8Aに示す構成について、各層に形成される回路等と、その電気的な接続を説明する簡易的なブロック図である。なお、層204が有する光電変換デバイス240は、回路上では画素回路331(PIX)に含まれるため、ここでは電気的な接続は図示していない。また、構成例1等と共通する要素の説明は省略する。
層203には、複数の画素回路331がマトリクス状に並べて設けられる。画素回路331は、導電層33および導電層31を介して層201が有する読み出し回路311(RC)と電気的に接続される。また、画素回路331は、導電層34および導電層32を介して層201が有する駆動回路332(PD)と電気的に接続される。
読み出し回路311は、導電層35および導電層39を介して層202bが有するメモリ回路321b(MEM)と電気的に接続される。また、読み出し回路311は、導電層36および導電層40を介して層202aが有するメモリ回路321a(MEM)と電気的に接続される。また、読み出し回路311は、導電層37および導電層41を介して層206が有するメモリ回路325(MEM)と電気的に接続される。
メモリ回路321a、メモリ回路321bおよびメモリ回路325は、駆動回路312(MD)と電気的に接続される。また、駆動回路312は、導電層42および導電層38を介して演算回路314と電気的に接続される。
ここで、導電層31および導電層32は、層202bに設けられる。導電層33および導電層34は、層203に設けられる。貼り合わせ工程によって、導電層31と導電層33、および導電層32と導電層34は直接接合される。したがって、導電層31乃至導電層34は、同一の金属材料で形成されていることが好ましい。
また、導電層35乃至導電層38は、層201に設けられる。導電層39乃至導電層42は、層202bに設けられる。貼り合わせ工程によって、導電層35と導電層39、導電層36と導電層40、導電層37と導電層41、および導電層38と導電層42は直接接合される。したがって、導電層35乃至導電層42は、同一の金属材料で形成されていることが好ましい。
<構成例4>
図9Aは、層202bと、層204および層203の積層体における層203とを位置Aで貼り合わせ、層201上に層202aを設けた構成における層202aと、層202bとを位置Bで貼り合わせた構成である。ここで、層202bは、支持領域208を有する。
当該構成は、層202aが有するメモリ回路324を演算回路314の一次記憶装置として用いる例である。メモリ回路を演算回路314の一次記憶装置に用いる場合は、当該メモリ回路と演算回路314との間の配線長をできるだけ短くすることが好ましい。したがって、メモリ回路324と演算回路との電気的な接続は、貼り合わせの構成を用いずに行うことが好ましい。
図9Bは、図9Aに示す構成について、各層に形成される回路等と、その電気的な接続を説明する簡易的なブロック図である。なお、層204が有する光電変換デバイス240は、回路上では画素回路331(PIX)に含まれるため、ここでは電気的な接続は図示していない。また、構成例1等と共通する要素の説明は省略する。
層203には、複数の画素回路331がマトリクス状に並べて設けられる。画素回路331は、導電層13、導電層11、導電層59および導電層55を介して層201が有する読み出し回路311(RC)と電気的に接続される。また、画素回路331は、導電層14、導電層12、導電層62および導電層58を介して層201が有する駆動回路332(PD)と電気的に接続される。
読み出し回路311は、導電層56および導電層60を介して層202bが有するメモリ回路321b(MEM)と電気的に接続される。
メモリ回路321bは、導電層61および導電層57を介して駆動回路312(MD)と電気的に接続される。また、駆動回路312は、演算回路314と電気的に接続される。演算回路314は、層202aが有するメモリ回路324と電気的に接続される。なお、メモリ回路324と駆動回路312を電気的に接続し、メモリ回路324の駆動を駆動回路312で行ってもよい。
ここで、導電層11および導電層12は、層202bに設けられる。導電層13および導電層14は、層203に設けられる。貼り合わせ工程によって、導電層11と導電層13、および導電層12と導電層14は直接接合される。したがって、導電層11乃至導電層14は、同一の金属材料で形成されていることが好ましい。
また、導電層55乃至導電層58は、層202aに設けられる。導電層59乃至導電層62は、層202bが有する支持領域208に設けられる。貼り合わせ工程によって、導電層55と導電層59、導電層56と導電層60、導電層57と導電層61、および導電層58と導電層62は直接接合される。したがって、導電層55乃至導電層62は、同一の金属材料で形成されていることが好ましい。
なお、図9A、図9Bに示す構成において、支持領域208は単結晶シリコン基板を有することができるため、支持領域208に回路を設けることもできる。例えば、図7Bに示すように、支持領域208にメモリ回路の駆動回路313を設け、メモリ回路321bと支持領域208が有する駆動回路313とを電気的に接続してもよい。この場合、層201に駆動回路312を設けなくてもよい。
<構成例5>
図10Aは、層202bと、層204および層203の積層体における層203とを位置Aで貼り合わせ、層201上に層202aを設けた構成における層201と、層202bとを位置Bで貼り合わせた構成である。ここで、層202bは、支持領域208を有する。
当該構成は、層202aが有するメモリ回路324を演算回路314の一次記憶回路専用として用いる例である。また、層202aが底面側に配置される構成とし、外部に露出する電極(バンプであってもよい)を設けることで、プリント基板などへの実装を容易とすることができる。または、他の回路等を有する積層体に貼り合わせることができる。
図10Bは、図10Aに示す構成について、各層に形成される回路等と、その電気的な接続を説明する簡易的なブロック図である。なお、層204が有する光電変換デバイス240は、回路上では画素回路331(PIX)に含まれるため、ここでは電気的な接続は図示していない。また、構成例1等と共通する要素の説明は省略する。
層203には、複数の画素回路331がマトリクス状に並べて設けられる。画素回路331は、導電層13、導電層11、導電層79および導電層75を介して層201が有する読み出し回路311(RC)と電気的に接続される。また、画素回路331は、導電層14、導電層12、導電層82および導電層78を介して層201が有する駆動回路332(PD)と電気的に接続される。
読み出し回路311は、導電層76および導電層80を介して層202bが有するメモリ回路321b(MEM)と電気的に接続される。
メモリ回路321bは、導電層81および導電層77を介して駆動回路312(MD)と電気的に接続される。また、駆動回路312は、演算回路314と電気的に接続される。演算回路314は、層202aが有するメモリ回路324と電気的に接続される。なお、メモリ回路324と駆動回路312を電気的に接続し、メモリ回路324の駆動を駆動回路312で行ってもよい。
また、読み出し回路311は、層202aに設けられる導電層83と電気的に接続される。演算回路は、層202aに設けられる導電層84と電気的に接続される。導電層83および導電層84は、外部にデータを出力するための端子として機能する。また、導電層83および導電層84は、プリント基板等への実装するための端子、または他の回路を有する層または積層体と貼り合わせるための導電層として用いることもできる。
ここで、導電層11および導電層12は、層202bに設けられる。導電層13および導電層14は、層203に設けられる。貼り合わせ工程によって、導電層11と導電層13、および導電層12と導電層14は直接接合される。したがって、導電層11乃至導電層14は、同一の金属材料で形成されていることが好ましい。
また、導電層75乃至導電層78は、層201に設けられる。導電層79乃至導電層82は、層202bが有する支持領域208に設けられる。貼り合わせ工程によって、導電層75と導電層79、導電層76と導電層80、導電層77と導電層81、および導電層78と導電層82は直接接合される。したがって、導電層75乃至導電層82は、同一の金属材料で形成されていることが好ましい。
なお、図10A、図10Bに示す構成において、支持領域208は単結晶シリコン基板を有することができるため、支持領域208に回路を設けることもできる。例えば、図7Bに示すように、支持領域208にメモリ回路の駆動回路313を設け、メモリ回路321bと支持領域208が有する駆動回路313とを電気的に接続してもよい。この場合、層201に駆動回路312を設けなくてもよい。
<画素回路>
図11Aは、画素回路331の一例を説明する回路図である。画素回路331は、光電変換デバイス240と、トランジスタ103と、トランジスタ104と、トランジスタ105と、トランジスタ106と、キャパシタ108を有することができる。なお、キャパシタ108を設けない構成としてもよい。なお、本明細書では、上記要素のうち、光電変換デバイス240を除いた構成を画素回路という場合がある。
光電変換デバイス240の一方の電極(カソード)は、トランジスタ103のソースまたはドレインの一方と電気的に接続される。トランジスタ103のソースまたはドレインの他方は、トランジスタ104のソースまたはドレインの一方と電気的に接続される。トランジスタ104のソースまたはドレインの一方は、キャパシタ108の一方の電極と電気的に接続される。キャパシタ108の一方の電極は、トランジスタ105のゲートと電気的に接続される。トランジスタ105のソースまたはドレインの一方は、トランジスタ106のソースまたはドレインの一方と電気的に接続される。
ここで、トランジスタ103のソースまたはドレインの他方、キャパシタ108の一方の電極、トランジスタ105のゲートを接続する配線をノードFDとする。ノードFDは電荷検出部として機能させることができる。
光電変換デバイス240の他方の電極(アノード)は、配線121と電気的に接続される。トランジスタ103のゲートは、配線127と電気的に接続される。トランジスタ104のソースまたはドレインの他方は、配線122と電気的に接続される。トランジスタ105のソースまたはドレインの他方は、配線123に電気的に接続される。トランジスタ104のゲートは、配線126と電気的に接続される。トランジスタ106のゲートは、配線128と電気的に接続される。キャパシタ108の他方の電極は、例えばGND配線などの基準電位線と電気的に接続される。トランジスタ106のソースまたはドレインの他方は、配線352と電気的に接続される。
配線127、126、128は、各トランジスタの導通を制御する信号線としての機能を有することができる。配線352は出力線としての機能を有することができる。
配線121、122、123は、電源線としての機能を有することができる。図11Aに示す構成では光電変換デバイス240のカソード側がトランジスタ103と電気的に接続する構成であり、ノードFDを高電位にリセットして動作させる構成であるため、配線122は高電位(配線121よりも高い電位)とする。
図11Aでは、光電変換デバイス240のカソードがノードFDと電気的に接続する構成を示したが、図11Bに示すように光電変換デバイス240のアノード側がトランジスタ103のソースまたはドレインの一方と電気的に接続する構成としてもよい。
当該構成では、ノードFDを低電位にリセットして動作させる構成であるため、配線122は低電位(配線121よりも低い電位)とする。
トランジスタ103は、ノードFDの電位を制御する機能を有する。トランジスタ104は、ノードFDの電位をリセットする機能を有する。トランジスタ105はソースフォロア回路の要素として機能し、ノードFDの電位を画像データとして配線352に出力することができる。トランジスタ106は画像データを出力する画素を選択する機能を有する。
画素回路331が有するトランジスタ103乃至トランジスタ106にはOSトランジスタを用いることが好ましい。OSトランジスタは、オフ電流が極めて低い特性を有する。特に、トランジスタ103、104にオフ電流の低いトランジスタを用いることによって、ノードFDで電荷を保持できる期間を極めて長くすることができる。そのため、回路構成および動作方法を複雑にすることなく、全画素で同時に電荷の蓄積動作を行うグローバルシャッタ方式を適用することができる。
<撮像装置の動作方式>
図12Aはローリングシャッタ方式の動作方法を模式化した図であり、図12Bはグローバルシャッタ方式の動作方法を模式化した図である。Enはn列目(nは自然数)の露光(蓄積動作)、Rnはn列目の読み出し動作を表している。図12A、図12Bでは、1行目からM行目(Mは自然数)までの動作を示している。
ローリングシャッタ方式は、露光とデータの読み出しを順次行う動作方法であり、ある行の読み出し期間と他の行の露光期間を重ねる方式である。露光後すぐに読み出し動作を行うため、データの保持期間が比較的短い回路構成であっても撮像を行うことができる。しかしながら、撮像の同時性がないデータで1フレームの画像が構成されるため、動体の撮像においては画像に歪が生じてしまう。
一方で、グローバルシャッタ方式は、全画素で同時に露光を行って各画素にデータを保持し、行毎にデータを読み出す動作方法である。したがって、動体の撮像であっても歪のない画像を得ることができる。
画素回路にSiトランジスタなどの比較的オフ電流の高いトランジスタを用いた場合は、電荷検出部から電荷が流出しやすいためローリングシャッタ方式が多く用いられる。Siトランジスタを用いてグローバルシャッタ方式を実現するには、別途メモリ回路にデータを格納させるなど、複雑な動作を高速で行わなければならない。一方で、画素回路にOSトランジスタを用いた場合は、電荷検出部からの電荷の流出がほとんどないため、容易にグローバルシャッタ方式を実現することができる。なお、本発明の一態様の撮像装置をローリングシャッタ方式で動作させることもできる。
なお、画素回路331は、OSトランジスタおよびSiトランジスタを任意に組み合わせた構成であってもよい。または、すべてのトランジスタをSiトランジスタとしてもよい。
<画素回路の動作>
次に、図11Aに示す画素回路331の動作の一例を図13Aのタイミングチャートを用いて説明する。なお、本明細書におけるタイミングチャートの説明においては、高電位を“H”、低電位を“L”で表す。配線121には常時“L”が供給され、配線122、123には常時“H”が供給されている状態とする。
期間T1において、配線126の電位を“H”、配線127の電位を“H”、配線128の電位を“L”とすると、トランジスタ103、104が導通し、ノードFDには配線122の電位“H”が供給される(リセット動作)。
期間T2において、配線126の電位を“L”、配線127の電位を“H”、配線128の電位を“L”とすると、トランジスタ104が非導通となってリセット電位の供給が遮断される。また、光電変換デバイス240の動作に応じてノードFDの電位が低下する(蓄積動作)。
期間T3において、配線126の電位を“L”、配線127の電位を“L”、配線128の電位を“L”とすると、トランジスタ103が非導通となり、ノードFDの電位は確定し、保持される(保持動作)。このとき、ノードFDに接続されるトランジスタ103およびトランジスタ104にオフ電流の低いOSトランジスタを用いることによって、ノードFDからの不必要な電荷の流出を抑えることができ、データの保持時間を延ばすことができる。
期間T4において、配線126の電位を“L”、配線127の電位を“L”、配線128の電位を“H”とすると、トランジスタ106が導通し、トランジスタ105のソースフォロア動作によりノードFDの電位が配線352に読み出される(読み出し動作)。
