WO2022158379A1 - 光電変換装置、光電変換システム、および移動体 - Google Patents

光電変換装置、光電変換システム、および移動体 Download PDF

Info

Publication number
WO2022158379A1
WO2022158379A1 PCT/JP2022/001046 JP2022001046W WO2022158379A1 WO 2022158379 A1 WO2022158379 A1 WO 2022158379A1 JP 2022001046 W JP2022001046 W JP 2022001046W WO 2022158379 A1 WO2022158379 A1 WO 2022158379A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
wiring
photoelectric conversion
conversion device
circuit
Prior art date
Application number
PCT/JP2022/001046
Other languages
English (en)
French (fr)
Inventor
旬史 岩田
和浩 森本
雄 前橋
良之 林
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022000316A external-priority patent/JP2022113123A/ja
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to CN202280011178.9A priority Critical patent/CN116802810A/zh
Publication of WO2022158379A1 publication Critical patent/WO2022158379A1/ja
Priority to US18/356,954 priority patent/US20230369373A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/1469Assemblies, i.e. hybrid integration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02027Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for devices working in avalanche mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/705Pixels for depth measurement, e.g. RGBZ
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • H04N25/773Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters comprising photon counting circuits, e.g. single photon detection [SPD] or single photon avalanche diodes [SPAD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array

