WO2018186073A1 - 導電性樹脂組成物、粉状混合物、導電性樹脂組成物の製造方法、および成形体 - Google Patents

導電性樹脂組成物、粉状混合物、導電性樹脂組成物の製造方法、および成形体 Download PDF

Info

Publication number
WO2018186073A1
WO2018186073A1 PCT/JP2018/007953 JP2018007953W WO2018186073A1 WO 2018186073 A1 WO2018186073 A1 WO 2018186073A1 JP 2018007953 W JP2018007953 W JP 2018007953W WO 2018186073 A1 WO2018186073 A1 WO 2018186073A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
polyamide
resin composition
conductive resin
mass
Prior art date
Application number
PCT/JP2018/007953
Other languages
English (en)
French (fr)
Inventor
秀臣 片野
Original Assignee
片野染革株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 片野染革株式会社 filed Critical 片野染革株式会社
Publication of WO2018186073A1 publication Critical patent/WO2018186073A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the present invention relates to a conductive resin composition
  • a conductive resin composition comprising a thermoplastic resin containing carbon nanotubes, copolymerized polyamide, and polyamide resin, a powdery mixture, a method for producing the conductive resin composition, and a molded article comprising the conductive resin.
  • a conductive material imparted with conductivity by adding a carbon material to a thermoplastic resin and a resin product using the conductive material are widely used.
  • carbon materials it is well known that carbon nanotubes have a smaller tube diameter (or fiber diameter) and a larger aspect ratio than other carbon materials, so that conductivity can be obtained with a low content.
  • the carbon nanotubes provided as a raw material are often provided as fluffy aggregates. Therefore, in order to conduct electricity in a resin using carbon nanotubes, it is required that the carbon nanotubes are moderately dispersed in the product resin.
  • carbon black and graphite are often used as a conductive material added to a resin, partly because dispersion is easier to control than carbon nanotubes.
  • dispersion control of the carbon nanotubes in the resin is a big problem.
  • the carbon nanotubes are then mixed with a propylene-olefin copolymer wax to form a masterbatch, which is a thermoplastic polycondensate, styrene polymer, polyamide, polyester, polycarbonate, polyacrylate, polyacrylate copolymer, polyacetal, polyolefin, polyolefin copolymer and A conductive material obtained by mixing with an organic polymer selected from the group consisting of a mixture of these substances has been proposed (the claims of Patent Document 2, etc.).
  • the master batch is more easily prepared than the conventional carbon nanotube master batch in a high molecular weight polymer (Claims of Patent Document 3, paragraph 0006, etc.).
  • a method for improving the melt flow characteristics of the conductive thermoplastic composition by using a carbon nanotube masterbatch in wax is also desirable.
  • the thermoplastic resin is polyester, poly (vinyl chloride), polystyrene, Rubber-modified polystyrene, polyolefin, polycarbonate, polyimide, polyetherimide, poly (ether ketone), poly (ether ether ketone), polysulfone, poly (arylene ether), poly (phenylene sulfide), polyamide, copolymer of styrene and acrylonitrile, copolymer of ⁇ -methylstyrene and acrylonitrile, copolymer of acrylonitrile, butadiene and styrene, copolymer of acrylonitrile, styrene and acrylate ester, polyacetal, It is selected from the group consisting of thermoplastic polyurethane, and combinations thereof (the 0001 paragraph of Patent Document 3, claim 11, or the like).
  • the inventor of the present invention provides a conductive resin composition having a volume resistivity in the thickness direction of 100 ⁇ ⁇ cm or less, which is a resin composition containing an olefin polymer that satisfies the following (1) to (3) and a thermoplastic resin. is suggesting.
  • This conductive resin composition contains 15 to 40% by mass of carbon nanotubes, and the olefin polymer has (1) a weight average molecular weight (Mw) of 35,000 to 150,000, and (2) a molecular weight distribution ( Mw / Mn) is 3 or less, and (3) the softening point is 80 to 130 ° C. (Claim 1 of Patent Document 4).
  • JP 2008-290936 A Special table 2012-507588 gazette Special table 2014-511908 gazette Japanese Unexamined Patent Publication No. 2016-41806
  • the carbon content is smaller than that of the conductive resin composition using the olefin polymer disclosed in Patent Document 4.
  • a conductive resin composition made of a thermoplastic resin containing a polyamide resin containing carbon nanotubes as a conductive auxiliary agent is superior to a conductive resin composition made of a general-purpose polyolefin resin, and is expected. It is also a field.
  • the present invention has been made in view of such circumstances, and a conductive resin capable of obtaining a desired conductivity with a smaller amount of carbon nanotube addition and a cured product having excellent mechanical properties and the like. It is an object of the present invention to provide a composition, a powdery mixture, a method for producing a conductive resin composition, and a molded article comprising the conductive resin composition.
  • the present inventor can obtain a conductive resin composition made of a thermoplastic resin containing a polyamide resin that solves the above problems by utilizing a copolymer polyamide having specific physical property values for dispersion control of carbon nanotubes. I found out.
  • the present invention provides the following [1] to [7].
  • [1] (A) carbon nanotube, (B) the melting temperature measured by differential scanning calorimetry is 65 to 145 ° C., And melt volume flow rate, 10 copolyamide is ⁇ 200 cm 3 / 10min, and (C) a thermoplastic resin containing a polyamide resin (except for component (B)) Including
  • the blending amount of the component (A) is 0.5 to 20% by weight with respect to the total of 100% by weight of the components (A) to (C), and the blending amount of the component (B) is (A) component A conductive resin composition characterized by being 0.3 to 2 times the blending amount.
  • (D) a non-conductive inorganic filler
  • the blending amount of the component (A) is 0.5 to 15% by mass with respect to a total of 100% by mass of (A) to (C)
  • the polyamide resin of component (C) is polyamide 6, polyamide 66, polyamide 11, polyamide 12, polyamide 610, polyamide 612, polyamide 6T, polyamide 6I, polyamide 9T, polyamide M5T, polyamide 1010, polyamide 1012, polyamide 10T.
  • the melting temperature measured by (A) carbon nanotubes and (B) differential scanning calorimetry is 65 to 145 ° C., And melt volume flow rate, comprising a copolyamide which is 10 ⁇ 200cm 3 / 10min,
  • the blending amount of the component (B) is 0.3 to 2 times the blending amount of the component (A), and the components (A) and (B) are stirred at a temperature of 65 ° C. or more and a stirring speed of 300 rpm or more. The resulting powder mixture.
  • a step of stirring the components (A) and (B) at a temperature of 65 ° C. or more and a stirring speed of 300 rpm or more to obtain a powder mixture The method for producing a conductive resin composition according to the above [1] or [3], comprising a step of adding a component (C) to the powder mixture to obtain a conductive resin composition in this order.
  • a molded article comprising the conductive resin composition according to any one of [1] to [3] above or the conductive resin composition comprising the powdery mixture according to [4] above.
  • a conductive resin composition capable of obtaining a cured product having excellent conductivity and mechanical properties can be provided.
  • the manufacturing method of the conductive resin composition which can obtain the hardened
  • the molded object which consists of a conductive resin composition can be provided.
  • the conductive resin composition of the present invention is (A) carbon nanotube, (B) the melting temperature measured by differential scanning calorimetry is 65 to 145 ° C., And melt volume flow rate, 10 copolyamide is ⁇ 200 cm 3 / 10min, and (C) a thermoplastic resin containing a polyamide resin (except for component (B)) Including
  • the blending amount of the component (A) is 0.5 to 20% by weight with respect to the total of 100% by weight of the components (A) to (C), and the blending amount of the component (B) is (A) component It is characterized by being 0.3 to 2 times the blending amount of
  • the conductive resin composition of the present invention contains at least three components (A), (B) and (C). Since the content ratio of the component (A), the component (B), and the component (C) affects the electrical conductivity and mechanical properties, the content of the three components is adjusted to balance these components.
  • the carbon nanotube of the component (A) used in the present invention is a cylindrical hollow fiber material made of carbon, and its structure may be a single layer or a multilayer, but it is easy to disperse. From the viewpoint, a multilayer structure is preferable.
  • the carbon nanotube of component (A) is not particularly limited, and any commercially available product can be used, but the average diameter (average thickness) is 5 to 20 nm, and the average length is about 0.5 to 50 ⁇ m. Are preferable because they are easy to use. If the average diameter of the carbon nanotubes is 5 nm or more, the carbon nanotubes can be hardly cut at the time of kneading, and if it is 20 nm or less, the conductivity can be increased.
  • the conductivity can be increased, and if it is 50 ⁇ m or less, an increase in viscosity during kneading can be suppressed and kneading and molding can be facilitated.
  • the average diameter of the carbon nanotubes is more preferably 6 to 20 nm, still more preferably 7 to 20 nm, and the average length is more preferably 0.5 to 30 ⁇ m, still more preferably 0.6 to 15 ⁇ m.
  • the said average long diameter and average length can be calculated
  • required by observing a carbon nanotube with an electron microscope (SEM, TEM), and carrying out arithmetic average (n 50).
  • the carbon nanotube which is the component (A) a known carbon nanotube can be used.
  • Examples of commercially available products include multi-walled carbon nanotubes such as Flo Tube 9000 from C-Nano Technology, C-100 from Arkema, NC7000 from Nanocyl. These commercial products satisfy the above-mentioned average major axis and average length, and can be preferably used. It is also excellent in terms of starting mass production and price competitiveness.
  • Carbon nanotubes as component (A) can be produced by an arc discharge method, a chemical vapor deposition method (CVD method), a laser ablation method, or the like.
  • CVD method chemical vapor deposition method
  • laser ablation method or the like.
  • the copolymer polyamide (B) used in the present invention has (1) a melting temperature measured by differential scanning calorimetry (DSC) of 65 to 145 ° C. (based on ISO11357), and (2) melt volume flow rate. Is 10 to 200 ml / 10 min (according to ISO 1133, measured at 160 ° C./2.16 kg load).
  • DSC differential scanning calorimetry
  • Examples of the copolymerized monomer of the copolymerized polyamide (B) include two or more monomers selected from lactam, amino acid, dicarboxylic acid and diamine.