以上が図11Aに示す画素回路331の動作の一例である。
図11Bに示す画素回路331は、図13Bのタイミングチャートに従って動作させることができる。なお、配線121、123には常時“H”が供給され、配線122には常時“L”が供給されている状態とする。基本的な動作は、上記の図13Aのタイミングチャートの説明と同様である。
本発明の一態様においては、図14A、図14Bに例示するように、トランジスタにバックゲートを設けた構成としてもよい。図14Aは、バックゲートがフロントゲートと電気的に接続された構成を示しており、オン電流を高める効果を有する。図14Bは、バックゲートが定電位を供給できる配線と電気的に接続された構成を示しており、バックゲートの電位によってトランジスタのしきい値電圧を制御することができる。
また、図14A、図14Bを組み合わせるなど、それぞれのトランジスタが適切な動作が行えるような構成としてもよい。また、バックゲートが設けられないトランジスタを画素回路331が有していてもよい。
<読み出し回路>
図15は、画素回路331に接続される読み出し回路311の一例を説明する図であり、CDS回路400の回路図およびCDS回路400と電気的に接続されるA/Dコンバータ410のブロック図を示している。なお、図15に示すCDS回路およびA/Dコンバータは一例であり、他の構成であってもよい。また、読み出し回路311として、メモリ回路にデータを書き込むための他の要素を有していてもよい。
CDS回路400は、電圧変換用の抵抗401、容量結合用のキャパシタ402、電位Vを供給するトランジスタ403、A/Dコンバータ410に供給する電位を保持するトランジスタ404および電位保持用のキャパシタ405を有する構成とすることができる。CDS回路400は、入力が画素回路331と電気的に接続され、出力がA/Dコンバータ410のコンパレータ回路(COMP)と電気的に接続される。
配線352の電位がVres(画素回路331がリセット状態)のとき、ノードN(トランジスタ403、404およびキャパシタ402の接続点)の電位をVとする。そして、ノードNをフローティングとして、配線352の電位がVdata(画素回路331が画像データを出力)になると、ノードNの電位は、V+Vdata−Vresとなる。したがって、CDS回路400では、画素回路331が出力する撮像データの電位からリセット状態のときの電位を差し引くことができ、ノイズ成分を削減することができる。
A/Dコンバータ410は、コンパレータ回路(COMP)およびカウンター回路(COUNTER)を有する構成とすることができる。A/Dコンバータ410では、CDS回路400からコンパレータ回路(COMP)に入力される信号電位と、掃引される基準電位(RAMP)とが比較される。そして、コンパレータ回路(COMP)の出力に応じてカウンター回路(COUNTER)が動作し、複数の配線353にデジタル信号が出力される。
<メモリ回路1>
図16Aは、メモリ回路321a、メモリ回路321bまたはメモリ回路324に適用できるメモリ回路321mを説明する図である。また、図16Aでは、メモリ回路321mが有するメモリセル321cと、駆動回路312が有するロードライバ341(RD)およびカラムドライバ342(CD)との接続関係を示している。ロードライバ341およびカラムドライバ342はメモリセル321cの駆動回路である。なお、データの読み出しにはセンスアンプなどを用いてもよい。
メモリ回路321mは、一列にm(mは1以上の整数)個、一行にn(nは1以上の整数)個、計m×n個のメモリセル321cを有し、メモリセル321cはマトリクス状に配置されている。
図16B乃至図16Dは、メモリセル321cに適用できるメモリセル321c1乃至メモリセル321c3を説明する図である。なお、以下の説明において、ビット線類は、カラムドライバ342と接続することができる。また、ワード線類は、ロードライバ341と接続することができる。
ロードライバ341およびカラムドライバ342には、例えば、デコーダ、またはシフトレジスタを用いることができる。なお、ロードライバ341およびカラムドライバ342は、複数が設けられていてもよい。
図16Bに、DRAM型のメモリセル321c1の回路構成例を示す。メモリセル321c1は、トランジスタ271と、キャパシタ274と、を有する。
トランジスタ271のソースまたはドレインの一方は、キャパシタ274の一方の電極と接続され、トランジスタ271のソースまたはドレインの他方は、配線BILと接続され、トランジスタ271のゲートは、配線WLと接続され、トランジスタ271のバックゲートは、配線BGLと接続されている。キャパシタ274の他方の電極は、配線GNDLと接続されている。配線GNDLは、低レベル電位(基準電位)を与える配線である。
配線BILは、ビット線として機能する。配線WLは、ワード線として機能する。配線BGLは、トランジスタ271のバックゲートに電位を印加するための配線として機能する。配線BGLに適切な電位を印加することによって、トランジスタ271のしきい値電圧を増減することができる。または、配線BGLは配線WLと電気的に接続していてもよい。配線BGLに配線WLと同じ電位を印加することで、トランジスタ271の電流特性を高めることができる。
データの書き込みおよび読み出しは、配線WLに高レベル電位を印加し、トランジスタ271を導通状態にし、配線BILとキャパシタ274の一方の電極を電気的に接続することによって行われる。例えば、配線BILにはセンスアンプが電気的に接続され、当該センスアンプにより配線BILの電位を増幅して読み出すことができる。
トランジスタ271には、OSトランジスタまたはSiトランジスタを用いることができる。本明細書等において、OSトランジスタを用いたDRAMを、DOSRAM(Dynamic Oxide Semiconductor Random Access Memory)と呼ぶ。
インジウム、ガリウム、亜鉛を含む酸化物半導体を適用したOSトランジスタは、オフ電流が極めて小さいという特性を有している。トランジスタ271としてOSトランジスタを用いることによって、トランジスタ271のリーク電流を非常に低くすることができる。つまり、書き込んだデータをトランジスタ271によって長時間保持することができるため、メモリセルのリフレッシュの頻度を少なくすることができる。または、メモリセルのリフレッシュ動作を不要にすることができる。
図16Cに、2つのトランジスタと1つのキャパシタを有するゲインセル型(「2Tr1C型」ともいう)のメモリセル321c2の回路構成例を示す。メモリセル321c2は、トランジスタ273と、トランジスタ272と、キャパシタ275と、を有する。
トランジスタ273のソースまたはドレインの一方は、キャパシタ275の一方の電極と接続され、トランジスタ273のソースまたはドレインの他方は、配線WBLと接続され、トランジスタ273のゲートは、配線WLと接続され、トランジスタ273のバックゲートは、配線BGLと接続されている。キャパシタ275の他方の電極は、配線RLと接続されている。トランジスタ273のソースまたはドレインの一方は、配線RBLと接続され、トランジスタ273のソースまたはドレインの他方は、配線SLと接続され、トランジスタ272のゲートは、キャパシタ274の一方の電極と接続されている。
配線WBLは書き込みビット線として機能する。配線RBLは、読み出しビット線として機能する。配線WLは、ワード線として機能する。配線RLは、キャパシタ274の他方の電極に所定の電位を印加するための配線として機能する。データの書き込み時、データ保持の最中、配線RLには、基準電位を印加することが好ましい。
配線BGLは、トランジスタ273のバックゲートに電位を印加するための配線として機能する。配線BGLに適切な電位を印加することによって、トランジスタ273のしきい値電圧を増減することができる。または、配線BGLは配線WLと電気的に接続していてもよい。配線BGLに配線WLと同じ電位を印加することで、トランジスタ273の電流特性を高めることができる。
データの書き込みは、配線WLに高レベル電位を印加し、トランジスタ273を導通状態にし、配線WBLとキャパシタ274の一方の電極を電気的に接続することによって行われる。具体的には、トランジスタ273が導通状態のときに、配線WBLに記録する情報に対応する電位を印加し、キャパシタ275の一方の電極、およびトランジスタ272のゲートに該電位を書き込む。その後、配線WLに低レベル電位を印加し、トランジスタ273を非導通状態にすることによって、キャパシタ275の一方の電極の電位、およびトランジスタ272のゲートの電位を保持する。
データの読み出しは、配線RLと配線SLに所定の電位を印加することによって行われる。トランジスタ272のソース−ドレイン間に流れる電流、およびトランジスタ273のソースまたはドレインの一方の電位は、トランジスタ272のゲートの電位、およびトランジスタ273のソースまたはドレインの他方の電位によって決まる。したがって、トランジスタ273のソースまたはドレインの一方に接続されている配線RBLの電位を読み出すことによって、キャパシタ275の一方の電極(またはトランジスタ272のゲート)に保持されている電位を読み出すことができる。つまり、キャパシタ275の一方の電極(またはトランジスタ272のゲート)に保持されている電位から、このメモリセルに書き込まれている情報を読み出すことができる。または、このメモリセルに書き込まれている情報の有無を知ることができる。
また、図16Dに示すように、配線WBLと配線RBLを一本の配線BILとしてまとめた構成であってもよい。図16Dに示すメモリセル321c3は、メモリセル321c2の配線WBLと配線RBLを一本の配線BILとして、トランジスタ273のソースまたはドレインの他方、およびトランジスタ273のソースまたはドレインの一方が、配線BILと接続されている構成となっている。つまり、メモリセル321c3は、書き込みビット線と、読み出しビット線と、を1本の配線BILとして動作する構成となっている。
なお、メモリセル321c2およびメモリセル321c3においても、トランジスタ273にOSトランジスタを用いることが好ましい。トランジスタ273にOSトランジスタを用いて、メモリセル321cおよびメモリセル321dのような2Tr1C型のメモリセルを用いた記憶装置をNOSRAM(Non−volatile Oxide Semiconductor Random Access Memory)という。なお、メモリセルは、回路の構成を適宜変更することができる。
また、図16Eは、メモリ回路325に用いることができるメモリセル321dを示す図である。メモリ回路325はDRAMであり、メモリセル321dはトランジスタ278およびキャパシタ279を有する。メモリセル321dはメモリセル321c1と同様に動作させることができる。なお、トランジスタ276はSiトランジスタであるため、配線BGLおよびトランジスタのバックゲートは設けられない。
<メモリ回路2>
また、メモリ回路321a、メモリ回路321b、メモリ回路324、メモリ回路325およびそれらの駆動回路には、図17Aに示す構成を用いてもよい。図17Aに示す構成のメモリ回路321nは、図17Bに示すメモリセル321eを用いることができる。
メモリセル321eは、トランジスタ276と、キャパシタ277と、を有する。トランジスタ276のソースまたはドレインの一方は、キャパシタ277の一方の電極と接続され、トランジスタ276のソースまたはドレインの他方は、配線BILと接続され、トランジスタ276のゲートは、配線WLと接続されている。また、キャパシタ277の他方の電極は、配線PLと接続されている。
配線BILは、ビット線として機能する。配線WLは、ワード線として機能する。配線PLは、データの書き込み、またはデータの読み出しに要するプレート電位をキャパシタ277に与える配線である。図17Aに示す回路345はプレート電位を供給する回路であり、ロードライバ341およびカラムドライバ342と同様に層201が有する領域210に設けることができる。また、配線BILにはセンスアンプが電気的に接続されていてもよい。当該センスアンプにより、配線BILの電位を増幅して読み出すことができる。
トランジスタ276には、OSトランジスタまたはSiトランジスタなどを用いることができる。トランジスタ276にOSトランジスタを用いる場合は、図13Cに示すように、配線BGLと電気的に接続するバックゲートを設けることが好ましい。配線BGLに適切な電位を印加することによって、トランジスタ271のしきい値電圧を増減することができる。または、配線BGLは配線WLと電気的に接続していてもよい。配線BGLに配線WLと同じ電位を印加することで、トランジスタ271の電流特性を高めることができる。
また、OSトランジスタは、高耐圧であるという特性を有する。したがって、トランジスタ276にOSトランジスタを用いることにより、トランジスタ276を微細化しても、トランジスタ276に高電圧を印加することができる。トランジスタ276を微細化することにより、メモリセル321eの占有面積を小さくすることができる。
キャパシタ277は、2つの電極の間に、誘電体層として強誘電性を有し得る材料を有する。以下では、キャパシタ277が有する誘電体層を、強誘電体層と呼ぶ。また、強誘電体層を有するキャパシタを強誘電体キャパシタということができる。また、トランジスタ等のスイッチと強誘電体キャパシタとを組み合わせた構成を強誘電体メモリということができる。
強誘電性を有しうる材料としては、酸化ハフニウム、酸化ジルコニウム、HfZrO(Xは0よりも大きい実数とする)、酸化ハフニウムに元素J1(ここでの元素J1は、ジルコニウム(Zr)、シリコン(Si)、アルミニウム(Al)、ガドリニウム(Gd)、イットリウム(Y)、ランタン(La)、ストロンチウム(Sr)など。)を添加した材料、酸化ジルコニウムに元素J2(ここでの元素J2は、ハフニウム(Hf)、シリコン(Si)、アルミニウム(Al)、ガドリニウム(Gd)、イットリウム(Y)、ランタン(La)、ストロンチウム(Sr)など。)を添加した材料、などが挙げられる。また、強誘電性を有しうる材料として、チタン酸鉛(PT)、チタン酸バリウムストロンチウム(BST)、チタン酸ストロンチウム、チタン酸ジルコン酸鉛(PZT)、タンタル酸ビスマス酸ストロンチウム(SBT)、ビスマスフェライト(BFO)、チタン酸バリウム、などのペロブスカイト構造を有する圧電性セラミックスを用いてもよい。また、強誘電性を有しうる材料としては、例えば、上記に列挙した材料から選ばれた複数の材料を含む混合物または化合物を用いることができる。または、強誘電体層を、上記に列挙した材料から選ばれた複数の材料からなる積層構造とすることができる。
中でも強誘電性を有しうる材料として、酸化ハフニウム、あるいは酸化ハフニウムおよび酸化ジルコニウムを有する材料は、数nmといった薄膜に加工しても強誘電性を有しうることができる。強誘電体層を薄膜化できることで、トランジスタの微細化工程との整合性を向上することができる。
また、強誘電性を有しうる材料としてHfZrOを用いる場合、原子層堆積(ALD:Atomic Layer Deposition)法、特に熱ALD法を用いて成膜することが好ましい。また、熱ALD法を用いて、強誘電性を有しうる材料を成膜する場合、プリカーサとして炭化水素(Hydro Carbon、HCともいう)を含まない材料を用いると好適である。強誘電性を有しうる材料中に、水素、および炭素のいずれか一方または双方が含まれる場合、強誘電性を有しうる材料の結晶化を阻害する場合がある。このため、上記のように、炭化水素を含まないプリカーサを用いることで、強誘電性を有しうる材料中の、水素、および炭素のいずれか一方または双方の濃度を低減することが好ましい。例えば、炭化水素を含まないプリカーサとしては、塩素系材料があげられる。なお、強誘電性を有しうる材料として、酸化ハフニウムおよび酸化ジルコニウムを有する材料(HfZrO)を用いる場合、プリカーサとしては、HfCl、および/またはZrClを用いればよい。
