WO2017128744A1 - 螺旋桨、动力组件及飞行器 - Google Patents

螺旋桨、动力组件及飞行器 Download PDF

Info

Publication number
WO2017128744A1
WO2017128744A1 PCT/CN2016/099704 CN2016099704W WO2017128744A1 WO 2017128744 A1 WO2017128744 A1 WO 2017128744A1 CN 2016099704 W CN2016099704 W CN 2016099704W WO 2017128744 A1 WO2017128744 A1 WO 2017128744A1
Authority
WO
WIPO (PCT)
Prior art keywords
paddle
propeller
blade
center
distance
Prior art date
Application number
PCT/CN2016/099704
Other languages
English (en)
French (fr)
Inventor
刘峰
邓涛
江彬
王庶
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Publication of WO2017128744A1 publication Critical patent/WO2017128744A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/18Aerodynamic features

Definitions

  • the present invention relates to propeller structure technology, and more particularly to a propeller, a power assembly, and an aircraft.
  • the propeller on the aircraft is used to convert the rotational force of the drive motor or the engine's intermediate shaft into the thrust or lift of the air, causing the aircraft to rise and change the heading.
  • the shape of the propeller is mostly rectangular, and the resistance to the air during the rotation is large, resulting in poor force conversion efficiency, thereby reducing the flight speed of the aircraft, shortening the sailing distance, and seriously affecting the aircraft. Flight performance.
  • the invention provides a propeller, a power component and an aircraft, which can effectively reduce the resistance of the propeller during the rotation process, so as to improve the force conversion efficiency.
  • Embodiments of the present invention provide a propeller including a paddle and a blade attached to the paddle.
  • chord length of the blade is 16.7 mm ⁇ 5 mm and the angle of attack is 14 ° ⁇ 2.5 ° at a distance of 55% of the radius of the paddle formed by the propeller.
  • chord length of the blade is 14.4 mm ⁇ 5 mm and the angle of attack is 11.7 ° ⁇ 2.5 ° at a distance of 70% of the radius of the paddle from the center of the paddle;
  • the blade At a distance of 85% of the paddle disc from the center of the paddle, the blade has a chord length of 12.2 mm ⁇ 5 mm and an angle of attack of 9.3 ° ⁇ 2.5 °.
  • the propeller as described above has a chord length of 18.9 mm ⁇ 5 mm and an angle of attack of 17.9 ° ⁇ 2.5 ° at a distance of 40% of the blade radius from the center of the paddle.
  • the propeller as described above has a chord length of 8.9 mm ⁇ 5 mm and an angle of attack of 7.1 ° ⁇ 2.5 ° at a distance of 100% of the blade radius from the center of the paddle.
  • propeller as described above, the propeller forming a paddle having a diameter of 200 mm ⁇ 20 mm;
  • the blade At a distance of 55 mm from the center of the paddle, the blade has a chord length of 16.7 mm and an angle of attack of 14°;
  • the blade At a distance of 70 mm from the center of the paddle, the blade has a chord length of 14.4 mm and an angle of attack of 11.7°;
  • the blade At a distance of 85 mm from the center of the paddle, the blade has a chord length of 12.2 mm and an angle of attack of 9.3.
  • the propeller formed a paddle having a diameter of 200 mm ⁇ 20 mm; at a distance of 40 mm from the center of the paddle, the blade has a chord length of 18.9 mm and an angle of attack of 17.9.
  • the propeller formed a paddle having a diameter of 200 mm ⁇ 20 mm; at a distance of 100 mm from the center of the paddle, the blade has a chord length of 8.9 mm and an angle of attack of 7.1.
  • the propeller as described above has a length of 90 mm ⁇ 9 mm.
  • the blade is provided with a connecting hole having a distance of 14.5 mm ⁇ 1.45 mm from the center of the paddle.
  • the blade having a leaf back, a leaf surface, a first side edge connecting the leaf back and one side of the leaf surface, and a second side edge connecting the leaf back and the other side of the leaf surface;
  • the leaf back and the leaf surface are curved surfaces.
  • the first side edge has a curved first arching portion
  • the second side edge has a curved second arching portion
  • the first arching portion and the second arching portion are both located at one end of the blade near the paddle.
  • the second bulging portion is convex to a lesser extent than the first bulging portion.
  • the blades are two, and the two blades are centrally symmetrical about the center of the paddle.
  • the propeller has a pitch of 35 mm as described above.
  • Embodiments of the present invention also provide a power assembly including a drive member and a propeller as described above, the propeller being coupled to the drive member by a paddle.
  • the drive member is a motor having a KV value of 1200 rpm / (minute volt).
  • An embodiment of the present invention further provides an aircraft, including a fuselage, further comprising at least one as described above a power assembly that is coupled to the body.
  • the embodiment of the invention can reduce the resistance of the propeller during the rotation process, improve the force conversion efficiency, and improve the flight speed of the aircraft, under certain power conditions. Increase the sailing distance and improve flight performance.
  • FIG. 1 is a schematic structural view of a propeller mounted on an aircraft according to an embodiment of the present invention
  • FIG. 2 is a top plan view of a blade in a propeller according to an embodiment of the present invention
  • Figure 3 is a left side view of the blade of Figure 2;
  • Figure 4 is a right side view of the blade of Figure 2;
  • Figure 5 is an upper side view of the blade of Figure 2;
  • Figure 6 is a bottom side view of the blade of Figure 2;
  • FIG. 7 is a schematic view showing a different cross section of a propeller in a propeller according to an embodiment of the present invention.
  • Figure 8 is a schematic structural view of the A-A cross section of Figure 7;
  • Figure 9 is a schematic structural view of a section B-B of Figure 7;
  • Figure 10 is a schematic structural view of a section C-C in Figure 7;
  • Figure 11 is a schematic structural view of the D-D cross section of Figure 7;
  • Figure 12 is a schematic view showing the structure of the E-E section of Figure 7.
  • FIG. 1 is a schematic structural view of a propeller mounted on an aircraft according to an embodiment of the present invention.
  • the propeller provided in this embodiment may be a positive propeller or a reverse propeller.
  • the so-called positive propeller refers to a propeller that rotates clockwise to generate lift from the perspective of the aircraft overlooking the aircraft; the so-called reverse propeller refers to From the perspective of the aircraft, the propeller that rotates counterclockwise to generate lift.
  • the structure of the positive paddle and the structure of the reverse paddle are mirror symmetrical, this implementation For example, only the structure of the positive paddle is taken as an example, and those skilled in the art can expand in the manner provided by the embodiment to obtain the structure of the reverse paddle.
  • the propeller provided in this embodiment is applicable to a biaxial aircraft, a quadcopter or an eight-axis aircraft, etc., and the blades on each propeller may be an integral structure, or may be several independent blades, for example, two. Three or more than three blades.
  • the embodiment is described by taking only two independent blades to form one propeller.
  • the technical solution provided by the embodiment can also be extended to the propeller with the blade as a unitary structure.
  • the propeller includes a paddle 1 and a blade 2 connected to the paddle 1, wherein the paddle 1 is used for connection with a driving member on the aircraft, and the paddle 1 is rotated by the driving member to drive the paddle 2 Turn.
  • the number of the blades 2 is two, which are respectively connected to the paddle 1 and are center-symmetrical with the paddle 1 as a center of symmetry.
  • FIG. 2 is a top view of a blade in a propeller according to an embodiment of the present invention
  • FIG. 3 is a left side view of the blade 2 shown in FIG. 2
  • FIG. 4 is a right side view of the blade 2 shown in FIG. 2
  • FIG. The upper side view of the blade 2 is shown
  • Figure 6 is a lower side view of the blade 2 of Figure 2, both of which are from the direction of the aircraft during flight.
  • the blade in the propeller provided in this embodiment includes a leaf back 21, a leaf surface 22, a first side edge 23 connecting the leaf back 21 and one side of the leaf surface 22, and a connecting leaf back. 21 and a second side edge 24 of the other side of the foliar 22 .
  • the leaf back 21 is the one side of the blade 2 during the flight of the aircraft; the leaf surface 22 is the side of the blade 2 facing downward (or facing the ground) during the flight.
  • the leaf back 21 and the leaf surface 22 are both curved surfaces, and the tendency to bend is that the first side edge 23 is located at a position closer to the second side edge 24 when the blade 2 as a whole is in a horizontal state. The location is low.
  • the first side edge 23 has a curved first leftwardly directed portion 26, the first raised portion 26 and the remainder of the first side edge 23 being Smooth transition connection.
  • the first arching portion 26 is located on the leaf surface 22 at a portion closer to the end connected to the paddle clamp 1 throughout the longitudinal direction of the blade 2. In addition to arching towards the left side, the first arching portion 26 also arches in the direction of the foliage 22 and is in smooth transitional connection with the foliage 22 .
  • the second side edge 24 has a curved second convex portion 27 facing the right side, and the second raised portion 27 and the remaining portion of the second side edge 24 are smoothly transitionally connected.
  • the second arching portion 27 is located on the leaf surface 22 at a position closer to the end connected to the paddle 1.
  • the degree of protrusion of the second arched portion 27 is smaller than the degree of protrusion of the first arched portion 26.
  • the apex of the first arching portion 26 and the apex of the second arching portion 27 are located substantially on the same cross section of the blade 2.
  • the surface of the blade 2 is a smooth transition, and there is no sharp twist, so it has a small stress, and the strength is high and it is not easy to be broken, and has high reliability.
  • the end of the blade 2 remote from the paddle 1 is the thinnest part of the blade 2, which is advantageous for reducing air resistance.
  • the circular shape formed by the propeller provided in this embodiment during the rotation is called a paddle, and the center of the circle becomes the center of the paddle, and the diameter of the circle is called the diameter of the paddle.
  • the radius of the paddle is greater than the length of the blade.
  • FIG. 7 is a schematic view showing a different cross section of a propeller in a propeller according to an embodiment of the present invention
  • FIG. 8 is a structural schematic view of the AA cross section in FIG. 7
  • FIG. 9 is a structural schematic view of a BB cross section in FIG. 7,
  • Fig. 11 is a structural schematic view of the DD cross section in Fig. 7
  • Fig. 12 is a structural schematic view of the EE cross section in Fig. 7.
  • the size of the present embodiment is improved at the five sections of the blade 2, wherein the improvements in the dimensions of the B-B section, the C-C section and the D-D section have the optimum effect:
  • the distance from the center of the paddle formed with the propeller is 55% of the paddle radius, that is, at the BB cross section from the center H2 of the paddle as shown in FIG. 7, the paddle 2 as shown in FIG.
  • the chord length L2 is 16.7 mm ⁇ 5 mm
  • the angle of attack ⁇ 2 is 14 ° ⁇ 2.5 °.
  • the chord length refers to the distance between the leftmost end point of the first side edge 23 on the cross section and the rightmost end point of the second side edge 24 on the cross section at the cross section
  • the angle of attack is
  • the first side edge 23 is located at an angle between the line connecting the leftmost end point of the section and the rightmost end point of the second side edge 24, and the angle of attack is also understood to be an oar.
  • the chord length L3 of the blade 2 as shown in Fig. 10 is 14.4 mm. ⁇ 5 mm, the angle of attack ⁇ 3 is 11.7 ° ⁇ 2.5 °.
  • the distance from the center of the paddle is 85% of the paddle radius, that is, at the DD section of the paddle center H4 as shown in Fig. 7, the chord length L4 of the blade 2 is 12.2 mm ⁇ 5 mm, and the angle of attack ⁇ 4 It is 9.3 ° ⁇ 2.5 °.
  • the resistance of the propeller during the rotation process can be reduced, the force conversion efficiency can be improved, the flight speed of the aircraft can be improved, and the power supply can be extended under a certain power condition. Sailing distance to improve flight performance.
  • chord length and attack of the A-A section and the E-E section in the blade 2 are modified separately to further reduce the resistance of the propeller during rotation.
  • the distance from the center of the paddle is 40% of the paddle radius, that is, at the AA section of the paddle center H1 as shown in Fig. 7, the chord length L1 of the blade 2 is 18.9 mm ⁇ 5 mm, and the angle of attack ⁇ 1 It is 17.9 ° ⁇ 2.5 °.
  • chord length L5 of the blade 2 is 8.9 mm ⁇ 5 mm
  • the angle of attack ⁇ 5 is at a distance of 100% of the radius of the paddle from the center of the paddle, that is, at the EE section of the center H5 of the paddle as shown in FIG. It is 7.1 ° ⁇ 2.5 °.
  • the embodiment provides a specific propeller, wherein the diameter of the paddle formed by the propeller is 200 mm ⁇ 20 mm, and the diameter of the paddle disk is 200 mm, at a distance of 55 mm from the center of the paddle, the blade 2
  • the chord length is 16.7 mm and the angle of attack is 14°.
  • the blade 2 has a chord length of 14.4 mm and an angle of attack of 11.7.
  • the blade 2 has a chord length of 12.2 mm and an angle of attack of 9.3.
  • the blade 2 has a chord length of 18.9 mm and an angle of attack of 17.9.
  • the blade 2 has a chord length of 8.9 mm and an angle of attack of 7.1. It can be understood that since the positions of the section A-A and the section E-E may be slightly changed, the angle of attack and the chord length at the section A-A and the section E-E may be correspondingly changed accordingly.
  • chord length and the angle of attack of each of the above sections are set in accordance with the size of the paddle.
  • the length of the blade 2 can be set to 90 mm ⁇ 9 mm.
  • the paddle 2 is provided with a connecting hole for connecting with the paddle 1, and the distance of the connecting hole to the center of the paddle is 14.5 mm ⁇ 1.45 mm.
  • the pitch of the blade may be 35 mm, that is, the blade rotates one revolution, and the theoretical rising distance is 35 mm.
  • the propeller provided in this embodiment is compared with the prior art propeller. Referring to Table 1, it can be seen that under the same pulling force, the propeller provided by the embodiment has lower power, that is, at a smaller Under the power condition, it has a larger pulling force, thus saving power consumption and increasing the cruising distance.
  • the existing propeller can provide a maximum pulling force of 420 g, and the propeller of the present embodiment can provide a pulling force of 480 g, which is far superior to the existing propeller.
  • the present embodiment also provides a power assembly including a drive member and a propeller as provided above, the propeller being coupled to the drive member by a paddle.
  • the driving component may specifically be a motor, and the KV value of the motor is 1200 rpm/(min ⁇ volt).
  • the embodiment further provides an aircraft comprising a fuselage and the power component, the power component being coupled to the fuselage.
  • the aircraft adopts the above-mentioned power component, and by setting the chord length and the angle of attack of the three sections in the blade, the resistance of the propeller during the rotation process can be reduced, the force conversion efficiency is improved, the flight speed of the aircraft is improved, and the power is increased at a certain power.
  • the conditional supply extends the sailing distance and improves flight performance.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)
  • Wind Motors (AREA)

Abstract

一种螺旋桨、动力组件及飞行器,其中,螺旋桨,包括桨夹(1)及连接在所述桨夹(1)上的桨叶(2),在与所述螺旋桨形成的桨盘的中心相距为桨盘半径的55%处,所述桨叶(2)的弦长为16.7mm±5mm,攻角为14°±2.5°;在与所述桨盘的中心相距为桨盘半径的70%处,所述桨叶(2)的弦长为14.4mm±5mm,攻角为11.7°±2.5°;在与所述桨盘的中心相距为桨盘半径的85%处,所述桨叶(2)的弦长为12.2mm±5mm,攻角为9.3°±2.5°。上述的螺旋桨、动力组件及飞行器能够有效减小螺旋桨在转动过程中的阻力,以提高力转换效率。

Description

螺旋桨、动力组件及飞行器 技术领域
本发明涉及螺旋桨结构技术,尤其涉及一种螺旋桨、动力组件及飞行器。
背景技术
飞行器上的螺旋桨,作为飞行器的重要关键器件,用于将驱动电机或发动机中转轴的转动力转换为空气的推力或升力,促使飞行器上升及改变航向。现有技术中的螺旋桨,其外形形状大多呈矩形,其转动过程中对空气产生的阻力较大,导致力转换效率较差,进而降低了飞行器的飞行速度,缩短了航行距离,严重影响了飞行器的飞行性能。
发明内容
本发明提供一种螺旋桨、动力组件及飞行器,能够有效减小螺旋桨在转动过程中的阻力,以提高力转换效率。
本发明实施例提供一种螺旋桨,包括桨夹及连接在所述桨夹上的桨叶,
在与所述螺旋桨形成的桨盘的中心相距为桨盘半径的55%处,所述桨叶的弦长为16.7mm±5mm,攻角为14°±2.5°;
在与所述桨盘的中心相距为桨盘半径的70%处,所述桨叶的弦长为14.4mm±5mm,攻角为11.7°±2.5°;
在与所述桨盘的中心相距为桨盘半径的85%处,所述桨叶的弦长为12.2mm±5mm,攻角为9.3°±2.5°。
如上所述的螺旋桨,在与所述桨盘的中心相距为桨盘半径的40%处,所述桨叶的弦长为18.9mm±5mm,攻角为17.9°±2.5°。
如上所述的螺旋桨,在与所述桨盘的中心相距为桨盘半径的100%处,所述桨叶的弦长为8.9mm±5mm,攻角为7.1°±2.5°。
如上所述的螺旋桨,所述螺旋桨形成的桨盘的直径为200mm±20mm;
在与所述桨盘的中心相距为55mm处,所述桨叶的弦长为16.7mm,攻角为14°;
在与所述桨盘的中心相距为70mm处,所述桨叶的弦长为14.4mm,攻角为11.7°;
在与所述桨盘的中心相距为85mm处,所述桨叶的弦长为12.2mm,攻角为9.3°。
如上所述的螺旋桨,所述螺旋桨形成的桨盘的直径为200mm±20mm;在与所述桨盘的中心相距为40mm处,所述桨叶的弦长为18.9mm,攻角为17.9°。
如上所述的螺旋桨,所述螺旋桨形成的桨盘的直径为200mm±20mm;在与所述桨盘的中心相距为100mm处,所述桨叶的弦长为8.9mm,攻角为7.1°。
如上所述的螺旋桨,所述桨叶的长度为90mm±9mm。
如上所述的螺旋桨,所述桨叶上设有连接孔,所述连接孔到桨盘的中心的距离为14.5mm±1.45mm。
如上所述的螺旋桨,所述桨叶具有叶背、叶面、连接叶背和叶面一侧边的第一侧缘、以及连接叶背和叶面另一侧边的第二侧缘;所述叶背和叶面为曲面。
如上所述的螺旋桨,所述第一侧缘具有曲面状的第一拱起部,第二侧缘具有曲面状的第二拱起部。
如上所述的螺旋桨,所述第一拱起部和第二拱起部均位于所述桨叶靠近桨夹的一端。
如上所述的螺旋桨,所述第二拱起部的凸出程度小于第一拱起部的凸出程度。
如上所述的螺旋桨,所述桨叶为两个,两个桨叶关于所述桨盘的中心呈中心对称。
如上所述的螺旋桨,所述桨叶的螺距为35mm。
本发明实施例还提供一种动力组件,包括驱动件和如上所述的螺旋桨,所述螺旋桨通过桨夹与所述驱动件连接。
如上所述的动力组件,所述驱动件为电机,所述电机的KV值为1200转/(分钟·伏特)。
本发明实施例还提供一种飞行器,包括机身,还包括至少一个如上所述 的动力组件,所述动力组件与所述机身连接。
本发明实施例通过对桨叶中至少三个截面弦长和攻角的设定,能够降低螺旋桨在转动过程中的阻力,提高力转换效率,提高飞行器的飞行速度,在一定的电力条件供给下延长航行距离,提高飞行性能。
附图说明
图1为本发明实施例提供的螺旋桨安装于飞行器的结构示意图;
图2为本发明实施例提供的螺旋桨中桨叶的俯视图;
图3为图2所示桨叶的左视图;
图4为图2所示桨叶的右视图;
图5为图2所示桨叶的上侧视图;
图6为图2所示桨叶的下侧视图;
图7为本发明实施例提供的螺旋桨中在桨叶上划分不同截面的示意图;
图8为图7中A-A截面的结构示意图;
图9为图7中B-B截面的结构示意图;
图10为图7中C-C截面的结构示意图;
图11为图7中D-D截面的结构示意图;
图12为图7中E-E截面的结构示意图。
附图标记:
1-桨夹;         2-桨叶;       21-叶背;
22-叶面;        23-第一侧缘;  24-第二侧缘;
26-第一拱起部;  27-第二拱起部。
具体实施方式
本实施例提供一种螺旋桨,能够应用于飞行器上。图1为本发明实施例提供的螺旋桨安装于飞行器的结构示意图。如图1所示,本实施例提供的螺旋桨可以为正桨或反桨,所谓正桨,指的是从俯视飞行器的角度看,顺时针旋转而产生升力的螺旋桨;所谓反桨,指的是从俯视飞行器的角度看,逆时针旋转而产生升力的螺旋桨。正桨的结构与反桨的结构为镜面对称,本实施 例仅以正桨的结构为例进行说明,本领域技术人员可以根据本实施例所提供的方式进行扩展而得到反桨的结构。
进一步的,本实施例提供的螺旋桨适用于双轴飞行器、四轴飞行器或八轴飞行器等,每个螺旋桨上的桨叶可以为一体结构,也可以为几个独立的桨叶,例如两个、三个、或多于三个桨叶。本实施例仅以两个独立的桨叶构成一个螺旋桨的方式为例进行说明,本领域技术人员也可以根据本实施例所提供的技术方案扩展至桨叶为一体结构的螺旋桨。
图1中,螺旋桨包括桨夹1和连接在桨夹1上的桨叶2,其中,桨夹1用于与飞行器上的驱动件连接,通过驱动件带动桨夹1转动,进而带动桨叶2转动。桨叶2的数量为两个,分别连接至桨夹1上,以桨夹1为对称中心呈中心对称。
图2为本发明实施例提供的螺旋桨中桨叶的俯视图,图3为图2所示的桨叶2的左视图,图4为图2所示桨叶2的右视图,图5为图2所示桨叶2的上侧视图,图6为图2所示桨叶2的下侧视图,上述视图角度均是从飞行器飞行过程中的方向而言的。如图1至图6所示,本实施例所提供的螺旋桨中的叶片包括叶背21、叶面22、连接叶背21和叶面22一侧边的第一侧缘23、以及连接叶背21和叶面22另一侧边的第二侧缘24。
其中,叶背21为飞行器在飞行过程中,桨叶2朝上的一面;叶面22为飞行器在飞行过程中,桨叶2朝下(或者说朝向地面)的一面。从图6中能够看出,叶背21和叶面22均为曲面,且弯曲的趋势为:当桨叶2整体处于水平状态时,第一侧缘23所处的位置比第二侧缘24所处的位置低。
以图2、5、6的视图角度来看,上述第一侧缘23具有曲面状的朝向左侧的第一拱起部26,第一拱起部26与第一侧缘23的其余部分为平滑过渡连接。在整个桨叶2的长度方向上,第一拱起部26位于叶面22上较为靠近与桨夹1相连的一端的部位。第一拱起部26除了朝向左侧拱起之外,还朝向叶面22的方向拱起,并且与叶面22为平滑过渡连接。
上述第二侧缘24具有曲面状的朝向右侧的第二拱起部27,第二拱起部27与第二侧缘24的其余部分为平滑过渡连接。在整个桨叶2的长度方向上,第二拱起部27位于叶面22上较为靠近与桨夹1相连的一端的部位。
本实施例中,第二拱起部27的凸出程度小于第一拱起部26的凸出程度。 第一拱起部26的顶点和第二拱起部27的顶点大致位于桨叶2的同一个横截面上。并且,桨叶2的表面均为平滑过渡,没有急剧扭转之处,因此具有较小的应力,且强度较高不易折断,具有较高的可靠性。桨叶2中远离桨夹1的端部为桨叶2中最薄的部分,有利于降低空气阻力。
本实施例所提供的螺旋桨在旋转过程中所形成的圆形,称为桨盘,该圆形的中心成为桨盘的中心,圆形的直径称为桨盘的直径。对于分体式的桨叶而言,桨盘的半径大于桨叶的长度。
图7为本发明实施例提供的螺旋桨中在桨叶上划分不同截面的示意图,图8为图7中A-A截面的结构示意图,图9为图7中B-B截面的结构示意图,图10为图7中C-C截面的结构示意图,图11为图7中D-D截面的结构示意图,图12为图7中E-E截面的结构示意图。如图7至图12所示,本实施例在桨叶2的五个截面处的尺寸进行改进,其中,在B-B截面、C-C截面和D-D截面处的尺寸所具有的改进具有最优的效果:
具体的,在与螺旋桨形成的桨盘的中心相距为桨盘半径的55%处,即:如图7所示的距离桨盘中心H2的B-B截面处,如图9所示的桨叶2的弦长L2为16.7mm±5mm,攻角θ2为14°±2.5°。其中,弦长指的是在该截面处,第一侧缘23位于该截面上最左侧的端点与第二侧缘24位于该截面上最右侧的端点在水平方向的距离,攻角为第一侧缘23位于该截面上最左侧的端点与第二侧缘24该截面上最右侧的端点之间的连线与水平方向的夹角,或者,攻角也可以理解为是桨叶2的弦翼与气体来流方向的夹角。
在与桨盘的中心相距为桨盘半径的70%处,即:如图7所示的距离桨盘中心H3的C-C截面处,如图10所示的桨叶2的弦长L3为14.4mm±5mm,攻角θ3为11.7°±2.5°。
在与桨盘的中心相距为桨盘半径的85%处,即:如图7所示的距离桨盘中心H4的D-D截面处,桨叶2的弦长L4为12.2mm±5mm,攻角θ4为9.3°±2.5°。
本实施例通过对桨叶中上述三个截面弦长和攻角的设定,能够降低螺旋桨在转动过程中的阻力,提高力转换效率,提高飞行器的飞行速度,在一定的电力条件供给下延长航行距离,提高飞行性能。
在上述技术方案的基础上,对桨叶2中A-A截面和E-E截面的弦长和攻 角分别进行改进,能够进一步降低螺旋桨在转动过程中的阻力。
在与桨盘的中心相距为桨盘半径的40%处,即:如图7所示的距离桨盘中心H1的A-A截面处,桨叶2的弦长L1为18.9mm±5mm,攻角θ1为17.9°±2.5°。
在与桨盘的中心相距为桨盘半径的100%处,即:如图7所示的距离桨盘中心H5的E-E截面处,桨叶2的弦长L5为8.9mm±5mm,攻角θ5为7.1°±2.5°。
本领域技术人员可以理解的是,上述截面A-A和截面E-E的位置并不局限于上述方案,可略微变动。
对于上述技术方案,本实施例提供一种具体的螺旋桨,该螺旋桨所形成的桨盘直径为200mm±20mm,以桨盘直径200mm为例,在与桨盘的中心相距为55mm处,桨叶2的弦长具体为16.7mm,攻角为14°。在与桨盘的中心相距为70mm处,桨叶2的弦长为14.4mm,攻角为11.7°。在与桨盘的中心相距为85mm处,桨叶2的弦长为12.2mm,攻角为9.3°。
进一步的,在与桨盘的中心相距为40mm处,桨叶2的弦长为18.9mm,攻角为17.9°。在与桨盘的中心相距为100mm处,桨叶2的弦长为8.9mm,攻角为7.1°。可以理解,因截面A-A和截面E-E的位置可略微变动,故相应地,在截面A-A和截面E-E处的攻角和弦长值也可相应改变。
上述各截面的弦长和攻角的设定均是以桨盘的尺寸来进行设定的。本实施例中,可以将桨叶2的长度设置为90mm±9mm。桨叶2上设有连接孔,用于与桨夹1连接,则该连接孔到桨盘的中心的距离为14.5mm±1.45mm。
另外,根据本实施例所提供的螺旋桨,桨叶的螺距可以为35mm,即:桨叶旋转一周,理论上升的距离为35mm。
本实施例所提供的上述螺旋桨,通过与现有技术中的螺旋桨进行对比,参照表一,可知,在相同的拉力下,本实施例所提供的螺旋桨的功率更低,也即:在较小的功率条件下,具有更大的拉力,从而节省电量损耗,增加续航距离。现有的螺旋桨最大能提供420g的拉力,而本实施例的螺旋桨能提供480g的拉力,其性能远优于现有的螺旋桨。
表一本实施例所提供的螺旋桨与现有技术的对比参数
现有的螺旋桨 本实施例提供的螺旋桨
拉力(g) 功率(w) 拉力(g) 功率(w)
240 31.08 240 29.093
300 44.4 300 40.747
370 57.72 360 54.332
最大:420   最大:480  
本实施例还提供一种动力组件,包括驱动件和如上述内容所提供的螺旋桨,该螺旋桨通过桨夹与驱动件连接。其中,驱动件具体可以为电机,电机的KV值为1200转/(分钟·伏特)。
本实施例还提供一种飞行器,包括机身以及上述动力组件,该动力组件与机身连接。该飞行器采用上述动力组件,通过对桨叶中的三个截面弦长和攻角的设定,能够降低螺旋桨在转动过程中的阻力,提高力转换效率,提高飞行器的飞行速度,在一定的电力条件供给下延长航行距离,提高飞行性能。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (17)

  1. 一种螺旋桨,包括桨夹及连接在所述桨夹上的桨叶,其特征在于,
    在与所述螺旋桨形成的桨盘的中心相距为桨盘半径的55%处,所述桨叶的弦长为16.7mm±5mm,攻角为14°±2.5°;
    在与所述桨盘的中心相距为桨盘半径的70%处,所述桨叶的弦长为14.4mm±5mm,攻角为11.7°±2.5°;
    在与所述桨盘的中心相距为桨盘半径的85%处,所述桨叶的弦长为12.2mm±5mm,攻角为9.3°±2.5°。
  2. 根据权利要求1所述的螺旋桨,其特征在于,
    在与所述桨盘的中心相距为桨盘半径的40%处,所述桨叶的弦长为18.9mm±5mm,攻角为17.9°±2.5°。
  3. 根据权利要求1所述的螺旋桨,其特征在于,在与所述桨盘的中心相距为桨盘半径的100%处,所述桨叶的弦长为8.9mm±5mm,攻角为7.1°±2.5°。
  4. 根据权利要求1所述的螺旋桨,其特征在于,所述螺旋桨形成的桨盘的直径为200mm±20mm;
    在与所述桨盘的中心相距为55mm处,所述桨叶的弦长为16.7mm,攻角为14°;
    在与所述桨盘的中心相距为70mm处,所述桨叶的弦长为14.4mm,攻角为11.7°;
    在与所述桨盘的中心相距为85mm处,所述桨叶的弦长为12.2mm,攻角为9.3°。
  5. 根据权利要求2所述的螺旋桨,其特征在于,所述螺旋桨形成的桨盘的直径为200mm±20mm;
    在与所述桨盘的中心相距为40mm处,所述桨叶的弦长为18.9mm,攻角为17.9°。
  6. 根据权利要求3所述的螺旋桨,其特征在于,所述螺旋桨形成的桨盘的直径为200mm±20mm;
    在与所述桨盘的中心相距为100mm处,所述桨叶的弦长为8.9mm,攻角 为7.1°。
  7. 根据权利要求1所述的螺旋桨,其特征在于,所述桨叶的长度为90mm±9mm。
  8. 根据权利要求7所述的螺旋桨,其特征在于,所述桨叶上设有连接孔,所述连接孔到桨盘的中心的距离为14.5mm±1.45mm。
  9. 根据权利要求1-8任一项所述的螺旋桨,其特征在于,所述桨叶具有叶背、叶面、连接叶背和叶面一侧边的第一侧缘、以及连接叶背和叶面另一侧边的第二侧缘;所述叶背和叶面为曲面。
  10. 根据权利要求9所述的螺旋桨,其特征在于,所述第一侧缘具有曲面状的第一拱起部,第二侧缘具有曲面状的第二拱起部。
  11. 根据权利要求10所述的螺旋桨,其特征在于,所述第一拱起部和第二拱起部均位于所述桨叶靠近桨夹的一端。
  12. 根据权利要求11所述的螺旋桨,其特征在于,所述第二拱起部的凸出程度小于第一拱起部的凸出程度。
  13. 根据权利要求12所述的螺旋桨,其特征在于,所述桨叶为两个,两个桨叶关于所述桨盘的中心呈中心对称。
  14. 根据权利要求13所述的螺旋桨,其特征在于,所述桨叶的螺距为35mm。
  15. 一种动力组件,其特征在于,包括驱动件和如权利要求1-14任一项所述的螺旋桨,所述螺旋桨通过桨夹与所述驱动件连接。
  16. 如权利要求15所述的动力组件,其特征在于,所述驱动件为电机,所述电机的KV值为1200转/(分钟·伏特)。
  17. 一种飞行器,包括机身,其特征在于,还包括至少一个如权利要求15或16所述的动力组件,所述动力组件与所述机身连接。
PCT/CN2016/099704 2016-01-27 2016-09-22 螺旋桨、动力组件及飞行器 WO2017128744A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620083468.6 2016-01-27
CN201620083468.6U CN205524939U (zh) 2016-01-27 2016-01-27 螺旋桨、动力组件及飞行器

Publications (1)

Publication Number Publication Date
WO2017128744A1 true WO2017128744A1 (zh) 2017-08-03

Family

ID=56772160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099704 WO2017128744A1 (zh) 2016-01-27 2016-09-22 螺旋桨、动力组件及飞行器

Country Status (2)

Country Link
CN (1) CN205524939U (zh)
WO (1) WO2017128744A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205524939U (zh) * 2016-01-27 2016-08-31 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器
CN206068155U (zh) * 2016-09-27 2017-04-05 深圳市大疆创新科技有限公司 桨叶、螺旋桨、动力套装及无人飞行器
CN206202682U (zh) * 2016-09-27 2017-05-31 深圳市大疆创新科技有限公司 桨叶、螺旋桨、动力套装及无人飞行器
CN206141830U (zh) * 2016-10-28 2017-05-03 深圳市大疆创新科技有限公司 螺旋桨、动力套装及无人飞行器
CN206691356U (zh) * 2017-02-28 2017-12-01 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器
CN208993923U (zh) * 2018-08-01 2019-06-18 深圳市道通智能航空技术有限公司 螺旋桨、动力组件及无人飞行器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233295A (ja) * 2000-02-23 2001-08-28 Fuji Heavy Ind Ltd 回転翼航空機の回転翼羽根
US20070110582A1 (en) * 2005-05-31 2007-05-17 Sikorsky Aircraft Corporation Rotor blade twist distribution for a high speed rotary-wing aircraft
US20070158495A1 (en) * 2003-04-04 2007-07-12 Hubbard Adrian A High lift and high strength aerofoil
CN202765286U (zh) * 2012-05-25 2013-03-06 辽宁通用航空研究院 一种高效率螺旋桨
CN102963522A (zh) * 2012-10-31 2013-03-13 中国航天空气动力技术研究院 临近空间螺旋桨
JP2013184645A (ja) * 2012-03-09 2013-09-19 Japan Aerospace Exploration Agency 可変ピッチプロペラ
CN104139849A (zh) * 2014-08-07 2014-11-12 西北工业大学 一种具有提高高空桨效率的桨梢小翼及高空桨
CN205524939U (zh) * 2016-01-27 2016-08-31 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233295A (ja) * 2000-02-23 2001-08-28 Fuji Heavy Ind Ltd 回転翼航空機の回転翼羽根
US20070158495A1 (en) * 2003-04-04 2007-07-12 Hubbard Adrian A High lift and high strength aerofoil
US20070110582A1 (en) * 2005-05-31 2007-05-17 Sikorsky Aircraft Corporation Rotor blade twist distribution for a high speed rotary-wing aircraft
JP2013184645A (ja) * 2012-03-09 2013-09-19 Japan Aerospace Exploration Agency 可変ピッチプロペラ
CN202765286U (zh) * 2012-05-25 2013-03-06 辽宁通用航空研究院 一种高效率螺旋桨
CN102963522A (zh) * 2012-10-31 2013-03-13 中国航天空气动力技术研究院 临近空间螺旋桨
CN104139849A (zh) * 2014-08-07 2014-11-12 西北工业大学 一种具有提高高空桨效率的桨梢小翼及高空桨
CN205524939U (zh) * 2016-01-27 2016-08-31 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器

Also Published As

Publication number Publication date
CN205524939U (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
WO2017128744A1 (zh) 螺旋桨、动力组件及飞行器
WO2017128742A1 (zh) 螺旋桨、动力组件及飞行器
WO2017124781A1 (zh) 螺旋桨、动力套装及无人飞行器
WO2017148133A1 (zh) 螺旋桨、动力组件及飞行器
WO2017148128A1 (zh) 螺旋桨、动力组件及飞行器
WO2017148134A1 (zh) 螺旋桨、动力组件及飞行器
WO2018157426A1 (zh) 螺旋桨、动力组件及飞行器
WO2017128743A1 (zh) 螺旋桨、动力组件及飞行器
WO2017143771A1 (zh) 螺旋桨、动力组件及飞行器
CN205469778U (zh) 螺旋桨、动力组件及飞行器
US10697427B2 (en) Vortex generator and wind turbine blade assembly
WO2018076457A1 (zh) 螺旋桨、动力套装及无人飞行器
KR20110132310A (ko) 선박의 추진 장치와 그를 구비한 선박
CN206297727U (zh) 螺旋桨、动力组件及飞行器
WO2018000593A1 (zh) 螺旋桨、动力套装及无人飞行器
WO2017070978A1 (zh) 一种螺旋桨及飞行器
WO2018184291A1 (zh) 桨叶、螺旋桨、动力套装及无人飞行器
WO2019000560A1 (zh) 螺旋桨、动力组件及飞行器
WO2021043330A1 (zh) 一种螺旋桨及飞行器
US20230407837A1 (en) Vortex generator for wind turbine blade, wind turbine blade, and wind power generating apparatus
WO2018018729A1 (zh) 螺旋桨、动力套装及无人飞行器
WO2018058769A1 (zh) 桨叶、螺旋桨、动力套装及无人飞行器
WO2018058768A1 (zh) 桨叶、螺旋桨、动力套装及无人飞行器
US10113431B2 (en) Fluidfoil
CN108820187A (zh) 螺旋桨、动力组件及飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16887618

Country of ref document: EP

Kind code of ref document: A1