  • a polyether soft segment can be used as a copolymerization monomer for the component (B).
  • the copolymerizable monomer of the (B) component polyamide examples include caprolactam, undecalactam and lauryllactam in the case of lactam and amino acid, and adipic acid, azelaic acid and sebacin in the case of dicarboxylic acid.
  • the acid, lauric acid, isophthalic acid, terephthalic acid and dimer acid are diamines, hexamethylenediamine, sabacin diamine, phthaldiamine and xylenediamine are exemplified. These selections are made by paying attention to the melting temperature and the melt volume flow rate. It is also possible to select and use two or more types of copolymer polyamides having different melting temperatures. Similarly, two or more types of copolymer polyamides having different melt volume flow rates can be selected and used.
  • Polyether methylene glycol is an example of the polyether soft segment.
  • component (A) the melting temperature measured by differential scanning calorimetry of the copolyamide of component (B) is defined as 65 to 145 ° C. (measured according to ISO11357).
  • component (A) The dispersibility can be improved, and the processing temperature can be lowered.
  • the dispersibility of the component (A) can be improved, and the melting temperature is preferably 70 to 140 ° C., more preferably 70 to 135 ° C. from the viewpoint of lowering the processing temperature.
  • (A) The dispersibility of a component can be made favorable and the influence of the melt volume flow rate fall of the conductive resin composition accompanying addition of (A) component can be decreased.
  • the melt volume flow rate is preferably 10 to 180 ml / 10 min, more preferably 15 to 170 ml / 10 min.
  • polyamide resin in the thermoplastic resin of component (C) used in the present invention polyamide 6, polyamide 66, polyamide 11, polyamide 12, polyamide 610, polyamide 612, polyamide 6T, polyamide 6I, polyamide 9T, polyamide M5T, polyamide At least one selected from 1010, polyamide 1012, polyamide 10T, and polyamide MXD6 is preferable.
  • the thermoplastic resin containing the (C) component polyamide resin used in the present invention may be composed only of a polyamide resin, but also includes a polymer alloy containing a polyamide resin.
  • the resin that forms an alloy with the polyamide resin include polyethylene resin, polypropylene resin, polyolefin elastomer resin, ABS resin, polycarbonate resin, polyphenylene ether resin, and polyarylate resin.
  • a compatibilizing agent for forming a polymer alloy may be included.
  • the thermoplastic resin containing the (C) component polyamide resin used in the present invention includes a block copolymer containing a polyamide resin component.
  • the block copolymer containing a polyamide resin component include polyamide elastomers which are block copolymers using polyether diol and polyester diol. Specific examples include polytetramethylene ether glycol and polyoxypropylene glycol.
  • the content of the component (A) is 0.5 to 20% by mass, preferably 1 to 18% by mass, more preferably 1.5% with respect to 100% by mass of the total of the components (A) to (C). To 15% by mass.
  • content of the component (A) is less than 0.5% by mass, conductivity may not be exhibited.
  • content of (A) component exceeds 20 mass%, although electroconductivity will become high, an electroconductive resin composition may become hard and it may be inferior to mechanical characteristics.
  • the content of the component (B) is 0.3 to 2 mass times the content of the component (A), preferably 0.4 to 1.8 mass times, more preferably 0.5 to 1.5 mass times. Is double. If content of (B) component is less than 0.3 time, the dispersibility of (A) component will worsen and there exists a possibility of reducing electroconductivity. Moreover, when the content of the component (B) exceeds twice the mass, the molded product tends to be soft.
  • the content of the component (C) is the remainder obtained by subtracting the contents of the components (A) and (B) from the total 100% by mass of the components (A) to (C). Therefore, when the content of the component (A) and the component (B) increases, the content of the component (C) relatively decreases. The higher the content of the component (C), the easier it is to express the original characteristics of the resin.
  • the conductive resin composition of the present invention further comprises (D) a non-conductive inorganic filler, and the amount of component (A) is 0 with respect to 100% by mass of the total amount of (A) to (C).
  • the blending amount of the component (D) is preferably 5 to 40% by mass with respect to 100% by mass of the total amount of the components (A) to (D).
  • the content ratio of the component (A), the component (B), the component (C), and the component (D) affects the electrical conductivity and mechanical properties. To adjust the content of the above four components.
  • Non-conductive inorganic filler examples include calcium carbonate, precipitated barium sulfate, talc, diatomaceous earth, mica, glass flake, alumina, magnesium carbonate, calcium sulfate and the like. it can. Among them, techniques for adding to resin are established, and calcium carbonate, precipitated barium sulfate, and talc, which are price competitive, can be preferably used. These non-conductive inorganic fillers may be subjected to surface treatment for the purpose of improving the dispersibility in the resin. In addition, these may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the average particle diameter of the component (D) is preferably 0.3 to 50 ⁇ m, more preferably 0.5 to 20 ⁇ m, still more preferably 0.5 to 10 ⁇ m, from the viewpoint of easy addition.
  • the average particle diameter means a 50% average particle diameter, and can be determined using, for example, a Microtrac particle size analyzer (dynamic light scattering method) manufactured by Nikkiso Co., Ltd.
  • the component (D) is a process in which the resin component composed of the component (B) and the component (C) is solidified, and the component (A) is aggregated on the surface of the component (D), thereby aggregating the component (A). It is considered that an effect of efficiently suppressing electrical connection between carbon nanotubes can be obtained. Therefore, the compounding quantity of (A) component can be decreased by mix
  • the content of the component (A) is 0.5 to 15% by mass, preferably 0.7 to 12% by mass, more preferably 1 to 100% by mass of the total of the components (A) to (D). ⁇ 10% by mass.
  • content of the component (A) is less than 0.5% by mass, conductivity may not be exhibited.
  • content of (A) component exceeds 15 mass%, although electroconductivity will become high, an electroconductive resin composition may become hard and may be inferior to mechanical characteristics.
  • the content of the component (B) is 0.3 to 2 times the content of the component (A), preferably 0.4 to 1.8 times, more preferably 0.5 to 1.5 times the mass. If content of (B) component is less than 0.3 time, the dispersibility of (A) component will worsen and there exists a possibility of reducing electroconductivity. Moreover, when the content of the component (B) exceeds twice the mass, the molded product tends to be soft.
  • the content of the component (C) is the remainder obtained by subtracting the content of the components (A), (B), and (D) from 100% by mass of the components (A) to (D). Therefore, when the content of the component (A), the component (B) and the component (D) increases, the content of the component (C) relatively decreases. The higher the content of the component (C), the easier it is to express the inherent characteristics of the resin, so it is judged that a larger amount is preferable as long as the conductivity is satisfactory.
  • the amount of component (D) is 5 to 40% by weight, preferably 8 to 35% by weight, more preferably 10 to 30% by weight, based on 100% by weight of the total amount of components (A) to (D). is there. If the amount is less than 5% by mass, the conductivity may be reduced, and if it exceeds 40% by mass, the conductive resin composition may become hard and brittle.
  • the conductive resin composition of the present invention is a lubricant, an antistatic agent, an ultraviolet absorber, a pigment, and the like, which are generally blended in this type of composition as long as the effects of the present invention are not impaired.
  • Additives such as organic fillers can be blended as necessary.
  • ⁇ Method for producing conductive resin composition Next, the manufacturing method of the above-mentioned conductive resin composition is demonstrated.
  • the component (A) and the component (B) are stirred at a temperature of 65 ° C. or more and a stirring speed of 300 rpm or more to obtain a powder mixture, and the powder mixture Is added to the component (C) to obtain a conductive resin composition.
  • the method for producing the conductive resin composition of the present invention [2] is to obtain a powdery mixture by stirring the components (A) and (B) at a temperature of 65 ° C. or higher and a stirring speed of 300 rpm or higher.
  • a conductive resin composition is obtained by adding the mixture in the form of component (C) and component (D).
  • Component (B) and component (B) are charged into a mixer and stirred and mixed at a temperature higher than the temperature at which component (B) melts, that is, at 65 ° C. or higher and at a high speed of 300 rpm or higher. As the component is loosened, the component (B) adheres to the surface of the component (A). Thus, the adhesion of the component (B) to the surface of the component (A) causes the component (A) to easily mix with the component (C) during melt kneading with the component (C). ) Component can be highly concentrated and dispersed in the component (C).
  • component and (B) component when (A) component and (B) component are thrown into a mixer and it stirs and mixes above the temperature which (B) component fuse
  • the stirring temperature is preferably 70 to 140 ° C., more preferably 70 to 135 ° C., and the stirring speed is preferably 400 to 3000 rpm, more preferably 500 to 2500 rpm.
  • the stirring time is not particularly limited as long as the component (A) and the component (B) are sufficiently stirred and mixed, but it is preferably 5 minutes to 24 hours, more preferably 10 minutes to 12 hours.
  • a mixer for stirring and mixing for example, a known high-speed stirring mixer such as a dissolver, butterfly mixer, paddle blade mixer, Henschel mixer, super mixer, Banbury mixer, kneader, and trimix can be used. Specifically, an FM mixer manufactured by Nippon Coke Kogyo Co., Ltd., a super mixer manufactured by Kawata Co., Ltd., and the like can be given.
  • the powder mixture obtained is added to the component (C) and mixed.
  • the obtained powdery mixture is added to (C) component and (D) component, and is mixed.
  • the component (C) and the component (D) those described in the above item ⁇ Conductive resin composition> can be used.
  • the above powder mixture and the component (C) or the component (C) and the component (D) are mixed using a mixer such as a dissolver, a butterfly mixer, a paddle blade mixer, a Henschel mixer, or a super mixer.