なお、強誘電性を有しうる材料を用いた膜を成膜する場合、膜中の不純物、ここでは水素、炭化水素、および炭素の少なくとも一つ以上を徹底的に排除することで、高純度真性な強誘電性を有する膜を形成することができる。なお、高純度真性な強誘電性を有する膜と、後述する実施の形態に示す高純度真性な酸化物半導体とは、製造プロセスの整合性が非常に高い。よって、生産性が高い半導体装置の作製方法を提供することができる。
また、強誘電性を有しうる材料としてHfZrO用いる場合、熱ALD法を用いて酸化ハフニウムと酸化ジルコニウムとを1:1の組成になるように交互に成膜すると好ましい。
また、熱ALD法を用いて、強誘電性を有しうる材料を成膜する場合、酸化剤はHOまたはOを用いることができる。ただし、熱ALD法の酸化剤としては、これに限定されない。例えば、熱ALD法の酸化剤としては、O、O、NO、NO、HO、およびHの中から選ばれるいずれか一または複数を含んでもよい。
また、強誘電性を有しうる材料の結晶構造は、特に限定されない。例えば、強誘電性を有しうる材料の結晶構造としては、立方晶系、正方晶系、直方晶系、および単斜晶系の中から選ばれるいずれか一または複数とすればよい。特に強誘電性を有しうる材料としては、直方晶系の結晶構造を有すると、強誘電性が発現するため好ましい。または、強誘電性を有しうる材料として、アモルファス構造と、結晶構造とを有する複合構造としてもよい。
図18Aは、強誘電体層のヒステリシス特性の一例を示すグラフである。図18Aにおいて、横軸は強誘電体層に印加する電圧を示している。当該電圧は、例えばキャパシタ277の一方の電極の電位と、キャパシタ277の他方の電極の電位との差とすることができる。また、図18Aにおいて、縦軸は強誘電体層の分極量を示している。
図18Aに示すように、強誘電体層のヒステリシス特性は、曲線91および曲線92により表すことができる。曲線91と曲線92の交点における電圧をVSPおよび−VSPとする。VSPおよび−VSPは、極性が異なるということができる。
強誘電体層に−VSP以下の電圧を印加した後に、強誘電体層に印加する電圧を高くしていくと、強誘電体層の分極量は、曲線91に従って増加する。一方、強誘電体層にVSP以上の電圧を印加した後に、強誘電体層に印加する電圧を低くしていくと、強誘電体層の分極量は、曲線92に従って減少する。ここで、VSPおよび−VSPは、飽和分極電圧ということができる。なお、例えばVSPを第1の飽和分極電圧と呼び、−VSPを第2の飽和分極電圧と呼ぶ場合がある。また、図18Aでは、第1の飽和分極電圧の絶対値と、第2の飽和分極電圧の絶対値と、が等しいとしているが、異なってもよい。
ここで、強誘電体層の分極量が曲線91に従って変化する際に、強誘電体層の分極量が0になる電圧(抗電圧)をVcとする。また、強誘電体層の分極量が曲線92に従って変化する際に、強誘電体層の分極量が0になる電圧(抗電圧)を−Vcとする。Vcの値および−Vcの値は、−VSPとVSPの間の値であるということができる。なお、例えばVcを第1の抗電圧と呼び、−Vcを第2の抗電圧と呼ぶ場合がある。また、図18Aでは、第1の抗電圧の絶対値および第2の抗電圧の絶対値が等しい例を示しているが、異なってもよい。
前述のように、キャパシタ277が有する強誘電体層に印加される電圧は、キャパシタ277の一方の電極の電位と、キャパシタ277の他方の電極の電位との差により表すことができる。キャパシタ277の他方の電極は、配線PLと電気的に接続される。したがって、配線PLの電位を制御することにより、キャパシタ277が有する強誘電体層に印加される電圧を制御することができる。
<メモリセルの駆動方法の一例>
以下では、図17Bに示すメモリセル321eの駆動方法の一例を説明する。以下の説明において、キャパシタ277の強誘電体層に印加される電圧とは、キャパシタ277の一方の電極の電位と、キャパシタ277の他方の電極(配線PL)の電位との差とする。また、トランジスタ276は、nチャネル型トランジスタとする。
図18Bは、図17Bに示すメモリセル321eの駆動方法の一例を示すタイミングチャートである。図18Bでは、メモリセル321eに2値のデジタルデータを書き込み、読み出す例を示している。
なお、配線BILにはセンスアンプが電気的に接続され、当該センスアンプには、基準電位としてVrefが供給されることとする。例えば、配線BILの電位がVrefより高い場合は、データ“1”を読み出すことができる。また、配線BILの電位がVrefより低い場合は、データ“0”を読み出すことができる。
まず、時刻T01乃至時刻T03におけるメモリセル321eにデータ“1”を書き込む動作を説明する。
時刻T01乃至時刻T02において、配線WLの電位を高電位Hとすると、トランジスタ276がオン状態となる。また、配線BILの電位をVwとする。トランジスタ276はオン状態であるため、キャパシタ277の一方の電極の電位はVwとなる。さらに、配線PLの電位をGNDとする。当該動作により、キャパシタ277の強誘電体層に印加される電圧は、“Vw−GND”となる。したがって、メモリセル321eにデータ“1”を書き込むことができる。
ここで、VwはVSP以上とすることが好ましく、例えば、VSPと等しくすることができる。また、GNDは、例えば接地電位または0Vとすることができるが、他の電位であってもよい。
続いて、時刻T02に、配線BILの電位および配線PLの電位をGNDとすると、キャパシタ277の強誘電体層に印加される電圧は0Vとなる。時刻T01乃至時刻T02において、キャパシタ277の強誘電体層に印加される電圧“Vw−GND”がVSP以上であるとき、時刻T02乃至時刻T03において、キャパシタ277の強誘電体層の分極量は、図18Aに示す曲線92に従って0Vの位置まで変化する。したがって、キャパシタ277の強誘電体層において分極の向きは維持される。
配線BILの電位および配線PLの電位をGNDとした後、配線WLの電位を低電位Lとすると、トランジスタ276がオフ状態となる。以上により、書き込み動作が完了し、メモリセル321eへデータ“1”が保持される。
次に、時刻T03乃至時刻T04におけるデータの読み出し動作を説明する。
時刻T03乃至時刻T04において、配線WLの電位を高電位Hとすると、トランジスタ276がオン状態となる。また、配線PLの電位をVwとする。配線PLの電位をVwとすることにより、キャパシタ277の強誘電体層に印加される電圧が、“GND−Vw”となる。
このとき、キャパシタ277の強誘電体層に印加される電圧は“Vw−GND”から“GND−Vw”に反転することから、キャパシタ277の強誘電体層において分極反転が発生する。分極反転の際に配線BILに電流が流れるため、配線BILの電位はVrefより高くなる。したがって、センスアンプの動作によりメモリセル321eに保持されたデータ“1”を読み出すことができる。なお、VrefはGNDより高く、Vwより低い場合を例示しているが、例えばVwより高くてもよい。
次に、時刻T04乃至時刻T05におけるデータの再書き込みの動作を説明する。
上記読み出し動作は、分極の向きを反転させる破壊読み出しであるため、メモリセル321eに保持されたデータ“1”は失われる。そのため、時刻T04乃至時刻T05において、配線BILの電位をVw、配線PLの電位をGNDとし、メモリセル321eにデータ“1”を再書き込みする。
時刻T05において、配線BILの電位および配線PLの電位をGNDとする。その後、配線WLの電位を低電位Lとする。以上により、再書き込み動作が完了し、メモリセル321eにデータ“1”が保持される。
次に、時刻T11乃至時刻T13における読み出し動作、およびメモリセル321eへのデータ“0”の書き込み動作を説明する。
時刻T11乃至時刻T12において、配線WLの電位を高電位Hとし、配線PLの電位をVwとする。メモリセル321eにはデータ“1”が保持されているため、配線BILの電位がVrefより高くなり、メモリセル321eに保持されているデータ“1”が読み出される。
時刻T12乃至時刻T13において、配線BILの電位をGNDとする。トランジスタ276はオン状態であるため、キャパシタ277の一方の電極の電位はGNDとなる。また、配線PLの電位をVwとする。以上より、キャパシタ277の強誘電体層に印加される電圧は、“GND−Vw”となる。したがって、メモリセル321eにデータ“0”を書き込むことができる。
続いて、時刻T13に、配線BILの電位および配線PLの電位をGNDとすると、キャパシタ277の強誘電体層に印加される電圧は0Vとなる。時刻T12乃至時刻T13においてキャパシタ277の強誘電体層に印加される電圧“GND−Vw”が−VSP以下であるとき、時刻T13乃至時刻T14において、キャパシタ277の強誘電体層の分極量は図18Aに示す曲線91に従って0Vの位置まで変化する。したがって、キャパシタ277の強誘電体層において分極の向きは維持される。
配線BILの電位および配線PLの電位をGNDとした後、配線WLの電位を低電位Lとすると、トランジスタ276がオフ状態となる。以上により、書き込み動作が完了し、メモリセル321eへデータ“0”が保持される。
次に、時刻T14乃至時刻T15におけるデータの読み出し動作を説明する。
時刻T14乃至時刻T15において、配線WLの電位を高電位Hとすると、トランジスタ276がオン状態となる。また、配線PLの電位をVwとする。配線PLの電位をVwとすることにより、キャパシタ277の強誘電体層に印加される電圧が、“GND−Vw”となる。
このとき、キャパシタ277の強誘電体層に印加される電圧は、データの書き込み時と同じ“GND−Vw”になることから、キャパシタ277の強誘電体層において分極反転が発生しない。そのため、配線BILに流れる電流量は、キャパシタ277の強誘電体層において分極反転が発生する場合より小さくなる。したがって、配線BILの電位の上昇幅も小さくなる。具体的には、配線BILの電位はVref以下となり、センスアンプの動作によりメモリセル321eに保持されたデータ“0”を読み出すことができる。
次に、時刻T15乃至時刻T17におけるデータの再書き込み動作を説明する。
時刻T15乃至時刻T16において、配線BILの電位をGNDとし、配線PLの電位をVwとする。当該動作により、メモリセル321eにデータ“0”を再書き込みする。
時刻T16乃至時刻T17において、配線BILの電位および配線PLの電位をGNDとする。その後、配線WLの電位を低電位Lとする。以上により、再書き込み動作が完了し、メモリセル321eにデータ“0”が保持される。
次に、時刻T17乃至時刻T19におけるデータの読み出しおよびメモリセル321eへのデータ“1”の書き込み動作を説明する。
時刻T17乃至時刻T18において、配線WLの電位を高電位Hとし、配線PLの電位をVwとする。メモリセル321eにはデータ“0”が保持されているため、配線BILの電位がVrefより低くなり、メモリセル321eに保持されているデータ“0”が読み出される。
時刻T18乃至時刻T19において、配線BILの電位をVwとする。トランジスタ276はオン状態であるため、キャパシタ277の一方の電極の電位はVwとなる。また、配線PLの電位をGNDとする。以上により、キャパシタ277の強誘電体層に印加される電圧は、“Vw−GND”となる。したがって、メモリセル321eにデータ“1”を書き込むことができる。
時刻T19以降において、配線BILの電位および配線PLの電位をGNDとする。その後、配線WLの電位を低電位Lとする。以上により、書き込み動作が完了し、メモリセル321eにデータ“1”が保持される。
以上がメモリセル321eの動作の一例であるが、他の方法でデータの書き込み、読み出し、再書き込み等の動作を行ってもよい。
<積層構造1>
次に、撮像装置の積層構造について、断面図を用いて説明する。なお、以下の説明において、同一の層に設けられる貫通配線の符号は統一して用いている。
図19は、図2Cおよび図4Aに示す積層体の断面図の一例である。なお、図19においては、層205も図示している。
<層201>
層201は、シリコン基板211に設けられた読み出し回路311、駆動回路312、駆動回路332および演算回路314を有する。ここでは、上記回路の一部として、読み出し回路311のCDS回路が有するキャパシタ402およびトランジスタ403、読み出し回路311が有するトランジスタ115、および駆動回路332が有するトランジスタ116を示している。キャパシタ402の一方の電極およびトランジスタ403のソースまたはドレインの一方は電気的に接続されている。
層201には、絶縁層212、213、214、215、216、217、218が設けられる。絶縁層212は保護膜としての機能を有する。絶縁層213、214、215、217は、層間絶縁膜および平坦化膜としての機能を有する。絶縁層216は、キャパシタ402の誘電体層としての機能を有する。絶縁層218は、ブロッキング膜としての機能を有する。
保護膜としては、例えば、窒化シリコン膜、酸化シリコン膜、酸化アルミニウム膜などを用いることができる。層間絶縁膜および平坦化膜としては、例えば、酸化シリコン膜などの無機絶縁膜、アクリル樹脂、ポリイミド樹脂などの有機絶縁膜を用いることができる。キャパシタの誘電体層としては、窒化シリコン膜、酸化シリコン膜、酸化アルミニウム膜などを用いることができる。ブロッキング膜としては、水素の拡散を防止する機能を有する膜を用いることが好ましい。
Siデバイスにおいて、水素はダングリングボンドを終端するために必要とされるが、OSトランジスタの近傍にある水素は、酸化物半導体層中にキャリアを生成する要因の一つとなり、信頼性を低下させる。したがって、Siデバイスが形成される層とOSトランジスタが形成される層との間には、水素のブロッキング膜が設けられることが好ましい。
当該ブロッキング膜としては、例えば、酸化アルミニウム、酸化窒化アルミニウム、酸化ガリウム、酸化窒化ガリウム、酸化イットリウム、酸化窒化イットリウム、酸化ハフニウム、酸化窒化ハフニウム、イットリア安定化ジルコニア(YSZ)等を用いることができる。
図19に示すSiトランジスタはシリコン基板211にチャネル形成領域を有するフィン型であり、チャネル幅方向の断面(図19に示すA1−A2の断面)を図20Aに示す。なお、Siトランジスタは、図20Bに示すようにプレーナー型であってもよい。
または、図20Cに示すように、シリコン薄膜の半導体層545を有するトランジスタであってもよい。半導体層545は、例えば、シリコン基板211上の絶縁層546上に形成された単結晶シリコン(SOI(Silicon on Insulator))とすることができる。
なお、デバイス間の電気的な接続に用いられる配線、電極およびプラグとして用いることのできる導電体には、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を適宜選択して用いればよい。当該導電体は単層に限らず、異なる材料で構成された複数の層であってもよい。
<層202a>
層202aは、層201上に形成される。層202aは、OSトランジスタを有するメモリ回路321aを有する。ここでは、メモリ回路321aの一部として、図16Bに示すメモリセル321c1が有するトランジスタ271およびキャパシタ274を示している。なお、メモリ回路321aには、図16Cに示すメモリセル321c2、図16Dに示すメモリセル321c3、または図17B、図17Cに示すメモリセル321eを用いることもできる。