Definitions

  • the present invention relates to a photoelectric conversion device, a photoelectric conversion system, and a moving body.
  • a photoelectric conversion device includes a pixel array configured such that pixels including a plurality of avalanche photodiodes (hereinafter referred to as APDs) are arranged in a planar two-dimensional array.
  • APDs avalanche photodiodes
  • the Geiger mode operates with the potential difference between the anode and cathode larger than the breakdown voltage
  • the linear mode operates with the potential difference between the anode and cathode near or below the breakdown voltage.
  • an APD operated in Geiger mode is called a SPAD (Single Photon Avalanche Diode).
  • 3B has a SPAD array on the first substrate, a counter on the second substrate, a storage on the third substrate, and a photoelectric converter in which the first substrate, the second substrate, and the third substrate are stacked. A device is described.
  • Patent document 1 discloses a photoelectric conversion device in which a first substrate, a second substrate, and a third substrate are laminated, but a wiring structure for electrically connecting the second substrate and the third substrate is studied. do not have.
  • an object of the present invention is to propose a specific configuration of a photoelectric conversion device having an avalanche photodiode and a substrate having three or more layers.
  • a photoelectric conversion device includes: a first semiconductor layer having a plurality of photoelectric conversion units; a first substrate having a first wiring structure; A second substrate having a second semiconductor layer with pixel circuits and a second wiring structure, and a third semiconductor layer having a signal processing circuit for processing output signals from the plurality of pixel circuits and a third wiring structure. a third substrate, wherein each of the plurality of photoelectric conversion units has an avalanche photodiode; and between the first semiconductor layer and the second semiconductor layer, the first wiring structure and The first substrate and the second substrate are stacked such that the second wiring structure is provided, and the third wiring structure is provided between the second semiconductor layer and the third semiconductor layer. , the second substrate and the third substrate are laminated as above, and a first through wire passing through the third semiconductor layer and a semiconductor element overlapping the first through wire in a plan view are provided. Characterized by
  • FIG. 4 is a diagram for explaining the relationship between the operation of the APD and the output signal;
  • FIG. 4 is a schematic diagram showing the electrical connection relationship between the first substrate and the second substrate of Embodiment 1; Schematic diagram showing an electrical connection relationship between a second substrate and a third substrate of Embodiment 1.
  • FIG. 4 is a schematic diagram showing an electrical connection relationship between the third substrate of the first embodiment and other substrates; 1 is a cross-sectional view of the photoelectric conversion device of Embodiment 1.
  • FIG. 4 is a diagram for explaining the relationship between the operation of the APD and the output signal;
  • FIG. 4 is a schematic diagram showing the electrical connection relationship between the first substrate and the second substrate of Embodiment 1; Schematic diagram showing an electrical connection relationship between a second substrate and a third substrate of Embodiment 1.
  • FIG. 4 is a schematic diagram showing an electrical connection relationship between the third substrate of the first embodiment and other substrates; 1 is a cross-sectional view of the photoelectric conversion device of Embodiment 1.
  • FIG. 11 is a schematic diagram showing the electrical connection relationship between the first substrate and the second substrate of the eleventh embodiment;
  • FIG. 11 is a schematic diagram showing the electrical connection relationship between the second substrate and the third substrate of the eleventh embodiment;
  • FIG. 11 is a schematic diagram showing an electrical connection relationship between the third substrate of the eleventh embodiment and other substrates;
  • FIG. 12 is a schematic diagram showing the electrical connection relationship between the first substrate and the second substrate of the twelfth embodiment;
  • FIG. 14 is a schematic diagram showing the electrical connection relationship between the second substrate and the third substrate of the twelfth embodiment; Schematic diagram showing the electrical connection relationship between the third substrate of the twelfth embodiment and other substrates, etc.
  • FIG. 14 is a schematic diagram showing the electrical connection relationship between the second substrate and the third substrate of the thirteenth embodiment;
  • FIG. 14 is a schematic diagram showing an electrical connection relationship between the third substrate of the thirteenth embodiment and other substrates;
  • Cross-sectional view of the photoelectric conversion device of Embodiment 13 Cross-sectional view of the photoelectric conversion device of Embodiment 14
  • Cross-sectional view of the photoelectric conversion device of Embodiment 14 Cross-sectional view of the photoelectric conversion device of Embodiment 14
  • Cross-sectional view of the photoelectric conversion device of Embodiment 14 Cross-sectional view of the photoelectric conversion device of Embodiment 14
  • Cross-sectional view of the photoelectric conversion device of Embodiment 14 Cross-sectional view of the photoelectric conversion device of Embodiment 15
  • Functional block diagram of the photoelectric conversion system of Embodiment 18 Functional block diagram of the distance sensor of the nineteenth embodiment Functional block diagram of endoscopic surgery
  • FIG. 21 is a diagram of a photoelectric conversion system and a moving object according to Embodiment 21;
  • FIG. 21 is a diagram of a photoelectric conversion system and a moving object according to Embodiment 21;
  • Functional block diagram of endoscopic surgery according to Embodiment 22 Functional block diagram of endoscopic surgery according to Embodiment 22
  • a photoelectric conversion device including a SPAD (Single Photon Avalanche Diode) that counts the number of photons incident on an avalanche diode.
  • SPAD Single Photon Avalanche Diode
  • a photoelectric conversion device includes at least an avalanche diode.
  • the anode of the avalanche diode is set to a fixed potential and the signal is extracted from the cathode side. Therefore, the semiconductor region of the first conductivity type in which majority carriers are the same conductivity type as the signal charges is the N-type semiconductor region, and the semiconductor region of the second conductivity type is the P-type semiconductor region.
  • the present invention can also be applied when the cathode of the avalanche diode is set at a fixed potential and the signal is extracted from the anode side.
  • the semiconductor region of the first conductivity type having majority carriers of the same conductivity type as the signal charge is a P-type semiconductor region
  • the semiconductor region of the second conductivity type is an N-type semiconductor region.
  • planar view means viewing from a direction perpendicular to the light incident surface of the semiconductor layer.
  • a cross-sectional view refers to a plane in a direction perpendicular to the light incident surface of the semiconductor layer.
  • the plane view is defined based on the light incident surface of the semiconductor layer macroscopically.
  • FIG. 1 is a diagram showing an overall image of a photoelectric conversion device 100.
  • the first substrate 1100 is also called a sensor chip, and is provided with a pixel region 12 in which pixels having photoelectric conversion units are arranged two-dimensionally. A peripheral region 13 is provided between the pixel region 12 and the chip edge of the photoelectric conversion device 100 .
  • the second substrate 2100 is also called a pixel circuit chip, and is provided with a pixel circuit region 22 in which pixel circuits for processing signals from photoelectric conversion units are arranged.
  • the third substrate 3100 is also called a signal processing chip, and is provided with a signal processing circuit region 32 in which signal processing circuits for processing signals from pixel circuits are arranged.
  • the photoelectric conversion device 100 is configured by laminating the first substrate 1100, the second substrate 2100, and the third substrate 3100. As shown in FIG.
  • FIG. 2 is a configuration diagram of the first substrate 1100. As shown in FIG. The first substrate is provided with a pixel region 12 in which pixels 101 each having a photoelectric conversion unit 102 including an avalanche photodiode (hereinafter referred to as APD) are arranged two-dimensionally. The pixels 101 in the pixel region 12 may be arranged one-dimensionally. Details of the photoelectric conversion unit 102 will be described later.
  • APD avalanche photodiode
  • the pixels 101 are typically pixels for forming an image, but when used for TOF (Time of Flight), they do not necessarily form an image. That is, the pixel 101 may be an element for measuring the time and amount of light that light reaches.
  • TOF Time of Flight
  • FIG. 3 is a configuration diagram of the second substrate 2100.
  • the second substrate 2100 has a pixel circuit portion 201 that processes charges photoelectrically converted by the photoelectric conversion portion 102 , a control pulse generation portion 206 , a horizontal scanning circuit portion 203 , a signal line 205 and a vertical scanning circuit portion 202 .
  • a pixel circuit region 22 shown in FIG. 2 is a region in which at least the pixel circuit portion 201 is provided.
  • the photoelectric conversion unit 102 in FIG. 2 and the pixel circuit unit 201 in FIG. 3 are electrically connected via connection wiring provided for each pixel.
  • the vertical scanning circuit unit 202 receives the control pulse supplied from the control pulse generation unit 206 and supplies the control pulse to each pixel.
  • Logic circuits such as shift registers and address decoders are used in the vertical scanning circuit unit 202 .
  • a signal output from the photoelectric conversion unit 102 of each pixel is processed by the pixel circuit unit 201 .
  • the pixel circuit unit 201 is provided with a counter, memory, etc., and the memory holds a digital value.
  • the horizontal scanning circuit unit 203 inputs a control pulse for sequentially selecting each column to the pixel circuit unit 201 in order to read the signal from the memory of each pixel holding the digital signal.
  • a signal is output to the signal line 205 from the pixel circuit section 201 of the pixel selected by the vertical scanning circuit section 202 for the selected column.
  • one pixel circuit section 201 is provided corresponding to one pixel 101.
  • one pixel circuit unit 201 may be shared by, for example, a plurality of pixels 101, and signal processing may be sequentially performed. Thereby, space saving of the pixel circuit region 22 can be achieved.
  • FIG. 4 is a configuration diagram of the third substrate 3100. As shown in FIG.
  • the third board 3100 has a memory 301 , a first signal processing section 304 , a second signal processing section 305 , and control circuit sections 302 and 303 .
  • the memory 301 records image data output from the horizontal scanning circuit unit 203, for example.
  • the memory 301 is, for example, SRAM (Static Random Access Memory) or DRAM.
  • Control circuit units 302 and 303 control recording and reading of information from memory 301 .
  • the first signal processing unit 304 executes various signal processes on the image data (image data to be processed) read out from the memory 301 . For example, if the image data to be processed is a color image, the first signal processing unit 304 converts the format of this image data into YUV image data, RGB image data, or the like.
  • the first signal processing unit 304 performs processing such as noise removal and white balance adjustment on the image data to be processed as necessary.
  • the first signal processing unit 304 performs various signal processing (also referred to as pre-processing) on the image data to be processed, which is necessary for the second signal processing unit 305 to process the image data.
  • the first signal processing unit 304 also functions, for example, as a distance measurement processing unit. For example, based on information obtained from a TDC circuit (Time to Digital Converter), which will be described later, a histogram is created, distance calculation is performed, and the result is output to the second signal processing unit 305 .
  • the horizontal axis represents time classes (bins), and the vertical axis represents the frequency in each class. The frequency is the number of times light is received in a predetermined light receiving time.
  • the histogram contains a mixture of counts based on reflected light and ambient light. Therefore, by setting a predetermined threshold value, the count of the reflected light component and the count of the ambient light component are separated. The distance between the distance measuring device and the object to be measured is calculated from the light arrival time corresponding to the reflected light component.
  • the first signal processing unit 304 can generate three-dimensional distance image data from the calculated distance.
  • the three-dimensional distance image data can be generated only from the information obtained by the distance measurement processing unit, or can be generated by adding the calculation data obtained by the distance measurement processing unit to the two-dimensional plane image data. It may be three-dimensional distance image data.
  • the second signal processing unit 305 is, for example, a DSP (Digital Signal Processor).
  • the second signal processing unit 305 functions as a processing unit that executes various processes using a learned model created by machine learning by executing a program stored in the memory 301 .
  • a trained model is created by machine learning using a deep neural network (DNN).
  • DNN deep neural network
  • Such a trained model is also called a neural network calculation model.
  • This trained model is designed based on parameters generated by inputting an input signal corresponding to the output from the pixel region 12 and learning data associated with a label for this input signal into a predetermined machine learning model.
  • the predetermined machine learning model may be a learning model using a multi-layered neural network.
  • Such a trained model is also called a multilayer neural network model.
  • the second signal processing unit 305 executes arithmetic processing based on the learned model stored in the memory 301 .
  • a result (calculation result) obtained by such calculation processing is output to the memory 301 or the like.
  • Calculation results include image data obtained by executing calculation processing using a trained model and various information (metadata) obtained from the image data.
  • the DSP 14 may also incorporate a memory controller that controls access to the memory 15 .
  • the image data to be processed by the second signal processing unit 305 may be image data normally read out from the pixel area 12, or image data whose data size is reduced by thinning out the pixels of the image data. may be The image data may be read out with a data size smaller than usual by executing readout with pixels thinned out from the pixel region 12 .
  • the image data to be processed by the second signal processing unit 305 may be three-dimensional distance image data. Since three-dimensional distance information data has a larger amount of information than two-dimensional image data, highly accurate object recognition and highly accurate object position information acquisition are possible.
  • the memory 301 needs image data output from the horizontal scanning circuit unit 203, image data signal-processed by the first signal processing unit 304, calculation results obtained by the second signal processing unit 305, and the like. Record accordingly.
  • the memory 301 also stores the learned model algorithm executed by the second signal processing unit 305 .
  • the second signal processing unit 305 learns the learning model by changing the weighting of various parameters in the learning model using the learning data, prepares a plurality of learning models, and uses them according to the content of the arithmetic processing. It is possible to change the learning model to be used. Further, the second signal processing unit 305 can acquire a learned learning model from an external device and execute the arithmetic processing.
  • FIG. 4 shows an example in which the memory 301, the first signal processing unit 304, and the second signal processing unit 305 are arranged in this order.
  • the memory 301 stores information output from and input from the first signal processing unit 304 and the second signal processing unit 305 . Therefore, it may be arranged between the first signal processing section 304 and the second signal processing section 305 .
  • the second signal processing section 305 may be arranged between the memory 301 and the first signal processing section 304 .
  • the output unit 306 outputs image data output from the second signal processing unit 305, image data recorded in the memory 301, and calculation results.
  • the image data and calculation results output from the output unit 306 are input to an application processor (not shown) that processes display, user interface, and the like.
  • the application processor is configured using, for example, a CPU (Central Processing Unit) or the like, and executes an operating system, various application software, and the like.
  • This application processor may be equipped with functions such as a GPU (Graphics Processing Unit) and a baseband processor.
  • the application processor performs various processes as necessary on the input image data and calculation results, displays them to the user, and transmits them to an external cloud server via a predetermined network. .
  • Various networks such as the Internet, wired LAN (Local Area Network) or wireless LAN, mobile communication network, and Bluetooth (registered trademark) can be applied to the network.
  • the destination of image data and calculation results is not limited to a cloud server, but can be a server that operates alone, a file server that stores various data, or a communication terminal such as a mobile phone. It may be an information processing device (system).
  • FIG. 5 is a diagram explaining in more detail the block diagrams explained in FIGS. 2 and 3.
  • FIG. 5 is a diagram explaining in more detail the block diagrams explained in FIGS. 2 and 3.
  • the photoelectric conversion unit 102 having the APD 103 is provided on the first substrate 1100, and the other members are provided on the second substrate 2100.
  • a voltage VL first voltage
  • VH second voltage
  • a reverse bias voltage is supplied to the anode and cathode so that the APD 103 performs an avalanche multiplication operation.
  • charges generated by the incident light undergo avalanche multiplication, generating an avalanche current.
  • the Geiger mode is a mode in which the potential difference between the anode and cathode is greater than the breakdown voltage.
  • a linear mode is a mode in which the potential difference between the anode and cathode is close to or less than the breakdown voltage.
  • an APD operated in the Geiger mode is called a SPAD.
  • the voltage VL (first voltage) is -30V
  • the voltage VH (second voltage) is 1V.
  • the potential difference between the ground voltage 0 V and the voltage VL (first voltage) is greater than the potential difference between the ground voltage and the voltage VH (second voltage). Therefore, the voltage VL (first voltage) is sometimes expressed as a high voltage.
  • the quenching element 211 is connected to the power supply supplying the voltage VH and the APD 103 .
  • the quench element 211 has a function of converting a change in avalanche current generated by the APD 103 into a voltage signal.
  • the quench element 211 functions as a load circuit (quench circuit) during signal multiplication by avalanche multiplication, and has a function of suppressing the voltage supplied to the APD 103 to suppress avalanche multiplication (quench operation).
  • the signal processing section 201 has a waveform shaping section 212 , a circuit 213 (counter circuit), and a selection circuit 214 .
  • the signal processing section 201 may have any one of the waveform shaping section 212 , the circuit 213 (counter circuit), and the selection circuit 214 .
  • the waveform shaping unit 212 shapes the potential change of the cathode of the APD 103 obtained during photon detection, and outputs a pulse signal.
  • an inverter circuit is used as the waveform shaping section 212 .
  • FIG. 5 shows an example in which one inverter is used as the waveform shaping section 212, a circuit in which a plurality of inverters are connected in series may be used, or another circuit having a waveform shaping effect may be used.
  • a circuit 213 (counter circuit) counts the pulse signal output from the waveform shaping section 212 and holds the count value. Further, when the control pulse pRES is supplied through the drive line 215, the signal held in the circuit 213 (counter circuit) is reset. Since the circuit scale of the circuit 213 (counter circuit) provided for each pixel is large, it may be provided not only on the second substrate 2100 but also partly on the third substrate 3100 .
  • a control pulse pSEL is supplied from the vertical scanning circuit portion 202 in FIG. 3 to the selection circuit 214 through the drive line 216 in FIG. Switch connection.
  • the selection circuit 214 includes, for example, a buffer circuit for outputting a signal.
  • a pulse with a clock period may be applied to the gate of this MOS transistor.
  • a pulse having a predetermined clock cycle is input to the gate of the transistor that constitutes the quench element 211 from a PLL (Phase Locked Loop) circuit (not shown).
  • PLL Phase Locked Loop
  • the quenching element 211 is turned off if the quenching element 211 is composed of PMOS.
  • the APD 103 is not reverse biased and is in non-detection mode.
  • the quench element 211 is turned on, the APD 103 is reverse biased, and enters the detection mode (standby mode). Since the clock pulse from this PLL circuit has a predetermined period, the output signal is forcibly reset every clock period. Therefore, one photon is counted for one pulse, and the number of signals corresponding to the number of incident photons can be generated even under high luminance.
  • the PLL circuit is provided on any one of the first substrate 1100, the second substrate 2100, and the third substrate 3100, or a plurality of these substrates.
  • a switch such as a transistor may be arranged between the quench element 211 and the APD 103 or between the photoelectric conversion unit 102 and the signal processing unit 201 to switch the electrical connection.
  • voltage VH or voltage VL supplied to the photoelectric conversion unit 102 may be electrically switched using a switch such as a transistor.
  • the circuit 213 is used as a counter circuit.
  • the circuit 213 may be a time-to-digital converter (hereinafter referred to as a TDC circuit) as a time measurement circuit.
  • TDC circuit time-to-digital converter
  • the generation timing of the pulse signal output from the waveform shaping section 212 is converted into a digital signal by the TDC circuit 213 .
  • a control pulse pREF reference signal
  • the TDC circuit 213 acquires the signal when the input timing of the signal output from each pixel via the waveform shaping section 212 is relative to the control pulse pREF as a digital signal.
  • the TDC circuit 213 has, for example, an RS flip-flop, a coarse counter, and a fine counter.
  • the drive pREF drives the light-emitting portion and sets the RS flip-flop, which is reset by a signal pulse input from each pixel. Thereby, a signal having a pulse width corresponding to the flight time of light is generated. The generated signal is counted by a coarse counter and a fine counter each having a predetermined time resolution. As a result, a digital code is output.
  • a PLL circuit that generates a pulse of drive pREF for the TDC circuit 213 is provided on one of the first substrate 1100, the second substrate 2100, and the third substrate 3100, or a plurality of these substrates.
  • the driving pREF pulse input to the TDC circuit is delayed, the accuracy of the information output from the TDC circuit 213 will be affected. Therefore, it is better to provide the PLL circuit on the same substrate as the substrate on which the TDC circuit 213 is provided.
  • the second substrate 2100 is provided with a TDC circuit 213 and a PLL circuit that generates pulses to be supplied to the TDC circuit 213 .
  • the PLL circuit may also be input to the circuit provided on the third substrate 3100 .
  • the second substrate 2100 may be provided with a PLL circuit for the TDC circuit 213
  • the third substrate 3100 may be provided with a PLL circuit for the circuit provided on the third substrate 3100 .
  • the pulse signal is given to the circuit of the third substrate 3100 from the PLL circuit provided on the second substrate 2100 via the TSV wiring that connects the second substrate 2100 and the third substrate 3100. Become.
  • the wiring capacitance of the TSV wiring may affect the processing of the circuit of the third substrate 3100, for example, the high-speed processing of the signal processing circuit. Therefore, both the PLL circuit for the second substrate 2100 and the PLL circuit for the third substrate 3100 may be provided on each substrate.
  • the TDC circuit 213 may be shared by a plurality of pixels.
  • FIG. 6 is a diagram schematically showing the relationship between the operation of the APD and the output signal.
  • FIG. 6(a) is a diagram of the APD 103, the quench element 211, and the waveform shaping section 212 extracted from FIG.
  • the input side of the waveform shaping section 212 is nodeA
  • the output side is nodeB.
  • FIG. 6(b) shows the waveform change of nodeA in FIG. 6(a)
  • FIG. 6(c) shows the waveform change of nodeB in FIG. 6(a).
  • a potential difference of VH-VL is applied to the APD 103 in FIG. 6(a).
  • an avalanche multiplication current flows through the quench element 211 and the voltage of nodeA drops.
  • the avalanche multiplication of the APD 103 stops, and the voltage level of nodeA does not drop beyond a certain value. After that, a current that compensates for the voltage drop from the voltage VL flows through the nodeA, and the nodeA is stabilized at the original potential level at the time t3.
  • the portion of the output waveform at nodeA that exceeds a certain threshold is waveform-shaped by the waveform shaping section 212 and output as a signal at nodeB.
  • the memory 301 , control circuit units 302 and 303 , first signal processing unit 304 and second signal processing unit 305 are provided on the third substrate 3100 .
  • the avalanche photodiode includes a pixel circuit that processes signals from each photoelectric conversion unit, a plurality of photoelectric conversion units are arranged on the first substrate 1100 and a plurality of pixel circuits are arranged on the second substrate 2100 . Therefore, in a plan view, the area of the second substrate 2100 that overlaps the pixel area has no space, making it difficult to arrange the memory and the signal processing section on the second substrate 2100 .
  • a memory and a signal processing unit are arranged on the third substrate 3100 .
  • the need for arranging a memory and a signal processing section on the third substrate increases as the ratio of the area of the pixel region to the chip area of the photoelectric conversion device increases in plan view. For example, when the ratio of the area of the pixel region to the chip area of the photoelectric conversion device is 0.8 or more, this need arises remarkably.
  • the transistors forming the memory and the signal processing section provided on the third substrate 3100 are formed using finer processes than the transistors forming the pixel circuits provided on the second substrate 2100 . This is because these memories and signal processing units require a larger area of space than the pixel circuits.
  • the thickness of the gate oxide film of the transistor provided on the third substrate 3100 is thinner than the thickness of the gate oxide film of the transistor provided on the second substrate 2100 .
  • the gate length of the transistor provided on the third substrate 3100 is shorter than the gate length of the transistor provided on the second substrate 2100 .
  • the diameter of the via wiring provided between the interlayer films of the wiring structure (third wiring structure) of the third substrate 3100 is equal to the diameter of the via wiring provided between the interlayer films of the wiring structure (second wiring structure) of the second substrate 2100. smaller than the diameter of the via trace
  • the wiring width and inter-wiring distance of the wiring structure (third wiring structure) of the third substrate 3100 are smaller than the wiring width and inter-wiring distance of the wiring structure (second wiring structure) of the second substrate 2100 .
  • the relationship between the wiring width and the distance between wirings is a relationship when comparing the shortest wiring widths or the shortest wiring distances on each substrate.
  • the thickness of the gate oxide film of the quench element 211 (MOS transistor) of the second substrate 2100 is thicker than the thickness of the gate oxide film of the transistor forming a circuit different from the quench element 211 of the second substrate 2100 .
  • the thickness of the gate oxide film of the transistor constituting the circuit other than the quench element 211 of the second substrate 2100 is thicker than the thickness of the gate oxide film of the transistor of the circuit provided on the third substrate 3100 .
  • the signal processing section provided on the third substrate 3100 may be a processing section using so-called “non-Neumann type” semiconductor technology instead of the so-called “Neumann type” processing section.
  • FIG. 7 to 9 are plan views of the first substrate to the third substrate, respectively.
  • FIG. 10 is a cross-sectional view of a photoelectric conversion device 100 in which first to third substrates are laminated.
  • FIG. 10 is a cross-sectional view of the photoelectric conversion device 100, and light enters from the upper side of FIG.
  • a first substrate 1100, a second substrate 2100, and a third substrate 3100 are laminated from the light incident surface side.
  • the first substrate 1100 is composed of a first substrate semiconductor layer 1110 (first semiconductor layer) and a first substrate wiring structure 1120 (first wiring structure).
  • the second substrate 2100 includes a second substrate semiconductor layer 2110 (second semiconductor layer), a second substrate wiring structure 2120 (second wiring structure), a second wiring structure 2120 and a third substrate wiring structure 3120 ( and a connection layer 2130 for connecting the third wiring structure).
  • the third substrate 3100 has a semiconductor layer 3110 (third semiconductor layer) of the third substrate and a third wiring structure 3120 .
  • the first substrate 1100 and the second substrate 2100 are bonded together so that the first wiring structure 1120 and the second wiring structure 2120 face each other and are in contact with each other. Also, the second substrate 2100 and the third substrate 3100 are bonded together with the connection layer 2130 interposed therebetween so that the second semiconductor layer 2110 and the third wiring structure 3120 face each other.
  • a package substrate 5120 is arranged on the side opposite to the light incident surface side of the third substrate 3100 with an insulating adhesive region 5110 interposed therebetween.
  • a first semiconductor region 1011 of a first conductivity type and a second semiconductor region 1012 of a second conductivity type are arranged in a first semiconductor layer 1110 to form a PN junction and constitute the APD 103 shown in FIG. It is
  • a third semiconductor region 1013 of the second conductivity type is formed on the light incident surface side of the second semiconductor region 1012 .
  • the impurity concentration of the third semiconductor region 1013 is lower than that of the second semiconductor region 1012 .
  • impurity concentration means the net impurity concentration compensated for by impurities of the opposite conductivity type. That is, “impurity concentration” refers to NET concentration.
  • a region in which the P-type impurity concentration is higher than the N-type impurity concentration is a P-type semiconductor region.
  • a region where the N-type impurity concentration is higher than the P-type impurity concentration is an N-type semiconductor region.
  • Each pixel is separated by a second conductivity type fourth semiconductor region 1014 .
  • a fifth semiconductor region 1015 of the second conductivity type is provided on the light incident surface side of the fourth semiconductor region 1014 .
  • the fifth semiconductor region 1015 is provided in common for each pixel.
  • the fourth semiconductor region 1014 is supplied with the voltage VL (first voltage) shown in FIG. 5, and the first semiconductor region 1011 is supplied with the voltage VH (second voltage) shown in FIG.
  • a reverse bias voltage is supplied to the second semiconductor region 1012 and the first semiconductor region 1011 by the voltage supplied to the fourth semiconductor region 1014 and the voltage supplied to the first semiconductor region 1011 .
  • a reverse bias voltage is supplied that causes the APD 103 to perform an avalanche multiplication operation.
  • a pinning layer 1031 is provided on the light incident surface side of the fifth semiconductor region 1015 .
  • the pinning layer 1031 is a layer arranged for suppressing dark current.
  • the pinning layer 1031 is formed using hafnium oxide (HfO 2 ), for example.
  • the pinning layer 1031 may be formed using zirconium dioxide (ZrO 2 ), tantalum oxide (Ta 2 O 5 ), or the like.
  • a microlens 1032 is provided for each pixel on the pinning layer 1031 .
  • a color filter, a grid light-shielding film for optically separating each pixel, and the like may be provided.
  • the material of the light shielding film any material can be used as long as it can shield light. For example, tungsten (W), aluminum (Al), copper (Cu), or the like can be used.
  • a reverse bias voltage is supplied to the fourth semiconductor region 1014 and the first semiconductor region 1011 in order to cause avalanche multiplication.
  • a first via wiring (contact wiring) 1021a of the first substrate is electrically connected to the fourth semiconductor region 1014, and a first wiring layer of the first substrate is connected to the contact wiring 1021a. are electrically connected to each other.
  • the wiring 1022a in the first wiring layer is electrically connected to the wiring 1022b.
  • the suffix "a" after the reference number indicates the wiring of the pixel region 12 in which the plurality of photoelectric conversion units 102 are arranged.
  • wirings arranged in regions other than the pixel region 12 or regions other than the region overlapping the pixel region 12 in a plan view are denoted by a suffix b.
  • the wiring 1022a and the wiring 1022b of the first wiring layer may be electrically connected via another wiring layer.
  • the wiring 1022a and the wiring 1022b may be electrically connected by being formed continuously and integrally in the first wiring layer.
  • the wiring 1022b is electrically connected to the second via wiring 1023b of the first substrate.
  • the via wiring 1023b is electrically connected to the joint portion 1040b of the first substrate.
  • the joint portion 1040b of the first substrate is in contact with and electrically connected to the joint portion 2040b of the second substrate.
  • the bonding between the bonding portion 1040b exposed on the bonding surface of the first substrate and the bonding portion 2040b exposed on the bonding surface of the second substrate is called a metal bonding (MB) structure or a metal bonding portion. be.
  • this bonding is often performed between copper (Cu), it is also called Cu--Cu bonding (Cu--Cu bonding).
  • the joint portion 2040b of the second substrate is electrically connected to the second via wiring 2023b of the second substrate, and the second via wiring 2023b is electrically connected to the wiring 2022b of the first wiring layer of the second substrate. properly connected.
  • the wiring 2022 b of the first wiring layer is electrically connected to a through wiring (hereinafter referred to as TSV (Through Silicon Via) wiring) 5010 .
  • the TSV wiring 5010 is wiring that penetrates the semiconductor layer 2010 of the second substrate and the semiconductor layer 3010 of the third substrate.
  • the TSV wiring 5010 is electrically connected to the wiring 3031 of the wiring layer on the TSV opening side (the side opposite to the light incident surface side) of the third substrate.
  • the wiring 3031 is electrically connected to the electrodes 5140 via the bumps 5130 .
  • the voltage VL (first voltage) is supplied to the electrode 5140 electrically connected to the TSV wiring 5010, the voltage VL (first voltage) is also applied to the fourth semiconductor region 1014 due to the configuration of the connection wiring. will be supplied.
  • the first via wiring (contact wiring) 1021a of the first substrate is electrically connected to the first semiconductor region 1011, and the wiring of the first wiring layer of the first substrate is connected to the contact wiring 1021a.
  • 1022a are electrically connected.
  • the wiring 1022a of the first wiring layer is electrically connected to the second via wiring 1023a of the first substrate.
  • the via wiring 1023a is electrically connected to the joint portion 1040a of the first substrate.
  • the joint portion 1040a of the first substrate is in contact with and electrically connected to the joint portion 2040a of the second substrate.
  • the joint portion 2040a of the second substrate is electrically connected to the second via wiring 2023a of the second substrate, and the second via wiring 2023a is electrically connected to the wiring 2022a of the first wiring layer of the second substrate. properly connected.
  • the wiring 2022 a is electrically connected to the first via wiring (contact wiring) 2021 of the second substrate, and the contact wiring 2021 is electrically connected to the sixth semiconductor region 2011 .
  • the sixth semiconductor regions 2011 are provided in the semiconductor layer 2010 of the second substrate, and the sixth semiconductor regions 2011 are isolated from each other by element isolation regions 2012 .
  • sixth semiconductor region 2011 is part of quench element 211 . More specifically, if the quenching element 211 is a MOS transistor, the sixth semiconductor region 2011 will be the source or drain region of this MOS transistor.
  • the second substrate 2100 is provided with a waveform shaping section 212, a counter circuit 213, and a selection circuit 214.
  • the sixth semiconductor region 2011 is electrically connected to 2022b through multiple wirings and semiconductor regions.
  • the wiring 2022 b of the first wiring layer is electrically connected to the TSV wiring 5020 .
  • the TSV wiring 5020 is wiring that penetrates the semiconductor layer 2010 of the second substrate and the semiconductor layer 3010 of the third substrate.
  • the TSV wiring 5020 is electrically connected to the electrode 5140 via the wiring 3031 and bump 5130 .
  • the voltage VH (second voltage) is supplied to the electrode 5140 electrically connected to the TSV wiring 5020, the voltage VH (second voltage) is also applied to the first semiconductor region 1011 by the configuration of the connection wiring. will be supplied.
  • the voltage supplied from the TSV wiring 5020 may be configured to be supplied to pixel circuits such as the waveform shaping section 212, the counter circuit 213, and the selection circuit 214. That is, the voltage VH (second voltage) is the drive voltage for the circuit provided on the second substrate 2100 .
  • the driving voltage and the ground voltage are reference voltages, and the circuit is operated by the driving voltage and the ground voltage.
  • a ground voltage may be supplied from the TSV wiring 5020 to the first substrate 1100 and the second substrate 2100 .
  • the TSV wiring 5020 for drive voltage and the TSV wiring 5020 for ground voltage are shown in the same diagram for convenience, they are different TSV wirings and are electrically separated.
  • the drive voltage for the avalanche photodiode provided on the first substrate 1100 and the drive voltage for the pixel circuit provided on the second substrate 2100 are supplied from the same TSV wiring 5020.
  • a TSV wiring other than the TSV wiring 5020 for the avalanche photodiode may be provided to supply the driving voltage to the pixel circuit provided on the second substrate 2100 .
  • the signal line 217 shown in FIG. 5 corresponds to at least part of the contact wiring 2021, the wiring 2022a, and the wiring 2022b in FIG. 10, and these wirings are electrically connected to the TSV wiring 5040.
  • the TSV wiring 5040 is electrically connected to the TSV wiring 5050 through the wiring 3031 . That is, the TSV wirings 5040 and 5050 are wirings for inputting signals output from the second substrate 2100 to the third substrate 3100 .
  • the seventh semiconductor region 3011 configures transistors and the like that configure the memory 301, the first signal processing section 304, the second signal processing section 305, and the like.
  • a wiring 3021 of a first via wiring (contact) of the third substrate is connected to the seventh semiconductor region 3011 .
  • the wiring 3021 of the first via wiring (contact) of the third substrate is also connected to the gate of the transistor provided on the third substrate.