  • a mixer such as a dissolver, a butterfly mixer, a paddle blade mixer, a Henschel mixer, or a super mixer.
  • a Nauter mixer manufactured by Hosokawa Micron Corporation, a V-type mixer manufactured by Nishimura Machinery Co., Ltd., a ribbon mixer, or the like can be used.
  • each component and air are placed in a suitable polyethylene bag and mixed by shaking up, down, left and right.
  • the above mixture (powder mixture and component (C) or mixture of component (C) and component (D)) is melt kneaded with a twin screw extruder, extruded into a strand, and then formed into a pellet. Granulate to obtain a conductive resin composition.
  • the heating temperature at the time of melt kneading is preferably 150 to 600 ° C., more preferably 200 to 500 ° C.
  • the carbon nanotubes of the component (A) can be highly dispersed in the resin, the desired conductivity can be obtained with a small amount of carbon nanotubes added. Therefore, by using carbon nanotubes, a conductive resin composition capable of forming a cured product excellent in moldability, mechanical properties, and the like can be obtained.
  • the manufacturing method is simple and excellent in cost reduction.
  • the powder mixture of the present invention has (A) carbon nanotubes and (B) a melting temperature measured by differential scanning calorimetry of 65 to 145 ° C., And melt volume flow rate, comprising a copolyamide which is 10 ⁇ 200cm 3 / 10min,
  • the blending amount of the component (B) is 0.3 to 2 times the blending amount of the component (A), and the components (A) and (B) are stirred at a temperature of 65 ° C. or more and a stirring speed of 300 rpm or more. It is a powdery mixture obtained.
  • This powder mixture is obtained by coating the surface of the component (A) with the component (B). Therefore, since there are few fine powders of 1 micrometer or less compared with the carbon nanotube which is (A) component, it is excellent in handleability.
  • the powder mixture of the present invention can be uniformly blended with the thermoplastic resin of the component (C). Therefore, the conductive resin composition containing this powdery mixture can have a conductivity with a small addition amount and can form a cured product having excellent mechanical properties.
  • the content of the component (B) is 0.3 to 2 mass times the content of the component (A), preferably 0.4 to 1.8 mass times, more preferably 0.5 to 1.5 mass times. Is double. If content of (B) component is less than 0.3 time, the dispersibility of (A) component will worsen and there exists a possibility of reducing electroconductivity. Moreover, when the content of the component (B) exceeds twice the mass, the molded product tends to be soft.
  • the molded body of the present invention is composed of the above-described conductive resin composition or the above-described conductive resin composition containing the powdery mixture.
  • the molding method is not particularly limited, and various molding methods usually employed for thermoplastic resins can be applied. Examples thereof include an injection molding method, an extrusion molding method, a calendar molding method, and a press molding method.
  • a bending test and an Izod impact test sample were prepared using an injection molding machine (manufactured by Toshiba Machine Co., Ltd., IS80EPN-2A) and a JIS K6911-compliant test piece molding die (clamping force: 80 t).
  • the cylinder temperature at the time of molding is shown in Tables 2 and 3.
  • Izod impact strength (IZOD) In accordance with JIS K7111-1, Izod impact strength was measured with a universal pendulum impact tester (CEAST, 6545/000 type).
  • A-1 Carbon nanotube as component (A)]
  • A-2 manufactured by Nanocyl, product name: “NC7000” (average diameter: 9.5 nm, average length: 1.5 ⁇ m)
  • A-2 manufactured by Arkema, product name: “C-100” (average diameter: 13 nm, average length: 4 ⁇ m)
  • Non-conductive inorganic filler as component (D) (D-1): manufactured by Nippon Talc Co., Ltd., product name: “MICRO ACE P-3” (talc) average particle size: 5.0 ⁇ m (D-2): Sakai Chemical Industry Co., Ltd., product name: “Variace B-54” (precipitated barium sulfate) Average particle size: 1.2 ⁇ m
  • Examples 1 to 3, Comparative Examples 1 to 3 [Production of powdery mixture]
  • the (A) component and the (B) component are stirred and mixed under the mixing ratios and stirring conditions shown in Table 1, and the powder mixture is obtained. Obtained.
  • the total input amount of the component (A) and the component (B) was set to 0.7 kg.
  • the stirring temperature was adjusted by adding steam to the jacket of the FM mixer.
  • Comparative Example 3 was set to 160 ° C., the heating oil was circulated to control the temperature.
  • the components (A-1), (A-2), (B-1) and (B-2) are the scope of the invention [1] and the invention [2].
  • the material inside. Component (B-3) is a material having a melting temperature outside the range of the present invention.
  • Examples 1 to 3 and Comparative Example 3 are within the scope of the present invention [1] and the present invention [2], and Comparative Examples 1 and 2 are It is outside the scope of the invention [1] and the present invention [2].
  • Further, with respect to all the stirring temperatures and rotation speeds of Examples 1 to 3 and Comparative Examples 1 to 3, conditions within the scope of the claims of the present invention [1], the present invention [2] and the present invention [4] Was used.
  • the stirring time was 1 to 2 hours.
  • the bulk density of the carbon nanotube alone and the powdery mixture was measured and shown in Table 1.
  • the bulk density of all the powder mixtures of Examples 1 to 3 and Comparative Examples 1 to 3 is 0.2 g / ml or more, and is not soft as compared with the carbon nanotube alone, so that it is easy to handle. Yes.
  • Examples 4 to 8, Comparative Examples 5 to 7 The powder mixtures of Examples 1 to 3 and Comparative Examples 1 to 3 and the component (C) or the mixture of the component (C) and the component (D) were dry blended, and then a twin-screw extruder (Toshiba Machine Co., Ltd.) Manufactured by TEM-35B (screw diameter: 35 mm, L / D: 32, vent type)), and a die having a hole for taking out a strand having a diameter of 3 mm is attached to the outlet of the twin-screw kneader. Then, the kneaded product was extruded, put into a water tank, cooled, and pelletized with a strand cutter. Using this pellet, a sample for measuring physical properties was produced by injection molding, and the physical properties were measured.
  • TEM-35B twin-screw extruder
  • Comparative Example 4 For Comparative Example 4, the component (A), the component (B) and the component (C) were dry blended without forming a powdery mixture of the component (A) and the component (B), and then a twin screw extruder ( TEM-35B manufactured by Toshiba Machine Co., Ltd. (screw diameter: 35 mm, L / D: 32, vent type)), and a die with a 3 mm diameter strand takeout hole at the outlet of the biaxial kneader. The kneaded product was pushed out from this die and placed in a water tank, cooled, and then pelletized with a strand cutter. Using this pellet, a sample for measuring physical properties was produced by injection molding, and the physical properties were measured.
  • TEM-35B manufactured by Toshiba Machine Co., Ltd. (screw diameter: 35 mm, L / D: 32, vent type)
  • the kneaded product was pushed out from this die and placed in a water tank, cooled, and then pelletized with a
  • Tables 2 and 3 show the mixing ratio of materials, kneading / molding conditions, and physical property evaluation results. In addition, the blank in Table 2 and Table 3 represents no blending.
  • Example 6 Comparing Example 6 that passed through the production of the powder mixture and Comparative Example 4 that did not go through the production of the powder mixture, Example 6 had a much smaller volume resistivity, flexural modulus, and IZOD. High impact strength. It is considered that the dispersibility of the carbon nanotubes is improved through the production of the powder mixture, the connection of the carbon nanotubes is improved, and electricity is easily transmitted. In addition, it is believed that the improved dispersibility results in fewer aggregates of carbon nanotubes and improves the flexural modulus and IZOD impact strength.
  • Example 4 is superior in all of volume resistivity, flexural modulus, and IZOD impact strength. Since the blending ratio of the component (B) is small, it is considered that the dispersion of the carbon nanotubes is insufficient.
  • Example 6 when comparing Example 6 within the scope of the present invention with Comparative Example 6 in which the blending ratio of the component (B) is increased outside the scope of the present invention, Example 6 is superior in volume resistivity and flexural modulus. Since the blending ratio of the component (B) is large, it is considered that even if the dispersion of the carbon nanotubes is good, the connection between the carbon nanotubes is deteriorated and it is difficult to transmit electricity. Since component (B) is a soft material, IZOD impact strength is considered to be larger in Comparative Example 6 in which the amount of component (B) added is increased. I think that is better.
  • Example 5 When Comparative Example 7 using Example (B-3) in which the melting temperature of component (B) is outside the scope of the present invention is compared with Example 5, the volume resistivity, flexural modulus, and IZOD impact strength are all measured. Example 5 is superior. It is considered that when the melting temperature of the component (B) is high, the dispersion of the carbon nanotubes is insufficient. It is believed that the melting temperature of the copolymerized polyamide is related to the degree of randomness of the copolymerization and affects the dispersibility of the carbon nanotubes.
  • Example 7 component (D) is added. Comparing Example 5 and Example 7, Example 7 has the same volume resistivity even when the amount of carbon nanotube added is small. Similarly, when Example 6 and Example 8 are compared, Example 8 has a good volume resistivity even when the amount of carbon nanotubes added is small. Therefore, it is considered to be an effective method to add an appropriate amount of the component (D) while taking into consideration the influence on properties such as flexural modulus and IZOD impact strength.
  • the molded body composed of the conductive resin composition containing the polyamide resin of the present invention has a good conductivity even when a small amount of carbon nanotubes are added, compared to carbon black and graphite, which are conventionally used as conductivity imparting agents. Therefore, it is suitable for injection molded products, extrusion molded products, films, and sheets that are excellent in moldability and mechanical properties of a resin using a conductive resin composition and require antistatic properties and electromagnetic wave absorption.
  • the carbon nanotubes, which are electrical conductivity-imparting agents are excellent in dispersibility, it can be expected to be applied in the field of automotive outer panels that require surface smoothness performance, antistatic performance, heat resistance, and the like.

