WO2019205497A1 - 螺旋桨、动力组件及飞行器 - Google Patents

螺旋桨、动力组件及飞行器 Download PDF

Info

Publication number
WO2019205497A1
WO2019205497A1 PCT/CN2018/108927 CN2018108927W WO2019205497A1 WO 2019205497 A1 WO2019205497 A1 WO 2019205497A1 CN 2018108927 W CN2018108927 W CN 2018108927W WO 2019205497 A1 WO2019205497 A1 WO 2019205497A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
hub
center
propeller
distance
Prior art date
Application number
PCT/CN2018/108927
Other languages
English (en)
French (fr)
Inventor
林家靖
陈鹏
梁阔
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880014284.6A priority Critical patent/CN110896625A/zh
Publication of WO2019205497A1 publication Critical patent/WO2019205497A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/18Aerodynamic features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/20Constructional features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • B64C27/14Direct drive between power plant and rotor hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/473Constructional features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/473Constructional features
    • B64C27/48Root attachment to rotor head

Definitions

  • the present invention relates to the field of aircraft, and more particularly to propellers, power components and aircraft.
  • the propeller on the aircraft is used to convert the rotation of the shaft of the motor or engine into thrust or lift.
  • the propeller is rotating, and the turbulence of each part of the blade and the downwashing airflow impinging on the outer casing structure of the aircraft generate a large noise. It is often superimposed with motor noise and structural vibration noise, and amplifies noise in certain frequency bands, resulting in a large overall noise of the aircraft and poor user experience.
  • Embodiments of the present invention provide a propeller, a power assembly, and an aircraft.
  • a propeller of an embodiment of the invention includes a hub and a blade, the blade being coupled to the hub, wherein:
  • the angle of attack of the blade is 17.57 ° ⁇ 2.5 ° at a distance of 41.7% of the radius of the propeller from the center of the hub;
  • the angle of attack of the blade is 16.65 ° ⁇ 2.5 ° at a distance of 50% of the radius of the propeller from the center of the hub;
  • the angle of attack of the blade is 15.62 ° ⁇ 2.5 ° at a distance of 58.3% of the radius of the propeller from the center of the hub;
  • the angle of attack of the blade is 14.48 ° ⁇ 2.5 ° at a distance of 66.7% of the radius of the propeller from the center of the hub;
  • the blade At an angle of 75% of the radius of the propeller from the center of the hub, the blade has an angle of attack of 13.21 ° ⁇ 2.5 °.
  • the angle of attack of the blade is 19.02° ⁇ 2.5° at a distance of 25% of the radius of the propeller from the center of the hub;
  • the angle of attack of the blade is 18.40° ⁇ 2.5°;
  • the angle of attack of the blade is 11.68° ⁇ 2.5°;
  • the angle of attack of the blade is 9.56° ⁇ 2.5°;
  • the angle of attack of the blade is 5.96° ⁇ 2.5° at a distance of 100% of the radius of the propeller from the center of the hub;
  • the blade At an angle of 30 mm from the center of the hub, the blade has an angle of attack of 19.02°; and/or
  • the blade At an angle of 40 mm from the center of the hub, the blade has an angle of attack of 18.40°; and/or
  • the blade has an angle of attack of 17.57° at a distance of 50 mm from the center of the hub; and/or
  • the blade has an angle of attack of 16.65° at a distance of 60 mm from the center of the hub; and/or
  • the blade has an angle of attack of 15.62° at a distance of 70 mm from the center of the hub; and/or
  • the blade has an angle of attack of 14.48° at a distance of 80 mm from the center of the hub; and/or
  • the blade has an angle of attack of 13.21° at a distance of 90 mm from the center of the hub; and/or
  • the angle of attack of the blade is 11.68° at a distance of 100 mm from the center of the hub;
  • the blade At an angle of 110 mm from the center of the hub, the blade has an angle of attack of 9.56°; and/or
  • the blade At an angle of 120 mm from the center of the hub, the blade has an angle of attack of 5.96.
  • chord length of the blade is 29.79 mm ⁇ 5 mm at a distance of 41.7% of the radius of the propeller from the center of the hub;
  • chord length of the blade is 28.53 mm ⁇ 5 mm at a distance of 50% of the radius of the propeller from the center of the hub;
  • chord length of the blade is 27.26 mm ⁇ 5 mm at a distance of 58.3% of the radius of the propeller from the center of the hub;
  • chord length of the blade is 25.99 mm ⁇ 5 mm at a distance of 66.7% of the radius of the propeller from the center of the hub;
  • chord length of the blade is 24.71 mm ⁇ 5 mm at a distance of 75% of the radius of the propeller from the center of the hub;
  • chord length of the blade is 29.79 mm at a distance of 50 mm from the center of the hub;
  • chord length of the blade is 28.53 mm at a distance of 60 mm from the center of the hub;
  • chord length of the blade is 27.26 mm at a distance of 70 mm from the center of the hub;
  • chord length of the blade is 25.99 mm at a distance of 80 mm from the center of the hub;
  • the blade At a distance of 90 mm from the center of the hub, the blade has a chord length of 24.71 mm.
