WO2019223193A1 - 螺旋桨、动力组件及飞行器 - Google Patents

螺旋桨、动力组件及飞行器 Download PDF

Info

Publication number
WO2019223193A1
WO2019223193A1 PCT/CN2018/105982 CN2018105982W WO2019223193A1 WO 2019223193 A1 WO2019223193 A1 WO 2019223193A1 CN 2018105982 W CN2018105982 W CN 2018105982W WO 2019223193 A1 WO2019223193 A1 WO 2019223193A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
hub
center
distance
propeller
Prior art date
Application number
PCT/CN2018/105982
Other languages
English (en)
French (fr)
Inventor
林家靖
陈鹏
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880016150.8A priority Critical patent/CN110896624A/zh
Publication of WO2019223193A1 publication Critical patent/WO2019223193A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/02Hub construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/18Aerodynamic features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/20Constructional features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • B64C27/14Direct drive between power plant and rotor hub

Definitions

  • the invention relates to the field of aircraft, and in particular to a propeller, a power assembly and an aircraft.
  • the propeller on the aircraft is used to convert the rotation of the rotating shaft of the motor or the engine into thrust or lift.
  • the propellers are mostly rectangular in shape, with large resistance and low efficiency, resulting in a small flying speed of the aircraft and a short relay distance, which seriously affects the flight performance of the aircraft.
  • Embodiments of the present invention provide a propeller, a power assembly, and an aircraft.
  • a propeller according to an embodiment of the present invention includes a hub and a blade, and the blade is connected to the hub, wherein:
  • the angle of attack of the blade is 18.16 ° ⁇ 2.5 °; from the center of the hub is 54.5% of the radius of the propeller Where the angle of attack of the blade is 16.80 ° ⁇ 2.5 °; at a distance of 63.6% of the radius of the propeller from the center of the hub, the angle of attack of the blade is 15.39 ° ⁇ 2.5 °; The distance from the center of the hub is 72.7% of the radius of the propeller, and the angle of attack of the blade is 13.78 ° ⁇ 2.5 °.
  • the blade's angle of attack is 19.35 ° ⁇ 2.5 °; and / or
  • the angle of attack of the blade is 11.97 ° ⁇ 2.5 °; and / or
  • the blade's angle of attack is 9.79 ° ⁇ 2.5 °; and / or
  • the blade's angle of attack is 7.91 ° ⁇ 2.5 °; and / or
  • the blade's angle of attack is 19.35 °; and / or
  • the blade's angle of attack is 18.16 °; and / or
  • the blade's angle of attack is 16.80 °; and / or
  • the blade's angle of attack is 15.39 °; and / or
  • the blade's angle of attack is 13.78 °; and / or
  • the blade's angle of attack is 11.97 °; and / or
  • the blade's angle of attack is 9.79 °; and / or
  • the blade's angle of attack was 7.91 °.
  • the chord length of the blade is 23.80mm ⁇ 5mm; and / or
  • chord length of the blade is 21.85mm ⁇ 5mm; and / or
  • chord length of the blade is 19.92 mm ⁇ 5 mm from the center of the hub at 63.6% of the radius of the propeller; and / or
  • chord length of the blade is 17.98mm ⁇ 5mm; and / or
  • chord length of the blade is 23.80 mm; and / or
  • chord length of the blade is 21.85 mm; and / or
  • chord length of the blade is 19.92mm; and / or
  • chord length of the blade is 17.98 mm.
  • the chord length of the blade is 25.72mm ⁇ 5mm; and / or
  • chord length of the blade is 16.03mm ⁇ 5mm; and / or
  • chord length of the blade is 12.90mm ⁇ 5mm; and / or
  • chord length of the blade is 4.42mm ⁇ 2mm; and / or
  • chord length of the blade is 25.72 mm; and / or
  • chord length of the blade is 16.03 mm; and / or
  • chord length of the blade is 12.90 mm; and / or
  • chord length of the blade is 4.42 mm.
  • the diameter of the propeller is 220mm ⁇ 22mm; and / or
  • the pitch of the blades is 5.10 ⁇ 0.5 inches.
  • the blade includes a blade root, a blade tip facing away from the blade root, opposite pressure surfaces and suction surfaces, and a leading edge connected to the pressure surface and one side of the suction surface A trailing edge connected to the pressure surface and the other side of the suction surface and a swept portion formed at the paddle tip, the swept portion extending obliquely from the leading edge to the trailing edge;
  • the paddle tip extends obliquely toward the side where the suction surface is located along the span of the paddle.
  • the blade forms a turning curve near the blade tip, and the leading edge starts from the turning curve toward the suction surface along the blade's spreading direction.
  • One side extends obliquely, the swept portion extends obliquely from the leading edge to the trailing edge from the turning point, and the distance from the center of the turning point to the hub is 88% of the radius of the propeller .
  • leading edge is convexly formed with a curved front edge arch near the paddle root
  • trailing edge is convexly formed with a curved rear edge near the paddle root.
  • the paddles are at least two, at least two of the paddles are connected to the hub and are center symmetrical about the center of the hub; and / or
  • the blade has a central axis passing through the center of the hub, the leading edge has a leading edge tangent line parallel to the central axis, and the trailing edge has a trailing edge tangent line parallel to the central axis.
  • the swept portion is located between the leading edge tangent and the trailing edge tangent; and / or
  • the suction surface and the pressure surface are both curved surfaces; and / or
  • the side of the free end of the paddle tip is flat.
  • a power assembly includes a driving member and the propeller according to any one of the foregoing embodiments, and the propeller is connected to the driving member through the hub.
  • the driving member is a motor
  • the KV value of the motor is 1040 ⁇ 104 revolutions per minute.
  • An aircraft according to an embodiment of the present invention includes a fuselage and the power component according to any one of the foregoing embodiments, and the power component is connected to the fuselage.
  • the aircraft includes a plurality of power components, the rotation directions of the plurality of power components are different, and the aircraft is a multi-rotor aircraft.
  • the angle of attack of the blade is 18.16 ° ⁇ 2.5 °; the distance from the center of the hub is the radius of the propeller. At 54.5%, the angle of attack of the blade is 16.80 ° ⁇ 2.5 °; at the distance from the center of the hub to 63.6% of the radius of the propeller, the angle of attack of the blade is 15.39 ° ⁇ 2.5 °; at the distance from the center of the hub At 72.7% of the radius of the propeller, the angle of attack of the blade is 13.78 ° ⁇ 2.5 °; therefore, the blade with a specific shape is limited by the above parameters.
  • the propeller using the blade can reduce air resistance, improve pulling force and efficiency, Increase the flight distance of the aircraft to improve the flight performance of the aircraft.
  • FIG. 1 is a schematic plan view of a propeller provided by an embodiment of the present invention.
  • Fig. 2 is a cross-sectional view taken along the line B-B of the propeller of the embodiment shown in Fig. 1 at a distance of 50 mm from the center of the hub.
  • Fig. 3 is a cross-sectional view taken along the line C-C of the propeller of the embodiment shown in Fig. 1 at a distance of 60 mm from the center of the hub.
  • Fig. 4 is a cross-sectional view of the D-D section of the propeller of the embodiment shown in Fig. 1 at a distance of 70 mm from the center of the hub.
  • Fig. 5 is a cross-sectional view of the E-E section of the propeller of the embodiment shown in Fig. 1 at a distance of 80 mm from the center of the hub.
  • Fig. 6 is a cross-sectional view of the A-A section of the propeller of the embodiment shown in Fig. 1 at a distance of 40 mm from the center of the hub.
  • Fig. 7 is a cross-sectional view of the propeller of the embodiment shown in Fig. 1 at a section F-F at a distance of 90 mm from the center of the hub.
  • Fig. 8 is a sectional view of a G-G section of the propeller of the embodiment shown in Fig. 1 at a distance of 100 mm from the center of the hub.
  • Fig. 9 is a cross-sectional view taken along the H-H section of the propeller of the embodiment shown in Fig. 1 at a distance of 110 mm from the center of the hub.
  • FIG. 10 is a perspective view of a propeller provided by an embodiment of the present invention.
  • FIG. 11 is a perspective view of a propeller provided by an embodiment of the present invention.
  • FIG. 12 is a schematic plan view of a propeller provided by an embodiment of the present invention.
  • FIG. 13 is a schematic plan view of a propeller according to an embodiment of the present invention.
  • FIG. 14 is a coordinate diagram of a blade airfoil rotation center according to an embodiment of the present invention.
  • FIG. 15 is a schematic plan view of an aircraft according to an embodiment of the present invention.
  • Propeller 100 hub 10, blade 20, root 21, blade tip 22, swept portion 221, free end 222, pressure surface 23, suction surface 24, leading edge 25, leading edge arch 251, trailing edge 26 , The trailing edge arch 261, the back bend 27;
  • Power assembly 200 driving member 30, and arm 40;
  • Aircraft 1000 fuselage 50.
  • first, second, third, etc. may be used in the present invention to describe various kinds of information, these information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • word "if” as used herein can be interpreted as “at” or "when” or "in response to determination”.
  • the up, down and other azimuth terms appearing in this embodiment are based on the propeller and the normal operating attitude of the aircraft after the propeller is installed on the aircraft, and should not be considered as limiting.
  • an embodiment of the present invention provides a propeller 100.
  • the propeller 100 includes a hub 10 and a blade 20.
  • the paddle 20 is connected to the hub 10.
  • the blades 20 may be integrally formed with the blade hub 10, or they may be separately processed and then installed integrally.
  • D2 is 45.5% of the radius of the propeller 100 from the center of the hub 10, and the angle of attack ⁇ 2 of the blade 20 is 18.16 ° ⁇ 2.5 °.
  • D3 is at a distance of 54.5% of the radius of the propeller 100 from the center of the hub 10, and the angle of attack ⁇ 3 of the blade 20 is 16.80 ° ⁇ 2.5 °.
  • D4 is at a distance of 63.6% of the radius of the propeller 100 from the center of the hub 10, and the angle of attack ⁇ 4 of the blade 20 is 15.39 ° ⁇ 2.5 °.
  • D5 is at a distance of 72.7% of the radius of the propeller 100 from the center of the hub 10, and the angle of attack ⁇ 5 of the blade 20 is 13.78 ° ⁇ 2.5 °.
  • the angle of attack ⁇ 2 of the blade 20 is 18.16 ° ⁇ 2.5 °; from the center of the hub 10 is the radius of the propeller 100
  • the angle of attack ⁇ 3 of the blade 20 is 16.80 ° ⁇ 2.5 ° at 54.5% of D; °; D5 is at a distance of 72.7% of the radius of the propeller 100 from the center of the hub 10, and the angle of attack ⁇ 5 of the blade 20 is 13.78 ° ⁇ 2.5 °; therefore, the blade 20 having a specific shape is defined by the above parameters.
  • the propeller 100 of the blade 20 can reduce air resistance, improve pulling force and efficiency, and increase the relay distance of the aircraft 1000 (as shown in FIG. 15) to improve the flight performance of the aircraft 1000.
  • an embodiment of the present invention provides a propeller 100.
  • the propeller 100 includes a hub 10 and a blade 20.
  • D2 is 45.5% of the radius of the propeller 100 from the center of the hub 10, the angle of attack ⁇ 2 of the blade 20 is 18.16 ° ⁇ 2.5 °, and the chord length L2 of the blade 20 is 23.80mm ⁇ 5mm.
  • the angle of attack ⁇ 3 of the blade 20 is 16.80 ° ⁇ 2.5 °, and the chord length L3 of the blade 20 is 21.85mm ⁇ 5mm.
  • the angle of attack ⁇ 4 of the blade 20 is 15.39 ° ⁇ 2.5 °, and the chord length L4 of the blade 20 is 19.92mm ⁇ 5mm.
  • D5 is at a distance of 72.7% of the radius of the propeller 100 from the center of the hub 10, the angle of attack ⁇ 5 of the blade 20 is 13.78 ° ⁇ 2.5 °, and the chord length L5 of the blade 20 is 17.98mm ⁇ 5mm.
  • D2 is 45.5% of the radius of the propeller 100 from the center of the hub 10, the angle of attack ⁇ 2 of the blade 20 is 18.16 ° ⁇ 2.5 °, and the chord length L2 of the blade 20 is 23.80mm ⁇ 5mm;
  • D3 At the distance from the center of the hub 10 to 54.5% of the radius of the propeller 100, D3, the angle of attack ⁇ 3 of the blade 20 is 16.80 ° ⁇ 2.5 °, and the chord length L3 of the blade 20 is 21.85mm ⁇ 5mm;
  • the center of 10 is D4 at 63.6% of the radius of the propeller 100, the angle of attack ⁇ 4 of the blade 20 is 15.39 ° ⁇ 2.5 °, and the chord length L4 of the blade 20 is 19.92mm ⁇ 5mm; from the center of the hub 10 is the propeller D5 at 72.7% of the radius of 100, the angle of attack ⁇ 5 of the blade 20 is 13.78 ° ⁇ 2.5 °, and the chord length L5 of the blade 20 is
  • D2 is 45.5% of the radius of the propeller 100 from the center of the hub 10, and the angle of attack ⁇ 2 of the blade 20 may be 15.66 ° or 18.16 ° or 20.66 °, or 16.16 °, 16.66 °, 17.16 °, 17.66 °, 18.66 °, 19.16 °, 19.66 °, 20.16 °, etc. or any value between the two, the chord length L2 of the blade 20 can be 18.80mm or 23.80mm Or 28.80mm, or any value between 19.80mm, 20.80mm, 21.80mm, 22.80mm, 24.80mm, 25.80mm, 26.80mm, 27.80mm, etc., or any value between the two.
  • the angle of attack ⁇ 3 of the blade 20 may be 14.30 °, 16.80 °, or 19.30 °, or 14.80 °, 15.30 °, 15.80 °, 16.30 °, 17.30 °, 17.80 °, 18.30 °, 18.80 °, etc. or a value between any of the above, the chord length L3 of the blade 20 may be 16.85mm or 21.85mm or 26.85mm, or 17.85mm, 18.85 Values of any one of mm, 19.85mm, 20.85mm, 22.85mm, 23.85mm, 24.85mm, 25.85mm, etc., or any value between the two.
  • D4 is 63.6% of the radius of the propeller 100 from the center of the hub 10, and the angle of attack ⁇ 4 of the blade 20 may be 12.89 ° or 15.39 ° or 17.89 °, or 13.39 °, 13.89 °, 14.39 °, 14.89 °, 15.89 °, 16.39 °, 16.89 °, 17.39 °, etc. or a value between any of the above, the chord length L4 of the blade 20 may be 14.92mm or 19.92mm or 24.92mm, or 15.92mm, 16.92 Values of any one of mm, 17.92mm, 18.92mm, 20.92mm, 21.92mm, 22.92mm, 23.92mm, etc., or any value between the two.
  • D5 is at a distance of 72.7% of the radius of the propeller 100 from the center of the hub 10, and the angle of attack ⁇ 5 of the blade 20 may be 11.28 ° or 13.78 ° or 16.28 °, or 11.78 °, 12.28 °, 12.78 °, 13.28 °, 14.28 °, 14.78 °, 15.28 °, 15.78 °, etc. or a value between any of the above, the chord length L5 of the blade 20 may be 12.98mm or 17.98mm or 22.98mm, or 13.98mm, 14.98 The value is any one of mm, 15.98mm, 16.98mm, 18.98mm, 19.98mm, 20.98mm, 21.98mm, etc., or any value between the two.
  • the hub 10 may be cylindrical, or the cross-section of the hub 10 may be oval, diamond, or the like.
  • a connection hole is provided in the center of the propeller hub 10, and the connection hole is used to be sleeved on the output end of the motor.
  • the paddle 20 may be elongated, and the paddle 20 is connected to the hub 10 and extends along the radial direction of the hub 10.
  • D1 is located at a distance of 36.4% of the radius of the propeller 100 from the center of the hub 10, and the angle of attack ⁇ 1 of the blade 20 is 19.35 ° ⁇ 2.5 °.
  • the chord length L1 of 20 is 25.72mm ⁇ 5mm to further reduce the air resistance of the propeller 100 and improve the pulling force and efficiency.
  • the angle of attack ⁇ 1 of the blade 20 may be 16.85 °, 19.35 °, or 21.85 °, or any one of 17.35 °, 17.85 °, 18.35 °, 18.85 °, 19.85 °, 20.35 °, 20.85 °, 21.35 °, etc.
  • chord length L1 of the blade 20 can be 20.72mm or 25.72mm or 30.72mm, or 21.72mm, 22.72mm, 23.72mm, 24.72mm, 26.72mm, 27.72mm, 28.72mm , 29.72mm, etc., or any value between the two.
  • D6 is 81.8% of the radius of the propeller 100 from the center of the hub 10, and the angle of attack ⁇ 6 of the blade 20 is 11.97 ° ⁇ 2.5 °.
  • the chord length L6 of 20 is 16.03mm ⁇ 5mm to further reduce the air resistance of the propeller 100 and improve the pulling force and efficiency.
  • the angle of attack ⁇ 6 of the blade 20 can be any of 9.47 °, 11.97 °, or 14.47 °, or 9.97 °, 10.47 °, 10.97 °, 11.47 °, 12.47 °, 12.97 °, 13.47 °, 13.97 °, etc.
  • chord length L6 of the blade 20 can be 11.03mm, 16.03mm, or 21.03mm, or 12.03mm, 13.03mm, 14.03mm, 15.03mm, 17.03mm, 18.03mm, 19.03mm , 20.03mm, etc., or any value between the two.
  • D7 is at a distance of 90.9% of the radius of the propeller 100 from the center of the hub 10, and the angle of attack ⁇ 7 of the blade 20 is 9.79 ° ⁇ 2.5 °.
  • the chord length L7 of 20 is 12.90mm ⁇ 5mm to further reduce the air resistance of the propeller 100 and improve the pulling force and efficiency.
  • the angle of attack ⁇ 7 of the blade 20 may be 7.29 °, 9.79 °, or 12.29 °, or any one of 7.79 °, 8.29 °, 8.79 °, 9.29 °, 10.29 °, 10.79 °, 11.29 °, 11.79 °, etc.
  • chord length L7 of the blade 20 can be 7.90mm or 12.90mm or 17.90mm, or 8.90mm, 9.90mm, 10.90mm, 11.90mm, 13.90mm, 14.90mm, 15.90mm , 16.90mm, etc., or any value between the two.
  • D8 is 100% of the radius of the propeller 100 from the center of the hub 10, and the angle of attack ⁇ 8 of the blade 20 is 7.91 ° ⁇ 2.5 °.
  • the chord length L8 of 20 is 4.42mm ⁇ 2mm to further reduce the air resistance of the propeller 100 and improve the pulling force and efficiency.
  • the angle of attack ⁇ 8 of the blade 20 may be 5.41 °, 7.91 °, or 10.41 °, or 5.91 °, 6.41 °, 6.91 °, 7.41 °, 8.41 °, 8.91 °, 9.41 °, 9.91 °, etc.
  • chord length L8 of the blade 20 can be 2.42mm or 4.42mm or 6.42mm, or 2.92mm, 3.42mm, 3.92mm, 4.92mm, 5.42mm, 5.92mm, etc. Any value or any value between the two.
  • the diameter of the propeller 100 is 220 mm ⁇ 22 mm.
  • the angle of attack ⁇ 2 of the blade 20 is 18.16 °, and the chord length L2 of the blade 20 is 23.80 mm.
  • the angle of attack ⁇ 3 of the blade 20 is 16.80 °, and the chord length L3 of the blade 20 is 21.85 mm.
  • the angle of attack ⁇ 4 of the blade 20 is 15.39 °, and the chord length L4 of the blade 20 is 19.92 mm.
  • the angle of attack ⁇ 5 of the blade 20 is 13.78 °, and the chord length L5 of the blade 20 is 17.98 mm.
  • the diameter of the propeller 100 may be 198mm, 220mm, or 242mm, or any one of 202mm, 208mm, 212mm, 216mm, 224mm, 228mm, 232mm, 236mm, and 240mm, or any value between the two.
  • the diameter of the propeller 100 is 220 mm ⁇ 22 mm.
  • the angle of attack ⁇ 1 of the blade 20 is 19.35 °, and the chord length L1 of the blade 20 is 25.72 mm.
  • the diameter of the propeller 100 may be 198mm, 220mm, or 242mm, or any one of 202mm, 208mm, 212mm, 216mm, 224mm, 228mm, 232mm, 236mm, and 240mm, or any value between the two.
  • the diameter of the propeller 100 is 220 mm ⁇ 22 mm.
  • the angle of attack ⁇ 6 of the blade 20 is 11.97 °, and the chord length L6 of the blade 20 is 16.03 mm.
  • the diameter of the propeller 100 may be 198mm, 220mm, or 242mm, or any one of 202mm, 208mm, 212mm, 216mm, 224mm, 228mm, 232mm, 236mm, and 240mm, or any value between the two.
  • the diameter of the propeller 100 is 220 mm ⁇ 22 mm.
  • the angle of attack ⁇ 7 of the blade 20 is 9.79 °, and the chord length L7 of the blade 20 is 12.90 mm.
  • the diameter of the propeller 100 may be 198mm, 220mm, or 242mm, or any one of 202mm, 208mm, 212mm, 216mm, 224mm, 228mm, 232mm, 236mm, and 240mm, or any value between the two.
  • the diameter of the propeller 100 is 220 mm ⁇ 22 mm.
  • the angle of attack ⁇ 8 of the blade 20 is 7.91 °, and the chord length L8 of the blade 20 is 4.42 mm.
  • the diameter of the propeller 100 may be 198mm, 220mm, or 242mm, or any one of 202mm, 208mm, 212mm, 216mm, 224mm, 228mm, 232mm, 236mm, and 240mm, or any value between the two.
  • the blade 20 includes a blade root 21, a blade tip 22 facing away from the blade root 21, opposite pressure surfaces 23, and suction surfaces 24.
  • the blade tip 22 extends obliquely toward the side where the suction surface 24 is located along the span of the blade 20. In this way, not only the air resistance can be reduced and the pulling force of the blade 20 can be increased, but also the noise generated by the blade 20 during operation can be reduced, which makes the aircraft 1000 quieter when hovering and improves the user experience.
  • the pressure surface 23 is the surface of the blade 20 facing the ground during the normal flight of the aircraft 1000
  • the suction surface 24 is the surface of the blade 20 facing the sky during the normal flight of the aircraft 1000.
  • both the suction surface 24 and the pressure surface 23 are curved surfaces.
  • the suction surface 24 and the pressure surface 23 are curved aerodynamic shapes, which can not only reduce the air resistance and increase the pulling force of the blade 20, but also avoid the turbulence and downwash air generated by each part of the blade 20 directly impacting the fuselage 50 of the aircraft 1000 (As shown in FIG. 15), thereby reducing the overall noise of the aircraft 1000.
  • the blade 20 further includes a leading edge 25 connected to one side of the pressure surface 23 and the suction surface 24, a trailing edge 26 connected to the other side of the pressure surface 23 and the suction surface 24, and
  • the swept portion 221 is formed at the paddle tip 22.
  • the swept portion 221 extends obliquely from the leading edge 25 to the trailing edge 26. In this way, the effect of further improving the pulling force and efficiency of the propeller 100 is achieved.
  • the blade 20 forms a turning point 27 at the position of the blade tip 22, and the leading edge 25 starts from the turning point 27 and extends obliquely along the direction of the blade 20 toward the side where the suction surface 24 is located.
  • the swept back portion 221 extends obliquely from the leading edge 25 to the trailing edge 26 from the turning point 27.
  • the position of the turn 27 is indicated by MM.
  • the return 27 is 88% of the radius of the propeller 100 from the center of the propeller hub 10.
  • the turning point 27 is far from the center of the hub 10, which improves the aesthetic appearance of the blade 20, and also reduces the interaction between the propeller 100 and the arm 40 (shown in FIG. 15) of the aircraft 1000.
  • leading edge 25 is convexly formed with a curved front edge arched portion 251 near the paddle root 21, and the trailing edge 26 is convexly formed with a curved back edge near the paddle root 21 Arched portion 261.
  • the leading edge arched portion 251 and the trailing edge arched portion 261 have a curved shape, which has the effect of further increasing the pulling force of the blade 20.
  • At least two paddles 20, and at least two paddles 20 are connected to the hub 10 and are center symmetrical about the center of the hub 10. Thereby, the balance of the propeller 100 can be improved.
  • the side of the free end 222 of the paddle tip 22 is a flat surface. Thereby, the aesthetic appearance of the propeller 100 can be improved.
  • the blade 20 has a center axis NN passing through the center of the hub 10, the leading edge 25 has a leading edge tangent line OO parallel to the center axis NN, and the trailing edge 26 There is a trailing edge tangent PP parallel to the center axis NN, and the swept portion 221 is located between the leading edge tangent OO and the trailing edge tangent PP.
  • the swept portion 221 can not only reduce the air resistance of the propeller 100, improve the maneuverability of the aircraft 1000, make the aircraft 1000 more stable, but also reduce the turbulence and downwash airflow generated by the blades 20, thereby reducing hits.
  • the turbulence and downwash airflow on the fuselage 50 of the aircraft 1000 further reduce the overall noise of the aircraft 1000.
  • the blade tip 22 extends obliquely toward the side where the suction surface 24 is located along the span of the blade 20, and the swept portion 221 extends obliquely from the leading edge 25 to the trailing edge 26.
  • a right-handed rectangular coordinate system O'-X'Y'Z ' is established on the propeller 100, and the center O' of the coordinate system is located at the center of the hub 10.
  • a right-handed rectangular coordinate system O-XYZ is established on the airfoil of the blade 20, and the circle center O of the coordinate system is located in the first airfoil of the blade 20 (the first airfoil is designed for the blade 20 At the center of the airfoil rotation of the airfoil), the center of the hub 10 is located on the plane where the first airfoil is located.
  • the X axis of the airfoil 20 airfoil is defined as: the starting point is the center O, and the propeller 100 is along the airfoil 20
  • the span direction is the positive direction of the X axis
  • the Y axis of the blade 20 airfoil is defined as: the starting point is the center O, the thumb points to the X axis, and the direction pointed by the index finger is the positive direction of the Y axis
  • the Z axis is defined as: the starting point is the circle center O, the thumb points to the X axis, and the direction indicated by the middle finger is the positive direction of the Z axis.
  • the method of obtaining the center O (the airfoil rotation center of the first airfoil) is as follows.
  • FIG. 14 is the first airfoil of the blade 20 and the plane where the first airfoil is located
  • the X 'value in the coordinate system O'-X'Y'Z' is known, in other words, the X value of the circle center O in the coordinate system O'-X'Y'Z 'is known, that is, X'o is known ;
  • the maximum value Y'max of the plane where the first airfoil is located in the coordinate system O'-X'Y'Z 'minus the minimum value Y'min divided by 3, and then adding the minimum Y'min value is the coordinate
  • the Blade Radius (mm) column indicates the X-axis coordinate position of the airfoil rotation center of the blade 20 in the coordinate system O-XYZ (where the center O and the center O 'are in the same vertical plane, and each airfoil The distance between the center of rotation of the airfoil and the circle O is the same as the distance between each airfoil and the center O 'of the hub 10), so the airfoil rotation center of the blade 20 is also in the coordinate system O'-X'Y'Z
  • the coordinate position of the X axis in the starting point is the airfoil rotation center of the virtual airfoil at the center O ′ of the hub 10.
  • the distance from the center O ′ of the hub 10 is 0 mm.
  • the end point is the airfoil rotation center of the blade 20 farthest from the center O 'of the hub 10, and the distance from the center O' of the hub 10 at this time is 110 mm.
  • the Anhedral Length (mm) column indicates the Z-axis coordinate position of the airfoil rotation center of the blade 20 in the coordinate system O-XYZ. Among them, a positive value of Anhedral Length (mm) indicates an inverse on the blade 20, and a negative value indicates the blade 20 20 counter.
  • the Sweep Length (mm) column indicates the Y-axis coordinate position of the airfoil rotation center of the blade 20 in the coordinate system O-XYZ, where a positive value of the Sweet Length (mm) indicates the blade 20 is swept forward, and a negative value indicates the blade 20 20 swept back.
  • the airfoil rotation center has a Z value of 0 and a Y value of 0 in O-XYZ, indicating that the airfoil is neither on On the contrary, it does not sweep back;
  • the airfoil rotation center has a Z value of 0.000371mm and a Y value of -0.00122mm in O-XYZ. Means that the airfoil is up and back.
  • the lift point of the rated blade 20 enables the aircraft 1000 to automatically correct the flight attitude, increases the inertial stability of the aircraft 1000, makes the aircraft 1000 more stable during flight, and can further reduce Noise caused by turbulence and downwash air impacting the fuselage 50 of the aircraft 1000.
  • the propeller 100 is D1 at a distance from the center of the hub 10 to 36.4% of the radius of the propeller 100, and the angle of attack ⁇ 1 of the blade 20 is 19.35 ° ⁇ 2.5 °; and / or
  • the angle of attack ⁇ 6 of the blade 20 is 11.97 ° ⁇ 2.5 °; and / or
  • D7 is at a distance of 90.9% of the radius of the propeller 100 from the center of the hub 10, and the angle of attack ⁇ 7 of the blade 20 is 9.79 ° ⁇ 2.5 °; and / or
  • the angle of attack ⁇ 8 of the blade 20 is 7.91 ° ⁇ 2.5 °; and / or
  • the angle of attack ⁇ 1 of the blade 20 is 19.35 °; and / or
  • the angle of attack ⁇ 2 of the blade 20 is 18.16 °; and / or
  • the angle of attack ⁇ 3 of the blade 20 is 16.80 °; and / or
  • the angle of attack ⁇ 4 of the blade 20 is 15.39 °; and / or
  • the angle of attack ⁇ 5 of the blade 20 is 13.78 °; and / or
  • the angle of attack ⁇ 6 of the blade 20 is 11.97 °; and / or
  • the angle of attack ⁇ 7 of the blade 20 is 9.79 °; and / or
  • the angle of attack ⁇ 8 of the blade 20 is 7.91 °.
  • the propeller 100 is D1 at a distance of 36.4% of the radius of the propeller 100 from the center of the hub 10, and the angle of attack ⁇ 1 of the blade 20 is 19.35 ° ⁇ 2.5 °;
  • the propeller 100 is D6 at a distance of 81.8% of the radius of the propeller 100 from the center of the hub 10, and the angle of attack ⁇ 6 of the blade 20 is 11.97 ° ⁇ 2.5 °;
  • the propeller 100 is D8 from the center of the hub 10 at 100% of the radius of the propeller 100, and the angle of attack ⁇ 8 of the blade 20 is 7.91 ° ⁇ 2.5 °;
  • the propeller 100 is D1 at a distance of 40 mm from the center of the hub 10, and the angle of attack ⁇ 1 of the blade 20 is 19.35 °;
  • the propeller 100 is D2 at a distance of 50 mm from the center of the hub 10, and the angle of attack ⁇ 2 of the blade 20 is 18.16 °;
  • the propeller 100 is D3 at a distance of 60 mm from the center of the hub 10, and the angle of attack ⁇ 3 of the blade 20 is 16.80 °;
  • the propeller 100 is D4 at a distance of 70 mm from the center of the hub 10, and the angle of attack ⁇ 4 of the blade 20 is 15.39 °;
  • the propeller 100 is D5 at a distance of 80 mm from the center of the hub 10, and the angle of attack ⁇ 5 of the blade 20 is 13.78 °;
  • the propeller 100 is D6 at a distance of 90 mm from the center of the hub 10, and the angle of attack ⁇ 6 of the blade 20 is 11.97 °;
  • the propeller 100 is D7 at a distance of 100 mm from the center of the hub 10, and the angle of attack ⁇ 7 of the blade 20 is 9.79 °;
  • the propeller 100 is D8 at a distance of 110 mm from the center of the hub 10, and the angle of attack ⁇ 8 of the blade 20 is 7.91 °;
  • the propeller 100 is D1 at a distance of 36.4% of the radius of the propeller 100 from the center of the hub 10, and the angle of attack ⁇ 1 of the blade 20 is 19.35 ° ⁇ 2.5 °; D6 at 81.8% of the radius, the angle of attack ⁇ 6 of the blade 20 is 11.97 ° ⁇ 2.5 °; and D7 at a distance of 90.9% of the radius of the propeller 100 from the center of the hub 10, the angle of attack ⁇ 7 of the blade 20 is 9.79 ° ⁇ 2.5 °; and D8 at a distance of 100% of the radius of the propeller 100 from the center of the hub 10, and the angle of attack ⁇ 8 of the blade 20 is 7.91 ° ⁇ 2.5 °; and 40 mm from the center of the hub 10 D1, the angle of attack ⁇ 1 of the blade 20 is 19.35 °; and D2 at a distance of 50mm from the center of the hub 10, and D2, the angle of attack ⁇ 2 of the blade 20 is 18.16 °; and D3 at °
  • the propeller 100 is D2 at a distance of 45.5% of the radius of the propeller 100 from the center of the hub 10, and the chord length L2 of the blade 20 is 23.80mm ⁇ 5mm; and / or
  • D3 is 54.5% of the radius of the propeller 100 from the center of the hub 10, and the chord length L3 of the blade 20 is 21.85 mm ⁇ 5 mm; and / or
  • D4 is at a distance of 63.6% of the radius of the propeller 100 from the center of the hub 10, and the chord length L4 of the blade 20 is 19.92 mm ⁇ 5 mm; and / or
  • D5 is at a distance of 72.7% of the radius of the propeller 100 from the center of the hub 10, and the chord length L5 of the blade 20 is 17.98 mm ⁇ 5 mm; and / or
  • the chord length L2 of the blade 20 is 23.80 mm; and / or
  • the chord length L4 of the blade 20 is 19.92mm; and / or
  • chord length L5 of the blade 20 is 17.98 mm.
  • the distance D2 of the propeller 100 from the center of the hub 10 to 45.5% of the radius of the propeller 100, and the chord length L2 of the blade 20 is 23.80mm ⁇ 5mm;
  • the propeller 100 is D2 at a distance of 50 mm from the center of the hub 10, and the chord length L2 of the blade 20 is 23.80 mm;
  • the propeller 100 is D3 at a distance of 60 mm from the center of the hub 10, and the chord length L3 of the blade 20 is 21.85 mm;
  • the propeller 100 is D4 at a distance of 70mm from the center of the hub 10, and the chord length L4 of the blade 20 is 19.92mm;
  • the propeller 100 is D5 at a distance of 80 mm from the center of the hub 10, and the chord length L5 of the blade 20 is 17.98 mm;
  • the propeller 100 is D2 at a distance of 45.5% of the radius of the propeller 100 from the center of the hub 10, and the chord length L2 of the blade 20 is 23.80 mm ⁇ 5 mm; and, the radius of the propeller 100 is from the center of the hub 10
  • the chord length L3 of the blade 20 is 21.85mm ⁇ 5mm at 54.5% of D3; and at the distance of 63.6% of the radius of the propeller 100 from the center of the hub 10 is D4, the chord length L4 of the blade 20 is 19.92mm ⁇ 5mm; and D5 at a distance of 72.7% of the radius of the propeller 100 from the center of the hub 10, and the chord length L5 of the blade 20 is 17.98mm ⁇ 5mm; and D2, 50mm from the center of the hub 10, the blade
  • the chord length L2 of 20 is 23.80mm; and, D3 is 60mm from the center of the hub 10, and the chord length L3 of the blade 20 is 21.85mm; and, D4 is 70mm from
  • the propeller 100 is D1 at a distance from the center of the hub 10 to 36.4% of the radius of the propeller 100, and the chord length L1 of the blade 20 is 25.72mm ⁇ 5mm;
  • D6 is at a distance of 81.8% of the radius of the propeller 100 from the center of the hub 10, and the chord length L6 of the blade 20 is 16.03 mm ⁇ 5 mm; and / or
  • D7 is at a distance of 90.9% of the radius of the propeller 100 from the center of the hub 10, and the chord length L7 of the blade 20 is 12.90mm ⁇ 5mm; and / or
  • chord length L8 of the blade 20 is 4.42 mm ⁇ 2 mm; and / or
  • chord length L1 of the blades 20 is 25.72mm at a distance of 40mmD1 from the center of the hub 10; and / or
  • chord length L6 of the blade 20 is 16.03mm at 90mmD6 from the center of the hub 10; and / or
  • chord length L7 of the blade 20 is 12.90 mm; and / or
  • chord length L8 of the blade 20 is 4.42 mm.
  • the propeller 100 is D1 at a distance of 36.4% of the radius of the propeller 100 from the center of the hub 10, and the chord length L1 of the blade 20 is 25.72mm ⁇ 5mm;
  • the propeller 100 is D6 at a distance of 81.8% of the radius of the propeller 100 from the center of the hub 10, and the chord length L6 of the blade 20 is 16.03 mm ⁇ 5 mm;
  • the propeller 100 is D8 at a distance of 100% of the radius of the propeller 100 from the center of the hub 10, and the chord length L8 of the blade 20 is 4.42mm ⁇ 2mm;
  • the propeller 100 is 40 mm D1 from the center of the hub 10, and the chord length L1 of the blade 20 is 25.72 mm;
  • the propeller 100 is 90mmD6 from the center of the hub 10, and the chord length L6 of the blade 20 is 16.03mm;
  • the propeller 100 is 100 mm D7 from the center of the hub 10, and the chord length L7 of the blade 20 is 12.90 mm;
  • the propeller 100 is at a distance of 110mmD8 from the center of the hub 10, and the chord length L8 of the blade 20 is 4.42mm;
  • the propeller 100 is D1 at a distance of 36.4% of the radius of the propeller 100 from the center of the hub 10, and the chord length L1 of the blade 20 is 25.72mm ⁇ 5mm; and the radius of the propeller 100 is from the center of the hub 10 D6 at 81.8% of the length, the chord length L6 of the blade 20 is 16.03mm ⁇ 5mm; and, D9 is 90.9% of the radius of the propeller 100 from the center of the hub 10, and the chord length L7 of the blade 20 is 12.90mm ⁇ 5mm; and D8 at a distance of 100% of the radius of the propeller 100 from the center of the hub 10, and the chord length L8 of the blade 20 is 4.42mm ⁇ 2mm; and, at a distance of 40mmD1 from the center of the hub 10, the blade 20 The chord length L1 is 25.72mm; and, at a distance of 90mmD6 from the center of the hub 10, the chord length L6 of the blade 20 is 16.03mm; and, at a distance of 100mm
  • the pitch of the blade 20 is 5.10 ⁇ 0.5 inches.
  • the pitch in this embodiment refers to the pitch at 3/4 of the radius of the propeller 100. Thereby, the resistance of the air can be reduced, and the pulling force of the blade 20 can be increased.
  • the pitch of the blade 20 may be 5.05 inches, 5.10 inches, or 5.15 inches, or any of 5.06 inches, 5.07 inches, 5.08 inches, 5.09 inches, 5.11 inches, 5.12 inches, 5.13 inches, 5.14 inches, or the like. Any value between the two.
  • the propeller 100 can significantly increase the pulling force in the plateau region and ensure sufficient power redundancy. At the same time, performance is taken into account to a certain extent, the relay distance is increased, and the flight performance of the aircraft 1000 is improved.
  • the propeller 100 using the blade 20 has a larger pulling force at a lower power condition, thereby reducing power loss and increasing cruising distance. In extreme cases where the density is high and the takeoff weight is low in low altitude areas, it can significantly increase the pulling force, ensure sufficient power while extending the endurance time, and improve flight performance.
  • the propeller 100 provided in this embodiment can also effectively reduce the noise generated by the turbulence and the downwash air impacting the fuselage 50 of the aircraft 1000, reduce the discomfort caused by the human ear, and improve the user experience.
  • an embodiment of the present invention provides a power assembly 200 including a driving member 30 and a propeller 100 according to any embodiment of the present invention.
  • the propeller 100 is connected to the driving member 30 through a propeller hub 10.
  • the power assembly 200 includes at least two arms 40. At least two arms 40 are connected at the center of the propeller 100.
  • the driving member 30 is disposed on the arm 40.
  • the specific structure of the propeller 100 is the same as that of the foregoing embodiment, and is not repeated here. That is, the description of the propeller 100 in the above embodiments and implementations is also applicable to the power assembly 200 provided in the embodiment of the present invention.
  • the angle of attack ⁇ 2 of the blade 20 is 18.16 ° ⁇ 2.5 °; from the center of the hub 10 is D3 is 54.5% of the radius of the propeller 100, and the angle of attack ⁇ 3 of the blade 20 is 16.80 ° ⁇ 2.5 °; D4 is 63.6% of the radius of the propeller 100 from the center of the hub 10, and the angle of attack ⁇ 4 of the blade 20 is 15.39 ° ⁇ 2.5 °; D5 is at a distance of 72.7% of the radius of the propeller 100 from the center of the hub 10, and the angle of attack ⁇ 5 of the blade 20 is 13.78 ° ⁇ 2.5 °; therefore, a propeller having a specific shape is limited by the above parameters
  • the blade 20, and the propeller 100 using the blade 20 can reduce air resistance, improve pulling force and efficiency, and increase the relay distance of the aircraft 1000 to improve the flight performance of the aircraft 1000.
  • the driving member 30 is a motor
  • the KV value of the motor is 1040 ⁇ 104 rpm / (minute ⁇ volt).
  • the KV value of the motor can be 936 rpm / (minute ⁇ volt) or 1040 rpm / (minute ⁇ volt) or 1144 rpm / (minute ⁇ volt) or 940 rpm / (minute ⁇ volt) or 960 rpm / ( (Min.volts), 980 rpm / (min.volts), 1000 rpm / (min.volts), 1020 rpm / (min.volts), 1060 rpm / (min.volts), 1100 rpm / (min.volts), 1140 revolutions / (minutes ⁇ volts), etc. or a value between any of the above.
  • the power performance of the power module 200 can be ensured.
  • an embodiment of the present invention provides an aircraft 1000 including a fuselage 50 and a power assembly 200 according to any embodiment of the present invention.
  • the power assembly 200 is connected to the fuselage 50.
  • the plurality of arms 40 of the power module 200 are connected to the fuselage 50 to mount the power module 200 on the fuselage 50.
  • the specific structure of the power module 200 is similar to the foregoing embodiment, and is not repeated here. That is, the description of the propeller 100 in the foregoing embodiments and implementations is also applicable to the aircraft 1000 provided in the embodiment of the present invention.
  • the aircraft 1000 includes a plurality of power components 200, and the rotation directions of the plurality of power components 200 are different.
  • the aircraft 1000 is a multi-rotor aircraft, such as a quad-rotor unmanned aircraft.
  • the angle of attack ⁇ 2 of the blade 20 is 18.16 ° ⁇ 2.5 °; the propeller is located from the center of the hub 10 D3 at 54.5% of the radius of 100, the angle of attack ⁇ 3 of the blade 20 is 16.80 ° ⁇ 2.5 °; D4 is 63.6% of the radius of the propeller 100 from the center of the hub 10, and the angle of attack ⁇ 4 of the blade 20 is 15.39 ° ⁇ 2.5 °; D5 is at a distance of 72.7% of the radius of the propeller 100 from the center of the hub 10, and the angle of attack ⁇ 5 of the blade 20 is 13.78 ° ⁇ 2.5 °; therefore, the blade with a specific shape is limited by the above parameters 20.
  • the propeller 100 using the blade 20 can reduce air resistance, improve pulling force and efficiency, and increase the relay distance of the aircraft 1000 to improve the flight performance of the aircraft 1000.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, the meaning of "plurality” is at least two, for example, two, three, unless it is specifically and specifically defined otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种螺旋桨(100)、动力组件(200)及飞行器(1000)。螺旋桨(100)包括桨毂(10)和桨叶(20),桨叶(20)连接在桨毂(10)上。在距离桨毂(10)的中心为螺旋桨(100)的半径的45.5%处,桨叶(20)的攻角为18.16°±2.5°;在距离桨毂(10)的中心为螺旋桨(100)的半径的54.5%处,桨叶(20)的攻角为16.80°±2.5°;在距离桨毂(10)的中心为螺旋桨(100)的半径的63.6%处,桨叶(20)的攻角为15.39°±2.5°;在距离桨毂(10)的中心为螺旋桨(100)的半径的72.7%处,桨叶(20)的攻角为13.78°±2.5°;螺旋桨(100)能够减少空气阻力,提高拉力和效率,增加飞行器(1000)的继航距离和提高飞行器(1000)的飞行性能。

Description

螺旋桨、动力组件及飞行器 技术领域
本发明涉及飞行器领域,特别涉及螺旋桨、动力组件及飞行器。
背景技术
飞行器上的螺旋桨,作为飞行器的重要关键器件,其用于将电机或发动机中转轴的转动转化为推力或升力。
现有技术中的螺旋桨,其外形形状大多呈矩形,其阻力大、效率低,导致飞行器的飞行速度小、继航距离短,严重影响了飞行器的飞行性能。
发明内容
本发明的实施方式提供了一种螺旋桨、动力组件及飞行器。
本发明实施方式的螺旋桨,包括:桨毂和桨叶,所述桨叶连接在所述桨毂上,其中:
在距离所述桨毂的中心为所述螺旋桨的半径的45.5%处,所述桨叶的攻角为18.16°±2.5°;在距离所述桨毂的中心为所述螺旋桨的半径的54.5%处,所述桨叶的攻角为16.80°±2.5°;在距离所述桨毂的中心为所述螺旋桨的半径的63.6%处,所述桨叶的攻角为15.39°±2.5°;在距离所述桨毂的中心为所述螺旋桨的半径的72.7%处,所述桨叶的攻角为13.78°±2.5°。
在某些实施方式中,在距离所述桨毂的中心为所述螺旋桨的半径的36.4%处,所述桨叶的攻角为19.35°±2.5°;及/或
在距离所述桨毂的中心为所述螺旋桨的半径的81.8%处,所述桨叶的攻角为11.97°±2.5°;及/或
在距离所述桨毂的中心为所述螺旋桨的半径的90.9%处,所述桨叶的攻角为9.79°±2.5°;及/或
在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的 攻角为7.91°±2.5°;及/或
在距离所述桨毂的中心40mm处,所述桨叶的攻角为19.35°;及/或
在距离所述桨毂的中心50mm处,所述桨叶的攻角为18.16°;及/或
在距离所述桨毂的中心60mm处,所述桨叶的攻角为16.80°;及/或
在距离所述桨毂的中心70mm处,所述桨叶的攻角为15.39°;及/或
在距离所述桨毂的中心80mm处,所述桨叶的攻角为13.78°;及/或
在距离所述桨毂的中心90mm处,所述桨叶的攻角为11.97°;及/或
在距离所述桨毂的中心100mm处,所述桨叶的攻角为9.79°;及/或
在距离所述桨毂的中心110mm处,所述桨叶的攻角为7.91°。
在某些实施方式中,在距离所述桨毂的中心为所述螺旋桨的半径的45.5%处,所述桨叶的弦长为23.80mm±5mm;及/或
在距离所述桨毂的中心为所述螺旋桨的半径的54.5%处,所述桨叶的弦长为21.85mm±5mm;及/或
在距离所述桨毂的中心为所述螺旋桨的半径的63.6%处,所述桨叶的弦长为19.92mm±5mm;及/或
在距离所述桨毂的中心为所述螺旋桨的半径的72.7%处,所述桨叶的弦长为17.98mm±5mm;及/或
在距离所述桨毂的中心50mm处,所述桨叶的弦长为23.80mm;及/或
在距离所述桨毂的中心60mm处,所述桨叶的弦长为21.85mm;及/或
在距离所述桨毂的中心70mm处,所述桨叶的弦长为19.92mm;及/或
在距离所述桨毂的中心80mm处,所述桨叶的弦长为17.98mm。
在某些实施方式中,在距离所述桨毂的中心为所述螺旋桨的半径的36.4%处,所述桨叶的弦长为25.72mm±5mm;及/或
在距离所述桨毂的中心为所述螺旋桨的半径的81.8%处,所述桨叶的弦长为16.03mm±5mm;及/或
在距离所述桨毂的中心为所述螺旋桨的半径的90.9%处,所述桨叶的弦长为12.90mm±5mm;及/或
在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的弦长为4.42mm±2mm;及/或
在距离所述桨毂的中心40mm处,所述桨叶的弦长为25.72mm;及/或
在距离所述桨毂的中心90mm处,所述桨叶的弦长为16.03mm;及/或
在距离所述桨毂的中心100mm处,所述桨叶的弦长为12.90mm;及/或
在距离所述桨毂的中心110mm处,所述桨叶的弦长为4.42mm。
在某些实施方式中,所述螺旋桨的直径为220mm±22mm;及/或
所述桨叶的螺距为5.10±0.5英寸。
在某些实施方式中,所述桨叶包括桨根、背离所述桨根的桨尖、相背的压力面及吸力面、连接于所述压力面及所述吸力面一侧边的前缘、连接于所述压力面及所述吸力面另一侧边的后缘、及形成于所述桨尖的后掠部,所述后掠部自所述前缘向所述后缘倾斜延伸;所述桨尖沿所述桨叶的展向朝所述吸力面所在的一侧倾斜延伸。
在某些实施方式中,所述桨叶在靠近所述桨尖的位置形成回弯处,所述前缘自所述回弯处开始沿所述桨叶的展向朝所述吸力面所在的一侧倾斜延伸,所述后掠部自所述回弯处从所述前缘向所述后缘倾斜延伸,所述回弯处距离所述桨毂的中心为所述螺旋桨的半径的88%。
在某些实施方式中,所述前缘外凸形成有靠近所述桨根的呈曲面状的前缘拱起部,所述后缘外凸形成有靠近所述桨根的呈曲面状的后缘拱起部;及/或
所述桨叶为至少两个,至少两个所述桨叶连接在所述桨毂上并关于所述桨毂的中心呈中心对称;及/或
所述桨叶具有穿过所述桨毂的中心的中轴线,所述前缘具有平行于所述中轴线的前缘切线,所述后缘具有平行于所述中轴线的后缘切线,所述后掠部位于所述前缘切线与所述后缘切线之间;及/或
所述吸力面和所述压力面均为曲面;及/或
所述桨尖的自由端的侧面为平面。
本发明实施方式的动力组件,包括驱动件和上述任一实施方式所述的螺旋桨,所述螺旋桨通过所述桨毂与所述驱动件连接。
在某些实施方式中,所述驱动件为电机,所述电机的KV值为1040±104转/(分钟·伏特)。
本发明实施方式的飞行器包括机身和上述任一实施方式所述的动力组件,所述动力组件与所述机身连接。
在某些实施方式中,所述飞行器包括多个动力组件,所述多个动力组件的转动方向不同,所述飞行器为多旋翼飞行器。
本发明实施方式的飞行器和动力组件中,由于在距离桨毂的中心为螺旋桨的半径的45.5%处,桨叶的攻角为18.16°±2.5°;在距离桨毂的中心为螺旋桨的半径的54.5%处,桨叶的攻角为16.80°±2.5°;在距离桨毂的中心为螺旋桨的半径的63.6%处,桨叶的攻角为15.39°±2.5°;在距离桨毂的中心为螺旋桨的半径的72.7%处,桨叶的攻角为13.78°±2.5°;因此,由上述参数限定出具备特定形状的桨叶,采用桨叶的螺旋桨能够在减少空气阻力,提高拉力和效率,增加飞行器的继航距离以提高飞行器的飞行性能。
本发明的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实施方式的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的 描述中将变得明显和容易理解,其中:新增附图修改、说明书中的图示说明
图1是本发明实施例提供的一种螺旋桨的平面示意图。
图2是图1所示实施例的螺旋桨中距离桨毂的中心50mm处的B-B剖面的剖视图。
图3是图1所示实施例的螺旋桨中距离桨毂的中心60mm处的C-C剖面的剖视图。
图4是图1所示实施例的螺旋桨中距离桨毂的中心70mm处的D-D剖面的剖视图。
图5是图1所示实施例的螺旋桨中距离桨毂的中心80mm处的E-E剖面的剖视图。
图6是图1所示实施例的螺旋桨中距离桨毂中心40mm处的A-A剖面的剖视图。
图7是图1所示实施例的螺旋桨中距离桨毂的中心90mm处的F-F剖面的剖视图。
图8是图1所示实施例的螺旋桨中距离桨毂中心100mm处的G-G剖面的剖视图。
图9是图1所示实施例的螺旋桨中距离桨毂的中心110mm处的H-H剖面的剖视图。
图10是本发明实施例提供的一种螺旋桨的立体图。
图11是本发明实施例提供的一种螺旋桨的立体图。
图12是本发明实施例提供的一种螺旋桨的平面示意图。
图13是本发明实施例提供的一种螺旋桨的平面示意图。
图14是本发明实施例提供的桨叶翼型旋转中心的坐标示意图。
图15是本发明实施例提供的一种飞行器的平面示意图。
主要元件符号说明:
螺旋桨100、桨毂10、桨叶20、桨根21、桨尖22、后掠部221、自由端222、压力面23、吸力面24、前缘25、前缘拱起部251、后缘26、后缘拱起部261、回弯处27;
动力组件200、驱动件30、机臂40;
飞行器1000、机身50。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本发明使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本发明可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本发明范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本实施例中出现的上、下等方位用语是以螺旋桨安装于飞行器以后所述螺旋桨以及所述飞行器的常规运行姿态为参考,而不应该认为具有限制性。
下面结合附图,对本发明的螺旋桨、动力组件及飞行器进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
请参见图1至图5,本发明实施例提供一种螺旋桨100,螺旋桨100包括 桨毂10和桨叶20。
桨叶20连接在桨毂10上。当然,桨叶20可以与桨毂10一体成型,也可以分别加工再同定安装成一体。在距离桨毂10的中心为螺旋桨100的半径的45.5%处D2,桨叶20的攻角α2为18.16°±2.5°。在距离桨毂10的中心为螺旋桨100的半径的54.5%处D3,桨叶20的攻角α3为16.80°±2.5°。在距离桨毂10的中心为螺旋桨100的半径的63.6%处D4,桨叶20的攻角α4为15.39°±2.5°。在距离桨毂10的中心为螺旋桨100的半径的72.7%处D5,桨叶20的攻角α5为13.78°±2.5°。
本实施例中,由于在距离桨毂10的中心为螺旋桨100的半径的45.5%处D2,桨叶20的攻角α2为18.16°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的54.5%处D3,桨叶20的攻角α3为16.80°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的63.6%处D4,桨叶20的攻角α4为15.39°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的72.7%处D5,桨叶20的攻角α5为13.78°±2.5°;因此,由上述参数限定出具备特定形状的桨叶20,采用桨叶20的螺旋桨100能够在减少空气阻力,提高拉力和效率,增加飞行器1000(如图15所示)的继航距离以提高飞行器1000的飞行性能。
请继续参见图1至图5,本发明实施例提供一种螺旋桨100,螺旋桨100包括桨毂10和桨叶20。
在距离桨毂10的中心为螺旋桨100的半径的45.5%处D2,桨叶20的攻角α2为18.16°±2.5°,桨叶20的弦长L2为23.80mm±5mm。在距离桨毂10的中心为螺旋桨100的半径的54.5%处D3,桨叶20的攻角α3为16.80°±2.5°,桨叶20的弦长L3为21.85mm±5mm。在距离桨毂10的中心为螺旋桨100的半径的63.6%处D4,桨叶20的攻角α4为15.39°±2.5°,桨叶20的弦长L4为19.92mm±5mm。在距离桨毂10的中心为螺旋桨100的半径的72.7%处D5,桨叶20的攻角α5为13.78°±2.5°,桨叶20的弦长L5为17.98mm±5mm。
本实施例中,在距离桨毂10的中心为螺旋桨100的半径的45.5%处D2,桨叶20的攻角α2为18.16°±2.5°,桨叶20的弦长L2为23.80mm±5mm;在距离桨毂10的中心为螺旋桨100的半径的54.5%处D3,桨叶20的攻角α 3为16.80°±2.5°,桨叶20的弦长L3为21.85mm±5mm;在距离桨毂10的中心为螺旋桨100的半径的63.6%处D4,桨叶20的攻角α4为15.39°±2.5°,桨叶20的弦长L4为19.92mm±5mm;在距离桨毂10的中心为螺旋桨100的半径的72.7%处D5,桨叶20的攻角α5为13.78°±2.5°,桨叶20的弦长L5为17.98mm±5mm;因此,由上述参数限定出具备特定形状的桨叶20,采用桨叶20的螺旋桨100能够在减少空气阻力,提高拉力和效率,增加飞行器1000的继航距离以提高飞行器1000的飞行性能。
请参见表1,本实施例所提供的螺旋桨100与现有的螺旋桨的测试结果的比对,由表1中可看出,在相同的拉力下,本实施方式所提供螺旋桨100的功率更低,也即:在较小的功率条件下,具有更大的拉力,从而降低电量损耗,增加续航距离。由此,本实施方式提供的螺旋桨100在密度降低的高海拔区域或者低海拔地区起飞重量较大的极端情况下,其可以显著提高拉力,保证足够动力同时延长续航时间,提高飞行性能。
表1
Figure PCTCN2018105982-appb-000001
请参见图1至图5,在距离桨毂10的中心为螺旋桨100的半径的45.5%处D2,桨叶20的攻角α2可以为15.66°或18.16°或20.66°,或者是16.16°、16.66°、17.16°、17.66°、18.66°、19.16°、19.66°、20.16°等中的任意一个或上述任意二者之间的任一数值,桨叶20的弦长L2可以为18.80mm或23.80mm或28.80mm,或者是19.80mm、20.80mm、21.80mm、22.80mm、24.80mm、25.80mm、26.80mm、27.80mm等中的任意一个或上述任意二者之间的数值。在距离桨毂10的中心为螺旋桨100的半径的54.5%处D3,桨叶20的攻角α3可以为14.30°或16.80°或19.30°,或者是14.80°、15.30°、15.80°、16.30°、17.30°、17.80°、18.30°、18.80°等中 的任意一个或上述任意二者之间的数值,桨叶20的弦长L3可以为16.85mm或21.85mm或26.85mm,或者是17.85mm、18.85mm、19.85mm、20.85mm、22.85mm、23.85mm、24.85mm、25.85mm等中的任意一个或上述任意二者之间的数值。在距离桨毂10的中心为螺旋桨100的半径的63.6%处D4,桨叶20的攻角α4可以为12.89°或15.39°或17.89°,或者是13.39°、13.89°、14.39°、14.89°、15.89°、16.39°、16.89°、17.39°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L4可以为14.92mm或19.92mm或24.92mm,或者是15.92mm、16.92mm、17.92mm、18.92mm、20.92mm、21.92mm、22.92mm、23.92mm等中的任意一个或上述任意二者之间的数值。在距离桨毂10的中心为螺旋桨100的半径的72.7%处D5,桨叶20的攻角α5可以为11.28°或13.78°或16.28°,或者是11.78°、12.28°、12.78°、13.28°、14.28°、14.78°、15.28°、15.78°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L5可以为12.98mm或17.98mm或22.98mm,或者是13.98mm、14.98mm、15.98mm、16.98mm、18.98mm、19.98mm、20.98mm、21.98mm等中的任意一个或上述任意二者之间的数值。
其中,桨毂10可以为圆筒状,或桨毂10的截面可以为椭圆形、菱形等形状。桨毂10中心设有连接孔,连接孔用于套设在电机的输出端上。桨叶20可以呈长条状,桨叶20与桨毂10连接,并沿桨毂10的径向延伸。
请参见图6所示,本实施例中,可选地,在距离桨毂10的中心为螺旋桨100的半径的36.4%处D1,桨叶20的攻角α1为19.35°±2.5°,桨叶20的弦长L1为25.72mm±5mm,以进一步减少螺旋桨100的空气阻力,提高拉力和效率。其中,桨叶20的攻角α1可以为16.85°或19.35°或21.85°,或者是17.35°、17.85°、18.35°、18.85°、19.85°、20.35°、20.85°、21.35°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L1可以为20.72mm或25.72mm或30.72mm,或者是21.72mm、22.72mm、23.72mm、24.72mm、26.72mm、27.72mm、28.72mm、29.72mm等中的任意一个或上述任意二者之间的数值。
请参见图7所示,本实施例中,可选地,在距离桨毂10的中心为螺旋桨100的半径的81.8%处D6,桨叶20的攻角α6为11.97°±2.5°,桨叶20的弦长L6为16.03mm±5mm,以进一步减少螺旋桨100的空气阻力,提高拉 力和效率。其中,桨叶20的攻角α6可以为9.47°或11.97°或14.47°,或者是9.97°、10.47°、10.97°、11.47°、12.47°、12.97°、13.47°、13.97°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L6可以为11.03mm或16.03mm或21.03mm,或者是12.03mm、13.03mm、14.03mm、15.03mm、17.03mm、18.03mm、19.03mm、20.03mm等中的任意一个或上述任意二者之间的数值。
请参见图8所示,本实施例中,可选地,在距离桨毂10的中心为螺旋桨100的半径的90.9%处D7,桨叶20的攻角α7为9.79°±2.5°,桨叶20的弦长L7为12.90mm±5mm,以进一步减少螺旋桨100的空气阻力,提高拉力和效率。其中,桨叶20的攻角α7可以为7.29°或9.79°或12.29°,或者是7.79°、8.29°、8.79°、9.29°、10.29°、10.79°、11.29°、11.79°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L7可以为7.90mm或12.90mm或17.90mm,或者是8.90mm、9.90mm、10.90mm、11.90mm、13.90mm、14.90mm、15.90mm、16.90mm等中的任意一个或上述任意二者之间的数值。
请参见图9所示,本实施例中,可选地,在距离桨毂10的中心为螺旋桨100的半径的100%处D8,桨叶20的攻角α8为7.91°±2.5°,桨叶20的弦长L8为4.42mm±2mm,以进一步减少螺旋桨100的空气阻力,提高拉力和效率。其中,桨叶20的攻角α8可以为5.41°或7.91°或10.41°,或者是5.91°、6.41°、6.91°、7.41°、8.41°、8.91°、9.41°、9.91°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L8可以为2.42mm或4.42mm或6.42mm,或者是2.92mm、3.42mm、3.92mm、4.92mm、5.42mm、5.92mm等中的任意一个或上述任意二者之间的数值。
请再次参见图1至图5所示,本实施例中,可选地,螺旋桨100的直径为220mm±22mm。在距离桨毂10的中心50mm处D2,桨叶20的攻角α2为18.16°,桨叶20的弦长L2为23.80mm。在距离桨毂10的中心60mm处D3,桨叶20的攻角α3为16.80°,桨叶20的弦长L3为21.85mm。在距离桨毂10的中心70mm处D4,桨叶20的攻角α4为15.39°,桨叶20的弦长L4为19.92mm。在距离桨毂10的中心80mm处D5,桨叶20的攻角α5为13.78°,桨叶20的弦长L5为17.98mm。由此,可进一步减少螺旋桨100的 空气阻力,提高拉力和效率。其中,螺旋桨100的直径可以为198mm或220mm或242mm,或者是202mm、208mm、212mm、216mm、224mm、228mm、232mm、236mm、240mm等中的任意一个或上述任意二者之间的数值。
请再次参见图6所示,本实施例中,可选地,螺旋桨100的直径为220mm±22mm。在距离桨毂10的中心40mm处D1,桨叶20的攻角α1为19.35°,桨叶20的弦长L1为25.72mm。由此,可进一步减少螺旋桨100的空气阻力,提高拉力和效率。其中,螺旋桨100的直径可以为198mm或220mm或242mm,或者是202mm、208mm、212mm、216mm、224mm、228mm、232mm、236mm、240mm等中的任意一个或上述任意二者之间的数值。
再次参见图7所示,本实施例中,可选地,螺旋桨100的直径为220mm±22mm。在距离桨毂10的中心90mm处D6,桨叶20的攻角α6为11.97°,桨叶20的弦长L6为16.03mm。由此,可进一步减少螺旋桨100的空气阻力,提高拉力和效率。其中,螺旋桨100的直径可以为198mm或220mm或242mm,或者是202mm、208mm、212mm、216mm、224mm、228mm、232mm、236mm、240mm等中的任意一个或上述任意二者之间的数值。
请再次参见图8所示,本实施例中,可选地,螺旋桨100的直径为220mm±22mm。在距离桨毂10的中心100mm处D7,桨叶20的攻角α7为9.79°,桨叶20的弦长L7为12.90mm。由此,可进一步减少螺旋桨100的空气阻力,提高拉力和效率。其中,螺旋桨100的直径可以为198mm或220mm或242mm,或者是202mm、208mm、212mm、216mm、224mm、228mm、232mm、236mm、240mm等中的任意一个或上述任意二者之间的数值。
再次参见图9所示,本实施例中,可选地,螺旋桨100的直径为220mm±22mm。在距离桨毂10的中心110mm处D8,桨叶20的攻角α8为7.91°,桨叶20的弦长L8为4.42mm。由此,可进一步减少螺旋桨100的空气阻力,提高拉力和效率。其中,螺旋桨100的直径可以为198mm或220mm或242mm,或者是202mm、208mm、212mm、216mm、224mm、228mm、232mm、236mm、240mm等中的任意一个或上述任意二者之间的数值。
请参见图10至图13,本实施例中,可选地,桨叶20包括桨根21、背离桨根21的桨尖22、相背的压力面23及吸力面24。桨尖22沿桨叶20的展向 朝吸力面24所在的一侧倾斜延伸。如此,不仅能减小空气阻力,提高桨叶20的拉力,还减少了桨叶20在工作时产生的噪声,使得飞行器1000在悬停时更安静,提高了用户体验。其中,压力面23为飞行器1000正常飞行时桨叶20的朝向地面的表面,吸力面24为飞行器1000正常飞行时桨叶20的朝向天空的表面。
本实施例中,可选地,吸力面24和压力面23均为曲面。吸力面24和压力面23为曲面的气动外形,不仅能减小空气阻力,提高桨叶20的拉力,还能避免桨叶20各部分产生的湍流以及下洗气流直接冲击飞行器1000的机身50(如图15所示),从而减小飞行器1000整体的噪音。
本实施例中,可选地,桨叶20还包括连接于压力面23及吸力面24一侧边的前缘25、连接于压力面23及吸力面24另一侧边的后缘26、及形成于桨尖22的后掠部221,后掠部221自前缘25向后缘26倾斜延伸。如此,以起到进一步提高螺旋桨100的拉力及效率的效果。
本实施例中,可选地,桨叶20在桨尖22的位置形成回弯处27,前缘25自回弯处27开始沿桨叶20的展向朝吸力面24所在的一侧倾斜延伸,后掠部221自回弯处27开始从前缘25向后缘26倾斜延伸。回弯处27的位置用MM表示。
本实施例中,可选地,回弯处27距离桨毂10的中心为螺旋桨100的半径的88%。回弯处27远离桨毂10的中心,提升桨叶20的美观,还减少螺旋桨100与飞行器1000的机臂40(如图15所示)之间的相互影响。
本实施例中,可选地,前缘25外凸形成有靠近桨根21的呈曲面状的前缘拱起部251,后缘26外凸形成有靠近桨根21的呈曲面状的后缘拱起部261。前缘拱起部251和后缘拱起部261为曲面状起到进一步提高桨叶20的拉力的效果。
本实施例中,可选地,桨叶20为至少两个,至少两个桨叶20连接在桨毂10上并关于桨毂10的中心呈中心对称。由此,可提高螺旋桨100的平衡性。
本实施例中,可选地,桨尖22的自由端222的侧面为平面。由此,可提升螺旋桨100的美观。
请参见图1所示,本实施例中,可选地,桨叶20具有穿过桨毂10的中心的中轴线N-N,前缘25具有平行于中轴线N-N的前缘切线O-O,后缘26具有平行于中轴线N-N的后缘切线P-P,后掠部221位于前缘切线O-O与后缘切线P-P之间。由此,后掠部221不仅能减小螺旋桨100的空气阻力,提高飞行器1000的可操纵性,使飞行器1000更加平稳,还能够减小桨叶20产生的湍流及下洗气流,从而减少打到飞行器1000的机身50上的湍流及下洗气流,进一步减小飞行器1000整体的噪音。
请一并参阅图1及图10,本实施方式中,桨尖22沿桨叶20的展向朝吸力面24所在的一侧倾斜延伸,后掠部221自前缘25向后缘26倾斜延伸。具体地,如图10,在螺旋桨100上建立右手直角坐标系O’-X’Y’Z’,坐标系的圆心O’位于桨毂10的中心处。请结合图14,在桨叶20的翼型上建立右手直角坐标系O-XYZ,坐标系的圆心O位于桨叶20的第一个翼型(该第一个翼型为桨叶20设计时的虚拟翼型)的翼型旋转中心处,桨毂10的中心位于第一个翼型所在的平面,桨叶20翼型的X轴定义为:起始点为圆心O,螺旋桨100沿桨叶20的展向为X轴的正方向;桨叶20翼型的Y轴定义为:起始点为圆心O,拇指指向X轴,食指所指的方向为Y轴的正方向;桨叶20翼型的Z轴定义为:起始点为圆心O,拇指指向X轴,中指所指方向为Z轴的正方向。圆心O(第一个翼型的翼型旋转中心)的获取方式如下,请一并参阅图10和图14,假设图14为桨叶20的第一个翼型,第一个翼型所在平面在坐标系O’-X’Y’Z’中的X’值已知,换言之,圆心O在坐标系O’-X’Y’Z’中的X值已知,即X’o为已知;第一个翼型所在平面在坐标系O’-X’Y’Z’中的最大值Y’max减去最小值Y’min除以3,然后加上最小Y’min值的坐标即为圆心O在坐标系O’-X’Y’Z’中的Y’值,即,Y’o=(Y’max-Y’min)/3+Y’min;第一个翼型所在平面在坐标系O’-X’Y’Z’中的最大值Z’max减去最小值Z’min除以2,然后加上最小Z’min值的坐标即为圆心O在坐标系O’-X’Y’Z’中的Z’值,即,Z’o=(Z’max-Z’min)/2+Z’min;如此,圆心O在坐标系O’-X’Y’Z’中的位置(X’o,Y’o,Z’o)得以确定,便可以以O为圆心建立右手直角坐标系O-XYZ。在建立右手直角坐标系O-XYZ后,后续的其他翼型的旋转中心都可以按照此方法计算得出在右手直角坐标系O-XYZ中的相应坐标,在 此不再赘述。
请结合表2,Blade Radius(mm)列表示桨叶20的翼型旋转中心在坐标系O-XYZ中的X轴坐标位置(其中,圆心O与圆心O’位于同一垂直平面内,各个翼型的翼型旋转中心与圆心O的距离分别与各个翼型与桨毂10的中心O’的距离相同),故桨叶20的翼型旋转中心也即在坐标系O’-X’Y’Z’中的X’轴坐标位置,起始处为桨毂10的中心O’处的虚拟翼型的翼型旋转中心,此时距离桨毂10的中心O’的距离为0mm。终点处为桨叶20的最远离桨毂10中心O’的一个翼型旋转中心处,此时距离桨毂10的中心O’的距离为110mm。Anhedral Length(mm)列表示桨叶20的翼型旋转中心在坐标系O-XYZ中的Z轴坐标位置,其中,Anhedral Length(mm)的正值表示桨叶20上反,负值表示桨叶20下反。Sweep Length(mm)列表示桨叶20的翼型旋转中心在坐标系O-XYZ中的Y轴坐标位置,其中,Sweep Length(mm)的正值表示桨叶20前掠,负值表示桨叶20后掠。例如,对于距离桨毂10的中心O’的距离为5.5mm的翼型而言,其翼型旋转中心在O-XYZ中Z值为0,Y值也为0,表示该翼型既不上反,也不后掠;对于距离桨毂10的中心O’的距离为96.8mm的翼型而言,其翼型旋转中心在O-XYZ中Z值为0.000371mm,Y值为-0.00122mm,表示该翼型上反,且后掠。
表2
Figure PCTCN2018105982-appb-000002
Figure PCTCN2018105982-appb-000003
由表2可知,在桨叶20距离桨毂10的中心O’的距离为96.8mm时,即回弯处27为距离桨毂10的中心为螺旋桨100的半径的88%时,后掠部221自回弯处27开始从前缘25向后缘26倾斜延伸,也即是说,在桨叶20距离桨毂10的中心O’的距离为96.8mm时开始后掠。在多个桨叶20同时工作时,由于后掠部221有规律地自回弯处27开始从前缘25向后缘26倾斜延伸,能够减少打到飞行器1000的机身50上的湍流及下洗气流,减小桨叶20受到的空气阻力,进一步提高了螺旋桨100的拉力及效率,提高了飞行器1000的可操纵性,使飞行器1000更加平稳,同时,还能进一步减小由于湍流及下洗气流冲击飞行器1000的机身50产生的噪音。
由表2还可知,在桨叶20距离桨毂10的中心的距离为96.8mm时,即回弯处27距离桨毂10的中心O’为螺旋桨100的半径的88%时,前缘25自回弯处27开始沿桨叶20的展向朝吸力面24所在的一侧倾斜延伸,也即是说,在桨叶20距离桨毂10的中心O’的距离为96.8mm时开始上反。在多个桨叶20同时工作时,由于前缘25有规律地自回弯处27沿桨叶20沿展向朝吸力面24所在的一侧倾斜延伸,能够减小由于多个桨叶20相互作用而产生的湍流及下洗气流,额定桨叶20的升力点,使飞行器1000能自动修正飞行姿态,增加了飞行器1000的惯性稳定性,使飞行器1000飞行时更加平稳,同时,还能进一步减小由于湍流及下洗气流冲击飞行器1000的机身50产生的噪音。
在某些实施方式中,螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的36.4%处D1,桨叶20的攻角α1为19.35°±2.5°;及/或
在距离桨毂10的中心为螺旋桨100的半径的81.8%处D6,桨叶20的攻 角α6为11.97°±2.5°;及/或
在距离桨毂10的中心为螺旋桨100的半径的90.9%处D7,桨叶20的攻角α7为9.79°±2.5°;及/或
在距离桨毂10的中心为螺旋桨100的半径的100%处D8,桨叶20的攻角α8为7.91°±2.5°;及/或
在距离桨毂10的中心40mm处D1,桨叶20的攻角α1为19.35°;及/或
在距离桨毂10的中心50mm处D2,桨叶20的攻角α2为18.16°;及/或
在距离桨毂10的中心60mm处D3,桨叶20的攻角α3为16.80°;及/或
在距离桨毂10的中心70mm处D4,桨叶20的攻角α4为15.39°;及/或
在距离桨毂10的中心80mm处D5,桨叶20的攻角α5为13.78°;及/或
在距离桨毂10的中心90mm处D6,桨叶20的攻角α6为11.97°;及/或
在距离桨毂10的中心100mm处D7,桨叶20的攻角α7为9.79°;及/或
在距离桨毂10的中心110mm处D8,桨叶20的攻角α8为7.91°。
此处的讨论包括但不限于以下几种方式:
(1)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的36.4%处D1,桨叶20的攻角α1为19.35°±2.5°;
(2)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的81.8%处D6,桨叶20的攻角α6为11.97°±2.5°;
(3)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的90.9%处D7,桨叶20的攻角α7为9.79°±2.5°;
(4)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的100%处D8,桨叶20的攻角α8为7.91°±2.5°;
(5)螺旋桨100在距离桨毂10的中心40mm处D1,桨叶20的攻角α1为19.35°;
(6)螺旋桨100在距离桨毂10的中心50mm处D2,桨叶20的攻角α2为18.16°;
(7)螺旋桨100在距离桨毂10的中心60mm处D3,桨叶20的攻角α3为16.80°;
(8)螺旋桨100在距离桨毂10的中心70mm处D4,桨叶20的攻角α4为15.39°;
(9)螺旋桨100在距离桨毂10的中心80mm处D5,桨叶20的攻角α5为13.78°;
(10)螺旋桨100在距离桨毂10的中心90mm处D6,桨叶20的攻角α6为11.97°;
(11)螺旋桨100在距离桨毂10的中心100mm处D7,桨叶20的攻角α7为9.79°;
(12)螺旋桨100在距离桨毂10的中心110mm处D8,桨叶20的攻角α8为7.91°;
(13)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的36.4%处D1,桨叶20的攻角α1为19.35°±2.5°;及,在距离桨毂10的中心为螺旋桨100的半径的81.8%处D6,桨叶20的攻角α6为11.97°±2.5°;及,在距离桨毂10的中心为螺旋桨100的半径的90.9%处D7,桨叶20的攻角α7为9.79°±2.5°;及,在距离桨毂10的中心为螺旋桨100的半径的100%处D8,桨叶20的攻角α8为7.91°±2.5°;及,在距离桨毂10的中心40mm处D1,桨叶20的攻角α1为19.35°;及,在距离桨毂10的中心50mm处D2,桨叶20的攻角α2为18.16°;及,在距离桨毂10的中心60mm处D3,桨叶20的攻角α3为16.80°;及,在距离桨毂10的中心70mm处D4,桨叶20的攻角α4为15.39°;及,在距离桨毂10的中心80mm处D5,桨叶 20的攻角α5为13.78°;及,在距离桨毂10的中心90mm处D6,桨叶20的攻角α6为11.97°;及,在距离桨毂10的中心100mm处D7,桨叶20的攻角α7为9.79°;及,在距离桨毂10的中心110mm处D8,桨叶20的攻角α8为7.91°。
在某些实施方式中,螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的45.5%处D2,桨叶20的弦长L2为23.80mm±5mm;及/或
在距离桨毂10的中心为螺旋桨100的半径的54.5%处D3,桨叶20的弦长L3为21.85mm±5mm;及/或
在距离桨毂10的中心为螺旋桨100的半径的63.6%处D4,桨叶20的弦长L4为19.92mm±5mm;及/或
在距离桨毂10的中心为螺旋桨100的半径的72.7%处D5,桨叶20的弦长L5为17.98mm±5mm;及/或
在距离桨毂10的中心50mm处D2,桨叶20的弦长L2为23.80mm;及/或
在距离桨毂10的中心60mm处D3,桨叶20的弦长L3为21.85mm;及/或
在距离桨毂10的中心70mm处D4,桨叶20的弦长L4为19.92mm;及/或
在距离桨毂10的中心80mm处D5,桨叶20的弦长L5为17.98mm。
此处的讨论包括但不限于以下几种方式:
(1)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的45.5%处D2,桨叶20的弦长L2为23.80mm±5mm;
(2)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的54.5%处D3,桨叶20的弦长L3为21.85mm±5mm;
(3)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的63.6%处D4,桨叶20的弦长L4为19.92mm±5mm;
(4)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的72.7%处 D5,桨叶20的弦长L5为17.98mm±5mm;
(5)螺旋桨100在距离桨毂10的中心50mm处D2,桨叶20的弦长L2为23.80mm;
(6)螺旋桨100在距离桨毂10的中心60mm处D3,桨叶20的弦长L3为21.85mm;
(7)螺旋桨100在距离桨毂10的中心70mm处D4,桨叶20的弦长L4为19.92mm;
(8)螺旋桨100在距离桨毂10的中心80mm处D5,桨叶20的弦长L5为17.98mm;
(9)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的45.5%处D2,桨叶20的弦长L2为23.80mm±5mm;及,在距离桨毂10的中心为螺旋桨100的半径的54.5%处D3,桨叶20的弦长L3为21.85mm±5mm;及,在距离桨毂10的中心为螺旋桨100的半径的63.6%处D4,桨叶20的弦长L4为19.92mm±5mm;及,在距离桨毂10的中心为螺旋桨100的半径的72.7%处D5,桨叶20的弦长L5为17.98mm±5mm;及,在距离桨毂10的中心50mm处D2,桨叶20的弦长L2为23.80mm;及,在距离桨毂10的中心60mm处D3,桨叶20的弦长L3为21.85mm;及,在距离桨毂10的中心70mm处D4,桨叶20的弦长L4为19.92mm;及,在距离桨毂10的中心80mm处D5,桨叶20的弦长L5为17.98mm。
在某些实施方式中,螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的36.4%处D1,桨叶20的弦长L1为25.72mm±5mm;及/或
在距离桨毂10的中心为螺旋桨100的半径的81.8%处D6,桨叶20的弦长L6为16.03mm±5mm;及/或
在距离桨毂10的中心为螺旋桨100的半径的90.9%处D7,桨叶20的弦长L7为12.90mm±5mm;及/或
在距离桨毂10的中心为螺旋桨100的半径的100%处D8,桨叶20的弦长L8为4.42mm±2mm;及/或
在距离桨毂10的中心40mmD1处,桨叶20的弦长L1为25.72mm;及/ 或
在距离桨毂10的中心90mmD6处,桨叶20的弦长L6为16.03mm;及/或
在距离桨毂10的中心100mmD7处,桨叶20的弦长L7为12.90mm;及/或
在距离桨毂10的中心110mmD8处,桨叶20的弦长L8为4.42mm。
此处的讨论包括但不限于以下几种方式:
(1)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的36.4%处D1,桨叶20的弦长L1为25.72mm±5mm;
(2)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的81.8%处D6,桨叶20的弦长L6为16.03mm±5mm;
(3)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的90.9%处D7,桨叶20的弦长L7为12.90mm±5mm;
(4)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的100%处D8,桨叶20的弦长L8为4.42mm±2mm;
(5)螺旋桨100在距离桨毂10的中心40mmD1处,桨叶20的弦长L1为25.72mm;
(6)螺旋桨100在距离桨毂10的中心90mmD6处,桨叶20的弦长L6为16.03mm;
(7)螺旋桨100在距离桨毂10的中心100mmD7处,桨叶20的弦长L7为12.90mm;
(8)螺旋桨100在距离桨毂10的中心110mmD8处,桨叶20的弦长L8为4.42mm;
(9)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的36.4%处D1,桨叶20的弦长L1为25.72mm±5mm;及,在距离桨毂10的中心为螺旋桨100的半径的81.8%处D6,桨叶20的弦长L6为16.03mm±5mm;及,在距离桨毂10的中心为螺旋桨100的半径的90.9%处D7,桨叶20的弦长L7 为12.90mm±5mm;及,在距离桨毂10的中心为螺旋桨100的半径的100%处D8,桨叶20的弦长L8为4.42mm±2mm;及,在距离桨毂10的中心40mmD1处,桨叶20的弦长L1为25.72mm;及,在距离桨毂10的中心90mmD6处,桨叶20的弦长L6为16.03mm;及,在距离桨毂10的中心100mmD7处,桨叶20的弦长L7为12.90mm;及,在距离桨毂10的中心110mmD8处,桨叶20的弦长L8为4.42mm。
本实施例中,可选地,桨叶20的螺距为5.10±0.5英寸。本实施例中的螺距指螺旋桨100的半径的3/4处的螺距。由此,可减小空气的阻力,提高桨叶20的拉力。其中,桨叶20的螺距可以为5.05英寸或5.10英寸或5.15英寸,或者是5.06英寸、5.07英寸、5.08英寸、5.09英寸、5.11英寸、5.12英寸、5.13英寸、5.14英寸等中的任意一个或上述任意二者之间的数值。
综上,采用本发明上述实施例中翼型渐变的桨叶20,螺旋桨100在高原地区可以显著提高拉力,保证足够的动力冗余。同时,在一定程度上兼顾性能,增加继航距离,提高飞行器1000的飞行性能。和目前市面上已有的螺旋桨100相比,采用该桨叶20的螺旋桨100在较小的功率条件下其具有更大的拉力,从而可降低电量损耗,增加续航距离。在密度降低的高海拔区域或者低海拔地区起飞重量较大的极端情况下,其可以显著提高拉力,保证足够动力同时延长续航时间,提高飞行性能。另外,本实施例所提供的螺旋桨100还能有效减少由于湍流及下洗气流冲击飞行器1000的机身50产生的噪音,减轻噪音引起人耳的不适感,提高了用户体验。
请参见图15,本发明实施例提供一种动力组件200,包括驱动件30和本发明任意实施例的螺旋桨100,螺旋桨100通过桨毂10与驱动件30连接。动力组件200包括至少两个机臂40。至少两个机臂40连接在螺旋桨100的中心位置。驱动件30设置在机臂40上。其中,螺旋桨100的具体结构与前述实施例相同,此处不再赘述。即如上的实施例和实施方式中关于螺旋桨100的描述同样适用于本发明实施例提供的动力组件200。
在本发明的动力组件200中,由于在距离桨毂10的中心为螺旋桨100的半径的45.5%处D2,桨叶20的攻角α2为18.16°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的54.5%处D3,桨叶20的攻角α3为16.80°± 2.5°;在距离桨毂10的中心为螺旋桨100的半径的63.6%处D4,桨叶20的攻角α4为15.39°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的72.7%处D5,桨叶20的攻角α5为13.78°±2.5°;因此,由上述参数限定出具备特定形状的桨叶20,采用桨叶20的螺旋桨100能够在减少空气阻力,提高拉力和效率,增加飞行器1000的继航距离以提高飞行器1000的飞行性能。
本实施例中,可选地,驱动件30为电机,电机的KV值为1040±104转/(分钟·伏特)。其中,电机的KV值可以为936转/(分钟·伏特)或1040转/(分钟·伏特)或1144转/(分钟·伏特),或者是940转/(分钟·伏特)、960转/(分钟·伏特)、980转/(分钟·伏特)、1000转/(分钟·伏特)、1020转/(分钟·伏特)、1060转/(分钟·伏特)、1100转/(分钟·伏特)、1140转/(分钟·伏特)等中的任意一个或上述任意二者之间的数值。由此,能够保证动力组件200的动力性能。
请再次参见图15,本发明实施例提供一种飞行器1000,包括机身50和本发明任意实施例的动力组件200,动力组件200与机身50连接。动力组件200的多个机臂40与机身50连接以将动力组件200安装在机身50上。其中动力组件200的具体结构与前述实施例类似,此处不再赘述。即如上的实施例和实施方式中关于螺旋桨100的描述同样适用于本发明实施例提供的飞行器1000。
本实施例中,可选地,飞行器1000包括多个动力组件200,多个动力组件200的转动方向不同。
本实施例中,可选地,飞行器1000为多旋翼飞行器,例如为四旋翼无人飞行器。
在本发明的飞行器1000中,由于在距离桨毂10的中心为螺旋桨100的半径的45.5%处D2,桨叶20的攻角α2为18.16°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的54.5%处D3,桨叶20的攻角α3为16.80°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的63.6%处D4,桨叶20的攻角α4为15.39°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的72.7%处D5,桨叶20的攻角α5为13.78°±2.5°;因此,由上述参数限定 出具备特定形状的桨叶20,采用桨叶20的螺旋桨100能够在减少空气阻力,提高拉力和效率,增加飞行器1000的继航距离以提高飞行器1000的飞行性能。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (27)

  1. 一种螺旋桨,包括:桨毂和桨叶,所述桨叶连接在所述桨毂上,其特征在于:
    在距离所述桨毂的中心为所述螺旋桨的半径的45.5%处,所述桨叶的攻角为18.16°±2.5°;
    在距离所述桨毂的中心为所述螺旋桨的半径的54.5%处,所述桨叶的攻角为16.80°±2.5°;
    在距离所述桨毂的中心为所述螺旋桨的半径的63.6%处,所述桨叶的攻角为15.39°±2.5°;
    在距离所述桨毂的中心为所述螺旋桨的半径的72.7%处,所述桨叶的攻角为13.78°±2.5°。
  2. 根据权利要求1所述的螺旋桨,其特征在于:
    在距离所述桨毂的中心为所述螺旋桨的半径的36.4%处,所述桨叶的攻角为19.35°±2.5°;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的81.8%处,所述桨叶的攻角为11.97°±2.5°;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的90.9%处,所述桨叶的攻角为9.79°±2.5°;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的攻角为7.91°±2.5°;及/或
    在距离所述桨毂的中心40mm处,所述桨叶的攻角为19.35°;及/或
    在距离所述桨毂的中心50mm处,所述桨叶的攻角为18.16°;及/或
    在距离所述桨毂的中心60mm处,所述桨叶的攻角为16.80°;及/或
    在距离所述桨毂的中心70mm处,所述桨叶的攻角为15.39°;及/或
    在距离所述桨毂的中心80mm处,所述桨叶的攻角为13.78°;及/或
    在距离所述桨毂的中心90mm处,所述桨叶的攻角为11.97°;及/或
    在距离所述桨毂的中心100mm处,所述桨叶的攻角为9.79°;及/或
    在距离所述桨毂的中心110mm处,所述桨叶的攻角为7.91°。
  3. 根据权利要求1所述的螺旋桨,其特征在于:
    在距离所述桨毂的中心为所述螺旋桨的半径的45.5%处,所述桨叶的弦长为23.80mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的54.5%处,所述桨叶的弦长为21.85mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的63.6%处,所述桨叶的弦长为19.92mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的72.7%处,所述桨叶的弦长为17.98mm±5mm;及/或
    在距离所述桨毂的中心50mm处,所述桨叶的弦长为23.80mm;及/或
    在距离所述桨毂的中心60mm处,所述桨叶的弦长为21.85mm;及/或
    在距离所述桨毂的中心70mm处,所述桨叶的弦长为19.92mm;及/或
    在距离所述桨毂的中心80mm处,所述桨叶的弦长为17.98mm。
  4. 根据权利要求3所述的螺旋桨,其特征在于:
    在距离所述桨毂的中心为所述螺旋桨的半径的36.4%处,所述桨叶的弦长为25.72mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的81.8%处,所述桨叶的弦长为16.03mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的90.9%处,所述桨叶的弦长为12.90mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的弦长为4.42mm±2mm;及/或
    在距离所述桨毂的中心40mm处,所述桨叶的弦长为25.72mm;及/或
    在距离所述桨毂的中心90mm处,所述桨叶的弦长为16.03mm;及/或
    在距离所述桨毂的中心100mm处,所述桨叶的弦长为12.90mm;及/或
    在距离所述桨毂的中心110mm处,所述桨叶的弦长为4.42mm。
  5. 根据权利要求1所述的螺旋桨,其特征在于:
    所述螺旋桨的直径为220mm±22mm;及/或
    所述桨叶的螺距为5.10±0.5英寸。
  6. 根据权利要求1至5任意一项所述的螺旋桨,其特征在于:
    所述桨叶包括桨根、背离所述桨根的桨尖、相背的压力面及吸力面、连接于所述压力面及所述吸力面一侧边的前缘、连接于所述压力面及所述吸力面另一侧边的后缘、及形成于所述桨尖的后掠部,所述后掠部自所述前缘向所述后缘倾斜延伸;
    所述桨尖沿所述桨叶的展向朝所述吸力面所在的一侧倾斜延伸。
  7. 根据权利要求6所述的螺旋桨,其特征在于:
    所述桨叶在靠近所述桨尖的位置形成回弯处,所述前缘自所述回弯处开始沿所述桨叶的展向朝所述吸力面所在的一侧倾斜延伸,所述后掠部自所述回弯处从所述前缘向所述后缘倾斜延伸,所述回弯处距离所述桨毂的中心为所述螺旋桨的半径的88%。
  8. 根据权利要求6所述的螺旋桨,其特征在于:
    所述前缘外凸形成有靠近所述桨根的呈曲面状的前缘拱起部,所述后缘外凸形成有靠近所述桨根的呈曲面状的后缘拱起部;及/或
    所述桨叶为至少两个,至少两个所述桨叶连接在所述桨毂上并关于所述桨毂的中心呈中心对称;及/或
    所述桨叶具有穿过所述桨毂的中心的中轴线,所述前缘具有平行于所述中轴线的前缘切线,所述后缘具有平行于所述中轴线的后缘切线,所述后掠部位于所述前缘切线与所述后缘切线之间;及/或
    所述吸力面和所述压力面均为曲面;及/或
    所述桨尖的自由端的侧面为平面。
  9. 一种动力组件,包括驱动件和螺旋桨,其特征在于,所述螺旋桨包括桨毂和桨叶,所述桨叶连接在所述桨毂上,在距离所述桨毂的中心为所述螺旋桨的半径的45.5%处,所述桨叶的攻角为18.16°±2.5°;
    在距离所述桨毂的中心为所述螺旋桨的半径的54.5%处,所述桨叶的攻角为16.80°±2.5°;
    在距离所述桨毂的中心为所述螺旋桨的半径的63.6%处,所述桨叶的攻角为15.39°±2.5°;
    在距离所述桨毂的中心为所述螺旋桨的半径的72.7%处,所述桨叶的攻角为13.78°±2.5°;
    所述螺旋桨通过所述桨毂与所述驱动件连接。
  10. 根据权利要求9所述的动力组件,其特征在于:
    在距离所述桨毂的中心为所述螺旋桨的半径的36.4%处,所述桨叶的攻角为19.35°±2.5°;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的81.8%处,所述桨叶的攻角为11.97°±2.5°;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的90.9%处,所述桨叶的攻角为9.79°±2.5°;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的攻角为7.91°±2.5°;及/或
    在距离所述桨毂的中心40mm处,所述桨叶的攻角为19.35°;及/或
    在距离所述桨毂的中心50mm处,所述桨叶的攻角为18.16°;及/或
    在距离所述桨毂的中心60mm处,所述桨叶的攻角为16.80°;及/或
    在距离所述桨毂的中心70mm处,所述桨叶的攻角为15.39°;及/或
    在距离所述桨毂的中心80mm处,所述桨叶的攻角为13.78°;及/或
    在距离所述桨毂的中心90mm处,所述桨叶的攻角为11.97°;及/或
    在距离所述桨毂的中心100mm处,所述桨叶的攻角为9.79°;及/或
    在距离所述桨毂的中心110mm处,所述桨叶的攻角为7.91°。
  11. 根据权利要求9所述的动力组件,其特征在于:
    在距离所述桨毂的中心为所述螺旋桨的半径的45.5%处,所述桨叶的弦长为23.80mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的54.5%处,所述桨叶的弦长为21.85mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的63.6%处,所述桨叶的弦长为19.92mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的72.7%处,所述桨叶的弦长为17.98mm±5mm;及/或
    在距离所述桨毂的中心50mm处,所述桨叶的弦长为23.80mm;及/或
    在距离所述桨毂的中心60mm处,所述桨叶的弦长为21.85mm;及/或
    在距离所述桨毂的中心70mm处,所述桨叶的弦长为19.92mm;及/或
    在距离所述桨毂的中心80mm处,所述桨叶的弦长为17.98mm。
  12. 根据权利要求11所述的动力组件,其特征在于:
    在距离所述桨毂的中心为所述螺旋桨的半径的36.4%处,所述桨叶的弦长为25.72mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的81.8%处,所述桨叶的弦长为16.03mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的90.9%处,所述桨叶的弦长为12.90mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的弦长为4.42mm±2mm;及/或
    在距离所述桨毂的中心40mm处,所述桨叶的弦长为25.72mm;及/或
    在距离所述桨毂的中心90mm处,所述桨叶的弦长为16.03mm;及/或
    在距离所述桨毂的中心100mm处,所述桨叶的弦长为12.90mm;及/或
    在距离所述桨毂的中心110mm处,所述桨叶的弦长为4.42mm。
  13. 根据权利要求9所述的动力组件,其特征在于:
    所述螺旋桨的直径为220mm±22mm;及/或
    所述桨叶的螺距为5.10±0.5英寸。
  14. 根据权利要求9至13中任意一项所述的动力组件,其特征在于:
    所述桨叶包括桨根、背离所述桨根的桨尖、相背的压力面及吸力面、连接于所述压力面及所述吸力面一侧边的前缘、连接于所述压力面及所述吸力面另一侧边的后缘、及形成于所述桨尖的后掠部,所述后掠部自所述前缘向所述后缘倾斜延伸;
    所述桨尖沿所述桨叶的展向朝所述吸力面所在的一侧倾斜延伸。
  15. 根据权利要求14所述的动力组件,其特征在于:
    所述桨叶在靠近所述桨尖的位置形成回弯处,所述前缘自所述回弯处开始沿所述桨叶的展向朝所述吸力面所在的一侧倾斜延伸,所述后掠部自所述回弯处从所述前缘向所述后缘倾斜延伸,所述回弯处距离所述桨毂的中心为所述螺旋桨的半径的88%。
  16. 根据权利要求14所述的动力组件,其特征在于:
    所述前缘外凸形成有靠近所述桨根的呈曲面状的前缘拱起部,所述后缘外凸形成有靠近所述桨根的呈曲面状的后缘拱起部;及/或
    所述桨叶为至少两个,至少两个所述桨叶连接在所述桨毂上并关于所述桨毂的中心呈中心对称;及/或
    所述桨叶具有穿过所述桨毂的中心的中轴线,所述前缘具有平行于所述中轴线的前缘切线,所述后缘具有平行于所述中轴线的后缘切线,所述后掠部位于所述前缘切线与所述后缘切线之间;及/或
    所述吸力面和所述压力面均为曲面;及/或
    所述桨尖的自由端的侧面为平面。
  17. 根据权利要求9至13中任意一项所述的动力组件,其特征在于,所述驱动件为电机,所述电机的KV值为1040±104转/(分钟·伏特)。
  18. 一种飞行器,其特征在于,包括机身和动力组件,所述动力组件与所述机身连接,所述动力组件包括包括驱动件和螺旋桨,所述螺旋桨包括桨毂和桨叶,所述桨叶连接在所述桨毂上,在距离所述桨毂的中心为所述螺旋桨的半径的45.5%处,所述桨叶的攻角为18.16°±2.5°;
    在距离所述桨毂的中心为所述螺旋桨的半径的54.5%处,所述桨叶的攻角为16.80°±2.5°;
    在距离所述桨毂的中心为所述螺旋桨的半径的63.6%处,所述桨叶的攻角为15.39°±2.5°;
    在距离所述桨毂的中心为所述螺旋桨的半径的72.7%处,所述桨叶的攻角为13.78°±2.5°;
    所述螺旋桨通过所述桨毂与所述驱动件连接。
  19. 根据权利要求18所述的飞行器,其特征在于:
    在距离所述桨毂的中心为所述螺旋桨的半径的36.4%处,所述桨叶的攻角为19.35°±2.5°;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的81.8%处,所述桨叶的攻角为11.97°±2.5°;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的90.9%处,所述桨叶的攻角为9.79°±2.5°;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的攻角为7.91°±2.5°;及/或
    在距离所述桨毂的中心40mm处,所述桨叶的攻角为19.35°;及/或
    在距离所述桨毂的中心50mm处,所述桨叶的攻角为18.16°;及/或
    在距离所述桨毂的中心60mm处,所述桨叶的攻角为16.80°;及/或
    在距离所述桨毂的中心70mm处,所述桨叶的攻角为15.39°;及/或
    在距离所述桨毂的中心80mm处,所述桨叶的攻角为13.78°;及/或
    在距离所述桨毂的中心90mm处,所述桨叶的攻角为11.97°;及/或
    在距离所述桨毂的中心100mm处,所述桨叶的攻角为9.79°;及/或
    在距离所述桨毂的中心110mm处,所述桨叶的攻角为7.91°。
  20. 根据权利要求18所述的飞行器,其特征在于:
    在距离所述桨毂的中心为所述螺旋桨的半径的45.5%处,所述桨叶的弦长为23.80mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的54.5%处,所述桨叶的弦长为21.85mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的63.6%处,所述桨叶的弦长为19.92mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的72.7%处,所述桨叶的弦长为17.98mm±5mm;及/或
    在距离所述桨毂的中心50mm处,所述桨叶的弦长为23.80mm;及/或
    在距离所述桨毂的中心60mm处,所述桨叶的弦长为21.85mm;及/或
    在距离所述桨毂的中心70mm处,所述桨叶的弦长为19.92mm;及/或
    在距离所述桨毂的中心80mm处,所述桨叶的弦长为17.98mm。
  21. 根据权利要求20所述的飞行器,其特征在于:
    在距离所述桨毂的中心为所述螺旋桨的半径的36.4%处,所述桨叶的弦长为25.72mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的81.8%处,所述桨叶的弦长为16.03mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的90.9%处,所述桨叶的弦长为12.90mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的 弦长为4.42mm±2mm;及/或
    在距离所述桨毂的中心40mm处,所述桨叶的弦长为25.72mm;及/或
    在距离所述桨毂的中心90mm处,所述桨叶的弦长为16.03mm;及/或
    在距离所述桨毂的中心100mm处,所述桨叶的弦长为12.90mm;及/或
    在距离所述桨毂的中心110mm处,所述桨叶的弦长为4.42mm。
  22. 根据权利要求18所述的飞行器,其特征在于:
    所述螺旋桨的直径为220mm±22mm;及/或
    所述桨叶的螺距为5.10±0.5英寸。
  23. 根据权利要求18至22中任意一项所述的飞行器,其特征在于:
    所述桨叶包括桨根、背离所述桨根的桨尖、相背的压力面及吸力面、连接于所述压力面及所述吸力面一侧边的前缘、连接于所述压力面及所述吸力面另一侧边的后缘、及形成于所述桨尖的后掠部,所述后掠部自所述前缘向所述后缘倾斜延伸;
    所述桨尖沿所述桨叶的展向朝所述吸力面所在的一侧倾斜延伸。
  24. 根据权利要求23所述的飞行器,其特征在于:
    所述桨叶在靠近所述桨尖的位置形成回弯处,所述前缘自所述回弯处开始沿所述桨叶的展向朝所述吸力面所在的一侧倾斜延伸,所述后掠部自所述回弯处从所述前缘向所述后缘倾斜延伸,所述回弯处距离所述桨毂的中心为所述螺旋桨的半径的88%。
  25. 根据权利要求23所述的飞行器,其特征在于:
    所述前缘外凸形成有靠近所述桨根的呈曲面状的前缘拱起部,所述后缘外凸形成有靠近所述桨根的呈曲面状的后缘拱起部;及/或
    所述桨叶为至少两个,至少两个所述桨叶连接在所述桨毂上并关于所 述桨毂的中心呈中心对称;及/或
    所述桨叶具有穿过所述桨毂的中心的中轴线,所述前缘具有平行于所述中轴线的前缘切线,所述后缘具有平行于所述中轴线的后缘切线,所述后掠部位于所述前缘切线与所述后缘切线之间;及/或
    所述吸力面和所述压力面均为曲面;及/或
    所述桨尖的自由端的侧面为平面。
  26. 根据权利要求18至22中任意一项所述的飞行器,其特征在于,所述驱动件为电机,所述电机的KV值为1040±104转/(分钟·伏特)。
  27. 根据权利要求26所述的飞行器,其特征在于,所述飞行器包括多个动力组件,所述多个动力组件的转动方向不同,所述飞行器为多旋翼飞行器。
PCT/CN2018/105982 2018-05-25 2018-09-17 螺旋桨、动力组件及飞行器 WO2019223193A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880016150.8A CN110896624A (zh) 2018-05-25 2018-09-17 螺旋桨、动力组件及飞行器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201820798000.4U CN208291465U (zh) 2018-05-25 2018-05-25 螺旋桨、动力组件及飞行器
CN201820798000.4 2018-05-25

Publications (1)

Publication Number Publication Date
WO2019223193A1 true WO2019223193A1 (zh) 2019-11-28

Family

ID=64727221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105982 WO2019223193A1 (zh) 2018-05-25 2018-09-17 螺旋桨、动力组件及飞行器

Country Status (2)

Country Link
CN (2) CN208291465U (zh)
WO (1) WO2019223193A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208291465U (zh) * 2018-05-25 2018-12-28 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器
CN111056036B (zh) * 2019-12-27 2021-08-13 北京电子工程总体研究所 一种高空螺旋桨快速迭代生成方法
CN212738487U (zh) * 2020-04-17 2021-03-19 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器
CN213323651U (zh) * 2020-04-21 2021-06-01 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102963522A (zh) * 2012-10-31 2013-03-13 中国航天空气动力技术研究院 临近空间螺旋桨
US9140126B2 (en) * 2011-07-26 2015-09-22 Anthony V. Hins Propeller with reactionary and vacuum faces
CN205366054U (zh) * 2016-01-28 2016-07-06 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器
CN207045700U (zh) * 2017-07-28 2018-02-27 深圳市大疆创新科技有限公司 用于无人机的螺旋桨、动力组件及无人机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205554565U (zh) * 2016-02-29 2016-09-07 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器
CN206243477U (zh) * 2016-11-10 2017-06-13 中强光电股份有限公司 飞行器及其旋翼
CN206155775U (zh) * 2016-11-11 2017-05-10 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器
CN206297727U (zh) * 2016-12-01 2017-07-04 重庆零度智控智能科技有限公司 螺旋桨、动力组件及飞行器
CN206954494U (zh) * 2017-06-30 2018-02-02 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器
CN206926806U (zh) * 2017-07-25 2018-01-26 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器
CN207072430U (zh) * 2017-07-28 2018-03-06 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器
CN208291465U (zh) * 2018-05-25 2018-12-28 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9140126B2 (en) * 2011-07-26 2015-09-22 Anthony V. Hins Propeller with reactionary and vacuum faces
CN102963522A (zh) * 2012-10-31 2013-03-13 中国航天空气动力技术研究院 临近空间螺旋桨
CN205366054U (zh) * 2016-01-28 2016-07-06 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器
CN207045700U (zh) * 2017-07-28 2018-02-27 深圳市大疆创新科技有限公司 用于无人机的螺旋桨、动力组件及无人机

Also Published As

Publication number Publication date
CN208291465U (zh) 2018-12-28
CN110896624A (zh) 2020-03-20

Similar Documents

Publication Publication Date Title
WO2019223193A1 (zh) 螺旋桨、动力组件及飞行器
CN109071006B (zh) 螺旋桨、动力组件及飞行器
WO2017124781A1 (zh) 螺旋桨、动力套装及无人飞行器
WO2017128743A1 (zh) 螺旋桨、动力组件及飞行器
WO2019205497A1 (zh) 螺旋桨、动力组件及飞行器
JP2019532871A5 (zh)
WO2017148133A1 (zh) 螺旋桨、动力组件及飞行器
WO2021212869A1 (zh) 螺旋桨、动力组件及飞行器
WO2018076457A1 (zh) 螺旋桨、动力套装及无人飞行器
CN109789922B (zh) 螺旋桨、动力组件及飞行器
WO2018000593A1 (zh) 螺旋桨、动力套装及无人飞行器
WO2018023861A1 (zh) 螺旋桨、动力套装及无人飞行器
WO2017143771A1 (zh) 螺旋桨、动力组件及飞行器
WO2019148879A1 (zh) 螺旋桨、动力组件及飞行器
WO2019019332A1 (zh) 螺旋桨、动力组件及飞行器
WO2019223205A1 (zh) 螺旋桨、动力组件及飞行器
WO2019019343A1 (zh) 螺旋桨、动力组件及飞行器
WO2019227268A1 (zh) 螺旋桨组件、动力组件及飞行器
CN210235310U (zh) 螺旋桨、动力组件及飞行器
CN106564588B (zh) 一种无人直升机桨叶及无人直升机
WO2018184291A1 (zh) 桨叶、螺旋桨、动力套装及无人飞行器
WO2019148878A1 (zh) 螺旋桨、动力组件及飞行器
CN110155318A (zh) 确定桨叶的翼型的初始前缘圆的方法和改进桨叶以增大其负失速迎角的方法
CN207773438U (zh) 螺旋桨、动力组件及飞行器
WO2020000686A1 (zh) 螺旋桨、动力组件及飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920054

Country of ref document: EP

Kind code of ref document: A1