Abstract

より少ないカーボンナノチューブ添加量で目的とする導電性を得られると共に、機械的強度に優れる硬化物を得ることができる導電性樹脂組成物、粉状混合物、導電性樹脂組成物の製造方法、導電性樹脂組成物からなる成形体を、提供する。 (A)カーボンナノチューブ、(B)示差走査熱分析で測定する溶融温度が、65~145℃であり、かつメルトボリュームフローレートが、10~200cm3/10minである共重合ポリアミド、および(C)ポリアミド樹脂(ただし、(B)成分を除く)を含有する熱可塑性樹脂を含み、(A)成分の配合量が、(A)~(C)成分の合計100質量%に対して、0.5~20質量%であり、かつ(B)成分の配合量が、(A)成分の配合量の0.3~2倍であることを特徴とする、導電性樹脂組成物である。

Description

導電性樹脂組成物、粉状混合物、導電性樹脂組成物の製造方法、および成形体
 本発明は、カーボンナノチューブ、共重合ポリアミド、およびポリアミド樹脂を含有する熱可塑性樹脂からなる導電性樹脂組成物、粉状混合物、導電性樹脂組成物の製造方法および導電性樹脂からなる成形体に関する。
 熱可塑性樹脂に炭素材料を添加することにより、導電性を付与した導電性材料と、この導電性材料を用いた樹脂製品が、広汎に使用されている。これら炭素材料の中でもカーボンナノチューブは、他の炭素材料に比べ、チューブ径(または繊維径)が細く、アスペクト比が大きいため、低含有量で導電性が得られることは、良く知られている。
 しかしながら、原料として提供されるカーボンナノチューブは、毛玉状の凝集体で供されることが多い。従って、カーボンナノチューブを用いて、樹脂中で電気を伝導させる様にするためには、製品樹脂中で程良く分散していることが、求められる。
 従来、樹脂に添加する導電性材料として、カーボンブラックや黒鉛が多く使用されている理由は、カーボンナノチューブに比べて、分散の制御がし易いことも一因である。ここで、カーボンナノチューブを用いた導電性樹脂組成物に関しては、樹脂中でのカーボンナノチューブの分散制御が、大きな課題となっている。
 導電助剤としてカーボンナノチューブを樹脂に添加する際、樹脂の持つ望ましい物性を維持するには、カーボンナノチューブを、できる限り少ない添加量で、効率よく導電性を発現できるようにすることが、樹脂中でのカーボンナノチューブの分散制御の目的となる。勿論、カーボンブラック等の他の導電助剤に比べて、カーボンナノチューブは、高価であり、樹脂中でのカーボンナノチューブの分散制御は、導電性樹脂組成物のコストダウンにも役立つ。
 まず、カーボンナノチューブを少なくとも一種の可塑剤と接触させることを特徴とするプレコンポジットの製造方法と、得られたプレコンポジットと、ポリマー材料とを混合することによる、ポリマー中のカーボンナノチューブの分散性、機械特性、導電性、または熱伝導性の改良が提案されている(特許文献1の特許請求の範囲等)。
 次に、カーボンナノチューブをプロピレン-オレフィンコポリマーワックスと混合してマスターバッチとし、これを熱可塑性重縮合物、スチレンポリマー、ポリアミド、ポリエステル、ポリカーボネート、ポリアクリレート、ポリアクリレートコポリマー、ポリアセタール、ポリオレフィン、ポリオレフィンコポリマー及びそれら物質の混合物からなる群から選択される有機ポリマーと混合して得られる導電材料が、提案されている(特許文献2の特許請求の範囲等)。
 また、融点が約45~約150℃のワックス中のカーボンナノチューブマスターバッチと、熱可塑性樹脂の溶融混合によって調製される導電性熱可塑性組成物の製造方法が開示されており、ワックス中のカーボンナノチューブマスターバッチは、従来の高分子量ポリマー中のカーボンナノチューブマスターバッチより容易に調製されるとしている(特許文献3の特許請求の範囲、第0006段落等)。更に、ここでは、ワックス中のカーボンナノチューブマスターバッチを使用することにより、導電性熱可塑性組成物の溶融流動特性も向上させる方法も望ましく、熱可塑性樹脂は、ポリエステル、ポリ(塩化ビニル)、ポリスチレン、ゴム変性ポリスチレン、ポリオレフィン、ポリカーボネート、ポリイミド、ポリエーテルイミド、ポリ(エーテルケトン)、ポリ(エーテルエーテルケトン)、ポリスルホン、ポリ(アリーレンエーテル)、ポリ(フェニレンスルフィド)、ポリアミド、スチレンとアクリロニトリルとのコポリマー、α-メチルスチレンとアクリロニトリルとのコポリマー、アクリロニトリルとブタジエンとスチレンとのコポリマー、アクリロニトリルとスチレンとアクリレートエステルとのコポリマー、ポリアセタール、熱可塑性ポリウレタンおよびこれらの組み合わせから構成される群から選択されている(特許文献3の第0001段落、請求項11等)。
 本発明者は、下記(1)~(3)を満たすオレフィン系重合体、および熱可塑性樹脂を含む樹脂組成物による、厚み方向の体積抵抗率が100Ω・cm以下の高い導電性樹脂組成物を提案している。この導電性樹脂組成物は、カーボンナノチューブを15~40質量%含んでおり、オレフィン系重合体は、(1)重量平均分子量(Mw)が35,000~150,000、(2)分子量分布(Mw/Mn)が3以下、(3)軟化点が80~130℃としている(特許文献4の請求項1)。
特開2008―290936号公報 特表2012-507587号公報 特表2014-511908号公報 特開2016―41806号公報
 カーボンナノチューブを導電助剤とするポリアミド樹脂を含有する熱可塑性樹脂からなる導電性樹脂組成物に関しては、特許文献4で示されているオレフィン系重合体を用いた導電性樹脂組成物よりも少ないカーボンナノチューブの添加量での導電性が求められていた。
 また、カーボンナノチューブを導電助剤とするポリアミド樹脂を含有する熱可塑性樹脂からなる導電性樹脂組成物は、汎用のポリオレフィン樹脂からなる導電性樹脂組成物よりも高温適性に優れており、期待されている分野でもある。
 本発明は、このような実情に鑑みてなされたものであり、より少ないカーボンナノチューブ添加量で目的とする導電性を得られると共に、機械的物性等に優れる硬化物を得ることができる導電性樹脂組成物、粉状混合物、導電性樹脂組成物の製造方法、導電性樹脂組成物からなる成形体を提供することを課題とする。
 本発明者は、カーボンナノチューブの分散制御に、特定の物性値を有する共重合ポリアミドを活用することで、上記課題を解決するポリアミド樹脂を含有する熱可塑性樹脂からなる導電性樹脂組成物を得られることを、見出した。
 すなわち、本発明は、以下の[1]~[7]を提供する。
〔1〕(A)カーボンナノチューブ、
(B)示差走査熱分析で測定する溶融温度が、65~145℃であり、
かつメルトボリュームフローレートが、10~200cm/10minである共重合ポリアミド、および
(C)ポリアミド樹脂を含有する熱可塑性樹脂(ただし、(B)成分を除く)
を含み、
(A)成分の配合量が、(A)~(C)成分の合計100質量%に対して、0.5~20質量%であり、かつ(B)成分の配合量が、(A)成分の配合量の0.3~2倍であることを特徴とする、導電性樹脂組成物。
〔2〕さらに、(D)非導電性の無機充填剤を含み、
(A)成分の配合量が、(A)~(C)の合計100質量%に対して、0.5~15質量%であり、
かつ(D)成分の配合量が、(A)~(D)の合計100質量%に対して5~40質量%である、上記〔1〕記載の導電性樹脂組成物。
〔3〕(C)成分のポリアミド樹脂が、ポリアミド6、ポリアミド66、ポリアミド11、ポリアミド12、ポリアミド610、ポリアミド612、ポリアミド6T、ポリアミド6I、ポリアミド9T、ポリアミドM5T、ポリアミド1010、ポリアミド1012、ポリアミド10TおよびポリアミドMXD6の中からなる群より選択される少なくとも1種である上記〔1〕または〔2〕記載の導電性樹脂組成物。
〔4〕(A)カーボンナノチューブ、および
(B)示差走査熱分析で測定する溶融温度が、65~145℃であり、
かつメルトボリュームフローレートが、10~200cm/10minである共重合ポリアミド
を含み、
(B)成分の配合量が、(A)成分の配合量の0.3~2倍であり、(A)成分および(B)成分を、温度65℃以上、攪拌速度300rpm以上で撹拌して得られる、粉状混合物。
〔5〕(A)成分および(B)成分を、温度65℃以上、攪拌速度300rpm以上で撹拌して、粉状混合物を得る工程、
粉状混合物に、(C)成分を添加して、導電性樹脂組成物を得る工程
を、この順に含む、上記〔1〕または〔3〕記載の導電性樹脂組成物の製造方法。
〔6〕(A)成分および(B)成分を、温度65℃以上、攪拌速度300rpm以上で撹拌して、粉状混合物を得る工程、
粉状混合物に、(C)成分および(D)成分を添加して、導電性樹脂組成物を得る工程
を、この順に含む、上記〔2〕または〔3〕記載の導電性樹脂組成物の製造方法。
〔7]上記〔1〕~〔3〕のいずれか記載の導電性樹脂組成物、または上記〔4〕記載の粉状混合物を含む導電性樹脂組成物からなる成形体。
