WO2017148128A1 - 螺旋桨、动力组件及飞行器 - Google Patents

螺旋桨、动力组件及飞行器 Download PDF

Info

Publication number
WO2017148128A1
WO2017148128A1 PCT/CN2016/098967 CN2016098967W WO2017148128A1 WO 2017148128 A1 WO2017148128 A1 WO 2017148128A1 CN 2016098967 W CN2016098967 W CN 2016098967W WO 2017148128 A1 WO2017148128 A1 WO 2017148128A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
paddle
blade
center
distance
Prior art date
Application number
PCT/CN2016/098967
Other languages
English (en)
French (fr)
Inventor
刘峰
邓涛
江彬
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Publication of WO2017148128A1 publication Critical patent/WO2017148128A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/18Aerodynamic features

Definitions

  • the present invention relates to propeller structure technology, and more particularly to a propeller, a power assembly, and an aircraft.
  • the propeller on the aircraft is used to convert the rotation of the shaft of the motor or engine into thrust or lift.
  • the shape of the blade of the propeller is mostly rectangular, which results in large resistance and low efficiency during flight, resulting in a small flying speed of the aircraft and a short cruising distance, which seriously affects the flight performance of the aircraft.
  • the invention provides a propeller, a power component and an aircraft to solve the above defects in the prior art, reduce the flight resistance of the propeller, improve the flight efficiency of the propeller, and improve the flight performance of the aircraft.
  • An aspect of the invention provides a propeller comprising a paddle that rotates to form a paddle;
  • the blade has an angle of attack of 15.1 ° ⁇ 2.5 ° at a distance of 55.6% of the paddle radius from the center of the paddle formed by the propeller, and a chord length of 16.5 mm ⁇ 5 mm;
  • the blade has an angle of attack of 72.7° ⁇ 2.5° at a distance of 72.2% of the paddle radius from the center of the paddle formed by the propeller, and a chord length of 14 mm ⁇ 5 mm;
  • the blade has an angle of attack of 11.2° ⁇ 2.5° at a distance of 88.9% of the paddle radius from the center of the paddle formed by the propeller, and a chord length of 11.5 mm ⁇ 5 mm.
  • propeller as described above, the propeller forming a paddle having a diameter of 180 mm;
  • the blade has an angle of attack of 15.1° at a distance of 50 mm from the center of the paddle formed by the propeller, and a chord length of 16.5 mm;
  • the angle of attack of the blade at a distance of 65 mm from the center of the paddle formed by the propeller is 12.7°, the chord length is 14mm;
  • the blade has an angle of attack of 11.2° at a distance of 80 mm from the center of the paddle formed by the propeller, and a chord length of 11.5 mm.
  • the blade has an angle of attack of 19.4° ⁇ 2.5° at a distance of 38.9% of the paddle radius from the center of the paddle formed by the propeller, and a chord length of 18.9 mm ⁇ 5 mm.
  • propeller as described above, the propeller forming a paddle having a diameter of 180 mm;
  • the blade has an angle of attack of 19.4° at a distance of 35 mm from the center of the paddle formed by the propeller, and a chord length of 18.9 mm.
  • the blade has an angle of attack of 10.5° ⁇ 2.5° at a distance of 100% of the paddle disk from the center of the paddle formed by the propeller, and a chord length of 10.1 mm ⁇ 5 mm.
  • propeller as described above, the propeller forming a paddle having a diameter of 180 mm;
  • the blade has an angle of attack of 10.5° at a distance of 90 mm from the center of the paddle formed by the propeller, and a chord length of 10.1 mm.
  • propeller as described above, the propeller further comprising a paddle, the paddle being detachably connected to the paddle, the blade being provided with a connecting hole for connecting with the paddle, the connecting hole to the paddle
  • the distance to the center is 14.5mm.
  • the number of the blades is at least two, and the at least two blades are evenly distributed along the circumference of the paddle.
  • the propeller as described above gradually decreases in thickness of the blade from an end of the blade near the center of the paddle to an end of the blade away from the center of the paddle.
  • the blade comprising an upwardly facing leaf back, a downwardly facing leaf surface, and a first side edge connected between the leaf back and a side of the leaf surface, and a joint a second side edge between the leaf back and the other side of the leaf surface, the first side edge being located below the second side edge; the leaf back and the leaf surface are curved surfaces.
  • the first side edge comprising a curved outwardly convex first arch
  • the second side edge comprising a curved outwardly projecting second arch
  • the first arching portion and the second arching portion are both close to an end of the blade connected to the paddle; and the first arching portion protrudes more than the second arching portion The degree of bulging.
  • the propeller has a pitch of 29 mm as described above.
  • Another aspect of the present invention provides a power assembly including a drive member and the propeller of any of the above, the propeller being coupled to the drive member by a paddle.
  • the driving member is a motor having a KV value of 1000 to 1200 rpm / (minute volt).
  • Yet another aspect of the present invention provides an aircraft comprising a fuselage, further comprising at least one power assembly according to any of the above, the power assembly being coupled to the fuselage.
  • the aircraft includes a plurality of power components that rotate in different directions.
  • the propeller, the power component and the aircraft provided by the invention have an angle of attack of 15.1° ⁇ 2.5° and a chord length of 16.5 mm ⁇ 5 mm because the blade is at a distance of 55.6% of the blade radius from the center of the paddle formed by the propeller;
  • the blade has an angle of attack of 72.7° ⁇ 2.5° at a distance of 72.2% of the paddle radius from the center of the paddle formed by the propeller, and a chord length of 14 mm ⁇ 5 mm; the paddle is at the center of the paddle formed by the propeller
  • the angle of attack at 88.9% of the paddle radius is 11.2° ⁇ 2.5° and the chord length is 11.5 mm ⁇ 5 mm. Therefore, the resistance of the propeller during the rotation process can be reduced, the flight resistance during the flight of the aircraft can be reduced, the flight efficiency can be improved, the cruising range can be increased, and the flight performance of the aircraft can be improved.
  • FIG. 1 is a perspective view of a blade in a propeller according to a first embodiment of the present invention
  • Figure 2 is a front elevational view of the blade of Figure 1;
  • Figure 3 is a left side view of the blade of Figure 1;
  • Figure 4 is a right side view of the blade of Figure 1;
  • Figure 5 is a bottom plan view of the blade of Figure 1;
  • Figure 6 is a plan view of the blade of Figure 1;
  • Figure 7 is a schematic cross-sectional view of the blade of Figure 2 taken along line A-A;
  • Figure 8 is a schematic cross-sectional view of the blade of Figure 2 taken along line B-B;
  • Figure 9 is a schematic cross-sectional view of the blade of Figure 2 taken along line C-C;
  • Figure 10 is a schematic cross-sectional view of the blade of Figure 2 taken along line D-D;
  • Figure 11 is a schematic cross-sectional view of the blade of Figure 2 taken along line E-E.
  • a component when referred to as being "fixed” to another component, it can be directly on the other component or the component can be present. When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • Embodiment 1 of the present invention provides a propeller.
  • the propeller in this embodiment can be applied to an aircraft, and the propeller can include: a paddle and a blade connected to the paddle.
  • the propeller may be a positive propeller or a reverse propeller
  • the so-called positive propeller refers to a propeller that rotates clockwise to generate lift from the perspective of the aircraft overlooking
  • the so-called reverse propeller refers to the perspective of the aircraft from above.
  • the structure of the positive paddle is mirror-symmetric with the structure of the reverse paddle.
  • the structure of the propeller is only taken as an example of the structure of the positive paddle, and those skilled in the art can expand according to the manner provided by the embodiment. Get the structure of the reverse paddle.
  • the paddle and the paddle may be integrally formed, or may be connected to each other by other means, for example, by welding, or may be fixedly connected by a detachable connector, for example. Screwed or fixed, or connected by other connectors.
  • the number of the blades may be one or more, and the plurality of blades may be evenly spaced along the circumferential direction of the paddle. In this embodiment, preferably, the number of the blades is at least two, and at least two blades are along the paddle. The circumferential direction is evenly distributed.
  • the plurality of blades may be integrally formed or may be independent of each other, which is not specifically limited in the present invention.
  • FIGS. 1 to 6 are surfaces.
  • the blade of the propeller in this embodiment may include an upwardly facing leaf back 4, a downwardly facing leaf surface 3, and a side connected to the leaf back 4 and the leaf surface 3 a first side edge 5, and a second side edge 6 connected between the leaf back 4 and the other side of the leaf surface 3, the first side edge 5 being located below the second side edge 6; the leaf back 4 and the leaf surface 3 Both are surfaces.
  • the leaf back 4 is the side of the blade 1 during the flight, and the blade 3 is the side of the blade 1 during the flight. As shown in FIG. 3 and FIG. 4, the leaf back 4 and the leaf surface 3 are both curved surfaces, and the tendency to bend is: when the blade 1 as a whole is in a horizontal state, the first side edge 5 is located at a position lower than the second side edge. 6 is in a low position.
  • the first side edge 5 may comprise a curved, outwardly projecting first bulge 501, the first bulging portion 501 being in a smooth transitional connection with the remainder of the first side edge 5.
  • the first arched portion 501 is closer to the end of the blade 1 connected to the paddle than the end of the blade 1 away from the paddle in the longitudinal direction of the entire blade 1.
  • the first arch 501 not only arches towards one side of the blade 1 but also arches downwards, ie in the direction in which the foliage 3 is situated, and can form a smooth transitional connection with the foliage 3.
  • the second side edge 6 may include a curved, outwardly projecting second arch 601, the second arching portion 601 being in a smooth transitional connection with the remainder of the second side edge 6.
  • the second arched portion 601 is closer to the end of the blade 1 connected to the paddle than the end of the blade 1 away from the paddle in the longitudinal direction of the entire blade 1.
  • the degree of protrusion of the first arching portion 501 may be greater than the degree of protrusion of the second arching portion 601.
  • the apex of the first arching portion 501 and the apex of the second arching portion 601 are located substantially on the same cross section of the blade 1. Moreover, the surface of the blade 1 is smoothly transitioned at various positions, without sharpness Where it is twisted, it has less stress, and the strength is higher and it is not easy to break. The whole propeller has high reliability.
  • the circle formed by the propeller provided in this embodiment during the rotation is called a paddle, and the center of the circle is called the center of the paddle, and the diameter of the circle is called the diameter of the paddle.
  • the radius of the paddle can be greater than the length of the blade 1 .
  • the thickness of the blade 1 can be gradually reduced from the end of the blade 1 near the center of the paddle to the end of the blade 1 away from the center of the paddle.
  • the end of the blade 1 farthest from the center of the paddle is the thinnest part of the blade 1, which is advantageous for reducing air resistance during flight and improving flight efficiency.
  • Figure 7 is a schematic cross-sectional view of the blade of Figure 2 along line AA;
  • Figure 8 is a schematic cross-sectional view of the blade of Figure 2 along line BB;
  • Figure 9 is a schematic cross-sectional view of the blade of Figure 2 along line CC;
  • Figure 10 is a schematic view of Figure 2 Schematic diagram of the middle blade along the DD line;
  • Fig. 11 is a schematic cross-sectional view of the blade of Fig. 2 along the EE line.
  • the present embodiment can improve the size of the five sections of the blade, wherein the improvement of the dimensions of the B-B section, the C-C section and the D-D section is most important.
  • the blade 1 is at a distance of 55.6% of the paddle radius at the center of the paddle formed with the propeller, that is, a BB section from the center L2 of the paddle as shown in FIG.
  • the angle of attack A2 of the blade 1 is 15.1 ° ⁇ 2.5 °
  • the chord length D2 is 16.5 mm ⁇ 5 mm; wherein the chord length is the length of the section of the blade 1 projected in the horizontal direction, the angle of attack It is the angle between the chord and the flow direction of the gas.
  • the blade 1 is at a distance of 72.2% of the paddle radius at the center of the paddle formed with the propeller, that is, at a CC section from the center L3 of the paddle as shown in FIG.
  • the angle of attack A3 of the blade 1 is 12.7° ⁇ 2.5°, and the chord length D3 is 14 mm ⁇ 5 mm.
  • the paddle 1 is at a distance of 88.9% of the paddle radius at the center of the paddle formed with the propeller, that is, at a DD cross section from the center L4 of the paddle as shown in FIG.
  • the angle of attack of the blade 1 is 11.2° ⁇ 2.5° for A4 and 11.5 mm ⁇ 5 mm for the chord length D4.
  • the resistance of the propeller during the rotation can be reduced, the flight speed and flight efficiency of the aircraft can be improved, and the power supply can be increased under certain power conditions.
  • the flight distance improves the flight performance of the aircraft.
  • the angle of attack and the chord length of the A-A section and the E-E section in the blade 1 can also be optimized to further reduce the air resistance of the propeller during the rotation.
  • the blade 1 is at the center of the paddle formed from the propeller, which is a paddle half. At 38.9% of the diameter, that is, at the A-A cross section of the center L1 of the paddle as shown in Fig. 2, the blade 1 has an angle of attack of 19.4 ° ⁇ 2.5 ° and a chord length of 18.9 mm ⁇ 5 mm.
  • the blade 1 is at a distance of 100% of the blade radius at the center of the paddle formed with the propeller, that is, at an EE cross section from the center L5 of the paddle as shown in FIG.
  • the angle of attack of the blade 1 is 10.5° ⁇ 2.5°, and the chord length is 10.1 mm ⁇ 5 mm.
  • the embodiment provides a specific propeller.
  • the diameter of the paddle formed by the propeller is 180 mm, and the distance from the center of the paddle to the end of the blade 1 is half of the diameter of the paddle, that is, the center of the paddle to the paddle The distance between the ends of 1 is 90 mm.
  • the blade 1 is at an angle of 50 mm at a distance of 50 mm from the center of the paddle formed by the propeller (ie, 55.6% of 90 mm), and has a chord length of 16.5 mm; the blade 1 is in the propeller
  • the center of the formed paddles is 65 mm apart (ie 72.2% of 90 mm) with an angle of attack of 12.7° and a chord length of 14 mm; the blade 1 is at a distance of 80 mm from the center of the paddle formed by the propeller (ie 88.9 of 90 mm)
  • the angle of attack is 11.2° and the chord length is 11.5 mm.
  • the blade 1 has an angle of attack of 19.4° and a chord length of 18.9 mm.
  • the blade 1 has an angle of attack of 10.5 and a chord length of 10.1 mm.
  • the positions of the AA section, the BB section, the CC section, the DD section, and the EE section may be slightly changed, and accordingly, the angle of attack obtained at the AA section, the BB section, the CC section, the DD section, and the EE section may be obtained.
  • the chord length value can be changed accordingly.
  • the chord length and the angle of attack of each of the above sections can be set by the size of the paddle.
  • the blade 1 may be provided with a connecting hole 2, and the distance L6 of the connecting hole 2 to the center of the paddle may be 14.5 mm.
  • the paddle 1 can be connected to the paddle through the connecting hole 2, and has a simple structure and is easy to operate.
  • the pitch of the blade 1 may be 29 mm, that is, the blade 1 is rotated one revolution, and the theoretical rising distance is 29 mm.
  • the above-mentioned propeller provided by this embodiment is tested by comparison with the propeller of the prior art.
  • the power of the propeller provided by this embodiment is lower under the same pulling force, that is, at a smaller Under the power condition, it has a larger pulling force, thereby reducing the power loss and increasing the cruising distance.
  • Embodiment 2 of the present invention provides a power assembly including a driving member and a propeller according to the above embodiment, wherein the propeller is connected to the driving member through a paddle.
  • the driving member can drive the paddle to rotate, and the paddle drives the blade to rotate.
  • the number of blades can be set according to actual needs.
  • the driving component may specifically be a motor, and the KV value of the motor is 1000-1200 rpm/(minute ⁇ volt), wherein the KV value is used to measure the sensitivity of the motor speed to the voltage increase, and the voltage of the motor in this embodiment is When the voltage is increased by 1 volt, the motor speed is increased by 1000 to 1200 rpm.
  • the power assembly provided by the embodiment can reduce the resistance of the propeller during the rotation process by setting the chord length and the angle of attack of the three sections in the blade, and improve the flight speed of the aircraft, and is extended under a certain power supply condition. Sailing distance to improve flight performance.
  • Embodiment 3 of the present invention provides an aircraft.
  • the aircraft in this embodiment may include a fuselage and at least one power assembly as described in the second embodiment above, the power assembly being coupled to the fuselage.
  • the number of the power components in the aircraft may be one or more. In this embodiment, the number of power components is plural, and the rotational directions of the plurality of power components are different.
  • the aircraft in this embodiment may include three, four, five, six, eight, etc. power components, and thus may be a corresponding number of rotorcraft.
  • the aircraft provided in this embodiment adopts the above power component, and by setting the chord length and the angle of attack of at least three sections in the blade, the resistance of the propeller during the rotation can be reduced, and the flight speed of the aircraft is improved.
  • the power supply conditions provide extended sailing distance and improved flight performance.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)
  • Wind Motors (AREA)

Abstract

一种螺旋桨、动力组件及飞行器,其中螺旋桨包括桨座和连接在所述桨座上的桨叶(1);所述桨叶(1)在与所述螺旋桨形成的桨盘的中心相距为桨盘半径的55.6%处的攻角为15.1°±2.5°,弦长为16.5mm±5mm;所述桨叶(1)在与所述螺旋桨形成的桨盘的中心相距为桨盘半径的72.2%处的攻角为12.7°±2.5°,弦长为14mm±5mm;所述桨叶(1)在与所述螺旋桨形成的桨盘的中心相距为桨盘半径的88.9%处的攻角为11.2°±2.5°,弦长为11.5mm±5mm,该方案的螺旋桨、动力组件及飞行器,能够减小螺旋桨在转动过程中的阻力,提高飞行器的飞行性能。

Description

螺旋桨、动力组件及飞行器 技术领域
本发明涉及螺旋桨结构技术,尤其涉及一种螺旋桨、动力组件及飞行器。
背景技术
飞行器上的螺旋桨,作为飞行器的重要关键器件,其用于将电机或发动机中转轴的转动转化为推力或升力。
现有技术中的螺旋桨,其桨叶外形形状大多呈矩形,导致其飞行时阻力大、效率低,导致飞行器的飞行速度小、续航距离短,严重影响了飞行器的飞行性能。
发明内容
本发明提供一种螺旋桨、动力组件及飞行器,用以解决现有技术中的上述缺陷,减小螺旋桨的飞行阻力,提高螺旋桨的飞行效率,提高飞行器的飞行性能。
本发明一方面提供一种螺旋桨,包括桨叶,所述桨叶旋转形成桨盘;
所述桨叶在与所述螺旋桨形成的桨盘的中心相距为桨盘半径的55.6%处的攻角为15.1°±2.5°,弦长为16.5mm±5mm;
所述桨叶在与所述螺旋桨形成的桨盘的中心相距为桨盘半径的72.2%处的攻角为12.7°±2.5°,弦长为14mm±5mm;
所述桨叶在与所述螺旋桨形成的桨盘的中心相距为桨盘半径的88.9%处的攻角为11.2°±2.5°,弦长为11.5mm±5mm。
如上所述的螺旋桨,所述螺旋桨形成的桨盘直径为180mm;
所述桨叶在与所述螺旋桨形成的桨盘的中心相距为50mm处的攻角为15.1°,弦长为16.5mm;
所述桨叶在与所述螺旋桨形成的桨盘的中心相距为65mm处的攻角为 12.7°,弦长为14mm;
所述桨叶在与所述螺旋桨形成的桨盘的中心相距为80mm处的攻角为11.2°,弦长为11.5mm。
如上所述的螺旋桨,
所述桨叶在与所述螺旋桨形成的桨盘的中心相距为桨盘半径的38.9%处的攻角为19.4°±2.5°,弦长为18.9mm±5mm。
如上所述的螺旋桨,所述螺旋桨形成的桨盘直径为180mm;
所述桨叶在与所述螺旋桨形成的桨盘的中心相距为35mm处的攻角为19.4°,弦长为18.9mm。
如上所述的螺旋桨,
所述桨叶在与所述螺旋桨形成的桨盘的中心相距为桨盘半径的100%处的攻角为10.5°±2.5°,弦长为10.1mm±5mm。
如上所述的螺旋桨,所述螺旋桨形成的桨盘直径为180mm;
所述桨叶在与所述螺旋桨形成的桨盘的中心相距为90mm处的攻角为10.5°,弦长为10.1mm。
如上所述的螺旋桨,所述螺旋桨还包括桨座,所述桨叶与所述桨座可拆卸连接,所述桨叶上开设有用于与桨座连接的连接孔,所述连接孔到桨盘的中心的距离为14.5mm。
如上所述的螺旋桨,所述桨叶的数量为至少两个,所述至少两个桨叶沿所述桨座周向均匀分布。
如上所述的螺旋桨,从所述桨叶靠近所述桨盘中心的一端至所述桨叶远离所述桨盘中心的一端,所述桨叶的厚度逐渐减小。
如上所述的螺旋桨,所述桨叶包括朝上的叶背、朝下的叶面,以及连接于所述叶背及所述叶面的一侧之间的第一侧缘、以及连接于所述叶背及所述叶面的另一侧之间的第二侧缘,所述第一侧缘位于所述第二侧缘下方;所述叶背以及所述叶面均为曲面。
如上所述的螺旋桨,所述第一侧缘包括一个曲面状的向外凸出的第一拱起部,所述第二侧缘包括一个曲面状的向外凸出的第二拱起部;所述第一拱起部及所述第二拱起部均靠近所述桨叶与所述桨座相连的一端;且所述第一拱起部的凸出程度大于所述第二拱起部的凸出程度。
如上所述的螺旋桨,所述螺旋桨的螺距为29mm。
本发明另一方面还提供一种动力组件,包括驱动件和上述任一项所述的螺旋桨,所述螺旋桨通过桨座与所述驱动件连接。
如上所述的动力组件,所述驱动件为电机,所述电机的KV值为1000~1200转/(分钟·伏特)。
本发明又一方面还提供一种飞行器,包括机身,还包括至少一个如上任一项所述的动力组件,所述动力组件与所述机身连接。
所述飞行器包括多个动力组件,所述多个动力组件的转动方向不同。
本发明提供的螺旋桨、动力组件及飞行器,由于桨叶在与螺旋桨形成的桨盘的中心相距为桨盘半径的55.6%处的攻角为15.1°±2.5°,弦长为16.5mm±5mm;桨叶在与螺旋桨形成的桨盘的中心相距为桨盘半径的72.2%处的攻角为12.7°±2.5°,弦长为14mm±5mm;桨叶在与螺旋桨形成的桨盘的中心相距为桨盘半径的88.9%处的攻角为11.2°±2.5°,弦长为11.5mm±5mm。因此能够降低螺旋桨在转动过程中的阻力,减小飞行器飞行过程中的飞行阻力,提高飞行效率,增加续航距离,提高飞行器的飞行性能。
附图说明
图1为本发明实施例一提供的螺旋桨中桨叶的立体图;
图2为图1所示桨叶的主视图;
图3为图1所示桨叶的左视图;
图4为图1所示桨叶的右视图;
图5为图1所示桨叶的仰视图;
图6为图1所示桨叶的俯视图;
图7为图2中桨叶沿A-A线的剖面示意图;
图8为图2中桨叶沿B-B线的剖面示意图;
图9为图2中桨叶沿C-C线的剖面示意图;
图10为图2中桨叶沿D-D线的剖面示意图;
图11为图2中桨叶沿E-E线的剖面示意图。
附图标记:
1-桨叶;           2-连接孔;         3-叶面
4-叶背;           5-第一侧缘;     6-第二侧缘;
501-第一拱起部;   601-第二拱起部。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例一
本发明实施例一提供一种螺旋桨。本实施例中的螺旋桨,可以应用于飞行器,螺旋桨可以包括:桨座和连接在桨座上的桨叶。
在本实施例中,螺旋桨可以是正桨或反桨,所谓正桨,指的是从俯视飞行器的角度看,顺时针旋转而产生升力的螺旋桨;所谓反桨,指的是从俯视飞行器的角度看,逆时针旋转而产生升力的螺旋桨。正桨的结构与反桨的结构之间为镜面对称,本实施例中仅以正桨的结构为例对螺旋桨的结构进行说明,本领域技术人员可以根据本实施例所提供的方式进行扩展而得到反桨的结构。
本实施例提供的螺旋桨中,桨叶与桨座可以为一体成型结构,或者也可以通过其它方式实现相互连接,例如可通过焊接的形式固定,又或者可以通过可拆卸的连接件固定连接,例如螺接固定,或通过其它连接件实现连接等。桨叶的个数可以为一个或多个,多个桨叶可以沿桨座的周向均匀间隔布置,本实施例优选的,桨叶的数量为至少两个,至少两个桨叶沿桨座的周向均匀分布。多个桨叶之间可以为一体成型结构,或者,也可以各自独立,本发明对此不具体限定。
图1为本发明实施例一提供的螺旋桨中桨叶的立体图;图2为图1所示桨叶的主视图;图3为图1所示桨叶的左视图;图4为图1所示桨叶的右视图;图5为图1所示桨叶的仰视图;图6为图1所示桨叶的俯视图。如图1至图6所示,本实施例中的螺旋桨的桨叶,可以包括朝上的叶背4、朝下的叶面3,以及连接于叶背4及叶面3的一侧之间的第一侧缘5、以及连接于叶背4及叶面3的另一侧之间的第二侧缘6,第一侧缘5位于第二侧缘6下方;叶背4以及叶面3均为曲面。
其中,叶背4为飞行器在飞行过程中,桨叶1朝上的一面;叶面3为飞行器在飞行过程中,桨叶1朝下的一面。如图3和图4所示,叶背4和叶面3均为曲面,且弯曲的趋势为:当桨叶1整体处于水平状态时,第一侧缘5所处的位置比第二侧缘6所处的位置低。
第一侧缘5可以包括曲面状的向外凸出的第一拱起部501,第一拱起部501与第一侧缘5的其余部分为平滑过渡连接。在整个桨叶1的长度方向上,相对于桨叶1远离桨座的一端,第一拱起部501更靠近桨叶1与桨座相连的一端。第一拱起部501不仅朝桨叶1的一侧拱起,同时还可以向下拱起,即朝向叶面3所在的方向拱起,并且可与叶面3形成平滑过渡连接。
第二侧缘6可以包括一个曲面状的向外凸出的第二拱起部601,第二拱起部601与第二侧缘6的其余部分为平滑过渡连接。在整个桨叶1的长度方向上,相对于桨叶1远离桨座的一端,第二拱起部601更靠近桨叶1与桨座相连的一端。
在本实施例中,第一拱起部501的凸出程度可以大于第二拱起部601的凸出程度。第一拱起部501的顶点与第二拱起部601的顶点大致位于桨叶1的同一个横截面上。并且,桨叶1的表面各个位置处均为平滑过渡,无急剧 扭转之处,因此具有较小的应力,且强度较高不易折断,整个螺旋桨具有较高的可靠性。
本实施例所提供的螺旋桨在旋转过程中所形成的圆,称为桨盘,该圆的中心称为桨盘的中心,该圆的直径称为桨盘的直径。对于分体式的桨叶1而言,桨盘的半径可以大于桨叶1的长度。
从桨叶1靠近桨盘中心的一端至桨叶1远离桨盘中心的一端,桨叶1的厚度可以逐渐减小。由此,桨叶1中离桨盘中心最远处的端部为桨叶1中最薄的部分,因而有利于降低飞行时的空气阻力,提高飞行效率。
图7为图2中桨叶沿A-A线的剖面示意图;图8为图2中桨叶沿B-B线的剖面示意图;图9为图2中桨叶沿C-C线的剖面示意图;图10为图2中桨叶沿D-D线的剖面示意图;图11为图2中桨叶沿E-E线的剖面示意图。
如图7至图11所示,本实施例可以对桨叶的五个截面处的尺寸进行改进,其中,对B-B截面、C-C截面和D-D截面处的尺寸所进行的改进最为重要。
具体的,如图2和图8所示,桨叶1在与螺旋桨形成的桨盘的中心相距为桨盘半径的55.6%处,即:如图2所示的距离桨盘中心L2的B-B截面处,该处桨叶1的攻角A2为15.1°±2.5°,弦长D2为16.5mm±5mm;其中,弦长为桨叶1在该处的截面在水平方向上投影的长度,攻角为弦翼与气体来流方向的夹角。
如图2和图9所示,桨叶1在与螺旋桨形成的桨盘的中心相距为桨盘半径的72.2%处,即:如图2所示的距离桨盘中心L3的C-C截面处,该处桨叶1的攻角A3为12.7°±2.5°,弦长D3为14mm±5mm。
如图2和图10所示,桨叶1在与螺旋桨形成的桨盘的中心相距为桨盘半径的88.9%处,即:如图2所示的距离桨盘中心L4的D-D截面处,该处桨叶1的攻角为A4为11.2°±2.5°,弦长D4为11.5mm±5mm。
本实施例通过对桨叶1中上述三个截面的弦长和攻角的设定,能够降低螺旋桨在转动过程中的阻力,提高飞行器的飞行速度和飞行效率,在一定的电力条件供给下增加继航距离,提高飞行器的飞行性能。
在上述技术方案的基础上,还可以对桨叶1中A-A截面和E-E截面的攻角和弦长进行优化,以进一步降低螺旋桨在转动过程中的空气阻力。
如图2和图7所示,桨叶1在与螺旋桨形成的桨盘的中心相距为桨盘半 径的38.9%处,即:如图2所示的距离桨盘中心L1的A-A截面处,该处桨叶1的攻角为19.4°±2.5°,弦长为18.9mm±5mm。
如图2和图11所示,桨叶1在与螺旋桨形成的桨盘的中心相距为桨盘半径的100%处,即:如图2所示的距离桨盘中心L5的E-E截面处,该处桨叶1的攻角为10.5°±2.5°,弦长为10.1mm±5mm。
当然,本领域技术人员可以理解的是,上述A-A截面、B-B截面、C-C截面、D-D截面和E-E截面的位置可略微变动。
对于上述技术方案,本实施例提供一种具体的螺旋桨,该螺旋桨所形成的桨盘直径为180mm,桨盘中心到桨叶1末端的距离为桨盘直径的一半,即桨盘中心到桨叶1末端的距离为90mm。
以桨盘直径180mm为例,桨叶1在与螺旋桨形成的桨盘的中心相距为50mm处(即90mm的55.6%)的攻角为15.1°,弦长为16.5mm;桨叶1在与螺旋桨形成的桨盘的中心相距为65mm处(即90mm的72.2%)的攻角为12.7°,弦长为14mm;桨叶1在与螺旋桨形成的桨盘的中心相距为80mm处(即90mm的88.9%)的攻角为11.2°,弦长为11.5mm。
进一步的,在与桨盘中心距离35mm(即90mm的38.9%)处,桨叶1的攻角为19.4°,弦长为18.9mm。在与桨盘中心距离90mm(即90mm的100%)处,桨叶1的攻角为10.5°,弦长为10.1mm。
可以理解的是,因A-A截面、B-B截面、C-C截面、D-D截面和E-E截面的位置可略微变动,故相应地,在A-A截面、B-B截面、C-C截面、D-D截面和E-E截面处所得的攻角和弦长值可相应改变。
上述各截面的弦长和攻角的设定均可以桨盘的尺寸来进行设定。本实施例中,桨叶1上可以设置有连接孔2,连接孔2到桨盘中心的距离L6可以为14.5mm。桨叶1可以通过连接孔2实现与桨座的连接,结构简单,便于操作。
另外,根据本实施例所提供的螺旋桨,桨叶1的螺距可以为29mm,即:桨叶1旋转一周,理论上升的距离为29mm。
本实施例所提供的上述螺旋桨,通过与现有技术中的螺旋桨进行对比测试,参照表一可知,在相同的拉力下,本实施例所提供的螺旋桨的功率更低,也即:在较小的功率条件下,具有更大的拉力,从而降低电量损耗,增加续航距离。
表一 本实施例所提供的螺旋桨与现有技术的对比参数
Figure PCTCN2016098967-appb-000001
实施例二
本发明实施例二提供一种动力组件,包括驱动件和上述实施例所述的螺旋桨,所述螺旋桨通过桨座与所述驱动件连接。
桨座与驱动件连接后,驱动件可以带动桨座转动,进而桨座带动桨叶转动。而桨叶的数量可以根据实际需要来设置。其中,驱动件具体可以为电机,电机的KV值为1000~1200转/(分钟·伏特),其中,KV值用于衡量电机转速对电压增加的敏感度,本实施例中的电机的电压每增加1伏,电机每分钟转速就提高1000~1200转。
本实施例提供的动力组件,通过对桨叶中的三个截面弦长和攻角的设定,能够降低螺旋桨在转动过程中的阻力,提高飞行器的飞行速度,在一定的电力条件供给下延长航行距离,提高飞行性能。
实施例三
本发明实施例三提供一种飞行器。本实施例中的飞行器,可以包括机身以及至少一个如上述实施例二所述的动力组件,所述动力组件与所述机身连接。飞行器中动力组件的个数可以为一个,也可以为多个,本实施例中的动力组件为多个,且多个动力组件的转动方向不同。本实施例中的飞行器可包括三、四、五、六、八等数目的动力组件,故可为对应数目的旋翼飞行器。
本实施例提供的飞行器,采用了上述动力组件,通过对桨叶中的至少三个截面弦长和攻角的设定,能够降低螺旋桨在转动过程中的阻力,提高飞行器的飞行速度,在一定的电力条件供给下延长航行距离,提高飞行性能。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (16)

  1. 一种螺旋桨,包括桨叶,其特征在于,所述桨叶旋转形成桨盘;
    所述桨叶在与所述螺旋桨形成的桨盘的中心相距为桨盘半径的55.6%处的攻角为15.1°±2.5°,弦长为16.5mm±5mm;
    所述桨叶在与所述螺旋桨形成的桨盘的中心相距为桨盘半径的72.2%处的攻角为12.7°±2.5°,弦长为14mm±5mm;
    所述桨叶在与所述螺旋桨形成的桨盘的中心相距为桨盘半径的88.9%处的攻角为11.2°±2.5°,弦长为11.5mm±5mm。
  2. 根据权利要求1所述的螺旋桨,其特征在于,所述螺旋桨形成的桨盘直径为180mm;
    所述桨叶在与所述螺旋桨形成的桨盘的中心相距为50mm处的攻角为15.1°,弦长为16.5mm;
    所述桨叶在与所述螺旋桨形成的桨盘的中心相距为65mm处的攻角为12.7°,弦长为14mm;
    所述桨叶在与所述螺旋桨形成的桨盘的中心相距为80mm处的攻角为11.2°,弦长为11.5mm。
  3. 根据权利要求1所述的螺旋桨,其特征在于,
    所述桨叶在与所述螺旋桨形成的桨盘的中心相距为桨盘半径的38.9%处的攻角为19.4°±2.5°,弦长为18.9mm±5mm。
  4. 根据权利要求3所述的螺旋桨,其特征在于,所述螺旋桨形成的桨盘直径为180mm;
    所述桨叶在与所述螺旋桨形成的桨盘的中心相距为35mm处的攻角为19.4°,弦长为18.9mm。
  5. 根据权利要求1所述的螺旋桨,其特征在于,
    所述桨叶在与所述螺旋桨形成的桨盘的中心相距为桨盘半径的100%处的攻角为10.5°±2.5°,弦长为10.1mm±5mm。
  6. 根据权利要求5所述的螺旋桨,其特征在于,所述螺旋桨形成的桨盘直径为180mm;
    所述桨叶在与所述螺旋桨形成的桨盘的中心相距为90mm处的攻角为10.5°,弦长为10.1mm。
  7. 根据权利要求1所述的螺旋桨,其特征在于,所述螺旋桨还包括桨座,所述桨叶与所述桨座可拆卸连接,所述桨叶上开设有用于与桨座连接的连接孔,所述连接孔到桨盘的中心的距离为14.5mm。
  8. 根据权利要求1所述的螺旋桨,其特征在于,所述桨叶的数量为至少两个,所述至少两个桨叶沿所述桨座周向均匀分布。
  9. 根据权利要求1所述的螺旋桨,其特征在于,从所述桨叶靠近所述桨盘中心的一端至所述桨叶远离所述桨盘中心的一端,所述桨叶的厚度逐渐减小。
  10. 根据权利要求1~9任一项所述的螺旋桨,其特征在于,所述桨叶包括朝上的叶背、朝下的叶面,以及连接于所述叶背及所述叶面的一侧之间的第一侧缘、以及连接于所述叶背及所述叶面的另一侧之间的第二侧缘,所述第一侧缘位于所述第二侧缘下方;所述叶背以及所述叶面均为曲面。
  11. 根据权利要求10所述的螺旋桨,其特征在于,所述第一侧缘包括一个曲面状的向外凸出的第一拱起部,所述第二侧缘包括一个曲面状的向外凸出的第二拱起部;所述第一拱起部及所述第二拱起部均靠近所述桨叶与所述桨座相连的一端;且所述第一拱起部的凸出程度大于所述第二拱起部的凸出程度。
  12. 根据权利要求1~9任一项所述的螺旋桨,其特征在于,所述螺旋桨的螺距为29mm。
  13. 一种动力组件,其特征在于,包括驱动件和如权利要求1~12任一项所述的螺旋桨,所述螺旋桨通过桨座与所述驱动件连接。
  14. 根据权利要求13所述的动力组件,其特征在于,所述驱动件为电机,所述电机的KV值为1000~1200转/(分钟·伏特)。
  15. 一种飞行器,包括机身,其特征在于,还包括至少一个如权利要求13或14所述的动力组件,所述动力组件与所述机身连接。
  16. 根据权利要求15所述的飞行器,其特征在于,所述飞行器包括多个动力组件,所述多个动力组件的转动方向不同。
PCT/CN2016/098967 2016-02-29 2016-09-14 螺旋桨、动力组件及飞行器 WO2017148128A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620156286.7U CN205589457U (zh) 2016-02-29 2016-02-29 螺旋桨、动力组件及飞行器
CN2016201562867 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017148128A1 true WO2017148128A1 (zh) 2017-09-08

Family

ID=56927036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098967 WO2017148128A1 (zh) 2016-02-29 2016-09-14 螺旋桨、动力组件及飞行器

Country Status (2)

Country Link
CN (1) CN205589457U (zh)
WO (1) WO2017148128A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206141830U (zh) * 2016-10-28 2017-05-03 深圳市大疆创新科技有限公司 螺旋桨、动力套装及无人飞行器
CN206691356U (zh) * 2017-02-28 2017-12-01 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器
CN206954494U (zh) * 2017-06-30 2018-02-02 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器
CN108945396A (zh) * 2018-03-30 2018-12-07 中山市朗宇模型有限公司 螺旋桨
CN108820187A (zh) * 2018-03-30 2018-11-16 中山市朗宇模型有限公司 螺旋桨、动力组件及飞行器
CN110015417B (zh) * 2019-04-03 2024-02-02 中南大学 一种小型螺旋桨

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220089A (ja) * 2001-01-23 2002-08-06 Hitachi Zosen Corp 船舶の推進効率向上用ダクト
CN102963522A (zh) * 2012-10-31 2013-03-13 中国航天空气动力技术研究院 临近空间螺旋桨
CN203374428U (zh) * 2013-06-14 2014-01-01 中国科学院工程热物理研究所 一族大厚度钝尾缘风力机翼型
CN203593160U (zh) * 2013-12-13 2014-05-14 吉林大学 一种机翼结构
CN203996873U (zh) * 2014-07-30 2014-12-10 深圳市大疆创新科技有限公司 飞行器及其螺旋桨
CN105253295A (zh) * 2015-10-30 2016-01-20 深圳市道通智能航空技术有限公司 一种螺旋桨及飞行器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220089A (ja) * 2001-01-23 2002-08-06 Hitachi Zosen Corp 船舶の推進効率向上用ダクト
CN102963522A (zh) * 2012-10-31 2013-03-13 中国航天空气动力技术研究院 临近空间螺旋桨
CN203374428U (zh) * 2013-06-14 2014-01-01 中国科学院工程热物理研究所 一族大厚度钝尾缘风力机翼型
CN203593160U (zh) * 2013-12-13 2014-05-14 吉林大学 一种机翼结构
CN203996873U (zh) * 2014-07-30 2014-12-10 深圳市大疆创新科技有限公司 飞行器及其螺旋桨
CN105253295A (zh) * 2015-10-30 2016-01-20 深圳市道通智能航空技术有限公司 一种螺旋桨及飞行器

Also Published As

Publication number Publication date
CN205589457U (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
WO2017148128A1 (zh) 螺旋桨、动力组件及飞行器
WO2017128742A1 (zh) 螺旋桨、动力组件及飞行器
WO2017148134A1 (zh) 螺旋桨、动力组件及飞行器
WO2018157426A1 (zh) 螺旋桨、动力组件及飞行器
WO2017148135A1 (zh) 螺旋桨、动力组件及飞行器
WO2017148133A1 (zh) 螺旋桨、动力组件及飞行器
WO2017124781A1 (zh) 螺旋桨、动力套装及无人飞行器
CN205366054U (zh) 螺旋桨、动力组件及飞行器
WO2017128744A1 (zh) 螺旋桨、动力组件及飞行器
WO2017143771A1 (zh) 螺旋桨、动力组件及飞行器
WO2018076457A1 (zh) 螺旋桨、动力套装及无人飞行器
WO2018023861A1 (zh) 螺旋桨、动力套装及无人飞行器
WO2018000593A1 (zh) 螺旋桨、动力套装及无人飞行器
WO2018184291A1 (zh) 桨叶、螺旋桨、动力套装及无人飞行器
WO2019000560A1 (zh) 螺旋桨、动力组件及飞行器
WO2021043330A1 (zh) 一种螺旋桨及飞行器
WO2018058769A1 (zh) 桨叶、螺旋桨、动力套装及无人飞行器
WO2018058768A1 (zh) 桨叶、螺旋桨、动力套装及无人飞行器
CN108820187A (zh) 螺旋桨、动力组件及飞行器
WO2018018729A1 (zh) 螺旋桨、动力套装及无人飞行器
CN112249319A (zh) 一种桨叶、螺旋桨及飞行器
CN108750074A (zh) 螺旋桨
CN208119410U (zh) 螺旋桨
CN110316356A (zh) 螺旋桨、动力组件及飞行器
CN213974461U (zh) 一种桨叶、螺旋桨及飞行器

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892312

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892312

Country of ref document: EP

Kind code of ref document: A1