  • chord length of the blade is 32.12 mm ⁇ 5 mm at a distance of 25% of the radius of the propeller from the center of the hub;
  • chord length of the blade is 31.05 mm ⁇ 5 mm at a distance of 33.3% of the radius of the propeller from the center of the hub;
  • chord length of the blade is 21.33 mm ⁇ 5 mm at a distance of 83.3% of the radius of the propeller from the center of the hub;
  • chord length of the blade is 14.83 mm ⁇ 5 mm at a distance of 91.7% of the radius of the propeller from the center of the hub;
  • chord length of the blade is 3.83 mm ⁇ 2 mm at a distance of 100% of the radius of the propeller from the center of the hub;
  • chord length of the blade is 32.12 mm at a distance of 30 mm from the center of the hub;
  • chord length of the blade is 31.05 mm at a distance of 40 mm from the center of the hub;
  • chord length of the blade is 21.33 mm at a distance of 100 mm from the center of the hub;
  • chord length of the blade is 14.83 mm at a distance of 110 mm from the center of the hub;
  • the blade At a distance of 120 mm from the center of the hub, the blade has a chord length of 3.83 mm.
  • the propeller has a diameter of 240 mm ⁇ 24 mm; and/or
  • the pitch of the paddle is 5.467 ⁇ 0.5 inches.
  • the paddle includes a paddle root, a tip tip facing away from the paddle root, opposing pressure faces and suction faces, a leading edge connected to the pressure face and one side of the suction face a trailing edge connected to the pressure surface and the other side of the suction surface, and a swept portion formed on the blade tip, the swept portion extending obliquely from the leading edge toward the trailing edge;
  • the tip of the blade extends obliquely along a direction in which the blade extends toward the side where the pressure surface is located.
  • the blade forms a back bend at a position near the tip of the blade, the leading edge starting from the bend back along the direction of the blade toward the pressure face One side obliquely extending, the swept portion extending obliquely from the leading edge to the trailing edge from the return bend, the center of the back bend being 87.5% of the radius of the propeller .
  • the trailing edge is convexly formed with a curved trailing edge bulge near the paddle;
  • the blades are at least two, at least two of the blades are coupled to the hub and are centrally symmetric about a center of the hub; and/or
  • the blade has a central axis passing through a center of the hub, the leading edge having a leading edge tangent parallel to the central axis, the trailing edge having a trailing edge tangent parallel to the central axis,
  • the swept portion is located between the leading edge tangent and the trailing edge tangent;
  • the suction surface and the pressure surface are both curved surfaces.
  • a power assembly includes a driving member and a propeller according to any one of the above embodiments, wherein the propeller is coupled to the driving member through the hub.
  • the drive member is a motor having a KV value of 790 to 845 rpm / (minute volts).
  • An aircraft according to an embodiment of the present invention includes a body and a power unit according to any of the above embodiments, the power unit being coupled to the body.
  • the aircraft includes a plurality of power components, the plurality of power components having different directions of rotation, and the aircraft is a multi-rotor aircraft.
  • the propeller, the power assembly and the aircraft provided by the embodiments of the present invention have an angle of attack of 17.57° ⁇ 2.5° at a distance of 41.7% of the radius of the propeller from the center of the hub; and a propeller at the center of the hub At 50% of the radius, the angle of attack of the blade is 16.65 ° ⁇ 2.5 °; at 58.3% of the radius of the propeller from the center of the hub, the angle of attack of the blade is 15.62 ° ⁇ 2.5 °; at the distance from the hub The center is 66.7% of the radius of the propeller, the angle of attack of the blade is 14.48 ° ⁇ 2.5 °; at the center of the propeller hub is 75% of the radius of the propeller, the angle of attack of the blade is 13.21 ° ⁇ 2.5 °;
  • the blade-type gradual propeller can make the propeller in the best working section in each section along the span of the blade, reducing air resistance, increasing the pulling force and efficiency, and increasing the aircraft's relay distance to improve the aircraft
  • FIG. 1 is a schematic plan view of a propeller according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view of the C-C section of the propeller of the embodiment of Figure 1 at a distance of 50 mm from the center of the hub.
  • Figure 3 is a cross-sectional view of the D-D section of the propeller of the embodiment of Figure 1 at a distance of 60 mm from the center of the hub.
  • Figure 4 is a cross-sectional view of the E-E section at 70 mm from the center of the propeller in the propeller of the embodiment of Figure 1.
  • Figure 5 is a cross-sectional view of the F-F section of the propeller of the embodiment of Figure 1 at a distance of 80 mm from the center of the hub.
  • Figure 6 is a cross-sectional view of the G-G section of the propeller of the embodiment of Figure 1 at a distance of 90 mm from the center of the hub.
  • Fig. 7 is a schematic diagram showing the frequency response curve of the propeller of the present invention and the existing propeller under the same hovering performance acoustic performance test conditions.
  • Figure 8 is a cross-sectional view of the A-A section of the propeller of the embodiment of Figure 1 at a distance of 30 mm from the center of the hub.
  • Figure 9 is a cross-sectional view of the B-B section of the propeller of the embodiment of Figure 1 at a distance of 40 mm from the center of the hub.
  • Figure 10 is a cross-sectional view of the H-H section of the propeller of the embodiment of Figure 1 at a distance of 100 mm from the center of the hub.
  • Figure 11 is a cross-sectional view of the I-I section of the propeller of the embodiment of Figure 1 at 110 mm from the center of the hub.
  • Figure 12 is a cross-sectional view of the J-J section of the propeller of the embodiment of Figure 1 at a distance of 120 mm from the center of the hub.
  • FIG. 13 is a perspective view of a propeller according to an embodiment of the present invention.
  • FIG. 14 is a schematic plan view of a propeller according to an embodiment of the present invention.
  • FIG. 15 is a schematic plan view of a propeller according to an embodiment of the present invention.
  • Figure 16 is a plan view of the tip of the propeller in the embodiment of Figure 1.
