WO2018184531A1 - 腹泻相关病原体多重rt-pcr联合基因芯片检测试剂盒 - Google Patents

腹泻相关病原体多重rt-pcr联合基因芯片检测试剂盒 Download PDF

Info

Publication number
WO2018184531A1
WO2018184531A1 PCT/CN2018/081752 CN2018081752W WO2018184531A1 WO 2018184531 A1 WO2018184531 A1 WO 2018184531A1 CN 2018081752 W CN2018081752 W CN 2018081752W WO 2018184531 A1 WO2018184531 A1 WO 2018184531A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
probe
reverse primer
primer
diarrhea
Prior art date
Application number
PCT/CN2018/081752
Other languages
English (en)
French (fr)
Inventor
王勇强
刘洋
张鑫磊
Original Assignee
苏州协云基因科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州协云基因科技有限公司 filed Critical 苏州协云基因科技有限公司
Publication of WO2018184531A1 publication Critical patent/WO2018184531A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present disclosure relates to the field of nucleic acid detection technology, in particular to a diarrhea-related pathogen multiplex RT-PCR combined with a gene chip detection kit.
  • Diarrhea caused by pathogen infection is a common clinical disease. There are about 2 billion cases of diarrhea in the world each year, of which 2.2 million people die, including 1.8 million children, which is an important cause of infant death. Diarrhea can occur in all seasons, especially in summer and autumn. The cause of infection is mostly caused by food or water pollution through the faecal tract. It can cause sudden public health events such as mass morbidity and infectious disease outbreaks. Public health and socio-economic development.
  • the common pathogens of diarrheal diseases include viruses, bacteria, parasites, etc., and the pathogens caused by diseases and epidemics are complex. Therefore, the detection of pathogens with fast and accurate multiple indicators will provide sufficient evidence for the diagnosis and treatment of diseases and provide a basis for the control of the epidemic. .
  • ELISA enzyme-linked immunosorbent assay
  • immunoassay strips are currently the main protein-based assays. These methods are convenient and rapid to use, but have the disadvantage of relatively low detection sensitivity and, with the variation of antigenic proteins, It is prone to false negatives; at the same time, antigen detection is susceptible to a variety of factors, resulting in false positives.
  • the nucleic acid-based detection method is the most common and accurate pathogen detection technology at present, and the detection methods mainly include PCR (polymerase chain reaction) technology and gene chip technology based on molecular hybridization.
  • PCR technology is still the most widely used, and its commonly used technical methods include general qualitative PCR, nested PCR, multiplex PCR, and real-time PCR.
  • the general qualitative PCR method has low detection efficiency, especially when detecting multi-gene objects.
  • nested PCR improves the sensitivity of detection, it also has the problem of detection efficiency.
  • the fluorescence quantitative PCR method has high sensitivity, but its cost is high and needs Special testing equipment, while the number of single-tube detection indicators is also very limited.
  • the multiplex PCR method can simultaneously detect multiple genes in one reaction, and can achieve multiple amplification and detection.
  • the technical difficulty is to avoid cross-linking reaction between multiple primers in the PCR process, and the optimal reaction conditions of each amplicon
  • the current multiplex PCR detection capability of conventional design is about 10 indicators, and the better multi-primer design will significantly improve the multi-index detection capability of the method.
  • the gene chip is a very practical pathogen detection technology, which can be used in conjunction with multiplex PCR technology to achieve multiplex amplification and multi-index detection of target pathogens. This technique requires high sensitivity and specificity for multiple primers and probes. Reasonable primer and probe settings are key.
  • RNA viruses including various RNA viruses, DNA viruses, pathogenic Escherichia coli, and other pathogenic bacteria. Parasites, etc.
  • Complex etiological requirements detection techniques can achieve parallel detection of up to 20 indicators and have the ability to simultaneously detect nucleic acid RNA and nucleic acid DNA.
  • Second, a large part of diarrhea-related pathogens have the characteristics of rapid evolution. The same type of pathogens correspond to a large group of different variant genes, and have the ability to mutate new variant genes in a short time.
  • diarrhea disease is a common clinical disease with rapid onset and concentrated outbreak. This requires detection technology to process multiple clinical samples at the same time, with rapid detection and high-throughput detection capabilities.
  • the purpose of the present disclosure is to solve the problem of low detection coverage of high-mutation pathogens by conventional primers and probes by using a combination of multiple specific conservative degenerate primers and probes, and to solve parallel detection of more than 20 diarrhea-related pathogen single reaction systems.
  • the problem of solving the problem of non-specific cross-reaction between multiple primers and probes at the same time overcomes the defects of the prior art single-reaction system detection index, time-consuming and laborious defects, and provides a simple operation, rapid sensitivity, and large detection flux. Diarrhea-related pathogen gene detection kit.
  • the diarrhea-related pathogen multiplex RT-PCR combined with a gene chip detection kit for detecting one or more of the following pathogens: adenovirus, astrovirus, norovirus GI type, norovirus GII type , rotavirus, sand wave virus, salmonella, Shigella, Campylobacter, Clostridium difficile, Clostridium perfringens, enterotoxin Escherichia coli, enterohemorrhagic Escherichia coli, enteropathogenic Escherichia coli Intestinal invasive Escherichia coli, enteroaggregative Escherichia coli, Vibrio cholerae, Vibrio parahaemolyticus, Yersinia enterocolitica, Aeromonas hydrophila, Listeria monocytogenes, Sakisaki Enterobacter, Staphylococcus aureus, Cryptosporidium, Intestinal Giardia and dysentery amoeba;
  • the kit has a combination of primers and probes for diarrhea-related pathogens, and an endogenous control of human GAPDH gene and a positive control and a negative control;
  • the diarrhea-related pathogen multiplex RT-PCR combined gene chip detection kit of the present disclosure is composed of a primer combination, a probe combination, a gene chip, an auxiliary material, and a dosing solution.
  • Reverse primer 5'-AAGTAGGTGCTGGCCATGTC (SEQ ID NO: 2);
  • Reverse primer 5'-YRGRCTTRCTAGCCATCRCAC (SEQ ID NO: 4);
  • Reverse primer 5'-GCGTCYTTAGACGCCATCATCAT (SEQ ID NO: 6);
  • Reverse primer 5'-CAATRGCRGCACCRRCWACG (SEQ ID NO: 8);
  • Reverse primer 5'-ACGSCCCTATAGCCATTTAGGT (SEQ ID NO: 10);
  • Reverse primer 5'-VAAYTWYGAYYWGGCYCTCG (SEQ ID NO: 12);
  • Reverse primer 5'-TTAACAGTGCTCGTTTACGACCTG (SEQ ID NO: 14);
  • Reverse primer 5'-CAGTGCGGAGGTCATTTGCT (SEQ ID NO: 16);
  • Reverse primer 5'-CCATAATGKCCAAATCCWCCRCTT (SEQ ID NO: 18);
  • Reverse primer 5'-CCAAGCAAATACTCTATTTGGAGCATTAGG (SEQ ID NO: 20);
  • Reverse primer 5'-TCAACTAGTGGTGARAAAGATGCTGG (SEQ ID NO: 22);
  • Reverse primer 5'-GGTGCATGATGAATCCAGGGT (SEQ ID NO: 24);
  • Reverse primer 5'-ACTATCAATCATCAGTAAAGACGTACCTCC (SEQ ID NO: 26);
  • Reverse primer 5'-AGTCTTTCTTRTTGTATGACTCATGCCA (SEQ ID NO: 28);
  • Reverse primer 5'-GTTGCCCCACGCTGGTTGTC (SEQ ID NO: 30);
  • Reverse primer 5'-GCTACAATTATTCCTTTTGACCAATTCGGA (SEQ ID NO: 32);
  • Reverse primer 5'-TCGAAATGGCTTGGGTTAAGCT (SEQ ID NO: 34);
  • Reverse primer 5'-ACGCCAAACAAACTCGTGAAGCT (SEQ ID NO: 36);
  • Reverse primer 5'-CTGGTCGCGGCACAATTGGT (SEQ ID NO: 38);
  • Reverse primer 5'-TRACGAAGGTGTGGYTCCAGTTCG (SEQ ID NO: 40);
  • Reverse primer 5'-TTCTTGGCGGCACATTTGTC (SEQ ID NO: 42);
  • Reverse primer 5'-TTGCTCTYTAACAATCCGGAACAAGCT (SEQ ID NO: 44);
  • Reverse primer 5'-GTGATGCATYTGCTGAGCTAC (SEQ ID NO: 46);
  • Reverse primer 5'-GGTGGRCATTCYTTTGCAGGA (SEQ ID NO: 48);
  • Reverse primer 5'-GCYCGTTGTCGCARTGGAGC (SEQ ID NO: 50);
  • Reverse primer 5'-GCCCTCCAATTGATTTCGTAGGAGAA (SEQ ID NO: 52);
  • Reverse primer 5'-AGGGGGCAGAGATGATGAC (SEQ ID NO: 54);
  • the probe combination is one or more nucleic acid probes sequentially immobilized on the surface of the gene chip, including a diarrhea-related pathogen-specific conservative degenerate probe, a GAPDH endogenous control probe, a positive hybridization probe, and a negative hybridization probe.
  • the amino group (NH2), the base sequence 5'-3' of each probe is as follows:
  • Adenovirus probe is adenovirus probe
  • Aeromonas hydrophila probe
  • the gene chip described in the present disclosure is a solid phase support medium having a probe array fixed on its surface, and the solid phase support medium is a glass plate, a silicon wafer, a nylon membrane or a nitrocellulose membrane.
  • the diarrhea-related pathogen detecting kit of the present disclosure is composed of a primer combination, a probe combination, a gene chip, an auxiliary material and a dosing solution, and the auxiliary material is a one-step reverse transcription amplification reagent (One Step RT-PCR Reagent), ultrapure water ( Ultrapure Water) and a single-stranded DNA with a Cy5-labeled positive oligonucleotide at the 5' end, and the base sequence of the single-stranded DNA with a Cy5-labeled positive oligonucleotide at the 5' end is
  • the multiplex-RT-PCR combined gene chip detection kit for diarrhea-related pathogens in the present disclosure is composed of a primer combination, a probe combination, a gene chip, an auxiliary material and a dosing solution, and the dosing solution is a chip spotting solution, a chip cleaning solution, a hybridization solution, Cleaning solution I and cleaning solution II.
  • the chip spotting solution is 50% DMSO; the chip cleaning solution is 5xSSC (20xSSC: 3M NaCl, 0.3M Na 3 Citrate ⁇ 2H 2 O, pH 7.0), 0.2% SDS; the hybrid solution is 5xSSC, 0.1 % SDS; cleaning solution I was 0.5xSSC, 0.1% SDS; cleaning solution II was 0.05xSSC.
  • the present disclosure design utilizes a specially designed Multiplex Specific conserveed Degenerate Primer for target sequence amplification.
  • pathogens related to diarrhea there are many kinds of pathogens related to diarrhea, and there are more than 20 common pathogens, and a large part of them are highly susceptible to pathogens, such as Norovirus, Rotavirus and Sapovirus.
  • pathogens such as Norovirus, Rotavirus and Sapovirus.
  • the sequence variation is large and the evolution is rapid, even if the same There are also many different variants within the pathogen.
  • the present disclosure solves two technical problems in multiplex primer design: one is to design specific conservative degenerate primers to ensure the specificity of primers among different pathogens, especially in different
  • the specificity between subtypes of pathogens is designed to ensure the conservation and detection coverage of the primers in different strains of the same pathogen.
  • the primers use specific conservative degenerate primers, which can cover multiple variant types of the same pathogen.
  • the site mutation of the target gene is highly adaptable, and at the same time, it can effectively avoid non-specific amplification, and is particularly suitable for detecting pathogens with high mutation and multiple subtypes.
  • the second is to solve the problem of multiplex amplification of more than 20 pathogen single reaction systems, and avoid mutual cross-linking between primers by mutual matching design between primers.
  • the present disclosure detects diarrhea-associated pathogens using a one-step reverse transcription polymerase chain reaction amplification technique based on multiple specific conservative degenerate primers.
  • the multiplex RT-PCR method is to put multiple pairs of primers into the same reaction tube, and perform reverse transcription reaction and PCR amplification reaction in the same system to achieve the purpose of simultaneously detecting multiple target RNA/DNA sequences in a single tube reaction system. .
  • the present disclosure employs a set of specific conservative degenerate probes to detect target sequences in multiplex RT-PCR products.
  • the degenerate probe is designed with a long probe and has a length of 59 nucleotides. Compared with the short probe, the long probe binds to the target gene more firmly and has higher detection sensitivity.
  • the specific conserved degenerate probe has an amino (NH2) modification at the 5' end to facilitate binding of the probe to the gene chip.
  • the present disclosure uses a gene chip to perform molecular hybridization detection of diarrhea-related pathogens, and the gene chip technology is based on the principle of hybridization of nucleic acid molecules.
  • the working process is to firstly fix a single-stranded probe for each diarrhea-related pathogen in a specific region on the surface of the solid support medium to form a low-density probe array, and then hybridize the multiplex RT-PCR product to be tested.
  • the target gene sequence in the product is hybridized with the probe on the support medium, and the target sequence product DNA carries a fluorescent group mark, and the probe point of the DNA to be tested is coupled with the marker, and after corresponding
  • the corresponding hybridization signals can be read by washing and fluorescence scanning, so that multiple target sequences of diarrhea-related pathogens can be detected simultaneously on one chip.
  • the present disclosure relates to a combination of diarrhea-related pathogen multiplex PCR primers and detection probes to address the multiplex amplification and detection of multiple pathogen single reaction systems.
  • the detection probes and primers of the present disclosure employ a specific conservative degenerate oligonucleotide design to improve detection coverage of a target sequence, and are particularly suitable for detection of diarrhea-related pathogens having high mutation characteristics.
  • the present disclosure is directed to a design that avoids non-specific cross-reactions between different primers in multiple systems.
  • the present disclosure relates to a design that avoids non-specific amplification between primers and potential non-target sequences in the sample.
  • the present disclosure is directed to a design that avoids non-specific hybridization of the probe to non-target sequence product DNA.
  • the present disclosure relates to simple operation, and after one sample pretreatment, single tube RT-PCR amplification, single chip hybridization can simultaneously detect multiple diarrhea-related pathogens in a sample, and has the characteristics of parallel analysis and multiple judgments. .
  • the present disclosure relates to a test subject that includes 26 common diarrhea-related pathogens and can be easily added to new detection sequences.
  • the kit of the present disclosure adopts a gene chip detection method, which improves the multi-index parallel detection capability of the system.
  • the kit of the present disclosure is simple and convenient to operate, and is suitable for large-scale detection of diarrhea-related pathogens.
  • 1-3 are the results of the hybridization of the gene chip for detecting diarrhea-related pathogens in the present disclosure, wherein:
  • Figure 1 is a schematic diagram of a chip probe distribution pattern
  • Figure 2 is a graph showing the results of 26 diarrhea samples
  • Figure 3 is a graph showing the results of detection of 27 positive controls (26 pathogen standard nucleic acid molecules and 1 GAPDH endogenous control standard nucleic acid molecule) and 1 negative control (H 2 O).
  • a multiplex-RT-PCR combined with a microarray detection kit for diarrhea-related pathogens which is used to detect one or more of the following pathogens: adenovirus, astrovirus, norovirus GI, norovirus GII, round Virus, Sapovirus, Salmonella, Shigella, Campylobacter, Clostridium difficile, Clostridium perfringens, enterotoxin Escherichia coli, enterohemorrhagic Escherichia coli, enteropathogenic Escherichia coli, intestine Invasive Escherichia coli, enteroaggregative Escherichia coli, Vibrio cholerae, Vibrio parahaemolyticus, Yersinia enterocolitica, Aeromonas hydrophila, Listeria monocytogenes, Enterobacter sakazakii , Staphylococcus aureus, Cryptosporidium, intestinal giardia and dysentery amoeba
  • Example 1 Multiple RT-PCR combined with gene chip detection kit for diarrhea-related pathogens.
  • the same design method was used for the endogenous control GAPDH.
  • the positive control probe and the negative control probe are randomly generated 59 nucleotide oligonucleotides, and non-specific cross-linking with the pathogen sequence to be detected is avoided by sequence alignment.
  • a positive oligonucleotide single-stranded DNA is generated based on the positive control probe, the sequence of which is the reverse complement of the positive control probe.
  • the above primer and probe combinations and corresponding control sequences were synthesized by solid phase phosphoramidite triester method. Finally, the performance of the probe and the primer was verified by an experimental method.
  • each of the nucleotide probes (the probe was dissolved in a chip spotting solution at a concentration of 10 ⁇ mol/L) was distributed on a specific position region on the optical-grade amino chip using a micro-quantitative dot-spray type gene chip spotting instrument.
  • the chip was baked at 80 ° C for 2 hours to fix the probe. After the fixation, the chip was washed in the cleaning solution for 5 minutes, washed with absolute ethanol, centrifuged and dried, and the processed chip was stored at room temperature.
  • the layout of the probe surface coated with the chip is shown in Figure 1.
  • Positive standard nucleic acid molecules of each pathogen and internal control were prepared by gene synthesis, and the synthesis region included a PCR amplification region and a region of 150 nucleotides each upstream and downstream.
  • the synthetic sequence was inserted into the pET-30a plasmid vector, which was then subjected to plasmid extraction, purification and quantification, and diluted to 10 5 copies/ ⁇ l for use as a positive standard nucleic acid molecule for multiplex PCR amplification and gene chip detection.
  • PCR reaction premix The SuperRT One Step RT-PCR Kit (CWBIO) is used, and the system contains components such as reverse transcriptase, DNA polymerase, RNase inhibitor, and dNTP. 15 ⁇ l of reaction premix is prepared for each tube reaction.
  • the premix contains: 2 ⁇ RT-PCR reaction buffer (12.5 ⁇ l), enzyme mixture (0.5 ⁇ l), and primer mixture (2 ⁇ l), in which the primer mixture contains various pathogens.
  • the amplification primers have a primer concentration of 3.75 ⁇ mol/L for each Cy5 marker and a concentration of 2.5 ⁇ mol/L for each non-marker primer.
  • Extracting sample nucleic acid collecting clinical samples to be examined, the sample type may be samples such as feces and anal swabs. The nucleic acid is then extracted from the sample using appropriate nucleic acid extraction techniques (eg Viral DNA/RNA Kit, CWBIO; Fecal Genome Extraction Kit, TIANGEN).
  • appropriate nucleic acid extraction techniques eg Viral DNA/RNA Kit, CWBIO; Fecal Genome Extraction Kit, TIANGEN.
  • PCR reaction premix 15 ⁇ l
  • sample extraction nucleic acid 5 ⁇ l
  • ultrapure water 5 ⁇ l
  • a positive control positive standard nucleic acid molecule
  • a negative control sterile water
  • the reaction tubes were then subjected to multiplex PCR amplification according to the following procedure: 45 ° C for 30 minutes (reverse transcription); 95 ° C for 2 minutes (hot start); then 35 thermal cycles, 94 ° C for 30 seconds, 55 ° C Hold for 30 seconds, hold at 72 ° C for 30 seconds; last 72 ° C for 5 minutes.
  • Example 2 Detection of positive samples of diarrhea-related pathogens.
  • a positive sample of diarrhea with the following pathogens sample type: fecal sample: adenovirus, astrovirus, norovirus GI type, norovirus type GII, rotavirus, sapovirus, salmonella, Shigella, Campylobacter, Clostridium difficile, Clostridium perfringens, enterotoxin-producing Escherichia coli, enterohemorrhagic Escherichia coli, enteropathogenic Escherichia coli, enteroinvasive E.
  • pathogens sample type: fecal sample: adenovirus, astrovirus, norovirus GI type, norovirus type GII, rotavirus, sapovirus, salmonella, Shigella, Campylobacter, Clostridium difficile, Clostridium perfringens, enterotoxin-producing Escherichia coli, enterohemorrhagic Escherichia coli, enteropathogenic Escherichia coli
  • Example 1 enteroaggregative Escherichia coli, Vibrio cholerae , Vibrio parahaemolyticus, Yersinia enterocolitica, Aeromonas hydrophila, Listeria monocytogenes, Enterobacter sakazakii, Staphylococcus aureus, Cryptosporidium, Enterodon And dysentery amoeba, a total of 26 positive samples.
  • a positive control 26 pathogen standard nucleic acid molecules and 1 GAPDH endogenous control standard nucleic acid molecule
  • a negative control sterile water
  • the nucleic acid was extracted from the sample using a nucleic acid extraction kit (viral genomic DNA/RNA extraction kit Viral DNA/RNA Kit, CWBIO; Fecal Genome Extraction Kit, TIANGEN), and the nucleic acid was finally dissolved in 50 ⁇ l of the nucleic acid eluate.
  • a 5 ul nucleic acid sample was pipetted for multiplex PCR amplification.
  • a 25 ⁇ l amplification system was used to prepare a PCR reaction premix (15 ⁇ l), and the sample was extracted with nucleic acid (5 ⁇ l) and ultrapure water (5 ⁇ l).
  • a positive control positive standard nucleic acid molecule
  • a negative control sterile water
  • the reaction tubes were then subjected to multiplex PCR amplification according to the following procedure: 45 ° C for 30 minutes (reverse transcription); 95 ° C for 2 minutes (hot start); then 35 thermal cycles, 94 ° C for 30 seconds, 55 ° C Hold for 30 seconds, hold at 72 ° C for 30 seconds; last 72 ° C for 5 minutes.
  • the multiplex PCR product was detected using the gene chip method, and the specific procedure was the same as in Example 1, and then the results were interpreted according to the coloration of the hybridization point.
  • RESULTS The presence of 26 diarrhea-associated pathogens was detected in 26 samples, with 27 positive controls (26 pathogen standard nucleic acid molecules and 1 GAPDH endogenous control standard nucleic acid molecule) and 1 negative control (sterile water). The hybridization point is correctly colored. The test results are shown in Figures 2 and 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种腹泻相关病原体多重RT-PCR联合基因芯片检测试剂盒,该试剂盒使用多重特异性保守简并引物组合和探针组合检测26种腹泻相关病原体中的一种或多种,同时设有内源对照以及阳性对照和阴性对照。

Description

腹泻相关病原体多重RT-PCR联合基因芯片检测试剂盒 技术领域
本公开涉及核酸检测技术领域,具体为一种腹泻相关病原体多重RT-PCR联合基因芯片检测试剂盒。
背景技术
病原体感染引发的腹泻是临床上的多发性常见病,每年全世界大约有20亿腹泻病例,其中220万人因此死亡,包括180万儿童,是造成婴幼儿死亡的重要病因。腹泻一年四季都可以发病,其中夏秋季较为集中,感染原因多是由于食物或水源污染经由粪口传播造成的,可引起群体性发病和传染病暴发流行等突发性公共卫生事件,直接危害公众健康和社会经济发展。腹泻性疾病常见感染病原体包括病毒、细菌、寄生虫等,所引起疾病和疫情的病原学复杂,因此快速准确多指标的病原体检测将为疾病的诊治提供充足的依据,并为疫情的控制提供基础。
目前,常用的腹泻相关病原体检测技术包括病原体抗原检测和核酸检测两个方面。酶联免疫吸附法(ELISA)和免疫试纸条等方法是目前主要的基于蛋白的检测方法,该类方法使用方便、快速,但缺点是检测灵敏度相对较低,并且随着抗原蛋白的变异,容易出现假阴性;同时抗原检测易受到多种因素的影响,造成假阳性。而基于核酸的检测方法是目前最普遍、最准确的病原体检测技术,检测方法主要包括PCR(聚合酶链式反应)技术和基于分子杂交的基因芯片技术。目前仍以PCR技术应用最为广泛,其常用的技术方法包括普通定性PCR、巢式PCR、多重PCR、荧光定量PCR等方法。普通定性PCR方法检测效率低,尤其检测多基因对象时更加费时费力;巢式PCR虽然提高了检测的灵敏度,但同样存在检测效率的问题;荧光定量PCR方法灵敏度高,但其成本高,并且需要特殊检测仪器,同时单管的检测指标数也很有限。多重PCR方法可以在一个反应中同时检测多个基因,可以实现多重扩增与检测,其技术难点是要避免PCR过程中多条引物间的交联反应,并且各扩增子的最佳反应条件要一致,目前常规设计的多重PCR检测能力大概是10个指标左右,更优的多重引物设计方案会显著提高方法的多指标检测能 力。基因芯片是目前非常实用的病原体检测技术,它可以和多重PCR技术配合使用,从而实现对目标病原体的多重扩增和多指标检测,该技术对多重引物和探针的灵敏度和特异性要求很高,合理的引物和探针设置是关键。
目前腹泻相关病原体检测需要解决如下几方面的问题:一是病原体种类多样,已发现的常见病原体有几十种,包括多种RNA病毒、DNA病毒、致病性大肠杆菌、其他致病性细菌和寄生虫等。复杂的病原学要求检测技术可以实现多达20个指标以上的平行检测,并且具有同时检测核酸RNA和核酸DNA的能力。二是很大一部分腹泻相关病原体具有快速进化的特点,同一类病原体对应的是一大组不同的变异基因,并且有能力在短时间内突变出新的变异基因。这种特点给临床检测带来了非常大的挑战,要求检测技术对一大组变异基因具有很好的覆盖度,并且具有容忍基因变异的能力。三是腹泻疾病是临床多发性常见病,发病快,并且有集中爆发的特点,这要求检测技术在短时间内可以同时处理多个临床样本,具备快速检测和高通量检测的能力。
发明内容
解决方案
本公开的目的是通过使用多重特异性保守简并引物组合和探针组合解决常规引物和探针对高突变病原体检测覆盖率低的问题,解决多达20种以上腹泻相关病原体单反应体系平行检测的问题,同时解决多重引物和探针之间非特异性交叉反应的问题,克服现有技术单反应体系检测指标较少,费时费力的缺陷,提供一种操作简单,快速灵敏,检测通量大的腹泻相关病原体基因检测试剂盒。
本公开腹泻相关病原体多重RT-PCR联合基因芯片检测试剂盒,该试剂盒用于检测以下病原体中的一种或多种:腺病毒,星状病毒,诺如病毒GI型,诺如病毒GII型,轮状病毒,沙波病毒,沙门氏菌,志贺氏杆菌,弯曲杆菌,艰难梭状芽胞杆菌,产气荚膜梭杆菌,肠毒素性大肠杆菌,肠出血性大肠杆菌,肠致病性大肠杆菌,肠侵袭性大肠杆菌,肠聚集性大肠杆菌,霍乱弧菌,副溶血弧菌,小肠结肠炎耶尔森氏菌,嗜水气单胞菌,单核细胞增多性李斯特氏菌,阪崎肠杆菌,金黄色葡萄球菌,隐孢子虫,肠贾第虫和痢 疾阿米巴虫;
试剂盒内设有腹泻相关病原体的引物组合和探针组合,同时设有人GAPDH基因内源对照以及阳性对照和阴性对照;
本公开的目的是通过以下技术方案实现的:
本公开的腹泻相关病原体多重RT-PCR联合基因芯片检测试剂盒由引物组合、探针组合、基因芯片、辅料和配液构成。
本公开特征在于引物组合为一组或多组多重特异性保守区简并引物(Multiplex Specific Conserved Degenerate Primer,其中简并位点的核苷酸表示为R=A/G,Y=C/T,M=A/C,K=G/T,S=C/G,W=A/T,H=A/C/T,B=C/G/T,V=A/C/G,D=A/G/T,N=A/C/G/T),各对引物的碱基序列5’-3’如下,其中反向引物5’端带Cy5荧光基团标志:
腺病毒,反向引物5’端带Cy5标志:
正向引物:CAGACAGGTCRCAGCGACTG(SEQ ID NO:1),
反向引物:5’-AAGTAGGTGCTGGCCATGTC(SEQ ID NO:2);
星状病毒,反向引物5’端带Cy5标志:
正向引物:TRGARCACTGCCTNTCDCGGAC(SEQ ID NO:3),
反向引物:5’-YRGRCTTRCTAGCCATCRCAC(SEQ ID NO:4);
诺如病毒GI型,反向引物5’端带Cy5标志:
正向引物:GCARGCCATGTTCCGYTGGA(SEQ ID NO:5),
反向引物:5’-GCGTCYTTAGACGCCATCATCAT(SEQ ID NO:6);
诺如病毒GII型,反向引物5’端带Cy5标志:
正向引物:CTGGCTCCCAGYTTYGTGAA(SEQ ID NO:7),
反向引物:5’-CAATRGCRGCACCRRCWACG(SEQ ID NO:8);
轮状病毒,反向引物5’端带Cy5标志:
正向引物:CCATCTWCACATGACCCTCTATGAGC(SEQ ID NO:9),
反向引物:5’-ACGSCCCTATAGCCATTTAGGT(SEQ ID NO:10);
沙波病毒,反向引物5’端带Cy5标志:
正向引物:CCCTCCATYTCAAACACTA(SEQ ID NO:11),
反向引物:5’-VAAYTWYGAYYWGGCYCTCG(SEQ ID NO:12);
沙门氏菌,反向引物5’端带Cy5标志:
正向引物:GYACGATATTCAGTGCGATCAGGA(SEQ ID NO:13),
反向引物:5’-TTAACAGTGCTCGTTTACGACCTG(SEQ ID NO:14);
志贺氏杆菌,反向引物5’端带Cy5标志:
正向引物:GGCCTTCCAGACCATGCTCG(SEQ ID NO:15),
反向引物:5’-CAGTGCGGAGGTCATTTGCT(SEQ ID NO:16);
弯曲杆菌,反向引物5’端带Cy5标志:
正向引物:TGAGTGCTATTAAAGGYATTGATKTRGGT(SEQ ID NO:17),
反向引物:5’-CCATAATGKCCAAATCCWCCRCTT(SEQ ID NO:18);
艰难梭状芽胞杆菌,反向引物5’端带Cy5标志:
正向引物:GCACCATCAATAACATATAGAGAGCCAC(SEQ ID NO:19),
反向引物:5’-CCAAGCAAATACTCTATTTGGAGCATTAGG(SEQ ID NO:20);
产气荚膜梭杆菌,反向引物5’端带Cy5标志:
正向引物:CCAGYCATAAARTCATTTCCTGGGT(SEQ ID NO:21),
反向引物:5’-TCAACTAGTGGTGARAAAGATGCTGG(SEQ ID NO:22);
肠毒素性大肠杆菌,反向引物5’端带Cy5标志:
正向引物:ACAGAAATCTGAATATAGCTCCGGCA(SEQ ID NO:23),
反向引物:5’-GGTGCATGATGAATCCAGGGT(SEQ ID NO:24);
肠出血性大肠杆菌,反向引物5’端带Cy5标志:
正向引物:CAAAGACGTATGTAGATTCGCTGAATGTC(SEQ ID NO:25),
反向引物:5’-ACTATCAATCATCAGTAAAGACGTACCTCC(SEQ ID NO:26);
肠致病性大肠杆菌,反向引物5’端带Cy5标志:
正向引物:GGATTTTTCTGGTGATAATACCCGYTTAGG(SEQ ID NO:27),
反向引物:5’-AGTCTTTCTTRTTGTATGACTCATGCCA(SEQ ID  NO:28);
肠侵袭性大肠杆菌,反向引物5’端带Cy5标志:
正向引物:GTAGACATAGGTTCTTCTGTT(SEQ ID NO:29),
反向引物:5’-GTTGCCCCACGCTGGTTGTC(SEQ ID NO:30);
肠聚集性大肠杆菌,反向引物5’端带Cy5标志:
正向引物:CCATTTATCGCAATCAGATTAARCAGCGA(SEQ ID NO:31),
反向引物:5’-GCTACAATTATTCCTTTTGACCAATTCGGA(SEQ ID NO:32);
霍乱弧菌,反向引物5’端带Cy5标志:
正向引物:GGCCCAACGTCCAAACGAGG(SEQ ID NO:33),
反向引物:5’-TCGAAATGGCTTGGGTTAAGCT(SEQ ID NO:34);
副溶血弧菌,反向引物5’端带Cy5标志:
正向引物:CGAAGTTGTACGATTAGGAAGCAACG(SEQ ID NO:35),
反向引物:5’-ACGCCAAACAAACTCGTGAAGCT(SEQ ID NO:36);
小肠结肠炎耶尔森氏菌,反向引物5’端带Cy5标志:
正向引物:TYAGTGAGAACCAGTATTCCGCT(SEQ ID NO:37),
反向引物:5’-CTGGTCGCGGCACAATTGGT(SEQ ID NO:38);
嗜水气单胞菌,反向引物5’端带Cy5标志:
正向引物:MGAGCTCTACAAGGCYGAYATCTC(SEQ ID NO:39),
反向引物:5’-TRACGAAGGTGTGGYTCCAGTTCG(SEQ ID NO:40);
单核细胞增多性李斯特氏菌,反向引物5’端带Cy5标志:
正向引物:CAGCATCTCCGCCTGCAAGTC(SEQ ID NO:41),
反向引物:5’-TTCTTGGCGGCACATTTGTC(SEQ ID NO:42);
阪崎肠杆菌,反向引物5’端带Cy5标志:
正向引物:AAGTMTTCGKGCTGCGAGTT(SEQ ID NO:43),
反向引物:5’-TTGCTCTYTAACAATCCGGAACAAGCT(SEQ ID NO:44);
金黄色葡萄球菌,反向引物5’端带Cy5标志:
正向引物:TKTTTYGAAAGRRCAATACRC(SEQ ID NO:45),
反向引物:5’-GTGATGCATYTGCTGAGCTAC(SEQ ID NO:46);
隐孢子虫,反向引物5’端带Cy5标志:
正向引物:GCTGAATTAGAATCGACATGCCCA(SEQ ID NO:47),
反向引物:5’-GGTGGRCATTCYTTTGCAGGA(SEQ ID NO:48);
肠贾第虫,反向引物5’端带Cy5标志:
正向引物:CAGACGTGGAGTCTGCGGCT(SEQ ID NO:49),
反向引物:5’-GCYCGTTGTCGCARTGGAGC(SEQ ID NO:50);
痢疾阿米巴虫,反向引物5’端带Cy5标志:
正向引物:GGGAGCTTTACAGATGGCTACCA(SEQ ID NO:51),
反向引物:5’-GCCCTCCAATTGATTTCGTAGGAGAA(SEQ ID NO:52);
内源对照GAPDH基因,反向引物5’端带Cy5标志:
正向引物:ATCTTCCAGGAGCGAGATCC(SEQ ID NO:53),
反向引物:5’-AGGGGGCAGAGATGATGAC(SEQ ID NO:54);
并且,探针组合为顺序固定于基因芯片表面的一条或多条核酸探针,包括腹泻相关病原体特异性保守简并探针、GAPDH内源对照探针,阳性杂交点探针和阴性杂交点探针,其中简并位点的核苷酸表示为R=A/G,Y=C/T,M=A/C,K=G/T,S=C/G,W=A/T,H=A/C/T,B=C/G/T,V=A/C/G,D=A/G/T,N=A/C/G/T),各探针的5’端做氨基标志(NH2),各条探针的碱基序列5’-3’如下:
腺病毒探针:
Figure PCTCN2018081752-appb-000001
星状病毒探针:
Figure PCTCN2018081752-appb-000002
诺如病毒GI型探针:
Figure PCTCN2018081752-appb-000003
Figure PCTCN2018081752-appb-000004
诺如病毒GII型探针:
Figure PCTCN2018081752-appb-000005
轮状病毒探针:
Figure PCTCN2018081752-appb-000006
沙波病毒探针:
Figure PCTCN2018081752-appb-000007
沙门氏菌探针:
Figure PCTCN2018081752-appb-000008
志贺氏杆菌探针:
Figure PCTCN2018081752-appb-000009
弯曲杆菌探针:
Figure PCTCN2018081752-appb-000010
艰难梭状芽胞杆菌探针:
Figure PCTCN2018081752-appb-000011
产气荚膜梭杆菌探针:
Figure PCTCN2018081752-appb-000012
肠毒素性大肠杆菌探针:
Figure PCTCN2018081752-appb-000013
肠出血性大肠杆菌探针:
Figure PCTCN2018081752-appb-000014
Figure PCTCN2018081752-appb-000015
肠致病性大肠杆菌探针:
Figure PCTCN2018081752-appb-000016
肠侵袭性大肠杆菌探针:
Figure PCTCN2018081752-appb-000017
肠聚集性大肠杆菌探针:
Figure PCTCN2018081752-appb-000018
霍乱弧菌探针:
Figure PCTCN2018081752-appb-000019
副溶血弧菌探针:
Figure PCTCN2018081752-appb-000020
小肠结肠炎耶尔森氏菌探针:
Figure PCTCN2018081752-appb-000021
嗜水气单胞菌探针:
Figure PCTCN2018081752-appb-000022
单核细胞增多性李斯特氏菌探针:
Figure PCTCN2018081752-appb-000023
阪崎肠杆菌探针:
Figure PCTCN2018081752-appb-000024
金黄色葡萄球菌探针:
Figure PCTCN2018081752-appb-000025
Figure PCTCN2018081752-appb-000026
隐孢子虫探针:
Figure PCTCN2018081752-appb-000027
肠贾第虫探针:
Figure PCTCN2018081752-appb-000028
痢疾阿米巴虫探针:
Figure PCTCN2018081752-appb-000029
内源对照GAPDH基因探针:
Figure PCTCN2018081752-appb-000030
阳性杂交点探针:
Figure PCTCN2018081752-appb-000031
阴性杂交点探针:
Figure PCTCN2018081752-appb-000032
本公开中所述基因芯片为表面固定有探针阵列的固相支持介质,所述固相支持介质为玻璃片、硅片、尼龙膜或硝酸纤维素膜。
本公开中所述腹泻相关病原体检测试剂盒由引物组合、探针组合、基因芯片、辅料和配液组成,辅料为一步法逆转录扩增试剂(One Step RT-PCR Reagent)、超纯水(Ultrapure Water)和5’端带Cy5标志的阳性寡核苷酸单链DNA,5’端带Cy5标志的阳性寡核苷酸单链DNA的碱基顺序为
Figure PCTCN2018081752-appb-000033
本公开中所述腹泻相关病原体多重RT-PCR联合基因芯片检测试剂盒由引物组合、探针组合、基因芯片、辅料和配液组成,配液为芯片点样液、芯片清洗液、杂交液、清洗液I和清洗液II。
上述方案中,所述芯片点样液为50% DMSO;芯片清洗液为5xSSC(20xSSC:3M NaCl,0.3M Na 3Citrate·2H 2O,pH 7.0),0.2% SDS;杂交液为5xSSC,0.1% SDS;清洗液I为0.5xSSC,0.1% SDS;清洗液II为0.05xSSC。
本公开设计采用经特殊设计的多重特异性保守简并引物(Multiplex Specific Conserved Degenerate Primer)进行目标序列扩增。腹泻相关病原体种类多样,已发现的常见病原体有二十几种,并且很大一部分是高度易突变的病原体,如诺如病毒、轮状病毒和沙波病毒等,序列变异大,进化迅速,即使同一类病原体内部也存在多种不同变异株。针对腹泻相关病原体种类多,变异快的特征,本公开在多重引物设计中解决两方面技术问题:一是设计特异性保守简并引物,保证引物在不同类病原体间的特异性,尤其是在不同亚型病原体间的特异性,同时设计保证引物在同一类病原体不同变异株间的保守性和检测覆盖度,引物采用特异性保守简并引物,即可以涵盖同一类病原体的多种变异类型,对目标基因的位点突变具有很强适应性,同时又可以有效地避免非特异性扩增,尤其适合检测高突变多亚型的病原体。二是设计解决多达20种以上病原体单反应体系多重扩增的问题,通过引物间的相互匹配设计,避免引物间的相互交联。
本公开采用基于多重特异性保守简并引物的一步法逆转录多重RT-PCR(One-step Reverse Transcription Polymerase Chain Reaction)扩增技术检测腹泻相关病原体。多重RT-PCR方法是将多对引物放到同一个反应管中,并在同一体系中依次进行逆转录反应和PCR扩增反应,达到单管反应体系同时检测多种目标RNA/DNA序列的目的。
本公开采用一组特异性保守简并探针检测多重RT-PCR产物中的目标序列。简并探针采用长探针设计,长度为59个核苷酸,相对于短探针,长探针与目标基因的结合更牢固,检测灵敏度更高。特异性保守简并探针5’端带氨基(NH2)修饰,方便探针与基因芯片的结合。
本公开采用基因芯片方面进行腹泻相关病原体的分子杂交检测,基因芯片技术基于核酸分子杂交原理。其工作过程是首先将针对各个腹泻相关病原体的单链探针按顺序排列固定于固相支持介质表面的特定区域,形成低密度探针阵列,再将待测的多重RT-PCR产物与其杂交,这样产物中的目标基因序列就会和支持介质上的探针杂交,目标序列产物DNA上带有荧光基团标 志,结合了待测DNA的探针点就偶联上了标志物,在经过相应洗涤和荧光扫描等步骤就能读取对应的杂交信号,这样一张芯片上就可以同时检测多个腹泻相关病原体目标序列。
有益效果
本公开的有益效果包括如下一个或多个方面:
在一个技术方案中,本公开涉及的腹泻相关病原体多重PCR引物和检测探针组合,解决多种病原体单反应体系多重扩增和检测的问题。
在一个技术方案中,本公开涉及的检测探针和引物采用特异性保守简并寡核苷酸设计,提高了对目标序列的检测覆盖度,尤其适合具有高突变特点的腹泻相关病原体检测。
在一个技术方案中,本公开涉及的设计避免了多重体系中不同引物之间的非特异性交叉反应。
在一个技术方案中,本公开涉及的设计避免了引物与样本中潜在的非目标序列间的非特异性扩增。
在一个技术方案中,本公开涉及的设计避免探针与非目标序列产物DNA的非特异性杂交。
在一个技术方案中,本公开涉及的操作简单,经过一次样本前处理,单管RT-PCR扩增,单芯片杂交就可以同步检测样本中多种腹泻相关病原体,具有平行分析和多重判断的特点。
在一个技术方案中,本公开涉及的检验对象完备,包含了26种常见的腹泻相关病原体,并且可以很方便的加入新的检测序列。
在一个技术方案中,本公开涉及的试剂盒采用了基因芯片的检测方式,提高了系统的多指标平行检测能力。
在一个技术方案中,本公开涉及的试剂盒操作简单,便捷,适用于腹泻相关病原体的大规模检测。
根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本公开的示例性实施例、特征和方面,并且用于解释本公开的原理。
图1-3为本公开用于检测腹泻相关病原体样本基因芯片杂交结果,其中:
图1为芯片探针分布模式图;
图2为26份腹泻样本检测结果图;
图3为27份阳性对照(26种病原体标准核酸分子和1种GAPDH内源对照标准核酸分子)和1份阴性对照(H 2O)检测结果图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。
腹泻相关病原体多重RT-PCR联合基因芯片检测试剂盒,该试剂盒用于检测以下病原体中的一种或多种:腺病毒,星状病毒,诺如病毒GI型,诺如病毒GII型,轮状病毒,沙波病毒,沙门氏菌,志贺氏杆菌,弯曲杆菌,艰难梭状芽胞杆菌,产气荚膜梭杆菌,肠毒素性大肠杆菌,肠出血性大肠杆菌,肠致病性大肠杆菌,肠侵袭性大肠杆菌,肠聚集性大肠杆菌,霍乱弧菌,副溶血弧菌,小肠结肠炎耶尔森氏菌,嗜水气单胞菌,单核细胞增多性李斯特氏菌,阪崎肠杆菌,金黄色葡萄球菌,隐孢子虫,肠贾第虫和痢疾阿米巴虫;同时设有人GAPDH基因内源对照以及阳性对照和阴性对照。除引物和探针组合外,试剂盒中还包含基因芯片、辅料和配液。
实施例一:腹泻相关病原体多重RT-PCR联合基因芯片检测试剂盒。
1)多重特异性保守简并引物和探针的设计与制备:
从核酸数据库下载各病原体的核酸序列,进行多序列比对(NCBI database,ClustalW),根据比对结果生成一条简并序列(Python程序);剔除序列中的高变异区(Python程序),并经引物设计过程生成多对候选引物 (Primer3,Python程序),序列比对分析候选引物特异性,以避免与样品中其他核酸发生交叉反应(BLAST+);之后评估不同目标基因间引物兼容性,评估内容包括Tm值相似性、引物二聚体倾向和3’末端杂交倾向(Python程序),最终生成多重简并引物组合;再根据引物扩增区域,使用相应程序设计特异性保守简并探针(Python程序),再通过序列比对分析探针的特异性以避免与样品中其他核酸发生交叉反应(BLAST+)。内源对照GAPDH采用相同的设计方法。阳性对照探针和阴性对照探针为随机生成的59个核苷酸的寡核苷酸,并且通过序列比对避免与待检病原体序列发生非特异性交联。根据阳性对照探针生成阳性寡核苷酸单链DNA,其序列为阳性对照探针的反向互补序列。采用固相亚磷酰胺三酯法合成得到上述引物和探针组合以及相应的对照序列。最后通过实验方法验证探针和引物的性能。
2)制备基因芯片:
采用微定量喷点式基因芯片点样仪,将各个核苷酸探针(探针用芯片点样液溶解,浓度10μmol/L)分布在光学级氨基芯片上的特定位置区域。芯片置于80℃烘2小时以固定探针,固定后芯片在清洗液中清洗5分钟,后无水乙醇洗涤,离心甩干,处理好的芯片室温保存。芯片表面包被的探针阵列布局如图1。
3)制备阳性标准核酸分子:
使用基因合成的方法制备各病原体和内对照的阳性标准核酸分子,合成区包括PCR扩增区及上下游各150个核苷酸的区域。合成序列插入到pET-30a质粒载体,之后经过质粒提取、纯化和定量,并稀释成10 5copies/μl,用来作为多重PCR扩增和基因芯片检测的阳性标准核酸分子。
4)准备PCR反应预混液:使用SuperRT One Step RT-PCR Kit(CWBIO),体系中含有逆转录酶、DNA聚合酶、RNA酶抑制剂、dNTP等成分。每管反应需准备15μl反应预混液,预混液包含:2×RT-PCR反应缓冲液(12.5μl)、酶混合液(0.5μl)、引物混合液(2μl),其中引物混合液中含有各病原体的扩增引物,其中每条Cy5标志的引物浓度为3.75μmol/L,每条非标志引物的浓度为2.5μmol/L。
5)提取样本核酸:采集待检临床样本,样本类型可以为粪便、肛门拭子等样本。之后采用适当的核酸提取技术(如病毒基因组DNA/RNA提取 试剂盒Viral DNA/RNA Kit,CWBIO;粪便基因组提取试剂盒,TIANGEN)从样本中抽提核酸。
6)多重PCR扩增反应:采用25μl扩增体系,组成为:PCR反应预混液(15μl),样本提取核酸(5μl),超纯水(5μl)。同时设置阳性对照(阳性标准核酸分子)和阴性对照(无菌水),并以相同的体系对阳性对照和阴性对照进行混合操作。随后将各反应管按照如下程序进行多重PCR扩增:45℃保持30分钟(逆转录);95℃保持2分钟(热启动);之后进入35个热循环过程,94℃保持30秒,55℃保持30秒,72℃保持30秒;最后72℃保持5分钟。
7)基因芯片杂交检测:将芯片微阵列面朝上放入杂交设备中,在点阵位置加上配制好的杂交液(使用前配制,500~1000μl杂交液(5xSSC,0.1% SDS)中加入20μl多重PCR扩增产物,同时加入1μl浓度为2μmol/L阳性寡核苷酸单链DNA),小心盖上杂交盒上盖,50℃杂交1小时;取出芯片,将芯片放入42℃清洗液I(0.5xSSC,0.1% SDS)中清洗2分钟,之后将芯片再放入42℃清洗液II(0.05xSSC)中清洗2分钟,离心甩干;用合适的荧光扫描仪扫描芯片(如博奥LuxScan 10k扫描仪),之后根据杂交点荧光信号进行结果判读。
实施例二:腹泻相关病原体阳性样本检测。
使用带有如下病原体的腹泻阳性样本,样本类型为粪便样本:腺病毒,星状病毒,诺如病毒GI型,诺如病毒GII型,轮状病毒,沙波病毒,沙门氏菌,志贺氏杆菌,弯曲杆菌,艰难梭状芽胞杆菌,产气荚膜梭杆菌,肠毒素性大肠杆菌,肠出血性大肠杆菌,肠致病性大肠杆菌,肠侵袭性大肠杆菌,肠聚集性大肠杆菌,霍乱弧菌,副溶血弧菌,小肠结肠炎耶尔森氏菌,嗜水气单胞菌,单核细胞增多性李斯特氏菌,阪崎肠杆菌,金黄色葡萄球菌,隐孢子虫,肠贾第虫和痢疾阿米巴虫,共26份阳性样本。同时设置阳性对照(26种病原体标准核酸分子和1种GAPDH内源对照标准核酸分子)和阴性对照(无菌水),并以相同的过程实施检测。引物和探针组合、辅料、配液以及对照标准质粒分子的获取见实施例一。
利用核酸提取试剂盒(病毒基因组DNA/RNA提取试剂盒Viral DNA/RNA Kit,CWBIO;粪便基因组提取试剂盒,TIANGEN)从样本中抽提核酸,核酸最后溶于50μl核酸洗脱液。吸取5ul核酸样本,用于多重PCR扩 增。采用25μl扩增体系,组成为:PCR反应预混液(15μl),样本提取核酸(5μl),超纯水(5μl)。同时设置阳性对照(阳性标准核酸分子)和阴性对照(无菌水),并以相同的体系对阳性对照和阴性对照进行混合操作。随后将各反应管按照如下程序进行多重PCR扩增:45℃保持30分钟(逆转录);95℃保持2分钟(热启动);之后进入35个热循环过程,94℃保持30秒,55℃保持30秒,72℃保持30秒;最后72℃保持5分钟。
使用基因芯片方法检测多重PCR产物,具体过程同实施例一,之后根据杂交点的显色情况进行结果判读。结果26份样本中可分别检测到26中腹泻相关病原体的存在,同时27份阳性对照(26种病原体标准核酸分子和1种GAPDH内源对照标准核酸分子)和1份阴性对照(无菌水)杂交点显色正确。检测结果如图2和图3。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种腹泻相关病原体多重RT-PCR联合基因芯片检测试剂盒,所述检测试剂盒用于检测包含下述腹泻相关病原体中的一种或多种的腹泻相关病原体:腺病毒,星状病毒,诺如病毒GI型,诺如病毒GII型,轮状病毒,沙波病毒,沙门氏菌,志贺氏杆菌,弯曲杆菌,艰难梭状芽胞杆菌,产气荚膜梭杆菌,肠毒素性大肠杆菌,肠出血性大肠杆菌,肠致病性大肠杆菌,肠侵袭性大肠杆菌,肠聚集性大肠杆菌,霍乱弧菌,副溶血弧菌,小肠结肠炎耶尔森氏菌,嗜水气单胞菌,单核细胞增多性李斯特氏菌,阪崎肠杆菌,金黄色葡萄球菌,隐孢子虫,肠贾第虫和痢疾阿米巴虫;
    所述检测试剂盒内设有用于检测所述腹泻相关病原体的引物组合和探针组合;
    其特征在于,所述引物组合为一组或多组多重特异性保守简并引物(Multiplex Specific Conserved Degenerate Primer)的组合,其中,简并位点的核苷酸表示为R=A/G,Y=C/T,M=A/C,K=G/T,S=C/G,W=A/T,H=A/C/T,B=C/G/T,V=A/C/G,D=A/G/T,N=A/C/G/T,
    其中,所述引物组合中的反向引物的5’端还带有荧光基团,所述荧光基团可以相同或不同;
    所述引物组合中的各对引物的5’-3’碱基序列序列如下:
    腺病毒,反向引物5’端带荧光基团:
    正向引物:CAGACAGGTCRCAGCGACTG(SEQ ID NO:1),
    反向引物:5’-AAGTAGGTGCTGGCCATGTC(SEQ ID NO:2);
    星状病毒,反向引物5’端带荧光基团:
    正向引物:TRGARCACTGCCTNTCDCGGAC(SEQ ID NO:3),
    反向引物:5’-YRGRCTTRCTAGCCATCRCAC(SEQ ID NO:4);
    诺如病毒GI型,反向引物5’端带荧光基团:
    正向引物:GCARGCCATGTTCCGYTGGA(SEQ ID NO:5),
    反向引物:5’-GCGTCYTTAGACGCCATCATCAT(SEQ ID NO:6);
    诺如病毒GII型,反向引物5’端带荧光基团:
    正向引物:CTGGCTCCCAGYTTYGTGAA(SEQ ID NO:7),
    反向引物:5’-CAATRGCRGCACCRRCWACG(SEQ ID NO:8);
    轮状病毒,反向引物5’端带荧光基团:
    正向引物:CCATCTWCACATGACCCTCTATGAGC(SEQ ID NO:9),
    反向引物:5’-ACGSCCCTATAGCCATTTAGGT(SEQ ID NO:10);
    沙波病毒,反向引物5’端带荧光基团:
    正向引物:CCCTCCATYTCAAACACTA(SEQ ID NO:11),
    反向引物:5’-VAAYTWYGAYYWGGCYCTCG(SEQ ID NO:12);
    沙门氏菌,反向引物5’端带荧光基团:
    正向引物:GYACGATATTCAGTGCGATCAGGA(SEQ ID NO:13),
    反向引物:5’-TTAACAGTGCTCGTTTACGACCTG(SEQ ID NO:14);
    志贺氏杆菌,反向引物5’端带荧光基团:
    正向引物:GGCCTTCCAGACCATGCTCG(SEQ ID NO:15),
    反向引物:5’-CAGTGCGGAGGTCATTTGCT(SEQ ID NO:16);
    弯曲杆菌,反向引物5’端带荧光基团:
    正向引物:TGAGTGCTATTAAAGGYATTGATKTRGGT(SEQ ID NO:17),
    反向引物:5’-CCATAATGKCCAAATCCWCCRCTT(SEQ ID NO:18);
    艰难梭状芽胞杆菌,反向引物5’端带荧光基团:
    正向引物:GCACCATCAATAACATATAGAGAGCCAC(SEQ ID NO:19),
    反向引物:5’-CCAAGCAAATACTCTATTTGGAGCATTAGG(SEQ ID NO:20);
    产气荚膜梭杆菌,反向引物5’端带荧光基团:
    正向引物:CCAGYCATAAARTCATTTCCTGGGT(SEQ ID NO:21),
    反向引物:5’-TCAACTAGTGGTGARAAAGATGCTGG(SEQ ID NO:22);
    肠毒素性大肠杆菌,反向引物5’端带荧光基团:
    正向引物:ACAGAAATCTGAATATAGCTCCGGCA(SEQ ID NO:23),
    反向引物:5’-GGTGCATGATGAATCCAGGGT(SEQ ID NO:24);
    肠出血性大肠杆菌,反向引物5’端带荧光基团:
    正向引物:CAAAGACGTATGTAGATTCGCTGAATGTC(SEQ ID  NO:25),
    反向引物:5’-ACTATCAATCATCAGTAAAGACGTACCTCC(SEQ ID NO:26);
    肠致病性大肠杆菌,反向引物5’端带荧光基团:
    正向引物:GGATTTTTCTGGTGATAATACCCGYTTAGG(SEQ ID NO:27),
    反向引物:5’-AGTCTTTCTTRTTGTATGACTCATGCCA(SEQ ID NO:28);
    肠侵袭性大肠杆菌,反向引物5’端带荧光基团:
    正向引物:GTAGACATAGGTTCTTCTGTT(SEQ ID NO:29),
    反向引物:5’-GTTGCCCCACGCTGGTTGTC(SEQ ID NO:30);
    肠聚集性大肠杆菌,反向引物5’端带荧光基团:
    正向引物:CCATTTATCGCAATCAGATTAARCAGCGA(SEQ ID NO:31),
    反向引物:5’-GCTACAATTATTCCTTTTGACCAATTCGGA(SEQ ID NO:32);
    霍乱弧菌,反向引物5’端带荧光基团:
    正向引物:GGCCCAACGTCCAAACGAGG(SEQ ID NO:33),
    反向引物:5’-TCGAAATGGCTTGGGTTAAGCT(SEQ ID NO:34);
    副溶血弧菌,反向引物5’端带荧光基团:
    正向引物:CGAAGTTGTACGATTAGGAAGCAACG(SEQ ID NO:35),
    反向引物:5’-ACGCCAAACAAACTCGTGAAGCT(SEQ ID NO:36);
    小肠结肠炎耶尔森氏菌,反向引物5’端带荧光基团:
    正向引物:TYAGTGAGAACCAGTATTCCGCT(SEQ ID NO:37),
    反向引物:5’-CTGGTCGCGGCACAATTGGT(SEQ ID NO:38);
    嗜水气单胞菌,反向引物5’端带荧光基团:
    正向引物:MGAGCTCTACAAGGCYGAYATCTC(SEQ ID NO:39),
    反向引物:5’-TRACGAAGGTGTGGYTCCAGTTCG(SEQ ID NO:40);
    单核细胞增多性李斯特氏菌,反向引物5’端带荧光基团:
    正向引物:CAGCATCTCCGCCTGCAAGTC(SEQ ID NO:41),
    反向引物:5’-TTCTTGGCGGCACATTTGTC(SEQ ID NO:42);
    阪崎肠杆菌,反向引物5’端带荧光基团:
    正向引物:AAGTMTTCGKGCTGCGAGTT(SEQ ID NO:43),
    反向引物:5’-TTGCTCTYTAACAATCCGGAACAAGCT(SEQ ID NO:44);
    金黄色葡萄球菌,反向引物5’端带荧光基团:
    正向引物:TKTTTYGAAAGRRCAATACRC(SEQ ID NO:45),
    反向引物:5’-GTGATGCATYTGCTGAGCTAC(SEQ ID NO:46);
    隐孢子虫,反向引物5’端带荧光基团:
    正向引物:GCTGAATTAGAATCGACATGCCCA(SEQ ID NO:47),
    反向引物:5’-GGTGGRCATTCYTTTGCAGGA(SEQ ID NO:48);
    肠贾第虫,反向引物5’端带荧光基团:
    正向引物:CAGACGTGGAGTCTGCGGCT(SEQ ID NO:49),
    反向引物:5’-GCYCGTTGTCGCARTGGAGC(SEQ ID NO:50);
    痢疾阿米巴虫,反向引物5’端带荧光基团:
    正向引物:GGGAGCTTTACAGATGGCTACCA(SEQ ID NO:51),
    反向引物:5’-GCCCTCCAATTGATTTCGTAGGAGAA(SEQ ID NO:52);
    并且,所述检测试剂盒中的所述探针组合为顺序固定于基因芯片表面的一条或多条核酸探针,包括所述腹泻相关病原体的特异性保守简并探针(Degenerate Probe),其中,简并位点的核苷酸表示为R=A/G,Y=C/T,M=A/C,K=G/T,S=C/G,W=A/T,H=A/C/T,B=C/G/T,V=A/C/G,D=A/G/T,N=A/C/G/T,;
    任选的,所述核酸探针的5’端具有方便探针与基因芯片的结合的修饰;
    所述探针组合中的各条探针的碱基序列5’-3’如下:
    腺病毒探针:
    5’-GAMACCGCYTAYTCTTACAAAGTGCGCTTTACGCTGGCCGTGGGCGACAACCGGGTKTT(SEQ ID NO:55);
    星状病毒探针:
    5’-TGYDAAGCAGCTTCGTGANTCTGGHYTNCCDGCYAGRCTCACWGAAGAGCAACTYCATC(SEQ ID NO:56);
    诺如病毒GI型探针:
    5’-GCGNTTCCAYGAYYTNRGNYTDTGGACAGGRGAYCGCRATCTBYTRCCCGAWTWYGTRA(SEQ ID NO:57);
    诺如病毒GII型探针:
    5’-GAAGATGGCGTCGARTGACGCCARCCCATCTGATGGGTCCRCRGCCARCCTYGTCCCAG(SEQ ID NO:58);
    轮状病毒探针:
    5’-CCATCTWCACATGACCCTCTATGAGCRCAATAGTTAAAAGCTAACACTGTCAAAAACCT(SEQ ID NO:59);
    沙波病毒探针:
    5’-TTTGKKDGYHYCTTCABTGKRRCBVHCTKGVHCNRKNVCTGYACCRCCTATRAACCADG(SEQ ID NO:60);
    沙门氏菌探针:
    5’-AATCAACCAGAWAGGTAGGTAATGGRATGACGAACATAGAAATGATCATCACCATTAGT(SEQ ID NO:61);
    志贺氏杆菌探针:
    5’-GAAACTTCAGCTCTCYACTGCCGTGAAGGAAATGCGTTTCTATGGCGTGTCGGGAGTGA(SEQ ID NO:62);
    弯曲杆菌探针:
    5’-TTYTATGGTTTAGCWGGTGKRGGATATGARGATTTTTCWAAWGSYGCTTWTGATAATAA(SEQ ID NO:63);
    艰难梭状芽胞杆菌探针:
    5’-ATGACGTATTGGAAGTACAAAAAGAAGAACTTGATTTGTCAAAAGATTTAATGGTATTA(SEQ ID NO:64);
    产气荚膜梭杆菌探针:
    5’-CCCATTCTTGAGTTTTTCCATCCTTTGTTTTGATTCCAAARTACATGTAGTCATCTGTT(SEQ ID NO:65);
    肠毒素性大肠杆菌探针:
    5’-GAGGATGGTTACAGATTAGCAGGTTTCCCACCGGATCACCAAGCTTGGAGAGAAGAACC(SEQ ID NO:66);
    肠出血性大肠杆菌探针:
    5’-TAGATTCGCTGAATGTCATTCGCTCTGCAATAGGTACTCCATTACAGACTATTTCATCA(SEQ ID NO:67);
    肠致病性大肠杆菌探针:
    5’-TGGSGAATACTGGCGAGACTATTTCAAAAGTAGYGTKAACGGCTATTTCCGCATGAGCG(SEQ ID NO:68);
    肠侵袭性大肠杆菌探针:
    5’-TTATTTCCTTATGTTCAAGGAAATAATTGTTGGCCTCCTTCTCTCTTTTTGCTTGTCTC(SEQ ID NO:69);
    肠聚集性大肠杆菌探针:
    5’-CGCCTAAAGGATGCCCTRATGATAATATACGGAATATCAAAAGTAGATGCTTGYAGTTG(SEQ ID NO:70);
    霍乱弧菌探针:
    5’-CTCGCAATGATTTGCATGACTTTGTTTGGCGAGAGCAAGGTTTTGAAGTCGATGATTCC(SEQ ID NO:71);
    副溶血弧菌探针:
    5’-AAAGCCGTATACTCCTGATGTTGGCGGAGAGACCAAACGAAGTTTTAACCCGTAACGAG(SEQ ID NO:72);
    小肠结肠炎耶尔森氏菌探针:
    5’-CACCAAAACCTTTCACTGATATGTAGTTGAGTAAAAACATCAGGGCGAGGAACARCGCA(SEQ ID NO:73);
    嗜水气单胞菌探针:
    5’-VCTGAGYGGYTTCCTGCGYTGGGGYGGCAAYGCCTGGTAYACCCAYCCGGACAAYCGYC(SEQ ID NO:74);
    单核细胞增多性李斯特氏菌探针:
    5’-CCAATCGAAAAGAAACACGCGGATGAAATCGATAAGTATATACAAGGRTTGGAYTAYAA(SEQ ID NO:75);
    阪崎肠杆菌探针:
    5’-CAYACCGCGMATHCCTKWTTACSGARRAATRCRGCAGCRTGTCTGTTTCAATTTTCAGC(SEQ ID NO:76);
    金黄色葡萄球菌探针:
    5’-AGAGGTTTTTCWWWTTCRCTACTAGTTGYTTAGTGTTAAYTTTAGTTGTAGYTTCAAGT(SEQ ID NO:77);
    隐孢子虫探针:
    5’-ATTCRATATTTGAAAATGGAAAATGTAAAGTGATTAAAAATATTGATATGGTCTGCCCA(SEQ ID NO:78);
    肠贾第虫探针:
    5’-TGACTCAACGCGYGCACCTCACCAGGCCCRGACGCGCGGAGGACCGACAGCCGGGYGCG(SEQ ID NO:79);
    痢疾阿米巴虫探针:
    5’-CGACACATAACTCTAGAGTTGAGTAAAATCAATTCTTGAAGGAATGAGTAGGAGGTAAA(SEQ ID NO:80)。
  2. 根据权利要求1所述的腹泻相关病原体多重RT-PCR联合基因芯片检测试剂盒,其中,
    所述检测试剂盒的所述引物组合还包含人内源对照、阳性对照和/或阴性对照的引物;
    所述检测试剂盒中的所述荧光基团选自Cy5;
    可选的,所述内源对照为人GAPDH基因的内源对照;
    所述人内源对照GAPDH基因的反向引物的5’端带荧光基团:
    正向引物:ATCTTCCAGGAGCGAGATCC(SEQ ID NO:53),
    反向引物:5’-AGGGGGCAGAGATGATGAC(SEQ ID NO:54)。
  3. 根据权利要求1或2任一项所述的腹泻相关病原体多重RT-PCR联合基因芯片检测试剂盒,其中,
    所述检测试剂盒的所述探针组合包括内源对照探针,阳性杂交点探针和/或阴性杂交点探针;
    所述具有方便探针与基因芯片的结合的修饰为氨基(NH 2)修饰;
    任选的,所述内源对照探针为人GAPDH内源对照探针;
    其中,所述人内源对照GAPDH基因探针的序列为:
    5’-TCCAAAATCAAGTGGGGCGATGCTGGCGCTGAGTACGTCGTGGAGTCCACTGGCGTCTT(SEQ ID NO:81);
    所述阳性杂交点探针的序列为:
    5’-CCCTCGGGTTAATGCGCGATTGTCACCACACGTTGCGAGTTATGTTGCTGCGGAGATGG(SEQ ID NO:82);
    所述阴性杂交点探针的序列为:
    5’-GATCGTCGTTGGGCTTTAGATTTCTCTTATAGGCTCGGTCGGCGCCTCTCGCCCCGAGC(SEQ ID NO:83)。
  4. 根据权利要求1-3任一项所述的腹泻相关病原体多重RT-PCR联合基因芯片检测试剂盒,其特征在于,所述检测试剂盒还包含基因芯片,所述基因芯片具有表面固定有探针阵列的固相支持介质,所述探针阵列由权利要求1-3任一项所述的探针组合组成;
    任选的,所述探针阵列还可以包括内源对照探针,阳性杂交点探针和/或阴性杂交点探针;
    可选的,所述内源对照探针为人GAPDH内源对照探针。
  5. 根据权利要求4所述的腹泻相关病原体多重RT-PCR联合基因芯片检测试剂盒,其特征在于,所述固相支持介质选自玻璃片、硅片、尼龙膜或硝酸纤维素膜。
  6. 根据权利要求5所述的腹泻相关病原体多重RT-PCR联合基因芯片检测试剂盒,其特征在于,所述检测试剂盒还包含辅料,所述辅料包括一步法逆转录扩增试剂(One Step RT-PCR Reagent)、超纯水(Ultrapure Water)和5’端带荧光基团的阳性寡核苷酸单链DNA,
    所述5’端带荧光基团的阳性寡核苷酸单链DNA的碱基序列为5'-CCATCTCCGCAGCAACATAACTCGCAACGTGTGGTGACAATCGCGCATTAACCCGAGGG-3’(SEQ ID NO:84);
    可选的,所述荧光基团为Cy5。
  7. 根据权利要求6所述的腹泻相关病原体多重RT-PCR联合基因芯片检测试剂盒,其特征在于,所述检测试剂盒还包含配液,所述配液包含芯片点样液、芯片清洗液、杂交液、清洗液I和清洗液II。
  8. 根据权利要求7所述的腹泻相关病原体多重RT-PCR联合基因芯片检测试剂盒,其特征在于,所述芯片点样液为50%DMSO;芯片清洗液为5x SSC(20x SSC:3M NaCl,0.3M Na 3Citrate·2H 2O,pH 7.0),0.2%SDS;杂交液为 5x SSC,0.1%SDS;清洗液I为0.5x SSC,0.1%SDS;清洗液II为0.05x SSC。
  9. 根据权利要求1所述的腹泻相关病原体多重RT-PCR联合基因芯片检测试剂盒,其特征在于,所述检测试剂盒用于检测所述病原体的所述病原体数量为20个或以上。
  10. 一种检测腹泻相关病原体的方法,其特征在于,利用权利要求1-9任一项的所述检测试剂盒进行检测。
  11. 一种基因芯片,所述基因芯片具有表面固定有探针阵列的固相支持介质,所述探针阵列包括权利要求1-9任一项所述的探针组合;
    任选的,所述探针阵列还可以包括内源对照探针,阳性杂交点探针和/或阴性杂交点探针;
    可选的,所述内源对照探针为人GAPDH内源对照探针。
PCT/CN2018/081752 2017-04-05 2018-04-03 腹泻相关病原体多重rt-pcr联合基因芯片检测试剂盒 WO2018184531A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710216967.7A CN107090518B (zh) 2017-04-05 2017-04-05 腹泻相关病原体多重rt-pcr联合基因芯片检测试剂盒
CN201710216967.7 2017-04-05

Publications (1)

Publication Number Publication Date
WO2018184531A1 true WO2018184531A1 (zh) 2018-10-11

Family

ID=59649027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081752 WO2018184531A1 (zh) 2017-04-05 2018-04-03 腹泻相关病原体多重rt-pcr联合基因芯片检测试剂盒

Country Status (2)

Country Link
CN (1) CN107090518B (zh)
WO (1) WO2018184531A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107090518B (zh) * 2017-04-05 2020-03-20 苏州协云基因科技有限公司 腹泻相关病原体多重rt-pcr联合基因芯片检测试剂盒
KR20200006108A (ko) 2017-05-12 2020-01-17 에보니크 오퍼레이션즈 게엠베하 동물에서 씨. 퍼프린젠스 유발된 질환을 검출하는 방법
US12031991B2 (en) 2018-03-02 2024-07-09 Evonik Operations Gmbh In vitro method for detecting intestinal barrier failure in animals
CN108265127A (zh) * 2018-04-01 2018-07-10 广州奥百阕谱生物科技有限公司 检测致泻性常见病原体的悬浮微珠阵列系统
CN108531653A (zh) * 2018-04-26 2018-09-14 四川华汉三创生物科技有限公司 一种检测致泻病原微生物的方法
CN108546781A (zh) * 2018-04-26 2018-09-18 四川华汉三创生物科技有限公司 一种检测致泻病原微生物的核酸组合及其应用
CN108396076A (zh) * 2018-04-26 2018-08-14 四川华汉三创生物科技有限公司 一种致泻病原微生物的检测试剂盒
HUE064250T2 (hu) * 2018-06-15 2024-02-28 Evonik Operations Gmbh Eljárás madárpopulációban elhalásosbélgyulladás-járvány korai kimutatására
CN114214443B (zh) * 2021-12-28 2023-05-16 上海市质量监督检验技术研究院 可同时检测多种微生物的多重荧光定量pcr检测方法和多重荧光定量pcr检测试剂盒
CN114350851A (zh) * 2021-12-31 2022-04-15 江苏臻石生物科技有限公司 一种肠道病毒检测用试剂
CN114752594B (zh) * 2022-05-20 2024-03-15 华中农业大学 用于检测沙门氏菌和隐孢子虫的多重实时荧光定量pcr引物和探针组合
CN116334264B (zh) * 2023-05-17 2023-08-18 广州达安基因股份有限公司 传染性腹泻病原体电化学芯片检测试剂盒及检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102140507A (zh) * 2010-12-20 2011-08-03 南开大学 用于感染性腹泻的检测型基因芯片及检测用试剂盒
CN102154528A (zh) * 2011-05-20 2011-08-17 何雅青 轮状病毒和诺如病毒液相芯片检测用引物、探针及试剂盒
CN103074450A (zh) * 2013-01-25 2013-05-01 海尔施生物医药股份有限公司 一种同步检测三十种腹泻致病菌的试剂盒及其检测方法
CN103911443A (zh) * 2014-03-18 2014-07-09 烟台毓璜顶医院 一种检测11种常见感染性腹泻病原体的基因芯片及其应用
CN104662167A (zh) * 2012-06-27 2015-05-27 莫比蒂亚戈公司 确定致腹泻病原体的存在的方法
CN104651538A (zh) * 2015-03-11 2015-05-27 珠海国际旅行卫生保健中心 一种同时检测四种腹泻病毒的引物组及试剂盒
CN104946791A (zh) * 2015-04-08 2015-09-30 中国人民解放军军事医学科学院放射与辐射医学研究所 七种腹泻病毒检测基因芯片的制备和用途
CN107090518A (zh) * 2017-04-05 2017-08-25 苏州协云基因科技有限公司 腹泻相关病原体多重rt‑pcr联合基因芯片检测试剂盒

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102140507A (zh) * 2010-12-20 2011-08-03 南开大学 用于感染性腹泻的检测型基因芯片及检测用试剂盒
CN102154528A (zh) * 2011-05-20 2011-08-17 何雅青 轮状病毒和诺如病毒液相芯片检测用引物、探针及试剂盒
CN104662167A (zh) * 2012-06-27 2015-05-27 莫比蒂亚戈公司 确定致腹泻病原体的存在的方法
CN103074450A (zh) * 2013-01-25 2013-05-01 海尔施生物医药股份有限公司 一种同步检测三十种腹泻致病菌的试剂盒及其检测方法
CN103911443A (zh) * 2014-03-18 2014-07-09 烟台毓璜顶医院 一种检测11种常见感染性腹泻病原体的基因芯片及其应用
CN104651538A (zh) * 2015-03-11 2015-05-27 珠海国际旅行卫生保健中心 一种同时检测四种腹泻病毒的引物组及试剂盒
CN104946791A (zh) * 2015-04-08 2015-09-30 中国人民解放军军事医学科学院放射与辐射医学研究所 七种腹泻病毒检测基因芯片的制备和用途
CN107090518A (zh) * 2017-04-05 2017-08-25 苏州协云基因科技有限公司 腹泻相关病原体多重rt‑pcr联合基因芯片检测试剂盒

Also Published As

Publication number Publication date
CN107090518A (zh) 2017-08-25
CN107090518B (zh) 2020-03-20

Similar Documents

Publication Publication Date Title
WO2018184531A1 (zh) 腹泻相关病原体多重rt-pcr联合基因芯片检测试剂盒
WO2018184532A1 (zh) 呼吸道常见病原体多重rt-pcr联合基因芯片检测试剂盒
JP6329370B2 (ja) 呼吸器系ウイルスによる疾患の同時診断キット
US20080261198A1 (en) Diagnostic Primers and Method for Detecting Avian Influenza Virus Subtype H5 and H5n1
US20100279273A1 (en) Nucleic acid sequences for the amplification and detection of respiratory viruses
WO2006000140A1 (fr) Amorces, sequences sondes et procedes utiles dans plusieurs dosages rt-pcr fluorescents en temps reel des sous-types h5, h7 et h9 du virus de la grippe aviaire
AU2013353904B2 (en) Method for detecting Helicobacter pylori DNA in a stool sample
US6867021B2 (en) Multiplex RT-PCR/PCR for simultaneous detection of bovine coronavirus, bovine rotavirus, Cryptosporidium parvum, and Escherichia coli
CN107488748B (zh) 一种用于检测23种呼吸道病原体的组合物、试剂盒及其检测方法
CN103695566A (zh) 用于检测蓝舌病病毒、口蹄疫病毒和牛病毒性腹泻病毒的多重pcr引物、探针和基因芯片
CN102965451A (zh) 一种a组轮状病毒实时等温扩增检测试剂盒及其引物和探针
Tran et al. A comparative study of isothermal nucleic acid amplification methods for SARS-CoV-2 detection at point of care
CN110669870A (zh) 一种帕利亚姆血清群病毒血清型的实时荧光定量rt-pcr检测引物、探针及检测试剂盒
WO2016179509A1 (en) Improved compositions and methods for detection of viruses
KR100832860B1 (ko) 호흡기 바이러스 검출용 올리고뉴클레오타이드 및 dna칩
CN112226485A (zh) 核酸检测方法
CN111961763A (zh) 一种新型冠状病毒检测基因芯片
WO2006132601A1 (en) Diagnostic primers and method for detecting avian influenza virus subtype h5 and h5n1
CA2892586C (en) Multiplex methods and oligonucleotide sets for determining the presence or absence of salmonella, shigella, c. jejuni, and c. coli
US20050112558A1 (en) Prognostic PCR assay for severe acute respiratory syndrome (SARS)
CN106636475B (zh) 一种检测北美h3n8亚型犬流感病毒的引物组及其应用
CN107385057A (zh) 检测霍乱弧菌的rpa‑iac引物及方法
CN111500773B (zh) 一种流行性出血病病毒血清型鉴定荧光定量rt-pcr引物、探针和试剂盒
Cong et al. Development of an xTAG-multiplex PCR array for the detection of four avian respiratory viruses
JP2007514440A (ja) Sarsコロナウイルスを検出するための高感度かつ特異的な検査

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781397

Country of ref document: EP

Kind code of ref document: A1