層202aには、絶縁層221、222、223、224、225、227、228が設けられる。
絶縁層221、224、225、227、228は、層間絶縁膜および平坦化膜としての機能を有する。絶縁層222は、ゲート絶縁膜としての機能を有する。絶縁層223は、保護膜としての機能を有する。ゲート絶縁膜としては、酸化シリコン膜などを用いることができる。
トランジスタ271のソースまたはドレインの一方は、層201のトランジスタ115のソースまたはドレインの一方と電気的に接続される。トランジスタ271のゲートは、層201のトランジスタ116のソースまたはドレインの一方と電気的に接続される。トランジスタ276のソースまたはドレインの他方は、キャパシタ274の一方の電極と電気的に接続される。キャパシタ274は、一方の電極と他方の電極との間に強誘電体層226を有する。
図21AにOSトランジスタの詳細を示す。図21Aに示すOSトランジスタは、酸化物半導体層および導電層の積層上に絶縁層を設け、当該酸化物半導体層に達する開口部を設けることでソース電極705およびドレイン電極706を形成するセルフアライン型の構成である。
OSトランジスタは、酸化物半導体層に形成されるチャネル形成領域708、ソース領域703およびドレイン領域704のほか、ゲート電極701、ゲート絶縁膜702を有する構成とすることができる。当該開口部には少なくともゲート絶縁膜702およびゲート電極701が設けられる。当該溝には、さらに酸化物半導体層707が設けられていてもよい。
OSトランジスタは、図21Bに示すように、ゲート電極701をマスクとして半導体層にソース領域703およびドレイン領域704を形成するセルフアライン型の構成としてもよい。
または、図21Cに示すように、ソース電極705またはドレイン電極706とゲート電極701とが重なる領域を有するノンセルフアライン型のトップゲート型トランジスタであってもよい。
OSトランジスタはバックゲート535を有する構造を示しているが、バックゲートを有さない構造であってもよい。バックゲート535は、図21Dに示すトランジスタのチャネル幅方向の断面図のように、対向して設けられるトランジスタのフロントゲートと電気的に接続してもよい。なお、図21Dは図21Aに示すB1−B2の断面を例として示しているが、その他の構造のトランジスタも同様である。また、バックゲート535にフロントゲートとは異なる固定電位を供給することができる構成であってもよい。
OSトランジスタに用いる半導体材料としては、エネルギーギャップが2eV以上、好ましくは2.5eV以上、より好ましくは3eV以上である金属酸化物を用いることができる。代表的には、インジウムを含む酸化物半導体などであり、例えば、後述するCAAC−OSまたはCAC−OSなどを用いることができる。CAAC−OSは結晶を構成する原子が安定であり、信頼性を重視するトランジスタなどに適する。また、CAC−OSは、高移動度特性を示すため、高速駆動を行うトランジスタなどに適する。
OSトランジスタは半導体層のエネルギーギャップが大きいため、数yA/μm(チャネル幅1μmあたりの電流値)という極めて低いオフ電流特性を示す。また、OSトランジスタは、インパクトイオン化、アバランシェ降伏、および短チャネル効果などが生じないなどSiトランジスタとは異なる特徴を有し、高耐圧で信頼性の高い回路を形成することができる。また、Siトランジスタでは問題となる結晶性の不均一性に起因する電気特性のばらつきもOSトランジスタでは生じにくい。
OSトランジスタが有する半導体層は、例えばインジウム、亜鉛およびM(アルミニウム、チタン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、セリウム、スズ、ネオジムまたはハフニウム等の金属の一つまたは複数)を含むIn−M−Zn系酸化物で表記される膜とすることができる。In−M−Zn系酸化物は、代表的には、スパッタリング法で形成することができる。または、ALD(Atomic layer deposition)法を用いて形成してもよい。
In−M−Zn系酸化物をスパッタリング法で形成するために用いるスパッタリングターゲットの金属元素の原子数比は、In≧M、Zn≧Mを満たすことが好ましい。このようなスパッタリングターゲットの金属元素の原子数比として、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=3:1:2、In:M:Zn=4:2:3、In:M:Zn=4:2:4.1、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8等が好ましい。なお、成膜される半導体層の原子数比はそれぞれ、上記のスパッタリングターゲットに含まれる金属元素の原子数比のプラスマイナス40%の変動を含む。
半導体層としては、キャリア密度の低い酸化物半導体を用いる。例えば、半導体層は、キャリア密度が1×1017/cm以下、好ましくは1×1015/cm以下、さらに好ましくは1×1013/cm以下、より好ましくは1×1011/cm以下、さらに好ましくは1×1010/cm未満であり、1×10−9/cm以上の酸化物半導体を用いることができる。そのような酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ。当該酸化物半導体は欠陥準位密度が低く、安定な特性を有する酸化物半導体であるといえる。
なお、これらに限られず、必要とするトランジスタの半導体特性および電気特性(電界効果移動度、しきい値電圧等)に応じて適切な組成の酸化物半導体を用いればよい。また、必要とするトランジスタの半導体特性を得るために、半導体層のキャリア密度および不純物濃度、欠陥密度、金属元素と酸素の原子数比、原子間距離、密度等を適切なものとすることが好ましい。
半導体層を構成する酸化物半導体において、第14族元素の一つであるシリコンまたは炭素が含まれると、酸素欠損が増加し、n型化してしまう。このため、半導体層におけるシリコンまたは炭素の濃度(二次イオン質量分析法により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
また、アルカリ金属およびアルカリ土類金属は、酸化物半導体と結合するとキャリアを生成する場合があり、トランジスタのオフ電流が増大してしまうことがある。このため、半導体層におけるアルカリ金属またはアルカリ土類金属の濃度(二次イオン質量分析法により得られる濃度)を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
また、半導体層を構成する酸化物半導体に窒素が含まれていると、キャリアである電子が生じてキャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため半導体層における窒素濃度(二次イオン質量分析法により得られる濃度)は、5×1018atoms/cm以下にすることが好ましい。
また、半導体層を構成する酸化物半導体に水素が含まれていると、金属原子と結合する酸素と反応して水になるため、酸化物半導体中に酸素欠損を形成する場合がある。酸化物半導体中のチャネル形成領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性となる場合がある。さらに、酸素欠損に水素が入った欠陥はドナーとして機能し、キャリアである電子が生成されることがある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成する場合がある。したがって、水素が多く含まれている酸化物半導体を用いたトランジスタは、ノーマリーオン特性となりやすい。
酸素欠損に水素が入った欠陥は、酸化物半導体のドナーとして機能しうる。しかしながら、当該欠陥を定量的に評価することは困難である。そこで、酸化物半導体においては、ドナー濃度ではなく、キャリア濃度で評価される場合がある。よって、本明細書等では、酸化物半導体のパラメータとして、ドナー濃度ではなく、電界が印加されない状態を想定したキャリア濃度を用いる場合がある。つまり、本明細書等に記載の「キャリア濃度」は、「ドナー濃度」と言い換えることができる場合がある。
よって、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。水素などの不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
また、半導体層は、例えば非単結晶構造でもよい。非単結晶構造は、例えば、c軸に配向した結晶を有するCAAC−OS(C−Axis Aligned Crystalline Oxide Semiconductor)、多結晶構造、微結晶構造、または非晶質構造を含む。非単結晶構造において、非晶質構造は最も欠陥準位密度が高く、CAAC−OSは最も欠陥準位密度が低い。
非晶質構造の酸化物半導体膜は、例えば、原子配列が無秩序であり、結晶成分を有さない。または、非晶質構造の酸化物半導体膜は、例えば、完全な非晶質構造であり、結晶部を有さない。
なお、半導体層が、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域のうち、二種以上を有する混合膜であってもよい。混合膜は、例えば上述した領域のうち、いずれか二種以上の領域を含む単層構造、または積層構造を有する場合がある。
以下では、非単結晶の半導体層の一態様であるCAC(Cloud−Aligned Composite)−OSの構成について説明する。
CAC−OSとは、例えば、酸化物半導体を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、酸化物半導体において、一つあるいはそれ以上の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
なお、酸化物半導体は、少なくともインジウムを含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
例えば、In−Ga−Zn酸化物におけるCAC−OS(CAC−OSの中でもIn−Ga−Zn酸化物を、特にCAC−IGZOと呼称してもよい。)とは、インジウム酸化物(以下、InOX1(X1は0よりも大きい実数)とする。)、またはインジウム亜鉛酸化物(以下、InX2ZnY2Z2(X2、Y2、およびZ2は0よりも大きい実数)とする。)と、ガリウム酸化物(以下、GaOX3(X3は0よりも大きい実数)とする。)、またはガリウム亜鉛酸化物(以下、GaX4ZnY4Z4(X4、Y4、およびZ4は0よりも大きい実数)とする。)などと、に材料が分離することでモザイク状となり、モザイク状のInOX1、またはInX2ZnY2Z2が、膜中に均一に分布した構成(以下、クラウド状ともいう。)である。
つまり、CAC−OSは、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、混合している構成を有する複合酸化物半導体である。なお、本明細書において、例えば、第1の領域の元素Mに対するInの原子数比が、第2の領域の元素Mに対するInの原子数比よりも大きいことを、第1の領域は、第2の領域と比較して、Inの濃度が高いとする。
なお、IGZOは通称であり、In、Ga、Zn、およびOによる1つの化合物をいう場合がある。代表例として、InGaO(ZnO)m1(m1は自然数)、またはIn(1+x0)Ga(1−x0)(ZnO)m0(−1≦x0≦1、m0は任意数)で表される結晶性の化合物が挙げられる。
上記結晶性の化合物は、単結晶構造、多結晶構造、またはCAAC構造を有する。なお、CAAC構造とは、複数のIGZOのナノ結晶がc軸配向を有し、かつa−b面においては配向せずに連結した結晶構造である。
一方、CAC−OSは、酸化物半導体の材料構成に関する。CAC−OSとは、In、Ga、Zn、およびOを含む材料構成において、一部にGaを主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。したがって、CAC−OSにおいて、結晶構造は副次的な要素である。
なお、CAC−OSは、組成の異なる二種類以上の膜の積層構造は含まないものとする。例えば、Inを主成分とする膜と、Gaを主成分とする膜との2層からなる構造は、含まない。
なお、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とは、明確な境界が観察できない場合がある。
なお、ガリウムの代わりに、アルミニウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれている場合、CAC−OSは、一部に該金属元素を主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。
CAC−OSは、例えば基板を意図的に加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、および窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。
CAC−OSは、X線回折(XRD:X−ray diffraction)測定法のひとつであるOut−of−plane法によるθ/2θスキャンを用いて測定したときに、明確なピークが観察されないという特徴を有する。すなわち、X線回折測定から、測定領域のa−b面方向、およびc軸方向の配向は見られないことが分かる。
また、CAC−OSは、プローブ径が1nmの電子線(ナノビーム電子線ともいう。)を照射することで得られる電子線回折パターンにおいて、リング状に輝度の高い領域(リング領域)と、該リング領域に複数の輝点が観測される。したがって、電子線回折パターンから、CAC−OSの結晶構造が、平面方向、および断面方向において、配向性を有さないnc(nano−crystal)構造を有することがわかる。
また、例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、偏在し、混合している構造を有することが確認できる。
CAC−OSは、金属元素が均一に分布したIGZO化合物とは異なる構造であり、IGZO化合物と異なる性質を有する。つまり、CAC−OSは、GaOX3などが主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域と、に互いに相分離し、各元素を主成分とする領域がモザイク状である構造を有する。
ここで、InX2ZnY2Z2、またはInOX1が主成分である領域は、GaOX3などが主成分である領域と比較して、導電性が高い領域である。つまり、InX2ZnY2Z2、またはInOX1が主成分である領域を、キャリアが流れることにより、酸化物半導体としての導電性が発現する。したがって、InX2ZnY2Z2、またはInOX1が主成分である領域が、酸化物半導体中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
一方、GaOX3などが主成分である領域は、InX2ZnY2Z2、またはInOX1が主成分である領域と比較して、絶縁性が高い領域である。つまり、GaOX3などが主成分である領域が、酸化物半導体中に分布することで、リーク電流を抑制し、良好なスイッチング動作を実現できる。
したがって、CAC−OSを半導体素子に用いた場合、GaOX3などに起因する絶縁性と、InX2ZnY2Z2、またはInOX1に起因する導電性とが、相補的に作用することにより、高いオン電流(Ion)、および高い電界効果移動度(μ)を実現することができる。
また、CAC−OSを用いた半導体素子は、信頼性が高い。したがって、CAC−OSは、様々な半導体装置の構成材料として適している。
<層202b>
層202bは、層202a上に形成される。層202bは、OSトランジスタを有するメモリ回路321bを有する。層202bの基本構成は層202aと同様であり、異なる点のみ説明する。
層202bにおいて層203に最も近い層には、絶縁層229および導電層11が設けられる。絶縁層229および導電層11は、貼り合わせ層としての機能を有する。貼り合わせ層に関しては後述する。導電層11は、層201のキャパシタ402の他方の電極と電気的に接続される。
<層203>
層203は、層204上に形成される。層203は、OSトランジスタを有する画素回路331を有する。ここでは、画素回路331の一部として、トランジスタ103およびトランジスタ104を示している。
層203には、絶縁層231、232、233、234、235、236、237が設けられる。また、導電層13が設けられる。
絶縁層231および導電層13は、貼り合わせ層としての機能を有する。絶縁層232、233、234、237は、層間絶縁膜および平坦化膜としての機能を有する。絶縁層235は、保護膜としての機能を有する。絶縁層236は、ゲート絶縁膜としての機能を有する。
導電層13は、画素回路331の出力線として機能する配線352と電気的に接続される。
<層204>
層204は、光電変換デバイス240、絶縁層241、242、245を有する。
光電変換デバイス240は、シリコン基板に形成されたpn接合型のフォトダイオードであり、p型領域243およびn型領域244を有する。光電変換デバイス240は埋め込み型フォトダイオードであり、n型領域244の表面側(電流の取り出し側)に設けられた薄いp型領域243によって暗電流を抑えノイズを低減させることができる。
絶縁層241は、ブロッキング層としての機能を有する。絶縁層242は、素子分離層としての機能を有する。絶縁層245は、キャリアの流出を抑制する機能を有する。
シリコン基板には画素を分離する溝が設けられ、絶縁層245はシリコン基板上面および当該溝に設けられる。絶縁層245が設けられることにより、光電変換デバイス240内で発生したキャリアが隣接する画素に流出することを抑えることができる。また、絶縁層245は、迷光の侵入を抑制する機能も有する。したがって、絶縁層245により、混色を抑制することができる。なお、シリコン基板の上面と絶縁層245との間に反射防止膜が設けられていてもよい。
素子分離層は、LOCOS(LOCal Oxidation of Silicon)法、またはSTI(Shallow Trench Isolation)法等を用いて形成することができる。絶縁層245としては、例えば、酸化シリコン、窒化シリコンなどの無機絶縁膜、ポリイミド樹脂、アクリル樹脂などの有機絶縁膜を用いることができる。なお、絶縁層245は多層構成であってもよい。
光電変換デバイス240のn型領域244(カソードに相当)は、層203のトランジスタ103のソースまたはドレインの一方と電気的に接続される。p型領域243(アノード)は、電源線として機能する層203の配線121と電気的に接続される。
<層205>
層205は、層204上に形成される。層205は、遮光層251、光学変換層250およびマイクロレンズアレイ255を有する。
遮光層251は、隣接する画素への光の流入を抑えることができる。遮光層251には、アルミニウム、タングステンなどの金属層を用いることができる。また、当該金属層と反射防止膜としての機能を有する誘電体膜を積層してもよい。
光電変換デバイス240が可視光に感度を有するとき、光学変換層250にカラーフィルタを用いることができる。R(赤)、G(緑)、B(青)、Y(黄)、C(シアン)、M(マゼンタ)などの色のカラーフィルタを画素別に割り当てることにより、カラー画像を得ることができる。例えば、図27Aの斜視図(断面を含む)に示すように、カラーフィルタ250R(赤)、カラーフィルタ250G(緑)、カラーフィルタ250B(青)をそれぞれ異なる画素に割り当てることができる。
また、適切な光電変換デバイス240と光学変換層250との組み合わせにおいて、光学変換層250に波長カットフィルタを用いれば、様々な波長領域における画像が得られる撮像装置とすることができる。
例えば、光学変換層250に可視光線の波長以下の光を遮る赤外線フィルタを用いれば、赤外線撮像装置とすることができる。また、光学変換層250に近赤外線の波長以下の光を遮るフィルタを用いれば、遠赤外線撮像装置とすることができる。また、光学変換層250に可視光線の波長以上の光を遮る紫外線フィルタを用いれば、紫外線撮像装置とすることができる。
なお、一つの撮像装置内に異なる光学変換層を複数配置してもよい。例えば、図27Bに示すように、カラーフィルタ250R(赤)、カラーフィルタ250G(緑)、カラーフィルタ250B(青)、赤外線フィルタ250IRをそれぞれ異なる画素に割り当てることができる。当該構成では、可視光画像および赤外光画像を同時に取得することができる。
または、図27Cに示すように、カラーフィルタ250R(赤)、カラーフィルタ250G(緑)、カラーフィルタ250B(青)、紫外線フィルタ250UVをそれぞれ異なる画素に割り当てることができる。当該構成では、可視光画像および紫外光画像を同時に取得することができる。
また、光学変換層250にシンチレータを用いれば、X線撮像装置などに用いる放射線の強弱を可視化した画像を得る撮像装置とすることができる。被写体を透過したX線等の放射線がシンチレータに入射されると、フォトルミネッセンス現象により可視光線または紫外光線などの光(蛍光)に変換される。そして、当該光を光電変換デバイス240で検知することにより画像データを取得する。また、放射線検出器などに当該構成の撮像装置を用いてもよい。
シンチレータは、X線またはガンマ線などの放射線が照射されると、そのエネルギーを吸収して可視光または紫外光を発する物質を含む。例えば、GdS:Tb、GdS:Pr、GdS:Eu、BaFCl:Eu、NaI、CsI、CaF、BaF、CeF、LiF、LiI、ZnOなどを樹脂またはセラミクスに分散させたものを用いることができる。
赤外光または紫外光による撮像を行うことで、検査機能、セキュリティ機能、センサ機能などを撮像装置に付与することができる。例えば、赤外光による撮像を行うことで、生産物の非破壊検査、農産物の選別(糖度計機能など)、静脈認証、医療検査などを行うことができる。また、紫外光による撮像を行うことで、光源または火炎から放出される紫外光を検出することができ、光源、熱源、生産装置等の管理などを行うことができる。
光学変換層250上にはマイクロレンズアレイ255が設けられる。マイクロレンズアレイ255が有する個々のレンズを通る光が直下の光学変換層250を通り、光電変換デバイス240に照射されるようになる。マイクロレンズアレイ255を設けることにより、集光した光を光電変換デバイス240に入射することができるため、効率よく光電変換を行うことができる。マイクロレンズアレイ255は、目的の波長の光に対して透光性の高い樹脂またはガラスなどで形成することが好ましい。
<貼り合わせ>
次に、層202bと層203の貼り合わせについて説明する。
層202bには、絶縁層229および導電層11が設けられる。導電層11は、絶縁層229に埋設された領域を有する。また、絶縁層229および導電層11の表面は、それぞれ高さが一致するように平坦化されている。
層203には、絶縁層231および導電層13が設けられる。導電層13は、絶縁層232に埋設された領域を有する。また、絶縁層231および導電層13の表面は、それぞれ高さが一致するように平坦化されている。
ここで、導電層11および導電層13は、主成分が同一の金属元素であることが好ましい。また、絶縁層229および絶縁層231は、同一の成分で構成されていることが好ましい。
例えば、導電層11、13には、Cu、Al、Sn、Zn、W、Ag、PtまたはAuなどを用いることができる。接合のしやすさから、好ましくはCu、Al、W、またはAuを用いる。また、絶縁層229、231には、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、窒化チタンなどを用いることができる。
つまり、導電層11および導電層13のそれぞれに、上記に示す同一の金属材料を用いることが好ましい。また、絶縁層229および絶縁層231のそれぞれに、上記に示す同一の絶縁材料を用いることが好ましい。当該構成とすることで、層202bと層203の境を接合位置(位置A)とする、貼り合わせを行うことができる。
なお、導電層11および導電層13は複数の層の多層構造であってもよく、その場合は、表層(接合面)が同一の金属材料であればよい。また、絶縁層229および絶縁層231も複数の層の多層構造であってもよく、その場合は、表層(接合面)が同一の絶縁材料であればよい。
当該貼り合わせによって、導電層11および導電層13の電気的な接続を得ることができる。また、絶縁層229および絶縁層231の機械的な強度を有する接続を得ることができる。
金属層同士の接合には、表面の酸化膜および不純物の吸着層などをスパッタリング処理などで除去し、清浄化および活性化した表面同士を接触させて接合する表面活性化接合法を用いることができる。または、温度と圧力を併用して表面同士を接合する拡散接合法などを用いることができる。どちらも原子レベルでの結合が起こるため、電気的だけでなく機械的にも優れた接合を得ることができる。
また、絶縁層同士の接合には、研磨などによって高い平坦性を得たのち、酸素プラズマ等で親水性処理をした表面同士を接触させて仮接合し、熱処理による脱水で本接合を行う親水性接合法などを用いることができる。親水性接合法も原子レベルでの結合が起こるため、機械的に優れた接合を得ることができる。
層202bと、層203を貼り合わせる場合、それぞれの接合面には絶縁層と金属層が混在するため、例えば、表面活性化接合法および親水性接合法を組み合わせて行えばよい。
例えば、研磨後に表面を清浄化し、金属層の表面に酸化防止処理を行ったのちに親水性処理を行って接合する方法などを用いることができる。また、金属層の表面をAuなどの難酸化性金属とし、親水性処理を行ってもよい。なお、上述した方法以外の接合方法を用いてもよい。
上記の貼り合わせにより、層203が有する画素回路331と、層201が有する読み出し回路311を電気的に接続することができる。
<積層構造1の変形例>
図22は、図19に示す積層構造1とは層203および層204の構成が異なる変形例を示している。なお、層201、層202aおよび層202bの詳細は省略している。図22に示す変形例は、画素回路331が有するトランジスタ103を層204に設けた構成である。層204において、トランジスタ103は、Siトランジスタで形成される。トランジスタ103のソースまたはドレインの一方は、光電変換デバイス240と直結され、ソースまたはドレインの他方は、ノードFDとして作用する。
この場合、層203には、画素回路331を構成するトランジスタのうち、トランジスタ103を除いたトランジスタが設けられる。図22では、トランジスタ104およびトランジスタ105を図示している。
<積層構造2>
図23は、図3Dおよび図6に示す積層体の断面図の一例である。なお、層205の詳細は省略している。層201乃至層205における基本構成は積層構造1と同様であり、異なる点のみ説明する。
層201において層202aに最も近い層には、絶縁層281および導電層21、導電層22および導電層24が設けられる。絶縁層281および導電層21、導電層22および導電層24は、貼り合わせ層としての機能を有する。
層202aにおいて層201に最も近い層には、絶縁層282および導電層15、導電層16および導電層18が設けられる。絶縁層282および導電層15、導電層16および導電層18は、貼り合わせ層としての機能を有する。
層202aにおいて、絶縁層282とトランジスタ271との間には、単結晶シリコン基板を有する支持領域208が設けられる。導電層15、導電層16および導電層18のそれぞれは、当該単結晶シリコン基板を貫通する貫通配線360の端部の一方と電気的に接続される。貫通配線360の端部の他方は、画素回路、メモリ回路などと接続する配線と電気的に接続される。また、貫通配線360の側面には、絶縁層361が形成される。
位置Bにおいて、導電層15と導電層21を接合することで、キャパシタ402と配線352を電気的に接続することができる。また、導電層16と導電層22を接合することで、トランジスタ115とトランジスタ271を電気的に接続することができる。また、導電層18と導電層24を接合することで、トランジスタ116とトランジスタ271を電気的に接続することができる。
なお、貼り合わせの方法および貼り合わせ層として機能する導電層および絶縁層については、前述した層202bと層203の貼り合わせの説明を参照することができる。
<積層構造3>
図24は、図8A、図8Bに示す積層体の断面図の一例である。層205の詳細は省略している。層201乃至層204における基本構成は積層構造1と同様であり、異なる点のみ説明する。なお、図24において、層201にはトランジスタ403、トランジスタ116およびキャパシタ402を図示している。また、層206には、シリコン基板291に設けられたトランジスタ278、およびキャパシタ279を示している。トランジスタ278およびキャパシタ279はDRAMの構成要素である。
層201において層203に最も近い層には、絶縁層283および導電層31が設けられる。絶縁層283および導電層31は、貼り合わせ層としての機能を有する。
層203において層201に最も近い層には、絶縁層284および導電層33が設けられる。絶縁層284および導電層33は、貼り合わせ層としての機能を有する。
位置Aにおいて、導電層31と導電層33を接合することで、キャパシタ402と配線352を電気的に接続することができる。
層201において層202bに最も近い層には、絶縁層286および導電層35が設けられる。絶縁層286および導電層35は、貼り合わせ層としての機能を有する。なお、導電層35はシリコン基板211を貫通する貫通配線362を介してトランジスタ116と電気的に接続される。
層202bにおいて層201に最も近い層には、絶縁層285および導電層39が設けられる。絶縁層285および導電層39は、貼り合わせ層としての機能を有する。
位置Bにおいて、導電層35と導電層39を接合することで、トランジスタ116とトランジスタ271を電気的に接続することができる。
なお、貼り合わせの方法および貼り合わせ層として機能する導電層および絶縁層については、前述した層202bと層203の貼り合わせの説明を参照することができる。
<積層構造4>
図25は、図9A、図9Bに示す積層体の断面図の一例である。層205の詳細は省略している。層201乃至層204における基本構成は積層構造1と同様であり、異なる点のみ説明する。なお、図25において、層201にはトランジスタ403、トランジスタ115、トランジスタ117およびキャパシタ402を図示している。ここで、トランジスタ117は、演算回路が有する要素である。
層202bにおいて層202aに最も近い層には、絶縁層288および導電層59および導電層60が設けられる。絶縁層288、導電層59および導電層60は、貼り合わせ層としての機能を有する。
層202aにおいて層202bに最も近い層には、絶縁層287、導電層55および導電層56が設けられる。絶縁層287、導電層55および導電層56は、貼り合わせ層としての機能を有する。
層202bにおいて、絶縁層288とトランジスタ271との間には、単結晶シリコン基板を有する支持領域208が設けられる。導電層59および導電層60のそれぞれは、当該単結晶シリコン基板を貫通する貫通配線363の端部の一方と電気的に接続される。貫通配線363の端部の他方は、画素回路、メモリ回路などと接続する配線と電気的に接続される。
