WO2018184291A1 - 桨叶、螺旋桨、动力套装及无人飞行器 - Google Patents
桨叶、螺旋桨、动力套装及无人飞行器 Download PDFInfo
- Publication number
- WO2018184291A1 WO2018184291A1 PCT/CN2017/088335 CN2017088335W WO2018184291A1 WO 2018184291 A1 WO2018184291 A1 WO 2018184291A1 CN 2017088335 W CN2017088335 W CN 2017088335W WO 2018184291 A1 WO2018184291 A1 WO 2018184291A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- propeller
- blade
- paddle
- center
- distance
- Prior art date
Links
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/02—Hub construction
- B64C11/04—Blade mountings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/16—Blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/16—Blades
- B64C11/18—Aerodynamic features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/16—Blades
- B64C11/20—Constructional features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/16—Blades
- B64C11/20—Constructional features
- B64C11/28—Collapsible or foldable blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/24—Aircraft characterised by the type or position of power plants using steam or spring force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D35/00—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions
- B64D35/02—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions specially adapted for specific power plants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U30/00—Means for producing lift; Empennages; Arrangements thereof
- B64U30/20—Rotors; Rotor supports
- B64U30/29—Constructional aspects of rotors or rotor supports; Arrangements thereof
- B64U30/293—Foldable or collapsible rotors or rotor supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/10—Propulsion
- B64U50/19—Propulsion using electrically powered motors
Definitions
- the present invention relates to a paddle, a propeller having the paddle, a power kit having the propeller, and an aircraft having the power kit.
- the propeller on the unmanned aerial vehicle is a key component of the unmanned aerial vehicle, and the propeller is used to convert the rotation of the motor or the engine intermediate shaft of the UAV into a propulsive force to provide flight power to the unmanned aerial vehicle.
- the prior art propellers have low working efficiency due to the contour and structure constraints, and cannot meet the expected driving force requirements at work.
- the distance from the center of rotation of the propeller on the blade is 97.62% of the radius of gyration of the propeller, and the angle of attack of the blade is 6.58 ⁇ 2.5 degrees.
- the distance from the center of rotation of the propeller on the blade is 96.43% of the radius of gyration of the propeller, and the chord length of the blade is 31.63 ⁇ 5 mm.
- the distance from the center of rotation of the propeller on the blade is 39.29% of the radius of gyration of the propeller, and the chord length of the blade is 68.20 ⁇ 5 mm;
- cross-sectional profile of the leaf surface and the cross-sectional profile of the blade back are both curved structures.
- the distance from the paddle of the blade to the paddle is 40 mm.
- a propeller comprising a paddle and at least one blade as described above, A mounting portion is disposed on the blade, and the mounting portion is coupled to the paddle.
- the propeller further includes a paddle, and the blade is provided with a mounting portion, and the mounting portion is connected to the paddle.
- the mounting portion is provided with a connecting hole for engaging with a fastener, so that the mounting portion can be connected to the paddle by the fastener;
- the center of the paddle is a center of rotation of the propeller, and the mounting portion is provided with a connecting hole through which the mounting portion can be connected to the paddle, the connecting hole The center is spaced apart from the center of the paddle by a predetermined distance.
- the propeller is a folding paddle, the number of the blades is at least two, and each of the blades is rotatably coupled to the paddle;
- the propeller includes a hub that is fixedly coupled to the blade, the number of the blades being at least two.
- the propeller has a geometric pitch of 9 ⁇ 0.5 inches.
- the power pack includes at least one propeller as described above and a drive member that drives the propeller to rotate.
- the driving member is a motor
- the propeller is connected to the motor
- the motor has a KV value of 118 rpm / (minute volt).
- An unmanned aerial vehicle comprising a fuselage, a plurality of arms, and a plurality of power sets as described above, the plurality of arms being coupled to the body, the plurality of power sets being respectively mounted on the plurality of On the arm.
- the propeller provided by the invention reduces the air resistance, improves the efficiency, and has a relatively large driving force through the design of the angle of attack on different parts of the blade.
- FIG. 1 is a schematic structural view of a power package according to an embodiment of the present invention.
- FIG. 2 is a schematic view showing the structure of a blade of the propeller of the power pack of FIG. 1.
- Figure 3 is a front elevational view of the paddle of Figure 2.
- Figure 4 is a side elevational view of the paddle of Figure 2.
- Figure 5 is a side elevational view of another perspective of the paddle of Figure 2.
- Figure 9 is a cross-sectional view of the C-C section of the blade of Figure 6.
- a component when referred to as being “fixed” to another component, it can be directly on the other component or the component can be present.
- a component When a component is considered to be “Connect” another component, which can be directly connected to another component or possibly a centered component.
- a component When a component is considered to be “set to” another component, it can be placed directly on another component or possibly with a centered component.
- Embodiments of the present invention provide a propeller that includes a paddle.
- the distance from the center of rotation of the propeller on the blade is 58.33% of the radius of gyration of the propeller, the angle of attack of the blade is 11.48 ⁇ 2.5 degrees; the propeller is spaced from the propeller
- the distance of the center of rotation is 77.38% of the radius of gyration of the propeller, the angle of attack of the blade is 8.02 ⁇ 2.5 degrees; the distance from the center of rotation of the propeller on the blade is the propeller
- At 96.43% of the radius of gyration, the angle of attack of the blade is 6.31 ⁇ 2.5 degrees.
- the embodiment of the present invention further provides a power package of an unmanned aerial vehicle, the power package includes a propeller and a motor, the propeller is connected to the motor, and the motor is used to drive the propeller to rotate, the KV of the motor
- the value is 118 rpm / (minute volts).
- the propeller includes a blade on which the distance from the center of rotation of the propeller is 77.38% of the radius of gyration of the propeller, and the angle of attack of the blade is 8.02 ⁇ 2.5 degrees;
- the distance from the center of rotation of the propeller on the blade is 96.43% of the radius of gyration of the propeller, and the angle of attack of the blade is 6.31 ⁇ 2.5 degrees.
- the propeller can provide a large driving force.
- the propeller includes a blade on which the distance from the center of rotation of the propeller is 77.38% of the radius of gyration of the propeller, and the angle of attack of the blade is 8.02 ⁇ 2.5 degrees;
- the distance from the center of rotation of the propeller on the blade is 96.43% of the radius of gyration of the propeller, and the angle of attack of the blade is 6.31 ⁇ 2.5 degrees.
- An unmanned aerial vehicle includes a fuselage, an arm, a propeller, and a driving member for driving the rotation of the propeller, and the arm is coupled to the fuselage.
- the propeller may be a folding paddle.
- the number of the propellers may be selected according to actual needs, and may be one, two or more.
- the driving component is a motor, and the KV value of the motor is 118 rpm/(minute ⁇ volt); it can be understood that in other embodiments, the KV value of the motor can be selected according to actual flight requirements.
- the drive member may be in other forms such as an engine or the like.
- the propeller may be a positive paddle or a reverse paddle.
- the so-called positive paddle refers to a propeller that rotates counterclockwise to generate lift from the tail of the driving part such as the motor to the direction of the motor head; the so-called reverse paddle refers to the clockwise rotation from the tail of the motor to the direction of the motor head to generate lift.
- the structure of the positive paddle is mirror symmetrical with the structure of the reverse paddle, so the structure of the propeller is only exemplified by a positive paddle.
- FIG. 1 is a schematic structural diagram of a power package according to an embodiment of the present invention.
- the power package 200 is connected to the arm, and the arm is plural.
- the power package 200 includes a propeller 300 and a driving member 400, and the propeller 300 and the driving member 400 are included.
- At least one set of the power pack 200 is provided on each arm.
- the propeller 300 includes a paddle (not shown) and two blades 100 disposed on either side of the paddle, the two blades 100 being centrally symmetric about the center of the paddle.
- the two blades 100 and the paddle rotate to form a paddle.
- the center of the paddle substantially coincides with the center of the paddle.
- the propeller 300 can be a straight paddle, and the propeller 300 can include a hub and two or more blades 100 that are fixedly coupled to the hub.
- the propeller 300 is a fixed propeller, and the two blades 100 are fixedly coupled to the paddle.
- one end of the blade 100 is provided with a mounting portion 101
- the mounting portion 101 is provided with a connecting hole 103 through which the mounting portion 101 and the paddle are Connected to connect the paddle 100 to the paddle.
- the connecting hole 103 is a threaded hole, and a fastener such as a screw is disposed in the threaded hole, and the mounting portion 101 is connected to the paddle by the fastener.
- the distance between the center of the connecting hole 103 and the center O of the paddle is approximately 40 mm.
- the distance between the center of the connecting hole 103 and the center of the paddle can be set according to actual needs, and is not limited to the description of the embodiments of the present invention. Even in some embodiments, the mounting portion 101 and the connecting hole 103 may be omitted.
- the paddle has a diameter of 840 ⁇ 5 mm.
- the diameter of the paddle may be 835 mm, 837.5 mm, 840 mm, 842.5 mm, 845 mm, or the diameter of the paddle may be any value within a numerical range defined by any two of the above values.
- the paddle has a diameter of 840 mm.
- the "center of the paddle” and the “paddle center” mentioned above and below should be understood as “propeller” "Slewing center”, similarly, “diameter of paddle” and “paddle diameter” mentioned above and below should be understood as “slewing diameter of propeller”, “radius of paddle” and “basin radius” “It should be understood as “the radius of gyration of the propeller”.
- the paddle can be used to connect with a rotating shaft of the driving member 400 of the unmanned aerial vehicle to enable the driving member 400 to drive the propeller 300 to rotate.
- a reinforcing spacer may be embedded in the paddle, and the reinforcing sheet may be made of a lightweight high-strength material such as aluminum alloy to increase the strength of the propeller 300.
- the paddle is substantially cylindrical. Two of the blades 100 are disposed in a central symmetry on both sides of the paddle, and the connection between each of the blades 100 and the paddle is threadedly connected.
- the geometric pitch of the propeller 300 is 9 ⁇ 0.5 inches, and the geometric pitch is the distance that the blade advances one revolution when the blade angle of attack is zero.
- the geometric pitch of the propeller 300 can be 8.5 inches, 8.6 inches, 8.7 inches, 8.8 inches, 8.9 inches, 9.0 inches, 9.1 inches, 9.2 inches, 9.3 inches, 9.4 inches, 9.5 inches, or the geometry
- the pitch can be any value within the range of values defined by any two of the above values.
- the geometric pitch is 9 inches.
- the first side edge 30 includes a curved, outwardly projecting first arched portion 31.
- the first arching portion 31 is smoothly transitionally connected to other portions of the first side edge 30.
- the first arching portion 31 is disposed adjacent to the paddle.
- the second side edge 40 includes a curved, outwardly projecting second bulge 41 that is smoothly transitionally connected to other portions of the second side edge 40.
- the second arching portion 41 is disposed adjacent to the paddle.
- the blade 100 has no sharp twist, the stress is small, the structural strength is high, the fracture is not easy, and the reliability is high.
- One end of the blade 100 remote from the paddle is the thinnest portion of the paddle 100, which is advantageous for reducing air resistance. That is, the thickness of one end of the paddle 100 away from the center of the paddle is less than the thickness of other portions of the paddle 100.
- the length of the blade 100 is 395 ⁇ 5 mm.
- the length of the blade 100 may be any value between 390 mm and 400 mm, such as 390 mm, 392.5 mm, 395 mm, 397.5 mm, 400 mm, or the length of the paddle 100 may be any of the above two Any value within the range of values defined by the values.
- the blade 100 has a length of 395 mm.
- the angle of attack referred to herein refers to the angle between the chord of the blade 100 and the velocity of the incoming flow.
- the distance from the center O of the paddle on the paddle 100 is 58.33% of the paddle radius, and the angle of attack ⁇ 2 of the paddle 100 is 11.48 ⁇ 2.5. degree.
- the angle of attack ⁇ 2 of the blade 100 herein may be 8.02 degrees, 9.02 degrees, 10.02 degrees, 11.48 degrees, 11.98 degrees, 12.98 degrees, 13.98 degrees, or the angle of attack ⁇ 2 of the blade 100 herein. Any value within the numerical range defined by any two of the above numerical values may be used. In the present embodiment, the angle of attack ⁇ 2 is 11.48 degrees.
- chord length L3 of the blade 100 herein may be 37.99 mm, 38.99 mm, 40.99 mm, 42.99 mm, 43.99 mm, 45.99 mm, 47.99 mm, or the chord length L3 of the blade 100 herein. Any value within the range of values defined by any two of the above values, in this In an embodiment, the chord length L3 is 42.99 mm.
- the distance from the center O of the paddle on the paddle 100 is 96.43% of the paddle radius, and the angle of attack ⁇ 4 of the paddle 100 is 6.31 ⁇ 2.5. degree.
- the angle of attack ⁇ 4 of the blade 100 herein may be 3.81 degrees, 4.81 degrees, 5.81 degrees, 6.31 degrees, 6.81 degrees, 7.81 degrees, 8.81 degrees, or the angle of attack ⁇ 4 of the blade 100 herein. Any value within the numerical range defined by any two of the above numerical values may be used. In the present embodiment, the angle of attack ⁇ 4 is 6.31 degrees.
- the distance from the center O of the paddle on the paddle 100 is 97.62% of the paddle radius, and the angle of attack ⁇ 5 of the paddle 100 is 6.58 ⁇ 2.5. degree.
- the angle of attack ⁇ 5 of the blade 100 herein may be 4.08 degrees, 5.08 degrees, 6.08 degrees, 6.58 degrees, 6.08 degrees, 7.08 degrees, 9.08 degrees, or the angle of attack ⁇ 5 of the blade 100 herein. Any value within the numerical range defined by any two of the above numerical values may be used. In the present embodiment, the angle of attack ⁇ 5 is 6.58 degrees.
- the paddle has a diameter of 840 mm.
- the angle of attack ⁇ 1 of the blade 100 is 17.65 degrees, and the chord length L1 of the blade 100 is 68.20 mm;
- the angle of attack ⁇ 2 of the blade 100 is 11.48
- the chord length L2 of the blade 100 is 54.14 mm;
- the angle of attack ⁇ 3 of the blade 100 is 8.02 degrees, and the chord length L3 of the blade 100 is 42.99 mm;
- the angle of attack ⁇ 4 of the blade 100 is 6.31 degrees, the chord length L4 of the blade 100 is 31.63 mm; at a distance from the center 410 of the paddle At millimeters, the angle of attack ⁇ 5 of the blade 100 is 6.58 degrees, and the
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Toys (AREA)
Abstract
一种桨叶(100),用于螺旋桨(300),在所述桨叶(100)上距所述螺旋桨(300)的回转中心的距离为所述螺旋桨(300)的回转半径的58.33%处,所述桨叶(100)的攻角为11.48±2.5度;在所述桨叶(100)上距所述螺旋桨(300)的回转中心的距离为所述螺旋桨(300)的回转半径的77.38%处,所述桨叶(100)的攻角为8.02±2.5度;在所述桨叶(100)上距所述螺旋桨(300)的回转中心的距离为所述螺旋桨(300)的回转半径的96.43%处,所述桨叶(100)的攻角为6.31±2.5度。还提供一种采用上述桨叶(100)的螺旋桨(300)、采用所述螺旋桨(300)的动力套装(200)和无人飞行器。
Description
本发明涉及一种桨叶、具有所述桨叶的螺旋桨、具有所述螺旋桨的动力套装及具有所述动力套装的飞行器。
无人飞行器上的螺旋桨为无人飞行器的关键元件,所述螺旋桨用于将所述无人飞行器的电机或者发动机中转轴的转动转化为推动力,从而为所述无人飞行器提供飞行的动力。现有技术中的螺旋桨由于外形轮廓和结构的限制,其工作效率较低,在工作时无法满足预期的推动力的需求。
发明内容
有鉴于此,有必要提供一种具有较高效率的桨叶,还有必要提供一种采用所述桨叶的螺旋桨和采用所述螺旋桨的动力套装和无人飞行器。
一种桨叶,用于螺旋桨,在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的58.33%处,所述桨叶的攻角为11.48±2.5度;在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的77.38%处,所述桨叶的攻角为8.02±2.5度;在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的96.43%处,所述桨叶的攻角为6.31±2.5度。
进一步地,在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的39.29%处,所述桨叶的攻角为17.65±2.5度;
或/及,在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的97.62%处,所述桨叶的攻角为6.58±2.5度。
进一步地,所述螺旋桨的回转直径为840毫米,在距离所述螺旋
桨的回转中心165毫米处,所述桨叶的攻角为17.65±2.5度;
或/及,在距离所述螺旋桨的回转中心245毫米处,所述桨叶的攻角为11.48±2.5度;
或/及,在距离所述螺旋桨的回转中心325毫米处,所述桨叶的攻角为8.02±2.5度;
或/及,在距离所述螺旋桨的回转中心405毫米处,所述桨叶的攻角为6.31±2.5度;
或/及,在距离所述螺旋桨的回转中心410毫米处,所述桨叶的攻角为6.58±2.5度。
进一步地,在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的58.33%处,所述桨叶的弦长为54.14±5毫米;
或/及,在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的77.38%处,所述桨叶的弦长为42.99±5毫米;
或/及,在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的96.43%处,所述桨叶的弦长为31.63±5毫米。
进一步地,在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的39.29%处,所述桨叶的弦长为68.20±5毫米;
或/及,在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的97.62%处,所述桨叶的弦长为30.94±5毫米。
进一步地,所述桨叶的长度为395±50毫米。
进一步地,所述桨叶包括相互背离设置的叶面及叶背,以及连接所述叶背及所述叶面的一侧的第一侧缘、连接所述叶背及所述叶面的另一侧的第二侧缘。
进一步地,所述叶面的横截面轮廓及所述叶背的横截面轮廓均为弯曲结构。
进一步地,所述第一侧缘包括曲面状的向外凸出的第一拱起部;所述第二侧缘包括曲面状的向外凸出的第二拱起部。
进一步地,所述桨叶的桨孔到桨头的距离为40毫米。
一种螺旋桨,所述螺旋桨包括桨座以及至少一个如上所述的桨叶,
所述桨叶上设置有安装部,所述安装部与所述桨座连接。
进一步地,所述螺旋桨还包括桨座,所述桨叶上设置有安装部,所述安装部与所述桨座连接。
进一步地,所述安装部上设置有连接孔,所述连接孔用于与紧固件相配合,以使所述安装部能够通过所述紧固件连接于所述桨座;
或/及,所述桨座的中心为所述螺旋桨的回转中心,所述安装部上设置有连接孔,所述安装部能够通过所述连接孔与所述桨座相连接,所述连接孔的中心与所述桨座的中心间隔预设距离。
进一步地,所述螺旋桨为折叠桨,所述桨叶的数量为至少两个,每个所述桨叶能够转动地连接于所述桨座上;
或者,所述螺旋桨包括与所述桨叶固定连接的桨毂,所述桨叶的数量为至少两个。
进一步地,所述螺旋桨的几何螺距为9±0.5英寸。
进一步地,所述动力套装包括如上所述的至少一个螺旋桨及驱动所述螺旋桨转动的驱动件。
进一步地,所述驱动件为电机,所述螺旋桨连接于所述电机上,所述电机的KV值为118转/(分钟·伏特)。
一种无人飞行器,其包括机身、多个机臂及如上所述的多个动力套装,所述多个机臂与所述机身连接,所述多个动力套装分别安装在所述多个机臂上。
本发明提供的螺旋桨通过对桨叶的不同部位的攻角的设计,减少了空气阻力,提高了效率,且推动力相对较大。
图1是本发明实施方式提供的动力套装的结构示意图。
图2是图1中的动力套装的螺旋桨的桨叶结构示意图。
图3是图2中的桨叶的主视图。
图4是图2中的桨叶的侧视图。
图5是图2中的桨叶的另一视角的侧视图。
图6是图3中的桨叶的正面示意图。
图7是图6中的桨叶的A-A剖面的剖视图。
图8是图6中的桨叶的B-B剖面的剖视图。
图9是图6中的桨叶的C-C剖面的剖视图。
图10是图6中的桨叶的D-D剖面的剖视图。
图11是图6中的桨叶的E-E剖面的剖视图。
主要元件符号说明
桨叶 100
安装部 101
连接孔 103
叶面 10
叶背 20
第一侧缘 30
第一拱起部 31
第二侧缘 40
第二拱起部 41
如下具体实施方式将结合上述附图进一步说明本发明。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是
“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在实现本发明的过程中,发明人发现了如下问题:
(1)螺旋桨的效率与螺旋桨的攻角和弦长有关,为此,发明人在螺旋桨的形状及结构方面做出了重点改进。
(2)特别地,螺旋桨的效率受到螺旋桨中部(40%~90%区域)的攻角以及弦长影响,为此,发明人在螺旋桨的中部重点做出改进。
(3)螺旋桨的形状及结构直接影响到其在旋转时产生的推动力方向以及推动力大小,为此,发明人在此方面做出了一些改进。
本发明实施例提供一种螺旋桨,其包括桨叶。在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的58.33%处,所述桨叶的攻角为11.48±2.5度;在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的77.38%处,所述桨叶的攻角为8.02±2.5度;在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的96.43%处,所述桨叶的攻角为6.31±2.5度。
本发明实施例还提供一种无人飞行器的动力套装,所述动力套装包括螺旋桨以及电机,所述螺旋桨连接于所述电机上,所述电机用于驱动所述螺旋桨转动,所述电机的KV值为118转/(分钟·伏特)。所述螺旋桨包括桨叶,在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的77.38%处,所述桨叶的攻角为8.02±2.5度;在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的96.43%处,所述桨叶的攻角为6.31±2.5度。所述螺旋桨可提供较大的推动力。
本发明实施例还提供一种无人飞行器,其包括机身、多个机臂以及多个动力套装,所述多个机臂与所述机身连接,所述多个动力套装分别安装在所述多个机臂上。所述动力套装包括螺旋桨以及电机,所述螺旋桨连接于所述电机上,所述电机用于驱动所述螺旋桨转动,所述电机的KV值为118转/(分钟·伏特)。所述螺旋桨包括桨叶,在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的77.38%处,所述桨叶的攻角为8.02±2.5度;在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的96.43%处,所述桨叶的攻角为6.31±2.5度。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明一实施方式提供的无人飞行器,其包括机身、机臂、螺旋桨及用于驱动所述螺旋桨转动的驱动件,所述机臂与所述机身相连接。可以理解,在一些实施方式中,所述螺旋桨可以为折叠桨。所述螺旋桨的数量可以根据实际需要选择,可以为一个、两个或者多个。本实施方式中,所述驱动件为电机,所述电机的KV值为118转/(分钟·伏特);可以理解,在其他实施方式中,所述电机的KV值可以根据实际的飞行需要选取;所述驱动件可以为其他形式,如发动机等。
所述螺旋桨可以是正桨或者反桨。所谓正桨,指从驱动件如电机的尾部向电机头部方向看,逆时针旋转以产生升力的螺旋桨;所谓反桨,指从电机尾部向电机头部方向看,顺时针旋转以产生升力的螺旋桨。所述正桨的结构与所述反桨的结构之间镜像对称,故下文仅以正桨为例阐述所述螺旋桨的结构。
请参阅图1,图1为本发明实施方式提供的动力套装的结构示意图。具体在本实施方式中,所述动力套装200与所述机臂连接,所述机臂为多个,所述动力套装200包括螺旋桨300及驱动件400,所述螺旋桨300及所述驱动件400均为多个,并且每一个驱动件400驱动一个所述螺旋桨300转动,构成一套动力套装200。每个机臂上设有至少一套所述动力套装200。
可以理解,所述动力套装200也可包括一个驱动件400和多个(如两个)螺旋桨300。
另外,本发明实施方式的描述中出现的上、下等方位用语是以所述螺旋桨300安装于所述飞行器以后所述螺旋桨300以及所述飞行器的常规运行姿态为参考,而不应所述认为具有限制性。
请同时参阅图2至图4,图中示出了本发明实施方式提供的螺旋桨300的桨叶100的结构示意图。所述螺旋桨300包括桨座(图中未示出)及设置于所述桨座两侧的两个桨叶100,两个所述桨叶100关于所述桨座的中心呈中心对称设置。两个所述桨叶100及所述桨座旋转起来形成一桨盘。在本实施方式中,所述桨座的中心与所述桨盘的中心基本重合。当然,在其他实施方式中,所述螺旋桨300可以为直桨,所述螺旋桨300可以包括桨毂及与所述桨毂固定连接的两个或多个桨叶100。
在本实施方式中,所述螺旋桨300为固定式螺旋桨,两个所述桨叶100均固定地连接于所述桨座上。具体在图示的实施方式中,所述桨叶100的一端设置有安装部101,所述安装部101上设置有连接孔103,所述安装部101通过所述连接孔103与所述桨座相连接,以使所述桨叶100连接于所述桨座上。在本实施方式中,所述连接孔103为螺纹孔,所述螺纹孔内设置有螺钉等紧固件,所述安装部101通过所述紧固件与所述桨座连接。在一实施方式中,所述连接孔103的中心与所述桨座的中心O之间的距离大致为40毫米。可以理解,在其他一些实施方式中,所述连接孔103的中心与所述桨座的中心之间的距离可以根据实际需要设置,并不局限于本发明实施例所描述。甚至,在一些实施例中,所述安装部101及所述连接孔103均可以省略。
可以理解,在其他的实施方式中,所述螺旋桨300可以为可折叠桨,所述桨叶100可转动地连接于所述桨座上。或者,在一些实施方式中,所述桨叶100与所述桨座为一体成型结构,或者,在一些实施方式中,所述桨叶100通过连接件可拆卸地装设于所述桨座上,并不局限于本发明实施例中所描述。同样可以理解的是,根据实际需要,
每个所述螺旋桨300中所述桨叶100的数量可以为其他数量,如三个、四个等等。具体地如,在另一个实施方式中,所述桨叶100的数量为三个,三个所述桨叶100相对所述桨座的中心在圆周方向上间隔均匀分布。
在本实施方式中,所述桨盘的直径为840±5毫米。具体地,所述桨盘的直径可以为835毫米、837.5毫米、840毫米、842.5毫米、845毫米,或者,所述桨盘的直径可以为上述任意两个数值所界定的数值范围内的任意值。优选地,所述桨盘的直径为840毫米。由于所述桨盘是由所述桨叶100及所述桨座旋转而形成的效果,上文以及下文中所提到的“桨盘的中心”和“桨盘中心”,应当理解为“螺旋桨的回转中心”,类似地,上文以及下文中所提到的“桨盘的直径”和“桨盘直径”应当理解为“螺旋桨的回转直径”,“桨盘的半径”和“桨盘半径”应当理解为“螺旋桨的回转半径”。
所述桨座可以用于与所述无人飞行器的驱动件400的转轴相连接,以使所述驱动件400能够驱动所述螺旋桨300转动。所述桨座内可以嵌设有加强垫片,所述加强片可以采用铝合金等轻质高强度材料制成,以提高所述螺旋桨300的强度。
请同时参阅图5,在本实施方式中,所述桨座大致呈圆柱状。两个所述桨叶100呈中心对称状设置在所述桨座的两侧,且每个所述桨叶100与所述桨座之间的连接呈螺纹状连接。在本实施方式中,所述螺旋桨300的几何螺距为9±0.5英寸,所述几何螺距为桨叶剖面迎角为零时,桨叶旋转一周所前进的距离。具体地,所述螺旋桨300的几何螺距可以为8.5英寸、8.6英寸、8.7英寸、8.8英寸、8.9英寸、9.0英寸、9.1英寸、9.2英寸、9.3英寸、9.4英寸、9.5英寸,或者,所述几何螺距可以为上述任意两个数值所界定的数值范围内的任意值。优选地,所述几何螺距为9英寸。
所述桨叶100包括相互背离设置的叶面10和叶背20,以及连接所述叶背20及所述叶面10的一侧的第一侧缘30、连接所述叶背20及所述叶面10的另一侧的第二侧缘40。所述叶面10的横截面轮廓
及所述叶背20的横截面轮廓均为弯曲结构(请参阅图7至图11)。当所述螺旋桨300装设在所述无人机的驱动件400上时,所述叶面10朝向所述驱动件400,也即,所述叶面10朝下设置;且所述叶背20背离所述驱动件400,也即,所述叶背20朝上设置。在本实施方式中,所述叶面10及所述叶背20均为曲面。所述第一侧缘30包括曲面状的向外凸出的第一拱起部31。所述第一拱起部31与所述第一侧缘30的其他部分平滑过渡连接。在本实施方式中,所述第一拱起部31邻近所述桨座设置。所述第二侧缘40包括曲面状的向外凸出的第二拱起部41,所述第二拱起部41与所述第二侧缘40的其他部分平滑过渡连接。在本实施方式中,所述第二拱起部41邻近所述桨座设置。
在本发明实施方式所提供的螺旋桨300中,所述桨叶100上无急剧扭转之处,应力较小,结构强度较高,不易折断,可靠性高。所述桨叶100远离所述桨座的一端为所述桨叶100最薄的部分,有利于减小空气阻力。即,所述桨叶100远离所述桨盘的中心的一端的厚度小于所述桨叶100其他部分的厚度。
本实施方式中,所述桨叶100的长度为395±5毫米。所述桨叶100的长度可以为390毫米至400毫米之间的任意值,例如390毫米、392.5毫米、395毫米、397.5毫米、400毫米,或者,所述桨叶100的长度可以为上述任意两个数值所界定的数值范围内的任意值。优选地,所述桨叶100的长度为395毫米。
本文中所指的攻角,是指所述桨叶100的翼弦与来流速度之间的夹角。
请同时参阅图6及图7,在所述桨叶100上距所述桨盘的中心O的距离为所述桨盘半径的39.29%处,所述桨叶100的攻角α1为17.65±2.5度。具体地,此处所述桨叶100的攻角α1可以为15.15度、16.15度、17.40度、17.65度、17.90度、19.15度、20.15度,或者,此处所述桨叶100的攻角α1可以为上述任意两个数值所界定的数值范围内的任意值,在本实施方式中,所述攻角α1为17.65度。在所
述桨叶100上距所述桨盘的中心O的距离为所述桨盘半径的39.29%处,所述桨叶100的弦长L1为68.20±5毫米。具体地,此处所述桨叶100的弦长L1可以为63.20毫米、64.20毫米、67.20毫米、68.20毫米、69.20毫米、71.20毫米、73.20毫米,或者,此处所述桨叶100的弦长L1可以为上述任意两个数值所界定的数值范围内的数值,在本实施方式中,所述弦长L1为68.20毫米。
请同时参阅图6及图8,在所述桨叶100上距所述桨盘的中心O的距离为所述桨盘半径的58.33%处,所述桨叶100的攻角α2为11.48±2.5度。具体地,此处所述桨叶100的攻角α2可以为8.02度、9.02度、10.02度、11.48度、11.98度、12.98度、13.98度,或者,此处所述桨叶100的攻角α2可以为上述任意两个数值所界定的数值范围内的任意值,在本实施方式中,所述攻角α2为11.48度。在所述桨叶100上距所述桨盘的中心O的距离为所述桨盘半径的58.33%处,所述桨叶100的弦长L2为54.14±5毫米。具体地,此处所述桨叶100的弦长L2可以为49.14毫米、50.14毫米、52.14毫米、54.14毫米、55.14毫米、57.14毫米、59.14毫米,或者,具体地,此处所述桨叶100的弦长L2可以为上述任意两个数值所界定的数值范围内的任意值,在本实施方式中,所述弦长L2为54.14毫米。
请同时参阅图6及图9,在所述桨叶100上距所述桨盘的中心O的距离为所述桨盘半径的77.38%处,所述桨叶100的攻角α3为8.02±2.5度。具体地,此处所述桨叶100的攻角α3可以为5.52度、6.52度、7.52度、8.02度、9.02度、10.02度、10.52度,或者,此处所述桨叶100的攻角α3可以为上述任意两个数值所界定的数值范围内的任意值,在本实施方式中,所述攻角α3为8.02度。在所述桨叶100上距所述桨盘的中心O的距离为所述桨盘半径的77.38%处,所述桨叶100的弦长L3为42.99±5毫米。具体地,此处所述桨叶100的弦长L3可以为37.99毫米、38.99毫米、40.99毫米、42.99毫米、43.99毫米、45.99毫米、47.99毫米,或者,此处所述桨叶100的弦长L3可以为上述任意两个数值所界定的数值范围内的任意值,在本
实施方式中,所述弦长L3为42.99毫米。
请同时参阅图6及图10,在所述桨叶100上距所述桨盘的中心O的距离为所述桨盘半径的96.43%处,所述桨叶100的攻角α4为6.31±2.5度。具体地,此处所述桨叶100的攻角α4可以为3.81度、4.81度、5.81度、6.31度、6.81度、7.81度、8.81度,或者,此处所述桨叶100的攻角α4可以为上述任意两个数值所界定的数值范围内的任意值,在本实施方式中,所述攻角α4为6.31度。在所述桨叶100上距所述桨盘的中心O的距离为所述桨盘半径的96.43%处,所述桨叶100的弦长L4为31.63±5毫米。具体地,此处所述桨叶100的弦长L4可以为26.63毫米、27.63毫米、29.63毫米、31.63毫米、32.63毫米、34.63毫米、36.63毫米,或者,此处所述桨叶100的弦长L4可以为上述任意两个数值所界定的数值范围内的任意值,在本实施方式中,所述弦长L4为31.63毫米。
请同时参阅图6及图11,在所述桨叶100上距所述桨盘的中心O的距离为所述桨盘半径的97.62%处,所述桨叶100的攻角α5为6.58±2.5度。具体地,此处所述桨叶100的攻角α5可以为4.08度、5.08度、6.08度、6.58度、6.08度、7.08度、9.08度,或者,此处所述桨叶100的攻角α5可以为上述任意两个数值所界定的数值范围内的任意值,在本实施方式中,所述攻角α5为6.58度。在所述桨叶100上距所述桨盘的中心O的距离为所述桨盘半径的97.62%处,所述桨叶100的弦长L5为30.94±5毫米。具体地,此处所述桨叶100的弦长L5可以为25.94毫米、26.94毫米、28.94毫米、30.94毫米、31.94毫米、33.94毫米、35.94毫米,或者,此处所述桨叶100的弦长L5可以为上述任意两个数值所界定的数值范围内的任意值,在本实施方式中,所述弦长L5为30.94毫米。
请再次参阅图6至图11,在本实施方式中,所述桨盘的直径为840毫米。在所述桨叶100上距离所述桨盘中心165毫米处,所述桨叶100的攻角α1为17.65度,所述桨叶100的弦长L1为68.20毫米;在距离所述桨盘的中心245毫米处,所述桨叶100的攻角α2为11.48
度,所述桨叶100的弦长L2为54.14毫米;在距离所述桨盘的中心325毫米处,所述桨叶100的攻角α3为8.02度,所述桨叶100的弦长L3为42.99毫米;在距离所述桨盘的中心405毫米处,所述桨叶100的攻角α4为6.31度,所述桨叶100的弦长L4为31.63毫米;在距离所述桨盘的中心410毫米处,所述桨叶100的攻角α5为6.58度,所述桨叶100的弦长L5为30.94毫米。
请参阅表1,表1所示为本实施方式提供的螺旋桨在不同的转速下的推动力值。
表1螺旋桨拉力-功率值
由表中可以看出,本发明的实施方式提供的螺旋桨在相同的拉力大小下,需要的功率较小,从而能够节省电量消耗,增加了无人飞行器的续航距离,提高了效率。
本发明提供的螺旋桨通过对桨叶的不同部位的攻角的设计,减少了空气阻力,提高了效率,增加了飞行器的续航距离并提高了飞行器的飞行性能。
另外,本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本发明,而并非用作为对本发明的限定,只要在本发明的实质精神范围之内,对以上实施例所作的适当改变和变化都落在本发明要求保护的范围之内。
Claims (17)
- 一种桨叶,用于螺旋桨中,其特征在于:在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的58.33%处,所述桨叶的攻角为11.48±2.5度;在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的77.38%处,所述桨叶的攻角为8.02±2.5度;在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的96.43%处,所述桨叶的攻角为6.31±2.5度。
- 如权利要求1所述的桨叶,其特征在于:在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的39.29%处,所述桨叶的攻角为17.65±2.5度;或/及,在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的97.62%处,所述桨叶的攻角为6.58±2.5度。
- 如权利要求1所述的桨叶,其特征在于:所述使用该桨叶的螺旋桨的回转直径为840毫米,在距离所述螺旋桨的回转中心165毫米处,所述桨叶的攻角为17.65±2.5度;或/及,在距离所述螺旋桨的回转中心245毫米处,所述桨叶的攻角为11.48±2.5度;或/及,在距离所述螺旋桨的回转中心325毫米处,所述桨叶的攻角为8.02±2.5度;或/及,在距离所述螺旋桨的回转中心405毫米处,所述桨叶的攻角为6.31±2.5度;或/及,在距离所述螺旋桨的回转中心410毫米处,所述桨叶的攻角为6.58±2.5度。
- 如权利要求1所述的桨叶,其特征在于:在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的58.33%处,所述桨叶的弦长为54.14±5毫米;或/及,在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的77.38%处,所述桨叶的弦长为42.99±5毫米;或/及,在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的96.43%处,所述桨叶的弦长为31.63±5毫米。
- 如权利要求4所述的桨叶,其特征在于:在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的39.29%处,所述桨叶的弦长为68.20±5毫米;或/及,在所述桨叶上距所述螺旋桨的回转中心的距离为所述螺旋桨的回转半径的97.62%处,所述桨叶的弦长为30.94±5毫米。
- 如权利要求1所述的桨叶,其特征在于:所述桨叶的长度为395±50毫米。
- 如权利要求1所述的桨叶,其特征在于:所述桨叶包括相互背离设置的叶面及叶背,以及连接所述叶背及所述叶面的一侧的第一侧缘、连接所述叶背及所述叶面的另一侧的第二侧缘。
- 如权利要求7所述的桨叶,其特征在于:所述叶面的横截面轮廓及所述叶背的横截面轮廓均为弯曲结构。
- 如权利要求7所述的桨叶,其特征在于:所述第一侧缘包括曲面状的向外凸出的第一拱起部;所述第二侧缘包括曲面状的向外凸出的第二拱起部。
- 如权利要求1所述的桨叶,其特征在于:所述桨叶的桨孔到桨头的距离为40毫米。
- 一种螺旋桨,其特征在于:所述螺旋桨包括桨座以及至少一个如权利要求1-10任一项所述的桨叶,所述桨叶上设置有安装部,所述安装部与所述桨座连接。
- 如权利要求10所述的螺旋桨,其特征在于:所述安装部上设置有连接孔,所述连接孔用于与紧固件相配合,以使所述安装部能够通过所述紧固件连接于所述桨座;或/及,所述桨座的中心为所述螺旋桨的回转中心,所述安装部上设置有连接孔,所述安装部能够通过所述连接孔与所述桨座相连接,所述连接孔的中心与所述桨座的中心间隔预设距离。
- 如权利要求10所述的螺旋桨,其特征在于:所述螺旋桨为折 叠桨,所述桨叶的数量为至少两个,每个所述桨叶能够转动地连接于所述桨座上;或者,所述螺旋桨包括与所述桨叶固定连接的桨毂,所述桨叶的数量为至少两个。
- 如权利要求11所述的螺旋桨,其特征在于:所述螺旋桨的几何螺距为9±0.5英寸。
- 一种无人飞行器的动力套装,其特征在于:所述动力套装包括权利要求11中任一项所述的至少一个螺旋桨及驱动所述螺旋桨转动的驱动件。
- 如权利要求15所述的动力套装,其特征在于:所述驱动件为电机,所述螺旋桨连接于所述电机上,所述电机的KV值为118转/(分钟·伏特)。
- 一种无人飞行器,其包括机身、多个机臂及权利要求15或16所述的多个动力套装,所述多个机臂与所述机身连接,所述多个动力套装分别安装在所述多个机臂上。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780060396.0A CN109789921A (zh) | 2017-04-07 | 2017-06-14 | 桨叶、螺旋桨、动力套装及无人飞行器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201720364541.1 | 2017-04-07 | ||
CN201720364541.1U CN207000809U (zh) | 2017-04-07 | 2017-04-07 | 桨叶、螺旋桨、动力套装及无人飞行器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018184291A1 true WO2018184291A1 (zh) | 2018-10-11 |
Family
ID=61442222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/088335 WO2018184291A1 (zh) | 2017-04-07 | 2017-06-14 | 桨叶、螺旋桨、动力套装及无人飞行器 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN207000809U (zh) |
WO (1) | WO2018184291A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108750074A (zh) * | 2018-03-30 | 2018-11-06 | 中山市朗宇模型有限公司 | 螺旋桨 |
CN112572766A (zh) * | 2020-12-17 | 2021-03-30 | 重庆工程职业技术学院 | 一种水上无人机水汽螺旋桨及其加工工艺 |
CN113022849B (zh) * | 2021-05-28 | 2024-02-06 | 北京三快在线科技有限公司 | 螺旋桨及旋翼飞行器 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011081577A1 (en) * | 2009-12-28 | 2011-07-07 | Volvo Aero Corporation | Air propeller arrangement and aircraft |
CN102963522A (zh) * | 2012-10-31 | 2013-03-13 | 中国航天空气动力技术研究院 | 临近空间螺旋桨 |
CN103359285A (zh) * | 2012-03-27 | 2013-10-23 | 波音公司 | 增强性能的旋翼飞机旋翼桨叶 |
EP2740931A1 (en) * | 2012-12-06 | 2014-06-11 | Wind Twentyone S.r.l. | Blade for vertical-axis wind turbine and vertical-axis wind turbine |
CN105253295A (zh) * | 2015-10-30 | 2016-01-20 | 深圳市道通智能航空技术有限公司 | 一种螺旋桨及飞行器 |
CN205801500U (zh) * | 2016-06-30 | 2016-12-14 | 深圳市大疆创新科技有限公司 | 螺旋桨、动力套装及无人飞行器 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3328116A1 (de) * | 1983-08-04 | 1985-02-14 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | Rotor, insb. eines drehfluegelflugzeuges |
FR2689852B1 (fr) * | 1992-04-09 | 1994-06-17 | Eurocopter France | Pale pour voilure tournante d'aeronef, a extremite en fleche. |
DE19528155C1 (de) * | 1995-08-02 | 1996-06-27 | Deutsche Forsch Luft Raumfahrt | Verdrehbares Rotorblatt aus faserverstärktem Kunstharz |
US6641365B2 (en) * | 1998-02-20 | 2003-11-04 | Abraham E. Karem | Optimum speed tilt rotor |
CN101157380A (zh) * | 2007-11-14 | 2008-04-09 | 吴官举 | 涡轮桨 |
US8646721B2 (en) * | 2008-05-07 | 2014-02-11 | Entecho Pty Ltd. | Fluid dynamic device with thrust control shroud |
GB2486021B (en) * | 2010-12-02 | 2017-07-19 | Agustawestland Ltd | Aerofoil |
CN204173156U (zh) * | 2014-08-25 | 2015-02-25 | 深圳市兴天翼科技有限公司 | 螺旋桨 |
CN205418068U (zh) * | 2015-10-13 | 2016-08-03 | 河南卓尔航空科技有限公司 | 一种螺旋桨装置 |
CN205396538U (zh) * | 2016-03-02 | 2016-07-27 | 深圳市道通智能航空技术有限公司 | 一种螺旋桨及飞行器 |
CN205837193U (zh) * | 2016-07-28 | 2016-12-28 | 深圳市大疆创新科技有限公司 | 螺旋桨、动力套装及无人飞行器 |
CN205891216U (zh) * | 2016-08-04 | 2017-01-18 | 深圳市大疆创新科技有限公司 | 螺旋桨、动力套装及无人飞行器 |
CN206068155U (zh) * | 2016-09-27 | 2017-04-05 | 深圳市大疆创新科技有限公司 | 桨叶、螺旋桨、动力套装及无人飞行器 |
-
2017
- 2017-04-07 CN CN201720364541.1U patent/CN207000809U/zh not_active Expired - Fee Related
- 2017-06-14 CN CN201780060396.0A patent/CN109789921A/zh active Pending
- 2017-06-14 WO PCT/CN2017/088335 patent/WO2018184291A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011081577A1 (en) * | 2009-12-28 | 2011-07-07 | Volvo Aero Corporation | Air propeller arrangement and aircraft |
CN103359285A (zh) * | 2012-03-27 | 2013-10-23 | 波音公司 | 增强性能的旋翼飞机旋翼桨叶 |
CN102963522A (zh) * | 2012-10-31 | 2013-03-13 | 中国航天空气动力技术研究院 | 临近空间螺旋桨 |
EP2740931A1 (en) * | 2012-12-06 | 2014-06-11 | Wind Twentyone S.r.l. | Blade for vertical-axis wind turbine and vertical-axis wind turbine |
CN105253295A (zh) * | 2015-10-30 | 2016-01-20 | 深圳市道通智能航空技术有限公司 | 一种螺旋桨及飞行器 |
CN205801500U (zh) * | 2016-06-30 | 2016-12-14 | 深圳市大疆创新科技有限公司 | 螺旋桨、动力套装及无人飞行器 |
Also Published As
Publication number | Publication date |
---|---|
CN109789921A (zh) | 2019-05-21 |
CN207000809U (zh) | 2018-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017124781A1 (zh) | 螺旋桨、动力套装及无人飞行器 | |
WO2018076457A1 (zh) | 螺旋桨、动力套装及无人飞行器 | |
WO2017148133A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2018000593A1 (zh) | 螺旋桨、动力套装及无人飞行器 | |
WO2018023861A1 (zh) | 螺旋桨、动力套装及无人飞行器 | |
WO2017128742A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2017128743A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2017148135A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2017148128A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2018184291A1 (zh) | 桨叶、螺旋桨、动力套装及无人飞行器 | |
WO2018157426A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2017143771A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2017128744A1 (zh) | 螺旋桨、动力组件及飞行器 | |
CN109071006B (zh) | 螺旋桨、动力组件及飞行器 | |
WO2018086204A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2019223193A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2019119379A1 (zh) | 螺旋桨、动力组件及无人飞行器 | |
WO2019019343A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2019019332A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2018058769A1 (zh) | 桨叶、螺旋桨、动力套装及无人飞行器 | |
WO2018058768A1 (zh) | 桨叶、螺旋桨、动力套装及无人飞行器 | |
WO2018018729A1 (zh) | 螺旋桨、动力套装及无人飞行器 | |
WO2021208464A1 (zh) | 螺旋桨、动力组件及飞行器 | |
US11364999B2 (en) | Rotor, power assembly and air vehicle | |
WO2019056558A1 (zh) | 螺旋桨、动力组件及飞行器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17905001 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17905001 Country of ref document: EP Kind code of ref document: A1 |