  • the wiring 3021 is connected to the wiring 3022 of the first wiring layer of the third substrate. Although only one wiring layer is shown in FIG. 10, two or more wiring layers may be provided.
  • the wiring 3022 of the first wiring layer is electrically connected to the TSV wiring 5030 .
  • the TSV wiring 5030 is wiring that penetrates the semiconductor layer 3010 of the third substrate.
  • the TSV wiring 5030 is electrically connected to the electrode 5140 via the wiring 3031 and the bump 5130 .
  • a drive voltage is supplied to the circuit provided on the third substrate to the electrode 5140 connected to the TSV wiring 5030 .
  • the TSV wiring 5030 may be a wiring that supplies a ground voltage to a circuit provided on the third substrate.
  • the TSV wiring 5030 for drive voltage and the TSV wiring 5030 for ground voltage are shown in the same diagram for convenience, they are different TSV wirings and are electrically separated.
  • the TSV wiring 5020 is, for example, a wiring that supplies driving voltages for pixel circuits provided on the second substrate 2100 . Therefore, the potential of the TSV wiring 5020 may change due to a large current and voltage drop due to avalanche multiplication. Therefore, if a common TSV wiring is provided in order to supply the driving voltages of the second substrate 2100 and the third substrate 3100, the voltage supplied to the circuit of the third substrate 3100 may fluctuate. can influence. Therefore, in the present embodiment, the TSV wiring 5020 that supplies the driving voltage for the second substrate 2100 and the TSV wiring 5030 that supplies the driving voltage for the third substrate 3100 are separate wirings. It is configured to suppress the influence of
  • the TSV wirings 5010, 5020, and 5030 are wirings to which a voltage having a predetermined voltage value is supplied from the outside.
  • a circuit may be provided.
  • the power supply circuit can be provided on any one of the first substrate 1100, the second substrate 2100, and the third substrate 3100, or a plurality of these substrates.
  • the number of wirings that connect the wirings of the first wiring structure 1120 and the wirings of the second wiring structure 2120 via the bonding surfaces of the first substrate 1100 and the second substrate 2100 is defined as the first number of connections.
  • the number of wirings that connect the wirings of the second wiring structure 2120 and the wirings of the third wiring structure 3120 via the bonding surfaces of the second substrate 2100 and the third substrate 3100 is defined as the second number of connections.
  • the number of first connections is greater than the number of second connections.
  • the number of first connections is larger than the number of second connections.
  • FIG. 7 schematically shows the electrical connection relationship between the first substrate 1100 and the second substrate 2100 in plan view. Pixels 101 having photoelectric conversion units 102 including APDs are arranged two-dimensionally.
  • connection region 121 shown in FIG. 7 corresponds to the junction 1040a that electrically connects the first semiconductor region 1011 of each pixel 101 and the second substrate shown in FIG. That is, in the pixel region 12, each pixel is electrically connected between the first substrate and the second substrate.
  • a wiring 161 shown in FIG. 7 is a wiring corresponding to the wiring 1022b in FIG.
  • the connection region 151 is a wiring corresponding to the joint 1040b electrically connected to the wiring 1022b in FIG.
  • Reference numeral 131 shown in FIG. 7 indicates a unit (block) in which a plurality of pixels 101 share a predetermined circuit provided on the second substrate.
  • the predetermined circuit is a TDC circuit provided on the first substrate. That is, as shown in FIG. 8 described below, in the example of FIG. 7, a total of 16 pixels of 4 ⁇ 4 pixels share one TDC circuit. With such a configuration, it is possible to reduce the area occupied by the TDC circuit in the second substrate. It is also possible to reduce signal timing variation within a block.
  • the TDC circuit to be arranged on the second substrate is arranged in the center of the block denoted by reference numeral 131, and wiring from each pixel circuit is designed to be the same. As a result, variations in signal timing due to differences in wiring layout can be reduced.
  • the first method is a method that uses 4 pixels ⁇ 4 pixels for imaging as one pixel for distance measurement. Since the TDC circuit has a large circuit scale, it is difficult to arrange a TDC circuit for each pixel when, for example, many small pixels are arranged. Therefore, a method in which one TDC circuit is shared by a plurality of pixels can be adopted. In particular, in applications for ranging, it is not necessary to use all the pixels as in a photoelectric conversion device for imaging, and there are cases where there is no problem with a system in which signals of a plurality of pixels are aggregated and output. In this case, a method in which a plurality of pixels share one TDC circuit is effective.
  • the second method is a method in which address information of each pixel is input to the TDC circuit together with an output signal from the photoelectric conversion unit from each pixel of 4 ⁇ 4 pixels and processed. According to such a method, unless light is incident on a plurality of pixels at the same time, it is possible to specify the output from which pixel the acquired light arrival time corresponds to.
  • FIG. 8 schematically shows the electrical connection relationship between the second substrate 2100 and the third substrate 3100 in plan view. 8, the vertical scanning circuit section 202, the horizontal scanning circuit section 203, and the control pulse generating section 206 described in FIG. 3 are omitted.
  • a connection region 221 shown in FIG. 8 corresponds to the joint portion 2040a joined to the joint portion 1040a shown in FIG.
  • Circuit 241 is, for example, a TDC circuit, and one circuit is provided for each block 231 .
  • one circuit 241 is provided for one block 231 in order to process signals output from 16 pixels by one circuit 241 .
  • a plurality of circuits 241 provided corresponding to each block column are connected by wiring 261 .
  • Each circuit 241 is provided corresponding to each block 231 .
  • the first circuit 241 corresponding to the first block 231 is arranged so as to overlap the first block 231 in plan view.
  • the physical distance between the plurality of photoelectric conversion units belonging to the first block 231 and the first circuit 241 that processes the output signals from the plurality of photoelectric conversion units becomes close.
  • the propagation delay of the signal can be suppressed. Therefore, it is possible to suppress variation in the timing of signal processing among a plurality of pixels belonging to each block.
  • a DFE 242 is provided corresponding to each block column, and each DFE 242 is connected to the wiring 261 .
  • the output from the DFE 242 is configured to be input to the third substrate 3100 via the TSV wiring 252 (TSV wiring 5040 in FIG. 10).
  • TSV wiring 252 TSV wiring 5040 in FIG. 10
  • the DFE 242 is the last signal processing circuit and a circuit that outputs signals to the third substrate 3100 . Therefore, arranging the DFE 242 on the side where the TSV wiring 252 (5040) connecting the second substrate 2100 and the third substrate 3100 is provided has the advantage of increasing the efficiency of wiring routing.
  • the DFE 242 is also provided in the predetermined direction with respect to the pixel region. It is Specifically, in FIG. 8, the predetermined direction with respect to the pixel area is the downward direction.
  • the DFE 242 is provided on the second substrate 2100 and the DFE 242 is not provided on the third substrate 3100 . Therefore, the DFE 242 is provided between the circuit 241 (TDC circuit) which is part of the pixel circuit and the TSV wiring 252 (5040).
  • TDC circuit circuit 241
  • the pixel circuit is connected to the TSV wiring 252 (5040) and the TDC circuit is provided in the subsequent stage, the capacitance added to the pixel circuit increases. As a result, signal propagation delays occur, and variations in signal processing may occur. Therefore, by providing the DFE 242 between the TDC circuit and the TSV wiring 252 (5040), the above inconvenience is reduced.
  • the TSV wiring 251 (TSV wiring 5010 in FIG. 10) of the second substrate 2100 is wiring that supplies the voltage VL to the APD 103.
  • the TSV wiring 253 (TSV wiring 5020 in FIG. 10) of the second substrate 2100 is wiring for supplying the driving voltage to the second substrate 2100 .
  • FIG. 9 schematically shows the electrical connection relationship between the third substrate 3100, the outside of the semiconductor device, the second substrate 2100, and the first substrate 1100 in plan view.
  • FIG. 9 shows the memory 301, the control circuit units 302 and 303, the first signal processing unit 304, and the second signal processing unit 305 shown in FIG.
  • TSV wiring 354 TSV wiring 5030 in FIG. 10
  • TSV wiring 355 TSV wiring 5020 in FIG. 10
  • TSV wiring 354 TSV wiring 5030 in FIG. 10
  • the bonding portions 1040a and 1040b of the first substrate are connected to the first semiconductor region 1011 of the first substrate 1100 or the semiconductor regions constituting the circuit of the second substrate 2100, which are not electrically connected. There is a junction of These joints are joints provided to strengthen the joint between the first substrate 1100 and the second substrate 2100 . These junctions may be electrically floating or electrically connected to either a drive voltage or a ground voltage.
  • FIG. 11 to 13B are explanatory diagrams of the method for manufacturing the photoelectric conversion device 1000 according to Embodiment 1.
  • FIG. 11 to 13B are explanatory diagrams of the method for manufacturing the photoelectric conversion device 1000 according to Embodiment 1.
  • FIG. 11A and 11B are diagrams showing a process of bonding the first substrate 1100 and the second substrate 2100.
  • the wiring structure 1120 (first wiring structure) of the first substrate 1100 and the wiring structure 2120 (second wiring structure) of the second substrate 2100 are the first semiconductor layer 1010 and the second semiconductor layer 2010. are laminated so as to be provided between In this step, the bonding portion 1040 of the first substrate and the bonding portion 2040 of the second substrate are bonded to form a metal bonding portion.
  • FIG. 12 is a diagram showing a process of laminating the third substrate 3100 on the first substrate 1100 and the second substrate 2100 after laminating them.
  • the wiring structure 3020 (third wiring structure) of the third substrate is laminated so as to be provided between the second semiconductor layer 2010 and the third semiconductor layer 3010 .
  • the second semiconductor layer 2010 of the second substrate 2100 is thinned by a thinning process. Further, after the thinning process of the second semiconductor layer 2010, an insulating layer 2030 is provided.
  • the insulating layer 2030 is, for example, a layer made of silicon oxide. After that, as shown in FIG. 12, the third substrate 3100 is laminated on the laminate of the first substrate 1100 and the second substrate 2100 .
  • FIG. 13A is a diagram showing a wiring process for providing TSVs and a thinning process for the first substrate.
  • TSV wirings 5010 to 5050 are formed, and a support substrate 3050 for the third substrate is provided on the surface (rear surface) of the third substrate 3100 on the third semiconductor layer 3010 side.
  • a thinning step is performed to thin the first semiconductor layer 1010 of the first substrate 1100 from the light incident surface side (rear surface side).
  • the support substrate 3050 is a necessary step in the thinning step of the first semiconductor layer 1010 .
  • FIG. 13B is a diagram showing the latter half of the wafer process and mounting process. Specifically, first, a pinning layer 1031 and microlenses 1032 are provided. Next, the support substrate 3050 for the third substrate is separated. Thus, the wafer process is completed. Finally, as a mounting process, a package substrate 5120 is provided via the bumps 5130 and the insulating adhesive regions 5110 .
  • the thickness of the first substrate 1100 on which the pixels are provided is about 1/5 to 1/10 the thickness of the second substrate 2100 and the third substrate 3100 . This is because the thickness of the first semiconductor layer 1110 is reduced to about 2 to 10 ⁇ m in the aforementioned thinning step according to the wavelength of light to be photoelectrically converted.
  • the thicknesses of the second substrate 2100 and the third substrate 3100 are determined depending on the elements arranged on each substrate. For example, when a DRAM is arranged as a memory on the third substrate 3100, the third substrate 3100 has a thickness of about 50 to 100 ⁇ m. Configured. The same is true when a processing circuit other than a memory is arranged on the third substrate.
  • the number of wiring layers provided in the wiring structure 1120 of the first substrate 1100 is smaller than the number of wiring layers provided in the wiring structure of the substrate on which the memory and the processing circuit are arranged.
  • the number of wiring layers provided in the wiring structure 1120 of the first substrate 1100 and the number of wiring layers provided in the wiring structure of the substrate on which memory and processing circuits are arranged are both about 5 to 10 layers.
  • wirings having different main components may be provided for each wiring layer.
  • a main component is aluminum, copper, tungsten, etc., for example.
  • one of the six wiring layers may have aluminum as its main component, and the remaining five layers may have copper as its main component.
  • the number of wiring layers having different main components may be increased for each wiring structure.
  • copper is the main component of each wiring layer
  • in the wiring structure 2120 of the second substrate 2100 aluminum is the main component of each wiring layer. may be
  • Embodiment 2 The form of Embodiment 2 is shown in FIG. Embodiment 2 differs from Embodiment 1 in that it contacts the wiring structure 1120 of the first substrate.
  • the TSV wiring 5010 is in contact with the wiring structure 2120 of the second substrate as shown in FIG. 2120 and contacts the wiring structure 1120 of the first substrate. Also, the voltage is supplied to the TSV wiring 5010 without going through the metal bonding provided in the wiring structure 1120 of the first substrate and the wiring structure 2120 of the second substrate.
  • the voltage VL supplied to the TSV wiring 5010 is the voltage supplied to the fourth semiconductor region 1014 and is a high voltage.
  • the signal processing unit 201 provided on the second substrate 2100 may be provided with a circuit to which a fine process is applied. Therefore, voltage can be directly supplied to the fourth semiconductor region 1014 by the TSV wiring 5010 without passing through the wiring provided in the wiring layer of the wiring structure 2120 of the second substrate. As a result, the possibility of damaging the circuit to which the fine process is applied provided on the second substrate 2100 can be reduced.
  • Embodiment 3 The form of Embodiment 3 is shown in FIG. Embodiment 3 differs from Embodiments 1 and 2 in that an electrode electrically connected to the outside is provided on the light incident side.
  • the electrode 5140 provided on the surface (second surface) opposite to the light incident surface (first surface) is the electrode electrically connected to the outside.
  • the electrodes 4210, 4220, and 4230 provided on the light incident side are electrodes electrically connected to the outside. These electrodes 4210 to 4230 are also called pad electrodes.
  • the voltage VL supplied to the fourth semiconductor region 1014 is a high voltage
  • the second substrate 2100 is provided with circuits to which fine processing is applied. Therefore, as shown in FIG. 15, if the voltage supplied from the electrode 4210 is configured to be supplied only to the first substrate 1100, a high voltage can be applied to the circuit to which the fine process is applied provided on the second substrate 2100. can be avoided.
  • an electrode 4220 for externally supplying a drive voltage for the second substrate 2100 is provided in the wiring layer of the wiring structure 2120 .
  • the second substrate 2100 may be provided with a circuit that requires high-speed operation.
  • the case where the drive voltage is supplied to the wiring layer of the wiring structure 2120 of the second substrate through the wiring structure 1120 of the first substrate is referred to as a first case.
  • a case where a voltage is directly supplied to the wiring structure 2120 of the second substrate is referred to as a second case.
  • the wiring length from the electrodes connected to the outside to the circuit provided on the second substrate 2100 is shorter in the second case.
  • electrodes 4220 for externally supplying the drive voltage for the second substrate 2100 are provided in the wiring layer of the wiring structure 2120 .
  • an electrode 4230 for externally supplying a drive voltage for the third substrate 3100 is in contact with the wiring layer of the wiring structure 2120 of the second substrate.
  • the electrode 4230 is electrically connected to the TSV wiring 5070 through the wiring layer of the wiring structure 2120 of the second substrate.
  • a TSV wiring 5070 in FIG. 15 is a wiring corresponding to the TSV wiring 5030 in FIG.
  • the TSV wiring 5070 in FIG. 15 penetrates the semiconductor layer 2010 of the second substrate, the wiring structure 3120 of the third substrate, and the semiconductor layer 3010 of the third substrate, and is electrically connected to the TSV wiring 5030. is configured as
  • Embodiment 4 The form of Embodiment 4 is shown in FIG. Embodiment 4 is different from Embodiment 3 in that an electrode electrically connected to the outside and supplying a driving voltage to the circuit of the third substrate 3100 is provided on the wiring structure 3120 of the third substrate. .
  • a circuit that requires high-speed operation may be provided on the third substrate 3100 as well. Therefore, as shown in FIG. 16, an electrode 4240 for externally supplying a driving voltage for the third substrate 3100 can be provided in the wiring layer of the wiring structure 3120 of the third substrate. According to this configuration, the wiring length from the electrode 4240 to which the driving voltage is supplied from the outside to the circuit provided on the third substrate 3100 can be shortened, and the operation of the circuit requiring high-speed operation can be slowed down. It is possible to reduce the
  • the electrodes 4210, 4220, and 4240 shown in FIG. 16 it is necessary to etch the silicon substrate or the interlayer insulating film or the like that is part of the wiring structure to provide pad openings.
  • the wiring layers with which the three electrodes are in contact have different heights, an opening process is required for the number of pad openings.
  • Embodiment 5 The form of Embodiment 5 is shown in FIG. Embodiment 5 differs from Embodiments 1 and 2 in that an electrode electrically connected to the outside and supplying a voltage to the fourth semiconductor region 1014 of the first substrate 1100 is led out from the light irradiation surface side. different.
  • the wiring for high voltage supplied to the first substrate 1100 is preferably configured so as to supply the voltage without passing through the second substrate 2100 or the third substrate 3100 from the viewpoint of suppressing reliability deterioration. . Therefore, in FIG. 17, an electrode 4210 is provided on the wiring layer of the wiring structure 1120 of the first substrate so that the second substrate 2100 and the third substrate 3100 are not supplied with a high voltage.
  • Embodiment 6 The form of Embodiment 6 is shown in FIG. Embodiment 6 differs from Embodiment 1 in that the wiring structure of the second substrate and the wiring structure of the third substrate are metal bonding structures.
  • one TSV wiring 5010 connects the electrode 5140 and the wiring layer of the wiring structure 2120 of the second substrate.
  • the electrode 5140 and the wiring structure 2120 of the second substrate are connected using two TSV wirings 5310 and 5320, which have a two-stage structure.
  • a metal bonding structure is provided, which is formed by connecting the bonding portion 2050b of the second substrate and the bonding portion 3040b of the third substrate.
  • the TSV wiring 5040 in FIG. 10 is a TSV wiring with a two-stage structure of TSV wirings 5330 and 5340 in FIG. A metal bonding structure is provided between the TSV wirings 5330 and 5340 .
  • the TSV wiring 5020 in FIG. 10 also has a two-stage structure of TSV wiring 5350 and 5360 in FIG. A metal bonding structure is provided between the TSV wirings 5350 and 5360 .
  • the TSV wiring that penetrates both the semiconductor layer 2010 of the second substrate and the semiconductor layer 3010 of the third substrate is unnecessary.
  • the pixel region is provided with a metal bonding structure formed by connecting the bonding portion 2050a of the second substrate and the bonding portion 3040a of the third substrate.
  • This metal bonding structure need not form part of the circuit provided on each substrate. Thereby, the bonding strength between the second substrate 2100 and the third substrate 3100 can be improved.
  • Embodiment 7 The form of Embodiment 7 is shown in FIG. Embodiment 7 differs from Embodiment 3 shown in FIG. 15 in that the second substrate and the third substrate are electrically connected by a metal bonding structure. Further, Embodiment 7 is different from Embodiment 6 shown in FIG. 18 in that an electrode connected to the outside is provided on the light incident surface (first surface) side.
  • the TSV wirings 5050 and 5040 shown in FIG. functions are integrated into In FIG. 15, the TSV wiring 5040 penetrates both the semiconductor layer 2010 of the second substrate and the semiconductor layer 3010 of the third substrate, but according to the seventh embodiment, such TSV wiring is unnecessary. becomes.
  • the functions of the TSV wirings 5030 and 5070 shown in FIG. 15 are integrated into one TSV wiring 5380 in FIG. In FIG. 15, the TSV wiring 5070 penetrates both the semiconductor layer 2010 of the second substrate and the semiconductor layer 3010 of the third substrate, but according to the seventh embodiment, such TSV wiring is unnecessary. becomes.
  • the wiring for supplying the driving voltage to the circuit provided on the second substrate is also connected to the wiring layer of the wiring structure 1120 of the first substrate through the bonding portion 1040b of the first substrate and the bonding portion 2040b of the second substrate. is electrically connected to An electrode 4250 is provided on this wiring layer.
  • the electrode 4250 serves as a pad portion for electrical connection with the outside.
  • the wiring for supplying the driving voltage to the circuit provided on the third substrate is also the wiring of the wiring structure 1120 of the first substrate via the joint portion 2050b of the second substrate and the joint portion 3040b of the third substrate. electrically connected to the layer.
  • An electrode 4260 is provided on this wiring layer. The electrode 4260 serves as a pad portion for electrical connection with the outside.
  • the electrodes 4210, 4250, and 4260 are provided so as to be in contact with the same wiring layer of the wiring structure 1120 of the first substrate. Therefore, the depths of the pad openings are substantially the same when forming the pad openings for forming these electrodes. Therefore, compared with the example shown in FIG. 15, the wiring process becomes easier.
  • Embodiment 8 The form of Embodiment 8 is shown in FIG. Embodiment 6 differs from Embodiment 8 in that metal bonding is used to bond the second and third substrates, whereas microbumps are used to bond the second and third substrates in Embodiment 8.
  • FIG. 8 The form of Embodiment 8 is shown in FIG. Embodiment 6 differs from Embodiment 8 in that metal bonding is used to bond the second and third substrates, whereas microbumps are used to bond the second and third substrates in Embodiment 8.
  • FIG. 8 The form of Embodiment 8 is shown in FIG. Embodiment 6 differs from Embodiment 8 in that metal bonding is used to bond the second and third substrates, whereas microbumps are used to bond the second and third substrates in Embodiment 8.
  • the wiring structure 3120 of the third substrate is provided with wiring 3021 of the first via wiring and wiring 3022 of the first wiring layer connected thereto. Further, a wiring 3023 of a second via wiring connected to the wiring 3022 and a wiring 3024 of a second wiring layer connecting to the wiring 3023 are provided.
  • the wiring structure 2120 of the second substrate is provided with a wiring 2060 connected to the TSV wiring 5340, and the wiring 2060 of the second substrate and the wiring 3024 of the third substrate are electrically connected through the microbumps 2070. It is connected to the.
  • the microbumps 2070 are formed by Cu bump bonding by solid phase diffusion or microbump bonding by solder melting. An organic filler is inserted into the gaps between the microbumps 2070 .
  • Embodiment 9 The form of Embodiment 9 is shown in FIG.
  • the TSV wiring is used to input the signal output from the second substrate to the third substrate, whereas in Embodiment 9, metal bonding is used for this purpose.
  • outputs from circuits provided on the second substrate 2100 are input to circuits provided on the third substrate 3100 via wiring 2080 .
  • a deep trench structure 2081 penetrating through the semiconductor layer 2010 of the second substrate, ie, a DTI (Deep Trench Isolation) structure is formed in the second substrate 2100 .
  • the trench structure 2018 is filled with an insulator 2082 to avoid electrical connection between the wiring 2080 and the semiconductor layer 2010 of the second substrate.
  • FIG. 21 assumes that a circuit corresponding to each pixel is provided on the second substrate 2100, and shows that the output from the circuit corresponding to each pixel is input to the circuit of the third substrate.
  • the wiring 2080 is provided corresponding to each pixel, and the wiring 2080 is input to the circuit of the third substrate 3100 via the joint portion 2050a of the second substrate, the joint portion 3040a of the third substrate, and the like. be done.
  • a circuit of the third substrate 3100 is also provided corresponding to each pixel. That is, in the example of FIG. 18, the photoelectric conversion units and the circuits of the second substrate 2100 to which signals are input from the photoelectric conversion units are electrically connected through metal bonding for each pixel. Also, the circuits of the second substrate 2100 that output signals to the circuits of the third substrate 3100 and the circuits of the third substrate 3100 are electrically connected to each pixel through metal bonding.
  • the distance between adjacent wirings 2080 is indicated by L1.
  • the shortest distance is set to L1.
  • the relationship 0.8P ⁇ L1 ⁇ 1.2P is satisfied, where P is the pitch between pixels.
  • the relationship of 0.9P ⁇ L1 ⁇ 1.1P is satisfied.
  • the pitch P may be the distance between the contact wirings 1021 connected to the first semiconductor region 1011 . That is, the distance between the first contact wiring connected to the first semiconductor region 1011 of the first pixel and the second contact wiring connected to the first semiconductor region 1011 of the second pixel adjacent to the first pixel is Pitch P may be used.
  • TSV wirings 5040 and 5050 for electrically connecting the second substrate 2100 and the third substrate 3100 are provided.
  • TSV wirings 5040 and 5050 are wirings for inputting signals output from the second substrate 2100 to the third substrate 3100 .
  • the wiring 2080 is used as wiring for inputting the signal output from the second substrate 2100 to the third substrate 3100, the TSV wirings 5040 and 5050 do not need to be provided.
  • the circuits provided on the second substrate 2100 and the circuits provided on the third substrate 3100 may share power supply wiring or ground wiring for applying drive voltage.
  • the TSV wirings 5040 and 5050 shown in FIG. 21 may be used to supply a common potential to the circuits provided on the second substrate 2100 and the third substrate 3100 .
  • a common potential is supplied to circuits provided on the second substrate 2100 and the third substrate 3100 by using metal bonding wiring having the bonding portion 2050b of the second substrate and the bonding portion 3040b of the third substrate. can be configured to
  • Each circuit of the second substrate 2100 provided corresponding to each pixel may be laid out so as to be translationally symmetrical when viewed in a plan view.
  • each circuit of the second substrate 2100 provided corresponding to each pixel may be laid out in line symmetry (mirror symmetry) when viewed in a plan view.
  • the layout is mirror symmetrical
  • the first circuit of the second substrate 2100 corresponding to the first pixel and the second circuit of the second substrate 2100 corresponding to the second pixel have some functions and functions. Members can be easily shared, and space can be reduced.
  • the wells of the MOS transistors forming the first circuit and the second circuit can be shared.
  • the circuit area provided on the second substrate 2100 can be reduced.
  • the photoelectric conversion units are provided at a narrow pitch, it is possible to avoid a case where the photoelectric conversion units cannot be provided at a narrow pitch due to the area occupied by the circuit on the second substrate 2100.
  • each of the circuits of the third substrate 3100 provided corresponding to each pixel has line symmetry (mirror symmetry) even if it is laid out so as to have translational symmetry when viewed in a plan view. may be laid out as In the latter case, it is possible to enjoy the merits described above.
  • FIG. 21 shows an example in which the circuit of the second substrate 2100 that outputs to the circuit of the third substrate 3100 and the circuit of the third substrate 3100 are provided for each pixel.
  • the circuit that performs subsequent signal processing is provided for each of a plurality of pixels. There is That is, one signal processing circuit of the second substrate 2100 is provided for each pixel block.
  • the circuits of the second substrate 2100 that output signals to the circuits of the third substrate 3100 and the circuits of the third substrate 3100 are electrically connected not for each pixel but for each pixel block through metal bonding.
  • the wiring 2080 is provided for each pixel block, not for each pixel.
  • the number of metal bonds connecting the first substrate 1100 and the second substrate 2100 is greater than the number of metal bonds connecting the second substrate 2100 and the third substrate 3100 .
  • FIG. 22 shows the form of the tenth embodiment.
  • the pixel structure of the photoelectric conversion unit of the tenth embodiment differs from that of the first embodiment in that the avalanche multiplication region is reduced.
  • the width of the first conductivity type first semiconductor region 1011 (the length in the horizontal direction of the drawing) is narrower than the width of the first semiconductor region 1011 in FIG. Also, although not shown, in plan view, the area of the first semiconductor region 1011 in FIG. 19 is smaller than the area of the first semiconductor region 1011 in FIG.
  • a sixth semiconductor region 1016 is provided at a position overlapping with the first semiconductor region 1011 of the first conductivity type in plan view.
  • the sixth semiconductor region 1016 may be of the first conductivity type or the second conductivity type.
  • the sixth semiconductor region 1016 is configured to have a lower potential for signal charges than the second semiconductor region 1012 .
  • the impurity concentration of the sixth semiconductor region 1016 is lower than the impurity concentration of the first semiconductor region 1011 .
  • seventh semiconductor regions 1017 are provided on both sides of the first semiconductor region 1011 of the first conductivity type.
  • the conductivity type of the seventh semiconductor region 1017 may be the first conductivity type or the second conductivity type.
  • the impurity concentration of the first conductivity type seventh semiconductor region 1017 is lower than the impurity concentration of the first semiconductor region 1011 .
  • the impurity concentration of the seventh semiconductor region 1017 is lower than the impurity concentration of the fourth semiconductor region 1014 of the second conductivity type.
  • the present embodiment has the configuration as described above, the charges generated in the third semiconductor region 1013 can be efficiently collected and avalanche multiplied, so that the sensitivity of the photoelectric conversion unit can be easily improved. .
  • the width or area of the first semiconductor region 1011 is smaller than that of the first embodiment, the avalanche multiplication region can be made small, so that the value of DCR (Dark Count Rate) can be reduced.
  • Embodiment 11 23 to 25 show the form of Embodiment 11.
  • FIG. 1 to 6 and 10 described in the first embodiment are also applied to the eleventh embodiment.
  • Embodiment 11 differs from Embodiment 1 in which a processing circuit is provided for each pixel block in that a processing circuit is provided for each pixel column.
  • FIG. 23 schematically shows the electrical connection relationship between the first substrate 1100 and the second substrate 2100 in plan view. The difference from FIG. 7 is that the concept of pixel blocks is not shown.
  • FIG. 24 schematically shows the electrical connection relationship between the second substrate 2100 and the third substrate 3100 in plan view.
  • the circuit 241 is provided for each block, but in FIG. 21, the circuit 241 is provided for each pixel column. Further, in FIG. 8, the circuit 21 is provided in a region that overlaps with the pixel region, but in FIG. 24, the circuit 21 is provided in a region that does not overlap with the pixel region. That is, in FIG. 24, the circuit 241 is provided in the peripheral area outside the pixel area.
  • the circuit 241 is, for example, a TDC circuit.
  • heat propagation from the plurality of photoelectric conversion units does not interfere with heat propagation from the TDC circuit, so heat propagation between the first substrate 1100 and the second substrate 2100 can be suppressed. This allows the photoelectric conversion device 100 to operate stably.
  • the second substrate 2100 is provided with a pixel circuit area in which pixel circuits for processing signals from the photoelectric conversion units are two-dimensionally arranged. If the TDC circuit is provided in the pixel region, the area occupied by the pixel circuit is limited. When it is attempted to realize a high-performance pixel circuit, the area occupied by the pixel circuit also increases. Therefore, in order to achieve high functionality of the pixel circuit, the TDC circuit is provided in the peripheral area outside the pixel area as in the eleventh embodiment. For example, assuming a ToF system as an application, it is conceivable to provide an external light removal circuit for each pixel. If the TDC circuit is provided in the peripheral region, it becomes possible to dispose the external light removing circuit as the pixel circuit in the pixel region of the second substrate 2100 . Thereby, the pixel circuit can be highly functionalized.
  • the circuit 241 eg, TDC circuit
  • the circuit 241 and the pixel area where the photoelectric conversion units are arranged are far apart, the circuit 241 of the second substrate 2100 and the pixel area of the first substrate 1100 are also far apart.
  • the TDC circuit of the second substrate 2100 generates heat, the effect of heat on the photoelectric conversion units of the pixel regions of the first substrate 1100 can be reduced.
  • FIG. 25 schematically shows the electrical connection relationship between the third substrate 3100, the outside of the semiconductor device, the second substrate 2100, and the first substrate 1100 in plan view.
  • the memory 301 is not provided on the third substrate 3100 .
  • a third signal processing section 309 is provided in FIG. 25. That is, the signal output from the second substrate 2100 is processed by the third signal processing section 309 without going through the memory.
  • the area for arranging the signal processing section can be increased compared to the first embodiment, and signal processing with a larger load can be performed. For example, it is possible to install a trained model that performs computation with a heavy load.
  • Embodiment 12 Figures 26 to 29 show the twelfth form.
  • Embodiment 12 is different from Embodiment 1 in that the processing result of the signal processing section provided on the third substrate is fed back to the control circuit section on the second substrate to achieve a highly accurate or highly functional photoelectric conversion device. different from
  • FIG. 26 schematically shows the electrical connection relationship between the first substrate 1100 and the second substrate 2100 in plan view.
  • Reference numeral 131 denotes a unit (block) in which a plurality of pixels 101 share a predetermined circuit provided on the second substrate.
  • FIG. 27 schematically shows the electrical connection relationship between the second substrate 2100 and the third substrate 3100 in plan view.
  • FIG. 27 shows the vertical scanning circuit section 202 and the horizontal scanning circuit section 203 (collectively referred to as "scanning circuit section"), which are omitted in FIG. 8 and described in the first embodiment.
  • a control unit 243 is also provided for controlling the scanning circuit units 202 and 203 or other circuits.
  • FIG. 27 shows an example in which the control section 243 controls the scanning circuit sections 202 and 203 .
  • FIG. 27 shows an example in which a control line is provided for each block from the scanning circuit units 202 and 203 to the pixel circuit unit, but a control line may be provided for each pixel.
  • the TSV wiring 254 (TSV wiring 5080 in FIG. 29) is wiring for transmitting the processing result of the signal processing unit provided on the third substrate 3100 to the control unit 243 provided on the second substrate 2100. Specifically, as shown in FIG. 29, the processing result of the signal processing unit of the third substrate 3100 is transmitted to the control unit 243 via the TSV wiring 5090, the wiring 3031, and the TSV wiring 5080 (the TSV wiring 254 in FIG. 27). is entered in
  • control unit 243 Various controls are possible in the control unit 243 .
  • the control unit 243 can control the exposure time of the second pixel block to be longer than the exposure time of the first pixel block. This makes it possible to expand the dynamic range.
  • the control unit 243 can control the exposure time of each pixel block based on the count value of each pixel block acquired in the previous frame, which is the processing result of the signal processing unit of the third substrate 3100.
  • the exposure time may be controlled by whether or not a reverse bias is applied to the photoelectric conversion unit, or by whether or not a pulse corresponding to photons is counted by a counter. good.
  • this photoelectric conversion device when applying this photoelectric conversion device to a system that ensures safety and security (for example, a surveillance camera), there is a need to shoot at low resolution before an event occurs and at high resolution after the event occurs. There is This is because a high voltage is applied to the avalanche photodiode, which consumes a large amount of power. Therefore, if the image before the event occurs is captured at a low resolution, the power consumption can be reduced. Therefore, the signal processing unit of the third substrate 3100 determines whether or not an event has occurred, and the control unit 243 controls from the low resolution mode to the high resolution mode according to the determination result. It is possible.
  • a low resolution mode can be achieved by applying a reverse bias to only one pixel of a total of four pixels of 2 ⁇ 2 pixels to acquire photons. . Then, when the occurrence of an event is detected, the control unit 243 may perform control so that photons are acquired by all pixels of 2 ⁇ 2 pixels. Whether or not an event has occurred may be determined using the second signal processing unit 305 having a trained model created by machine learning. Events include the detection of a suspicious person/object, the detection of a predetermined number or more of people/objects, and the prediction of collision of a moving object. Further, in the above description, the power consumption is reduced by switching the photoelectric conversion unit, but the power consumption may be reduced by switching whether or not the counter is used for counting.
  • the control unit 243 controls to acquire information about the region of interest.
  • the signal processing unit of the third substrate 3100 determines the region of interest with the detected object, performs photoelectric conversion on the region of interest, and performs control so as not to perform photoelectric conversion on regions other than the region of interest. It is controlled by the unit 243 . As a result, power consumption can be reduced.
  • control unit 243 may perform control such that photons are not counted with a counter for the region of interest and photons are counted with a counter for the region of interest. Even in this case, power consumption can be reduced by stopping unnecessary counters.
  • FIG. 28 schematically shows the electrical connection relationship between the third substrate 3100, the outside of the semiconductor device, the second substrate 2100, and the first substrate 1100 in plan view.
  • TSV wiring 356 TSV wiring 5090 in FIG. 26
  • TSV wiring 357 TSV wiring 5080 in FIG. 26
  • (Embodiment 13) 30 to 42 show the form of the thirteenth embodiment.
  • the thirteenth embodiment differs from the first embodiment in that a circuit (for example, a TDC circuit) is provided on the third substrate.
  • a circuit for example, a TDC circuit
  • the electrical connection relationship of the first substrate 1100 is the same as in FIG. 26, so this is used.
  • FIG. 30 schematically shows the electrical connection relationship and the like between the second substrate 2100 and the third substrate 3100 in plan view. Control circuit units 302 and 303 are omitted.
  • a TSV wiring 254 is provided at the center of each block 231 .
  • the TSV wiring 254 (TSV wiring 5040 in FIG. 32) is wiring for inputting the output of the second substrate 2100 to the third substrate 3100 .
  • FIG. 31 schematically shows the electrical connection relationship between the second substrate 2100 and the third substrate 3100 in plan view.
  • the third substrate 3100 is provided with a plurality of signal processing blocks 331 corresponding to the plurality of pixel blocks 231 of the first substrate 1100 and the second substrate 2100, respectively.
  • a circuit 307 corresponding to the circuit 241 of the first embodiment is provided for each signal processing block.
  • Circuit 307 is, for example, a TDC circuit.
  • a TDC circuit 307 may also be provided.
  • the counter circuit 213 can be provided on both the second substrate 2100 and the third substrate 3100 . This is because the APD has a counter for each pixel, so the circuit size of the counter becomes large, and the area occupied on the second substrate 2100 also becomes large. Also, in the thirteenth embodiment, a DFE 308 corresponding to the DFE 242 of the first embodiment is provided for each signal processing block 331 .
  • a memory 301 is provided for each signal processing block.
  • the output from the memory 301 provided in each signal processing block is input to the first signal processing section 304, and the output from the first signal processing section 304 is input to the second signal processing section 305. is configured to
  • each signal processing block is provided corresponding to each pixel block. signal processing becomes possible.
  • first signal processing unit 304 and the second signal processing unit 305 may be provided in each signal processing block.
  • first signal processing unit 304 may be provided in each signal processing block, and the second signal processing unit 305 may be provided outside the area where the signal processing blocks are arranged, as shown in FIG. .
  • Embodiment 14 33 to 39 show the form of Embodiment 14.
  • FIG. Members that are common to the first embodiment are assigned common numbers, and descriptions thereof are omitted.
  • the fourteenth embodiment differs from the first embodiment in that a fourth substrate 4100 is laminated in addition to the first substrate 1100, the second substrate 2100, and the third substrate 3100.
  • an electrode electrically connected to the outside and supplying a driving voltage to the circuit of the fourth substrate 4100 is provided on the wiring structure 4120 of the fourth substrate.
  • Electrodes for supplying driving voltages to the circuits of the first to third substrates are provided in the wiring structures of the first to third substrates, respectively.
  • the electrodes 4210 of the first substrate are provided in the wiring structure of the first substrate
  • the electrodes 4220 of the second substrate are provided in the wiring structure of the second substrate
  • the electrodes 4240 of the third substrate are provided in the wiring structure of the third substrate.
  • a wiring structure is provided
  • a fourth substrate electrode 4270 is provided on the fourth substrate wiring structure.
  • the second substrate 2100 and the third substrate 3100, and the third substrate 3100 and the fourth substrate 4100 are electrically connected by TSV wiring.
  • the second substrate is connected via bumps 5040 to the wiring 3031 of the wiring layer of the third substrate, and the wiring 3031 is connected via bumps 5050 to the third substrate.
  • the first substrate is connected via bumps 5060 to wiring 4031 of the wiring layer of the fourth substrate, and wiring 4031 is connected via bumps 5100 to the fourth substrate.
  • the wiring structure of each substrate is provided with electrodes for supplying drive voltages to the circuits of each substrate, as in FIG. and the fourth substrate 4100 are connected by TSV wiring.
  • the third substrate is connected via bumps 5150 to wiring 4031 of the wiring layer of the fourth substrate, and wiring 4031 is connected via bumps 5100 to the fourth substrate.
  • each of the first substrate 1100, the third substrate 3100, and the fourth substrate 4100 is provided with an electrode for supplying a driving voltage to the circuit of each substrate.
  • the configuration shown in FIG. 34 is common in that the second substrate 2100 and the third substrate 3100, and the third substrate 3100 and the fourth substrate 4100 are connected by TSV wiring.
  • An electrode 4250 is provided on the first substrate 1100, and the first substrate 1100 and the second substrate 2100 are electrically connected to each other by a bonding portion 1040 of the first substrate and a bonding portion 2040 of the second substrate. .
  • the first substrate 1100 and the third substrate 3100 are provided with electrodes for supplying driving voltages to the circuits of each substrate.
  • the first substrate 1100 and the second substrate 2100 are electrically connected by the bonding portion 1040 of the first substrate and the bonding portion 2040 of the second substrate, and the third substrate 3100 and the fourth substrate 4100 are electrically connected by the TSV wiring. properly connected.
  • the electrodes 4210 and 4250 are provided so as to be in contact with the same wiring layer of the wiring structure 1120 of the first substrate.
  • the electrodes 4240 and 4280 are provided so as to be in contact with the same wiring layer of the wiring structure 3120 of the third substrate. Therefore, the depth of the pad opening formed when forming the electrode 4210 and the electrode 4250 or when forming the electrode 4240 and the electrode 4270 is substantially the same. Therefore, this configuration facilitates the wiring process.
  • the first substrate 1100 is provided with electrodes for supplying drive voltages to the circuits of the first substrate 1100 .
  • the first substrate 1100 and the second substrate 2100 are electrically connected to each other by bonding between the bonding portion 1040 of the first substrate and the bonding portion 2040 of the second substrate.
  • the second substrate 2100 and the third substrate 3100, and the second substrate 2100 and the fourth substrate 4100 are electrically connected by TSV wiring.
  • each of the electrodes 4210, 4250, 4260, and 4290 is provided so as to be in contact with the same wiring layer of the wiring structure 1120 of the first substrate. Therefore, the depth of the pad opening formed when forming each electrode is substantially the same. Moreover, since it is not necessary to provide deep pad openings penetrating from the first substrate 1100 to the wiring of the fourth substrate 4100, the wiring process can be facilitated.
  • the TSV wiring is connected to each substrate from the first substrate to the fourth substrate.
  • the wiring of the first substrate 1100 and the wiring 5031 of the wiring layer of the fourth substrate are connected via bumps 5250
  • the wiring of the second substrate 2100 and the wiring 5032 are connected via bumps 5240 .
  • the wiring of the third substrate 3100 and the wiring 5033 are connected via bumps 5230
  • the fourth substrate 4100 and wiring 5034 are connected via bumps 5220 . Since all the connection terminals with the outside can be provided on the surface side of the photoelectric conversion device, the area for arranging the terminals secured around the pixel region is reduced, and the area of the photoelectric conversion device can be reduced.
  • FIG. 39 shows a cross-sectional view of a photoelectric conversion device according to the fifteenth embodiment. Members that are common to the first embodiment are assigned common numbers, and descriptions thereof are omitted. In the fifteenth embodiment, the structure of the pad electrode 4290 is mainly changed from the configuration of the first embodiment.
  • the wiring structure 1120 includes a first wiring layer M1, a second wiring layer M2, a third wiring layer M3, a fourth wiring layer M4 and a junction 1040 of the first substrate.
  • the wiring structure 2120 includes a first wiring layer M1, a second wiring layer M2 and a connection portion 2040 of the second substrate.
  • Each wiring layer is a so-called copper wiring.
  • Each wiring layer may have, for example, a mesh-like structure in plan view. That is, wirings arranged in a certain direction in a plan view and wirings intersecting with the wirings constitute a mesh-like wiring layer.
  • the first wiring layer includes a conductor pattern whose main component is copper.
  • the conductor pattern of the first wiring layer has a single damascene structure.
  • a contact is provided for electrical connection between the first wiring layer and the semiconductor layer 1110 .
  • a contact is a conductor pattern whose main component is tungsten.
  • the second and third wiring layers include conductor patterns containing copper as a main component.
  • the conductor patterns of the second and third wiring layers have a dual damascene structure and include portions functioning as wiring and portions functioning as vias.
  • the fourth wiring layer is similar to the second and third wiring layers.
  • the pad electrode 4290 is a conductor pattern whose main component is aluminum.
  • the pad electrode 4290 is arranged in the opening of the semiconductor layer 1110 instead of the wiring structure.
  • the pad electrode 4290 has an exposed surface between the second surface P2 and the first surface P1 here, the exposed surface of the pad electrode may be located on the second surface P2. .
  • a pad opening is formed in the semiconductor layer 1110 so that a portion of the wiring layer M1 of the wiring structure 1120 is exposed.
  • An insulator 40-101 is formed to cover the second surface P2 of the semiconductor layer 1110 and the pad opening.
  • An opening to be a via for the pad electrode 4290 is formed in the insulator 40-101.
  • the through electrodes 40-104 may be provided from the second surface P2 side.
  • the through electrodes 40-104 are made of a conductor containing copper as a main component, and may have a barrier metal between the semiconductor layer 1110 and the conductor.
  • a conductor 40-103 is arranged on the through electrode 40-104.
  • the conductor 40-103 may be provided in common with other through electrodes, and may have the function of reducing diffusion of the conductor of the through electrodes 40-104.
  • each wiring layer of the wiring structures 1120 and 2120 are not limited to those illustrated, and for example, a conductor layer may be further provided between the wiring layer and the semiconductor layer. Also, the contact may have a stack contact structure in which two layers are laminated.
  • FIG. 40 shows a cross-sectional view of a photoelectric conversion device according to the sixteenth embodiment. Members that are common to the first embodiment are assigned common numbers, and descriptions thereof are omitted. In the fifteenth embodiment, the structure of the pad electrode 4290 is mainly changed from the configuration of the first embodiment.
  • the wiring structure 1120 includes a first wiring layer M1, a second wiring layer M2, a third wiring layer M3, a fourth wiring layer M4 and a junction 1040 of the first substrate.
  • the wiring structure 2120 includes a first wiring layer M1, a second wiring layer M2 and a connection portion 2040 of the second substrate. Each wiring layer is a so-called copper wiring.
  • the first wiring layer includes a conductor pattern whose main component is copper.
  • the conductor pattern of the first wiring layer has a single damascene structure.
  • a contact is provided for electrical connection between the first wiring layer and the semiconductor layer 1120 .
  • a contact is a conductor pattern whose main component is tungsten.
  • the second and third wiring layers include conductor patterns containing copper as a main component.
  • the conductor patterns of the second and third wiring layers have a dual damascene structure and include portions functioning as wiring and portions functioning as vias.
  • the fourth wiring layer is similar to the second and third wiring layers.
  • the pad electrode 4300 is a conductor pattern whose main component is aluminum.
  • the pad electrode 4300 is provided over the second and third wiring layers of the wiring structure 1120 .
  • it includes a portion functioning as a via connecting the first wiring layer and the second wiring layer to a portion functioning as the wiring of the third wiring layer.
  • the pad electrode 4300 is located, for example, between the second plane P1 and the fifth plane P5.
  • the pad electrode 4300 can be provided between the second surface P2 and the fourth surface P4, and can also be provided between the second surface P2 and the fifth surface P5.
  • the pad electrode 4300 has a first surface and a second surface opposite to the first surface.
  • the first surface is partially exposed through an opening in the semiconductor layer.
  • the exposed portion of the pad electrode 4300 can function as a connection portion with an external terminal, a so-called pad portion.
  • the pad electrode 4300 is connected to a plurality of copper-based conductors on its second surface.
  • the pad electrode 4300 may have a via made of a conductor mainly composed of aluminum, and may be electrically connected to a conductor mainly composed of copper located on the first surface side through the via. good. Also, the pad electrode 4300 may be connected to the first wiring layer of the wiring structure 1120 on the first surface by a conductor mainly composed of tungsten.
  • the pad electrode 4300 is formed by, for example, forming an insulator covering the third wiring layer, removing a part of the insulator, forming a film mainly composed of aluminum to be the pad electrode 4300, and patterning the film. can do.
  • forming the pad electrode 4300 after forming the copper wiring it is possible to form the pad electrode 4300 having a large film thickness while maintaining the flatness of the fine copper wiring.
  • the pad electrode 4300 of this embodiment is included in the wiring structure 1120, it may be included in the wiring structure 2120. Also, the position where the pad electrode is provided may be any of the wiring structures 1120 and 2120, and is not limited. The material and structure of each wiring layer of the wiring structures 1120 and 2120 are not limited to those illustrated, and for example, an additional conductor layer may be provided between the first wiring layer and the semiconductor layer. Also, the contact may have a stack contact structure in which two layers are laminated.
  • the pad electrodes as described in the embodiments so far are connected to the outside of the semiconductor device to output signals generated in the semiconductor device to the outside and to supply signals from the outside to drive the circuit of the semiconductor device. It is used to input the voltage to be applied. Since external noise such as static electricity and surge voltage is also input from the pad electrode, a protection circuit may be arranged near the pad electrode to protect the internal circuit.
  • the protection circuit is composed of, for example, a diode, a Gate Grounded MOS, an RC Trigger MOS, or a combination of these elements.
  • the protection circuit may be arranged in a portion overlapping the pad electrode in a plan view, or may be arranged on each substrate according to the voltage for driving the elements arranged on each of the laminated substrates and the arrangement of the pads.
  • FIG. 41 shows a cross-sectional view of a photoelectric conversion device according to the seventeenth embodiment. Members that are common to the first embodiment are assigned common numbers, and descriptions thereof are omitted. In the seventeenth embodiment, the arrangement positions of pixels are mainly changed from the configuration of the first embodiment.
  • the TSV wiring is provided in a range overlapping the peripheral region 13 arranged outside the pixel region 12 in plan view.
  • the TSV wiring may be provided, for example, in a range that overlaps with the pixel region 12 in plan view.
  • the voltage input/output via the TSV wiring does not affect the pixels. can be reduced and the area can be efficiently utilized.
  • the pixels provided in the region overlapping the TSV wiring in plan view are not limited to effective pixels that output signals based on photoelectric conversion.
  • an OB pixel optical black pixel
  • a dummy pixel that is not connected to an output line and outputs no signal may be used.
  • a dummy pixel is a pixel provided between an effective pixel and a dummy pixel, for example, to prevent oblique light from entering an OB pixel. Even if such a pixel is affected by the voltage input/output via the TSV wiring, the effect on the image quality is negligible. can be effectively utilized.
  • the area that overlaps the TSV wiring in a plan view is not limited to the photoelectric conversion element such as the pixel described above, and may be a semiconductor element such as a transistor. By forming an element such as a transistor in the semiconductor region 1110, planarity of the substrate can be improved.
  • the element provided in the region overlapping the TSV wiring in plan view may be, for example, the protection element having the function as the protection circuit described above.
  • FIG. 42 is a block diagram showing the configuration of a photoelectric conversion system 11200 according to this embodiment.
  • a photoelectric conversion system 11200 of this embodiment includes a photoelectric conversion device 11204 .
  • any of the photoelectric conversion devices described in the above embodiments can be applied to the photoelectric conversion device 11204 .
  • the photoelectric conversion system 11200 can be used, for example, as an imaging system. Specific examples of imaging systems include digital still cameras, digital camcorders, surveillance cameras, and the like.
  • FIG. 42 shows an example of a digital still camera as the photoelectric conversion system 11200 .
  • a photoelectric conversion system 11200 shown in FIG. 42 has a photoelectric conversion device 11204 and a lens 11202 that forms an optical image of a subject on the photoelectric conversion device 11204 .
  • the photoelectric conversion system 11200 also has an aperture 11203 for varying the amount of light passing through the lens 11202 and a barrier 11201 for protecting the lens 11202 .
  • a lens 11202 and a diaphragm 11203 are an optical system for condensing light onto the photoelectric conversion device 11204 .
  • the photoelectric conversion system 11200 has a signal processing unit 11205 that processes the output signal output from the photoelectric conversion device 11204 .
  • the signal processing unit 11205 performs a signal processing operation of performing various corrections and compressions on an input signal and outputting the signal as necessary.
  • the photoelectric conversion system 11200 further includes a buffer memory section 11206 for temporarily storing image data, and an external interface section (external I/F section) 11209 for communicating with an external computer or the like.
  • the photoelectric conversion system 11200 includes a recording medium 11211 such as a semiconductor memory for recording or reading image data, and a recording medium control interface section (recording medium control I/F section) for recording or reading the recording medium 11211. 11210.
  • the recording medium 11211 may be built in the photoelectric conversion system 11200 or may be detachable. Communication from the recording medium control I/F unit 11210 to the recording medium 11211 and communication from the external I/F unit 11209 may be performed wirelessly.
  • the photoelectric conversion system 11200 further includes an overall control/calculation unit 11208 that performs various calculations and controls the entire digital still camera, and a timing generation unit 11207 that outputs various timing signals to the photoelectric conversion device 11204 and signal processing unit 11205 .
  • a timing signal or the like may be input from the outside, and the photoelectric conversion system 11200 may include at least a photoelectric conversion device 11204 and a signal processing unit 11205 that processes an output signal output from the photoelectric conversion device 11204. good.
  • the overall control/arithmetic unit 11208 and the timing generation unit 11207 may be configured to implement some or all of the control functions of the photoelectric conversion device 11204 .
  • the photoelectric conversion device 11204 outputs the image signal to the signal processing unit 11205 .
  • a signal processing unit 11205 performs predetermined signal processing on the image signal output from the photoelectric conversion device 11204 and outputs image data. Also, the signal processing unit 11205 generates an image using the image signal. Also, the signal processing unit 11205 may perform ranging calculation on the signal output from the photoelectric conversion device 11204 .
  • the signal processing unit 11205 and the timing generation unit 11207 may be mounted on the photoelectric conversion device. That is, the signal processing unit 11205 and the timing generation unit 11207 may be provided on the substrate on which the pixels are arranged, or may be provided on another substrate.
  • FIG. 43 is a block diagram showing a configuration example of a distance image sensor, which is electronic equipment using the photoelectric conversion device described in the above embodiments.
  • the distance image sensor 12401 comprises an optical system 12407, a photoelectric conversion device 12408, an image processing circuit 12404, a monitor 12405, and a memory 12406.
  • the distance image sensor 12401 receives the light (modulated light or pulsed light) projected from the light source device 12409 toward the object and reflected by the surface of the object, thereby producing a distance image corresponding to the distance to the object. can be obtained.
  • the optical system 12407 includes one or more lenses, guides image light (incident light) from a subject to the photoelectric conversion device 12408, and forms an image on the light receiving surface (sensor portion) of the photoelectric conversion device 12408.
  • the photoelectric conversion device of each embodiment described above is applied as the photoelectric conversion device 12408 , and a distance signal indicating the distance obtained from the received light signal output from the photoelectric conversion device 12408 is supplied to the image processing circuit 12404 .
  • the image processing circuit 12404 performs image processing to construct a distance image based on the distance signal supplied from the photoelectric conversion device 12408 .
  • a distance image (image data) obtained by the image processing is supplied to the monitor 12405 for display or supplied to the memory 406 for storage (recording).
  • the range image sensor 12401 configured in this way, by applying the above-described photoelectric conversion device, it is possible to obtain, for example, a more accurate range image as the characteristics of the pixels are improved.
  • the technology (the present technology) according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 44 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technology according to the present disclosure (this technology) can be applied.
  • FIG. 44 shows how an operator (physician) 13131 is performing surgery on a patient 13132 on a patient bed 13133 using an endoscopic surgery system 13003 .
  • the endoscopic surgery system 13003 is composed of an endoscope 13100, a surgical tool 13110, and a cart 13134 on which various devices for endoscopic surgery are mounted.
  • An endoscope 13100 is composed of a lens barrel 13101 having a predetermined length from its distal end inserted into the body cavity of a patient 13132 and a camera head 13102 connected to the proximal end of the lens barrel 13101 .
  • an endoscope 13100 configured as a so-called rigid scope having a rigid lens barrel 13101 is illustrated, but the endoscope 13100 may be configured as a so-called flexible scope having a flexible lens barrel. good.
  • the tip of the lens barrel 13101 is provided with an opening into which the objective lens is fitted.
  • a light source device 13203 is connected to the endoscope 13100 , and light generated by the light source device 13203 is guided to the tip of the lens barrel 13101 by a light guide extending inside the lens barrel 13101 . This light is directed through an objective lens toward an object of observation within the body cavity of the patient 13132 .
  • the endoscope 13100 may be a straight scope, a perspective scope, or a side scope.
  • An optical system and a photoelectric conversion device are provided inside the camera head 13102, and the reflected light (observation light) from the observation target is focused on the photoelectric conversion device by the optical system.
  • the photoelectric conversion device photoelectrically converts the observation light to generate an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image.
  • the photoelectric conversion device the photoelectric conversion device described in each of the above embodiments can be used.
  • the image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 13135 as RAW data.
  • CCU Camera Control Unit
  • the CCU 13135 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), etc., and controls the operations of the endoscope 13100 and the display device 13136 in an integrated manner. Further, the CCU 13135 receives an image signal from the camera head 13102 and performs various image processing such as development processing (demosaicing) for displaying an image based on the image signal.
  • image processing such as development processing (demosaicing) for displaying an image based on the image signal.
  • the display device 13136 displays an image based on the image signal subjected to image processing by the CCU 13135 under the control of the CCU 13135 .
  • the light source device 13203 is composed of, for example, a light source such as an LED (Light Emitting Diode), and supplies the endoscope 13100 with irradiation light for photographing a surgical site or the like.
  • a light source such as an LED (Light Emitting Diode)
  • LED Light Emitting Diode
  • the input device 13137 is an input interface for the endoscopic surgery system 13003.
  • the user can input various information and instructions to the endoscopic surgery system 13003 via the input device 13137 .
  • the treatment instrument control device 13138 controls driving of the energy treatment instrument 13112 for tissue cauterization, incision, or blood vessel sealing.
  • the light source device 13203 that supplies irradiation light to the endoscope 13100 for photographing the surgical site can be composed of, for example, a white light source composed of an LED, a laser light source, or a combination thereof.
  • a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. It can be carried out.
  • the observation target is irradiated with laser light from each of the RGB laser light sources in a time-division manner, and by controlling the drive of the imaging device of the camera head 13102 in synchronization with the irradiation timing, each of RGB can be handled. It is also possible to pick up images by time division. According to this method, a color image can be obtained without providing a color filter in the imaging element.
  • the driving of the light source device 13203 may be controlled so as to change the intensity of the output light every predetermined time.
  • the drive of the imaging device of the camera head 13102 in synchronism with the timing of the change in the intensity of the light to obtain images in a time-division manner and synthesizing the images, a high dynamic A range of images can be generated.
  • the light source device 13203 may be configured to be capable of supplying light in a predetermined wavelength band corresponding to special light observation.
  • Special light observation for example, utilizes the wavelength dependence of light absorption in body tissues. Specifically, a predetermined tissue such as a blood vessel on the surface of the mucous membrane is imaged with high contrast by irradiating light with a narrower band than the irradiation light (that is, white light) used during normal observation.
  • irradiation light that is, white light
  • fluorescence observation may be performed in which an image is obtained from fluorescence generated by irradiation with excitation light.
  • body tissue is irradiated with excitation light and fluorescence from the body tissue is observed, or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the fluorescence wavelength of the reagent is observed in the body tissue. It is possible to obtain a fluorescent image by irradiating excitation light corresponding to .
  • the light source device 13203 can be configured to supply narrowband light and/or excitation light corresponding to such special light observation.
  • FIGS. 45A, 45B, 46A, and 46B are schematic diagrams showing configuration examples of a photoelectric conversion system and a moving object according to this embodiment.
  • an example of an in-vehicle camera is shown as a photoelectric conversion system.
  • FIGS. 45A and 45B show an example of a vehicle system and a photoelectric conversion system mounted therein for imaging.
  • a photoelectric conversion system 14301 includes a photoelectric conversion device 14302 , an image preprocessing unit 14315 , an integrated circuit 14303 and an optical system 14314 .
  • the optical system 14314 forms an optical image of a subject on the photoelectric conversion device 14302 .
  • the photoelectric conversion device 14302 converts the optical image of the object formed by the optical system 14314 into an electrical signal.
  • the photoelectric conversion device 14302 is the photoelectric conversion device according to any one of the embodiments described above.
  • An image preprocessing unit 14315 performs predetermined signal processing on the signal output from the photoelectric conversion device 14302 .
  • the function of the image preprocessing unit 14315 may be incorporated within the photoelectric conversion device 14302 .
  • the photoelectric conversion system 14301 is provided with at least two sets of an optical system 14314, a photoelectric conversion device 14302, and an image preprocessing unit 14315, and the output from each set of image preprocessing units 14315 is input to an integrated circuit 14303. It's like
  • the integrated circuit 14303 is an integrated circuit for use in imaging systems, and includes an image processing unit 14304 including a memory 14305, an optical distance measurement unit 14306, a distance calculation unit 14307, an object recognition unit 14308, and an abnormality detection unit 14309.
  • An image processing unit 14304 performs image processing such as development processing and defect correction on the output signal of the image preprocessing unit 14315 .
  • the memory 14305 temporarily stores captured images and stores defect positions of captured pixels.
  • An optical distance measuring unit 14306 performs focusing of a subject and distance measurement.
  • a ranging calculation unit 14307 calculates ranging information from a plurality of image data acquired by a plurality of photoelectric conversion devices 14302 .
  • the object recognition unit 14308 recognizes subjects such as cars, roads, signs, and people.
  • the abnormality detection unit 14309 detects an abnormality in the photoelectric conversion device 14302, the abnormality detection unit 14309 notifies the main control unit 14313 of the abnormality.
  • the integrated circuit 14303 may be realized by specially designed hardware, software modules, or a combination thereof. Also, it may be realized by FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit), etc., or by a combination thereof.
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • the main control unit 14313 integrates and controls the operations of the photoelectric conversion system 14301, the vehicle sensor 14310, the control unit 14320, and the like. There is also a method in which the photoelectric conversion system 14301, the vehicle sensor 14310, and the control unit 14320 have individual communication interfaces without the main control unit 14313, and each of them transmits and receives control signals via a communication network (for example, CAN standard).
  • a communication network for example, CAN standard
  • the integrated circuit 14303 has a function of receiving a control signal from the main control unit 14313 or transmitting a control signal and setting values to the photoelectric conversion device 14302 by its own control unit.
  • the photoelectric conversion system 14301 is connected to a vehicle sensor 14310, and can detect the running state of the own vehicle such as vehicle speed, yaw rate, and steering angle, the environment outside the own vehicle, and the state of other vehicles and obstacles.
  • the vehicle sensor 14310 also serves as distance information acquisition means for acquiring distance information to an object.
  • the photoelectric conversion system 14301 is also connected to a driving support control unit 1311 that performs various driving support functions such as automatic steering, automatic cruise, and anti-collision functions.
  • the collision determination function based on the detection results of the photoelectric conversion system 14301 and the vehicle sensor 14310, it is possible to estimate a collision with another vehicle/obstacle and determine whether or not there is a collision. As a result, avoidance control when a collision is presumed and safety device activation at the time of collision are performed.
  • the photoelectric conversion system 14301 is also connected to an alarm device 14312 that issues an alarm to the driver based on the judgment result of the collision judgment unit. For example, when the collision possibility is high as a result of the judgment by the collision judging section, the main control section 14313 controls the vehicle to avoid collision and reduce damage by applying the brake, releasing the accelerator, or suppressing the engine output. conduct.
  • the alarm device 14312 warns the user by sounding an alarm such as sound, displaying alarm information on a display unit screen of a car navigation system or a meter panel, or vibrating a seat belt or steering wheel.
  • the photoelectric conversion system 14301 photographs the surroundings of the vehicle, for example, the front or rear.
  • FIG. 45B shows an arrangement example of the photoelectric conversion system 14301 when the photoelectric conversion system 14301 captures an image in front of the vehicle.
  • the two photoelectric conversion devices 14302 are arranged in front of the vehicle 14300 .
  • the center line of the vehicle 14300 with respect to the forward/retreat azimuth or outer shape (for example, vehicle width) is regarded as a symmetrical axis
  • the two photoelectric conversion devices 1302 are arranged line-symmetrically with respect to the symmetrical axis.
  • This form is preferable for obtaining information on the distance between the vehicle 14300 and the object to be photographed and for determining the possibility of collision.
  • the photoelectric conversion device 14302 is preferably arranged so as not to block the driver's field of view when the driver visually recognizes the situation outside the vehicle 14300 from the driver's seat. It is preferable that the warning device 14312 be arranged so as to be easily visible to the driver.
  • the control that does not collide with another vehicle has been described, but it is also applicable to control that automatically drives following another vehicle, control that automatically drives so as not to stray from the lane, and the like.
  • the photoelectric conversion system 14301 can be applied not only to vehicles such as automobiles, but also to moving bodies (moving devices) such as ships, aircraft, and industrial robots.
  • the present invention can be applied not only to mobile objects but also to devices that widely use object recognition, such as intelligent transportation systems (ITS).
  • ITS intelligent transportation systems
  • the photoelectric conversion device of the present invention may further have a configuration capable of acquiring various information such as distance information.
  • FIG. 46A and 46B illustrate eyeglasses 16600 (smart glasses) according to one application.
  • Glasses 16600 have a photoelectric conversion device 16602 .
  • the photoelectric conversion device 16602 is the photoelectric conversion device described in each of the above embodiments.
  • a display device including a light emitting device such as an OLED or an LED may be provided on the rear surface side of the lens 16601 .
  • One or more photoelectric conversion devices 16602 may be provided. Further, a plurality of types of photoelectric conversion devices may be used in combination.
  • the arrangement position of the photoelectric conversion device 16602 is not limited to that shown in FIG.
  • the spectacles 16600 further include a control device 16603.
  • the control device 16603 functions as a power source that supplies power to the photoelectric conversion device 16602 and the display device.
  • the control device 16603 controls operations of the photoelectric conversion device 16602 and the display device.
  • the lens 16601 is formed with an optical system for condensing light onto the photoelectric conversion device 16602 .
  • FIG. 46B illustrates glasses 16610 (smart glasses) according to one application.
  • the glasses 16610 have a control device 16612, and the control device 16612 is equipped with a photoelectric conversion device corresponding to the photoelectric conversion device 16602 and a display device.
  • a photoelectric conversion device in the control device 16612 and an optical system for projecting light emitted from the display device are formed on the lens 16611 , and an image is projected onto the lens 16611 .
  • the control device 16612 functions as a power source that supplies power to the photoelectric conversion device and the display device, and controls the operation of the photoelectric conversion device and the display device.
  • the control device may have a line-of-sight detection unit that detects the line of sight of the wearer.
  • Infrared rays may be used for line-of-sight detection.
  • the infrared light emitting section emits infrared light to the eyeballs of the user who is gazing at the display image.
  • a captured image of the eyeball is obtained by detecting reflected light of the emitted infrared light from the eyeball by an imaging unit having a light receiving element.
  • the user's line of sight to the display image is detected from the captured image of the eyeball obtained by capturing infrared light.
  • Any known method can be applied to line-of-sight detection using captured images of eyeballs.
  • line-of-sight detection processing is performed based on the pupillary corneal reflection method.
  • the user's line of sight is detected by calculating a line-of-sight vector representing the orientation (rotational angle) of the eyeball based on the pupil image and the Purkinje image included in the captured image of the eyeball using the pupillary corneal reflection method. be.
  • the display device of the present embodiment may have a photoelectric conversion device having a light receiving element, and may control the display image of the display device based on the user's line-of-sight information from the photoelectric conversion device.
  • the display device determines a first visual field area that the user gazes at and a second visual field area other than the first visual field area, based on the line-of-sight information.
  • the first viewing area and the second viewing area may be determined by the control device of the display device, or may be determined by an external control device.
  • the display resolution of the first viewing area may be controlled to be higher than the display resolution of the second viewing area. That is, the resolution of the second viewing area may be lower than that of the first viewing area.
  • the display area has a first display area and a second display area different from the first display area. may be determined.
  • the first viewing area and the second viewing area may be determined by the control device of the display device, or may be determined by an external control device.
  • the resolution of areas with high priority may be controlled to be higher than the resolution of areas other than areas with high priority. In other words, the resolution of areas with relatively low priority may be lowered.
  • AI may be used to determine the first field of view area and areas with high priority.
  • the AI is a model configured to estimate the angle of the line of sight from the eyeball image and the distance to the object ahead of the line of sight, using the image of the eyeball and the direction in which the eyeball of the image was actually viewed as training data. It's okay.
  • the AI program may be owned by the display device, the photoelectric conversion device, or the external device. If the external device has it, it is communicated to the display device via communication.
  • display control based on visual recognition detection it can be preferably applied to smart glasses that further have a photoelectric conversion device that captures an image of the outside.
  • the smart glasses can display captured external information in real time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

複数のアバランシェフォトダイオードを備えた第1基板と、複数の画素回路を備えた第2基板と、信号処理回路を備えた第3基板と、を有する。第2基板と第3基板が有する2つの半導体層との間に第3配線構造が設けられるように、第2基板と第3基板が積層されている。第3基板が有する半導体層を貫通する第1貫通配線を有する。

Description

光電変換装置、光電変換システム、および移動体
 本発明は、光電変換装置、光電変換システム、および移動体に関する。
 複数のアバランシェフォトダイオード(以下、APD:Avalanche Photo Diode)を含む画素が平面的に2次元アレイ状に配置されるように構成された画素アレイを含む光電変換装置が知られている。各画素においては、PN接合ダイオードに対して、逆バイアスの電圧を印加することで、単一光子に起因した光電荷がアバランシェ増倍を起こす。APDの動作には少なくとも2つのモードがある。逆バイアスの電圧が供給される場合において、アノードおよびカソードの電位差が降伏電圧より大きな電位差で動作させるガイガーモードと、アノードおよびカソードの電位差が降伏電圧近傍、またはそれ以下の電圧差で動作させるリニアモードである。このうち、ガイガーモードで動作させるAPDをSPAD(Single Photon Avalanche Diode)と呼ぶ。
 特許文献1のFig.3Bには、第1基板にSPADアレイを有し、第2基板にカウンタを有し、第3基板にストレージを有し、第1基板と第2基板と第3基板とが積層された光電変換装置が記載されている。
米国特許出願公開第2015/0115131号明細書
 特許文献1においては、第1基板、第2基板、第3基板を積層した光電変換装置の開示があるが、第2基板と第3基板を電気的に接続する配線構造について、検討がなされていない。そこで、本発明は、アバランシェフォトダイオードを備えた3層以上の基板を有する光電変換装置の具体的な構成を提案することを目的とする。
 本発明に係る光電変換装置は、複数の光電変換部を備えた第1半導体層と第1配線構造を有する第1基板と、前記複数の光電変換部のそれぞれに対応して設けられた複数の画素回路を備えた第2半導体層と第2配線構造を有する第2基板と、前記複数の画素回路からの出力信号を処理する信号処理回路を備えた第3半導体層と第3配線構造を有する第3基板と、を有し、前記複数の光電変換部のそれぞれは、アバランシェフォトダイオードを有しており、前記第1半導体層と前記第2半導体層との間に、前記第1配線構造と前記第2配線構造が設けられるように、前記第1基板と前記第2基板が積層されており、記第2半導体層と前記第3半導体層との間に、前記第3配線構造が設けられるように、前記第2基板と前記第3基板が積層されており、前記第3半導体層を貫通する第1貫通配線と、前記第1貫通配線に平面視で重なる半導体素子と、を有することを特徴とする。
 本発明によれば、アバランシェフォトダイオードを備えた3層以上の構造を有する光電変換装置の具体的な構成を提案することができる。
光電変換装置のブロック図 第1基板が有する機能ブロック図 第2基板が有する機能ブロック図 第3基板が有する機能ブロック図 画素の回路図と機能ブロック図 APDの動作と出力信号との関係を説明する図 実施形態1の第1基板と第2基板との電気的接続関係を示す模式図 実施形態1の第2基板と第3基板との電気的接続関係を示す模式図 実施形態1の第3基板と他の基板等との電気的接続関係を示す模式図 実施形態1の光電変換装置の断面図 実施形態1の光電変換装置の製造工程 実施形態1の光電変換装置の製造工程 実施形態1の光電変換装置の製造工程 実施形態1の光電変換装置の製造工程 実施形態2の光電変換装置の断面図 実施形態3の光電変換装置の断面図 実施形態4の光電変換装置の断面図 実施形態5の光電変換装置の断面図 実施形態6の光電変換装置の断面図 実施形態7の光電変換装置の断面図 実施形態8の光電変換装置の断面図 実施形態9の光電変換装置の断面図 実施形態10の光電変換装置の断面図 実施形態11の第1基板と第2基板との電気的接続関係を示す模式図 実施形態11の第2基板と第3基板との電気的接続関係を示す模式図 実施形態11の第3基板と他の基板等との電気的接続関係を示す模式図 実施形態12の第1基板と第2基板との電気的接続関係を示す模式図 実施形態12の第2基板と第3基板との電気的接続関係を示す模式図 実施形態第12の第3基板と他の基板等との電気的接続関係を示す模式図 実施形態12の光電変換装置の断面図 実施形態13の第2基板と第3基板との電気的接続関係を示す模式図 実施形態13の第3基板と他の基板等との電気的接続関係を示す模式図 実施形態13の光電変換装置の断面図 実施形態14の光電変換装置の断面図 実施形態14の光電変換装置の断面図 実施形態14の光電変換装置の断面図 実施形態14の光電変換装置の断面図 実施形態14の光電変換装置の断面図 実施形態14の光電変換装置の断面図 実施形態15の光電変換装置の断面図 実施形態16の光電変換装置の断面図 実施形態17の光電変換装置の断面図 実施形態18の光電変換システムの機能ブロック図 実施形態19の距離センサの機能ブロック図 実施形態20の内視鏡手術の機能ブロック図 実施形態21の光電変換システムおよび移動体の図 実施形態21の光電変換システムおよび移動体の図 実施形態22の内視鏡手術の機能ブロック図 実施形態22の内視鏡手術の機能ブロック図
 以下に示す形態は、本発明の技術思想を具体化するためのものであって、本発明を限定するものではない。各図面が示す部材の大きさや位置関係は、説明を明確にするために誇張していることがある。以下の説明において、同一の構成については同一の番号を付して説明を省略することがある。
 以下に示す形態は、特にアバランシェダイオードに入射するフォトンの数を数えるSPAD(Single Photon Avalanche Diode)を備える光電変換装置に関する。光電変換装置は、少なくともアバランシェダイオードを備える。
 以下の説明において、アバランシェダイオードのアノードを固定電位とし、カソード側から信号を取り出している。したがって、信号電荷と同じ導電型の電荷を多数キャリアとする第1導電型の半導体領域とはN型半導体領域であり、第2導電型の半導体領域とはP型半導体領域である。なお、アバランシェダイオードのカソードを固定電位とし、アノード側から信号を取り出す場合でも本発明は成立する。この場合は、信号電荷と同じ導電型の電荷を多数キャリアとする第1導電型の半導体領域はP型半導体領域であり、第2導電型の半導体領域とはN型半導体領域である。以下では、アバランシェダイオードの一方のノードを固定電位とする場合について説明するが、両方のノードの電位が変動してもよい。
 本明細書において、平面視とは、半導体層の光入射面に対して垂直な方向から視ることである。また、断面視とは、半導体層の光入射面と垂直な方向における面をいう。なお、微視的に見て半導体層の光入射面が粗面である場合は、巨視的に見たときの半導体層の光入射面を基準として平面視を定義する。
 (実施形態1)
 図1は、光電変換装置100の全体像を示す図である。第1基板1100は、センサチップともいい、光電変換部を有する画素が二次元状に配列されている画素領域12が設けられている。また、画素領域12と光電変換装置100のチップ端部の間には、周辺領域13が設けられている。第2基板2100は、画素回路チップともいい、光電変換部からの信号を処理する画素回路が配されている画素回路領域22が設けられている。第3基板3100は、信号処理チップともいい、画素回路から信号を処理する信号処理回路が配されている信号処理回路領域32が設けられている。第1基板1100と、第2基板2100と、第3基板3100が積層されることにより、光電変換装置100が構成されている。
 (第1基板)
 図2は、第1基板1100の構成図である。第1基板には、アバランシェフォトダイオード(以下、APD)を含む光電変換部102を有する画素101が二次元状に配列された画素領域12が設けられている。画素領域12における画素101の配列は1次元状に配されていてもよい。光電変換部102の詳細については、後述する。
 画素101は、典型的には、画像を形成するための画素であるが、TOF(Time of Flight)に用いる場合には、必ずしも画像を形成しなくてもよい。すなわち、画素101は、光が到達した時刻と光量を測定するための素子であってもよい。
 (第2基板)
 図3は、第2基板2100の構成図である。第2基板2100は、光電変換部102で光電変換された電荷を処理する画素回路部201、制御パルス生成部206、水平走査回路部203、信号線205、垂直走査回路部202を有している。図2に示す画素回路領域22は、少なくとも、画素回路部201が設けられている領域である。
 図2の光電変換部102と、図3の画素回路部201は、画素毎に設けられた接続配線を介して電気的に接続される。
 垂直走査回路部202は、制御パルス生成部206から供給された制御パルスを受け、各画素に制御パルスを供給する。垂直走査回路部202にはシフトレジスタやアドレスデコーダといった論理回路が用いられる。
 各画素の光電変換部102から出力された信号は、画素回路部201で処理される。
 画素回路部201は、カウンタやメモリなどが設けられており、メモリにはデジタル値が保持される。
 水平走査回路部203は、デジタル信号が保持された各画素のメモリから信号を読み出すために、各列を順次選択する制御パルスを画素回路部201に入力する。
 信号線205には、選択されている列について、垂直走査回路部202により選択された画素の画素回路部201から信号が出力される。
 図2および図3では、1つの画素101に対応して1つの画素回路部201が設けられていた。しかし、画素回路部201は、例えば、複数の画素101によって1つの画素回路部201が共有され、順次信号処理が行われてもよい。これにより、画素回路領域22の省スペース化を図ることができる。
 (第3基板)
 図4は、第3基板3100の構成図である。第3基板3100は、メモリ301と、第1信号処理部304と、第2信号処理部305と、制御回路部302、303を有する。
 メモリ301は、例えば、水平走査回路部203から出力された画像データなどを記録する。メモリ301は、例えば、SRAM(Static Random Access Memory)や、DRAMである。
 制御回路部302、303は、メモリ301からの情報の記録および読み出しを制御する。
 第1信号処理部304は、メモリ301から読み出された画像データ(処理対象の画像データ)に対して種々の信号処理を実行する。例えば、処理対象の画像データがカラー画像である場合、第1信号処理部304は、この画像データをYUVの画像データやRGBの画像データなどにフォーマット変換する。
 第1信号処理部304は、例えば、処理対象の画像データに対し、ノイズ除去やホワイトバランス調整等の処理を必要に応じて実行する。その他、第1信号処理部304は、処理対象の画像データに対し、第2信号処理部305がその画像データを処理するのに必要となる種々の信号処理(前処理ともいう)を実行する。
 光電変換装置100を距離計測装置としても用いる場合、第1信号処理部304は、例えば、測距処理部としても機能する。例えば、後述するTDC回路(Time to Digital Converter)から得た情報に基づき、ヒストグラムを作成し、距離演算を行って、第2信号処理部305に出力する。ヒストグラムは、横軸が時間に関する階級(ビン)、縦軸は各階級における頻度で表される。頻度は、所定の受光時間において受光した回数である。また、ヒストグラムには、反射光と環境光に基づくカウントが混在する。そのため、所定の閾値を設定することで、反射光成分のカウントと、環境光成分のカウントを分離する。反射光成分に対応する光到来時間から、距離計測装置と被測定物との間の距離を演算する。
 第1信号処理部304は、演算で求めた距離から3次元の距離画像データを生成することが可能である。3次元の距離画像データは測距処理部で得られた情報のみから生成することもできるし、2次元平面の画像データに、測距処理部で取得された演算データを付加することにより生成した3次元の距離画像データであってもよい。
 第2信号処理部305は、例えば、DSP(Digital Signal Processor)である。第2信号処理部305は、メモリ301に格納されているプログラムを実行することで、機械学習によって作成された学習済みモデルを用いて各種処理を実行する処理部として機能する。例えば、学習済みモデルは、ディープニューラルネットワーク(DNN)を利用した機械学習によって作成される。このような学習済みモデルをニューラルネットワーク計算モデルともいう。
 この学習済みモデルは、画素領域12からの出力に相当する入力信号と、この入力信号に対するラベルとが紐付いている学習データとを所定の機械学習モデルに入力して生成されたパラメータに基づいて設計されていてもよい。また、所定の機械学習モデルは、多層のニューラルネットワークを利用した学習モデルであってもよい。このような学習済みモデルを多層ニューラルネットワークモデルともいう。
 例えば、第2信号処理部305は、メモリ301に記憶されている学習済みモデルに基づいた演算処理を実行する。このような演算処理により得られた結果(演算結果)は、メモリ301などへ出力される。
 演算結果には、学習済みモデルを用いた演算処理を実行することで得られた画像データや、その画像データから得られる各種情報(メタデータ)が含まれる。また、DSP14には、メモリ15へのアクセスを制御するメモリコントローラが組み込まれていてもよい。
 第2信号処理部305が処理対象とする画像データは、画素領域12から通常に読み出された画像データであってもよいし、画像データの画素を間引くことでデータサイズが縮小された画像データであってもよい。画素領域12から画素を間引いた読み出しを実行することで通常よりも小さいデータサイズで読み出された画像データであってもよい。
 また、第2信号処理部305が処理対象とする画像データは、3次元の距離画像データでもよい。3次元の距離情報データであれば、2次元の画像データよりも情報量が多いため、高精度の物体認識や高精度の物体の位置情報の取得が可能である。
 このように、メモリ301は、水平走査回路部203から出力された画像データ、第1信号処理部304で信号処理された画像データ、第2信号処理部305で得られた演算結果、などを必要に応じて記録する。また、メモリ301は、第2信号処理部305が実行する学習済みモデルのアルゴリズムを記憶する。
 第2信号処理部305は、学習データを用いて学習モデル内の各種パラメータの重み付けを変更することで学習モデルを学習したり、複数の学習モデルを用意しておき演算処理の内容に応じて使用する学習モデルを変更したりすることができる。また、第2信号処理部305は、外部の装置から学習済みの学習モデルを取得しして、上記演算処理を実行することができる。
 また、図4では、メモリ301と、第1信号処理部304と、第2信号処理部305は、この順に配置した例を示した。しかし、上記のように、メモリ301は、第1信号処理部304や第2信号処理部305から出力される情報や入力される情報を格納する。そのため、第1信号処理部304と第2信号処理部305の間に配してもよい。あるいは、メモリ301と第1信号処理部304の間に、第2信号処理部305を配してもよい。
 出力部306は、第2信号処理部305から出力された画像データや、メモリ301に記録されている画像データや演算結果を出力する。
 出力部306から出力された画像データや演算結果は、表示やユーザインタフェースなどを処理するアプリケーションプロセッサ(不図示)に入力される。アプリケーションプロセッサは、例えば、CPU(Central Processing Unit)等を用いて構成され、オペレーティングシステムや各種アプリケーションソフトウエア等を実行する。このアプリケーションプロセッサには、GPU(Graphics Processing Unit)やベースバンドプロセッサなどの機能が搭載されていてもよい。アプリケーションプロセッサは、入力された画像データや演算結果に対し、必要に応じた種々処理を実行したり、ユーザへの表示を実行したり、所定のネットワークを介して外部のクラウドサーバへ送信したりする。
 ネットワークは、例えば、インターネットや、有線LAN(Local Area Network)又は無線LANや、移動体通信網や、Bluetooth(登録商標)など、種々のネットワークを適用できる。また、画像データや演算結果の送信先は、クラウドサーバに限定されず、単一で動作するサーバや、各種データを保管するファイルサーバや、携帯電話機等の通信端末など、通信機能を有する種々の情報処理装置(システム)でもよい。
 (APDと画素回路)
 図5は、図2および図3で説明したブロック図をより詳細に説明する図である。
 図2において、APD103を有する光電変換部102は、第1基板1100に設けられており、その他の部材は、第2基板2100に設けられている。
 APD103は、光が入射すると、光電変換により電荷対が生成される。APD103のアノードには、電圧VL(第1電圧)が供給される。また、APD103のカソードには、アノードに供給される電圧VLよりも高い電圧VH(第2電圧)が供給される。
 アノードとカソードには、APD103がアバランシェ増倍動作をするような逆バイアス電圧が供給される。このような電圧を供給した状態とすることで、入射光によって生じた電荷がアバランシェ増倍を起こし、アバランシェ電流が発生する。
 逆バイアスの電圧が供給される場合において、アノードおよびカソードの電位差が降伏電圧より大きい電位差で動作させるモードをガイガーモードという。また、アノードおよびカソードの電位差が降伏電圧近傍、もしくはそれ以下の電圧差で動作させるモードをリニアモードという。このうち、ガイガーモードで動作させるAPDをSPADと呼ぶ。例えば、電圧VL(第1電圧)は、-30V、電圧VH(第2電圧)は、1Vである。この場合、例えば、グランド電圧である0Vと電圧VL(第1電圧)の電位差は、グランド電圧と電圧VH(第2電圧)の電位差よりも大きい。そのため、電圧VL(第1電圧)を高電圧と表現することもある。
 クエンチ素子211は、電圧VHを供給する電源とAPD103に接続される。クエンチ素子211は、APD103で生じたアバランシェ電流の変化を電圧信号に置き換える機能を有する。クエンチ素子211は、アバランシェ増倍による信号増倍時に負荷回路(クエンチ回路)として機能し、APD103に供給する電圧を抑制して、アバランシェ増倍を抑制する働きを持つ(クエンチ動作)。
 信号処理部201は、波形整形部212、回路213(カウンタ回路)、選択回路214を有する。本明細書において、信号処理部201は、波形整形部212、回路213(カウンタ回路)、選択回路214のいずれかを有していればよい。
 波形整形部212は、光子検出時に得られるAPD103のカソードの電位変化を整形して、パルス信号を出力する。波形整形部212としては、例えば、インバータ回路が用いられる。図5では、波形整形部212としてインバータを一つ用いた例を示したが、複数のインバータを直列接続した回路を用いてもよいし、波形整形効果があるその他の回路を用いてもよい。
 回路213(カウンタ回路)は、波形整形部212から出力されたパルス信号をカウントおよびカウント値を保持する。また、駆動線215を介して制御パルスpRESが供給されたとき、回路213(カウンタ回路)に保持された信号がリセットされる。画素毎に設ける回路213(カウンタ回路)は、回路規模が大きくなるため、第2基板2100に設けるだけでなく、一部を第3基板3100にも設けてもよい。
 選択回路214には、図3の垂直走査回路部202から、図5の駆動線216を介して制御パルスpSELが供給され、回路213(カウンタ回路)と信号線217との電気的な接続、非接続を切り替える。選択回路214には、例えば、信号を出力するためのバッファ回路などを含む。
 クエンチ素子211を、例えば、MOSトランジスタで構成する場合、このMOSトランジスタのゲートにクロック周期のパルスを与えるようにしてもよい。この場合、不図示のPLL(Phase Locked Loop)回路から、所定のクロック周期を有するパルスがクエンチ素子211を構成するトランジスタのゲートに入力される。例えば、PLL回路からのパルスがハイレベルの場合に、クエンチ素子211がPMOSで構成されているとき、クエンチ素子211はオフ状態となる。この場合、APD103には逆バイアスが与えられず、非検出モードとなる。他方、PLL回路からのパルスがローレベルの場合に、クエンチ素子211はオン状態となり、APD103には逆バイアスが与えられ、検出モード(待機モード)となる。このPLL回路からのクロックパルスが所定の周期を有することから、クロック周期ごとに出力信号が強制的にリセットされる。このため、1パルスに対して、光子のカウントは1つとなり、高輝度下でも、入射光子数に応じた数の信号生成が可能となる。PLL回路は、第1基板1100、第2基板2100、第3基板3100のいずれ、あるいは、これら複数の基板に設けられている。
 クエンチ素子211とAPD103との間や、光電変換部102と信号処理部201との間にトランジスタ等のスイッチを配して、電気的な接続を切り替えてもよい。同様に、光電変換部102に供給される電圧VHまたは電圧VLの供給をトランジスタ等のスイッチを用いて電気的に切り替えてもよい。
 上記では、回路213をカウンタ回路として用いる構成を示した。他方、カウンタ回路の代わりに、回路213を時間計測回路としての時間・デジタル変換回路(Time to Digital Converter:以下、TDC回路)としてもよい。これにより、パルス検出タイミングを取得する光電変換装置100が構成される。
 このとき、波形整形部212から出力されたパルス信号の発生タイミングは、TDC回路213によってデジタル信号に変換される。TDC回路213には、パルス信号のタイミングの測定に、図3の垂直走査回路部202から駆動線を介して、制御パルスpREF(参照信号)が供給される。TDC回路213は、制御パルスpREFを基準として、波形整形部212を介して各画素から出力された信号の入力タイミングを相対的な時間としたときの信号をデジタル信号として取得する。
 TDC回路213は、例えば、RSフリップフロップと、コースカウンタと、ファインカウンタとを有する。駆動pREFは、発光部を駆動するとともに、RSフリップフロップをセットし、各画素から入力された信号パルスにより、RSフリップフロップはリセットされる。これにより、光の飛行時間に応じたパルス幅を持った信号が生成される。生成された信号は、所定の時間分解能をそれぞれ有するコースカウンタとファインカウンタによりカウントされる。これにより、デジタルコードが出力されることになる。
 TDC回路213の駆動pREFのパルスを生成するPLL回路は、第1基板1100、第2基板2100、第3基板3100のいずれか、あるいは、これら複数の基板に設けられている。ただし、TDC回路に入力される駆動pREFパルスが遅延すると、TDC回路213から出力される情報の精度に影響を与えることになる。そのため、PLL回路は、TDC回路213が設けられている基板と同一基板に設ける方がよい。例えば、本実施形態では、第2基板2100に、TDC回路213と、TDC回路213に与えるパルスを生成するPLL回路とが設けられている。
 また、PLL回路は、第3基板3100に設けられている回路にも入力する場合がある。この場合、第2基板2100には、TDC回路213用のPLL回路を設け、第3基板3100には、第3基板3100に設ける回路用のPLL回路を設ける構成とすることができる。例えば、第2基板2100上に1つのPLL回路を設け、第2基板2100に設けられたPLL回路から、第3基板3100の回路にパルス信号を与えることも考えられる。しかし、この場合、第2基板2100と第3基板3100とを接続するTSV配線を介して、第2基板2100に設けられたPLL回路から、第3基板3100の回路にパルス信号が与えられることになる。このため、TSV配線の配線容量などにより、第3基板3100の回路の処理、例えば、信号処理回路の高速処理に影響を与える可能性がある。そこで、第2基板2100用のPLL回路と、第3基板3100用のPLL回路の両方を各基板に設けてもよい。
 また、図5では、TDC回路213が1画素に設ける例を説明したが、以降で説明するように、TDC回路213は、複数の画素で共有してもよい。
 (APDの動作と出力信号)
 図6は、APDの動作と出力信号との関係を模式的に示した図である。図6(a)は、図5のAPD103、クエンチ素子211、波形整形部212を抜粋した図である。ここで、波形整形部212の入力側をnodeA,出力側をnodeBとする。図6(b)は、図6(a)のnodeAの波形変化を、図6(c)は、図6(a)のnodeBの波形変化をそれぞれ示す。
 時刻t0からt1の間において、図6(a)のAPD103には、VH-VLの電位差が印加されている。時刻t1においてフォトンが入射すると、クエンチ素子211にアバランシェ増倍電流が流れ、nodeAの電圧は降下する。電圧降下量がさらに大きくなり、APD103に印加される電位差が小さくなると、APD103のアバランシェ増倍が停止し、nodeAの電圧レベルはある一定値以上降下しなくなる。その後、nodeAには電圧VLから電圧降下分を補う電流が流れ、時刻t3においてnodeAは元の電位レベルに静定する。
 このとき、nodeAにおいて出力波形がある閾値を越えた部分は、波形整形部212で波形整形され、nodeBで信号として出力される。
 本実施形態では、第3基板3100に、メモリ301、制御回路部302および303、第1信号処理部304、第2信号処理部305が設けられている。光電変換装置100のチップの小型化を図るためには、画素領域以外の領域の面積を小さくしたい。また、アバランシェフォトダイオードは、各光電変換部の信号を処理する画素回路を備えることから、第1基板1100に複数の光電変換部を配置し、第2基板2100に複数の画素回路を配置する。そのため、平面視において、画素領域と重複する第2基板2100の領域は、スペースがなくなるため、メモリや信号処理部が第2基板2100に配置することが難しくなる。そこで、本実施形態では、第3基板3100において、メモリや信号処理部を配置している。第3基板にメモリや信号処理部を配置するニーズは、平面視において、光電変換装置のチップ面積に対する画素領域の面積の割合が大きくなるほど高まる。例えば、光電変換装置のチップ面積に対する画素領域の面積の割合が0.8以上の場合に、本ニーズが顕著に生じる。
 第3基板3100に設けられるメモリや信号処理部を構成するトランジスタは、第2基板2100に設けられる画素回路を構成するトランジスタよりも、微細プロセスを用いて形成される。これらのメモリや信号処理部は、画素回路よりもさらに大面積のスペースが必要とされるからである。例えば、第3基板3100に設けられるトランジスタのゲート酸化膜の厚さは、第2基板2100に設けられるトランジスタのゲート酸化膜の厚さよりも薄い。あるいは、第3基板3100に設けられるトランジスタのゲート長の長さは、第2基板2100に設けられるトランジスタのゲート長の長さよりも短い。あるいは、第3基板3100の配線構造(第3配線構造)の層間膜間に設けられているビア配線の直径は、第2基板2100の配線構造(第2配線構造)の層間膜間に設けられているビア配線の直径よりも小さい。あるいは、第3基板3100の配線構造(第3配線構造)の配線幅および配線間距離は、第2基板2100の配線構造(第2配線構造)の配線幅および配線間距離よりも小さい。なお、上記配線幅と配線間距離の関係は、各基板において、最も短い配線幅同士、あるいは、最も短い配線間距離同士を比較した場合の関係である。
 また、第2基板2100に設けられるクエンチ素子211にはアバランシェ増倍電流が流れるため、クエンチ素子211をMOSトランジスタで構成する場合には、このMOSトランジスタのゲート酸化膜の厚さを厚くし、高耐圧素子とする。そのため、第2基板2100において、クエンチ素子211のプロセスよりも、クエンチ素子211とは別の画素回路のプロセスをより微細化する必要がある。プロセスを微細化した場合のデバイス構造については、上記で説明した事項が、第2基板のクエンチ素子211と、そのほかの画素回路のトランジスタにも提供される。例えば、第2基板2100のクエンチ素子211(MOSトランジスタ)のゲート酸化膜の厚さは、第2基板2100のクエンチ素子211とは別の回路を構成するトランジスタのゲート酸化膜の厚さよりも厚い。また、第2基板2100のクエンチ素子211とは別の回路を構成するトランジスタのゲート酸化膜の厚さは、第3基板3100に設けられている回路のトランジスタのゲート酸化膜の厚さよりも厚い。
 さらに、第3基板3100に設けられる信号処理部は、いわゆる「ノイマン型」の処理部ではなく、いわゆる「非ノイマン型」の半導体技術を用いた処理部としてもよい。
 (各基板の接続関係)
 図7から図10を用いて、第1基板から第3基板までの電気的接続関係をより詳細に説明する。図7から図9は、第1基板から第3基板までのそれぞれの平面図である。図10は、第1基板から第3基板を積層した光電変換装置100の断面図である。
 (光電変換装置の断面図)
 図10は、光電変換装置100の断面図であり、図10の上側から光が入射する。
 光入射面側から、第1基板1100、第2基板2100、第3基板3100が積層されている。
 第1基板1100は、第1基板の半導体層1110(第1半導体層)と、第1基板の配線構造1120(第1配線構造)とから構成されている。
 第2基板2100は、第2基板の半導体層2110(第2半導体層)と、第2基板の配線構造2120(第2配線構造)と、第2配線構造2120と第3基板の配線構造3120(第3配線構造)とを接続するための接続層2130とから構成されている。
 第3基板3100は、第3基板の半導体層3110(第3半導体層)と、第3配線構造3120を有する。
 第1基板1100と第2基板2100は、第1配線構造1120と第2配線構造2120とが対向して接するように貼り合わせがされる。また、第2基板2100と第3基板3100は、接続層2130を介して、第2半導体層2110と第3配線構造3120とが対向するように貼り合わせがされる。
 第3基板3100の光入射面側とは反対側に、絶縁性接着領域5110を介してパッケージ基板5120が配されている。
 第1の半導体層1110中に、第1導電型の第1半導体領域1011と、第2導電型の第2半導体領域1012を配されており、PN接合を形成し、図5に示すAPD103が構成されている。
 第2半導体領域1012よりも光入射面側には、第2導電型の第3半導体領域1013が構成されている。第3半導体領域1013の不純物濃度は、第2半導体領域1012の不純物濃度よりも低い。
 ここで「不純物濃度」とは、逆導電型の不純物によって補償された正味の不純物濃度を意味している。つまり、「不純物濃度」とは、NET濃度を指す。例えば、P型の添加不純物濃度がN型の添加不純物濃度より高い領域は、P型半導体領域である。反対に、N型の添加不純物濃度が、P型の添加不純物濃度より高い領域はN型半導体領域である。
 各画素は、第2導電型の第4半導体領域1014により分離されている。また、第4半導体領域1014よりも光入射面側には、第2導電型の第5半導体領域1015が設けられている。第5半導体領域1015は、各画素に共通に設けられている。
 第4半導体領域1014には、図5に示す電圧VL(第1電圧)が供給され、第1半導体領域1011には、図5に示す電圧VH(第2電圧)が供給される。第4半導体領域1014に供給される電圧と、第1半導体領域1011に供給される電圧とにより、第2半導体領域1012と第1半導体領域1011には逆バイアス電圧が供給される。これにより、APD103がアバランシェ増倍動作をするような逆バイアス電圧が供給されることになる。
 第5半導体領域1015よりも光入射面側には、ピニング層1031が設けられている。ピニング層1031は暗電流抑制のために配される層である。ピニング層1031は、例えば、酸化ハフニウム(HfO)を用いて形成される。二酸化ジルコニウム(ZrO)、酸化タンタル(Ta)などを用いて、ピニング層1031を形成してもよい。ピニング層1031の上には、各画素にマイクロレンズ1032が設けられている。不図示であるが、マイクロレンズ1032とピニング層1031の間には、カラーフィルタ、各画素を光学的に分離するためのグリッドの遮光膜などを設けてもよい。遮光膜の材料としては、光を遮光しうる材料であればよく、例えば、タングステン(W)、アルミニウム(Al)又は銅(Cu)などを用いることができる。
 上記のように、アバランシェ増倍を生じさせるために、第4半導体領域1014と、第1半導体領域1011には、逆バイアスとなる電圧が供給される。図10では、第4半導体領域1014には、第1基板の第1のビア配線(コンタクト配線)1021aが電気的に接続しており、コンタクト配線1021aには、第1基板の第1の配線層の配線1022aが電気的に接続している。また、第1の配線層の配線1022aは、配線1022bと電気的に接続している。
 ここで、符合の数字の後の添字のaは、複数の光電変換部102が配されている画素領域12の配線であることを示す。他方、画素領域12以外、あるいは、平面視で画素領域12と重複する領域以外の領域に配されている配線には、添字のbを付す。
 第1の配線層の配線1022aと配線1022bは、他の配線層を介して電気的に接続していてもよい。また、第1の配線層において、配線1022aと配線1022bとが連続的・一体的に形成されることにより、電気的に接続していてもよい。
 配線1022bは、第1基板の第2のビア配線1023bと電気的に接続している。ビア配線1023bは、第1基板の接合部1040bと電気的に接続している。第1基板の接合部1040bは、第2基板の接合部2040bと接触しており、電気的に接続している。このように、第1基板の接合面に露出された接合部1040bと、第2基板の接合面に露出させた接合部2040bによる接合をメタルボンディング(MB)構造、あるいは、金属接合部ということもある。また、この接合は、銅(Cu)同士で行われることが多いため、Cu-Cu接合(Cu-Cuボンディング)ということもある。
 第2基板の接合部2040bは、第2基板の第2のビア配線2023bと電気的に接続しており、第2のビア配線2023bは、第2基板の第1の配線層の配線2022bと電気的に接続している。第1の配線層の配線2022bは、貫通配線(以下、TSV(Through Silicon Via)配線という。)5010と電気的に接続している。TSV配線5010は、第2基板の半導体層2010と第3基板の半導体層3010を貫通する配線である。TSV配線5010は、第3基板のTSV開口部側(光入射面側とは反対側)の配線層の配線3031と電気的に接続している。配線3031は、バンプ5130を介して、電極5140と電気的に接続している。
 TSV配線5010と電気的に接続する電極5140には、電圧VL(第1電圧)が供給されるため、上記の接続配線の構成により、第4半導体領域1014にも、電圧VL(第1電圧)が供給されることになる。
 他方、第1半導体領域1011には、第1基板の第1のビア配線(コンタクト配線)1021aが電気的に接続しており、コンタクト配線1021aには、第1基板の第1の配線層の配線1022aが電気的に接続している。また、第1の配線層の配線1022aは、第1基板の第2のビア配線1023aと電気的に接続している。ビア配線1023aは、第1基板の接合部1040aと電気的に接続している。第1基板の接合部1040aは、第2基板の接合部2040aと接触しており、電気的に接続している。第2基板の接合部2040aは、第2基板の第2のビア配線2023aと電気的に接続しており、第2のビア配線2023aは、第2基板の第1の配線層の配線2022aと電気的に接続している。配線2022aは、第2基板の第1のビア配線(コンタクト配線)2021と電気的に接続されており、コンタクト配線2021は第6半導体領域2011と電気的に接続されている。第6半導体領域2011は、第2基板の半導体層2010に設けられており、第6半導体領域2011のそれぞれは、素子分離領域2012により分離されている。例えば、第6半導体領域2011は、クエンチ素子211の一部である。より具体的には、クエンチ素子211がMOSトランジスタの場合、第6半導体領域2011は、このMOSトランジスタのソースまたはドレイン領域となる。また、図10では不図示であるが、第2基板2100には、波形整形部212、カウンタ回路213、選択回路214が設けられている。
 第6半導体領域2011は複数の配線や半導体領域を通じて、2022bと電気的に接続している。第1の配線層の配線2022bは、TSV配線5020と電気的に接続している。TSV配線5020は、第2基板の半導体層2010と第3基板の半導体層3010を貫通する配線である。TSV配線5020は、配線3031、バンプ5130を介して、電極5140と電気的に接続している。
 TSV配線5020と電気的に接続する電極5140には、電圧VH(第2電圧)が供給されるため、上記の接続配線の構成により、第1半導体領域1011にも、電圧VH(第2電圧)が供給されることになる。
 また、TSV配線5020から供給される電圧は、波形整形部212、カウンタ回路213、選択回路214などの画素回路に供給するように構成してもよい。すなわち、電圧VH(第2電圧)は、第2基板2100に設けられた回路の駆動電圧となる。ここで、駆動電圧とグランド電圧は基準電圧であり、駆動電圧とグランド電圧とにより、回路を動作させる。
 さらに、TSV配線5020から第1基板1100と第2基板2100にグランド電圧を供給してもよい。もっとも、駆動電圧用のTSV配線5020と、グランド電圧用のTSV配線5020は、便宜上同じ図を用いているが、これらは別のTSV配線であり、電気的に分離されている。
 また、上記説明では、第1基板1100に設けられているアバランシェフォトダイオード用の駆動電圧と、第2基板2100に設けられている画素回路の駆動電圧を同じTSV配線5020から供給する例を示した。しかし、アバランシェフォトダイオード用のTSV配線5020とは別のTSV配線を設けて、第2基板2100に設けられている画素回路に駆動電圧を供給するように構成してもよい。
 図5に示す信号線217は、図10では、コンタクト配線2021、配線2022a、配線2022bの少なくとも一部に相当し、これらの配線は、TSV配線5040に電気的に接続されている。TSV配線5040は、配線3031を介して、TSV配線5050と電気的に接続されている。すなわち、TSV配線5040と5050は、第2基板2100から出力した信号を第3基板3100への入力するための配線である。
 図10に示す第3基板の半導体層3010は、第7半導体領域3011が形成されており、第7半導体領域3011のそれぞれは、素子分離領域3012により分離されている。第7半導体領域3011は、メモリ301、第1信号処理部304、第2信号処理部305などを構成するトランジスタなどを構成する。第7半導体領域3011には、第3基板の第1のビア配線(コンタクト)の配線3021が接続されている。不図示であるが、第3基板に設けられているトランジスタのゲートにも、第3基板の第1のビア配線(コンタクト)の配線3021が接続されている。配線3021は、第3基板の第1の配線層の配線3022と接続されている。なお、図10には、配線層数が1つの例しか示していないが、配線層数は2以上設けてもよい。
 第1の配線層の配線3022は、TSV配線5030と電気的に接続している。TSV配線5030は、第3基板の半導体層3010を貫通する配線である。TSV配線5030は、配線3031、バンプ5130を介して、電極5140と電気的に接続している。TSV配線5030と接続する電極5140には、第3の基板に設けられている回路に駆動電圧が供給される。また、TSV配線5030は、第3の基板に設けられている回路にグランド電圧を供給する配線であってもよい。もっとも、駆動電圧用のTSV配線5030と、グランド電圧用のTSV配線5030は、便宜上同じ図を用いているが、これらは別のTSV配線であり、電気的に分離されている。
 TSV配線5020は、例えば、第2基板2100に設けられている画素回路の駆動電圧を供給する配線である。このため、アバランシェ増倍による大電流および電圧降下により、TSV配線5020の電位が変化する可能性がある。そのため、第2基板2100と第3基板3100の駆動電圧を供給するために、共通のTSV配線を設けると、第3基板3100の回路に供給する電圧が変動する可能性があり、高速動作などに影響を与えうる。そこで、本実施形態では、第2基板2100の駆動電圧を供給するTSV配線5020と、第3基板3100の駆動電圧を供給するTSV配線5030とを別々の配線とすることにより、第3基板3100への影響を抑制する構成としている。
 また、TSV配線5010、5020、5030は、外部から所定の電圧値を有する電圧を供給される配線であるが、光電変換装置100の内部で、この所定の電圧値とは異なる電圧を生成する電源回路を設けてもよい。電源回路は、第1基板1100、第2基板2100、第3基板3100のいずれか、あるいは、これら複数の基板に設けることができる。
 ここで、第1基板1100と第2基板2100の接合面を経由し、第1配線構造1120の配線と第2配線構造2120の配線とを接続する配線の数を第1接続数とする。また、第2基板2100と第3基板3100の接合面を経由し、第2配線構造2120の配線と第3配線構造3120の配線とを接続する配線の数を第2接続数とする。この場合、第1接続数は、第2接続数よりも多い。また、画素領域12に着目しても、第1接続数は、第2接続数よりも多い。
 (第1基板と第2基板の接続関係)
 図7は、第1基板1100と第2基板2100との電気的接続関係を平面視で模式的に示したものである。APDを含む光電変換部102を有する画素101が二次元状に配列されている。
 図7に示す接続領域121は、図10に示す各画素101の第1半導体領域1011と第2基板とを電気的に接続する接合部1040aと対応している。すなわち、画素領域12において、各画素は画素毎に第1基板と第2基板が電気的に接続されている。
 図7に示す配線161は、図10の配線1022bに相当する配線である。また、接続領域151は、図10の配線1022bと電気的に接続する接合部1040bに相当する配線である。
 図7に示す符合131は、複数の画素101で、第2基板に設けられている所定の回路を共有する単位(ブロック)を示している。例えば、所定の回路とは、第1基板に設けられているTDC回路である。すなわち、以下で説明する図8に示されているように、図7の例では、4画素×4画素の計16画素が1つのTDC回路を共有している。このような構成により、第2基板のうち、TDC回路が占める面積を小さくすることが可能となる。また、ブロック内での信号タイミングばらつきを低減することも可能である。例えば、第2基板に配置するTDC回路を符合131で示すブロックの中央に配置し、各画素回路からの配線引き回しを同等に設計する。これにより、配線レイアウトの差による信号タイミングばらつきを低減することができる。
 ここで、4画素×4画素の計16画素が1つのTDC回路で共有する場合、少なくとも2つの方式がある。
 第1の方式は、撮像用の4画素×4画素を1つの測距用画素として利用する方式である。TDC回路は、回路規模が多いため、例えば小さな画素を多く配置する場合、画素毎にTDC回路を配置することが困難である。そのため、複数の画素で1つのTDC回路を共有する方式が採用されうる。特に、測距用の用途においては、撮像用光電変換装置のようにすべての画素を使用する必要がなく、複数画素の信号を集約して出力する方式でも問題ない場合がある。この場合、複数画素で1つのTDC回路を共有する方式が有効である。また、アバランシェフォトダイオードの場合、1つのフォトンが入射された後、リチャージされるまでの不感期間が存在する。同一画素において、この不感期間に次のフォトンが入射されても、信号として検出することができない。そのため、1つの測距用画素が1画素だけで構成されるよりも、4画素×4画素を1つの測距用画素として構成される方が、不感期間によるカウントロスを減らすことができる。但し、この形式を採用する場合、どの画素から出力された信号かを識別することはできない。
 第2の方式は、4画素×4画素の各画素から、光電変換部からの出力信号とともに各画素のアドレス情報をTDC回路に入力して処理するという方式である。このような方式によれば、同時に光が複数の画素に入射しない限り、取得された光到来時間がどの画素からの出力に対応するかが特定できる。
 (第2基板と第3基板の接続関係)
 図8は、第2基板2100と第3基板3100との電気的接続関係を平面視で模式的に示したものである。図8においては、図3で説明した垂直走査回路部202、水平走査回路部203、制御パルス生成部206が省略されている。
 図8に示す接続領域221は、図10に示す接合部1040aと接合している接合部2040aに対応している。回路241は、例えば、TDC回路であり、1つの回路が各ブロック231に対して設けられている。図8の例では、16個の画素から出力される信号を1つの回路241で処理するため、1つのブロック231に対して、1つの回路241が設けられている。各ブロック列に対応して設けられている複数の回路241は、配線261で接続されている。各回路241は、各ブロック231に対応して設けられている。また、第1ブロック231と対応する第1回路241は、第1ブロック231と平面視で重複するように配されている。このように配置することにより、第1ブロック231に属する複数の光電変換部と、これらの複数の光電変換部からの出力信号を処理する第1回路241との物理的な距離が近くなることから、信号の伝搬遅延を抑制することができる。このため、各ブロックに属する複数の画素間での信号を処理するタイミングのばらつきも抑制することが可能である。
 また、図8には、各ブロック列に対応して、DFE242が設けられており、各DFE242は、配線261と接続されている。DFE242からの出力は、TSV配線252(図10におけるTSV配線5040)を介して、第3基板3100に入力されるように構成されている。このように、第2基板2100では、DFE242が最後の信号処理回路となり、第3基板3100に信号を出力する回路となる。そのため、第2基板2100と第3基板3100とを接続するTSV配線252(5040)が設けられている側に、DFE242を配することは、配線の引き回しの効率化を図る点でメリットがある。すなわち、平面視で、画素領域に対して、所定の方向に第2基板2100と第3基板3100とを接続するTSV配線がある場合において、DFE242も、画素領域に対して前記所定の方向に設けられている。具体的には、図8では、画素領域に対して所定の方向とは、下方向である。
 また、本実施形態では、第2基板2100にDFE242が設けられており、第3基板3100にDFE242が設けられていない。そのため、画素回路の一部である回路241(TDC回路)と、TSV配線252(5040)との間に、DFE242が設けられることになる。画素回路とTSV配線252(5040)とが接続され、その後段にTDC回路が設けられることになると、画素回路に付加する容量が増加する。このため、信号の伝搬遅延が生じることになり、信号処理のばらつきが生じうる。そこで、TDC回路とTSV配線252(5040)との間にDFE242を設けることにより、上記した不都合を低減することとしている。
 図8において、第2基板2100のTSV配線251(図10におけるTSV配線5010)は、APD103に電圧VLを供給する配線である。また、第2基板2100のTSV配線253(図10におけるTSV配線5020)は、第2基板2100に駆動電圧を供給する配線である。
 (第3基板と他の部材との接続関係)
 図9は、第3基板3100と、半導体デバイスの外部、第2基板2100、第1基板1100との電気的接続関係を平面視で模式的に示したものである。
 図9には、図4で示したメモリ301、制御回路部302および303、第1信号処理部304、第2信号処理部305、が示されている。
 図9の上部には、TSV配線354(図10におけるTSV配線5030)、TSV配線355(図10におけるTSV配線5020)が記載されている。また、図9の下部には、TSV配線352(図10におけるTSV配線5030)、TSV配線355(図10におけるTSV配線5020)TSV配線354(図10におけるTSV配線5030)が記載されている。
 図10に戻り、第1基板の接合部1040aと1040bには、第1基板1100の第1半導体領域1011、または、第2基板2100の回路を構成する半導体領域と電気的に接続されていない複数の接合部がある。これらの接合部は、第1基板1100と第2基板2100との接合を強化するために設けられている接合部である。これらの接合部は、電気的にフローティングでもよいし、あるいは、駆動電圧またはグランド電圧のいずれかに電気的に接続していてもよい。
 (製造方法)
 図11から図13Bは、実施形態1に係る光電変換装置1000の製造方法の説明図である。
 図11は、第1基板1100と第2基板2100とを接合する工程を示す図である。具体的には、第1基板1100の配線構造1120(第1配線構造)と、第2基板2100の配線構造2120(第2配線構造)とが、第1半導体層1010と第2半導体層2010との間に設けられるように積層される。この工程では、第1基板の接合部1040と、第2基板の接合部2040と接合して、金属接合部となる。
 図12は、第1基板1100と第2基板2100を積層した後に、これらに第3基板3100を積層する工程を示す図である。具体的には、第3基板の配線構造3020(第3配線構造)が、第2半導体層2010と第3半導体層3010との間に設けられるように積層される。
 ここで、第3基板3100を積層する前に、第2基板2100の第2半導体層2010は薄化工程により、薄化される。また、第2半導体層2010の薄化工程後に、絶縁層2030が設けられる。絶縁層2030は、例えば、酸化シリコンからなる層である。その後、図12に示すように、第1基板1100と第2基板2100の積層体に、第3基板3100が積層される。
 図13Aは、TSVを設ける配線工程と第1基板の薄化工程を示す図である。具体的には、TSV配線5010~5050などを形成し、第3基板3100の第3半導体層3010側の面(裏面)に、第3基板用の支持基板3050を設ける。次に、第1基板1100の第1半導体層1010を、光入射面側(裏面側)から薄化する薄化工程を行う。支持基板3050は、この第1半導体層1010の薄化工程において必要な工程である。
 図13Bは、後半のウエハ工程と実装工程を示す図である。具体的には、まず、ピニング層1031と、マイクロレンズ1032を設ける。次に、第3基板用の支持基板3050を剥離する。これにより、ウエハ工程が完了される。最後に、実装工程として、バンプ5130と絶縁性接着領域5110を介して、パッケージ基板5120が設けられる。
 なお、画素が設けられる第1基板1100の厚さは第2基板2100、第3基板3100の厚さと比較して1/5から1/10ほどの厚さである。第1半導体層1110の厚さは、光電変換する光の波長に応じて、前述の薄化工程において2~10μm程度に薄化されるためである。第2基板2100、第3基板3100の厚さは各基板に配される素子によって決まるが、例えば第3基板3100にメモリとしてDRAMを配する場合、第3基板3100は50~100μm程度の厚みをもって構成される。第3基板にメモリ以外の処理回路を配する場合も同様である。ここで、第1基板1100の配線構造1120に設けられる配線の層数は、メモリや処理回路を配する基板の配線構造に設けられる配線の層数よりも少ない。第1基板1100の配線構造1120に設けられる配線の層数と、メモリや処理回路を配する基板の配線構造に設けられる配線の層数はいずれも5~10層程度である。各配線構造内で、配線層ごとに主成分の異なる配線が設けられていてもよい。主成分とは、例えばアルミニウム、銅、タングステンなどである。例えば6層の配線層のうち1層の主成分はアルミニウムであって、残りの5層の主成分は銅であってもよい。また、配線構造ごとに異なる主成分の配線層が多くなっていてもよい。例えば第1基板1100の配線構造1120のうち、各配線層の主成分として最も多いものは銅であり、第2基板2100の配線構造2120のうち、各配線層の主成分として最も多いものはアルミニウムであってもよい。
 (実施形態2)
 図14に実施形態2の形態を示す。実施形態2は、第1基板の配線構造1120と接触する点において、実施形態1とは異なる。
 すなわち、実施形態1では、図10に示すように、TSV配線5010が第2基板の配線構造2120と接触していたのに対して、実施形態2では、TSV配線5010が第2基板の配線構造2120を貫通し、第1基板の配線構造1120と接触している。また、TSV配線5010は、第1基板の配線構造1120と第2基板の配線構造2120に設けられたメタルボンディングを介せずに、電圧が供給されることになる。
 ここで、TSV配線5010に供給される電圧VLは、第4半導体領域1014に供給される電圧であり、高電圧である。また、第2基板2100に設けられる信号処理部201には、微細プロセスを適用した回路が設けられうる。そのため、第2基板の配線構造2120の配線層に設けられた配線を介せずに、TSV配線5010によって、第4半導体領域1014に直接電圧を供給できる。これにより、第2基板2100に設けられる微細プロセスを適用する回路にダメージを与える可能性を低減することができる。
 (実施形態3)
 図15に実施形態3の形態を示す。実施形態3は、外部と電気的に接続する電極が、光入射側に設けられている点において、実施形態1および実施形態2と異なる。
 すなわち、実施形態1および2では、光入射面(第1面)とは反対側の面(第2面)に設けられた電極5140が外部と電気的に接続する電極であった。しかし、実施形態3では、光入射側に設けられている電極4210、電極4220、電極4230が外部と電気的に接続する電極となる。これらの電極4210から4230は、パッド電極とも呼ぶ。
 上記のとおり、第4半導体領域1014に供給される電圧VLは高電圧であり、また、第2基板2100は、微細プロセスが適用される回路が設けられる。そのため、図15に示すように、電極4210から供給される電圧は、第1基板1100のみに供給される構成とすれば、第2基板2100に設けられる微細プロセスを適用する回路への高電圧印加を回避することができる。
 また、図15では、第2基板2100用の駆動電圧を外部から供給するための電極4220が配線構造2120の配線層に設けられている。第2基板2100には、高速動作が必要な回路が設けられる場合がある。ここで、第1基板の配線構造1120を介して、第2基板の配線構造2120の配線層に駆動電圧を供給する場合を第1のケースとする。また、第2基板の配線構造2120に直接電圧を供給する場合を第2のケースとする。第1のケースに比べて、第2のケースの方が、外部と接続する電極から第2基板2100に設けられる回路までの配線長さは短くなる。配線長さが長くなると信号の伝搬遅延により、高速動作が必要な回路の動作が遅くなる可能性がある。そこで、本実施形では、第2基板2100の駆動電圧を外部から供給するための電極4220が配線構造2120の配線層に設けられている。
 さらに、図15では、第3基板3100用の駆動電圧を外部から供給するための電極4230が、第2基板の配線構造2120の配線層と接触している。電極4230は、第2基板の配線構造2120の配線層を介して、TSV配線5070と電気的に接続している。図15におけるTSV配線5070は、図10のTSV配線5030に相当する配線である。ただし、図15のTSV配線5070は、第2基板の半導体層2010と、第3基板の配線構造3120と、第3基板の半導体層3010を貫通しており、TSV配線5030と電気的に接続するように構成されている。
 (実施形態4)
 図16に実施形態4の形態を示す。実施形態4は、外部と電気的に接続される電極であって、第3基板3100の回路に駆動電圧を供給する電極を、第3基板の配線構造3120に設ける点において、実施形態3と異なる。
 第3基板3100にも、高速動作が必要な回路が設けられる場合がある。そこで、図16に示すように、第3基板の配線構造3120の配線層に、第3基板3100用の駆動電圧を外部から供給する電極4240を設けることができる。この構成によれば、駆動電圧を外部から供給される電極4240から、第3基板3100に設けられる回路までの配線長さを短くすることができ、高速動作が必要な回路の動作が遅くなる可能性を低減することが可能である。
 図16に示す電極4210、4220、4240を形成する際には、シリコン基板または配線構造の一部である層間絶縁膜等をエッチングして、パッド開口を設ける必要がある。ここで、3つの電極が接触される配線層は、それぞれ異なる高さの配線層であるため、パッド開口の数だけ開口工程が必要となる。
 (実施形態5)
 図17に実施形態5の形態を示す。実施形態5では、外部と電気的に接続される電極であって、第1基板1100の第4半導体領域1014に電圧を供給する電極を光照射面側から引き出す点において、実施形態1および2と異なる。
 すなわち、図10を用いて説明した実施形態1や、図14を用いて説明した実施形態2では、すべての外部と電気的に接続する電極を、光入射面(第1面)とは反対側の面(第2面)から引き出していた。しかし、第1基板1100に供給される高電圧用の配線は、信頼性低下の抑制の観点から、第2基板2100や第3基板3100を介さずに電圧を供給するように構成するのがよい。そのため、図17では、第1基板の配線構造1120の配線層の上に、電極4210を設け、第2基板2100や第3基板3100に高電圧が供給されない構成としている。
 (実施形態6)
 図18に実施形態6の形態を示す。実施形態6では、第2基板の配線構造と第3基板の配線構造とがメタルボンディング構造になっている点において、実施形態1とは異なる。
 すなわち、図10では、1つのTSV配線5010により、電極5140と、第2基板の配線構造2120の配線層とを接続していた。これに対して、図18では、2つのTSV配線5310と5320という2段構造のTSV配線を用いて、電極5140と第2基板の配線構造2120とを接続している。また、TSV配線5310と5320の間には、第2基板の接合部2050bと、第3基板の接合部3040bの接続からなるメタルボンディング構造が設けられている。
 また、図10のTSV配線5040も、図18では、TSV配線5330と5340という2段構造のTSV配線になっている。また、TSV配線5330と5340との間には、メタルボンディング構造が設けられている。
 さらに、図10のTSV配線5020も、図18では、TSV配線5350と5360という2段構造のTSV配線になっている。また、TSV配線5350と5360との間には、メタルボンディング構造が設けられている。
 このような図18に示す構成によれば、第2基板の半導体層2010と第3基板の半導体層3010の両方を貫通するTSV配線が不要となる。
 また、画素領域には、第2基板の接合部2050aと、第3基板の接合部3040aの接続からなるメタルボンディング構造が設けられている。このメタルボンディング構造は各基板に設けられている回路の一部を構成していなくてもよい。これにより、第2基板2100と第3基板3100との貼り合わせ強度を向上させることができる。
 (実施形態7)
 図19に実施形態7の形態を示す。実施形態7では、第2基板と第3基板とがメタルボンディング構造で電気的に接続している点で、図15に示した実施形態3と異なる。また、実施形態7では、外部と接続する電極が光入射面(第1面)側に設けられている点で、図18に示した実施形態6と異なる。
 図19に示すように、第2基板の接合部2050bと、第3基板の接合部3040bが設けられているため、図15に示すTSV配線5050と5040は、図19では、1つのTSV配線5370に機能が統合される。図15では、TSV配線5040は、第2基板の半導体層2010と、第3基板の半導体層3010の両方を貫通していたが、実施形態7の形態によれば、このようなTSV配線が不要となる。
 また、図15に示すTSV配線5030と5070は、図19では、1つのTSV配線5380に機能が統合される。図15では、TSV配線5070は、第2基板の半導体層2010と、第3基板の半導体層3010の両方を貫通していたが、実施形態7の形態によれば、このようなTSV配線が不要となる。
 さらに、第2基板に設けられている回路に駆動電圧を供給する配線も、第1基板の接合部1040bと第2基板の接合部2040bを介して、第1基板の配線構造1120が有する配線層と電気的に接続している。この配線層の上に電極4250が設けられている。電極4250は、外部と電気的に接続を行うパッド部となる。
 加えて、第3基板に設けられている回路に駆動電圧を供給する配線も、第2基板の接合部2050bと第3基板の接合部3040bを介して、第1基板の配線構造1120が有する配線層と電気的に接続している。この配線層の上に電極4260が設けられている。電極4260は、外部と電気的に接続を行うパッド部となる。
 以上のように、電極4210、電極4250、電極4260は、第1基板の配線構造1120の同一の配線層と接触するように設けられている。このため、これらの電極を形成する際のパッド開口部の形成時にパッド開口の深さは略同一になる。したがって、図15に示す例と比較して、配線工程のプロセスが容易になる。
 (実施形態8)
 図20に実施形態8の形態を示す。実施形態6では、第2基板と第3基板との接合にメタルボンディングを用いるのに対して、実施形態8では、第2基板と第3基板との接合にマイクロバンプを用いる点が異なる。
 図20に示すように、第3基板の配線構造3120には、第1のビア配線の配線3021と、これに接続する第1配線層の配線3022が設けられている。また、配線3022と接続する第2のビア配線の配線3023と、配線3023と接続する第2の配線層の配線3024が設けられている。他方、第2基板の配線構造2120には、TSV配線5340と接続する配線2060が設けられており、第2基板の配線2060と第3基板の配線3024は、マイクロバンプ2070を介して、電気的に接続されている。マイクロバンプ2070は、固相拡散によるCuバンプ接合や、はんだ溶融によるマイクロバンプ結合により構成される。マイクロバンプ2070間の隙間には、有機充填材が挿入される。
 (実施形態9)
 図21に実施形態9の形態を示す。実施形態1では、第2基板から出力する信号を第3基板へ入力するためにTSV配線を用いているのに対して、実施形態9では、この目的でメタルボンディングを用いる点が異なる。
 図21に示すように、第2基板2100に設けられている回路からの出力は、配線2080を介して、第3基板3100に設けられている回路に入力される。第2基板2100には、第2基板の半導体層2010を貫通する深いトレンチ構造2081、すなわち、DTI(Deep Trench Isolation)構造が形成されている。トレンチ構造2018の中には、絶縁体2082が充填されており、配線2080と第2基板の半導体層2010の間の電気的な接続を回避している。
 図21では、第2基板2100に各画素に対応した回路を設けることを想定しており、この各画素に対応した回路からの出力が第3基板の回路に入力されることを示している。この場合、配線2080は、画素ごとに対応して設けられており、配線2080は、第2基板の接合部2050a、第3基板の接合部3040aなどを介して、第3基板3100の回路に入力される。第3基板3100の回路も画素ごとに対応して設けられている。すなわち、図18の例では、光電変換部と、光電変換部から信号が入力される第2基板2100の回路とが、メタルボンディングを介して画素毎に電気的に接続されている。また、第3基板3100の回路に信号を出力する第2基板2100の回路と、第3基板3100の回路とが、メタルボンディングを介して画素毎に電気的に接続されている。
 図21では、隣り合う配線2080同士の距離をL1で示している。ここで、隣り合う配線2080同士の距離が複数ある場合は、最短距離をL1とする。画素間のピッチをPとしたときに、0.8P<L1<1.2Pの関係を満たす。また、好ましくは、0.9P<L1<1.1Pの関係を満たす。
 ここで、第1半導体領域1011と接続するコンタクト配線1021同士の距離を、ピッチPとしてもよい。すなわち、第1の画素の第1半導体領域1011と接続する第1コンタクト配線と、第1の画素と隣り合う第2の画素の第1半導体領域1011と接続する第2コンタクト配線との距離を、ピッチPとしてもよい。
 図21では、第2基板2100と第3基板3100を電気的に接続するTSV配線5040と5050が設けられている。実施形態1に係る図10において、TSV配線5040と5050は、第2基板2100から出力した信号を第3基板3100への入力するための配線である。本実施形態では、第2基板2100から出力した信号を第3基板3100への入力するための配線として、配線2080を用いるため、TSV配線5040と5050を設けなくてもよい。
 他方で、第2基板2100に設けられている回路と、第3基板3100に設けられている回路とで、駆動電圧を与える電源配線、または、グランド配線を共有する場合もありうる。この場合、図21に示したTSV配線5040と5050を用いて、共通の電位を、第2基板2100と第3基板3100に設けられた回路に供給するように構成してもよい。あるいは、第2基板の接合部2050bと、第3基板の接合部3040bとを有するメタルボンディング配線を用いて、第2基板2100と第3基板3100に設けられた回路に共通の電位を供給するように構成してもよい。
 各画素に対応して設けられている第2基板2100の回路のそれぞれは、平面視で見た場合に、並進対称となるようにレイアウトされていてもよい。あるいは、各画素に対応して設けられている第2基板2100の回路のそれぞれは、平面視で見た場合に、線対称(ミラー対称)となるようにレイアウトされていてもよい。ミラー対称となるようにレイアウトされている場合、第1画素に対応した第2基板2100の第1回路と、第2画素に対応した第2基板2100の第2回路とで、一部の機能・部材を共有化することが容易であり、小スペース化を図ることができる。例えば、第1回路と第2回路を構成するMOSトランジスタのウエルを共通化することもできる。これにより、第2基板2100に設けられる回路面積を小さくすることができる。特に、光電変換部を狭ピッチで設ける場合において、第2基板2100の回路が占める面積に律速して、光電変換部が狭ピッチで設けられないというケースを回避することができる。
 また、各画素に対応して設けられている第3基板3100の回路のそれぞれは、平面視で見た場合に、並進対称となるようにレイアウトされていても、線対称(ミラー対称)となるようにレイアウトされていてもよい。後者の場合、上記したメリットを享受することが可能になる。
 上記したように、図21では、第3基板3100の回路に出力する第2基板2100の回路と、第3基板3100の回路とが画素毎に設けられる例を示した。しかし、光電変換部からの信号が入力される第2基板2100の回路は画素毎に設けられる場合であっても、その後の信号処理を行う回路は、複数の画素ごとに対応して設けられるときがある。すなわち、画素ブロックごとに、第2基板2100の信号処理回路が1つ設けられる。この場合、第3基板3100の回路に信号を出力する第2基板2100の回路と、第3基板3100の回路とが、メタルボンディングを介して、画素毎ではなく、画素ブロックごとに電気的に接続されることになる。具体的には、配線2080は、画素毎ではなく、画素ブロック毎に設けられることになる。この場合、第1基板1100と第2基板2100とを接合するメタルボンディングの数は第2基板2100と第3基板3100とを接合するメタルボンディングの数よりも多い。
 (実施形態10)
 図22に実施形態10の形態を示す。実施形態10の光電変換部の画素構造は、アバランシェ増倍領域が小さくなっている点において、実施形態1とは異なる。
 図22において、第1導電型の第1半導体領域1011の幅(図面横方向の長さ)は、図10における第1半導体領域1011の幅よりも狭い。また、不図示であるが、平面視において、図19の第1半導体領域1011の面積は、図10における第1半導体領域1011の面積よりも小さい。
 また、平面視で、第1導電型の第1半導体領域1011と重なる位置には、第6半導体領域1016が設けられている。第6半導体領域1016は、第1導電型であっても第2導電型であってもよい。第6半導体領域1016は、信号電荷に対するポテンシャルが、第2半導体領域1012よりも低くなるように構成されている。例えば、第6半導体領域1016が第1導電型である場合、第6半導体領域1016の不純物濃度は、第1半導体領域1011の不純物濃度よりも低い。
 このようなポテンシャル構造を構成することにより、第3半導体領域1013で発生した電荷は、第2半導体領域1012よりも、第6半導体領域1016に収集されやすくなるように構成されている。収集された信号電荷は、第6半導体領域1016と第1半導体領域1011との間に形成されるアバランシェ増倍領域で増倍される。
 さらに、第1導電型の第1半導体領域1011の両側には、第7半導体領域1017が設けられている。第7半導体領域1017の導電型は第1導電型であっても、第2導電型であってもよい。例えば、第1導電型である場合、第1導電型の第7半導体領域1017の不純物濃度は、第1半導体領域1011の不純物濃度よりも低い。また、第7半導体領域1017が第2導電型である場合、第7半導体領域1017の不純物濃度は、第2導電型の第4半導体領域1014の不純物濃度よりも低い。
 このような不純物濃度の関係とすることにより、第1半導体領域1011と第7半導体領域1017との間にアバランシェ増倍領域が形成される可能性を低減させることができる。
 本実施形態では、以上のような構成を有することから、第3半導体領域1013で生じた電荷を効率的に収集してアバランシェ増倍させることができるため、光電変換部の感度を向上させやすくなる。また、実施形態1と比較して、第1半導体領域1011の幅または面積が小さいことから、アバランシェ増倍領域を小さくできるため、DCR(Dark Count Rate)の値を低減することができる。
 (実施形態11)
 図23から図25に実施形態11の形態を示す。また、実施形態1で説明した図1から図6と図10は、実施形態11の形態にも適用される。実施形態11は、画素列ごとに処理回路が設けられている点において、画素ブロックごとに処理回路が設けられている実施形態1とは異なる。
 図23は、第1基板1100と第2基板2100との電気的接続関係を平面視で模式的に示したものである。図7と異なるのは、画素ブロックの概念を示していない点である。
 図24は、第2基板2100と第3基板3100との電気的接続関係を平面視で模式的に示したものである。図8では、回路241がブロック毎に対応して設けられていたが、図21では、回路241が各画素列に対応して設けられている。また、図8では、画素領域と重複する領域に回路21が設けられていたが、図24では、画素領域と重複しない領域に回路21が設けられている。すなわち、図24では、画素領域の外側である周辺領域に回路241が設けられている。ここで、回路241とは、例えば、TDC回路である。この構成によれば、複数の光電変換部からの熱伝搬と、TDC回路からの熱伝搬が干渉しないため、第1基板1100と第2基板2100との間の熱伝搬を抑制することができる。これにより、光電変換装置100を安定に動作させることが可能となる。
 第2基板2100には、光電変換部からの信号を処理する画素回路が二次元的に配されている画素回路領域が設けられている。TDC回路を画素領域に設けようとすると、画素回路が占める面積が制限される。画素回路の高機能化を実現しようとすると、画素回路が占める面積も大きくなる。そこで、画素回路の高機能化を達成するために、実施形態11のように、TDC回路を画素領域の外側である周辺領域に設ける。例えば、ToFシステムを用途として想定した場合、外光除去回路を画素毎に設けることが考えられる。TDC回路を周辺領域に設ければ、画素回路としての外光除去回路を第2基板2100の画素領域に配することも可能となる。これにより、画素回路を高機能化することができる。
 また、平面視において、回路241に最近接の画素回路と、回路241との距離を2μm以上離して、回路241(例:TDC回路)を配することが好ましい。平面視において、回路241と光電変換部が配置される画素領域との距離が離れるため、第2基板2100の回路241と、第1基板1100の画素領域との距離も離れる。この結果、第1基板1100の画素領域が発熱しても、TDC回路に与える熱の影響は低減できる。逆に、第2基板2100のTDC回路が発熱しても、第1基板1100の画素領域が有する光電変換部に与える熱の影響を低減できる。
 図25は、第3基板3100と、半導体デバイスの外部、第2基板2100、第1基板1100との電気的接続関係を平面視で模式的に示したものである。図9と異なるのは、第3基板3100にメモリ301が設けられていない点である。その代わりに、図25では、第3信号処理部309が設けられている。すなわち、第2基板2100から出力された信号は、メモリを介することなく、第3信号処理部309によって処理されることになる。このような構成によれば、実施形態1と比較して、信号処理部を配置する面積を大面積化することができ、より負荷の大きい信号処理を行うことが可能となる。例えば、負荷の大きい演算を行う学習済モデルを搭載することも可能となる。
 (実施形態12)
 図26から29に実施形態12の形態を示す。実施形態12は、第3基板に設けられた信号処理部の処理結果を、第2基板の制御回路部にフィードバックを行い、高精度あるいは高機能の光電変換装置を達成する点において、実施形態1と異なる。
 図26は、第1基板1100と第2基板2100との電気的接続関係を平面視で模式的に示したものである。符合131は、複数の画素101で、第2基板に設けられている所定の回路を共有する単位(ブロック)である。
 図27は、第2基板2100と第3基板3100との電気的接続関係を平面視で模式的に示したものである。図27においては、実施形態1で説明した図8で省略した垂直走査回路部202と水平走査回路部203(これらを総称して、「走査回路部」ともいう)が図示されている。また、走査回路部202、203、あるいは、他の回路を制御するための制御部243が設けられている。図27では、制御部243は、走査回路部202、203を制御する例を示す。図27では、走査回路部202、203から画素回路部に対して、ブロック毎に制御線を設けた例を示しているが、画素毎に制御線を設けてもよい。
 TSV配線254(図29におけるTSV配線5080)は、第3基板3100に設けられている信号処理部の処理結果を第2基板2100に設けられている制御部243に伝達するための配線である。具体的には、図29に示すように、第3基板3100の信号処理部の処理結果は、TSV配線5090、配線3031、TSV配線5080(図27におけるTSV配線254)を介して、制御部243に入力される。
 制御部243では、種々の制御が可能である。
 例えば、画素ブロックごとに露光時間を異なるように制御する露光が可能である。具体的には、画素領域においては、単位時間あたりで比較して、多くの光子を検出する画素ブロック(第1画素ブロック)と、少ない光子を検出する画素ブロック(第2画素ブロック)が存在しうる。この場合、第2画素ブロックの露光時間を、第1画素ブロックの露光時間よりも長くするように制御部243で制御することが可能である。これにより、ダイナミックレンジの拡大が可能である。例えば、第3基板3100の信号処理部の処理結果である前のフレームで取得された各画素ブロックのカウント値に基づいて、各画素ブロックの露光時間を制御部243で制御することが可能である。露光時間は、アバランシェ増倍を行うために、光電変換部に逆バイアスを印加するか否かで制御してもよいし、カウンタで光子に対応するパルスをカウントするか否かで制御してもよい。
 また、例えば、安全・安心を確保するシステム(例えば、監視カメラ)に本光電変換装置を適用する場合、イベントの発生前は低解像度で撮影し、イベントの発生後は高解像度で撮影したいというニーズがある。アバランシェフォトダイオードは、高電圧を印加するため、消費電力が大きいため、イベント発生前を低解像度で撮影すれば、低消費電力化が図れるからである。そこで、第3基板3100の信号処理部では、イベントが発生しているか否かを判定し、その判定結果に応じて、制御部243により、低解像度モードから高解像モードに制御するということが可能である。具体的には、例えば、2×2画素の計4画素のうち、1画素のみに逆バイアスを印加して光子を取得するように構成することで、低解像度モードを達成することが可能である。そして、イベント発生を検知したら、2×2画素の全ての画素で光子を取得するように構成するように、制御部243で制御すればよい。イベントが発生しているか否かは、機械学習によって作成された学習済モデルを有する第2信号処理部305を用いて判定してもよい。イベントは、不審者・不審物の検出、所定数以上の人・物体の検出、移動体の衝突予知、などである。また、上記では、光電変換部の切り替えで低消費電力化を図ったが、カウンタによるカウントをするか否かの切り替えで低消費電力化を図ってもよい。
 また、例えば、関心領域(ROI:Region of Interest)の情報だけを取得することも可能である。例えば、一部の領域に関心のある検出物がある場合に、その他の領域について光電変換を行うことは消費電力の無駄になる。そこで、関心領域について情報取得するように、制御部243で制御する。具体的には、第3基板3100の信号処理部により、検出物がある関心領域を判定し、関心領域については光電変換を行い、関心領域以外の領域については光電変換を行わないように、制御部243により制御する。これより、低消費電力化が図られる。あるいは、関心領域については、光子のカウントをカウンタで行わず、関心領域については、光子のカウントをカウンタで行うという制御を制御部243が行ってもよい。この場合においても、必要のないカウンタを止めることで、低消費電力化を図ることができる。
 図28は、第3基板3100と、半導体デバイスの外部、第2基板2100、第1基板1100との電気的接続関係を平面視で模式的に示したものである。実施形態1で説明した図9と異なるのは、TSV配線356(図26におけるTSV配線5090)と、TSV配線357(図26におけるTSV配線5080)が図示されている点である。これらのTSV配線は、第3基板3100に設けられている信号処理部の処理結果を第2基板2100に設けられている制御部243に伝達するための配線である。
 (実施形態13)
 図30から図42に実施形態13の形態を示す。実施形態13では、回路(例えば、TDC回路)が、第3基板に設けられる点において、実施形態1と異なる。なお、実施形態13において、第1基板1100の電気的接続関係は、図26と同じであるため、これを援用する。
 図30は、第2基板2100と第3基板3100との電気的接続関係等を平面視で模式的に示したものである。制御回路部302、303は省略されている。各ブロック231の中心部には、TSV配線254が設けられている。TSV配線254(図32におけるTSV配線5040)は、第2基板2100の出力を第3基板3100に入力するための配線である。
 図31は、第2基板2100と第3基板3100との電気的接続関係を平面視で模式的に示したものである。第3基板3100には、第1基板1100と第2基板2100の複数の画素ブロック231のそれぞれに対応して、複数の信号処理ブロック331のそれぞれが設けられている。
 具体的には、実施形態13では、実施形態1の回路241に相当する回路307が、信号処理ブロック毎に設けられている。回路307は、例えば、TDC回路である。例えば、第2基板2100に配されている他の回路の回路規模が大きくなり、TDC回路307が、第2基板2100に配することが難しい場合、本実施形態のように、第3基板3100にTDC回路307を設けることも可能である。
 また、光電変換装置100を撮像用の光電変換装置として用いる場合において、カウンタ回路213を第2基板2100と第3基板3100の両方に設けることも可能である。APDでは、画素毎にカウンタを有するため、カウンタを構成する回路規模が大きくなり、第2基板2100に占める面積も大きくなるからである。また、実施形態13では、実施形態1のDFE242に相当するDFE308が、信号処理ブロック331毎に設けられている。
 さらに、実施形態13では、信号処理ブロック毎にメモリ301が設けられている。
 図31において、各信号処理ブロックに設けられたメモリ301からの出力は、第1信号処理部304に入力され、第1信号処理部304からの出力は第2信号処理部305に入力されるように構成されている。
 以上のように、実施形態13では、各画素ブロックに対応して各信号処理ブロックが設けられており、並列して回路307(例えば、TDC回路)での信号処理が可能となることから、高速な信号処理が可能となる。
 また、第1信号処理部304および第2信号処理部305は、各信号処理ブロックの中に設けられていてもよい。また、第1信号処理部304を各信号処理ブロックの中に設け、第2信号処理部305は、図31に示したように、信号処理ブロックが配置されている領域の外に設けてもよい。
 (実施形態14)
 図33から図39に実施形態14の形態を示す。実施形態1と共通する部材には共通の番号を付し、説明を省略する。実施形態14は、第1基板1100、第2基板2100、第3基板3100に加え第4基板4100を積層する点で実施形態1と異なる。
 図33に示す構成では、外部と電気的に接続される電極であって、第4基板4100の回路に駆動電圧を供給する電極を第4基板の配線構造4120に設ける。第1~第3の各基板の回路に駆動電圧を供給する電極はそれぞれ第1~第3基板の配線構造に設けられている。具体的には、第1基板の電極4210が第1基板の配線構造に設けられ、第2基板の電極4220が第2基板の配線構造に設けられ、第3基板の電極4240が第3基板の配線構造に設けられ、第4基板の電極4270が第4基板の配線構造に設けられる。
 また、第2基板2100と第3基板3100、第3基板3100と第4基板4100との間はそれぞれTSV配線によって電気的に接続されている。具体的には、第2基板がバンプ5040を介して第3基板の配線層の配線3031に接続され、配線3031がバンプ5050を介して第3基板に接続される。第1基板がバンプ5060を介して第4基板の配線層の配線4031に接続され、配線4031がバンプ5100を介して第4基板に接続される。
 この構成によれば、駆動電圧を外部から供給される電極から、各基板に設けられる回路までの配線長さを短くすることができ、信号の伝搬遅延により回路の動作が遅くなる可能性を低減することができる。また、各基板に配された素子に応じた駆動電圧を各電極から供給することが可能である。
 図34に示す構成では、図33と同様に各基板の配線構造に各基板の回路に駆動電圧を供給する電極が設けられているが、第2基板2100と第3基板3100、第2基板2100と第4基板4100のそれぞれをTSV配線で接続する点で図33と異なっている。具体的には、第3基板がバンプ5150を介して第4基板の配線層の配線4031に接続され、配線4031がバンプ5100を介して第4基板に接続される。
 図35に示す構成では、第1基板1100、第3基板3100、第4基板4100のそれぞれに各基板の回路に駆動電圧を供給する電極が設けられている。第2基板2100と第3基板3100、第3基板3100と第4基板4100はTSV配線によって接続される点は図34に示す構成と共通する。第1基板1100には電極4250が設けられ、第1基板1100と第2基板2100との間は第1基板の接合部1040と第2基板の接合部2040による接合で電気的に接続されている。
 図36に示す構成では、第1基板1100と第3基板3100に各基板の回路に駆動電圧を供給する電極が設けられる。第1基板1100と第2基板2100とは第1基板の接合部1040と第2基板の接合部2040による接合で電気的に接続され、第3基板3100と第4基板4100とがTSV配線によって電気的に接続されている。電極4210、電極4250は、第1基板の配線構造1120の同一の配線層と接触するように設けられている。また、電極4240、電極4280は、第3基板の配線構造3120の同一の配線層と接触するように設けられている。このため、電極4210と電極4250、あるいは電極4240と電極4270を形成する際に形成されるパッド開口の深さは略同一になる。したがって、この構成によれば配線工程のプロセスが容易になる。
 図37に示す構成では、第1基板1100に第1基板1100の回路に駆動電圧を供給する電極が設けられる。第1基板1100と第2基板2100とは第1基板の接合部1040と第2基板の接合部2040による接合で電気的に接続される。第2基板2100と第3基板3100、第2基板2100と第4基板4100のそれぞれはTSV配線によって電気的に接続されている。
 つまり、電極4210、電極4250、電極4260、電極4290のそれぞれが第1基板の配線構造1120の同一の配線層と接触するように設けられている。したがって、各電極を形成する際に形成されるパッド開口の深さは略同一である。また、第1基板1100から第4基板4100の配線までを貫通する深いパッド開口を設ける必要がなくなるため、配線工程のプロセスが容易になる。
 図38に示す構成では、第1基板から第4基板までの各基板にTSV配線が接続されている。第1基板1100の配線と第4基板の配線層の配線5031がバンプ5250を介して接続され、第2基板2100の配線と配線5032がバンプ5240を介して接続される。第3基板3100の配線と配線5033がバンプ5230を介して接続され、第4基板4100と配線5034がバンプ5220を介して接続される。外部との接続端子のすべてを光電変換装置表面側に設けることができるので、画素領域周辺に確保される端子を配するための領域が減少し、光電変換装置の省面積化が見込まれる。
 (実施形態15)
 図39に実施形態15に係る光電変換装置の断面図を示す。実施形態1と共通する部材には共通の番号を付し、説明を省略する。実施形態15は、実施形態1の構成に対して主にパッド電極4290の構造を変更している。
 配線構造1120は、第1配線層M1、第2配線層M2、第3配線層M3、第4配線層M4と第1基板の接合部1040を含む。配線構造2120は、第1配線層M1、第2配線層M2と第2基板の接続部2040を含む。各配線層はいわゆる銅配線である。各配線層は平面視では例えばメッシュ状の構造であってもよい。すなわち、平面視である方向に並んだ配線と、その配線に交差する配線とが網目状の配線層を構成している。
 配線構造1120と配線構造2120において、第1配線層は、銅を主成分とする導体パターンを含む。第1配線層の導体パターンはシングルダマシン構造である。第1配線層と半導体層1110との電気的接続のためコンタクトが配されている。コンタクトはタングステンを主成分とする導体パターンである。第2、第3配線層は、銅を主成分とする導体パターンを含む。第2、第3配線層の導体パターンはデュアルダマシン構造であり、配線として機能する部分とビアとして機能する部分を含む。第4配線層も第2,第3配線層と同様である。
 パッド電極4290は、アルミニウムを主成分とする導体パターンである。パッド電極4290は、配線構造ではなく、半導体層1110の開口に配されている。ここで、パッド電極4290は、第2面P2と第1面P1との間に露出面を有する構成を示したが、パッド電極の露出面が第2面P2の上に位置していてもよい。
 本構造の形成方法について、簡単に説明する。配線構造1120の配線層M1の一部が露出するように、半導体層1110にパッド開口を形成する。そして、半導体層1110の第2面P2とパッド開口を覆うように絶縁体40―101を形成する。絶縁体40―101にパッド電極4290のビアとなる開口を形成する。パッド電極4290となる導電膜を形成したのち、所望のパターンになるように導電膜の不要な部分を除去する。更に、絶縁体40―102を形成したのに、パッド電極4290が露出する開口を形成する。このような方法で、本構成は形成可能である。
 また、第2面P2側から貫通電極40―104を設けてもよい。貫通電極40―104は、銅を主成分とする導体からなり、半導体層1110と導体との間にバリアメタルを有していてもよい。
 貫通電極40―104の上には、導体40―103が配されている。導体40―103は他の貫通電極に共通して設けられていてもよく、貫通電極40―104の導体の拡散を低減する機能を有していてもよい。
 配線構造1120、2120の各配線層の材料や構造は例示したものに限定されず、例えば、配線層と半導体層との間に更に導体層を有してもよい。また、コンタクトが2層積層されたスタックコンタクト構造を有していてもよい。
 (実施形態16)
 図40に実施形態16に係る光電変換装置の断面図を示す。実施形態1と共通する部材には共通の番号を付し、説明を省略する。実施形態15は、実施形態1の構成に対して主にパッド電極4290の構造を変更している。
 配線構造1120は、第1配線層M1、第2配線層M2、第3配線層M3、第4配線層M4と第1基板の接合部1040を含む。配線構造2120は、第1配線層M1、第2配線層M2と第2基板の接続部2040を含む。各配線層はいわゆる銅配線である。
 配線構造1120と配線構造2120において、第1配線層は、銅を主成分とする導体パターンを含む。第1配線層の導体パターンはシングルダマシン構造である。第1配線層と半導体層1120との電気的接続のためコンタクトが配されている。コンタクトはタングステンを主成分とする導体パターンである。第2、第3配線層は、銅を主成分とする導体パターンを含む。第2、第3配線層の導体パターンはデュアルダマシン構造であり、配線として機能する部分とビアとして機能する部分を含む。第4配線層も第2、第3配線層と同様である。
 パッド電極4300は、アルミニウムを主成分とする導体パターンである。パッド電極4300は、配線構造1120の第2、第3配線層に渡って設けられている。例えば、第1配線層と第2配線層を接続するビアとして機能する部分から第3配線層の配線として機能する部分を含む。パッド電極4300は、例えば、第2面P1と第5面P5との間に位置する。パッド電極4300は、第2面P2から第4面P4の間に設けることができ、第2面P2から第5面P5の間に設けることもできる。
 パッド電極4300は第1面と、第1面と反対側の面である第2面を有する。第1面は、半導体層の開口によって一部が露出されている。パッド電極4300の露出部は、外部端子との接続部、いわゆるパッド部として機能しうる。パッド電極4300は、その第2面にて、複数の銅を主成分とする導体と接続している。
 本実施形態とは別の形態として、パッド電極4300の第1面側の露出していない部分で電気的接続部を有することもできる。例えば、パッド電極4300は、アルミニウムを主成分とする導体からなるビアを有していてもよく、該ビアを通じて第1面側に位置する銅を主成分とする導体と電気的に接続してもよい。また、パッド電極4300は第1面にてタングステンを主成分とする導体によって、配線構造1120の第1配線層と接続してもよい。
 パッド電極4300は例えば、第3配線層を覆う絶縁体まで形成した後に、該絶縁体の一部を除去し、パッド電極4300となるアルミニウムを主成分とする膜を形成し、パターニングすることによって形成することができる。銅配線を形成したのちに、パッド電極4300を形成することで、微細な銅配線の平坦性を維持しつつ、厚い膜厚を有するパッド電極4300を形成することができる。
 本実施形態のパッド電極4300は配線構造1120に含まれる場合を示したが、配線構造2120に含まれていてもよい。また、パッド電極を設ける位置は、配線構造1120、2120のいずれであってもよく、限定されない。配線構造1120、2120の各配線層の材料や構造は例示したものに限定されず、例えば、第1配線層と半導体層との間に更に導体層を有してもよい。また、コンタクトが2層積層されたスタックコンタクト構造を有していてもよい。
 なお、ここまでの実施形態で説明してきたようなパッド電極は、半導体デバイス外部に接続され、半導体デバイス内で生じた信号を外部に出力したり、半導体デバイスの回路を駆動するために外部から供給される電圧が入力されたりするのに使用される。パッド電極からは静電気やサージ電圧といった外来ノイズも入力されるため、パッド電極付近に内部回路を保護するための保護回路を配してもよい。保護回路は例えばダイオードやGate Grounded MOS、RC Trigger MOS、またはこれらの素子の組み合わせによって構成される。保護回路は平面視でパッド電極に重なる部分に配してもよく、積層された基板のそれぞれに配された素子を駆動する電圧やパッドの配置に合わせて各基板に配置してもよい。
 (実施形態17)
 図41に実施形態17に係る光電変換装置の断面図を示す。実施形態1と共通する部材には共通の番号を付し、説明を省略する。実施形態17は、実施形態1の構成に対して主に画素の配置位置を変更している。
 ここまでに説明してきた実施形態では、画素領域12の外側に配された周辺領域13に平面視で重なる範囲にTSV配線が設けられている。しかし、TSV配線は例えば画素領域12と平面視で重なる範囲に設けられてもよい。本実施形態に係る光電変換装置では、少なくとも三層の半導体基板が積層されるため、TSV配線と平面視で重なる領域であってもTSV配線を介して入出力される電圧の画素への影響が低減され、面積を効率的に活用することができる。
 また、TSV配線と平面視で重なる領域に設けられた画素は光電変換に基づく信号を出力する有効画素に限られない。例えば光が入射しないよう入射面側を遮光膜に覆われたOB画素(Optical Black画素)や、出力線と接続されず信号が出力されないダミー画素などでもよい。ダミー画素は、例えばOB画素への斜め光の入射を防ぐために有効画素とダミー画素との間に設けられる画素である。このような画素がTSV配線を介して入出力される電圧の影響を受けたとしても画質への影響が軽微であるため、TSV配線と平面視で重なる領域にダミー画素を配置して面積を効率的に活用することができる。
 TSV配線と平面視で重なる領域に設けられるのは上述の画素のような光電変換素子に限られず、例えばトランジスタなどの半導体素子であってもよい。半導体領域1110にトランジスタなどの素子を形成することにより、基板の平坦性を高めることができる。TSV配線と平面視で重なる領域に設けられる素子は、例えば前述の保護回路としての機能を持つ保護素子であってもよい。
 (実施形態18)
 図42は、本実施形態に係る光電変換システム11200の構成を示すブロック図である。本実施形態の光電変換システム11200は、光電変換装置11204を含む。ここで、光電変換装置11204は、上述の実施形態で述べた光電変換装置のいずれかを適用することができる。光電変換システム11200は例えば、撮像システムとして用いることができる。撮像システムの具体例としては、デジタルスチルカメラ、デジタルカムコーダー、監視カメラ等が挙げられる。図42では、光電変換システム11200としてデジタルスチルカメラの例を示している。
 図42に示す光電変換システム11200は、光電変換装置11204、被写体の光学像を光電変換装置11204に結像させるレンズ11202を有する。また、光電変換システム11200はレンズ11202を通過する光量を可変にするための絞り11203、レンズ11202の保護のためのバリア11201を有する。レンズ11202および絞り11203は、光電変換装置11204に光を集光する光学系である。
 光電変換システム11200は、光電変換装置11204から出力される出力信号の処理を行う信号処理部11205を有する。信号処理部11205は、必要に応じて入力信号に対して各種の補正、圧縮を行って出力する信号処理の動作を行う。光電変換システム11200は、更に、画像データを一時的に記憶するためのバッファメモリ部11206、外部コンピュータ等と通信するための外部インターフェース部(外部I/F部)11209を有する。更に光電変換システム11200は、撮像データの記録または読み出しを行うための半導体メモリ等の記録媒体11211、記録媒体11211に記録または読み出しを行うための記録媒体制御インターフェース部(記録媒体制御I/F部)11210を有する。記録媒体11211は、光電変換システム11200に内蔵されていてもよく、着脱可能であってもよい。また、記録媒体制御I/F部11210から記録媒体11211との通信や外部I/F部11209からの通信は無線によってなされてもよい。
 更に光電変換システム11200は、各種演算を行うとともにデジタルスチルカメラ全体を制御する全体制御・演算部11208、光電変換装置11204と信号処理部11205に各種タイミング信号を出力するタイミング発生部11207を有する。ここで、タイミング信号などは外部から入力されてもよく、光電変換システム11200は、少なくとも光電変換装置11204と、光電変換装置11204から出力された出力信号を処理する信号処理部11205とを有すればよい。全体制御・演算部11208およびタイミング発生部11207は、光電変換装置11204の制御機能の一部または全部を実施するように構成してもよい。
 光電変換装置11204は、画像用信号を信号処理部11205に出力する。信号処理部11205は、光電変換装置11204から出力される画像用信号に対して所定の信号処理を実施し、画像データを出力する。また、信号処理部11205は、画像用信号を用いて、画像を生成する。また、信号処理部11205は、光電変換装置11204から出力される信号に対して測距演算を行ってもよい。なお、信号処理部11205やタイミング発生部11207は、光電変換装置に搭載されていてもよい。つまり、信号処理部11205やタイミング発生部11207は、画素が配された基板に設けられていてもよいし、別の基板に設けられている構成であってもよい。上述した各実施形態の光電変換装置を用いて撮像システムを構成することにより、より良質の画像が取得可能な撮像システムを実現することができる。
 (実施形態19)
 図43は、前述の実施形態に記載の光電変換装置を利用した電子機器である距離画像センサの構成例を示すブロック図である。
 図43に示すように、距離画像センサ12401は、光学系12407、光電変換装置12408、画像処理回路12404、モニタ12405、およびメモリ12406を備えて構成される。そして、距離画像センサ12401は、光源装置12409から被写体に向かって投光され、被写体の表面で反射された光(変調光やパルス光)を受光することにより、被写体までの距離に応じた距離画像を取得することができる。
 光学系12407は、1枚または複数枚のレンズを有して構成され、被写体からの像光(入射光)を光電変換装置12408に導き、光電変換装置12408の受光面(センサ部)に結像させる。
 光電変換装置12408としては、上述した各実施形態の光電変換装置が適用され、光電変換装置12408から出力される受光信号から求められる距離を示す距離信号が画像処理回路12404に供給される。
 画像処理回路12404は、光電変換装置12408から供給された距離信号に基づいて距離画像を構築する画像処理を行う。そして、その画像処理により得られた距離画像(画像データ)は、モニタ12405に供給されて表示されたり、メモリ406に供給されて記憶(記録)されたりする。
 このように構成されている距離画像センサ12401では、上述した光電変換装置を適用することで、画素の特性向上に伴って、例えば、より正確な距離画像を取得することができる。
 (実施形態20)
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
 図44は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
 図44では、術者(医師)13131が、内視鏡手術システム13003を用いて、患者ベッド13133上の患者13132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム13003は、内視鏡13100と、術具13110と、内視鏡下手術のための各種の装置が搭載されたカート13134と、から構成される。
 内視鏡13100は、先端から所定の長さの領域が患者13132の体腔内に挿入される鏡筒13101と、鏡筒13101の基端に接続されるカメラヘッド13102と、から構成される。図示する例では、硬性の鏡筒13101を有するいわゆる硬性鏡として構成される内視鏡13100を図示しているが、内視鏡13100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
 鏡筒13101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡13100には光源装置13203が接続されており、光源装置13203によって生成された光が、鏡筒13101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光される。この光は対物レンズを介して患者13132の体腔内の観察対象に向かって照射される。なお、内視鏡13100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
 カメラヘッド13102の内部には光学系及び光電変換装置が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該光電変換装置に集光される。当該光電変換装置によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該光電変換装置としては、前述の各実施形態に記載の光電変換装置を用いることができる。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)13135に送信される。
 CCU13135は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡13100及び表示装置13136の動作を統括的に制御する。さらに、CCU13135は、カメラヘッド13102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
 表示装置13136は、CCU13135からの制御により、当該CCU13135によって画像処理が施された画像信号に基づく画像を表示する。
 光源装置13203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡13100に供給する。
 入力装置13137は、内視鏡手術システム13003に対する入力インターフェースである。ユーザは、入力装置13137を介して、内視鏡手術システム13003に対して各種の情報の入力や指示入力を行うことができる。
 処置具制御装置13138は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具13112の駆動を制御する。
 内視鏡13100に術部を撮影する際の照射光を供給する光源装置13203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置13203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド13102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
 また、光源装置13203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド13102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
 また、光源装置13203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用する。具体的には、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置13203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
 (実施形態21)
 本実施形態の光電変換システムおよび移動体について、図45A、図45B及び図46A、図46Bを用いて説明する。図45A、図45Bは、本実施形態による光電変換システムおよび移動体の構成例を示す概略図である。本実施形態では、光電変換システムとして、車載カメラの一例を示す。
 図45A、図45Bは、車両システムとこれに搭載される撮像を行う光電変換システムの一例を示したものである。光電変換システム14301は、光電変換装置14302、画像前処理部14315、集積回路14303、光学系14314を含む。光学系14314は、光電変換装置14302に被写体の光学像を結像する。光電変換装置14302は、光学系14314により結像された被写体の光学像を電気信号に変換する。光電変換装置14302は、上述の各実施形態のいずれかの光電変換装置である。画像前処理部14315は、光電変換装置14302から出力された信号に対して所定の信号処理を行う。画像前処理部14315の機能は、光電変換装置14302内に組み込まれていてもよい。光電変換システム14301には、光学系14314、光電変換装置14302および画像前処理部14315が、少なくとも2組設けられており、各組の画像前処理部14315からの出力が集積回路14303に入力されるようになっている。
 集積回路14303は、撮像システム用途向けの集積回路であり、メモリ14305を含む画像処理部14304、光学測距部14306、測距演算部14307、物体認知部14308、異常検出部14309を含む。画像処理部14304は、画像前処理部14315の出力信号に対して、現像処理や欠陥補正等の画像処理を行う。メモリ14305は、撮像画像の一次記憶、撮像画素の欠陥位置を格納する。光学測距部14306は、被写体の合焦や、測距を行う。測距演算部14307は、複数の光電変換装置14302により取得された複数の画像データから測距情報の算出を行う。物体認知部14308は、車、道、標識、人等の被写体の認知を行う。異常検出部14309は、光電変換装置14302の異常を検出すると、主制御部14313に異常を発報する。
 集積回路14303は、専用に設計されたハードウェアによって実現されてもよいし、ソフトウェアモジュールによって実現されてもよいし、これらの組合せによって実現されてもよい。また、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)等によって実現されてもよいし、これらの組合せによって実現されてもよい。
 主制御部14313は、光電変換システム14301、車両センサ14310、制御ユニット14320等の動作を統括・制御する。主制御部14313を持たず、光電変換システム14301、車両センサ14310、制御ユニット14320が個別に通信インターフェースを有して、それぞれが通信ネットワークを介して制御信号の送受を行う(例えばCAN規格)方法も取り得る。
 集積回路14303は、主制御部14313からの制御信号を受け或いは自身の制御部によって、光電変換装置14302へ制御信号や設定値を送信する機能を有する。
 光電変換システム14301は、車両センサ14310に接続されており、車速、ヨーレート、舵角などの自車両走行状態および自車外環境や他車・障害物の状態を検出することができる。車両センサ14310は、対象物までの距離情報を取得する距離情報取得手段でもある。また、光電変換システム14301は、自動操舵、自動巡行、衝突防止機能等の種々の運転支援を行う運転支援制御部1311に接続されている。特に、衝突判定機能に関しては、光電変換システム14301や車両センサ14310の検出結果を基に他車・障害物との衝突推定・衝突有無を判定する。これにより、衝突が推定される場合の回避制御、衝突時の安全装置起動を行う。
 また、光電変換システム14301は、衝突判定部での判定結果に基づいて、ドライバーに警報を発する警報装置14312にも接続されている。例えば、衝突判定部の判定結果として衝突可能性が高い場合、主制御部14313は、ブレーキをかける、アクセルを戻す、エンジン出力を抑制するなどして、衝突を回避、被害を軽減する車両制御を行う。警報装置14312は、音等の警報を鳴らす、カーナビゲーションシステムやメーターパネルなどの表示部画面に警報情報を表示する、シートベルトやステアリングに振動を与えるなどしてユーザに警告を行う。
 本実施形態では、車両の周囲、例えば前方または後方を光電変換システム14301で撮影する。図45Bに、車両前方を光電変換システム14301で撮像する場合の光電変換システム14301の配置例を示す。
 2つの光電変換装置14302は、車両14300の前方に配される。具体的には、車両14300の進退方位または外形(例えば車幅)に対する中心線を対称軸に見立て、その対称軸に対して2つの光電変換装置1302が線対称に配される。この形態は、車両14300と被写対象物との間の距離情報の取得や衝突可能性の判定を行う上で好ましい。また、光電変換装置14302は、運転者が運転席から車両14300の外の状況を視認する際に運転者の視野を妨げない配置が好ましい。警報装置14312は、運転者の視野に入りやすい配置が好ましい。
 また、本実施形態では、他の車両と衝突しない制御を説明したが、他の車両に追従して自動運転する制御や、車線からはみ出さないように自動運転する制御などにも適用可能である。さらに、光電変換システム14301は、自動車等の車両に限らず、例えば、船舶、航空機或いは産業用ロボットなどの移動体(移動装置)に適用することができる。加えて、移動体に限らず、高度道路交通システム(ITS)等、広く物体認識を利用する機器に適用することができる。
 本発明の光電変換装置は、更に、距離情報など各種情報を取得可能な構成であってもよい。
 (実施形態22)
 図46A、図46Bは、1つの適用例に係る眼鏡16600(スマートグラス)を説明する。眼鏡16600には、光電変換装置16602を有する。光電変換装置16602は、上記の各実施形態に記載の光電変換装置である。また、レンズ16601の裏面側には、OLEDやLED等の発光装置を含む表示装置が設けられていてもよい。光電変換装置16602は1つでもよいし、複数でもよい。また、複数種類の光電変換装置を組み合わせて用いてもよい。光電変換装置16602の配置位置は図43(a)に限定されない。
 眼鏡16600は、制御装置16603をさらに備える。制御装置16603は、光電変換装置16602と上記の表示装置に電力を供給する電源として機能する。また、制御装置16603は、光電変換装置16602と表示装置の動作を制御する。レンズ16601には、光電変換装置16602に光を集光するための光学系が形成されている。
 図46Bは、1つの適用例に係る眼鏡16610(スマートグラス)を説明する。眼鏡16610は、制御装置16612を有しており、制御装置16612に、光電変換装置16602に相当する光電変換装置と、表示装置が搭載される。レンズ16611には、制御装置16612内の光電変換装置と、表示装置からの発光を投影するための光学系が形成されており、レンズ16611には画像が投影される。制御装置16612は、光電変換装置および表示装置に電力を供給する電源として機能するとともに、光電変換装置および表示装置の動作を制御する。制御装置は、装着者の視線を検知する視線検知部を有してもよい。視線の検知は赤外線を用いてよい。赤外発光部は、表示画像を注視しているユーザの眼球に対して、赤外光を発する。発せられた赤外光の眼球からの反射光を、受光素子を有する撮像部が検出することで眼球の撮像画像が得られる。平面視における赤外発光部から表示部への光を低減する低減手段を有することで、画像品位の低下を低減する。
 赤外光の撮像により得られた眼球の撮像画像から表示画像に対するユーザの視線を検出する。眼球の撮像画像を用いた視線検出には任意の公知の手法が適用できる。一例として、角膜での照射光の反射によるプルキニエ像に基づく視線検出方法を用いることができる。
 より具体的には、瞳孔角膜反射法に基づく視線検出処理が行われる。瞳孔角膜反射法を用いて、眼球の撮像画像に含まれる瞳孔の像とプルキニエ像とに基づいて、眼球の向き(回転角度)を表す視線ベクトルが算出されることにより、ユーザの視線が検出される。
 本実施形態の表示装置は、受光素子を有する光電変換装置を有し、光電変換装置からのユーザの視線情報に基づいて表示装置の表示画像を制御してよい。
 具体的には、表示装置は、視線情報に基づいて、ユーザが注視する第一の視界領域と、第一の視界領域以外の第二の視界領域とを決定される。第一の視界領域、第二の視界領域は、表示装置の制御装置が決定してもよいし、外部の制御装置が決定したものを受信してもよい。表示装置の表示領域において、第一の視界領域の表示解像度を第二の視界領域の表示解像度よりも高く制御してよい。つまり、第二の視界領域の解像度を第一の視界領域よりも低くしてよい。
 また、表示領域は、第一の表示領域、第一の表示領域とは異なる第二の表示領域とを有し、視線情報に基づいて、第一の表示領域および第二の表示領域から優先度が高い領域を決定されてよい。第一の視界領域、第二の視界領域は、表示装置の制御装置が決定してもよいし、外部の制御装置が決定したものを受信してもよい。優先度の高い領域の解像度を、優先度が高い領域以外の領域の解像度よりも高く制御してよい。つまり優先度が相対的に低い領域の解像度を低くしてよい。
 なお、第一の視界領域や優先度が高い領域の決定には、AIを用いてもよい。AIは、眼球の画像と当該画像の眼球が実際に視ていた方向とを教師データとして、眼球の画像から視線の角度、視線の先の目的物までの距離を推定するよう構成されたモデルであってよい。AIプログラムは、表示装置が有しても、光電変換装置が有しても、外部装置が有してもよい。外部装置が有する場合は、通信を介して、表示装置に伝えられる。
 視認検知に基づいて表示制御する場合、外部を撮像する光電変換装置を更に有するスマートグラスに好ましく適用できる。スマートグラスは、撮像した外部情報をリアルタイムで表示することができる。
 <その他の実施形態>
 以上、各実施形態について説明したが、本発明はこれらの実施形態に制限されるものではなく、様々な変更および変形が可能である。また、各実施形態は相互に適用可能である。すなわち、一方の実施形態の一部を他方の実施形態の一部と置換することもできるし、一方の実施形態の一部を他方の実施形態の一部と付加することも可能である。また、ある実施形態の一部を削除することも可能である。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 本願は、2021年1月22日提出の日本国特許出願特願2021-008439と2022年1月5日提出の日本国特許出願特願2022-000316を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。

Claims (18)

  1.  複数の光電変換部を備えた第1半導体層と第1配線構造を有する第1基板と、
     前記複数の光電変換部のそれぞれに対応して設けられた複数の画素回路を備えた第2半導体層と第2配線構造を有する第2基板と、
     前記複数の画素回路からの出力信号を処理する信号処理回路を備えた第3半導体層と第3配線構造を有する第3基板と、を有し、
     前記複数の光電変換部のそれぞれは、アバランシェフォトダイオードを有しており、
     前記第1半導体層と前記第2半導体層との間に、前記第1配線構造と前記第2配線構造が設けられるように、前記第1基板と前記第2基板が積層されており、
     前記第2半導体層と前記第3半導体層との間に、前記第3配線構造が設けられるように、前記第2基板と前記第3基板が積層されており、
     前記第3半導体層を貫通する第1貫通配線を有することを特徴とする光電変換装置。
  2.  前記第2半導体層を貫通する第2貫通配線を有し、
     前記第2貫通配線は、前記第2配線構造が有する配線と、前記第3配線構造が有する配線とを電気的に接続する配線であることを特徴とする請求項1に記載の光電変換装置。
  3.  前記第2貫通配線は、前記第3半導体層を貫通する配線であることを特徴とする請求項2に記載の光電変換装置。
  4.  前記第2貫通配線は、前記第3配線構造が設けられている側とは反対側の前記第3半導体層の面から、前記第3配線構造に向けて形成されていることを特徴とする請求項2または3に記載の光電変換装置。
  5.  前記第2貫通配線は、前記第2基板の前記複数の画素回路からの出力信号を、前記第3基板の前記信号処理回路に入力する配線であることを特徴とする請求項2から4のいずれか1項に記載の光電変換装置。
  6.  前記第2貫通配線は、前記第2基板の複数の画素回路のための駆動電圧と、前記第3基板の前記信号処理回路の駆動電圧を供給する配線であることを特徴とする請求項2から5のいずれか1項に記載の光電変換装置。
  7.  前記第3半導体層と前記第2半導体層を貫通する第3貫通配線を有し、
     前記第3貫通配線は、前記第2配線構造が有する配線に電圧を供給する配線であることを特徴とする請求項1から6のいずれか1項に記載の光電変換装置。
  8.  前記第2半導体層を貫通する第4貫通配線を有し、
     前記第4貫通配線は、前記第3配線構造が有する配線に電圧を供給する配線であって、
     前記第3貫通配線と前記第4貫通配線が電気的に接続されていないことを特徴とする請求項7に記載の光電変換装置。
  9.  前記複数の光電変換部を有する複数の画素が設けられた画素領域を有し、
     前記第1配線構造は、複数の第1接合部を有し、
     前記第2配線構造は、複数の第2接合部を有し、
     前記複数の第1接合部のそれぞれと、前記複数の第2接合部のそれぞれが接合されて複数の金属接合部を構成し、
     平面視において、前記画素領域に配されている前記複数の金属接合部のそれぞれは、前記複数の光電変換部のそれぞれに対応して設けられていることを特徴とする請求項1から8のいずれか1項に記載の光電変換装置。
  10.  前記複数の光電変換部を有する複数の画素が設けられた画素領域と、前記画素領域と前記光電変換装置のチップ端部との間に設けられた周辺領域と、を有し、
     前記第1配線構造は、複数の第1接合部を有し、
     前記第2配線構造は、複数の第2接合部を有し、
     前記複数の第1接合部のそれぞれと、前記複数の第2接合部のそれぞれが接合されて複数の金属接合部を構成し、
     前記複数の金属接合部は、前記周辺領域に設けられていることを特徴とする請求項1から8のいずれか1項に記載の光電変換装置。
  11.  前記複数の光電変換部を有する複数の画素が設けられた画素領域を有し、
     前記第2配線構造は、複数の第3接合部を有し、
     前記第3配線構造は、複数の第4接合部を有し、
     前記複数の第3接合部のそれぞれと、前記複数の第4接合部のそれぞれが接合されて複数の金属接合部を構成していることを特徴とする請求項1から8のいずれか1項に記載の光電変換装置。
  12.  前記複数の第3接合部の少なくとも1つは、前記第2半導体層を貫通する第3貫通配線を介して、前記第1配線構造の配線と電気的に接続しており、
     前記第3貫通配線と前記第2半導体層との間には、絶縁体が設けられていることを特徴とする請求項11に記載の光電変換装置。
  13.  前記第1基板と前記第2基板の接合面を経由し、前記第1配線構造の配線と前記第2配線構造の配線とを接続する第1接続数は、前記第2基板と前記第3基板の接合面を経由し、前記第2配線構造の配線と前記第3配線構造の配線とを接続する第2接続数よりも多いことを特徴とする請求項1から8のいずれか1項に記載の光電変換装置。
  14.  前記複数の光電変換部が設けられた画素領域を有し、
     前記画素領域において、前記第1接続数は、前記第2接続数よりも多いことを特徴とする請求項13に記載の光電変換装置。
  15.  時間計測回路を有し、前記時間計測回路が前記第2基板に設けられており、前記時間計測回路は、前記複数の光電変換部で共有されていることを特徴とする請求項1から14のいずれか1項に記載の光電変換装置。
  16.  平面視において、前記複数の光電変換部で共有されている前記時間計測回路と、前記時間計測回路を共有する前記複数の光電変換部の少なくとも一部とが、重複して配されていることを特徴とする請求項15に記載の光電変換装置。
  17.  請求項1乃至16のいずれか1項に記載の光電変換装置と、
     前記光電変換装置が出力する信号を処理する信号処理部と、を有することを特徴とする光電変換システム。
  18.  請求項1乃至16のいずれか1項に記載の光電変換装置と、
     前記光電変換装置からの信号に基づく測距情報から、対象物までの距離情報を取得する距離情報取得手段と、を有する移動体であって、
     前記距離情報に基づいて前記移動体を制御する制御手段をさらに有することを特徴とする移動体。
PCT/JP2022/001046 2021-01-22 2022-01-14 光電変換装置、光電変換システム、および移動体 WO2022158379A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280011178.9A CN116802810A (zh) 2021-01-22 2022-01-14 光电转换装置、光电转换系统及移动体
US18/356,954 US20230369373A1 (en) 2021-01-22 2023-07-21 Photoelectric conversion apparatus, photoelectric conversion system, and mobile body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021008439 2021-01-22
JP2021-008439 2021-01-22
JP2022-000316 2022-01-05
JP2022000316A JP2022113123A (ja) 2021-01-22 2022-01-05 光電変換装置、光電変換システム、および移動体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/356,954 Continuation US20230369373A1 (en) 2021-01-22 2023-07-21 Photoelectric conversion apparatus, photoelectric conversion system, and mobile body

Publications (1)

Publication Number Publication Date
WO2022158379A1 true WO2022158379A1 (ja) 2022-07-28

Family

ID=82548935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001046 WO2022158379A1 (ja) 2021-01-22 2022-01-14 光電変換装置、光電変換システム、および移動体

Country Status (2)

Country Link
US (1) US20230369373A1 (ja)
WO (1) WO2022158379A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174994A (ja) * 2016-03-24 2017-09-28 ソニー株式会社 撮像装置、電子機器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077580A1 (ja) * 2009-12-26 2011-06-30 キヤノン株式会社 固体撮像装置および撮像システム
JP2013232647A (ja) * 2012-04-27 2013-11-14 Taiwan Semiconductor Manufacturing Co Ltd 縦方向に集積化される背面照射型イメージセンサ装置
JP2014107448A (ja) * 2012-11-28 2014-06-09 Nikon Corp 積層半導体装置の製造方法および積層半導体製造装置
WO2018186192A1 (ja) * 2017-04-04 2018-10-11 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、及び電子機器
WO2019146723A1 (ja) * 2018-01-26 2019-08-01 浜松ホトニクス株式会社 光検出装置
WO2020045122A1 (ja) * 2018-08-31 2020-03-05 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置およびその駆動方法、並びに電子機器
JP2020141122A (ja) * 2019-02-25 2020-09-03 キヤノン株式会社 光電変換装置、撮像システム及び移動体
JP2021002542A (ja) * 2019-06-19 2021-01-07 ソニーセミコンダクタソリューションズ株式会社 アバランシェフォトダイオードセンサ及び測距装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077580A1 (ja) * 2009-12-26 2011-06-30 キヤノン株式会社 固体撮像装置および撮像システム
JP2013232647A (ja) * 2012-04-27 2013-11-14 Taiwan Semiconductor Manufacturing Co Ltd 縦方向に集積化される背面照射型イメージセンサ装置
JP2014107448A (ja) * 2012-11-28 2014-06-09 Nikon Corp 積層半導体装置の製造方法および積層半導体製造装置
WO2018186192A1 (ja) * 2017-04-04 2018-10-11 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、及び電子機器
WO2019146723A1 (ja) * 2018-01-26 2019-08-01 浜松ホトニクス株式会社 光検出装置
WO2020045122A1 (ja) * 2018-08-31 2020-03-05 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置およびその駆動方法、並びに電子機器
JP2020141122A (ja) * 2019-02-25 2020-09-03 キヤノン株式会社 光電変換装置、撮像システム及び移動体
JP2021002542A (ja) * 2019-06-19 2021-01-07 ソニーセミコンダクタソリューションズ株式会社 アバランシェフォトダイオードセンサ及び測距装置

Also Published As

Publication number Publication date
US20230369373A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
US20220352234A1 (en) Photoelectric conversion device and photodetection system
US20230369373A1 (en) Photoelectric conversion apparatus, photoelectric conversion system, and mobile body
US20230215884A1 (en) Photoelectric conversion device, photoelectric conversion system, and equipment
US20230117198A1 (en) Photoelectric conversion apparatus having avalanche photodiode
WO2023131994A1 (ja) 光電変換装置、光電変換システム、および移動体
CN115911068A (zh) 光电转换装置、光电转换系统和可移动体
JP2022113123A (ja) 光電変換装置、光電変換システム、および移動体
WO2023131997A1 (ja) 光電変換装置、光電変換システム、および移動体
US20230215899A1 (en) Photoelectric conversion apparatus and photoelectric conversion system
US20230215898A1 (en) Photoelectric conversion apparatus and photoelectric conversion system
JP7377334B2 (ja) 光電変換装置及び光電変換システム
CN116802810A (zh) 光电转换装置、光电转换系统及移动体
WO2023132004A1 (ja) 光電変換装置
US20240178258A1 (en) Photoelectric conversion apparatus
US20240178265A1 (en) Semiconductor device manufacturing method
US20230163229A1 (en) Photoelectric conversion element and photoelectric conversion device
WO2023132003A1 (ja) 光電変換装置
WO2023132005A1 (ja) 光電変換装置
WO2024004516A1 (ja) 光電変換装置、光電変換システム
US20240088186A1 (en) Photoelectric conversion element and photoelectric conversion device
US20230395637A1 (en) Photoelectric conversion apparatus and photoelectric conversion system
US20240178244A1 (en) Photoelectric conversion apparatus and device having stacked components
US20230238407A1 (en) Solid-state imaging device, method of manufacturing the same, and electronic device
US20230215959A1 (en) Photoelectric conversion apparatus, photoelectric conversion system, and moving body
WO2023131995A1 (ja) 光電変換装置及び光検出システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742501

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280011178.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742501

Country of ref document: EP

Kind code of ref document: A1