  • Figure 17 is a cross-sectional view of the M-M section at 15 mm from the free end of the propeller of the embodiment of Figure 16;
  • Figure 18 is a cross-sectional view showing the N-N section at a distance of 12.5 mm from the free end of the propeller of the embodiment shown in Figure 16;
  • Figure 19 is a cross-sectional view showing the O-O section at a distance of 10 mm from the free end of the propeller of the embodiment shown in Figure 16;
  • Figure 20 is a cross-sectional view of the P-P section at 7.5 mm from the free end of the propeller of the embodiment of Figure 16;
  • Figure 21 is a cross-sectional view showing the Q-Q cross section at a distance of 5 mm from the free end of the propeller of the embodiment shown in Figure 16;
  • Figure 22 is a cross-sectional view showing the R-R section at a distance of 2.5 mm from the free end of the propeller of the embodiment shown in Figure 16;
  • FIG. 23 is a schematic plan view of an aircraft according to an embodiment of the present invention.
  • first, second, third, etc. may be used to describe various information in the present invention, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information without departing from the scope of the invention.
  • second information may also be referred to as the first information.
  • word "if” as used herein may be interpreted as "when” or “when” or “in response to a determination.”
  • an embodiment of the present invention provides a propeller 100 that includes a hub 10 and a paddle 20 .
  • the paddle 20 is attached to the hub 10.
  • the paddles 20 may be integrally formed with the hub 10, or may be separately processed and fixedly assembled.
  • the angle of attack ⁇ 3 of the blade 20 is 17.57° ⁇ 2.5°.
  • the angle of attack ⁇ 4 of the blade 20 is 16.65° ⁇ 2.5°.
  • the angle of attack ⁇ 5 of the blade 20 is 15.62° ⁇ 2.5°.
  • the angle of attack ⁇ 6 of the blade 20 is 14.48° ⁇ 2.5°.
  • the angle of attack ⁇ 7 of the blade 20 is 13.21° ⁇ 2.5°.
  • the angle of attack ⁇ 3 of the blade 20 is 17.57° ⁇ 2.5°; at the center of the hub 10 is the radius of the propeller 100.
  • the angle of attack ⁇ 4 of the blade 20 is 16.65° ⁇ 2.5°; at the center of the hub 10, which is 58.3% of the radius of the propeller 100, the angle of attack ⁇ 5 of the blade 20 is 15.62° ⁇ 2.5.
  • the angle of attack ⁇ 6 of the blade 20 is 14.48° ⁇ 2.5°; at the center of the hub 10 is 75% of the radius of the propeller 100 D7, the angle of attack ⁇ 7 of the blade 20 is 13.21° ⁇ 2.5°; therefore, the propeller 100 with the blade 20 airfoil gradation enables the propeller 100 to be in the optimal working segment for each segment along the span of the blade 20.
  • the noise generated by the blade 20 during operation is also reduced, so that the aircraft 1000 Quiet when hovering, improving the user experience.
  • an embodiment of the present invention provides a propeller 100 that includes a hub 10 and a paddle 20 .
  • the angle of attack ⁇ 3 of the blade 20 is 17.57° ⁇ 2.5°, and the chord length L3 of the blade 20 is 29.79 mm ⁇ 5 mm.
  • the angle of attack ⁇ 4 of the blade 20 is 16.65° ⁇ 2.5°, and the chord length L4 of the blade 20 is 28.53 mm ⁇ 5 mm.
  • the angle of attack ⁇ 5 of the blade 20 is 15.62° ⁇ 2.5°, and the chord length L5 of the blade 20 is 27.26 mm ⁇ 5 mm.
  • the angle of attack ⁇ 6 of the blade 20 is 14.48° ⁇ 2.5°, and the chord length L6 of the blade 20 is 25.99 mm ⁇ 5 mm.
  • the angle of attack ⁇ 7 of the blade 20 is 13.21° ⁇ 2.5°, and the chord length L7 of the blade 20 is 24.71 mm ⁇ 5 mm.
  • the chord length L3 of the blade 20 is 29.79 mm ⁇ 5 mm.
  • the angle of attack ⁇ 4 of the blade 20 is 16.65° ⁇ 2.5°
  • the chord length L4 of the blade 20 is 28.53 mm ⁇ 5 mm;
  • the center of 10 is 58.3% of the radius of the propeller 100, D5, the angle of attack ⁇ 5 of the blade 20 is 15.62° ⁇ 2.5°, the chord length L5 of the blade 20 is 27.26 mm ⁇ 5 mm, and the propeller is at the center of the hub 10.
  • the angle of attack ⁇ 6 of the blade 20 is 14.48° ⁇ 2.5°, the chord length L6 of the blade 20 is 25.99 mm ⁇ 5 mm; at the center of the hub 10 is 75 of the radius of the propeller 100 At the point D7, the angle of attack ⁇ 7 of the blade 20 is 13.21° ⁇ 2.5°, and the chord length L7 of the blade 20 is 24.71 mm ⁇ 5 mm; therefore, the propeller 100 adopting the blade 20 airfoil gradation enables the propeller 100 to be along Each section of the span of the blade 20 is in an optimal working section, reducing air resistance, increasing tension and efficiency, and increasing the range of the aircraft 1000 to improve the flight performance of the aircraft 1000. At the same time, the noise generated by the blade 20 during operation is also reduced, so that the aircraft 1000 is more quiet during hovering, improving the user experience.
  • the comparison between the propeller 100 and the test results of the existing propeller provided in this embodiment can be seen from Table 1.
  • the propeller 100 provided by the present embodiment has lower power. That is, under smaller power conditions, there is greater pulling force, thereby reducing power consumption and increasing the cruising distance. Therefore, the propeller 100 provided by the present embodiment can significantly increase the pulling force in the extreme case where the lifting density is high in a high-altitude region with a reduced density or a low-altitude region, thereby ensuring sufficient power while prolonging the endurance time and improving flight performance.