位置Bにおいて、導電層55と導電層59を接合することで、キャパシタ402と配線352を電気的に接続することができる。また、導電層56と導電層60を接合することで、トランジスタ115とトランジスタ271を電気的に接続することができる。
なお、貼り合わせの方法および貼り合わせ層として機能する導電層および絶縁層については、前述した層202bと層203の貼り合わせの説明を参照することができる。
層201に設けられる演算回路が有するトランジスタ117は、層202aが有するトランジスタ371と電気的に接続される。層202aが有するトランジスタ371およびキャパシタ374はメモリ回路の要素であり、当該メモリ回路は、演算回路の一次記憶装置として用いることができる。
<積層構造5>
図26は、図10A、図10Bに示す積層体の断面図の一例である。層205の詳細は省略している。層201乃至層204における基本構成は積層構造1と同様であり、異なる点のみ説明する。なお、図25において、層201にはトランジスタ403、トランジスタ115、トランジスタ117およびキャパシタ402を図示している。ここで、トランジスタ117は、演算回路が有する要素である。
層202bにおいて層201に最も近い層には、絶縁層296および導電層79および導電層80が設けられる。絶縁層296、導電層79および導電層80は、貼り合わせ層としての機能を有する。
層201において層202bに最も近い層には、絶縁層295、導電層75および導電層76が設けられる。絶縁層295、導電層75および導電層76は、貼り合わせ層としての機能を有する。
層202bにおいて、絶縁層296とトランジスタ271との間には、単結晶シリコン基板を有する支持領域208が設けられる。導電層79および導電層80のそれぞれは、当該単結晶シリコン基板を貫通する貫通配線364の端部の一方と電気的に接続される。貫通配線364の端部の他方は、画素回路、メモリ回路などと接続する配線と電気的に接続される。
位置Bにおいて、導電層75と導電層79を接合することで、キャパシタ402と配線352を電気的に接続することができる。また、導電層76と導電層80を接合することで、トランジスタ115とトランジスタ271を電気的に接続することができる。
なお、貼り合わせの方法および貼り合わせ層として機能する導電層および絶縁層については、前述した層202bと層203の貼り合わせの説明を参照することができる。
なお、層202aには、外部に露出する導電層83および導電層84が設けられる。導電層83および導電層84は、層201が有する配線と電気的に接続することができる。当該配線は、層201が有する読み出し回路311、演算回路314などと電気的に接続することができる。
本実施の形態では、層201に画素回路の読み出し回路、画素の駆動回路、メモリ回路の駆動回路、および演算装置を設けた構成を説明したが、これに限らない。例えば、ニューラルネットワーク、通信回路、CPUなどが層201または層201に設けられていてもよい。
OSトランジスタおよびSiトランジスタを用いて、ノーマリーオフCPU(「Noff−CPU」ともいう)を実現することができる。なお、Noff−CPUとは、ゲート電圧が0Vであっても非導通状態(オフ状態ともいう)であるノーマリーオフ型のトランジスタを含む集積回路である。
Noff−CPUは、Noff−CPU内の動作不要な回路への電力供給を停止し、当該回路を待機状態にすることができる。電力供給が停止され、待機状態になった回路では電力が消費されない。よって、Noff−CPUは、電力使用量を最小限にすることができる。また、Noff−CPUは、電力供給が停止されても設定条件などの動作に必要な情報を長期間保持することができる。待機状態からの復帰は当該回路への電力供給を再開するだけでよく、設定条件などの再書き込みが不要である。すなわち、待機状態からの高速復帰が可能である。このように、Noff−CPUは、動作速度を大きく落とすことなく消費電力を低減できる。
本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
(実施の形態2)
本実施の形態では、イメージセンサチップを収めたパッケージおよびカメラモジュールの一例について説明する。当該イメージセンサチップには、本発明の一態様の撮像装置の構成を用いることができる。
図28Aは、イメージセンサチップを収めたパッケージの外観斜視図である。当該パッケージは、CSP(Chip Size Package)であり、イメージセンサのベアチップ850、カバーガラス840、および両者を接着する接着剤830等を有する。
画素アレイ855の外側に設けられた電極パッド825は、貫通電極820を介して裏面電極815と電気的に接続されている。電極パッド825は、イメージセンサを構成する回路と配線またはワイヤによって電気的に接続される。なお、ベアチップ850は、様々な機能を有する回路と積層された積層チップであってもよい。
図28Aでは、裏面電極815に、半田ボールでバンプ810を形成する構成であるBGA(Ball Grid Array)を例示している。なお、BGAに限らず、LGA(Land Grid Array)またはPGA(Pin Grid Array)などであってもよい。または、ベアチップ850をQFN(Quad Flat No−lead package)、QFP(Quad Flat Package)に実装したパッケージを用いてもよい。
また、図28Bは、イメージセンサチップおよびレンズを組み合わせたカメラモジュールの上面側の外観斜視図である。当該カメラモジュールは、図28Aの構成上にレンズカバー860、および複数のレンズ870等を有する。また、レンズ870とカバーガラス840との間には、必要に応じて特定の波長の光を吸収する光学フィルタ880が設けられる。光学フィルタ880としては、例えば、可視光の撮像を主とするイメージセンサの場合は、赤外線カットフィルタなどを用いることができる。
イメージセンサチップを上述したような形態のパッケージに収めることでプリント基板等への実装が容易になり、イメージセンサチップを様々な半導体装置、電子機器に組み込むことができる。
本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
(実施の形態3)
本発明の一態様に係る撮像装置を用いることができる電子機器として、表示機器、パーソナルコンピュータ、記録媒体を備えた画像記憶装置または画像再生装置、携帯電話機、携帯型を含むゲーム機、携帯データ端末、電子書籍端末、ビデオカメラ、デジタルスチルカメラ等のカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、デジタルオーディオプレイヤー等)、複写機、ファクシミリ、プリンタ、プリンタ複合機、現金自動預け入れ払い機(ATM)、自動販売機などが挙げられる。これら電子機器の具体例を図29A乃至図29Fに示す。
図29Aは携帯電話機の一例であり、筐体981、表示部982、操作ボタン983、外部接続ポート984、スピーカ985、マイク986、カメラ987等を有する。当該携帯電話機は、表示部982にタッチセンサを備える。電話を掛ける、或いは文字を入力するなどのあらゆる操作は、指またはスタイラスなどで表示部982に触れることで行うことができる。当該携帯電話機に本発明の一態様の撮像装置を適用することができる。
図29Bは携帯データ端末であり、筐体911、表示部912、スピーカ913、カメラ919等を有する。表示部912が有するタッチパネル機能により情報の入出力を行うことができる。また、カメラ919で取得した画像から文字等を認識し、スピーカ913で当該文字を音声出力することができる。当該携帯データ端末に本発明の一態様の撮像装置を適用することができる。
図29Cは監視カメラであり、支持台951、カメラユニット952、保護カバー953等を有する。カメラユニット952には回転機構などが設けられ、天井に設置することで全周囲の撮像が可能となる。当該カメラユニットにおける画像取得のための要素に本発明の一態様の撮像装置を適用することができる。なお、監視カメラとは慣用的な名称であり、用途を限定するものではない。例えば監視カメラとしての機能を有する機器はカメラ、またはビデオカメラとも呼ばれる。
図29Dはドライブレコーダーであり、フレーム941、カメラ942、操作ボタン943、取り付け部品944などを有する。取り付け部品944を介して自動車のフロントウインドウなどに設置することで、走行時の前方の景色を録画することができる。なお、図示しない裏面には、録画されている画像を映す表示パネルが設けられる。カメラ942に本発明の一態様の撮像装置を適用することができる。
図29Eはデジタルカメラであり、筐体961、シャッターボタン962、マイク963、発光部967、レンズ965等を有する。当該デジタルカメラに本発明の一態様の撮像装置を適用することができる。
図29Fは腕時計型の情報端末であり、表示部932、筐体兼リストバンド933、カメラ939等を有する。表示部932は、情報端末の操作を行うためのタッチパネルを備える。表示部932および筐体兼リストバンド933は可撓性を有し、身体への装着性が優れている。当該情報端末に本発明の一態様の撮像装置を適用することができる。
図30Aは、移動体の一例であるドローンであり、フレーム921、アーム922、ロータ923、ブレード924、カメラ925、およびバッテリ926などを有し、自律して飛行する機能、空中に静止する機能などを有する。カメラ925に本発明の一態様の撮像装置を適用することができる。
図30Bは、移動体の一例として自動車の外観図を図示している。自動車890は、複数のカメラ891等を有し、自動車890の前後左右および上方の情報を取得することができる。カメラ891には、本発明の一態様の撮像装置を適用することができる。また、自動車890は、赤外線レーダー、ミリ波レーダー、レーザーレーダーなど各種センサ(図示せず)などを備える。自動車890は、複数の撮像方向892に対してカメラ891が取得した画像の解析を行い、ガードレールまたは歩行者の有無など、周囲の交通状況を判断し、自動運転を行うことができる。また、道路案内、危険予測などを行うシステムに用いることができる。
本発明の一態様の撮像装置では、得られた画像データをニューラルネットワークなどの演算処理を行うことで、例えば、画像の高解像度化、画像ノイズの低減、顔認識(防犯目的など)、物体認識(自動運転の目的など)、画像圧縮、画像補正(広ダイナミックレンジ化)、レンズレスイメージセンサの画像復元、位置決め、文字認識、反射映り込み低減などの処理を行うことができる。
なお、上述では、自動車は、内燃機関を有する自動車、電気自動車、水素自動車など、いずれであってもよい。また、移動体は自動車に限定されない。例えば、移動体としては、電車、モノレール、船、飛行体(ヘリコプター、無人航空機、飛行機、ロケット)なども挙げることができ、これらの移動体に本発明の一態様のコンピュータを適用して、人工知能を利用したシステムを付与することができる。
本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
11:導電層、12:導電層、13:導電層、14:導電層、15:導電層、16:導電層、17:導電層、18:導電層、19:導電層、20:導電層、21:導電層、22:導電層、23:導電層、24:導電層、25:導電層、26:導電層、31:導電層、32:導電層、33:導電層、34:導電層、35:導電層、36:導電層、37:導電層、38:導電層、39:導電層、40:導電層、41:導電層、42:導電層、55:導電層、56:導電層、57:導電層、58:導電層、59:導電層、60:導電層、61:導電層、62:導電層、75:導電層、76:導電層、77:導電層、78:導電層、79:導電層、80:導電層、81:導電層、82:導電層、83:導電層、84:導電層、91:曲線、92:曲線、102:トランジスタ、103:トランジスタ、104:トランジスタ、105:トランジスタ、106:トランジスタ、108:キャパシタ、115:トランジスタ、116:トランジスタ、117:トランジスタ、121:配線、122:配線、123:配線、126:配線、127:配線、128:配線、201:層、202a:層、202b:層、203:層、204:層、205:層、206:層、208:支持領域、210:領域、211:シリコン基板、212:絶縁層、213:絶縁層、214:絶縁層、215:絶縁層、216:絶縁層、217:絶縁層、218:絶縁層、220a:領域、220b:領域、221:絶縁層、222:絶縁層、223:絶縁層、224:絶縁層、225:絶縁層、227:絶縁層、228:絶縁層、229:絶縁層、230:領域、231:絶縁層、232:絶縁層、233:絶縁層、234:絶縁層、235:絶縁層、236:絶縁層、240:光電変換デバイス、241:絶縁層、242:絶縁層、243:p型領域、244:n型領域、245:絶縁層、250:光学変換層、250B:カラーフィルタ、250G:カラーフィルタ、250IR:赤外線フィルタ、250R:カラーフィルタ、250UV:紫外線フィルタ、251:遮光層、255:マイクロレンズアレイ、260:領域、271:トランジスタ、272:トランジスタ、273:トランジスタ、274:キャパシタ、275:キャパシタ、276:トランジスタ、277:キャパシタ、278:トランジスタ、279:キャパシタ、281:絶縁層、282:絶縁層、283:絶縁層、284:絶縁層、285:絶縁層、286:絶縁層、287:絶縁層、288:絶縁層、291:シリコン基板、295:絶縁層、296:絶縁層、311:回路、312:駆動回路、313:駆動回路、314:演算回路、321a:メモリ回路、321b:メモリ回路、321c:メモリセル、321c1:メモリセル、321c2:メモリセル、321c3:メモリセル、321d:メモリセル、321e:メモリセル、321m:メモリ回路、321n:メモリ回路、322:メモリセル、323:メモリセル、324:メモリ回路、325:メモリ回路、331:画素回路、332:駆動回路、341:ロードライバ、342:カラムドライバ、343:ゲートドライバ、344:ソースドライバ、345:回路、352:配線、353:配線、360:貫通配線、361:絶縁層、362:貫通配線、363:貫通配線、364:貫通配線、371:トランジスタ、374:キャパシタ、400:CDS回路、401:抵抗、402:キャパシタ、403:トランジスタ、404:トランジスタ、405:キャパシタ、410:A/Dコンバータ、535:バックゲート、545:半導体層、546:絶縁層、701:ゲート電極、702:ゲート絶縁膜、703:ソース領域、704:ドレイン領域、705:ソース電極、706:ドレイン電極、707:酸化物半導体層、708:チャネル形成領域、810:バンプ、815:裏面電極、820:貫通電極、825:電極パッド、830:接着剤、840:カバーガラス、850:ベアチップ、855:画素アレイ、860:レンズカバー、870:レンズ、880:光学フィルタ、890:自動車、891:カメラ、892:撮像方向、911:筐体、912:表示部、913:スピーカ、919:カメラ、921:フレーム、922:アーム、923:ロータ、924:ブレード、925:カメラ、926:バッテリ、932:表示部、933:筐体兼リストバンド、939:カメラ、941:フレーム、942:カメラ、943:操作ボタン、944:部品、951:支持台、952:カメラユニット、953:保護カバー、961:筐体、962:シャッターボタン、963:マイク、965:レンズ、967:発光部、981:筐体、982:表示部、983:操作ボタン、984:外部接続ポート、985:スピーカ、986:マイク、987:カメラ

Claims (19)

  1.  互いに重なる領域を有する、第1の層と、第2の層と、第3の層と、第4の層と、第5の層と、を有し、
     前記第2の層、前記第3の層および前記第4の層は、前記第1の層と前記第5の層との間に設けられ、
     前記第2の層は、前記第1の層と前記第3の層との間に設けられ、
     前記第4の層は、前記第3の層と前記第5の層との間に設けられ、
     前記第1の層は、読み出し回路と、第1の駆動回路と、第2の駆動回路と、を有し、
     前記第2の層は、第1のメモリ回路を構成する第1のトランジスタを有し、
     前記第3の層は、第2のメモリ回路を構成する第2のトランジスタと、第1の導電層と、第2の導電層と、を有し、
     前記第4の層は、画素回路を構成する第3のトランジスタと、第3の導電層と、第4の導電層と、を有し、
     前記第5の層は、前記画素回路を構成する光電変換デバイスを有し、
     前記画素回路は、前記第1の導電層および前記第3の導電層を介して前記読み出し回路と電気的に接続され、
     前記画素回路は、前記第2の導電層および前記第4の導電層を介して前記第1の駆動回路と電気的に接続され、
     前記第1のメモリ回路および前記第2のメモリ回路は、前記読み出し回路および前記第2の駆動回路と電気的に接続され、
     前記第1のトランジスタ、前記第2のトランジスタおよび前記第3のトランジスタは、チャネル形成領域に金属酸化物を有し、
     前記第1の導電層および前記第3の導電層、前記第2の導電層および前記第4の導電層のそれぞれは、直接接合している撮像装置。
  2.  請求項1において
     前記第1の層は、演算回路を有し、
     前記演算回路は、前記第2の駆動回路と電気的に接続されている撮像装置。
  3.  請求項1において、
     前記第1の導電層乃至前記第4の導電層は同一の金属材料で構成され、
     前記金属材料は、Cu、Al、W、またはAuである撮像装置。
  4.  請求項1において、
     前記第1の層および前記第5の層は、それぞれ単結晶シリコン基板を有する撮像装置。
  5.  請求項1乃至4のいずれか一項において、
     前記金属酸化物は、Inと、Znと、M(MはAl、Ti、Ga、Ge、Sn、Y、Zr、La、Ce、NdまたはHfの一つまたは複数)と、を有する撮像装置。
  6.  請求項1に記載の撮像装置と、表示部と、を有する電子機器。
  7.  互いに重なる領域を有する、第1の層と、第2の層と、第3の層と、第4の層と、第5の層と、を有し、
     前記第2の層、前記第3の層および前記第4の層は、前記第1の層と前記第5の層との間に設けられ、
     前記第2の層は、前記第1の層と前記第3の層との間に設けられ、
     前記第4の層は、前記第3の層と前記第5の層との間に設けられ、
     前記第1の層は、読み出し回路と、第1の駆動回路と、第2の駆動回路と、第1の導電層と、第2の導電層と、第3の導電層と、第4の導電層と、第5の導電層と、第6の導電層と、を有し、
     前記第2の層は、第1のメモリ回路を構成する第1のトランジスタと、第7の導電層と、第8の導電層と、第9の導電層と、第10の導電層と、第11の導電層と、第12の導電層と、を有し、
     前記第3の層は、第2のメモリ回路を構成する第2のトランジスタと、第13の導電層と、第14の導電層と、を有し、
     前記第4の層は、画素回路を構成する第3のトランジスタと、第15の導電層と、第16の導電層と、を有し、
     前記第5の層は、前記画素回路を構成する光電変換デバイスを有し、
     前記画素回路は、前記第1の導電層、前記第7の導電層、前記第13の導電層および前記第15の導電層を介して前記読み出し回路と電気的に接続され、
     前記画素回路は、前記第2の導電層、前記第8の導電層、前記第14の導電層および前記第16の導電層を介して前記第1の駆動回路と電気的に接続され、
     前記第1のメモリ回路は、前記第3の導電層および前記第9の導電層を介して前記読み出し回路と電気的に接続され、
     前記第1のメモリ回路は、前記第4の導電層および前記第10の導電層を介して前記第2の駆動回路と電気的に接続され、
     前記第2のメモリ回路は、前記第5の導電層および前記第11の導電層を介して前記読み出し回路と電気的に接続され、
     前記第2のメモリ回路は、前記第6の導電層および前記第12の導電層を介して前記第2の駆動回路と電気的に接続され、
     前記第1のトランジスタ、前記第2のトランジスタおよび前記第3のトランジスタは、チャネル形成領域に金属酸化物を有し、
     前記第1の導電層および前記第7の導電層、前記第2の導電層および前記第8の導電層、前記第3の導電層および前記第9の導電層、前記第4の導電層および前記第10の導電層、前記第5の導電層および前記第11の導電層、前記第6の導電層および前記第12の導電層、前記第13の導電層および前記第15の導電層、前記第14の導電層および前記第16の導電層のそれぞれは、直接接合している撮像装置。
  8.  請求項7において
     前記第1の層は、演算回路を有し、
     前記演算回路は、前記第2の駆動回路と電気的に接続されている撮像装置。
  9.  請求項7において、
     前記第1の導電層乃至前記第12の導電層は、同一の金属材料で構成され、
     前記第13の導電層乃至前記第16の導電層は、同一の金属材料で構成され、
     前記金属材料は、Cu、Al、W、またはAuである撮像装置。
  10.  請求項7において、
     前記第2の層は、単結晶シリコン基板を有する支持領域を有し、
     前記第7の導電層乃至第12の導電層は、前記支持領域に設けられている撮像装置。
  11.  請求項7において、
     前記第1の層および前記第5の層は、それぞれ単結晶シリコン基板を有する撮像装置。
  12.  請求項7乃至11のいずれか一項において、
     前記金属酸化物は、Inと、Znと、M(MはAl、Ti、Ga、Ge、Sn、Y、Zr、La、Ce、NdまたはHfの一つまたは複数)と、を有する撮像装置。
  13.  請求項7に記載の撮像装置と、表示部と、を有する電子機器。
  14.  互いに重なる領域を有する、第1の層と、第2の層と、第3の層と、第4の層と、第5の層と、を有し、
     前記第2の層、前記第3の層および前記第4の層は、前記第1の層と前記第5の層との間に設けられ、
     前記第2の層は、前記第1の層と前記第3の層との間に設けられ、
     前記第4の層は、前記第3の層と前記第5の層との間に設けられ、
     前記第1の層は、読み出し回路と、第1の駆動回路と、第2の駆動回路と、演算回路と、を有し、
     前記第2の層は、第1のメモリ回路を構成する第1のトランジスタと、第1の導電層と、第2の導電層と、第3の導電層と、第4の導電層と、を有し、
     前記第3の層は、第2のメモリ回路を構成する第2のトランジスタと、第5の導電層と、第6の導電層と、第7の導電層と、第8の導電層と、第9の導電層と、第10の導電層と、を有し、
     前記第4の層は、画素回路を構成する第3のトランジスタと、第11の導電層と、第12の導電層と、を有し、
     前記第5の層は、前記画素回路を構成する光電変換デバイスを有し、
     前記画素回路は、前記第1の導電層、前記第5の導電層、前記第9の導電層および前記第10の導電層を介して前記読み出し回路と電気的に接続され、
     前記画素回路は、前記第2の導電層、前記第6の導電層、前記第10の導電層および前記第12の導電層を介して前記第1の駆動回路と電気的に接続され、
     前記第1のメモリ回路は、前記演算回路と電気的に接続され、
     前記第2のメモリ回路は、前記第3の導電層および前記第7の導電層を介して前記読み出し回路と電気的に接続され、
     前記第2のメモリ回路は、前記第4の導電層および前記第8の導電層を介して前記第2の駆動回路と電気的に接続され、
     前記第1のトランジスタ、前記第2のトランジスタおよび前記第3のトランジスタは、チャネル形成領域に金属酸化物を有し、
     前記第1の導電層および前記第5の導電層、前記第2の導電層および前記第6の導電層、前記第3の導電層および前記第7の導電層、前記第4の導電層および前記第8の導電層、前記第9の導電層および前記第10の導電層、前記第10の導電層および前記第12の導電層のそれぞれは、直接接合している撮像装置。
  15.  請求項14において、
     前記第1の導電層乃至前記第8の導電層は、同一の金属材料で構成され、
     前記第9の導電層乃至前記第12の導電層は、同一の金属材料で構成され、
     前記金属材料は、Cu、Al、W、またはAuである撮像装置。
  16.  請求項14において、
     前記第3の層は、単結晶シリコン基板を有する支持領域を有し、
     前記第5の導電層乃至第8の導電層は、前記支持領域に設けられている撮像装置。
  17.  請求項14において、
     前記第1の層および前記第5の層は、それぞれ単結晶シリコン基板を有する撮像装置。
  18.  請求項14乃至17のいずれか一項において、
     前記金属酸化物は、Inと、Znと、M(MはAl、Ti、Ga、Ge、Sn、Y、Zr、La、Ce、NdまたはHfの一つまたは複数)と、を有する撮像装置。
  19.  請求項14に記載の撮像装置と、表示部と、を有する電子機器。
PCT/IB2022/055227 2021-06-17 2022-06-06 撮像装置および電子機器 WO2022263967A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280041851.3A CN117480611A (zh) 2021-06-17 2022-06-06 摄像装置及电子设备
KR1020237044999A KR20240021835A (ko) 2021-06-17 2022-06-06 촬상 장치 및 전자 기기
JP2023529146A JPWO2022263967A1 (ja) 2021-06-17 2022-06-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021101091 2021-06-17
JP2021-101091 2021-06-17

Publications (1)

Publication Number Publication Date
WO2022263967A1 true WO2022263967A1 (ja) 2022-12-22

Family

ID=84526229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/055227 WO2022263967A1 (ja) 2021-06-17 2022-06-06 撮像装置および電子機器

Country Status (4)

Country Link
JP (1) JPWO2022263967A1 (ja)
KR (1) KR20240021835A (ja)
CN (1) CN117480611A (ja)
WO (1) WO2022263967A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003041174A1 (fr) * 2001-11-05 2003-05-15 Mitsumasa Koyanagi Capteur d'images a semi-conducteur et procede de fabrication associe
JP2016213298A (ja) * 2015-05-07 2016-12-15 株式会社半導体エネルギー研究所 撮像装置および電子機器
JP2017034677A (ja) * 2015-08-03 2017-02-09 株式会社半導体エネルギー研究所 撮像装置および電子機器
WO2018109821A1 (ja) * 2016-12-13 2018-06-21 オリンパス株式会社 固体撮像装置および撮像装置
WO2018186192A1 (ja) * 2017-04-04 2018-10-11 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、及び電子機器
JP2021100025A (ja) * 2019-12-20 2021-07-01 株式会社半導体エネルギー研究所 撮像装置、撮像装置の駆動方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101824123B1 (ko) 2009-11-06 2018-02-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003041174A1 (fr) * 2001-11-05 2003-05-15 Mitsumasa Koyanagi Capteur d'images a semi-conducteur et procede de fabrication associe
JP2016213298A (ja) * 2015-05-07 2016-12-15 株式会社半導体エネルギー研究所 撮像装置および電子機器
JP2017034677A (ja) * 2015-08-03 2017-02-09 株式会社半導体エネルギー研究所 撮像装置および電子機器
WO2018109821A1 (ja) * 2016-12-13 2018-06-21 オリンパス株式会社 固体撮像装置および撮像装置
WO2018186192A1 (ja) * 2017-04-04 2018-10-11 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、及び電子機器
JP2021100025A (ja) * 2019-12-20 2021-07-01 株式会社半導体エネルギー研究所 撮像装置、撮像装置の駆動方法

Also Published As

Publication number Publication date
JPWO2022263967A1 (ja) 2022-12-22
CN117480611A (zh) 2024-01-30
KR20240021835A (ko) 2024-02-19

Similar Documents

Publication Publication Date Title
US11302736B2 (en) Imaging device and electronic device
US20230109524A1 (en) Imaging device and electronic device
US11917318B2 (en) Imaging device, operation method thereof, and electronic device
WO2022263967A1 (ja) 撮像装置および電子機器
WO2022064317A1 (ja) 撮像装置および電子機器
WO2022064307A1 (ja) 撮像装置および電子機器
JP2021100025A (ja) 撮像装置、撮像装置の駆動方法
WO2021001719A1 (ja) 撮像装置および電子機器
US20230179888A1 (en) Imaging device and electronic device
US20230054986A1 (en) Imaging device and electronic device
WO2021048676A1 (ja) 撮像装置および電子機器
JP7336441B2 (ja) 撮像装置および電子機器
US11956570B2 (en) Imaging system and electronic device
WO2021209868A1 (ja) 撮像装置および電子機器
JP7480137B2 (ja) 撮像装置および電子機器
US20220415941A1 (en) Imaging device and electronic device
WO2021214616A1 (ja) 撮像装置
KR20220142457A (ko) 촬상 장치, 전자 기기, 및 이동체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824386

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529146

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280041851.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237044999

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE