WO2017143771A1 - 螺旋桨、动力组件及飞行器 - Google Patents
螺旋桨、动力组件及飞行器 Download PDFInfo
- Publication number
- WO2017143771A1 WO2017143771A1 PCT/CN2016/099520 CN2016099520W WO2017143771A1 WO 2017143771 A1 WO2017143771 A1 WO 2017143771A1 CN 2016099520 W CN2016099520 W CN 2016099520W WO 2017143771 A1 WO2017143771 A1 WO 2017143771A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- propeller
- blade
- center
- distance
- threshold
- Prior art date
Links
- 230000007423 decrease Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/16—Blades
- B64C11/18—Aerodynamic features
Definitions
- the invention belongs to the technical field of propellers, and in particular to a propeller, a power component and an aircraft.
- the propeller on the aircraft is used to convert the rotation of the shaft of the motor or engine into thrust or lift.
- the invention provides a propeller, a power component and an aircraft to solve the technical problem of high resistance and low efficiency of the propeller in the prior art.
- An embodiment of the present invention provides a propeller, including: a paddle and a blade connected to the paddle;
- the blade has an angle of attack of 15.3° ⁇ 2.5° at a second threshold from the center of the propeller and a chord length of 29 mm ⁇ 5 mm, the second threshold being the center of the propeller to the end of the blade 36.84% of the distance;
- the blade has an angle of attack of 11.7° ⁇ 2.5° at a third threshold from a center of the propeller and a chord length of 22.7 mm ⁇ 5 mm, the third threshold being the center of the propeller to the blade 57.89% of the distance at the end;
- the blade has an angle of attack of 8.9° ⁇ 2.5° at a fourth threshold from the center of the propeller and a chord length of 17.5 mm ⁇ 5 mm, the fourth threshold being the center of the propeller to the paddle The distance of the end is 78.95%.
- the diameter of the propeller is 380 mm ⁇ 38 mm;
- the blade has an angle of attack of 15.3° and a chord length of 29 mm at a distance of 70 mm from the center of the propeller;
- the blade has an angle of attack of 11.7° and a chord length of 22.7 mm at a distance of 110 mm from the center of the propeller;
- the blade At a distance of 150 mm from the center of the propeller, the blade has an angle of attack of 8.9° and a chord length of 17.5 mm.
- the blade having an angle of attack of 18.3° ⁇ 2.5° at a first threshold from a center of the propeller and a chord length of 28.5 mm ⁇ 5 mm, the first threshold being the propeller
- the distance from the center to the end of the blade is 15.79%.
- the diameter of the propeller is 380 mm ⁇ 38 mm;
- the blade At a distance of 30 mm from the center of the propeller, the blade has an angle of attack of 18.3° and a chord length of 28.5 mm.
- the blade having an angle of attack of 7.3 ° ⁇ 2.5 ° at a fifth threshold from the center of the propeller and a chord length of 13.6 mm ⁇ 5 mm, the fifth threshold being the propeller
- the distance from the center to the end of the blade is 97.37%.
- the diameter of the propeller is 380 mm ⁇ 38 mm;
- the blade At a distance of 185 mm from the center of the propeller, the blade has an angle of attack of 7.3° and a chord length of 13.6 mm.
- the thickness of the blade gradually decreases from one end of the blade near the center of the propeller to one end of the blade away from the center of the propeller.
- the propeller has a pitch of 48 mm as described above.
- the blade comprising an upwardly facing leaf back, a downwardly facing leaf surface, a first side edge connected between the leaf back and a side of the leaf surface, and coupled to the a second side edge between the leaf back and the other side of the leaf surface, the first side edge being located below the second side edge.
- the first side edge comprising a curved, outwardly projecting bulge.
- An embodiment of the present invention further provides a power assembly including a driving member and the propeller according to any one of claims 1 to 11, the propeller being coupled to the driving member via a paddle.
- the drive member is a motor having a KV value of 412 rpm / (minute volt).
- An embodiment of the present invention further provides an aircraft comprising a body and the power assembly of any of the above, the power component being coupled to the body.
- the propeller, the power component and the aircraft provided by the embodiments of the present invention can reduce the resistance of the propeller during the rotation process and improve the flight speed of the aircraft by setting the chord length and the angle of attack of the three sections in the blade.
- the power supply conditions provide extended sailing distance and improved flight performance.