  • the propeller 100 provided by the present embodiment is compared with the test results of the existing propeller.
  • the solid line refers to BLDC (Brushless Direct Current Motor) for testing
  • the dotted line refers to FOC (Field-Oriented Control) for testing.
  • the FOC ESC controlled propeller can eliminate the motor howling. It can be seen from the frequency response curve (Frequency (Hz)-Loudness (dB-A)) in Fig.
  • the noise generated by the propeller 100 provided by this embodiment is Compared with the noise generated by the existing propellers, the propeller 100 provided by the present embodiment has lower noise than the existing propellers under most of the same frequency conditions.
  • the propeller 100 provided in this embodiment can effectively reduce noise.
  • the loudness of the propeller 100 provided by this embodiment is significantly lower than that of the existing propeller. Therefore, the propeller 100 provided in the embodiment can effectively reduce high frequency noise, reduce the discomfort caused by high frequency noise and improve the user experience.
  • the propeller 100 provided in this embodiment can be applied to scenes with high sound requirements, such as detection, aerial photography (recording images and audio during aerial photography), and the like.
  • the angle of attack ⁇ 3 of the blade 20 may be 15.07° or 17.57° or 20.07°, or 15.57°, 16.07°, 16.57°, 17.07°, Any one of 18.07°, 18.57°, 19.07°, 19.57°, etc., or any of the above, the chord length L3 of the blade 20 may be 24.79 mm or 29.79 mm or 34.79 mm, or 25.79 mm. Any one of 26.79 mm, 27.79 mm, 28.79 mm, 30.79 mm, 31.79 mm, 32.79 mm, 33.79 mm, or the like, or a value between any of the above.
  • the angle of attack ⁇ 4 of the blade 20 may be 14.15° or 16.65° or 19.15°, or 14.65°, 15.15°, 15.65°, 16.15°, 17. Any of 17.15°, 17.65°, 18.15°, 18.65°, etc., or any of the above, the chord length L4 of the blade 20 may be 23.53 mm or 28.53 mm or 33.53 mm, or 24.53 mm, 25.53. Any value between mm, 26.53 mm, 27.53 mm, 29.53 mm, 30.53 mm, 31.53 mm, 32.53 mm, or the like, or any of the above.
  • the angle of attack ⁇ 5 of the blade 20 may be 13.12° or 15.62° or 18.12°, or 13.62°, 14.12°, 14.62°, 15.12°,
  • the value between any of 16.12°, 16.62°, 17.12°, 17.62°, etc., or any of the above, the chord length L5 of the blade 20 may be 22.26 mm or 27.26 mm or 32.26 mm, or 23.26 mm, 24.26.
  • the angle of attack ⁇ 6 of the blade 20 may be 11.98° or 14.48° or 16.98°, or 12.48°, 12.98°, 13.48°, 13.98°.
  • the value between any one of 14.98°, 15.48°, 15.98°, 16.48°, or the like, or any of the above, the chord length L6 of the blade 20 may be 20.99 mm or 25.99 mm or 30.99 mm, or 21.99 mm, Any one of 22.99 mm, 23.99 mm, 24.99 mm, 26.99 mm, 27.99 mm, 28.99 mm, 29.99 mm, or the like, or a value between any of the above.
  • the angle of attack ⁇ 7 of the blade 20 may be 10.71° or 13.21° or 15.71°, or 11.21°, 11.71°, 12.21°, 12.71°, The value of any one of 13.71°, 14.21°, 14.71°, 15.21°, or the like, or any of the above, the chord length L7 of the blade 20 may be 19.71 mm or 24.71 mm or 29.71 mm, or 20.71 mm, 21.71. A value between any one of mm, 22.71 mm, 23.71 mm, 25.71 mm, 26.71 mm, 27.71 mm, 28.71 mm, or the like.
  • the hub 10 may have a cylindrical shape, or the cross section of the hub 10 may have an elliptical shape, a rhombus shape or the like.
  • the center of the hub 10 is provided with a connecting hole for arranging on the output end of the motor.
  • the blade 20 may be in the form of a strip, the blade 20 being coupled to the hub 10 and extending in the radial direction of the hub 10.
  • the angle of attack ⁇ 1 of the blade 20 is 19.02° ⁇ 2.5°, and the blade 20 is The chord length L1 is 32.12 mm ⁇ 5 mm to further reduce the air resistance of the propeller 100, increase the pulling force and efficiency, and reduce noise.
  • the angle of attack ⁇ 1 of the blade 20 may be 16.52° or 19.02° or 21.52°, or any one of 17.02°, 17.52°, 18.02°, 18.52°, 19.52°, 20.02°, 20.52°, 21.02°, and the like.
  • chord length L1 of the blade 20 may be 27.12 mm or 32.12 mm or 37.12 mm, or 28.12 mm, 29.12 mm, 30.12 mm, 31.12 mm, 33.12 mm, 34.12 mm, 35.12 mm. Any one of 36.12 mm or the like or a value between any two of the above.
  • the angle of attack ⁇ 2 of the blade 20 is 18.40° ⁇ 2.5°, and the blade 20 is The chord length L2 is 31.05 mm ⁇ 5 mm.
  • the angle of attack ⁇ 2 of the blade 20 may be 15.90° or 18.40° or 20.90°, or any one of 16.90°, 17.40°, 17.90°, 18.90°, 19.40°, 19.90°, 20.40°, 20.90°, and the like.