 本発明〔1〕によれば、導電性と機械的物性に優れた硬化物を得ることができる導電性樹脂組成物を提供することができる。本発明〔4〕によれば、また、上記導電性樹脂組成物に用いられるカーボンナノチューブおよび共重合ポリアミドからなる粉状混合物を提供することができる。本発明〔5〕によれば、導電性と機械的物性に優れた硬化物を得ることができる導電性樹脂組成物の製造方法を提供することができる。本発明〔7〕によれば、導電性樹脂組成物からなる成形体を提供することができる。
 以下、本発明の実施形態を説明する。
<導電性樹脂組成物>
 本発明の導電性樹脂組成物は、
(A)カーボンナノチューブ、
(B)示差走査熱分析で測定する溶融温度が、65~145℃であり、
かつメルトボリュームフローレートが、10~200cm/10minである共重合ポリアミド、および
(C)ポリアミド樹脂を含有する熱可塑性樹脂(ただし、(B)成分を除く)
を含み、
(A)成分の配合量が、(A)~(C)成分の合計100質量%に対して、0.5~20質量%であり、かつ(B)成分の配合量が、(A)成分の配合量の0.3~2倍であることを特徴とする。
 本発明の導電性樹脂組成物は、(A)成分、(B)成分および(C)成分の3成分を、少なくとも含む。(A)成分、(B)成分および(C)成分の含有比率は、導電性、機械的物性に影響を与えるため、これらのバランスを取るべく、上記3成分の含有量を調整する。
[(A)カーボンナノチューブ]
 本発明で用いる(A)成分のカーボンナノチューブは、炭素からなる円筒状の中空繊維状物質であり、その構造は、単層であっても多層であってもよいが、分散のし易さの観点から、多層のものが好ましい。
 また、(A)成分のカーボンナノチューブは、特に、限定されず、いずれの市販品も使用可能であるが、平均直径(平均太さ)が5~20nm、平均長さが0.5~50μm程度のものが、使用しやすく、好ましい。カーボンナノチューブの平均直径が5nm以上であれば、混練時にカーボンナノチューブを切れにくくすることができ、20nm以下であれば、導電性を高めることができる。カーボンナノチューブの平均長さが0.5μm以上であれば、導電性を高めることができ、50μm以下であれば、混練時の粘度上昇を抑制し、混練および成形をしやすくすることができる。また、上記観点から、カーボンナノチューブの平均直径は、より好ましくは6~20nm、更に好ましくは7~20nmであり、平均長さは、より好ましくは0.5~30μm、更に好ましくは0.6~15μmである。なお、上記平均長径および平均長さは、カーボンナノチューブを電子顕微鏡(SEM、TEM)で観察し、算術平均することにより求めることができる(n=50)。
 また、(A)成分であるカーボンナノチューブとしては、公知のカーボンナノチューブを用いることができる。市販品としては、例えば、C-Nano Technology社のFlo Tube9000、Arkema社のC-100、Nanocyl社のNC7000等の多層カーボンナノチューブが、挙げられる。これらの市販品は、上述の平均長径および平均長さを満たし、好ましく用いることができる。また、量産を開始していることや価格競争力の観点からも優れている。
 (A)成分であるカーボンナノチューブは、アーク放電法、化学気相成長法(CVD法)、レーザー・アブレーション法等によって製造することができる。
[(B) 共重合ポリアミド]
 本発明で用いる(B)成分の共重合ポリアミドは、(1)示差走査熱分析(DSC)で測定する溶融温度が65~145℃(ISO11357に準拠)であり、かつ(2)メルトボリュームフローレートが10~200ml/10min(ISO1133に準拠、160℃/2.16Kg荷重で測定する)である。
 (B)成分である共重合ポリアミドの共重合モノマーとしては、ラクタム、アミノ酸、ジカルボン酸およびジアミンから選ばれる2種以上のモノマーが、挙げられる。
 また、(B)成分の共重合モノマーとして、ポリエーテルソフトセグメントを、使用することもできる。
 (B)成分の共重合ポリアミドの共重合モノマーの具体例としては、ラクタムとアミノ酸の場合には、カプロラクタム、ウンデカラクタムおよびラウリルラクタムが、ジカルボン酸の場合には、アジピン酸、アゼライン酸、セバシン酸、ラウリン酸、イソフタル酸、テレフタル酸およびダイマー酸が、ジアミンの場合には、ヘキサメチレンジアミン、サバシンジアミン、フタルジアミンおよびキシレンジアミン等が、挙げられる。これらの選択には、溶融温度とメルトボリュームフローレートに着目して、行う。また、溶融温度の異なる共重合ポリアミドを2種類以上選択して使用することも、できる。同様に、メルトボリュームフローレートの異なる共重合ポリアミドを2種類以上選択して使用することも出来る。
 ポリエーテルソフトセグメントとしては、ポリテトラメチレングリコールが、挙げられる。
 また、(B)成分の共重合ポリアミドの示差走査熱分析で測定する溶融温度が、65~145℃(ISO11357に準拠して測定する)に規定した共重合ポリアミドを用いることで、(A)成分の分散性を良好にでき、処理温度も下げられる。(A)成分の分散性を良好にでき、処理温度低下の観点から、溶融温度は、好ましくは70~140℃、より好ましくは70~135℃である。
 また、(B)成分の共重合ポリアミドのメルトボリュームフローレートが、10~200ml/10min(ISO1133に準拠し、160℃/2.16Kg荷重で測定する)に規定した共重合ポリアミドを用いることで、(A)成分の分散性を良好にでき、(A)成分の添加に伴う導電性樹脂組成物のメルトボリュームフローレート低下の影響を少なくできる。メルトボリュームフローレートは、好ましくは10~180ml/10min、より好ましくは15~170ml/10minである。
[(C)ポリアミド樹脂を含有する熱可塑性樹脂]
 本発明で用いる(C)成分の熱可塑性樹脂中のポリアミド樹脂としては、ポリアミド6、ポリアミド66、ポリアミド11、ポリアミド12、ポリアミド610、ポリアミド612、ポリアミド6T、ポリアミド6I、ポリアミド9T、ポリアミドM5T、ポリアミド1010、ポリアミド1012、ポリアミド10TおよびポリアミドMXD6の中から選択される少なくとも1種が、好ましい。
 本発明で用いる(C)成分のポリアミド樹脂を含有する熱可塑性樹脂は、ポリアミド樹脂だけで構成されてもよいが、ポリアミド樹脂を含有するポリマーアロイも含まれる。ポリアミド樹脂とアロイを形成する樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリオレフィンエラストマー樹脂、ABS樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリアリレート樹脂が挙げられる。また、ポリマーアロイを形成させるための相溶化剤が含まれても良い。
 また、本発明で用いる(C)成分のポリアミド樹脂を含有する熱可塑性樹脂は、ポリアミド樹脂成分を含有するブロックコポリマーも、含まれる。ポリアミド樹脂成分を含有するブロックコポリマーとしては、ポリエーテルジオール、ポリエステルジオールを用いたブロックコポリマーであるポリアミドエラストマーが、挙げられる。具体的には、ポリテトラメチレンエーテルグリコール、ポリオキシプロピレングリコールなどが、挙げられる。
 (A)成分の含有量は、(A)~(C)成分の合計100質量%に対して、0.5~20質量%であり、好ましくは1~18質量%、より好ましくは1.5~15質量%である。(A)成分の含有量が0.5質量%未満では、導電性が発現しないおそれがある。また、(A)成分の含有量が20質量%を超えると、導電性は高くなるが、導電性樹脂組成物が硬くなり、機械的特性に劣るおそれがある。
 (B)成分の含有量は、(A)成分の含有量の0.3~2質量倍であり、好ましくは0.4~1.8質量倍、より好ましくは0.5~1.5質量倍である。(B)成分の含有量が0.3倍未満では、(A)成分の分散性が悪くなり、導電性を低下させるおそれがある。また、(B)成分の含有量が質量2倍を超えると成形品が柔らかくなる傾向となる。
 なお、(C)成分の含有量は、(A)~(C)成分の合計100質量%から(A)成分および(B)成分の含有量を差し引いた残りとなる。そのため、(A)成分および(B)成分の含有量が多くなると、相対的に(C)成分の含有量は少なくなる。(C)成分の含有量は、多い方が樹脂本来の特性を発現しやすくなるため、導電性が満足できる範囲内で、多めが良い、と判断している。
 本発明の導電性樹脂組成物は、さらに、(D)非導電性の無機充填剤を含み、(A)成分の配合量が、(A)~(C)の全量100質量%に対して0.5~15質量%であり、かつ(D)成分の配合量が、(A)~(D)成分の全量100質量%に対して5~40質量%であると、好ましい。
 この(D)成分を含む場合には、(A)成分、(B)成分、(C)成分および(D)成分の含有比率は、導電性、機械的物性に影響を与えるため、これらのバランスを取るべく、上記4成分の含有量を調整する。
[(D)非導電性の無機充填剤]
 本発明で用いる(D)成分の非導電性の無機充填剤としては、例えば、炭酸カルシウム、沈降性硫酸バリウム、タルク、珪藻土、マイカ、ガラスフレーク、アルミナ、炭酸マグネシウム、硫酸カルシウム等を挙げることができる。中でも、樹脂への添加技術が確立され、価格競争力のある炭酸カルシウム、沈降性硫酸バリウム、タルクを好ましく用いることができる。
 これらの非導電性の無機充填剤は、樹脂への分散性を向上させる目的で、表面処理が施されたものであってもよい。
 なお、これらは1種を単独で用いても2種以上を組み合わせて用いてもよい。
 (D)成分の平均粒径は、添加容易性の観点から、好ましくは0.3~50μm、より好ましくは0.5~20μm、更に好ましくは0.5~10μmである。
 なお、本発明において、平均粒径とは、50%平均粒径を意味し、例えば、日機装株式会社製、Microtrac粒度分析計(動的光散乱法)を用いて求めることができる。
 (D)成分は、(B)成分および(C)成分で構成される樹脂成分が固まる過程で、(A)成分が(D)成分の表面に寄せ集められることにより、(A)成分の凝集を抑制し、カーボンナノチューブ同士の電気的接続が効率的に行える効果を奏するものと考えられる。したがって、導電性樹脂組成物中に(D)成分を配合することで、(A)成分の配合量を少なくできる。
 (A)成分の含有量は、(A)~(D)成分の合計100質量%に対して、0.5~15質量%であり、好ましくは0.7~12質量%、より好ましくは1~10質量%である。(A)成分の含有量が0.5質量%未満では、導電性が発現しないおそれがある。また、(A)成分の含有量が15質量%を超えると、導電性は高くなるが、導電性樹脂組成物が硬くなり、機械的特性に劣るおそれがある。
 上述のとおり、(B)成分の含有量は、(A)成分の含有量の0.3~2質量倍であり、好ましくは0.4~1.8質量倍、より好ましくは0.5~1.5質量倍である。(B)成分の含有量が0.3倍未満では、(A)成分の分散性が悪くなり、導電性を低下させるおそれがある。また、(B)成分の含有量が質量2倍を超えると成形品が柔らかくなる傾向となる。
 (C)成分の含有量は、(A)~(D)成分の合計100質量%から(A)成分、(B)成分および(D)成分の含有量を差し引いた残りとなる。そのため、(A)成分、(B)成分および(D)成分の含有量が多くなると、相対的に(C)成分の含有量は少なくなる。(C)成分の含有量は、多い方が樹脂本来の特性を発現しやすくなるので、導電性が満足できる範囲内で、多めが良いと判断している。
 (D)成分の配合量は、(A)~(D)成分の全量100質量%に対して5~40質量%であり、好ましくは8~35質量%、より好ましくは10~30質量%である。5質量%未満では、導電性が低下するおそれがあり、40質量%を超えると導電性樹脂組成物が硬くなり脆くなるおそれがある。
[その他の成分]
 本発明の導電性樹脂組成物は、以上の各成分の他に、本発明の効果を阻害しない範囲で、この種の組成物に一般に配合される滑剤、帯電防止剤、紫外線吸収剤、顔料、有機充填剤等の添加剤を、必要に応じて、配合することができる。
<導電性樹脂組成物の製造方法>
 次に、上述の導電性樹脂組成物の製造方法を説明する。
 本発明〔1〕の導電性樹脂組成物の製造方法は、(A)成分および(B)成分を温度65℃以上、攪拌速度300rpm以上で撹拌して粉状混合物を得て、該粉状混合物を(C)成分に添加して導電性樹脂組成物を得ることを特徴とする。
 また、本発明〔2〕の導電性樹脂組成物の製造方法は、(A)成分および(B)成分を温度65℃以上、攪拌速度300rpm以上で撹拌して粉状混合物を得て、該粉状混合物を(C)成分および(D)成分に添加して導電性樹脂組成物を得ることを特徴とする。
 (A)成分および(B)成分は、上記<導電性樹脂組成物>の項で説明したものを用いることができる。
 (A)成分および(B)成分を混合機に投入し、(B)成分が溶融する温度以上、即ち65℃以上で、攪拌速度300rpm以上の高速度での攪拌混合することで、(A)成分がほぐされると共に、(A)成分の表面に(B)成分が付着する。このように、(A)成分の表面に(B)成分が付着することで、(C)成分との溶融混練時に、(A)成分が(C)成分に容易に混ざり合う要因となり、(A)成分の(C)成分への高濃度・高分散を可能としている。
なお、(A)成分および(B)成分を混合機に投入し、(B)成分が溶融する温度以上、即ち65℃以上で、攪拌速度300rpm以上の高速度で攪拌混合する際、(B)成分が混合機の内壁や撹拌翼に付着するのを防止する為、(B)成分を小分けし、2回以上に分けて添加しても良い。
 溶融温度の異なる2種類以上の(B)成分を用いる場合、溶融温度の低いものを先に、溶融温度の高いものを後に添加するのが良い。
 攪拌温度は、好ましくは70~140℃、より好ましくは70~135℃であり、攪拌速度は、好ましくは400~3000rpm、より好ましくは500~2500rpmである。また、攪拌時間は(A)成分と(B)成分とが十分に攪拌混合されれば、特に限定されないが、好ましくは5分~24時間、より好ましくは10分~12時間である。
 攪拌混合するための混合機としては、例えば、ディゾルバー、バタフライミキサー、パドル羽根ミキサー、ヘンシェルミキサー、スーパーミキサー、バンバリーミキサー、ニーダー、トリミックスなど、公知の高速攪拌混合機を使用することが、できる。具体的には、日本コークス工業株式会社製のFMミキサーや株式会社カワタ製のスーパーミキサー等が、挙げられる。
 次に、本発明〔1〕であり、(D)成分を含まない場合には、得られた粉状混合物を(C)成分に添加し、混合する。また、本発明〔2〕の(D)成分を含む場合には、得られた粉状混合物を(C)成分および(D)成分に添加し、混合する。(C)成分および(D)成分は、上記<導電性樹脂組成物>の項で説明したものを用いることができる。
 上記粉状混合物と(C)成分または(C)成分および(D)成分とを、ディゾルバー、バタフライミキサー、パドル羽根ミキサー、ヘンシェルミキサー、スーパーミキサーなどの混合機を用いて混合する。具体的には、ホソカワミクロン株式会社製のナウターミキサー、株式会社西村機械製作所製のV型ミキサーやリボンミキサー等を使用できる。また、少量の場合には、適当なポリエチレンの袋に各成分と空気を入れ、上下左右に振り混合する。
 つぎに、上記混合物(粉状混合物と(C)成分または(C)成分および(D)成分との混合物)を二軸押出機で溶融混練し、更にストランド状に押出し、次にペレット形状に造粒し、導電性樹脂組成物を得る。溶融混練に際しての加熱温度は、好ましくは150~600℃、より好ましくは200~500℃である。
 前記製造方法によれば、(A)成分のカーボンナノチューブを樹脂中に高度に分散させることができるため、少ないカーボンナノチューブの添加量で目的とする導電性を得られる。従って、カーボンナノチューブを用いることで、成型性、機械的特性等に優れた硬化物を形成可能な導電性樹脂組成物とすることができる。また、前記製造方法は、シンプルでコスト低減にも優れた方法である。
<粉状混合物>
 本発明の粉状混合物は、(A)カーボンナノチューブ、および
(B)示差走査熱分析で測定する溶融温度が、65~145℃であり、
かつメルトボリュームフローレートが、10~200cm/10minである共重合ポリアミド
を含み、
(B)成分の配合量が、(A)成分の配合量の0.3~2倍であり、(A)成分および(B)成分を、温度65℃以上、攪拌速度300rpm以上で撹拌して得られる粉状の混合物である。
 この粉状混合物は、(A)成分の表面に(B)成分を被覆させたものである。したがって、(A)成分であるカーボンナノチューブに比べ、1μm以下の微粉が少ないことから、取り扱い性に優れる。
 また、(A)成分の表面に(B)成分を被覆させたことで、本発明の粉状混合物は、(C)成分の熱可塑性樹脂へ均一に配合させることができるようになる。従って、この粉状混合物を含む導電性樹脂組成物は、少ない添加量で導電性を有すると共に、機械的物性に優れた硬化物を形成することが可能となる。
 (B)成分の含有量は、(A)成分の含有量の0.3~2質量倍であり、好ましくは0.4~1.8質量倍、より好ましくは0.5~1.5質量倍である。(B)成分の含有量が0.3倍未満では、(A)成分の分散性が悪くなり、導電性を低下させるおそれがある。また、(B)成分の含有量が質量2倍を超えると成形品が柔らかくなる傾向となる。
 なお、上記(A)成分および(B)成分は<導電性樹脂組成物>の項で説明したとおりである。
<成形体>
 本発明の成形体は、上述の導電性樹脂組成物または上述の粉状混合物を含む導電性樹脂組成物からなる。成形方法は、特に限定されることはなく、通常熱可塑性樹脂に採用されている各種成形方法を適用することができる。例えば、射出成形法、押出成形法、カレンダー成形法、プレス成形法などが挙げられる。
 以下、実施例および比較例を挙げて本発明を具体的に説明する。なお、以下の実施例は本発明を詳細に説明するために示すものであり、本発明はその趣旨に反しない限り、以下の実施例に限定されるものではない。
〔曲げ試験、およびアイゾット衝撃試験サンプルの作製〕
 射出成型機(東芝機械株式会社製、IS80EPN-2A)、およびJIS K6911準拠の試験片成形用金型(型締力:80t)を用いて、曲げ試験、およびアイゾット衝撃試験サンプルを作製した。なお、成形時のシリンダー温度は、表2および3に示した。
〔物性の評価〕
(1)体積抵抗率の測定
 射出成型によるサンプル作製では、縦13mm×横180mm、厚さ約3mmのプレートを射出成型機により、作製した。抵抗率計(株式会社三菱化学アナリテック製、ロレスタGPMCP-T610型)の抵抗測定機能で、90ボルトを印加し、体積抵抗率を算出した。
(2)曲げ試験
 JIS K7203に準拠し、精密万能試験機(株式会社島津製作所製、AGS-500A型)により、曲げ弾性率を測定した。
(3)アイゾット衝撃強度(IZOD)
 JIS K7111-1に準拠し、万能振子式衝撃試験機(CEAST社製、6545/000型)により、アイゾット衝撃強度を測定した。
 実施例および比較例で用いた各成分は、以下の通りである。
[(A)成分であるカーボンナノチューブ]
・(A-1):Nanocyl社製、品名:「NC7000」(平均直径:9.5nm、平均長さ:1.5μm)
・(A-2):Arkema社製、品名:「C-100」(平均直径:13nm、平均長さ:4μm)
[(B)成分である共重合ポリアミド]
・(B-1):EMS-GRIVORY社製、品名:「Griltex D1666A」(溶融温度:80℃、ISO11357に準拠、DSCで測定、メルトボリュームフローレート:90ml/10min(ISO1133に準拠、160℃/2.16Kg荷重で測定)
・(B-2):EMS-GRIVORY社製、品名:「Griltex 2A」(溶融温度125℃ISO11357に準拠、DSCで測定、メルトボリュームフローレート:18ml/10min(ISO1133に準拠、160℃/2.16Kg荷重で測定)
・(B-3):Arkema社製、品名:「Platamid H1186」(溶融温度150℃ISO11357に準拠、DSCで測定、メルトボリュームフローレート:18ml/10min(ISO1133に準拠、160℃/2.16Kg荷重で測定)
[(C)成分であるポリアミド樹脂を含有する熱可塑性樹脂]
・(C-1):宇部興産株式会社製、品名:「ナイロン樹脂 射出1013B」(PA6)
・(C-2):Arkema社製、品名:「Rilsan BMF O」(PA11)
・(C-3):三菱ガス化学株式会社製、品名:「MXナイロン S6007」(PA MXD6)
[成分(D)である非導電性の無機充填剤]
・(D-1):日本タルク株式会社製、品名:「MICRO ACE P-3」(タルク)平均粒子径:5.0μm
・(D-2):堺化学工業株式会社製、品名:「バリエース B-54」(沈降性硫酸バリウム)平均粒子径:1.2μm
(実施例1~3、比較例1~3)
〔粉状混合物の製造〕
 日本コークス工業株式会社製のFMミキサー(FM10C/I、容量:9L)に、(A)成分および(B)成分を表1に示す各配合比率と、攪拌条件で攪拌混合し、粉状混合物を得た。このとき、(A)成分および(B)成分の投入量の合計が0.7Kgになるようにした。撹拌温度については、FMミキサーのジャケットにスチームを入れ、調整した。ただし比較例3のみ160℃にするため、加熱オイルを循環させて、温度制御を行った。
 表1中の材料の種類について、(A-1)、(A-2)、(B-1)および(B-2)成分は、本発明〔1〕および本発明〔2〕の発明の範囲内の材料である。(B-3)成分は、溶融温度が、本発明の範囲外の材料である。表1中の材料の配合比率について、実施例1~3および比較例3については、本発明〔1〕および本発明〔2〕の範囲内にあり、比較例1および比較例2については、本発明〔1〕および本発明〔2〕の範囲外にある。また、実施例1~3および比較例1~3の全ての撹拌の温度、回転数については、本発明〔1〕、本発明〔2〕および本発明〔4〕の特許請求の範囲内の条件を用いた。また、撹拌時間は、1~2時間とした。
 また、JIS K5101に準拠し、カーボンナノチューブ単体と粉状混合物の嵩密度を測定し、表1に示した。実施例1~3および比較例1~3の全ての粉状混合物の嵩密度は、0.2g/ml以上であり、カーボンナノチューブ単体と比べて、ふんわりしていないので、扱いやすい状態となっている。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(実施例4~8、比較例5~7)
 実施例1~3および比較例1~3の粉状混合物と、(C)成分または(C)成分および(D)成分との混合物をドライブレンドし、次いで、二軸押出機(東芝機械株式会社製、TEM-35B〔スクリュー径:35mm、L/D:32、ベント式〕)で溶融混練し、更に、二軸混練機の出口に直径3mmのストランド取出し用穴付きのダイスを取り付け、このダイスから混練物を押し出して、水槽に入れ、冷却した後、ストランドカッターでペレット化した。このペレットを用いて、物性測定用サンプルを射出成型により作製し、物性を測定した。
(比較例4)
 比較例4については、(A)成分と(B)成分による粉状混合物を作らずに、(A)成分、(B)成分および(C)成分をドライブレンドし、次いで、二軸押出機(東芝機械株式会社製、TEM-35B〔スクリュー径:35mm、L/D:32、ベント式〕)で溶融混練し、更に、二軸混練機の出口に直径3mmのストランド取出し用穴付きのダイスを取り付け、このダイスから混練物を押し出して、水槽に入れ、冷却した後、ストランドカッターでペレット化した。このペレットを用いて、物性測定用サンプルを射出成型により作製し、物性を測定した。
 表2、表3に、材料の配合比率、混練・成型条件および物性評価結果に示す。なお、表2、表3中の空欄は、配合なしを表す。
 粉状混合物の製造を経由した実施例6と粉状混合物の製造を経由しなかった比較例4とを比較すると、実施例6の方が、体積抵抗率が大幅に小さく、曲げ弾性率とIZOD衝撃強度も大きい。粉状混合物の製造を経由するとカーボンナノチューブの分散性が向上し、カーボンナノチューブの繋がりが良くなり、電気が伝わりやすくなる、と考察している。また、分散性が良くなることで、カーボンナノチューブの凝集物も少なくなり、曲げ弾性率とIZOD衝撃強度が向上する、と考えている。
 (A)成分と(B)成分の配合比率の影響については、本発明の範囲内の実施例4と、本発明の範囲外で(B)成分の配合割合を小さくした比較例5を比較すると、体積抵抗率、曲げ弾性率およびIZOD衝撃強度の全てにおいて、実施例4の方が優れている。(B)成分の配合割合が小さいため、カーボンナノチューブの分散が不充分と考察している。
 (A)成分と(B)成分の配合比率の影響について、本発明の範囲内の実施例6と、本発明の範囲外で(B)成分の配合割合が大きくした比較例6を比較すると、体積抵抗率、曲げ弾性率において、実施例6の方が優れている。(B)成分の配合割合が大きいため、カーボンナノチューブの分散は良くても、カーボンナノチューブ間の繋がりが悪くなり、電気が伝わり難くなったためと考察している。(B)成分が軟質材料であるから、IZOD衝撃強度については、(B)成分の添加量を増やした比較例6の方が大きくなっていると考えているが、総合的には実施例6の方が優れている、と判断している。
 (B)成分の溶融温度が、本発明の範囲外である(B-3)を用いた比較例7と、実施例5を比較すると、体積抵抗率、曲げ弾性率およびIZOD衝撃強度の全てにおいて、実施例5の方が優れている。(B)成分の溶融温度が、高いとカーボンナノチューブの分散が不充分となる、と考察している。共重合ポリアミドの溶融温度が、共重合のランダム性の度合いと関連し、カーボンナノチューブの分散性を左右する、と考えている。
 実施例7と実施例8は、(D)成分を添加している。実施例5と実施例7を比較すると、実施例7はカーボンナノチューブの添加量が小さくても同等の体積抵抗率となっている。同じく、実施例6と実施例8を比較すると、実施例8は、カーボンナノチューブの添加量が小さくても良好な体積抵抗率となっている。従って、曲げ弾性率やIZOD衝撃強度等の特性への影響を考慮しつつ、適量の(D)成分を添加することは、有効な手法であると考えている。
 本発明のポリアミド樹脂を含有する導電性樹脂組成物からなる成形体は、従来、導電性付与剤として使用されているカーボンブラックやグラファイトと比較して、カーボンナノチューブの添加が少量でも、良好な導電性が得られ易いため、導電性樹脂組成物を用いる樹脂の成形性、および機械的特性が優れ、帯電防止や電磁波吸収が求められる射出成形品、押出成形品、フィルム、シートに好適である。特に、導電性付与剤であるカーボンナノチューブの分散性に優れていることから、表面平滑性能、帯電防止性能および耐熱性等が求められる自動車用外板分野への適用が期待できる。

Claims (7)

  1.  (A)カーボンナノチューブ、
    (B)示差走査熱分析で測定する溶融温度が、65~145℃であり、
    かつメルトボリュームフローレートが、10~200cm/10minである共重合ポリアミド、および
    (C)ポリアミド樹脂を含有する熱可塑性樹脂(ただし、(B)成分を除く)
    を含み、
    (A)成分の配合量が、(A)~(C)成分の合計100質量%に対して、0.5~20質量%であり、かつ(B)成分の配合量が、(A)成分の配合量の0.3~2倍であることを特徴とする、導電性樹脂組成物。
  2.  さらに、(D)非導電性の無機充填剤を含み、
    (A)成分の配合量が、(A)~(C)の合計100質量%に対して、0.5~15質量%であり、
    かつ(D)成分の配合量が、(A)~(D)の合計100質量%に対して5~40質量%である、請求項1記載の導電性樹脂組成物。
  3.  (C)成分のポリアミド樹脂が、ポリアミド6、ポリアミド66、ポリアミド11、ポリアミド12、ポリアミド610、ポリアミド612、ポリアミド6T、ポリアミド6I、ポリアミド9T、ポリアミドM5T、ポリアミド1010、ポリアミド1012、ポリアミド10TおよびポリアミドMXD6からなる群より選択される少なくとも1種である、請求項1または2記載の導電性樹脂組成物。
  4.  (A)カーボンナノチューブ、
    (B)示差走査熱分析で測定する溶融温度が、65~145℃であり、および
    かつメルトボリュームフローレートが、10~200cm/10minである共重合ポリアミド
    を含み、
    (B)成分の配合量が、(A)成分の配合量の0.3~2倍であり、(A)成分および(B)成分を、温度65℃以上、攪拌速度300rpm以上で撹拌して得られる、粉状混合物。
  5.  (A)成分および(B)成分を、温度65℃以上、攪拌速度300rpm以上で撹拌して、粉状混合物を得る工程、
    粉状混合物に、(C)成分を添加して、導電性樹脂組成物を得る工程
    を、この順に含む、請求項1または3記載の導電性樹脂組成物の製造方法。
  6.  (A)成分および(B)成分を、温度65℃以上、攪拌速度300rpm以上で撹拌して、粉状混合物を得る工程、
    粉状混合物に、(C)成分および(D)成分を添加して、導電性樹脂組成物を得る工程
    を、この順に含む、請求項2または3記載の導電性樹脂組成物の製造方法。
  7.  請求項1~3のいずれか1項記載の導電性樹脂組成物、または請求項4記載の粉状混合物を含む、導電性樹脂組成物からなる成形体。
PCT/JP2018/007953 2017-04-05 2018-03-02 導電性樹脂組成物、粉状混合物、導電性樹脂組成物の製造方法、および成形体 WO2018186073A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-074921 2017-04-05
JP2017074921A JP2018177862A (ja) 2017-04-05 2017-04-05 導電性樹脂組成物、粉状混合物、導電性樹脂組成物の製造方法、および成形体

Publications (1)

Publication Number Publication Date
WO2018186073A1 true WO2018186073A1 (ja) 2018-10-11

Family

ID=63712215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007953 WO2018186073A1 (ja) 2017-04-05 2018-03-02 導電性樹脂組成物、粉状混合物、導電性樹脂組成物の製造方法、および成形体

Country Status (2)

Country Link
JP (1) JP2018177862A (ja)
WO (1) WO2018186073A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7225915B2 (ja) * 2019-02-28 2023-02-21 日本ゼオン株式会社 標示構造、並びに、路面標示、道路付属物および建造物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005046184A (ja) * 2003-07-29 2005-02-24 Terumo Corp 拡張体付カテーテル
JP2010043140A (ja) * 2008-08-08 2010-02-25 Arkema France カーボンナノチューブとコポリアミドとを含む接着性組成物。
JP2012144626A (ja) * 2011-01-11 2012-08-02 Daicel Corp 熱伝導性樹脂組成物及び熱伝導性シート

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005046184A (ja) * 2003-07-29 2005-02-24 Terumo Corp 拡張体付カテーテル
JP2010043140A (ja) * 2008-08-08 2010-02-25 Arkema France カーボンナノチューブとコポリアミドとを含む接着性組成物。
JP2012144626A (ja) * 2011-01-11 2012-08-02 Daicel Corp 熱伝導性樹脂組成物及び熱伝導性シート

Also Published As

Publication number Publication date
JP2018177862A (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
TWI660003B (zh) 導電性聚醯胺模製材料
EP1813649B1 (en) Electroconductive masterbatch and resin composition including the same
KR101309738B1 (ko) 고분자/필러의 전기전도성 복합체 및 이의 제조방법
WO2006080303A1 (ja) ポリアミド樹脂組成物および導電性軸状成形品
JP2006097006A (ja) 導電性樹脂組成物の製造方法及び用途
JP2011132550A (ja) ポリアミド樹脂組成物および導電性軸状成形品
JP4725118B2 (ja) 導電性ポリアミド樹脂組成物
WO2006035619A1 (ja) ポリアミド系導電性樹脂組成物、その製造方法、及びそれからなる燃料タンク用キャップ
KR101887406B1 (ko) 전기전도성 향상 수지 조성물
WO2018025824A1 (ja) 導電性樹脂組成物
US20140018469A1 (en) Composite material containing carbon nanotubes and particles having a core-shell structure
JP2006089710A (ja) 炭素系導電性フィラーおよびその組成物
JP2012204292A (ja) 導電性フィルム及びその製造方法
WO2007029634A1 (ja) 導電性マスターバッチの製造方法
WO2018186073A1 (ja) 導電性樹脂組成物、粉状混合物、導電性樹脂組成物の製造方法、および成形体
JP4672682B2 (ja) 導電性樹脂組成物
JP4889987B2 (ja) 燃料タンク用キャップ
JP2006137939A (ja) 燃料チューブ用導電性熱可塑性樹脂組成物及び燃料チューブ
JP2011162752A (ja) 導電性マスターバッチおよびその製造方法ならびに該導電性マスターバッチを用いて得られる導電性樹脂組成物およびその成形品
JP2011162753A (ja) 導電性樹脂組成物およびその製造方法ならびに該導電性樹脂組成物を用いて得られる成形品
WO2018056215A1 (ja) 導電性樹脂組成物
JP2006097005A (ja) 導電性樹脂組成物及びその製造方法
WO2019181828A1 (ja) 導電性樹脂組成物及びその製造方法
JP6598669B2 (ja) 半導電性樹脂組成物及びこれを用いた電子写真用シームレスベルト
JP2006028231A (ja) ポリアミド樹脂組成物、摺動部品、および、ポリアミド樹脂組成物の製造方法。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781414

Country of ref document: EP

Kind code of ref document: A1