- FIG. 1 is a front elevational view of a propeller according to a first embodiment of the present invention
- Figure 2 is a right side view of the propeller of Figure 1;
- Figure 3 is a left side view of the propeller of Figure 1;
- Figure 4 is a bottom plan view of the propeller of Figure 1;
- Figure 5 is a plan view of the propeller shown in Figure 1;
- Figure 6 is a perspective view of the propeller shown in Figure 1;
- Figure 7 is a schematic cross-sectional view of the propeller of Figure 1 taken along line A-A;
- Figure 8 is a schematic cross-sectional view of the propeller of Figure 1 taken along line B-B;
- Figure 9 is a schematic cross-sectional view of the propeller of Figure 1 taken along line C-C;
- Figure 10 is a schematic cross-sectional view of the propeller of Figure 1 taken along line D-D;
- Figure 11 is a cross-sectional view of the propeller of Figure 1 taken along line E-E;
- FIG. 12 is a schematic structural diagram of an aircraft according to Embodiment 3 of the present invention.
- Embodiment 1 of the present invention provides a propeller.
- the propeller provided in this embodiment can be applied to an aircraft.
- the propeller may be a positive propeller or a reverse propeller
- the so-called positive propeller refers to a propeller that rotates clockwise to generate lift from the perspective of the aircraft overlooking the aircraft
- the so-called reverse propeller refers to the aircraft from the overhead view. From the perspective, the propeller that rotates counterclockwise to generate lift.
- the structure of the positive paddle and the structure of the reverse paddle are mirror-symmetric. This embodiment is only described by taking the structure of the positive paddle as an example. Those skilled in the art can expand the structure provided by the embodiment to obtain the structure of the reverse paddle.
- FIG. 1 is a front elevational view of a propeller according to a first embodiment of the present invention.
- Figure 2 is a right side view of the propeller of Figure 1.
- Figure 3 is a left side view of the propeller of Figure 1.
- Figure 4 is a bottom plan view of the propeller of Figure 1.
- Figure 5 is a plan view of the propeller of Figure 1.
- Figure 6 is a perspective view of the propeller of Figure 1.
- the propeller may include a paddle 1 and a blade attached to the paddle 1.
- the paddle and paddle 1 can be an integrally formed structure.
- the number of blades may be one or more, and a plurality of blades may be evenly distributed along the circumference of the paddle 1.
- the paddle may include an upwardly facing leaf back 2, a downwardly facing leaf surface 3, a first side edge 4 connected between the leaf back 2 and a side of the leaf surface 3, and a back of the leaf back 2 and a second side edge 5 between the other side of the foliage 3.
- the leaf back 2 is the one side of the blade during the flight of the aircraft; the leaf surface 3 is the side of the blade with the blade facing downward during the flight. Both the leaf back 2 and the leaf surface 3 are curved surfaces, and the tendency to bend is that the first side edge 4 is located lower than the position where the second side edge 5 is located when the blade is entirely horizontal.
- the first side edge 4 includes a curved, outwardly projecting bulge 6.
- the bulge 6 is in a smooth transitional connection with the remainder of the first side edge 4.
- the bulge 6 is closer to the paddle for use with the paddle relative to the end of the paddle away from the paddle 1 in the lengthwise direction of the entire blade 1 connected end.
- the first arching portion 6 not only arches towards one side of the blade, but can also be arched downwards, ie in the direction of the blade surface 3, and is smoothly transitioned to the blade surface 3.
- the surface of the blade is smooth transition everywhere, without sharp twisting, so it has less stress, and the strength is higher and it is not easy to break, and has high reliability.
- the thickness of the blade may be gradually reduced, and the end of the blade away from the center of the propeller is a blade The thinnest part of it helps to reduce air resistance.
- Figure 7 is a cross-sectional view of the propeller of Figure 1 taken along line A-A.
- Figure 8 is a cross-sectional view of the propeller of Figure 1 taken along line B-B.
- Figure 9 is a schematic cross-sectional view of the propeller of Figure 1 taken along line C-C.
- Figure 10 is a cross-sectional view of the propeller of Figure 1 taken along line D-D.
- Figure 11 is a cross-sectional view of the propeller of Figure 1 taken along line E-E.
- the present embodiment can improve the dimensions of the five sections of the blade to improve the flight performance of the aircraft.
- the improvement of the dimensions at the B-B line, the C-C line, and the D-D line is most important.
- the angle of attack A2 of the blade is 15.3° ⁇ 2.5°
- the chord length D2 is 29 mm ⁇ 5 mm
- the second threshold is 36.84% of the distance from the center of the propeller to the end of the blade.
- the chord length is the length of the section where the blade is projected in the horizontal direction
- the angle of attack is the angle between the chord and the direction in which the gas flows.
- the angle of attack A3 of the blade is 11.7° ⁇ 2.5°.
- the chord length D3 is 22.7 mm ⁇ 5 mm, and the third threshold is 57.89% of the distance from the center of the propeller to the end of the blade.
- the angle of attack A4 of the blade is 8.9° ⁇ 2.5°.
- the chord length D4 is 17.5 mm ⁇ 5 mm, and the fourth threshold is 78.95% of the distance from the center of the propeller to the end of the blade.
- the resistance of the propeller during the rotation process can be reduced, the flight speed of the aircraft can be improved, and the sailing distance can be extended under a certain power condition supply, thereby improving Flight performance.
- the angle of attack and the chord length at the A-A line and the E-E line in the blade can be improved, and the resistance of the propeller during the rotation can be further reduced.
- the A1 angle of attack of the blade may be 18.3 ° ⁇ 2.5 °
- the chord length D1 may be 28.5 mm ⁇ 5 mm
- the first threshold being 15.79% of the distance from the center of the propeller to the end of the blade.
- the angle of attack A5 of the blade may be 7.3 ° ⁇
- the chord length D5 may be 13.6 mm ⁇ 5 mm
- the fifth threshold is 97.37% of the distance from the center of the propeller to the end of the blade.
- the present embodiment provides a specific propeller having a diameter of 380 mm ⁇ 38 mm, and the distance from the center of the propeller to the end of the blade is half of the diameter of the propeller, that is, the center of the propeller to the paddle The distance from the end of the leaf is 190 mm ⁇ 19 mm.
- the blade has an angle of attack of 15.3° and a chord length of 29 mm at a distance of 70 mm from the center of the propeller (ie 36.84% of 190 mm);
- the blade is 110 mm from the center of the propeller (ie 57.89% of 190 mm), the blade has an angle of attack of 11.7° and a chord length of 22.7 mm;
- the blade is 150 mm from the center of the propeller (ie 190 mm) At 78.95%), the blade has an angle of attack of 8.9° and a chord length of 17.5 mm.
- the blade has an angle of attack of 18.3° and a chord length of 28.5 mm.
- the blade has an angle of attack of 7.3° and a chord length of 13.6 mm.
- the pitch of the propeller may be 48 mm, that is, the propeller rotates one revolution, and the theoretical rising distance is 48 mm.
- the propeller provided in this embodiment has a large performance compared with the propeller in the prior art. Upgrade.
- Table 1 is a comparison table of the tension and power of the propeller provided in the present embodiment and the propeller of the prior art.
- the power of the propeller provided by this embodiment is lower under the same pulling force, that is, under the same power conditions, the propeller provided in this embodiment has more advantages than the propeller of the prior art. Large pulling force saves power loss and increases battery life.
- Embodiment 2 of the present invention provides a power assembly including a driving member and a propeller according to any of the above embodiments, wherein the propeller is connected to the driving member through the paddle 1.
- the structure of the propeller is similar to the above embodiment, and details are not described herein again.
- the driving member can drive the paddle 1 and the blade to rotate.
- the driving component may specifically be a motor, and the motor may have a KV value of 412 rpm / (minute volt).
- the power assembly provided by the embodiment can reduce the resistance of the propeller during the rotation process by setting the chord length and the angle of attack of the three sections in the blade, and improve the flight speed of the aircraft, and is extended under a certain power supply condition. Sailing distance to improve flight performance.
- Embodiment 3 of the present invention provides an aircraft.
- the aircraft in this embodiment may include a fuselage and the power assembly of any of the above embodiments, the power component being coupled to the fuselage.
- FIG. 12 is a schematic structural diagram of an aircraft according to Embodiment 3 of the present invention.
- the power assembly includes a propeller 7 and a drive member 8.
- the structure of the power component in the aircraft is similar to that of the foregoing embodiment, and the number of the power components may be one or more, which is not limited in this embodiment.
- the aircraft provided in this embodiment adopts the above power component, and by setting the chord length and the angle of attack of the three sections in the blade, the resistance of the propeller 7 during the rotation can be reduced, and the flight speed of the aircraft is improved.
- the power supply conditions provide extended sailing distance and improved flight performance.
- the units described as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place, or It can also be distributed to multiple network elements. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Toys (AREA)
- Wind Motors (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
一种螺旋桨(7)、动力组件及飞行器,其中螺旋桨(7)包括:桨座(1)和连接在桨座(1)上的桨叶;桨叶在距离螺旋桨(7)的中心为第二阈值处的攻角为15.3°±2.5°,弦长为29mm±5mm,第二阈值为螺旋桨(7)的中心到桨叶末端的距离的36.84%;桨叶在距离螺旋桨(7)的中心为第三阈值处的攻角为11.7°±2.5°,弦长为22.7mm±5mm,第三阈值为螺旋桨(7)的中心到桨叶末端的距离的57.89%;桨叶在距离螺旋桨的中心为第四阈值处的攻角为8.9°±2.5°,弦长为17.5mm±5mm,第四阈值为螺旋桨(7)的中心到桨叶末端的距离的78.95%,该技术方案的螺旋桨(7)、动力组件及飞行器,能够降低螺旋桨(7)在转动过程中的阻力,提高飞行性能。
Description
本发明属于螺旋桨技术领域,尤其涉及一种螺旋桨、动力组件及飞行器。
飞行器上的螺旋桨,作为飞行器的重要关键器件,其用于将电机或发动机中转轴的转动转化为推力或升力。
本领域技术人员发现,现有技术中的螺旋桨的桨叶轮廓形状导致其飞行阻力大、效率低,导致飞行器的飞行速度小、继航距离短,严重影响了飞行器的飞行性能。
发明内容
本发明提供一种螺旋桨、动力组件及飞行器,用以解决现有技术中螺旋桨的阻力大、效率低的技术问题。
本发明实施例提供一种螺旋桨,包括:桨座和连接在所述桨座上的桨叶;
所述桨叶在距离所述螺旋桨的中心为第二阈值处的攻角为15.3°±2.5°,弦长为29mm±5mm,所述第二阈值为所述螺旋桨的中心到所述桨叶末端的距离的36.84%;
所述桨叶在距离所述螺旋桨的中心为第三阈值处的攻角为11.7°±2.5°,弦长为22.7mm±5mm,所述第三阈值为所述螺旋桨的中心到所述桨叶末端的距离的57.89%;
所述桨叶在距离所述螺旋桨的中心为第四阈值处的攻角为8.9°±2.5°,弦长为17.5mm±5mm,所述第四阈值为所述螺旋桨的中心到所述桨叶末端的距离的78.95%。
如上所述的螺旋桨,所述螺旋桨的直径为380mm±38mm;
在所述桨叶距离所述螺旋桨的中心70mm处,所述桨叶的攻角为15.3°,弦长为29mm;
在所述桨叶距离所述螺旋桨的中心110mm处,所述桨叶的攻角为11.7°,弦长为22.7mm;
在所述桨叶距离所述螺旋桨的中心150mm处,所述桨叶的攻角为8.9°,弦长为17.5mm。
如上所述的螺旋桨,所述桨叶在距离所述螺旋桨的中心为第一阈值处的攻角为18.3°±2.5°,弦长为28.5mm±5mm,所述第一阈值为所述螺旋桨的中心到所述桨叶末端的距离的15.79%。
如上所述的螺旋桨,所述螺旋桨的直径为380mm±38mm;
在所述桨叶距离所述螺旋桨的中心30mm处,所述桨叶的攻角为18.3°,弦长为28.5mm。
如上所述的螺旋桨,所述桨叶在距离所述螺旋桨的中心为第五阈值处的攻角为7.3°±2.5°,弦长为13.6mm±5mm,所述第五阈值为所述螺旋桨的中心到所述桨叶末端的距离的97.37%。
如上所述的螺旋桨,所述螺旋桨的直径为380mm±38mm;
在所述桨叶距离所述螺旋桨的中心185mm处,所述桨叶的攻角为7.3°,弦长为13.6mm。
如上所述的螺旋桨,从所述桨叶靠近所述螺旋桨的中心的一端至所述桨叶远离所述螺旋桨的中心的一端,所述桨叶的厚度逐渐减小。
如上所述的螺旋桨,所述螺旋桨的螺距为48mm。
如上所述的螺旋桨,所述桨叶包括朝上的叶背、朝下的叶面、连接于所述叶背及所述叶面的一侧之间的第一侧缘、以及连接于所述叶背及所述叶面的另一侧之间的第二侧缘,所述第一侧缘位于所述第二侧缘下方。
如上所述的螺旋桨,所述第一侧缘包括一个曲面状的、向外凸出的拱起部。
如上所述的螺旋桨,所述拱起部靠近所述桨叶用于与所述桨座相连的一端。
本发明实施例还提供一种动力组件,包括驱动件和权利要求1-11任一项所述的螺旋桨,所述螺旋桨通过桨座与所述驱动件连接。
如上所述的动力组件,所述驱动件为电机,所述电机的KV值为412转/(分钟·伏特)。
本发明实施例还提供一种飞行器,包括机身以及上述任一项所述的动力组件,所述动力组件与所述机身连接。
本发明实施例提供的螺旋桨、动力组件及飞行器,通过对桨叶中上述三个截面的弦长和攻角的设定,能够降低螺旋桨在转动过程中的阻力,提高飞行器的飞行速度,在一定的电力条件供给下延长航行距离,提高飞行性能。
图1为本发明实施例一提供的螺旋桨的主视图;
图2为图1所示螺旋桨的右视图;
图3为图1所示螺旋桨的左视图;
图4为图1所示螺旋桨的仰视图;
图5为图1所示螺旋桨的俯视图;
图6为图1所示螺旋桨的立体图;
图7为图1中螺旋桨沿A-A线的剖面示意图;
图8为图1中螺旋桨沿B-B线的剖面示意图;
图9为图1中螺旋桨沿C-C线的剖面示意图;
图10为图1中螺旋桨沿D-D线的剖面示意图;
图11为图1中螺旋桨沿E-E线的剖面示意图;
图12为本发明实施例三提供的飞行器的结构示意图。
附图标记:
1-桨座 2-叶背 3-叶面 4-第一侧缘
5-第二侧缘 6-拱起部 7-螺旋桨 8-驱动件
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获
得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例一
本发明实施例一提供一种螺旋桨。本实施例提供的螺旋桨,可以应用于飞行器。
本实施例中,所述螺旋桨可以为正桨或反桨,所谓正桨,指的是从俯视飞行器的角度看,顺时针旋转而产生升力的螺旋桨;所谓反桨,指的是从俯视飞行器的角度看,逆时针旋转而产生升力的螺旋桨。正桨的结构与反桨的结构为镜面对称,本实施例仅以正桨的结构为例进行说明,本领域技术人员可以根据本实施例所提供的方式进行扩展而得到反桨的结构。
图1为本发明实施例一提供的螺旋桨的主视图。图2为图1所示螺旋桨的右视图。图3为图1所示螺旋桨的左视图。图4为图1所示螺旋桨的仰视图。图5为图1所示螺旋桨的俯视图。图6为图1所示螺旋桨的立体图。
如图1至图6所示,所述螺旋桨可以包括:桨座1和连接在所述桨座1上的桨叶。桨叶和桨座1可以为一体成型结构。桨叶的个数可以为一个或多个,多个桨叶可以沿所述桨座1周向均匀分布。
桨叶可以包括朝上的叶背2、朝下的叶面3、连接于所述叶背2及所述叶面3的一侧之间的第一侧缘4、以及连接于所述叶背2及所述叶面3的另一侧之间的第二侧缘5。
其中,叶背2为飞行器在飞行过程中,桨叶朝上的一面;叶面3为飞行器在飞行过程中,桨叶朝下的一面。叶背2和叶面3均为曲面,且弯曲的趋势为:当桨叶整体处于水平状态时,第一侧缘4所处的位置比第二侧缘5所处的位置低。
所述第一侧缘4包括一个曲面状的、向外凸出的拱起部6。拱起部6与第一侧缘4的其余部分为平滑过渡连接。在整个桨叶的长度方向上,相对于所述桨叶远离桨座1的一端,所述拱起部6更靠近所述桨叶用于与所述桨座
1相连的一端。第一拱起部6不仅朝桨叶的一侧拱起,同时还可以向下拱起,即朝向叶面3的方向拱起,并且与叶面3为平滑过渡连接。桨叶的表面各处均为平滑过渡,没有急剧扭转之处,因此具有较小的应力,且强度较高不易折断,具有较高的可靠性。
从所述桨叶靠近所述螺旋桨的中心的一端至所述桨叶远离所述螺旋桨的中心的一端,所述桨叶的厚度可以逐渐减小,桨叶中远离螺旋桨中心的端部为桨叶中最薄的部分,有利于降低空气阻力。
图7为图1中螺旋桨沿A-A线的剖面示意图。图8为图1中螺旋桨沿B-B线的剖面示意图。图9为图1中螺旋桨沿C-C线的剖面示意图。图10为图1中螺旋桨沿D-D线的剖面示意图。图11为图1中螺旋桨沿E-E线的剖面示意图。
如图7至图11所示,本实施例可以对桨叶的五个截面处的尺寸进行改进,以改善飞行器的飞行性能。其中,对B-B线、C-C线和D-D线处的尺寸所进行的改进最为重要。
具体地,在距离所述螺旋桨的中心为第二阈值处,即图1中与螺旋桨的中心距离为L2的B-B线处,如图8所示,所述桨叶的攻角A2为15.3°±2.5°,弦长D2为29mm±5mm,所述第二阈值为所述螺旋桨的中心到所述桨叶末端的距离的36.84%。其中,弦长为桨叶在该处的截面在水平方向上投影的长度,攻角为弦翼与气体来流方向的夹角。
在距离所述螺旋桨的中心为第三阈值处,即图1中与螺旋桨的中心距离为L3的C-C线处,如图9所示,所述桨叶的攻角A3为11.7°±2.5°,弦长D3为22.7mm±5mm,所述第三阈值为所述螺旋桨的中心到所述桨叶末端的距离的57.89%。
在距离所述螺旋桨的中心为第四阈值处,即图1中与螺旋桨的中心距离为L4的D-D线处,如图10所示,所述桨叶的攻角A4为8.9°±2.5°,弦长D4为17.5mm±5mm,所述第四阈值为所述螺旋桨的中心到所述桨叶末端的距离的78.95%。
本实施例通过对桨叶中上述三个截面的弦长和攻角的设定,能够降低螺旋桨在转动过程中的阻力,提高飞行器的飞行速度,在一定的电力条件供给下延长航行距离,提高飞行性能。
在上述技术方案的基础上,还可以对桨叶中A-A线和E-E线处的攻角和弦长进行改进,能够进一步降低螺旋桨在转动过程中的阻力。
具体地,在距离所述螺旋桨的中心为第一阈值处,即图1中与所述螺旋桨的中心距离为L1的A-A线处,如图7所示,所述桨叶的A1攻角可以为18.3°±2.5°,弦长D1可以为28.5mm±5mm,所述第一阈值为所述螺旋桨的中心到所述桨叶末端的距离的15.79%。
在距离所述螺旋桨的中心为第五阈值处,即图1中与所述螺旋桨的中心距离为L5的E-E线处,如图11所示,所述桨叶的攻角A5可以为7.3°±2.5°,弦长D5可以为13.6mm±5mm,所述第五阈值为所述螺旋桨的中心到所述桨叶末端的距离的97.37%。
本领域技术人员可以理解的是,所述A-A线、B-B线、C-C线、D-D线和E-E线的位置可略微变动。
对于上述技术方案,本实施例提供一种具体的螺旋桨,所述螺旋桨的直径为380mm±38mm,螺旋桨的中心到桨叶末端的距离为所述螺旋桨直径的一半,即所述螺旋桨的中心到桨叶末端的距离为190mm±19mm。
以螺旋桨的直径为380mm为例,在所述桨叶距离所述螺旋桨的中心70mm(即190mm的36.84%)处,所述桨叶的攻角为15.3°,弦长为29mm;在所述桨叶距离所述螺旋桨的中心110mm(即190mm的57.89%)处,所述桨叶的攻角为11.7°,弦长为22.7mm;在所述桨叶距离所述螺旋桨的中心150mm(即190mm的78.95%)处,所述桨叶的攻角为8.9°,弦长为17.5mm。
进一步的,在所述桨叶距离所述螺旋桨的中心30mm(即190mm的15.79%)处,所述桨叶的攻角为18.3°,弦长为28.5mm。在所述桨叶距离所述螺旋桨的中心185mm(即190mm的97.37%处,所述桨叶的攻角为7.3°,弦长为13.6mm。
可以理解,因A-A线、B-B线、C-C线、D-D线和E-E线的位置可略微变动,故相应地,在A-A线、B-B线、C-C线、D-D线和E-E线处所得的攻角和弦长值可相应改变。
另外,本实施例所提供的螺旋桨,所述螺旋桨的螺距可以为48mm,即所述螺旋桨旋转一周,理论上升的距离为48mm。
本实施例所提供的螺旋桨,与现有技术中的螺旋桨相比,性能有很大的
提升。表一为本实施例提供的螺旋桨与现有技术的螺旋桨的拉力和功率的对照表。
表一本实施例所提供的螺旋桨与现有技术的对比参数
参照表一可知,在相同的拉力下,本实施例所提供的螺旋桨的功率更低,也即:在同样的功率条件下,本实施例所提供的螺旋桨相比于现有技术的螺旋桨具有更大的拉力,从而节省电量损耗,增加续航距离。
实施例二
本发明实施例二提供一种动力组件,包括驱动件和上述任一实施例所述的螺旋桨,所述螺旋桨通过桨座1与所述驱动件连接。其中所述螺旋桨的结构与上述实施例类似,此处不再赘述。
桨座1与驱动件连接后,驱动件可以带动桨座1及桨叶转动。其中,所述驱动件具体可以为电机,所述电机的KV值可以为412转/(分钟·伏特)。
本实施例提供的动力组件,通过对桨叶中的三个截面弦长和攻角的设定,能够降低螺旋桨在转动过程中的阻力,提高飞行器的飞行速度,在一定的电力条件供给下延长航行距离,提高飞行性能。
实施例三
本发明实施例三提供一种飞行器。本实施例中的飞行器,可以包括机身以及上述任一实施例所述的动力组件,所述动力组件与所述机身连接。
图12为本发明实施例三提供的飞行器的结构示意图。如图12所示,所述动力组件包括螺旋桨7和驱动件8。所述飞行器中动力组件的结构与前述实施例类似,动力组件的个数可以为一个,也可以为多个,本实施例对此不作限制。
本实施例提供的飞行器,采用了上述动力组件,通过对桨叶中的三个截面弦长和攻角的设定,能够降低螺旋桨7在转动过程中的阻力,提高飞行器的飞行速度,在一定的电力条件供给下延长航行距离,提高飞行性能。
在本发明所提供的几个实施例中,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (14)
- 一种螺旋桨,其特征在于,包括:桨座和连接在所述桨座上的桨叶;所述桨叶在距离所述螺旋桨的中心为第二阈值处的攻角为15.3°±2.5°,弦长为29mm±5mm,所述第二阈值为所述螺旋桨的中心到所述桨叶末端的距离的36.84%;所述桨叶在距离所述螺旋桨的中心为第三阈值处的攻角为11.7°±2.5°,弦长为22.7mm±5mm,所述第三阈值为所述螺旋桨的中心到所述桨叶末端的距离的57.89%;所述桨叶在距离所述螺旋桨的中心为第四阈值处的攻角为8.9°±2.5°,弦长为17.5mm±5mm,所述第四阈值为所述螺旋桨的中心到所述桨叶末端的距离的78.95%。
- 根据权利要求1所述的螺旋桨,其特征在于,所述螺旋桨的直径为380mm±38mm;在所述桨叶距离所述螺旋桨的中心70mm处,所述桨叶的攻角为15.3°,弦长为29mm;在所述桨叶距离所述螺旋桨的中心110mm处,所述桨叶的攻角为11.7°,弦长为22.7mm;在所述桨叶距离所述螺旋桨的中心150mm处,所述桨叶的攻角为8.9°,弦长为17.5mm。
- 根据权利要求1所述的螺旋桨,其特征在于,所述桨叶在距离所述螺旋桨的中心为第一阈值处的攻角为18.3°±2.5°,弦长为28.5mm±5mm,所述第一阈值为所述螺旋桨的中心到所述桨叶末端的距离的15.79%。
- 根据权利要求3所述的螺旋桨,其特征在于,所述螺旋桨的直径为380mm±38mm;在所述桨叶距离所述螺旋桨的中心30mm处,所述桨叶的攻角为18.3°,弦长为28.5mm。
- 根据权利要求1所述的螺旋桨,其特征在于,所述桨叶在距离所述螺旋桨的中心为第五阈值处的攻角为7.3°±2.5°,弦 长为13.6mm±5mm,所述第五阈值为所述螺旋桨的中心到所述桨叶末端的距离的97.37%。
- 根据权利要求5所述的螺旋桨,其特征在于,所述螺旋桨的直径为380mm±38mm;在所述桨叶距离所述螺旋桨的中心185mm处,所述桨叶的攻角为7.3°,弦长为13.6mm。
- 根据权利要求1所述的螺旋桨,其特征在于,从所述桨叶靠近所述螺旋桨的中心的一端至所述桨叶远离所述螺旋桨的中心的一端,所述桨叶的厚度逐渐减小。
- 根据权利要求1-7任一项所述的螺旋桨,其特征在于,所述螺旋桨的螺距为48mm。
- 根据权利要求1-7任一项所述的螺旋桨,其特征在于,所述桨叶包括朝上的叶背、朝下的叶面、连接于所述叶背及所述叶面的一侧之间的第一侧缘、以及连接于所述叶背及所述叶面的另一侧之间的第二侧缘,所述第一侧缘位于所述第二侧缘下方。
- 根据权利要求9所述的螺旋桨,其特征在于,所述第一侧缘包括一个曲面状的、向外凸出的拱起部。
- 根据权利要求10所述的螺旋桨,其特征在于,所述拱起部靠近所述桨叶用于与所述桨座相连的一端。
- 一种动力组件,其特征在于,包括驱动件和权利要求1-11任一项所述的螺旋桨,所述螺旋桨通过桨座与所述驱动件连接。
- 根据权利要求12所述的动力组件,其特征在于,所述驱动件为电机,所述电机的KV值为412转/(分钟·伏特)。
- 一种飞行器,其特征在于,包括机身以及权利要求12或13所述的动力组件,所述动力组件与所述机身连接。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201620149116.6 | 2016-02-26 | ||
CN201620149116.6U CN205418072U (zh) | 2016-02-26 | 2016-02-26 | 螺旋桨、动力组件及飞行器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017143771A1 true WO2017143771A1 (zh) | 2017-08-31 |
Family
ID=56541863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/099520 WO2017143771A1 (zh) | 2016-02-26 | 2016-09-21 | 螺旋桨、动力组件及飞行器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN205418072U (zh) |
WO (1) | WO2017143771A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN205418072U (zh) * | 2016-02-26 | 2016-08-03 | 深圳市大疆创新科技有限公司 | 螺旋桨、动力组件及飞行器 |
CN205891216U (zh) * | 2016-08-04 | 2017-01-18 | 深圳市大疆创新科技有限公司 | 螺旋桨、动力套装及无人飞行器 |
CN206141830U (zh) * | 2016-10-28 | 2017-05-03 | 深圳市大疆创新科技有限公司 | 螺旋桨、动力套装及无人飞行器 |
CN108657427A (zh) * | 2017-03-28 | 2018-10-16 | 天津京东智联科技发展有限公司 | 一种桨叶 |
CN209241318U (zh) * | 2018-08-28 | 2019-08-13 | 深圳市道通智能航空技术有限公司 | 螺旋桨、动力组件及无人机 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002220089A (ja) * | 2001-01-23 | 2002-08-06 | Hitachi Zosen Corp | 船舶の推進効率向上用ダクト |
CN102963522A (zh) * | 2012-10-31 | 2013-03-13 | 中国航天空气动力技术研究院 | 临近空间螺旋桨 |
CN203374428U (zh) * | 2013-06-14 | 2014-01-01 | 中国科学院工程热物理研究所 | 一族大厚度钝尾缘风力机翼型 |
CN203593160U (zh) * | 2013-12-13 | 2014-05-14 | 吉林大学 | 一种机翼结构 |
CN105253295A (zh) * | 2015-10-30 | 2016-01-20 | 深圳市道通智能航空技术有限公司 | 一种螺旋桨及飞行器 |
CN205418072U (zh) * | 2016-02-26 | 2016-08-03 | 深圳市大疆创新科技有限公司 | 螺旋桨、动力组件及飞行器 |
-
2016
- 2016-02-26 CN CN201620149116.6U patent/CN205418072U/zh not_active Expired - Fee Related
- 2016-09-21 WO PCT/CN2016/099520 patent/WO2017143771A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002220089A (ja) * | 2001-01-23 | 2002-08-06 | Hitachi Zosen Corp | 船舶の推進効率向上用ダクト |
CN102963522A (zh) * | 2012-10-31 | 2013-03-13 | 中国航天空气动力技术研究院 | 临近空间螺旋桨 |
CN203374428U (zh) * | 2013-06-14 | 2014-01-01 | 中国科学院工程热物理研究所 | 一族大厚度钝尾缘风力机翼型 |
CN203593160U (zh) * | 2013-12-13 | 2014-05-14 | 吉林大学 | 一种机翼结构 |
CN105253295A (zh) * | 2015-10-30 | 2016-01-20 | 深圳市道通智能航空技术有限公司 | 一种螺旋桨及飞行器 |
CN205418072U (zh) * | 2016-02-26 | 2016-08-03 | 深圳市大疆创新科技有限公司 | 螺旋桨、动力组件及飞行器 |
Also Published As
Publication number | Publication date |
---|---|
CN205418072U (zh) | 2016-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017128742A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2017124781A1 (zh) | 螺旋桨、动力套装及无人飞行器 | |
WO2017148135A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2017143771A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2017148133A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2017128743A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2017148134A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2017148128A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2018157426A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2018076457A1 (zh) | 螺旋桨、动力套装及无人飞行器 | |
WO2017128744A1 (zh) | 螺旋桨、动力组件及飞行器 | |
CN109071006B (zh) | 螺旋桨、动力组件及飞行器 | |
WO2018023861A1 (zh) | 螺旋桨、动力套装及无人飞行器 | |
WO2018000593A1 (zh) | 螺旋桨、动力套装及无人飞行器 | |
WO2019223193A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2019019332A1 (zh) | 螺旋桨、动力组件及飞行器 | |
CN207000809U (zh) | 桨叶、螺旋桨、动力套装及无人飞行器 | |
WO2019019343A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2019000560A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2018018729A1 (zh) | 螺旋桨、动力套装及无人飞行器 | |
WO2019227268A1 (zh) | 螺旋桨组件、动力组件及飞行器 | |
CN218198801U (zh) | 一种桨叶、螺旋桨及飞行器 | |
WO2019000547A1 (zh) | 螺旋桨、动力装置及飞行器 | |
WO2018058768A1 (zh) | 桨叶、螺旋桨、动力套装及无人飞行器 | |
WO2018058769A1 (zh) | 桨叶、螺旋桨、动力套装及无人飞行器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16891219 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16891219 Country of ref document: EP Kind code of ref document: A1 |