  • chord length L2 of the blade 20 may be 26.05 mm or 31.05 mm or 36.05 mm, or 27.05 mm, 28.05 mm, 29.05 mm, 30.05 mm, 32.05 mm, 33.05 mm, 34.05 mm. Any one of 35.05 mm or the like or a value between any two of the above.
  • the angle of attack ⁇ 8 of the blade 20 is 11.68° ⁇ 2.5°, and the blade 20 is The chord length L8 is 21.33 mm ⁇ 5 mm to further reduce the air resistance of the propeller 100, increase the pulling force and efficiency, and reduce noise.
  • the angle of attack ⁇ 8 of the blade 20 may be 9.18° or 11.68° or 14.18°, or any one of 9.68°, 10.18°, 10.68°, 11.18°, 12.18°, 12.68°, 13.18°, 13.68°, and the like.
  • chord length L8 of the blade 20 may be 16.33 mm or 21.33 mm or 26.33 mm, or 17.33 mm, 18.33 mm, 19.33 mm, 20.33 mm, 22.33 mm, 23.33 mm, 24.33 mm. Any one of 25.33 mm or the like or a value between any of the above.
  • the angle of attack ⁇ 9 of the blade 20 is 9.56° ⁇ 2.5°, and the blade 20 is The chord length L9 is 14.83 mm ⁇ 5 mm to further reduce the air resistance of the propeller 100, increase the pulling force and efficiency, and reduce noise.
  • the angle of attack ⁇ 9 of the blade 20 may be 7.06° or 9.56° or 12.06°, or any one of 7.56°, 8.06°, 8.56°, 9.06°, 10.06°, 10.56°, 11.06°, 11.56°, and the like.
  • chord length L9 of the blade 20 may be 9.83 mm or 14.83 mm or 19.83 mm, or 10.83 mm, 11.83 mm, 12.83 mm, 13.83 mm, 15.83 mm, 16.83 mm, 17.83 mm. Any one of 18.83 mm or the like or a value between any of the above.
  • the angle of attack ⁇ 10 of the blade 20 is 5.96° ⁇ 2.5°, and the blade 20 is The chord length L10 is 3.83 mm ⁇ 2 mm.
  • the angle of attack ⁇ 10 of the blade 20 may be 3.46° or 5.96° or 8.46°, or any one of 3.96°, 4.46°, 4.96°, 5.46°, 6.46°, 6.96°, 7.46°, 7.96°, and the like.
  • chord length L10 of the blade 20 may be 1.83 mm or 3.83 mm or 5.83 mm, or 2.33 mm, 2.83 mm, 3.33 mm, 4.33 mm, 4.83 mm, 5.33 mm, or the like. Any one or a value between any two of the above.
  • the diameter of the propeller 100 is 240 mm ⁇ 24 mm.
  • the angle of attack ⁇ 3 of the blade 20 is 17.57°, and the chord length L3 of the blade 20 is 29.79 mm.
  • the angle of attack ⁇ 4 of the blade 20 is 16.65°, and the chord length L4 of the blade 20 is 28.53 mm.
  • the angle of attack ⁇ 5 of the blade 20 is 15.62°, and the chord length L5 of the blade 20 is 27.26 mm.
  • the angle of attack ⁇ 6 of the blade 20 is 14.48°, and the chord length L6 of the blade 20 is 25.99 mm.
  • the angle of attack ⁇ 7 of the blade 20 is 13.21°, and the chord length L7 of the blade 20 is 24.71 mm.
  • the diameter of the propeller 100 may be 216 mm or 240 mm or 264 mm, or any one of 220 mm, 224 mm, 228 mm, 232 mm, 236 mm, 244 mm, 248 mm, 252 mm, 256 mm, 260 mm, or the like, or a value between any two of the above.
  • the diameter of the propeller 100 is 240 mm ⁇ 24 mm.
  • the angle of attack ⁇ 1 of the blade 20 is 19.02°, and the chord length L1 of the blade 20 is 32.12 mm.
  • the diameter of the propeller 100 may be 216 mm or 240 mm or 264 mm, or any one of 220 mm, 224 mm, 228 mm, 232 mm, 236 mm, 244 mm, 248 mm, 252 mm, 256 mm, 260 mm, or the like, or a value between any two of the above.
  • the diameter of the propeller 100 is 240 mm ⁇ 24 mm.
  • the angle of attack ⁇ 2 of the blade 20 is 18.40°, and the chord length L2 of the blade 20 is 31.05 mm.
  • the diameter of the propeller 100 may be 216 mm or 240 mm or 264 mm, or any one of 220 mm, 224 mm, 228 mm, 232 mm, 236 mm, 244 mm, 248 mm, 252 mm, 256 mm, 260 mm, or the like, or a value between any two of the above.
  • the diameter of the propeller 100 is 240 mm ⁇ 24 mm.
  • the angle of attack ⁇ 8 of the blade 20 is 11.68°, and the chord length L8 of the blade 20 is 21.33 mm.
  • the diameter of the propeller 100 may be 216 mm or 240 mm or 264 mm, or any one of 220 mm, 224 mm, 228 mm, 232 mm, 236 mm, 244 mm, 248 mm, 252 mm, 256 mm, 260 mm, or the like, or a value between any two of the above.
  • the diameter of the propeller 100 is 240 mm ⁇ 24 mm.
  • the angle of attack ⁇ 9 of the blade 20 is 9.56°, and the chord length L8 of the blade 20 is 14.83 mm.
  • the diameter of the propeller 100 may be 216 mm or 240 mm or 264 mm, or any one of 220 mm, 224 mm, 228 mm, 232 mm, 236 mm, 244 mm, 248 mm, 252 mm, 256 mm, 260 mm, or the like, or a value between any two of the above.
  • the diameter of the propeller 100 is 240 mm ⁇ 24 mm.
  • the angle of attack ⁇ 10 of the blade 20 is 5.96°, and the chord length L10 of the blade 20 is 3.83 mm.
  • the diameter of the propeller 100 may be 216 mm or 240 mm or 264 mm, or any one of 220 mm, 224 mm, 228 mm, 232 mm, 236 mm, 244 mm, 248 mm, 252 mm, 256 mm, 260 mm, or the like, or a value between any two of the above.
  • the paddle 20 optionally includes a paddle root 21, a tip end 22 that faces away from the blade root 21, a pressure surface 23 opposite the surface, and a suction surface 24.
  • the tip 22 extends obliquely along the direction of the blade 20 toward the side of the pressure face 23. As such, the noise generated by the blade 20 during operation is reduced, making the aircraft 1000 quieter when hovering, improving the user experience.
  • the pressure surface 23 is a surface facing the ground of the blade 20 during normal flight of the aircraft 1000
  • the suction surface 24 is a surface facing the sky of the blade 20 when the aircraft 1000 is normally flying.
  • the suction surface 24 and the pressure surface 23 are curved surfaces.
  • the suction surface 24 and the pressure surface 23 are curved aerodynamic shapes, which can prevent the turbulence generated by the various portions of the blade 20 and the downwashing airflow from directly impacting the fuselage 50 of the aircraft 1000, thereby reducing the overall noise of the aircraft 1000.
  • the paddle 20 further includes a leading edge 25 connected to one side of the pressure surface 23 and the suction surface 24, a trailing edge 26 connected to the pressure surface 23 and the other side of the suction surface 24, and Formed at the swept portion 221 of the tip 22, the swept portion 221 extends obliquely from the leading edge 25 to the trailing edge 26. In this way, the effect of further increasing the pulling force and efficiency of the propeller 100 is achieved.
  • the paddle 20 forms a return bend 27 at the position of the blade tip 22, and the leading edge 25 extends obliquely from the bendback 27 along the side of the blade 20 toward the side where the pressure face 23 is located.
  • the swept portion 221 extends obliquely from the leading edge 25 to the trailing edge 26 from the corner bend 27.
  • the position of the return bend 27 is indicated by MM.
  • the bendback 27 is 87.5% of the radius of the propeller 100 from the center of the hub 10.
  • the return bend 27 is remote from the center of the hub 10, enhancing the aesthetics of the blade 20 and also reducing the interaction between the propeller 100 and the arm 40 of the aircraft 1000 (shown in Figure 23).
  • the trailing edge 26 is convexly formed with a curved trailing edge arching portion 261 near the paddle root 21.
  • the trailing edge arching portion 231 has a curved shape to further increase the pulling force of the blade 20.
  • the blades 20 are at least two, and at least two blades 20 are coupled to the hub 10 and are centrally symmetric with respect to the center of the hub 10. Thereby, the balance of the propeller 100 can be improved.
  • the blade 20 has a central axis NN (Fig. 1) passing through the center of the hub 10, the leading edge 25 has a leading edge tangent OO parallel to the central axis NN, and the trailing edge 26 has parallel
  • the trailing edge of the central axis NN is tangent PP
  • the swept portion 221 is located between the leading edge tangent OO and the trailing edge tangent PP.
  • the maneuverability of 1000 makes the aircraft 1000 more stable while further reducing the overall noise of the aircraft 1000.
  • the tip 22 extends obliquely along the direction of the blade 20 toward the side of the pressure surface 23 , and the swept portion 221 extends from the leading edge 25 to the trailing edge 26 .
  • Tilt extension Specifically, in conjunction with FIG. 13, a right-handed rectangular coordinate system is established on the propeller 100. The center of the coordinate system is located at the center of the hub 10.
  • the X-axis of the blade 20 is defined as: the starting point is the center of the propeller 100, and the propeller 100 is along The span of the blade 20 is the positive direction of the X-axis;
  • the Y-axis of the blade 20 is defined as: the starting point is the center of the propeller 100, the thumb is directed to the X-axis, and the direction indicated by the index finger is the positive direction of the Y-axis;
  • the Z axis is defined as: the starting point is the center of the propeller 100, the thumb is pointing to the X axis, and the direction indicated by the middle finger is the positive direction of the Z axis.
  • the center of rotation of the blade 20 is defined as the maximum value of the horizontal axis (X axis) minus the minimum value divided by 3, and then the coordinate of the minimum value; the maximum value of the vertical axis (Y axis) minus the minimum value 2, then add the coordinates of the minimum.
  • the Blade Radius (mm) column indicates the center of rotation of the blade 20 at the X-axis coordinate position of the space, starting at the center of the hub 10, at which time the distance of the blade 20 from the center of the hub 10 is 0 mm, the end is the free end 222 of the tip 22, and the free end 222 is 120 mm from the center of the hub 10.
  • the Anhedral Length (mm) column indicates the center of rotation of the blade 20 at the Y-axis coordinate position of the space, wherein a positive value of the Angle Length (mm) indicates that the blade 20 is reversed, and a negative value indicates that the blade 20 is inverted.
  • the Sweep Length (mm) column indicates the position of the center of rotation of the blade 20 in the Z-axis coordinate position of the space, wherein a positive value of the Sweep Length (mm) indicates that the blade 20 is swept back, and a negative value indicates that the blade 20 is swept forward.
  • the swept portion 221 regularly extends obliquely from the leading edge 25 to the trailing edge 26, which can reduce turbulence and downwashing due to interaction of the plurality of blades 20, and reduce
  • the turbulent flow and the lower washing airflow on the fuselage 50 of the aircraft 1000 reduce the air resistance received by the blade 20, further improve the pulling force and efficiency of the propeller 100, improve the maneuverability of the aircraft 1000, and make the aircraft 1000 more stable.
  • the noise generated by the turbulence and the downwash airflow impinging on the fuselage 50 of the aircraft 1000 is further reduced.
  • the leading edge 25 is self-returned 27 Beginning along the side of the blade 20 that extends toward the side of the pressure surface 23, that is, the reverse is initiated when the distance of the blade 20 from the center of the hub 10 is 105 mm.
  • the leading edge 25 is regularly inclined from the corner bend 27 along the side of the blade 20 along the direction of the suction surface 24, which can reduce the interaction due to the plurality of blades 20.
  • the generated turbulence and under-washing airflow reduce the turbulence and downwashing airflow on the arm 40 and the fuselage 50 of the aircraft 1000.
  • the lift point of the blade 20 can be rated to enable the aircraft 1000 to be automatically corrected.
  • the flight attitude increases the inertia stability of the aircraft 1000, making the aircraft 1000 more stable during flight, while further reducing the noise generated by the turbulence and downwash airflow impinging on the fuselage 50 of the aircraft 1000.
  • the swept portion 221 extends obliquely from the leading edge 25 to the trailing edge 26 from the corner bend 27, and the corner of the back bend 27 is the radius of the propeller 100 from the center of the hub 10. 87.5%.
  • the cross-sectional shape and parameters of the swept portion 221 are as follows:
  • the angle of attack ⁇ 11 of the blade 20 is 11.05° ⁇ 2.5°.
  • the chord length L11 of the blade 20 is 18.38 mm ⁇ 5 mm to further reduce the air resistance of the propeller 100, increase the pulling force and efficiency, and reduce noise.
  • the angle of attack ⁇ 11 of the blade 20 may be 8.55° or 11.05° or 13.55°, or any one of 9.05°, 9.55°, 10.05°, 10.55°, 11.55°, 12.05°, 12.55°, 13.05°, and the like.
  • chord length L11 of the blade 20 may be 13.38 mm or 18.38 mm or 23.38 mm, or 14.38 mm, 15.38 mm, 16.38 mm, 17.38 mm, 19.38 mm, 20.38 mm, 21.38 mm. Any one of 22.38 mm or the like or a value between any two of the above.
  • the angle of attack ⁇ 12 of the blade 20 is 10.06° ⁇ 2.5°.
  • the chord length L12 of the blade 20 is 16.67 mm ⁇ 5 mm.
  • the angle of attack ⁇ 12 of the blade 20 may be 7.56° or 10.06° or 12.56°, or any one of 8.06°, 8.56°, 9.06°, 9.56°, 10.56°, 11.06°, 11.56°, 12.06°, and the like.
  • chord length L12 of the blade 20 may be 11.67 mm or 16.67 mm or 21.67 mm, or 12.67 mm, 13.67 mm, 14.67 mm, 15.67 mm, 17.67 mm, 18.67 mm, 19.67 mm. Any one of 20.67 mm or the like or a value between any two of the above.
  • the distance between the blade 20 and the free end 222 is 10 mm, that is, the distance between the blade 20 and the center of the hub 10 is 110 mm, that is, at D13 of FIG.
  • the air resistance of the propeller 100 increases the pulling force and efficiency and reduces noise.
  • the angle of attack ⁇ 13 of the blade 20 may be 7.06° or 9.56° or 12.06°, or any one of 7.56°, 8.06°, 8.56°, 9.06°, 10.06°, 10.56°, 11.06°, 11.56°, and the like.
  • the chord length L13 of the blade 20 may be 9.83 mm or 14.83 mm or 19.83 mm, or 10.83 mm, 11.83 mm, 12.83 mm, 13.83 mm, 15.83 mm, 16.83 mm, 17.83 mm. Any one of 18.83 mm or the like or a value between any of the above.
  • the angle of attack ⁇ 14 of the blade 20 is 8.66° ⁇ 2.5°.
  • the chord length L14 of the blade 20 is 12.95 mm ⁇ 5 mm to further reduce the air resistance of the propeller 100, increase the pulling force and efficiency, and reduce noise.
  • the angle of attack ⁇ 14 of the blade 20 may be 6.16° or 8.66° or 11.16°, or any one of 6.66°, 7.16°, 7.66°, 8.16°, 9.16°, 9.66°, 10.16°, 10.66°, and the like.
  • chord length L14 of the blade 20 may be 7.95 mm or 12.95 mm or 17.95 mm, or 8.95 mm, 9.95 mm, 10.95 mm, 11.95 mm, 13.95 mm, 14.95 mm, 15.95 mm. Any one of 16.95 mm or the like or a value between any of the above.
  • the angle of attack ⁇ 15 of the blade 20 is 7.76° ⁇ 2.5°.
  • the chord length L15 of the paddle 20 is 10.99 mm ⁇ 5 mm.
  • the angle of attack ⁇ 15 of the blade 20 may be 5.26° or 7.76° or 10.26°, or any one of 5.76°, 6.26°, 6.76°, 7.26°, 8.26°, 8.76°, 9.26°, 9.76°, and the like.
  • chord length L15 of the blade 20 may be 5.99 mm or 10.99 mm or 15.99 mm, or 6.99 mm, 7.99 mm, 8.99 mm, 9.99 mm, 11.99 mm, 12.99 mm, 13.99 mm. Any one of 14.99 mm or the like or a value between any of the above.
  • the angle of attack ⁇ 16 of the blade 20 is 6.90° ⁇ 2.5°.
  • the chord length L16 of the blade 20 is 8.97 mm ⁇ 5 mm.
  • the angle of attack ⁇ 16 of the blade 20 may be 4.40° or 6.90° or 9.40°, or any one of 4.90°, 5.40°, 5.90°, 6.40°, 7.40°, 7.90°, 8.40°, 8.90°, and the like.
  • chord length L16 of the blade 20 may be 3.97 mm or 8.97 mm or 13.97 mm, or 4.97 mm, 5.97 mm, 6.97 mm, 7.97 mm, 9.97 mm, 10.97 mm, 11.97 mm. Any one of 12.97 mm or the like or a value between any of the above.
  • the diameter of the propeller 100 is 240 mm ⁇ 24 mm.
  • the distance between the blade 20 and the free end 222 is 15 mm, the angle of attack ⁇ 11 of the blade 20 is 11.05° ⁇ 2.5°, the chord length L11 of the blade 20 is 18.38 mm, and the distance from the blade 20 to the free end 222 is 12.5.
  • the angle of attack ⁇ 12 of the blade 20 is 10.06°, the chord length L12 of the blade 20 is 16.67 mm; the distance between the blade 20 and the free end 222 is 10 mm, and the angle of attack ⁇ 13 of the blade 20 is 9.56°, the blade The chord length L13 of 20 is 14.83 mm; the distance from the blade 20 to the free end 222 is 7.5 mm, the angle of attack ⁇ 14 of the blade 20 is 8.66°, the chord length L14 of the blade 20 is 12.95 mm; the distance at the blade 20 The distance of the free end 222 is 5 mm, the angle of attack ⁇ 15 of the blade 20 is 7.76°, the chord length L15 of the blade 20 is 10.99 mm, and the distance between the blade 20 and the free end 222 is 2.5 mm, the angle of attack of the blade 20 ⁇ 16 is 6.90°, and the chord length L16 of the blade 20 is 8.97 mm.
  • the diameter of the propeller 100 may be 216 mm or 240 mm or 264 mm, or any one of 220 mm, 224 mm, 228 mm, 232 mm, 236 mm, 244 mm, 248 mm, 252 mm, 256 mm, 260 mm, or the like, or a value between any two of the above.
  • the pitch of the blade 20 is 5.467 ⁇ 0.5 inches.
  • the pitch in this embodiment refers to the pitch at 3/4 of the radius of the propeller 100. Thereby, the resistance of the air can be reduced and the pulling force of the blade 20 can be increased.
  • the pitch of the blade 20 may be 4.967 inches or 5.467 inches or 5.967 inches, or any one of the following: 5.067 inches, 5.167 inches, 5.267 inches, 5.367 inches, 5.567 inches, 5.667 inches, 5.767 inches, 5.867 inches, or the like. The value between any two.
  • the propeller blade 100 with a blade-shaped gradient of the above-described embodiment of the present invention can significantly increase the pulling force in the plateau region and ensure sufficient power redundancy.
  • the performance is balanced to a certain extent, the following distance is increased, and the flight performance of the aircraft 1000 is improved.
  • the propeller 100 using the blade has a greater pulling force under a smaller power condition, thereby reducing power consumption and increasing the cruising distance.
  • it can significantly increase the pulling force, ensure sufficient power while prolonging the battery life and improving flight performance.
  • the propeller 100 employing the blade 20 airfoil gradation using the above-described embodiment of the present invention has a lower loudness than the existing propeller under most of the same frequency conditions. Especially under the same high frequency conditions, the loudness of the propeller 100 provided by this embodiment is significantly lower than that of the existing propeller. Therefore, the propeller 100 provided in the embodiment can effectively reduce high frequency noise, reduce the discomfort caused by high frequency noise and improve the user experience. The overall is lower than the existing propeller. Thus, the propeller 100 provided in this embodiment can effectively reduce noise.
  • the propeller 100 is at a distance D1 from the center of the hub 10 that is 25% of the radius of the propeller 100, and the angle of attack ⁇ 1 of the blade 20 is 19.02° ⁇ 2.5°; and/or
  • the angle of attack ⁇ 2 of the blade 20 is 18.40° ⁇ 2.5°;
  • the angle of attack ⁇ 8 of the blade 20 is 11.68° ⁇ 2.5°;
  • the angle of attack ⁇ 9 of the blade 20 is 9.56° ⁇ 2.5°;
  • the angle of attack ⁇ 10 of the blade 20 is 5.96° ⁇ 2.5°;
  • the angle of attack ⁇ 1 of the blade 20 is 19.02°;
  • the angle of attack ⁇ 2 of the blade 20 is 18.40°;
  • the angle of attack ⁇ 3 of the blade 20 is 17.57°;
  • the angle of attack ⁇ 4 of the blade 20 is 16.65°;
  • the angle of attack ⁇ 5 of the blade 20 is 15.62°;
  • the angle of attack ⁇ 6 of the blade 20 is 14.48°;
  • the angle of attack ⁇ 7 of the blade 20 is 13.21°;
  • the angle of attack ⁇ 8 of the blade 20 is 11.68°;
  • the angle of attack ⁇ 9 of the blade 20 is 9.56°;
  • the angle of attack ⁇ 10 of the blade 20 is 5.96.
  • the propeller 100 is at a distance D1 from the center of the hub 10 at 25% of the radius of the propeller 100, and the angle of attack ⁇ 1 of the blade 20 is 19.02° ⁇ 2.5°;
  • the propeller 100 is at a distance D3 from the center of the hub 10 at 33.3% of the radius of the propeller 100, and the angle of attack ⁇ 2 of the blade 20 is 18.40° ