WO2019148878A1 - 螺旋桨、动力组件及飞行器 - Google Patents
螺旋桨、动力组件及飞行器 Download PDFInfo
- Publication number
- WO2019148878A1 WO2019148878A1 PCT/CN2018/109027 CN2018109027W WO2019148878A1 WO 2019148878 A1 WO2019148878 A1 WO 2019148878A1 CN 2018109027 W CN2018109027 W CN 2018109027W WO 2019148878 A1 WO2019148878 A1 WO 2019148878A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blade
- hub
- center
- propeller
- angle
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/16—Blades
Definitions
- Embodiments of the present invention relate to the field of aircraft, and more particularly to propellers, power components, and aircraft.
- the propeller on the aircraft is used to convert the rotation of the shaft of the motor or engine into thrust or lift.
- the propeller is rotating, and the turbulence of each part of the blade and the downwashing airflow impinging on the outer casing structure of the aircraft generate a large noise. It is often superimposed with motor noise and structural vibration noise, and amplifies noise in certain frequency bands, resulting in a large overall noise of the aircraft and poor user experience.
- Embodiments of the present invention provide a propeller, a power assembly, and an aircraft.
- a propeller of an embodiment of the invention includes a hub and a blade, the blade being coupled to the hub, wherein:
- the angle of attack of the blade is 25.65 ° ⁇ 2.5 ° at a distance of 41.9% of the radius of the propeller from the center of the hub;
- the angle of attack of the blade is 23.02 ° ⁇ 2.5 ° at a distance of 53.5% of the radius of the propeller from the center of the hub;
- the angle of attack of the blade is 20.68 ° ⁇ 2.5 ° at a distance of 65.1% of the radius of the propeller from the center of the hub;
- the blade At 76.7% of the radius of the propeller from the center of the hub, the blade has an angle of attack of 18.72° ⁇ 2.5°.
- the angle of attack of the blade is 25.65° ⁇ 2.5° at a distance of 41.9% of the radius of the propeller from the center of the hub, and the chord length of the blade is 50.36 mm ⁇ 5 mm; at a distance of 53.5% of the radius of the propeller from the center of the hub, the angle of attack of the blade is 23.02 ° ⁇ 2.5 °, and the chord length of the blade is 45.13 mm ⁇ 5 mm;
- the distance from the center of the hub is 65.1% of the radius of the propeller, the angle of attack of the blade is 20.68° ⁇ 2.5°, the chord length of the blade is 38.63 mm ⁇ 5 mm;
- the center of the hub is 76.7% of the radius of the propeller, the angle of attack of the blade is 18.72° ⁇ 2.5°, and the chord length of the blade is 32.22 mm ⁇ 5 mm.
- the diameter of the propeller is 430 mm ⁇ 43 mm; at an angle of 90 mm from the center of the hub, the angle of attack of the blade is 25.65 °, the chord length of the blade is 50.36 mm; At an angle of 115 mm from the center of the hub, the blade has an angle of attack of 23.02°, the blade has a chord length of 45.13 mm; at a distance of 140 mm from the center of the hub, the blade is attacked The angle is 20.68°, the chord length of the blade is 38.63 mm; the angle of attack of the blade is 18.72° at a distance of 165 mm from the center of the hub, and the chord length of the blade is 32.22 mm.
- the angle of attack of the blade is 25.81° ⁇ 2.5° at a distance of 18.6% of the radius of the propeller from the center of the hub, and the chord length of the blade is 46.81 mm ⁇ 5mm.
- the diameter of the propeller is 430 mm ⁇ 43 mm; at an angle of 40 mm from the center of the hub, the blade has an angle of attack of 25.81° and the blade has a chord length of 46.81 mm.
- the angle of attack of the blade is 28.01° ⁇ 2.5°, and the chord length of the blade is 53.41 mm ⁇ 5mm.
- the propeller has a diameter of 430 mm ⁇ 43 mm; at 65 mm from the center of the hub, the blade has an angle of attack of 28.01° and the blade has a chord length of 53.41 mm.
- the angle of attack of the blade is 16.04° ⁇ 2.5° at a distance of 88.4% of the radius of the propeller from the center of the hub, and the chord length of the blade is 22.92 mm ⁇ 5mm.
- the propeller has a diameter of 430 mm ⁇ 43 mm; at an angle of 190 mm from the center of the hub, the blade has an angle of attack of 16.04° and the blade has a chord length of 22.92 mm.
- the blade at 100% of the radius of the propeller from the center of the hub, the blade has an angle of attack of 14.00° ⁇ 2.5° and the blade has a chord length of 9.00 mm. ⁇ 5mm.
- the diameter of the propeller is 430 mm ⁇ 43 mm; at an angle of 215 mm from the center of the hub, the blade has an angle of attack of 14.00° and the blade has a chord length of 9.00 mm.
- the paddle includes a paddle root, a tip tip facing away from the paddle root, a opposing pressure surface, and a suction surface; the tip of the blade along the span of the blade toward the suction side The side where it is located extends obliquely.
- the blade further includes a leading edge connected to one side of the pressure surface and the suction surface, a trailing edge connected to the pressure surface and the other side of the suction surface, And a swept portion formed on the tip of the blade, the swept portion extending obliquely from the leading edge toward the trailing edge.
- the blade forms a reversal at a position near the tip of the blade, the leading edge starting from the reversal along the direction of the blade toward the suction side One side extends obliquely.
- the reversal is at a distance of 65% of the radius from the center of the hub.
- the paddle forms a bend at the location of the tip, and the swept portion extends obliquely from the leading edge to the trailing edge from the bend back.
- the center of the back bend from the hub is 82.5% of the radius.
- leading edge is convexly formed with a curved leading edge bulging portion near the paddle
- trailing edge is convexly formed with a curved shape near the paddle.
- the distance of the leading edge arch from the center of the hub is less than the distance of the trailing edge arch from the center of the hub.
- the blades are at least two, and at least two of the blades are coupled to the hub and are centrally symmetric about a center of the hub.
- the paddle has a central axis passing through a center of the hub, the leading edge having a leading edge tangent parallel to the central axis, the trailing edge having a parallel to the middle A trailing edge of the axis is tangent, the swept portion being between the leading edge tangent and the trailing edge tangent.
- the suction side and the pressure side are both curved surfaces.
- the pitch of the paddle is 6.6 ⁇ 0.5 inches.
- a power assembly includes a driving member and the propeller according to any one of the above embodiments, wherein the propeller is coupled to the driving member through the hub.
- the drive member is a motor having a KV value of 130 to 340 rpm / (minute volts).
- An aircraft according to an embodiment of the present invention includes a power body and a power assembly according to any of the above embodiments, the power assembly being coupled to the body.
- the aircraft includes a plurality of power components that rotate in different directions.
- the aircraft is a multi-rotor aircraft.
- the propeller, the power assembly and the aircraft provided by the embodiments of the present invention have an angle of attack of 25.65° ⁇ 2.5° at a distance of 41.9% of the radius of the propeller from the center of the hub; and a propeller at the center of the hub; At 53.5% of the radius, the angle of attack of the blade is 23.02 ° ⁇ 2.5 °; at the center of the hub is 65.1% of the radius of the propeller, the angle of attack of the blade is 20.68 ° ⁇ 2.5 °; at the distance from the hub The center is 76.7% of the radius of the propeller, and the angle of attack of the blade is 18.72° ⁇ 2.5°.
- the propeller using the blade can reduce the air resistance, increase the pulling force and efficiency, and increase the flight distance of the aircraft to improve the aircraft.
- the flight performance also reduces the noise generated by the blades during operation, making the aircraft quieter when hovering and improving the user experience.
- FIG. 1 is a schematic plan view of a propeller according to an embodiment of the present invention.
- Figure 2 is a cross-sectional view of the C-C section of the propeller of the embodiment of Figure 1 at a distance of 90 mm from the center of the hub.
- Figure 3 is a cross-sectional view of the D-D section of the propeller of the embodiment of Figure 1 at a distance of 115 mm from the center of the hub.
- Figure 4 is a cross-sectional view of the E-E section of the propeller of the embodiment of Figure 1 at a distance of 140 mm from the center of the hub.
- Figure 5 is a cross-sectional view of the F-F section of the propeller of the embodiment of Figure 1 at a distance of 165 mm from the center of the hub.
- Fig. 6 is a schematic diagram showing the frequency response curve of the propeller of the embodiment of the present invention under the same hovering condition acoustic performance test conditions as the existing propeller.
- Figure 7 is a cross-sectional view of the A-A section of the propeller of the embodiment of Figure 1 at a distance of 40 mm from the center of the hub.
- Figure 8 is a cross-sectional view of the B-B section of the propeller of the embodiment of Figure 1 at a distance of 65 mm from the center of the hub.
- Figure 9 is a cross-sectional view of the G-G section at 190 mm from the center of the hub of the propeller of the embodiment of Figure 1.
- Figure 10 is a cross-sectional view of the H-H section of the propeller of the embodiment of Figure 1 at a distance of 215 mm from the center of the hub.
- Figure 11 is a perspective view of a propeller according to an embodiment of the present invention.
- FIG. 12 is a perspective view of a propeller according to an embodiment of the present invention.
- FIG. 13 is a schematic plan view of a propeller according to an embodiment of the present invention.
- FIG. 14 is a schematic plan view of a propeller according to an embodiment of the present invention.
- FIG. 15 is a schematic plan view of a propeller according to an embodiment of the present invention.
- Figure 16 is a parametric diagram of the swept portion of the propeller of Figure 1 extending obliquely from the leading edge to the trailing edge.
- Figure 17 is a parametric diagram in which the tip of the propeller of Figure 1 extends obliquely along the direction of the blade toward the side where the suction surface is located.
- FIG. 18 is a schematic plan view of an aircraft according to an embodiment of the present invention.
- Propeller 100 hub 10, paddle 20, paddle 21, tip 22, swept portion 221, pressure surface 23, suction surface 24, leading edge 25, leading edge arch 251, trailing edge 26, trailing edge arch a starting portion 261, a reversal portion 27, a bend back 28;
- Power assembly 200 drive member 30, arm 40;
- Aircraft 1000 fuselage 50;
- first, second, third, etc. may be used to describe various information in the present invention, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
- first information may also be referred to as the second information without departing from the scope of the invention.
- second information may also be referred to as the first information.
- word "if” as used herein may be interpreted as "when” or “when” or “in response to a determination.”
- an embodiment of the present invention provides a propeller 100 that includes a hub 10 and a blade 20 .
- the paddle 20 is attached to the hub 10.
- the paddles 20 may be integrally formed with the hub 10, or may be separately processed and fixedly assembled.
- the angle of attack ⁇ 3 of the blade 20 is 25.65° ⁇ 2.5°.
- the angle of attack ⁇ 4 of the blade 20 is 23.02° ⁇ 2.5°.
- the angle of attack ⁇ 5 of the blade 20 is 20.68° ⁇ 2.5°.
- the angle of attack ⁇ 6 of the blade 20 is 18.72° ⁇ 2.5°.
- the angle of attack ⁇ 3 of the blade 20 is 25.65° ⁇ 2.5°; at the center of the hub 10 is the radius of the propeller 100.
- the angle of attack ⁇ 4 of the blade 20 is 23.02° ⁇ 2.5°; at the center of the hub 10, which is 65.1% of the radius of the propeller 100, the angle of attack ⁇ 5 of the blade 20 is 20.68° ⁇ 2.5.
- the propeller 100 using the blade 20 can reduce air resistance and improve Pulling and efficiency, increasing the relay distance of the aircraft 1000 (shown in Figure 18) to improve the flight performance of the aircraft 1000, while also reducing the noise generated by the blades 20 during operation, making the aircraft 1000 quieter when hovering, Improve the user experience.
- an embodiment of the present invention provides a propeller 100 that includes a hub 10 and a blade 20 .
- the angle of attack ⁇ 3 of the blade 20 is 25.65° ⁇ 2.5°, and the chord length L3 of the blade 20 is 50.36 mm ⁇ 5 mm.
- the angle of attack ⁇ 4 of the blade 20 is 23.02° ⁇ 2.5°, and the chord length L4 of the blade 20 is 45.13 mm ⁇ 5 mm.
- the angle of attack ⁇ 5 of the blade 20 is 20.68° ⁇ 2.5°, and the chord length L5 of the blade 20 is 38.63 mm ⁇ 5 mm.
- the angle of attack ⁇ 6 of the blade 20 is 18.72° ⁇ 2.5°, and the chord length L6 of the blade 20 is 32.22 mm ⁇ 5 mm.
- the chord length L3 of the blade 20 is 50.36 mm ⁇ 5 mm.
- D4 the angle of attack ⁇ 4 of the blade 20 is 23.02° ⁇ 2.5°
- the chord length L4 of the blade 20 is 45.13 mm ⁇ 5 mm;
- the center of 10 is 65.1% of the radius of the propeller 100, D5, the angle of attack ⁇ 5 of the blade 20 is 20.68° ⁇ 2.5°, the chord length L5 of the blade 20 is 38.63 mm ⁇ 5 mm, and the propeller is at the center of the hub 10.
- the angle of attack ⁇ 6 of the blade 20 is 18.72° ⁇ 2.5°, and the chord length L6 of the blade 20 is 32.22 mm ⁇ 5 mm; therefore, the propeller 100 using the blade 20 can reduce air resistance.
- the pulling force and efficiency are increased, the flying distance of the aircraft 1000 is increased to improve the flight performance of the aircraft 1000, and the noise generated by the blade 20 during operation is also reduced, so that the aircraft 1000 is quieter when hovering, thereby improving the user experience. .
- the comparison between the propeller 100 and the test results of the existing propeller provided in this embodiment can be seen from Table 1.
- the propeller 100 provided by the present embodiment has lower power. That is, under smaller power conditions, there is greater pulling force, thereby reducing power consumption and increasing the cruising distance. Therefore, the propeller 100 provided by the present embodiment can significantly increase the pulling force in the extreme case where the lifting density is high in a high-altitude region with a reduced density or a low-altitude region, thereby ensuring sufficient power while prolonging the endurance time and improving flight performance.
- the loudness of the propeller 100 provided by this embodiment is significantly lower than that of the existing propeller. Therefore, the propeller 100 provided in the embodiment can effectively reduce high frequency noise, reduce the discomfort caused by high frequency noise and improve the user experience.
- the propeller 100 provided in this embodiment can be applied to scenes with high sound requirements, such as detection, aerial photography (recording images and audio during aerial photography), and the like.
- the angle of attack ⁇ 3 of the blade 20 may be 23.15° or 25.65° or 28.15°, or 23.65°, 24.15°, 24.65°, 25.15°, Any one of 26.15°, 26.65°, 27.15°, 27.65°, etc., or any of the above, the chord length L3 of the blade 20 may be 45.36 mm or 50.36 mm or 55.36 mm, or 46.36 mm.
- the angle of attack ⁇ 4 of the blade 20 may be 20.52° or 23.02° or 25.52°, or 21.02°, 21.52°, 22.02°, 22.52°, The value of any one of 23.52°, 24.02°, 24.52°, 25.02°, or the like, or any of the above, the chord length L4 of the blade 20 may be 40.13 mm or 45.13 mm or 50.13 mm, or 41.13 mm, 42.13.
- the angle of attack ⁇ 5 of the blade 20 may be 18.18° or 20.68° or 23.18°, or 18.68°, 19.18°, 19.68°, 20.18°, 21.
- chord length L5 of the blade 20 may be 33.63 mm or 38.63 mm or 43.63 mm, or 34.63 mm, 35.63.
- the angle of attack ⁇ 6 of the blade 20 may be 16.22° or 18.72° or 21.22°, or 16.72°, 17.22°, 17.72°, 18.22°,
- the value of any one of 19.22°, 19.72°, 20.22°, 20.72°, or the like, or any of the above, the chord length L6 of the blade 20 may be 27.22 mm or 32.22 mm or 37.22 mm, or 28.22 mm, 29.22. Any value between mm, 30.22 mm, 31.22 mm, 33.22 mm, 34.22 mm, 35.22 mm, 36.22 mm, or the like, or any of the above.
- the hub 10 may have a cylindrical shape, or the cross section of the hub 10 may have an elliptical shape, a rhombus shape or the like.
- the center of the hub 10 is provided with a connecting hole for arranging on the output end of the motor.
- the blade 20 may be in the form of a strip, the blade 20 being coupled to the hub 10 and extending in the radial direction of the hub 10.
- the angle of attack ⁇ 1 of the blade 20 is 25.81° ⁇ 2.5°
- the blade The chord length L1 of 20 is 46.81 mm ⁇ 5 mm to further reduce the air resistance of the propeller 100, increase the pulling force and efficiency, and reduce noise.
- the angle of attack ⁇ 1 of the blade 20 may be 23.31° or 25.81° or 28.31°, or any one of 23.81°, 24.31°, 24.81°, 25.31°, 26.31°, 26.81°, 27.31°, 27.81°, and the like.
- chord length L1 of the blade 20 may be 41.81 mm or 46.81 mm or 51.81 mm, or 42.81 mm, 43.81 mm, 44.81 mm, 45.81 mm, 47.81 mm, 48.81 mm, 49.81 mm. Any one of 50.81 mm or the like or a value between any of the above.
- the angle of attack ⁇ 2 of the blade 20 is 28.01° ⁇ 2.5°, the blade The chord length L2 of 20 is 53.41 mm ⁇ 5 mm.
- the angle of attack ⁇ 2 of the blade 20 may be 25.51° or 28.01° or 30.51°, or any one of 26.01°, 26.51°, 27.01°, 27.51°, 28.51°, 29.01°, 29.51°, 30.01°, and the like.
- chord length L2 of the blade 20 may be 48.41 mm or 53.41 mm or 58.41 mm, or 49.41 mm, 50.41 mm, 51.41 mm, 52.41 mm, 54.41 mm, 55.41 mm, 56.41 mm. Any one of 57.41 mm or the like or a value between any of the above.
- the angle of attack ⁇ 7 of the blade 20 is 16.04° ⁇ 2.5°
- the blade The chord length L7 of 20 is 22.92 mm ⁇ 5 mm to further reduce the air resistance of the propeller 100, increase the pulling force and efficiency, and reduce noise.
- the angle of attack ⁇ 7 of the blade 20 may be 13.54° or 16.04° or 18.54°, or any one of 14.04°, 14.54°, 15.04°, 15.54°, 16.54°, 17.04°, 17.54°, 18.04°, and the like.
- chord length L7 of the blade 20 may be 17.92 mm or 22.92 mm or 27.92 mm, or 18.92 mm, 19.92 mm, 20.92 mm, 21.92 mm, 23.92 mm, 24.92 mm, 25.92 mm. Any one of 26.92 mm or the like or a value between any two of the above.
- the angle of attack ⁇ 8 of the blade 20 is 14.00° ⁇ 2.5°
- the blade The chord length L8 of 20 is 9.00 mm ⁇ 5 mm.
- the angle of attack ⁇ 8 of the blade 20 may be 11.50° or 14.00° or 16.50°, or any one of 12.00°, 12.50°, 13.00°, 13.50°, 14.50°, 15.00°, 15.50°, 16.00°, and the like.
- chord length L8 of the blade 20 may be 4.00 mm or 9.00 mm or 14.00 mm, or 5.00 mm, 6.00 mm, 7.00 mm, 8.00 mm, 10.00 mm, 11.00 mm, 12.00 mm. Any one of 13.00 mm or the like or a numerical value between any of the above.
- the diameter of the propeller 100 is 430 mm ⁇ 43 mm.
- the angle of attack ⁇ 3 of the blade 20 is 25.65°, and the chord length L3 of the blade 20 is 50.36 mm.
- the angle of attack ⁇ 4 of the blade 20 is 23.02°, and the chord length L4 of the blade 20 is 45.13 mm.
- the angle of attack ⁇ 5 of the blade 20 is 20.68°, and the chord length L5 of the blade 20 is 38.63 mm.
- the angle of attack ⁇ 6 of the blade 20 is 18.72°, and the chord length L6 of the blade 20 is 32.22 mm.
- the diameter of the propeller 100 may be 387 mm or 430 mm or 473 mm, or any one of 395 mm, 403 mm, 411 mm, 419 mm, 427 mm, 435 mm, 443 mm, 451 mm, 459 mm, 467 mm, or the like, or a value between any two of the above.
- the diameter of the propeller 100 is 430 mm ⁇ 43 mm.
- the angle of attack ⁇ 1 of the blade 20 is 25.81°, and the chord length L1 of the blade 20 is 46.81 mm.
- the diameter of the propeller 100 may be 387 mm or 430 mm or 473 mm, or any one of 395 mm, 403 mm, 411 mm, 419 mm, 427 mm, 435 mm, 443 mm, 451 mm, 459 mm, 467 mm, or the like, or a value between any two of the above.
- the diameter of the propeller 100 is 430 mm ⁇ 43 mm.
- the angle of attack ⁇ 2 of the blade 20 is 28.01°, and the chord length L2 of the blade 20 is 53.41 mm.
- the diameter of the propeller 100 may be 387 mm or 430 mm or 473 mm, or any one of 395 mm, 403 mm, 411 mm, 419 mm, 427 mm, 435 mm, 443 mm, 451 mm, 459 mm, 467 mm, or the like, or a value between any two of the above.
- the diameter of the propeller 100 is 430 mm ⁇ 43 mm.
- the angle of attack ⁇ 7 of the blade 20 is 16.04°, and the chord length L7 of the blade 20 is 22.92 mm.
- the diameter of the propeller 100 may be 387 mm or 430 mm or 473 mm, or any one of 395 mm, 403 mm, 411 mm, 419 mm, 427 mm, 435 mm, 443 mm, 451 mm, 459 mm, 467 mm, or the like, or a value between any two of the above.
- the diameter of the propeller 100 is 430 mm ⁇ 43 mm.
- the angle of attack ⁇ 8 of the paddle 20 is 14.00°, and the chord length L8 of the paddle 20 is 9.00 mm.
- the diameter of the propeller 100 may be 387 mm or 430 mm or 473 mm, or any one of 395 mm, 403 mm, 411 mm, 419 mm, 427 mm, 435 mm, 443 mm, 451 mm, 459 mm, 467 mm, or the like, or a value between any two of the above.
- the paddle 20 includes a paddle root 21 , a blade tip 22 facing away from the blade root 21 , a pressure surface 23 opposite to each other, and a suction surface 24 .
- the tip 22 extends obliquely along the direction of the blade 20 toward the side on which the suction surface 24 is located. As such, the noise generated by the blade 20 during operation is reduced, making the aircraft 1000 quieter when hovering, improving the user experience.
- the pressure surface 23 is a surface facing the ground of the blade 20 during normal flight of the aircraft 1000
- the suction surface 24 is a surface facing the sky of the blade 20 when the aircraft 1000 is normally flying.
- the suction surface 24 and the pressure surface 23 are curved surfaces.
- the suction surface 24 and the pressure surface 23 are curved aerodynamic shapes, which can prevent the turbulence generated by the various portions of the blade 20 and the downwashing airflow from directly impacting the fuselage 50 of the aircraft 1000, thereby reducing the overall noise of the aircraft 1000.
- the paddle 20 further includes a leading edge 25 connected to one side of the pressure surface 23 and the suction surface 24 , and is connected to the pressure surface 23 .
- the trailing edge 26 of the other side of the suction surface 24 and the swept portion 221 formed on the blade tip 22 extend from the leading edge 25 toward the trailing edge 26. In this way, the effect of further increasing the pulling force and efficiency of the propeller 100 is achieved.
- the paddle 20 forms a reversal 27 at a position close to the tip 22, and the leading edge 25 is inclined from the reversal 27 toward the side of the suction surface 24 along the direction of the blade 20. extend.
- the position of the inversion 27 is represented by QQ.
- the inversion portion 27 is 65% of the center of the hub 10 from the center of the propeller 100.
- the reversal 27 is near the center of the blade 20, reducing the interaction between the propeller 100 and the arm 40 of the aircraft 1000 (shown in Figure 18).
- the paddle 20 forms a return bend 28 at the position of the tip 22, and the swept portion 221 extends obliquely from the leading edge 25 to the trailing edge 26 from the return bend 28.
- the position of the return bend 28 is indicated by MM.
- the bendback portion 28 is 82.5% of the radius of the propeller 100 from the center of the hub 10.
- the return bend 28 is remote from the center of the hub 10 to enhance the aesthetics of the blade 20.
- the leading edge 25 is convexly formed with a curved leading edge arching portion 251 near the paddle root 21, and the trailing edge 26 is convexly formed with a curved trailing edge near the paddle root 21.
- the distance of the leading edge arch 251 from the center of the hub 10 is less than the distance of the trailing edge arch 261 from the center of the hub 10.
- the leading edge arching portion 251 and the trailing edge arching portion 231 have a curved shape to further increase the pulling force of the blade 20.
- the distance of the leading edge arching portion 251 from the center of the hub 10 is smaller than the distance of the trailing edge arching portion 261 from the center of the hub 10, further enhancing the aerodynamic shape of the blade 20 to further enhance the blade 20 The effect of the pull.
- the blades 20 are at least two, and at least two blades 20 are coupled to the hub 10 and are centrally symmetric with respect to the center of the hub 10. Thereby, the balance of the propeller 100 can be improved.
- the paddle 20 has a central axis NN that passes through the center of the hub 10, the leading edge 25 has a leading edge tangent OO parallel to the central axis NN, and the trailing edge 26 has a parallel to the central axis NN
- the trailing edge tangent PP, the swept portion 221 is located between the leading edge tangent OO and the trailing edge tangent PP.
- the swept portion 221 can reduce the turbulence and the downwash flow generated by the blade 20, thereby reducing the turbulence and the downwashing airflow hitting the fuselage 50 of the aircraft 1000, reducing the air resistance of the propeller 100, and improving the aircraft.
- the maneuverability of 1000 makes the aircraft 1000 more stable while further reducing the overall noise of the aircraft 1000.
- the swept portion 221 extends obliquely from the leading edge 25 toward the trailing edge 26.
- the abscissa Blade Radius (mm) of Table 3 and FIG. 16 indicates the distance from the center of the hub 10 at a certain position (such as MM) of the paddle 20 extending along the blade 20.
- the Sweep Length (mm) is the distance of the swept or swept forward. Among them, the positive value of the Sweep Length (mm) is swept back, and the negative value is swept forward.
- the swept portion 221 regularly extends obliquely from the leading edge 25 to the trailing edge 26, which can reduce turbulence and downwashing due to interaction of the plurality of blades 20, and reduce
- the turbulent flow and the lower washing airflow on the fuselage 50 of the aircraft 1000 reduce the air resistance received by the blade 20, further improve the pulling force and efficiency of the propeller 100, improve the maneuverability of the aircraft 1000, and make the aircraft 1000 more stable.
- the noise generated by the turbulence and the downwash airflow impinging on the fuselage 50 of the aircraft 1000 is further reduced.
- the blade tip 22 extends obliquely along the direction of the blade 20 toward the side where the suction surface 24 is located.
- the abscissa of the table 4 is Blade Radius ( Mm) represents the distance from the center of the hub 10 at a position along the span of the blade 20 (such as at QQ).
- the start is the center of the hub 10, at which point the distance of the blade 20 from the center of the hub 10 is 0 mm, the end is the free end of the tip 22, and the free end is 215 mm from the center of the hub 10.
- the ordinate Anhedral Length (mm) is the upper or lower inverse distance. Among them, the positive value of the ordinate Anhedral Length (mm) is the upper and the reverse, and the negative value is the lower.
- the leading edge 25 begins to extend obliquely from the reversal 27 along the side of the blade 20 toward the side of the suction surface 24, i.e., when the distance of the blade 20 from the center of the hub 10 is 139.75 mm.
- the leading edge 25 is regularly inclined from the reversal portion 27 along the side of the blade 20 along the direction toward the suction surface 24, which can reduce the interaction due to the plurality of blades 20.
- the generated turbulence and under-washing airflow reduce the turbulence and downwashing airflow on the arm 40 and the fuselage 50 of the aircraft 1000.
- the lift point of the blade 20 can be rated to enable the aircraft 1000 to be automatically corrected.
- the flight attitude increases the inertia stability of the aircraft 1000, making the aircraft 1000 more stable during flight, while further reducing the noise generated by the turbulence and downwash airflow impinging on the fuselage 50 of the aircraft 1000.
- the pitch of the blade 20 is 6.6 ⁇ 0.5 inches.
- the resistance of the air can be reduced and the pulling force of the blade 20 can be increased.
- the pitch of the blade 20 may be 6.1 inches or 6.6 inches or 7.1 inches, or any one of 6.2 inches, 6.3 inches, 6.4 inches, 6.5 inches, 6.7 inches, 6.8 inches, 6.9 inches, 7.0 inches, or the like. The value between any two.
- the propeller 100 using the blade of the above embodiment of the present invention can significantly increase the pulling force in the plateau region, thereby ensuring sufficient power redundancy.
- the performance is balanced to a certain extent, the following distance is increased, and the flight performance of the aircraft 1000 is improved.
- the propeller 100 using the blade has a greater pulling force under a smaller power condition, thereby reducing power consumption and increasing the cruising distance.
- it can significantly increase the pulling force, ensure sufficient power while prolonging the battery life and improving flight performance.
- the propeller 100 employing the blade 20 of the above-described embodiment of the present invention has a lower loudness than the existing propeller under most of the same frequency conditions. Especially under the same high frequency conditions, the loudness of the propeller 100 provided by this embodiment is significantly lower than that of the existing propeller. Therefore, the propeller 100 provided in the embodiment can effectively reduce high frequency noise, reduce the discomfort caused by high frequency noise and improve the user experience. The overall is lower than the existing propeller. Thus, the propeller 100 provided in this embodiment can effectively reduce noise.
- the propeller 100 is at a distance D1 from the center of the hub 10 that is 18.6% of the radius of the propeller 100, and the angle of attack ⁇ 1 of the blade 20 is 25.81° ⁇ 2.5°; and/or
- the angle of attack ⁇ 2 of the blade 20 is 28.01° ⁇ 2.5°;
- the angle of attack ⁇ 7 of the blade 20 is 16.04° ⁇ 2.5°;
- the angle of attack ⁇ 8 of the blade 20 is 14.00° ⁇ 2.5°;
- the angle of attack ⁇ 1 of the blade 20 is 25.81°;
- the angle of attack ⁇ 2 of the blade 20 is 28.01°;
- the angle of attack ⁇ 3 of the blade 20 is 25.65°;
- the angle of attack ⁇ 4 of the blade 20 is 23.02°;
- the angle of attack ⁇ 5 of the blade 20 is 20.68°;
- the angle of attack ⁇ 6 of the blade 20 is 18.72°;
- the angle of attack ⁇ 7 of the blade 20 is 16.04°;
- the angle of attack ⁇ 8 of the paddle 20 is 14.00°.
- the propeller 100 is at a distance of 18.6% from the center of the hub 10 at a radius of the propeller 100 D1, and the angle of attack ⁇ 1 of the blade 20 is 25.81° ⁇ 2.5°;
- the propeller 100 is at a distance D2 from the center of the hub 10 of 30.2% of the radius of the propeller 100, and the angle of attack ⁇ 2 of the blade 20 is 28.01 ° ⁇ 2.5 °;
- the propeller 100 is at a distance of 88.4% of the radius of the propeller 100 from the center of the hub 10, D7, and the angle of attack ⁇ 7 of the blade 20 is 16.04 ° ⁇ 2.5 °;
- the propeller 100 is at a distance D100 from the center of the hub 10 that is 100% of the radius of the propeller 100, and the angle of attack ⁇ 8 of the blade 20 is 14.00° ⁇ 2.5°;
- the propeller 100 is at a distance of 40 mm from the center of the hub 10, and the angle of attack ⁇ 1 of the blade 20 is 25.81°;
- the propeller 100 is at a distance of 65 mm from the center of the hub 10, and the angle of attack ⁇ 2 of the blade 20 is 28.01°;
- the propeller 100 is at a distance of 90 mm from the center of the hub 10, and the angle of attack ⁇ 3 of the blade 20 is 25.65°;
- the propeller 100 is at a distance 115 mm from the center of the hub 10, and the angle of attack ⁇ 4 of the blade 20 is 23.02°;
- the propeller 100 is at a distance of 140 mm from the center of the hub 10, and the angle of attack ⁇ 5 of the blade 20 is 20.68°;
- the propeller 100 is at a distance 165 mm from the center of the hub 10, and the angle of attack ⁇ 6 of the blade 20 is 18.72°;
- the propeller 100 is at a distance 190 mm from the center of the hub 10, and the angle of attack ⁇ 7 of the blade 20 is 16.04°;
- the propeller 100 is at a distance 215 mm from the center of the hub 10, and the angle of attack ⁇ 8 of the blade 20 is 14.00°;
- the propeller 100 is at a distance D1 from the center of the hub 10 which is 18.6% of the radius of the propeller 100, and the angle of attack ⁇ 1 of the blade 20 is 25.81° ⁇ 2.5°; and, at the center of the hub 10, the propeller 100 At 30.2% of the radius, D2, the angle of attack ⁇ 2 of the blade 20 is 28.01° ⁇ 2.5°; and, at the center of the hub 10, 88.4% of the radius of the propeller 100, D7, the angle of attack ⁇ 7 of the blade 20 is 16.04.
- the angle of attack ⁇ 8 of the blade 20 is 14.00° ⁇ 2.5°; and, at a distance of 40 mm from the center of the hub 10 D1, the angle of attack ⁇ 1 of the blade 20 is 25.81°; and, at a distance of 65 mm from the center of the hub 10, the angle of attack ⁇ 2 of the blade 20 is 28.01°; and, at a distance of 90 mm from the center of the hub 10, D3,
- the angle of attack ⁇ 3 of the blade 20 is 25.65°; and, at D4, 115 mm from the center of the hub 10, the angle of attack ⁇ 4 of the blade 20 is 23.02°; and, at a distance of 140 mm from the center of the hub 10, the paddle
- the angle of attack ⁇ 5 of 20 is 20.68°; and, at a distance 165 mm from the center of the hub 10, the angle of attack ⁇ 6 of the blade 20 is 18.
- the propeller 100 is at a distance D1 from the center of the hub 10 that is 41.9% of the radius of the propeller 100, and the chord length L3 of the blade 20 is 50.36 mm ⁇ 5 mm; and/or
- chord length L4 of the blade 20 is 45.13 mm ⁇ 5 mm;
- chord length L5 of the blade 20 is 38.63 mm ⁇ 5 mm;
- the chord length L6 of the blade 20 is 32.22 mm ⁇ 5 mm;
- chord length L3 of the blade 20 is 50.36 mm;
- chord length L4 of the blade 20 is 45.13 mm;
- chord length L5 of the blade 20 is 38.63 mm;
- chord length L6 of the paddle 20 is 32.22 mm.
- the propeller 100 is D3 at a distance of 41.9% of the radius of the propeller 100 from the center of the hub 10, and the chord length L3 of the blade 20 is 50.36 mm ⁇ 5 mm;
- the propeller 100 is at a distance of 53.5% of the radius of the propeller 100 from the center of the hub 10, D4, and the chord length L4 of the blade 20 is 45.13 mm ⁇ 5 mm;
- the propeller 100 is at a distance of 65.1% of the radius of the propeller 100 from the center of the hub 10, D5, and the chord length L5 of the blade 20 is 38.63 mm ⁇ 5 mm;
- the propeller 100 is at a distance of 76.7% of the radius of the propeller 100 from the center of the hub 10, D6, and the chord length L6 of the blade 20 is 32.22 mm ⁇ 5 mm;
- the propeller 100 is at a distance of 90 mm from the center of the hub 10, and the chord length L3 of the blade 20 is 50.36 mm;
- the propeller 100 is at a distance 115 mm from the center of the hub 10, and the chord length L4 of the blade 20 is 45.13 mm;
- the propeller 100 is at a distance of 140 mm from the center of the hub 10, and the chord length L5 of the blade 20 is 38.63 mm;
- the propeller 100 is at a distance 165 mm from the center of the hub 10, and the chord length L6 of the blade 20 is 32.22 mm;
- the propeller 100 is D3 at a distance of 41.9% of the radius of the propeller 100 from the center of the hub 10, and the chord length L3 of the blade 20 is 50.36 mm ⁇ 5 mm; and, at the center of the hub 10, the radius of the propeller 100 At 53.5%, D4, the chord length L4 of the blade 20 is 45.13 mm ⁇ 5 mm; and, at the center of the hub 10, 65.1% of the radius of the propeller 100, D5, the chord length L5 of the blade 20 is 38.63 mm ⁇ 5 mm; and, at a distance of 76.7% of the radius of the propeller 100 from the center of the hub 10, D6, the chord length L6 of the blade 20 is 32.22 mm ⁇ 5 mm; and, at a distance of 90 mm from the center of the hub 10, D3, paddle 20 has a chord length L3 of 50.36 mm; and, at a distance of 115 mm from the center of the hub 10, the chord length L4 of the blade 20 is 45
- the propeller 100 is at a distance D1 from the center of the hub 10 that is 18.6% of the radius of the propeller 100, and the chord length L1 of the blade 20 is 46.81 mm ⁇ 5 mm; and/or
- the chord length L2 of the blade 20 is 53.41 mm ⁇ 5 mm;
- the chord length L7 of the blade 20 is 22.92 mm ⁇ 5 mm;
- the chord length L8 of the blade 20 is 9.00 mm ⁇ 5 mm;
- chord length L1 of the blade 20 is 46.81 mm;
- chord length L2 of the blade 20 is 53.41 mm;
- chord length L7 of the blade 20 is 22.92 mm;
- chord length L8 of the paddle 20 is 9.00 mm.
- the propeller 100 is at a distance of 18.6% from the center of the hub 10 at a radius of the propeller 100 D1, and the chord length L1 of the blade 20 is 46.81 mm ⁇ 5 mm;
- the propeller 100 is at a distance of 30.2% of the radius of the propeller 100 from the center of the hub 10, D2, and the chord length L2 of the blade 20 is 53.41 mm ⁇ 5 mm;
- the propeller 100 is at a distance of 88.4% of the radius of the propeller 100 from the center of the hub 10, D7, and the chord length L7 of the blade 20 is 22.92 mm ⁇ 5 mm;
- the propeller 100 is at a distance D100 from the center of the hub 10 at 100% of the radius of the propeller 100, and the chord length L8 of the blade 20 is 9.00 mm ⁇ 5 mm;
- the propeller 100 is at a distance of 40 mm from the center of the hub 10, and the chord length L1 of the blade 20 is 46.81 mm;
- the propeller 100 is at a distance of 65 mm from the center of the hub 10, and the chord length L2 of the blade 20 is 53.41 mm;
- the propeller 100 is at a distance 190 mm from the center of the hub 10, and the chord length L7 of the blade 20 is 22.92 mm;
- the propeller 100 is 215 mm from the center of the hub 10 D8, the chord length L8 of the blade 20 is 9.00 mm;
- the propeller 100 is at a distance of 18.6% of the radius of the propeller 100 from the center of the hub 10, D1, the chord length L1 of the blade 20 is 46.81 mm ⁇ 5 mm; and, at the center of the hub 10, the radius of the propeller 100 At 30.2%, D2, the chord length L2 of the blade 20 is 53.41 mm ⁇ 5 mm; and, at the center of the hub 10, 88.4% of the radius of the propeller 100, D7, the chord length L7 of the blade 20 is 22.92 mm ⁇ 5mm; and, at a distance from the center of the hub 10 to 100% of the radius of the propeller 100, D8, the chord length L8 of the blade 20 is 9.00 mm ⁇ 5 mm; and, at a distance of 40 mm from the center of the hub 10, D1, paddle
- the chord length L1 of 20 is 46.81 mm; and, at a distance of 65 mm from the center of the hub 10, the chord length L2 of the blade 20 is 53.41 mm;
- an embodiment of the present invention provides a power assembly 200 including a drive member 30 and a propeller 100 of any embodiment of the present invention.
- the propeller 100 is coupled to the drive member 30 via a hub 10.
- the power assembly 200 includes at least two arms 40. At least two arms 40 are coupled to a central location of the propeller assembly 100.
- the drive member 30 is disposed on the arm 40.
- the specific structure of the propeller 100 is the same as that of the foregoing embodiment, and details are not described herein again. That is, the description of the propeller 100 in the above embodiments and embodiments is equally applicable to the power assembly 200 provided by the embodiment of the present invention.
- the angle D3 of the blade 20 is 41.9% of the radius of the propeller 100 from the center of the hub 10
- the angle of attack ⁇ 3 of the blade 20 is 25.65° ⁇ 2.5°; at the distance from the hub 10.
- the center is D4 at 53.5% of the radius of the propeller 100, the angle of attack ⁇ 4 of the blade 20 is 23.02° ⁇ 2.5°; at the center of the hub 10, 65.1% of the radius of the propeller 100, D5, the angle of attack of the blade 20 ⁇ 5 is 20.68° ⁇ 2.5°; at the center of the hub 10, which is 76.7% of the radius of the propeller 100, D6, the angle of attack ⁇ 6 of the blade 20 is 18.72° ⁇ 2.5°; therefore, the propeller 100 using the blade 20 can While reducing the air resistance, increasing the pulling force and efficiency, increasing the relay distance of the aircraft 1000 to improve the flight performance of the aircraft 1000, the noise generated by the blade 20 during operation is also reduced, so that the aircraft 1000 is quieter when hovering. Improve the user experience.
- the driving member 30 is a motor, and the KV value of the motor is 130 to 340 rpm / (minute ⁇ volt). Thereby, the dynamic performance of the power unit can be ensured.
- an embodiment of the present invention provides an aircraft 1000 including a fuselage 50 and a power assembly 200 of any of the embodiments of the present invention.
- the power assembly 200 is coupled to the fuselage 50.
- a plurality of arms 40 of the power assembly 200 are coupled to the body 50 to mount the power assembly 200 on the body 50.
- the specific structure of the power module 200 is similar to the foregoing embodiment, and details are not described herein again. That is, the description of the propeller 100 in the above embodiments and embodiments is equally applicable to the aircraft 1000 provided by the embodiment of the present invention.
- the aircraft 1000 includes a plurality of power components 200, and the plurality of power components 200 have different rotation directions.
- the aircraft 1000 is a multi-rotor aircraft, such as a quadrotor unmanned aerial vehicle.
- the angle of attack ⁇ 3 of the blade 20 is 25.65° ⁇ 2.5°; at the center of the hub 10 is the radius of the propeller 100.
- the angle of attack ⁇ 4 of the blade 20 is 23.02° ⁇ 2.5°; at the center of the hub 10, which is 65.1% of the radius of the propeller 100, the angle of attack ⁇ 5 of the blade 20 is 20.68° ⁇ 2.5.
- the propeller 100 using the blade 20 can reduce air resistance and improve The pulling force and efficiency increase the flight distance of the aircraft 1000 to improve the flight performance of the aircraft 1000, while also reducing the noise generated by the blade 20 during operation, making the aircraft 1000 quieter when hovering, improving the user experience.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
一种螺旋桨(100)、动力组件(200)及飞行器(1000),在距离桨毂(10)的中心为螺旋桨(100)的半径的41.9%处,桨叶(20)的攻角为25.65°±2.5°;在距离桨毂(10)的中心为螺旋桨(100)的半径的53.5%处,桨叶(20)的攻角为23.02°±2.5°;在距离桨毂(10)的中心为螺旋桨(100)的半径的65.1%处,桨叶(20)的攻角为20.68°±2.5°;在距离桨毂(10)的中心为螺旋桨(100)的半径的76.7%处,桨叶(20)的攻角为18.72°±2.5°;采用该桨叶(20)的螺旋桨(100)能够在减少空气阻力,提高拉力和效率,增加飞行器(1000)的继航距离以提高飞行器(1000)的飞行性能的同时,还减少了桨叶(20)在工作时产生的噪声,使得飞行器(1000)在悬停时更安静,提高了用户体验。
Description
本发明实施例涉及飞行器领域,特别涉及螺旋桨、动力组件及飞行器。
飞行器上的螺旋桨,作为飞行器的重要关键器件,其用于将电机或发动机中转轴的转动转化为推力或升力。
现有技术中的螺旋桨在旋转中,桨叶各部分的湍流以及下洗气流冲击飞行器外壳结构会产生较大的噪音。其与电机噪声和结构震动噪声往往会叠加在一起,并放大某些频段噪声,导致飞行器总体噪声较大,使用体验差。
发明内容
本发明的实施方式提供了一种螺旋桨、动力组件及飞行器。
本发明实施方式的螺旋桨包括桨毂和桨叶,所述桨叶连接在所述桨毂上,其中:
在距离所述桨毂的中心为所述螺旋桨的半径的41.9%处,所述桨叶的攻角为25.65°±2.5°;
在距离所述桨毂的中心为所述螺旋桨的半径的53.5%处,所述桨叶的攻角为23.02°±2.5°;
在距离所述桨毂的中心为所述螺旋桨的半径的65.1%处,所述桨叶的攻角为20.68°±2.5°;
在距离所述桨毂的中心为所述螺旋桨的半径的76.7%处,所述桨叶的攻角为18.72°±2.5°。
在某些实施方式中,在距离所述桨毂的中心为所述螺旋桨的半径的41.9%处,所述桨叶的攻角为25.65°±2.5°,所述桨叶的弦长为50.36mm±5mm;在距离所述桨毂的中心为所述螺旋桨的半径的53.5%处,所述桨叶的攻角为23.02°±2.5°,所述桨叶的弦长为45.13mm±5mm;在距离所述桨毂的中心为所述螺旋桨的半径的65.1%处,所述桨叶的攻角为20.68°±2.5°,所述桨叶的弦长为38.63mm±5mm;在距离所述桨毂的中心为所述螺旋桨的半径的76.7%处,所述桨叶的攻角为18.72°±2.5°,所述桨叶的弦长为32.22mm±5mm。
在某些实施方式中,所述螺旋桨的直径为430mm±43mm;在距离所述桨毂的中心90mm处,所述桨叶的攻角为25.65°,所述桨叶的弦长为50.36mm;在距离所述桨毂的中心115mm处,所述桨叶的攻角为23.02°,所述桨叶的弦长为45.13mm;在距离所述桨毂的中心140mm处,所述桨叶的攻角为20.68°,所述桨叶的弦长为38.63mm;在距离所述桨毂的中心165mm处,所述桨叶的攻角为18.72°,所述桨叶的弦长为32.22mm。
在某些实施方式中,在距离所述桨毂的中心为所述螺旋桨的半径的18.6%处,所述桨叶的攻角为25.81°±2.5°,所述桨叶的弦长为46.81mm±5mm。
在某些实施方式中,所述螺旋桨的直径为430mm±43mm;在距离所述桨毂的中心40mm处,所述桨叶的攻角为25.81°,所述桨叶的弦长为46.81mm。
在某些实施方式中,在距离所述桨毂的中心为所述螺旋桨的半径的30.2%处,所述桨叶的攻角为28.01°±2.5°,所述桨叶的弦长为53.41mm±5mm。
在某些实施方式中,所述螺旋桨的直径为430mm±43mm;在距离所述桨毂的中心65mm处,所述桨叶的攻角为28.01°,所述桨叶的弦长为53.41mm。
在某些实施方式中,在距离所述桨毂的中心为所述螺旋桨的半径的88.4%处,所述桨叶的攻角为16.04°±2.5°,所述桨叶的弦长为22.92mm±5mm。
在某些实施方式中,所述螺旋桨的直径为430mm±43mm;在距离所述桨 毂的中心190mm处,所述桨叶的攻角为16.04°,所述桨叶的弦长为22.92mm。
在某些实施方式中,在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的攻角为14.00°±2.5°,所述桨叶的弦长为9.00mm±5mm。
在某些实施方式中,所述螺旋桨的直径为430mm±43mm;在距离所述桨毂的中心215mm处,所述桨叶的攻角为14.00°,所述桨叶的弦长为9.00mm。
在某些实施方式中,所述桨叶包括桨根、背离所述桨根的桨尖、相背的压力面及吸力面;所述桨尖沿所述桨叶的展向朝所述吸力面所在的一侧倾斜延伸。
在某些实施方式中,所述桨叶还包括连接于所述压力面及所述吸力面一侧边的前缘、连接于所述压力面及所述吸力面另一侧边的后缘、及形成于所述桨尖的后掠部,所述后掠部自所述前缘向所述后缘倾斜延伸。
在某些实施方式中,所述桨叶在靠近所述桨尖的位置形成反转处,所述前缘自所述反转处开始沿所述桨叶的展向朝所述吸力面所在的一侧倾斜延伸。
在某些实施方式中,所述反转处距离所述桨毂的中心为所述的半径的65%。
在某些实施方式中,所述桨叶在所述桨尖的位置形成回弯处,所述后掠部自所述回弯处开始从所述前缘向所述后缘倾斜延伸。
在某些实施方式中,所述回弯处距离所述桨毂的中心为所述的半径的82.5%。
在某些实施方式中,所述前缘外凸形成有靠近所述桨根的呈曲面状的前缘拱起部,所述后缘外凸形成有靠近所述桨根的呈曲面状的后缘拱起部;
所述前缘拱起部距离所述桨毂的中心的距离小于所述后缘拱起部距离所述桨毂的中心的距离。
在某些实施方式中,所述桨叶为至少两个,至少两个所述桨叶连接在所 述桨毂上并关于所述桨毂的中心呈中心对称。
在某些实施方式中,所述桨叶具有穿过所述桨毂的中心的中轴线,所述前缘具有平行于所述中轴线的前缘切线,所述后缘具有平行于所述中轴线的后缘切线,所述后掠部位于所述前缘切线与所述后缘切线之间。
在某些实施方式中,所述吸力面和所述压力面均为曲面。
在某些实施方式中,所述桨叶的螺距为6.6±0.5英寸。
本发明实施方式的动力组件包括驱动件和上述任意一项实施方式所述的螺旋桨,其特征在于,所述螺旋桨通过所述桨毂与所述驱动件连接。
在某些实施方式中,所述驱动件为电机,所述电机的KV值为130至340转/(分钟·伏特)。
本发明实施方式的飞行器包括机身和上述任意一项实施方式所述的动力组件,所述动力组件与所述机身连接。
在某些实施方式中,所述飞行器包括多个动力组件,所述多个动力组件的转动方向不同。
在某些实施方式中,所述飞行器为多旋翼飞行器。
本发明实施例提供的螺旋桨、动力组件及飞行器,由于在距离桨毂的中心为螺旋桨的半径的41.9%处,桨叶的攻角为25.65°±2.5°;在距离桨毂的中心为螺旋桨的半径的53.5%处,桨叶的攻角为23.02°±2.5°;在距离桨毂的中心为螺旋桨的半径的65.1%处,桨叶的攻角为20.68°±2.5°;在距离桨毂的中心为螺旋桨的半径的76.7%处,桨叶的攻角为18.72°±2.5°;因此,采用桨叶的螺旋桨能够在减少空气阻力,提高拉力和效率,增加飞行器的继航距离以提高飞行器的飞行性能的同时,还减少了桨叶在工作时产生的噪声,使得飞行器在悬停时更安静,提高了用户体验。
本发明的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实施方式的实践了解到。
本发明实施例的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:新增附图修改、说明书中的图示说明
图1是本发明实施例提供的一种螺旋桨的平面示意图。
图2是图1所示实施例的螺旋桨中距离桨毂的中心90mm处的C-C剖面的剖视图。
图3是图1所示实施例的螺旋桨中距离桨毂的中心115mm处的D-D剖面的剖视图。
图4是图1所示实施例的螺旋桨中距离桨毂的中心140mm处的E-E剖面的剖视图。
图5是图1所示实施例的螺旋桨中距离桨毂的中心165mm处的F-F剖面的剖视图。
图6是本发明实施例的螺旋桨与现有的螺旋桨在相同的悬停工况声学性能测试条件下的频响曲线示意图。
图7是图1所示实施例的螺旋桨中距离桨毂中心40mm处的A-A剖面的剖视图。
图8是图1所示实施例的螺旋桨中距离桨毂的中心65mm处的B-B剖面的剖视图。
图9是图1所示实施例的螺旋桨中距离桨毂中心190mm处的G-G剖面的剖视图。
图10是图1所示实施例的螺旋桨中距离桨毂的中心215mm处的H-H剖面的剖视图。
图11是本发明实施例提供的一种螺旋桨的立体图。
图12是本发明实施例提供的一种螺旋桨的立体图。
图13是本发明实施例提供的一种螺旋桨的平面示意图。
图14是本发明实施例提供的一种螺旋桨的平面示意图。
图15是本发明实施例提供的一种螺旋桨的平面示意图。
图16是图1中螺旋桨的后掠部自前缘向后缘倾斜延伸的参数图。
图17是图1中螺旋桨的桨尖沿桨叶的展向朝吸力面所在的一侧倾斜延伸的参数图。
图18是本发明实施例提供的一种飞行器的平面示意图。
主要元件符号说明:
螺旋桨100、桨毂10、桨叶20、桨根21、桨尖22、后掠部221、压力面23、吸力面24、前缘25、前缘拱起部251、后缘26、后缘拱起部261、反转处27、回弯处28;
动力组件200、驱动件30、机臂40;
飞行器1000、机身50;
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本发明使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或 所有可能组合。
应当理解,尽管在本发明可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本发明范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在......时”或“当......时”或“响应于确定”。
本实施例中出现的上、下等方位用语是以螺旋桨安装于飞行器以后所述螺旋桨以及所述飞行器的常规运行姿态为参考,而不应该认为具有限制性。
下面结合附图,对本发明实施例的螺旋桨、动力组件及飞行器进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
请参见图1至图5,本发明实施例提供一种螺旋桨100,螺旋桨100包括桨毂10和桨叶20。
桨叶20连接在桨毂10上。当然,桨叶20可以与桨毂10一体成型,也可以分别加工再固定安装成一体。在距离桨毂10的中心为螺旋桨100的半径的41.9%处D3,桨叶20的攻角α3为25.65°±2.5°。在距离桨毂10的中心为螺旋桨100的半径的53.5%处D4,桨叶20的攻角α4为23.02°±2.5°。在距离桨毂10的中心为螺旋桨100的半径的65.1%处D5,桨叶20的攻角α5为20.68°±2.5°。在距离桨毂10的中心为螺旋桨100的半径的76.7%处D6,桨叶20的攻角α6为18.72°±2.5°。
本实施例中,由于在距离桨毂10的中心为螺旋桨100的半径的41.9%处D3,桨叶20的攻角α3为25.65°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的53.5%处D4,桨叶20的攻角α4为23.02°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的65.1%处D5,桨叶20的攻角α5为20.68°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的76.7%处D6,桨叶20的攻角α6为18.72°±2.5°;因此,采用桨叶20的螺旋桨100能够在减少空气 阻力,提高拉力和效率,增加飞行器1000(图18所示)的继航距离以提高飞行器1000的飞行性能的同时,还减少了桨叶20在工作时产生的噪声,使得飞行器1000在悬停时更安静,提高了用户体验。
请继续参见图1至图5,本发明实施例提供一种螺旋桨100,螺旋桨100包括桨毂10和桨叶20。
在距离桨毂10的中心为螺旋桨100的半径的41.9%处D3,桨叶20的攻角α3为25.65°±2.5°,桨叶20的弦长L3为50.36mm±5mm。在距离桨毂10的中心为螺旋桨100的半径的53.5%处D4,桨叶20的攻角α4为23.02°±2.5°,桨叶20的弦长L4为45.13mm±5mm。在距离桨毂10的中心为螺旋桨100的半径的65.1%处D5,桨叶20的攻角α5为20.68°±2.5°,桨叶20的弦长L5为38.63mm±5mm。在距离桨毂10的中心为螺旋桨100的半径的76.7%处D6,桨叶20的攻角α6为18.72°±2.5°,桨叶20的弦长L6为32.22mm±5mm。
本实施例中,由于在距离桨毂10的中心为螺旋桨100的半径的41.9%处D3,桨叶20的攻角α3为25.65°±2.5°,桨叶20的弦长L3为50.36mm±5mm;在距离桨毂10的中心为螺旋桨100的半径的53.5%处D4,桨叶20的攻角α4为23.02°±2.5°,桨叶20的弦长L4为45.13mm±5mm;在距离桨毂10的中心为螺旋桨100的半径的65.1%处D5,桨叶20的攻角α5为20.68°±2.5°,桨叶20的弦长L5为38.63mm±5mm;在距离桨毂10的中心为螺旋桨100的半径的76.7%处D6,桨叶20的攻角α6为18.72°±2.5°,桨叶20的弦长L6为32.22mm±5mm;因此,采用桨叶20的螺旋桨100能够在减少空气阻力,提高拉力和效率,增加飞行器1000的继航距离以提高飞行器1000的飞行性能的同时,还减少了桨叶20在工作时产生的噪声,使得飞行器1000在悬停时更安静,提高了用户体验。
请参见表1,本实施例所提供的螺旋桨100与现有的螺旋桨的测试结果的 比对,由表1中可看出,在相同的拉力下,本实施方式所提供螺旋桨100的功率更低,也即:在较小的功率条件下,具有更大的拉力,从而降低电量损耗,增加续航距离。由此,本实施方式提供的螺旋桨100在密度降低的高海拔区域或者低海拔地区起飞重量较大的极端情况下,其可以显著提高拉力,保证足够动力同时延长续航时间,提高飞行性能。
表1
请一并参阅表2及图6,本实施方式提供的螺旋桨100与现有的螺旋桨的测试结果的比对。由表2中可看出,在相同的悬停工况声学性能测试条件下,本实施例所提供的螺旋桨100产生的噪音与现有的螺旋桨产生的噪音相比,本实施例所提供的螺旋桨100的噪音整体低于现有的螺旋桨。由此,本实施例所提供的螺旋桨100能有效减小噪音。另外,由图6中的频响曲线(Frequency(Hz)-Loudness(dB-A))可看出,在大部分相同频率的条件下,本实施例所提供的螺旋桨100的响度低于现有的螺旋桨。特别是在相同的高频条件下,本实施例所提供的螺旋桨100的响度明显低于现有的螺旋桨的响度。由此,本实施例所提供的螺旋桨100能有效减小高频噪音,减轻了高频噪音引起人耳的不适感,提高了用户体验。除此之外,本实施例所提供的螺旋桨100能应用在对声音要求高的场景中,比如侦查、航拍(航拍时录入影像及音频)等。
表2
在距离桨毂10的中心为螺旋桨100的半径的41.9%处D3,桨叶20的攻角α3可以为23.15°或25.65°或28.15°,或者是23.65°、24.15°、24.65°、25.15°、26.15°、26.65°、27.15°、27.65°等中的任意一个或上述任意二者之间的任一数值,桨叶20的弦长L3可以为45.36mm或50.36mm或55.36mm,或者是46.36mm、47.36mm、48.36mm、49.36mm、51.36mm、52.36mm、53.36mm、54.36mm等中的任意一个或上述任意二者之间的数值。在距离桨毂10的中心为螺旋桨100的半径的53.5%处D4,桨叶20的攻角α4可以为20.52°或23.02°或25.52°,或者是21.02°、21.52°、22.02°、22.52°、23.52°、24.02°、24.52°、25.02°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L4可以为40.13mm或45.13mm或50.13mm,或者是41.13mm、42.13mm、43.13mm、44.13mm、46.13mm、47.13mm、48.13mm、49.13mm等中的任意一个或上述任意二者之间的数值。在距离桨毂10的中心为螺旋桨100的半径的65.1%处D5,桨叶20的攻角α5可以为18.18°或20.68°或23.18°,或者是18.68°、19.18°、19.68°、20.18°、21.18°、21.68°、22.18°、22.68°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L5可以为33.63mm或38.63mm或43.63mm,或者是34.63mm、35.63mm、36.63mm、37.63mm、39.63mm、40.63mm、41.63mm、42.63mm等中的任意一个或上述任意二者之间的数值。在距离桨毂10的中心为螺旋桨100的半径的76.7%处D6,桨叶20的攻角α6可以为16.22°或18.72°或21.22°,或者是16.72°、17.22°、17.72°、18.22°、19.22°、19.72°、20.22°、20.72°等中的任意 一个或上述任意二者之间的数值,桨叶20的弦长L6可以为27.22mm或32.22mm或37.22mm,或者是28.22mm、29.22mm、30.22mm、31.22mm、33.22mm、34.22mm、35.22mm、36.22mm等中的任意一个或上述任意二者之间的数值。
其中,桨毂10可以为圆筒状,或桨毂10的截面可以为椭圆形、菱形等形状。桨毂10中心设有连接孔,连接孔用于套设在电机的输出端上。桨叶20可以呈长条状,桨叶20与桨毂10连接,并沿桨毂10的径向延伸。
请参见图7所示,本实施例中,可选地,在距离桨毂10的中心为螺旋桨100的半径的18.6%处D1,桨叶20的攻角α1为25.81°±2.5°,桨叶20的弦长L1为46.81mm±5mm,以进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,桨叶20的攻角α1可以为23.31°或25.81°或28.31°,或者是23.81°、24.31°、24.81°、25.31°、26.31°、26.81°、27.31°、27.81°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L1可以为41.81mm或46.81mm或51.81mm,或者是42.81mm、43.81mm、44.81mm、45.81mm、47.81mm、48.81mm、49.81mm、50.81mm等中的任意一个或上述任意二者之间的数值。
请参见图8所示,本实施例中,可选地,在距离桨毂10的中心为螺旋桨100的半径的30.2%处D2,桨叶20的攻角α2为28.01°±2.5°,桨叶20的弦长L2为53.41mm±5mm。以进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,桨叶20的攻角α2可以为25.51°或28.01°或30.51°,或者是26.01°、26.51°、27.01°、27.51°、28.51°、29.01°、29.51°、30.01°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L2可以为48.41mm或53.41mm或58.41mm,或者是49.41mm、50.41mm、51.41mm、52.41mm、54.41mm、55.41mm、56.41mm、57.41mm等中的任意一个或上述任意二者之间的数值。
请参见图9所示,本实施例中,可选地,在距离桨毂10的中心为螺旋桨100的半径的88.4%处D7,桨叶20的攻角α7为16.04°±2.5°,桨叶20的弦长L7为22.92mm±5mm,以进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,桨叶20的攻角α7可以为13.54°或16.04°或18.54°,或者是14.04°、14.54°、15.04°、15.54°、16.54°、17.04°、17.54°、18.04°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L7可以为17.92mm或22.92mm或27.92mm,或者是18.92mm、19.92mm、20.92mm、21.92mm、23.92mm、24.92mm、25.92mm、26.92mm等中的任意一个或上述任意二者之间的数值。
请参见图10所示,本实施例中,可选地,在距离桨毂10的中心为螺旋桨100的半径的100%处D8,桨叶20的攻角α8为14.00°±2.5°,桨叶20的弦长L8为9.00mm±5mm。以进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,桨叶20的攻角α8可以为11.50°或14.00°或16.50°,或者是12.00°、12.50°、13.00°、13.50°、14.50°、15.00°、15.50°、16.00°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L8可以为4.00mm或9.00mm或14.00mm,或者是5.00mm、6.00mm、7.00mm、8.00mm、10.00mm、11.00mm、12.00mm、13.00mm等中的任意一个或上述任意二者之间的数值。
请再次参见图1至图5所示,本实施例中,可选地,螺旋桨100的直径为430mm±43mm。在距离桨毂10的中心90mm处D3,桨叶20的攻角α3为25.65°,桨叶20的弦长L3为50.36mm。在距离桨毂10的中心115mm处D4,桨叶20的攻角α4为23.02°,桨叶20的弦长L4为45.13mm。在距离桨毂10的中心140mm处D5,桨叶20的攻角α5为20.68°,桨叶20的弦长L5为38.63mm。在距离桨毂10的中心165mm处D6,桨叶20的攻角α6为18.72°,桨叶20的弦长L6为32.22mm。由此,可进一步减少螺旋桨100的空气阻力, 提高拉力和效率,及降低噪音。其中,螺旋桨100的直径可以为387mm或430mm或473mm,或者是395mm、403mm、411mm、419mm、427mm、435mm、443mm、451mm、459mm、467mm等中的任意一个或上述任意二者之间的数值。
请再次参见图7所示,本实施例中,可选地,螺旋桨100的直径为430mm±43mm。在距离桨毂10的中心40mm处D1,桨叶20的攻角α1为25.81°,桨叶20的弦长L1为46.81mm。由此,可进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,螺旋桨100的直径可以为387mm或430mm或473mm,或者是395mm、403mm、411mm、419mm、427mm、435mm、443mm、451mm、459mm、467mm等中的任意一个或上述任意二者之间的数值。
再次参见图8所示,本实施例中,可选地,螺旋桨100的直径为430mm±43mm。在距离桨毂10的中心65mm处D2,桨叶20的攻角α2为28.01°,桨叶20的弦长L2为53.41mm。由此,可进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,螺旋桨100的直径可以为387mm或430mm或473mm,或者是395mm、403mm、411mm、419mm、427mm、435mm、443mm、451mm、459mm、467mm等中的任意一个或上述任意二者之间的数值。
请再次参见图9所示,本实施例中,可选地,螺旋桨100的直径为430mm±43mm。在距离桨毂10的中心190mm处D7,桨叶20的攻角α7为16.04°,桨叶20的弦长L7为22.92mm。由此,可进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,螺旋桨100的直径可以为387mm或430mm或473mm,或者是395mm、403mm、411mm、419mm、427mm、435mm、443mm、451mm、459mm、467mm等中的任意一个或上述任意二者之间的数值。
再次参见图10所示,本实施例中,可选地,螺旋桨100的直径为430mm±43mm。在距离桨毂10的中心215mm处D8,桨叶20的攻角α8为14.00°,桨叶20的弦长L8为9.00mm。由此,可进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,螺旋桨100的直径可以为387mm或430mm或473mm,或者是395mm、403mm、411mm、419mm、427mm、435mm、443mm、451mm、459mm、467mm等中的任意一个或上述任意二者之间的数值。
请参见图11至图15,本实施例中,可选地,桨叶20包括桨根21、背离桨根21的桨尖22、相背的压力面23及吸力面24。桨尖22沿桨叶20的展向朝吸力面24所在的一侧倾斜延伸。如此,减少了桨叶20在工作时产生的噪声,使得飞行器1000在悬停时更安静,提高了用户体验。其中,压力面23为飞行器1000正常飞行时桨叶20的朝向地面的表面,吸力面24为飞行器1000正常飞行时桨叶20的朝向天空的表面。
本实施例中,可选地,吸力面24和压力面23均为曲面。吸力面24和压力面23为曲面的气动外形,能避免桨叶20各部分产生的湍流以及下洗气流直接冲击飞行器1000的机身50,从而减小飞行器1000整体的噪音。
请一并参见图1、图11、及图12,本实施例中,可选地,桨叶20还包括连接于压力面23及吸力面24一侧边的前缘25、连接于压力面23及吸力面24另一侧边的后缘26、及形成于桨尖22的后掠部221,后掠部221自前缘25向后缘26倾斜延伸。如此,以起到进一步提高螺旋桨100的拉力及效率的效果。
本实施例中,可选地,桨叶20在靠近桨尖22的位置形成反转处27,前缘25自反转处27开始沿桨叶20的展向朝吸力面24所在的一侧倾斜延伸。反转处27的位置用QQ表示。
本实施例中,可选地,反转处27距离桨毂10的中心为螺旋桨100的半 径的65%。反转处27靠近桨叶20的中心,减少螺旋桨100与飞行器1000的机臂40(如图18所示)之间的相互影响。
本实施例中,可选地,桨叶20在桨尖22的位置形成回弯处28,后掠部221自回弯处28开始从前缘25向后缘26倾斜延伸。回弯处28的位置用MM表示。
本实施例中,可选地,回弯处28距离桨毂10的中心为螺旋桨100的半径的82.5%。回弯处28远离桨毂10的中心,提升桨叶20的美观。
本实施例中,可选地,前缘25外凸形成有靠近桨根21的呈曲面状的前缘拱起部251,后缘26外凸形成有靠近桨根21的呈曲面状的后缘拱起部261。前缘拱起部251距离桨毂10的中心的距离小于后缘拱起部261距离桨毂10的中心的距离。前缘拱起部251及后缘拱起部231为曲面状起到进一步提高桨叶20的拉力的效果。另外,前缘拱起部251距离桨毂10的中心的距离小于后缘拱起部261距离桨毂10的中心的距离,进一步提升桨叶20的气动外形,以起到进一步提高桨叶20的拉力的效果。
本实施例中,可选地,桨叶20为至少两个,至少两个桨叶20连接在桨毂10上并关于桨毂10的中心呈中心对称。由此,可提高螺旋桨100的平衡性。
本实施例中,可选地,桨叶20具有穿过桨毂10的中心的中轴线N-N,前缘25具有平行于中轴线N-N的前缘切线O-O,后缘26具有平行于中轴线N-N的后缘切线P-P,后掠部221位于前缘切线O-O与后缘切线P-P之间。由此,后掠部221能够减小桨叶20产生的湍流及下洗气流,从而减少打到飞行器1000的机身50上的湍流及下洗气流,在减小螺旋桨100的空气阻力,提高飞行器1000的可操纵性,使飞行器1000更加平稳的同时进一步减小飞行器1000整体的噪音。
请一并参阅表3、图1及图16,本实施方式中,后掠部221自前缘25向 后缘26倾斜延伸。具体地,表3及图16的横坐标Blade Radius(mm)表示沿桨叶20的展向上桨叶20的某一位置(比如MM处)距离桨毂10中心的距离。纵坐标Sweep Length(mm)为后掠或前掠的距离。其中,纵坐标Sweep Length(mm)的正值为后掠,负值为前掠。
表3
由表3可知,在桨叶20距离桨毂10的中心的距离为177.375mm时,即回弯处28为距离桨毂10的中心为螺旋桨100的半径的82.5%处,后掠部221开始自前缘25向后缘26倾斜延伸。在多个桨叶20同时工作时,后掠部221有规律地自前缘25向后缘26倾斜延伸,能够减小由于多个桨叶20相互作用而产生的湍流及下洗气流,及并减少打到飞行器1000的机身50上的湍流及下洗气流,减小桨叶20受到的空气阻力,进一步提高了螺旋桨100的拉力及效率,提高了飞行器1000的可操纵性,使飞行器1000更加平稳,同时,进一步减小了由于湍流及下洗气流冲击飞行器1000的机身50产生的噪音。
请一并参阅表4、图1及图17,本实施方式中,桨尖22沿桨叶20的展向朝吸力面24所在的一侧倾斜延伸,具体地,表4的横坐标Blade Radius(mm)表示沿桨叶20的展向桨叶20的某一位置(比如QQ处)距离桨毂10中心的距离。起始处为桨毂10的中心,此时桨叶20距离桨毂10的中心的距离为 0mm,终点处为桨尖22的自由端,自由端距离桨毂10的中心的距离为215mm。纵坐标Anhedral Length(mm)为上反或下反距离。其中,纵坐标Anhedral Length(mm)的正值为上反,负值为下反。
表4
由表4可知,在桨叶20距离桨毂10的中心的距离为139.75mm时,即反转处27距离桨毂10的中心为螺旋桨100的半径的65%。前缘25自反转处27开始沿桨叶20的展向朝吸力面24所在的一侧倾斜延伸,即在桨叶20距离桨毂10的中心的距离为139.75mm时开始上反。在多个桨叶20同时工作时,前缘25有规律地自反转处27沿桨叶20沿展向朝吸力面24所在的一侧倾斜延伸,能够减小由于多个桨叶20相互作用而产生的湍流及下洗气流,并减少打到机臂40上及飞行器1000的机身50上的湍流及下洗气流,另外,还能够额定桨叶20的升力点,使飞行器1000能自动修正飞行姿态,增加了飞行器1000的惯性稳定性,使飞行器1000飞行时更加平稳,同时,进一步减小了由于湍流及下洗气流冲击飞行器1000的机身50产生的噪音。
本实施例中,可选地,桨叶20的螺距为6.6±0.5英寸。由此,可减小空气的阻力,提高桨叶20的拉力。其中,桨叶20的螺距可以为6.1英寸或6.6英寸或7.1英寸,或者是6.2英寸、6.3英寸、6.4英寸、6.5英寸、6.7英寸、6.8英寸、6.9英寸、7.0英寸等中的任意一个或上述任意二者之间的数值。
综上,采用本发明上述实施例的桨叶的螺旋桨100在高原地区可以显著提高拉力,保证足够的动力冗余。同时,在一定程度上兼顾性能,增加继航距离,提高飞行器1000的飞行性能。和目前市面上已有的螺旋桨100相比,采用该桨叶的螺旋桨100在较小的功率条件下其具有更大的拉力,从而可降低电量损耗,增加续航距离。在密度降低的高海拔区域或者低海拔地区起飞重量较大的极端情况下,其可以显著提高拉力,保证足够动力同时延长续航 时间,提高飞行性能。
另外,在大部分相同频率的条件下,采用本发明上述实施例的桨叶20的螺旋桨100的响度低于现有的螺旋桨。特别是在相同的高频条件下,本实施例所提供的螺旋桨100的响度明显低于现有的螺旋桨的响度。由此,本实施例所提供的螺旋桨100能有效减小高频噪音,减轻了高频噪音引起人耳的不适感,提高了用户体验。整体低于现有的螺旋桨。由此,本实施例所提供的螺旋桨100能有效减小噪音。
在某些实施方式中,螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的18.6%处D1,桨叶20的攻角α1为25.81°±2.5°;及/或
在距离桨毂10的中心为螺旋桨100的半径的30.2%处D2,桨叶20的攻角α2为28.01°±2.5°;及/或
在距离桨毂10的中心为螺旋桨100的半径的88.4%处D7,桨叶20的攻角α7为16.04°±2.5°;及/或
在距离桨毂10的中心为螺旋桨100的半径的100%处D8,桨叶20的攻角α8为14.00°±2.5°;及/或
在距离桨毂10的中心40mm处D1,桨叶20的攻角α1为25.81°;及/或
在距离桨毂10的中心65mm处D2,桨叶20的攻角α2为28.01°;及/或
在距离桨毂10的中心90mm处D3,桨叶20的攻角α3为25.65°;及/或
在距离桨毂10的中心115mm处D4,桨叶20的攻角α4为23.02°;及/或
在距离桨毂10的中心140mm处D5,桨叶20的攻角α5为20.68°;及/或
在距离桨毂10的中心165mm处D6,桨叶20的攻角α6为18.72°;及/或
在距离桨毂10的中心190mm处D7,桨叶20的攻角α7为16.04°;及/ 或
在距离桨毂10的中心215mm处D8,桨叶20的攻角α8为14.00°。
此处的讨论包括但不限于以下几种方式:(1)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的18.6%处D1,桨叶20的攻角α1为25.81°±2.5°;
(2)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的30.2%处D2,桨叶20的攻角α2为28.01°±2.5°;
(3)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的88.4%处D7,桨叶20的攻角α7为16.04°±2.5°;
(4)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的100%处D8,桨叶20的攻角α8为14.00°±2.5°;
(5)螺旋桨100在距离桨毂10的中心40mm处D1,桨叶20的攻角α1为25.81°;
(6)螺旋桨100在距离桨毂10的中心65mm处D2,桨叶20的攻角α2为28.01°;
(7)螺旋桨100在距离桨毂10的中心90mm处D3,桨叶20的攻角α3为25.65°;
(8)螺旋桨100在距离桨毂10的中心115mm处D4,桨叶20的攻角α4为23.02°;
(9)螺旋桨100在距离桨毂10的中心140mm处D5,桨叶20的攻角α5为20.68°;
(10)螺旋桨100在距离桨毂10的中心165mm处D6,桨叶20的攻角α6为18.72°;
(11)螺旋桨100在距离桨毂10的中心190mm处D7,桨叶20的攻角α7为16.04°;
(12)螺旋桨100在距离桨毂10的中心215mm处D8,桨叶20的攻角α8 为14.00°;
(13)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的18.6%处D1,桨叶20的攻角α1为25.81°±2.5°;及,在距离桨毂10的中心为螺旋桨100的半径的30.2%处D2,桨叶20的攻角α2为28.01°±2.5°;及,在距离桨毂10的中心为螺旋桨100的半径的88.4%处D7,桨叶20的攻角α7为16.04°±2.5°;及,在距离桨毂10的中心为螺旋桨100的半径的100%处D8,桨叶20的攻角α8为14.00°±2.5°;及,在距离桨毂10的中心40mm处D1,桨叶20的攻角α1为25.81°;及,在距离桨毂10的中心65mm处D2,桨叶20的攻角α2为28.01°;及,在距离桨毂10的中心90mm处D3,桨叶20的攻角α3为25.65°;及,在距离桨毂10的中心115mm处D4,桨叶20的攻角α4为23.02°;及,在距离桨毂10的中心140mm处D5,桨叶20的攻角α5为20.68°;及,在距离桨毂10的中心165mm处D6,桨叶20的攻角α6为18.72°;及,在距离桨毂10的中心190mm处D7,桨叶20的攻角α7为16.04°;及,在距离桨毂10的中心215mm处D8,桨叶20的攻角α8为14.00°。
在某些实施方式中,螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的41.9%处D3,桨叶20的弦长L3为50.36mm±5mm;及/或
在距离桨毂10的中心为螺旋桨100的半径的53.5%处D4,桨叶20的弦长L4为45.13mm±5mm;及/或
在距离桨毂10的中心为螺旋桨100的半径的65.1%处D5,桨叶20的弦长L5为38.63mm±5mm;及/或
在距离桨毂10的中心为螺旋桨100的半径的76.7%处D6,桨叶20的弦长L6为32.22mm±5mm;及/或
在距离桨毂10的中心90mm处D3,桨叶20的弦长L3为50.36mm;及/或
在距离桨毂10的中心115mm处D4,桨叶20的弦长L4为45.13mm;及 /或
在距离桨毂10的中心140mm处D5,桨叶20的弦长L5为38.63mm;及/或
在距离桨毂10的中心165mm处D6,桨叶20的弦长L6为32.22mm。
此处的讨论包括但不限于以下几种方式:(1)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的41.9%处D3,桨叶20的弦长L3为50.36mm±5mm;
(2)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的53.5%处D4,桨叶20的弦长L4为45.13mm±5mm;
(3)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的65.1%处D5,桨叶20的弦长L5为38.63mm±5mm;
(4)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的76.7%处D6,桨叶20的弦长L6为32.22mm±5mm;
(5)螺旋桨100在距离桨毂10的中心90mm处D3,桨叶20的弦长L3为50.36mm;
(6)螺旋桨100在距离桨毂10的中心115mm处D4,桨叶20的弦长L4为45.13mm;
(7)螺旋桨100在距离桨毂10的中心140mm处D5,桨叶20的弦长L5为38.63mm;
(8)螺旋桨100在距离桨毂10的中心165mm处D6,桨叶20的弦长L6为32.22mm;
(9)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的41.9%处D3,桨叶20的弦长L3为50.36mm±5mm;及,在距离桨毂10的中心为螺旋桨100的半径的53.5%处D4,桨叶20的弦长L4为45.13mm±5mm;及,在距离桨毂10的中心为螺旋桨100的半径的65.1%处D5,桨叶20的弦长L5 为38.63mm±5mm;及,在距离桨毂10的中心为螺旋桨100的半径的76.7%处D6,桨叶20的弦长L6为32.22mm±5mm;及,在距离桨毂10的中心90mm处D3,桨叶20的弦长L3为50.36mm;及,在距离桨毂10的中心115mm处D4,桨叶20的弦长L4为45.13mm;及,在距离桨毂10的中心140mm处D5,桨叶20的弦长L5为38.63mm;及,在距离桨毂10的中心165mm处D6,桨叶20的弦长L6为32.22mm。
在某些实施方式中,螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的18.6%处D1,桨叶20的弦长L1为46.81mm±5mm;及/或
在距离桨毂10的中心为螺旋桨100的半径的30.2%处D2,桨叶20的弦长L2为53.41mm±5mm;及/或
在距离桨毂10的中心为螺旋桨100的半径的88.4%处D7,桨叶20的弦长L7为22.92mm±5mm;及/或
在距离桨毂10的中心为螺旋桨100的半径的100%处D8,桨叶20的弦长L8为9.00mm±5mm;及/或
在距离桨毂10的中心40mm处D1,桨叶20的弦长L1为46.81mm;及/或
在距离桨毂10的中心65mm处D2,桨叶20的弦长L2为53.41mm;及/或
在距离桨毂10的中心190mm处D7,桨叶20的弦长L7为22.92mm;及/或
在距离桨毂10的中心215mm处D8,桨叶20的弦长L8为9.00mm。
此处的讨论包括但不限于以下几种方式:(1)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的18.6%处D1,桨叶20的弦长L1为46.81mm±5mm;
(2)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的30.2%处 D2,桨叶20的弦长L2为53.41mm±5mm;
(3)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的88.4%处D7,桨叶20的弦长L7为22.92mm±5mm;
(4)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的100%处D8,桨叶20的弦长L8为9.00mm±5mm;
(5)螺旋桨100在距离桨毂10的中心40mm处D1,桨叶20的弦长L1为46.81mm;
(6)螺旋桨100在距离桨毂10的中心65mm处D2,桨叶20的弦长L2为53.41mm;
(7)螺旋桨100在距离桨毂10的中心190mm处D7,桨叶20的弦长L7为22.92mm;
(8)螺旋桨100在距离桨毂10的中心215mm处D8,桨叶20的弦长L8为9.00mm;
(9)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的18.6%处D1,桨叶20的弦长L1为46.81mm±5mm;及,在距离桨毂10的中心为螺旋桨100的半径的30.2%处D2,桨叶20的弦长L2为53.41mm±5mm;及,在距离桨毂10的中心为螺旋桨100的半径的88.4%处D7,桨叶20的弦长L7为22.92mm±5mm;及,在距离桨毂10的中心为螺旋桨100的半径的100%处D8,桨叶20的弦长L8为9.00mm±5mm;及,在距离桨毂10的中心40mm处D1,桨叶20的弦长L1为46.81mm;及,在距离桨毂10的中心65mm处D2,桨叶20的弦长L2为53.41mm;及,在距离桨毂10的中心190mm处D7,桨叶20的弦长L7为22.92mm;及,在距离桨毂10的中心215mm处D8,桨叶20的弦长L8为9.00mm。
请参见图18,本发明实施例提供一种动力组件200,包括驱动件30和本发明任意实施例的螺旋桨100,螺旋桨100通过桨毂10与驱动件30连接。动 力组件200包括至少两个机臂40。至少两个机臂40连接在螺旋桨组件100的中心位置。驱动件30设置在机臂40上。其中,螺旋桨100的具体结构与前述实施例相同,此处不再赘述。即如上的实施例和实施方式中关于螺旋桨100的描述同样适用于本发明实施例提供的动力组件200。
在本发明实施例的动力组件200中,由于在距离桨毂10的中心为螺旋桨100的半径的41.9%处D3,桨叶20的攻角α3为25.65°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的53.5%处D4,桨叶20的攻角α4为23.02°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的65.1%处D5,桨叶20的攻角α5为20.68°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的76.7%处D6,桨叶20的攻角α6为18.72°±2.5°;因此,采用桨叶20的螺旋桨100能够在减少空气阻力,提高拉力和效率,增加飞行器1000的继航距离以提高飞行器1000的飞行性能的同时,还减少了桨叶20在工作时产生的噪声,使得飞行器1000在悬停时更安静,提高了用户体验。
本实施例中,可选地,驱动件30为电机,电机的KV值为130至340转/(分钟·伏特)。由此,能够保证动力组件的动力性能。
请再次参见图18,本发明实施例提供一种飞行器1000,包括机身50和本发明任意实施例的动力组件200,动力组件200与机身50连接。动力组件200的多个机臂40与机身50连接以将动力组件200安装在机身50上。其中动力组件200的具体结构与前述实施例类似,此处不再赘述。即如上的实施例和实施方式中关于螺旋桨100的描述同样适用于本发明实施例提供的飞行器1000。
本实施例中,可选地,飞行器1000包括多个动力组件200,多个动力组件200的转动方向不同。
本实施例中,可选地,飞行器1000为多旋翼飞行器,例如为四旋翼无人飞行器。
本实施例中,由于在距离桨毂10的中心为螺旋桨100的半径的41.9%处D3,桨叶20的攻角α3为25.65°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的53.5%处D4,桨叶20的攻角α4为23.02°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的65.1%处D5,桨叶20的攻角α5为20.68°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的76.7%处D6,桨叶20的攻角α6为18.72°±2.5°;因此,采用桨叶20的螺旋桨100能够在减少空气阻力,提高拉力和效率,增加飞行器1000的继航距离以提高飞行器1000的飞行性能的同时,还减少了桨叶20在工作时产生的噪声,使得飞行器1000在悬停时更安静,提高了用户体验。
以上仅是本发明的较佳实施例而已,并非对本发明做任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案的范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。
Claims (30)
- 一种螺旋桨,包括:桨毂和桨叶,所述桨叶连接在所述桨毂上,其特征在于:在距离所述桨毂的中心为所述螺旋桨的半径的41.9%处,所述桨叶的攻角为25.65°±2.5°;在距离所述桨毂的中心为所述螺旋桨的半径的53.5%处,所述桨叶的攻角为23.02°±2.5°;在距离所述桨毂的中心为所述螺旋桨的半径的65.1%处,所述桨叶的攻角为20.68°±2.5°;在距离所述桨毂的中心为所述螺旋桨的半径的76.7%处,所述桨叶的攻角为18.72°±2.5°。
- 根据权利要求1所述的螺旋桨,其特征在于:在距离所述桨毂的中心为所述螺旋桨的半径的18.6%处,所述桨叶的攻角为25.81°±2.5°;及/或在距离所述桨毂的中心为所述螺旋桨的半径的30.2%处,所述桨叶的攻角为28.01°±2.5°;及/或在距离所述桨毂的中心为所述螺旋桨的半径的88.4%处,所述桨叶的攻角为16.04°±2.5°;及/或在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的攻角为14.00°±2.5°;及/或在距离所述桨毂的中心40mm处,所述桨叶的攻角为25.81°;及/或在距离所述桨毂的中心65mm处,所述桨叶的攻角为28.01°;及/或在距离所述桨毂的中心90mm处,所述桨叶的攻角为25.65°;及/或在距离所述桨毂的中心115mm处,所述桨叶的攻角为23.02°;及/或在距离所述桨毂的中心140mm处,所述桨叶的攻角为20.68°;及/或在距离所述桨毂的中心165mm处,所述桨叶的攻角为18.72°;及/或在距离所述桨毂的中心190mm处,所述桨叶的攻角为16.04°;及/或在距离所述桨毂的中心215mm处,所述桨叶的攻角为14.00°。
- 根据权利要求1所述的螺旋桨,其特征在于:在距离所述桨毂的中心为所述螺旋桨的半径的41.9%处,所述桨叶的弦长为50.36mm±5mm;及/或在距离所述桨毂的中心为所述螺旋桨的半径的53.5%处,所述桨叶的弦长为45.13mm±5mm;及/或在距离所述桨毂的中心为所述螺旋桨的半径的65.1%处,所述桨叶的弦长为38.63mm±5mm;及/或在距离所述桨毂的中心为所述螺旋桨的半径的76.7%处,所述桨叶的弦长为32.22mm±5mm;及/或在距离所述桨毂的中心90mm处,所述桨叶的弦长为50.36mm;及/或在距离所述桨毂的中心115mm处,所述桨叶的弦长为45.13mm;及/或在距离所述桨毂的中心140mm处,所述桨叶的弦长为38.63mm;及/或在距离所述桨毂的中心165mm处,所述桨叶的弦长为32.22mm。
- 根据权利要求3所述的螺旋桨,其特征在于:在距离所述桨毂的中心为所述螺旋桨的半径的18.6%处,所述桨叶的弦长为46.81mm±5mm;及/或在距离所述桨毂的中心为所述螺旋桨的半径的30.2%处,所述桨叶的弦长为53.41mm±5mm;及/或在距离所述桨毂的中心为所述螺旋桨的半径的88.4%处,所述桨叶的弦长为22.92mm±5mm;及/或在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的弦长 为9.00mm±5mm;及/或在距离所述桨毂的中心40mm处,所述桨叶的弦长为46.81mm;及/或在距离所述桨毂的中心65mm处,所述桨叶的弦长为53.41mm;及/或在距离所述桨毂的中心190mm处,所述桨叶的弦长为22.92mm;及/或在距离所述桨毂的中心215mm处,所述桨叶的弦长为9.00mm。
- 根据权利要求1所述的螺旋桨,其特征在于,所述螺旋桨的直径为430mm±43mm;及/或所述桨叶的螺距为6.6±0.5英寸。
- 根据权利要求1至5任意一项所述的螺旋桨,其特征在于:所述桨叶包括桨根、背离所述桨根的桨尖、相背的压力面及吸力面、连接于所述压力面及所述吸力面一侧边的前缘、连接于所述压力面及所述吸力面另一侧边的后缘、及形成于所述桨尖的后掠部,所述后掠部自所述前缘向所述后缘倾斜延伸;所述桨尖沿所述桨叶的展向朝所述吸力面所在的一侧倾斜延伸。
- 根据权利要求6所述的螺旋桨,其特征在于,所述桨叶在靠近所述桨尖的位置形成反转处,所述前缘自所述反转处开始沿所述桨叶的展向朝所述吸力面所在的一侧倾斜延伸,所述反转处距离所述桨毂的中心为所述的半径的65%。
- 根据权利要求6所述的螺旋桨,其特征在于,所述桨叶在所述桨尖的位置形成回弯处,所述后掠部自所述回弯处开始从所述前缘向所述后缘倾斜延伸,所述回弯处距离所述桨毂的中心为所述的半径的82.5%。
- 根据权利要求6所述的螺旋桨,其特征在于,所述前缘外凸形成有靠近所述桨根的呈曲面状的前缘拱起部,所述后缘外凸形成有靠近所述桨根的呈曲面状的后缘拱起部,所述前缘拱起部距离所述桨毂的中心的距离小于所述后缘拱起部距离所述桨毂的中心的距离;及/或所述桨叶为至少两个,至少两个所述桨叶连接在所述桨毂上并关于所述桨毂的中心呈中心对称;及/或所述桨叶具有穿过所述桨毂的中心的中轴线,所述前缘具有平行于所述中轴线的前缘切线,所述后缘具有平行于所述中轴线的后缘切线,所述后掠部位于所述前缘切线与所述后缘切线之间;及/或所述吸力面和所述压力面均为曲面。
- 一种动力组件,包括驱动件和螺旋桨,其特征在于,所述螺旋桨包括:桨毂和桨叶,所述桨叶连接在所述桨毂上,其特征在于:在距离所述桨毂的中心为所述螺旋桨的半径的41.9%处,所述桨叶的攻角为25.65°±2.5°;在距离所述桨毂的中心为所述螺旋桨的半径的53.5%处,所述桨叶的攻角为23.02°±2.5°;在距离所述桨毂的中心为所述螺旋桨的半径的65.1%处,所述桨叶的攻角为20.68°±2.5°;在距离所述桨毂的中心为所述螺旋桨的半径的76.7%处,所述桨叶的攻角为18.72°±2.5°;所述螺旋桨通过所述桨毂与所述驱动件连接。
- 根据权利要求10所述的动力组件,其特征在于:在距离所述桨毂的中心为所述螺旋桨的半径的18.6%处,所述桨叶的攻角为25.81°±2.5°;及/或在距离所述桨毂的中心为所述螺旋桨的半径的30.2%处,所述桨叶的攻角为28.01°±2.5°;及/或在距离所述桨毂的中心为所述螺旋桨的半径的88.4%处,所述桨叶的攻角为16.04°±2.5°;及/或在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的攻角 为14.00°±2.5°;及/或在距离所述桨毂的中心40mm处,所述桨叶的攻角为25.81°;及/或在距离所述桨毂的中心65mm处,所述桨叶的攻角为28.01°;及/或在距离所述桨毂的中心90mm处,所述桨叶的攻角为25.65°;及/或在距离所述桨毂的中心115mm处,所述桨叶的攻角为23.02°;及/或在距离所述桨毂的中心140mm处,所述桨叶的攻角为20.68°;及/或在距离所述桨毂的中心165mm处,所述桨叶的攻角为18.72°;及/或在距离所述桨毂的中心190mm处,所述桨叶的攻角为16.04°;及/或在距离所述桨毂的中心215mm处,所述桨叶的攻角为14.00°。
- 根据权利要求10所述的动力组件,其特征在于:在距离所述桨毂的中心为所述螺旋桨的半径的41.9%处,所述桨叶的弦长为50.36mm±5mm;及/或在距离所述桨毂的中心为所述螺旋桨的半径的53.5%处,所述桨叶的弦长为45.13mm±5mm;及/或在距离所述桨毂的中心为所述螺旋桨的半径的65.1%处,所述桨叶的弦长为38.63mm±5mm;及/或在距离所述桨毂的中心为所述螺旋桨的半径的76.7%处,所述桨叶的弦长为32.22mm±5mm;及/或在距离所述桨毂的中心90mm处,所述桨叶的弦长为50.36mm;及/或在距离所述桨毂的中心115mm处,所述桨叶的弦长为45.13mm;及/或在距离所述桨毂的中心140mm处,所述桨叶的弦长为38.63mm;及/或在距离所述桨毂的中心165mm处,所述桨叶的弦长为32.22mm。
- 根据权利要求12所述的动力组件,其特征在于:在距离所述桨毂的中心为所述螺旋桨的半径的18.6%处,所述桨叶的弦长为46.81mm±5mm;及/或在距离所述桨毂的中心为所述螺旋桨的半径的30.2%处,所述桨叶的弦长为53.41mm±5mm;及/或在距离所述桨毂的中心为所述螺旋桨的半径的88.4%处,所述桨叶的弦长为22.92mm±5mm;及/或在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的弦长为9.00mm±5mm;及/或在距离所述桨毂的中心40mm处,所述桨叶的弦长为46.81mm;及/或在距离所述桨毂的中心65mm处,所述桨叶的弦长为53.41mm;及/或在距离所述桨毂的中心190mm处,所述桨叶的弦长为22.92mm;及/或在距离所述桨毂的中心215mm处,所述桨叶的弦长为9.00mm。
- 根据权利要求10所述的动力组件,其特征在于,所述螺旋桨的直径为430mm±43mm;及/或所述桨叶的螺距为6.6±0.5英寸。
- 根据权利要求10至14任意一项所述的动力组件,其特征在于:所述桨叶包括桨根、背离所述桨根的桨尖、相背的压力面及吸力面、连接于所述压力面及所述吸力面一侧边的前缘、连接于所述压力面及所述吸力面另一侧边的后缘、及形成于所述桨尖的后掠部,所述后掠部自所述前缘向所述后缘倾斜延伸;所述桨尖沿所述桨叶的展向朝所述吸力面所在的一侧倾斜延伸。
- 根据权利要求15所述的动力组件,其特征在于,所述桨叶在靠近所述桨尖的位置形成反转处,所述前缘自所述反转处开始沿所述桨叶的展向朝所述吸力面所在的一侧倾斜延伸,所述反转处距离所述桨毂的中心为所述的半径的65%。
- 根据权利要求15所述的动力组件,其特征在于,所述桨叶在所述桨尖的位置形成回弯处,所述后掠部自所述回弯处开始从所述前缘向所述后缘 倾斜延伸,所述回弯处距离所述桨毂的中心为所述的半径的82.5%。
- 根据权利要求15所述的动力组件,其特征在于,所述前缘外凸形成有靠近所述桨根的呈曲面状的前缘拱起部,所述后缘外凸形成有靠近所述桨根的呈曲面状的后缘拱起部,所述前缘拱起部距离所述桨毂的中心的距离小于所述后缘拱起部距离所述桨毂的中心的距离;及/或所述桨叶为至少两个,至少两个所述桨叶连接在所述桨毂上并关于所述桨毂的中心呈中心对称;及/或所述桨叶具有穿过所述桨毂的中心的中轴线,所述前缘具有平行于所述中轴线的前缘切线,所述后缘具有平行于所述中轴线的后缘切线,所述后掠部位于所述前缘切线与所述后缘切线之间;及/或所述吸力面和所述压力面均为曲面。
- 根据权利要求10至18任一所述的动力组件,其特征在于,所述驱动件为电机,所述电机的KV值为130至340转/(分钟·伏特)。
- 一种飞行器,其特征在于,包括机身和动力组件,所述动力组件与所述机身连接;所述动力组件,包括驱动件和螺旋桨,其特征在于,所述螺旋桨通过所述桨毂与所述驱动件连接;所述一种螺旋桨,包括:桨毂和桨叶,所述桨叶连接在所述桨毂上,其特征在于:在距离所述桨毂的中心为所述螺旋桨的半径的41.9%处,所述桨叶的攻角为25.65°±2.5°;在距离所述桨毂的中心为所述螺旋桨的半径的53.5%处,所述桨叶的攻角为23.02°±2.5°;在距离所述桨毂的中心为所述螺旋桨的半径的65.1%处,所述桨叶的攻角为20.68°±2.5°;在距离所述桨毂的中心为所述螺旋桨的半径的76.7%处,所述桨叶的攻角为18.72°±2.5°。
- 根据权利要求20所述的飞行器,其特征在于:在距离所述桨毂的中心为所述螺旋桨的半径的18.6%处,所述桨叶的攻角为25.81°±2.5°;及/或在距离所述桨毂的中心为所述螺旋桨的半径的30.2%处,所述桨叶的攻角为28.01°±2.5°;及/或在距离所述桨毂的中心为所述螺旋桨的半径的88.4%处,所述桨叶的攻角为16.04°±2.5°;及/或在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的攻角为14.00°±2.5°;及/或在距离所述桨毂的中心40mm处,所述桨叶的攻角为25.81°;及/或在距离所述桨毂的中心65mm处,所述桨叶的攻角为28.01°;及/或在距离所述桨毂的中心90mm处,所述桨叶的攻角为25.65°;及/或在距离所述桨毂的中心115mm处,所述桨叶的攻角为23.02°;及/或在距离所述桨毂的中心140mm处,所述桨叶的攻角为20.68°;及/或在距离所述桨毂的中心165mm处,所述桨叶的攻角为18.72°;及/或在距离所述桨毂的中心190mm处,所述桨叶的攻角为16.04°;及/或在距离所述桨毂的中心215mm处,所述桨叶的攻角为14.00°。
- 根据权利要求20所述的飞行器,其特征在于:在距离所述桨毂的中心为所述螺旋桨的半径的41.9%处,所述桨叶的弦长为50.36mm±5mm;及/或在距离所述桨毂的中心为所述螺旋桨的半径的53.5%处,所述桨叶的弦长为45.13mm±5mm;及/或在距离所述桨毂的中心为所述螺旋桨的半径的65.1%处,所述桨叶的弦长 为38.63mm±5mm;及/或在距离所述桨毂的中心为所述螺旋桨的半径的76.7%处,所述桨叶的弦长为32.22mm±5mm;及/或在距离所述桨毂的中心90mm处,所述桨叶的弦长为50.36mm;及/或在距离所述桨毂的中心115mm处,所述桨叶的弦长为45.13mm;及/或在距离所述桨毂的中心140mm处,所述桨叶的弦长为38.63mm;及/或在距离所述桨毂的中心165mm处,所述桨叶的弦长为32.22mm。
- 根据权利要求22所述的飞行器,其特征在于:在距离所述桨毂的中心为所述螺旋桨的半径的18.6%处,所述桨叶的弦长为46.81mm±5mm;及/或在距离所述桨毂的中心为所述螺旋桨的半径的30.2%处,所述桨叶的弦长为53.41mm±5mm;及/或在距离所述桨毂的中心为所述螺旋桨的半径的88.4%处,所述桨叶的弦长为22.92mm±5mm;及/或在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的弦长为9.00mm±5mm;及/或在距离所述桨毂的中心40mm处,所述桨叶的弦长为46.81mm;及/或在距离所述桨毂的中心65mm处,所述桨叶的弦长为53.41mm;及/或在距离所述桨毂的中心190mm处,所述桨叶的弦长为22.92mm;及/或在距离所述桨毂的中心215mm处,所述桨叶的弦长为9.00mm。
- 根据权利要求20所述的飞行器,其特征在于,所述螺旋桨的直径为430mm±43mm;及/或所述桨叶的螺距为6.6±0.5英寸。
- 根据权利要求20至24任意一项所述的飞行器,其特征在于:所述桨叶包括桨根、背离所述桨根的桨尖、相背的压力面及吸力面、连 接于所述压力面及所述吸力面一侧边的前缘、连接于所述压力面及所述吸力面另一侧边的后缘、及形成于所述桨尖的后掠部,所述后掠部自所述前缘向所述后缘倾斜延伸;所述桨尖沿所述桨叶的展向朝所述吸力面所在的一侧倾斜延伸。
- 根据权利要求25所述的飞行器,其特征在于,所述桨叶在靠近所述桨尖的位置形成反转处,所述前缘自所述反转处开始沿所述桨叶的展向朝所述吸力面所在的一侧倾斜延伸,所述反转处距离所述桨毂的中心为所述的半径的65%。
- 根据权利要求25所述的飞行器,其特征在于,所述桨叶在所述桨尖的位置形成回弯处,所述后掠部自所述回弯处开始从所述前缘向所述后缘倾斜延伸,所述回弯处距离所述桨毂的中心为所述的半径的82.5%。
- 根据权利要求25所述的飞行器,其特征在于,所述前缘外凸形成有靠近所述桨根的呈曲面状的前缘拱起部,所述后缘外凸形成有靠近所述桨根的呈曲面状的后缘拱起部,所述前缘拱起部距离所述桨毂的中心的距离小于所述后缘拱起部距离所述桨毂的中心的距离;及/或所述桨叶为至少两个,至少两个所述桨叶连接在所述桨毂上并关于所述桨毂的中心呈中心对称;及/或所述桨叶具有穿过所述桨毂的中心的中轴线,所述前缘具有平行于所述中轴线的前缘切线,所述后缘具有平行于所述中轴线的后缘切线,所述后掠部位于所述前缘切线与所述后缘切线之间;及/或所述吸力面和所述压力面均为曲面。
- 根据权利要求20至28中任一项所述的飞行器,其特征在于,所述驱动件为电机,所述电机的KV值为130至340转/(分钟·伏特)。
- 根据权利要求20至29中任一项所述的飞行器,其特征在于,所述飞行器包括多个动力组件,所述多个动力组件的转动方向不同,所述飞行器为 多旋翼飞行器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201820171075.X | 2018-01-31 | ||
CN201820171075.XU CN207917132U (zh) | 2018-01-31 | 2018-01-31 | 螺旋桨、动力组件及飞行器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019148878A1 true WO2019148878A1 (zh) | 2019-08-08 |
Family
ID=63602893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/109027 WO2019148878A1 (zh) | 2018-01-31 | 2018-09-30 | 螺旋桨、动力组件及飞行器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN207917132U (zh) |
WO (1) | WO2019148878A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN207917132U (zh) * | 2018-01-31 | 2018-09-28 | 深圳市大疆创新科技有限公司 | 螺旋桨、动力组件及飞行器 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100272576A1 (en) * | 2005-08-15 | 2010-10-28 | Abe Karem | High performance outboard section for rotor blades |
CN102465829A (zh) * | 2010-11-16 | 2012-05-23 | 通用电气公司 | 用于风力机转子叶片的叶尖小翼 |
CN105923155A (zh) * | 2016-06-08 | 2016-09-07 | 南京航空航天大学 | 一种用于旋翼飞行器的低噪声桨叶 |
CN106428551A (zh) * | 2016-09-22 | 2017-02-22 | 上海未来伙伴机器人有限公司 | 多旋翼桨叶装置 |
CN106892105A (zh) * | 2015-12-21 | 2017-06-27 | 空客直升机 | 其构造适用在进场飞行期间声学改进及在悬停飞行和向前飞行时性能改进的飞行器转子叶片 |
CN206394870U (zh) * | 2016-12-22 | 2017-08-11 | 重庆零度智控智能科技有限公司 | 螺旋桨、动力组件及飞行器 |
CN207917132U (zh) * | 2018-01-31 | 2018-09-28 | 深圳市大疆创新科技有限公司 | 螺旋桨、动力组件及飞行器 |
-
2018
- 2018-01-31 CN CN201820171075.XU patent/CN207917132U/zh not_active Expired - Fee Related
- 2018-09-30 WO PCT/CN2018/109027 patent/WO2019148878A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100272576A1 (en) * | 2005-08-15 | 2010-10-28 | Abe Karem | High performance outboard section for rotor blades |
CN102465829A (zh) * | 2010-11-16 | 2012-05-23 | 通用电气公司 | 用于风力机转子叶片的叶尖小翼 |
CN106892105A (zh) * | 2015-12-21 | 2017-06-27 | 空客直升机 | 其构造适用在进场飞行期间声学改进及在悬停飞行和向前飞行时性能改进的飞行器转子叶片 |
CN105923155A (zh) * | 2016-06-08 | 2016-09-07 | 南京航空航天大学 | 一种用于旋翼飞行器的低噪声桨叶 |
CN106428551A (zh) * | 2016-09-22 | 2017-02-22 | 上海未来伙伴机器人有限公司 | 多旋翼桨叶装置 |
CN206394870U (zh) * | 2016-12-22 | 2017-08-11 | 重庆零度智控智能科技有限公司 | 螺旋桨、动力组件及飞行器 |
CN207917132U (zh) * | 2018-01-31 | 2018-09-28 | 深圳市大疆创新科技有限公司 | 螺旋桨、动力组件及飞行器 |
Also Published As
Publication number | Publication date |
---|---|
CN207917132U (zh) | 2018-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019127028A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2019205497A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2017124781A1 (zh) | 螺旋桨、动力套装及无人飞行器 | |
WO2017128743A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2017148133A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2019148879A1 (zh) | 螺旋桨、动力组件及飞行器 | |
US10315757B2 (en) | Propeller blade beta twist | |
WO2017128742A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2019223193A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2021212869A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2018086204A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2019019332A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2017143771A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2019019343A1 (zh) | 螺旋桨、动力组件及飞行器 | |
CN109071004A (zh) | 螺旋桨、动力套装及无人飞行器 | |
US20210078698A1 (en) | Propeller assembly, power assembly, and aircraft | |
WO2019148878A1 (zh) | 螺旋桨、动力组件及飞行器 | |
CN208793271U (zh) | 用于离心风机的叶轮、离心风机和吸油烟机 | |
WO2019014795A1 (zh) | 一种低噪音新型推进器 | |
WO2019223205A1 (zh) | 螺旋桨、动力组件及飞行器 | |
CN210235310U (zh) | 螺旋桨、动力组件及飞行器 | |
CN207773438U (zh) | 螺旋桨、动力组件及飞行器 | |
WO2021208464A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2019000547A1 (zh) | 螺旋桨、动力装置及飞行器 | |
CN214776549U (zh) | 螺旋桨、动力组件及飞行器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18903625 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18903625 Country of ref document: EP Kind code of ref document: A1 |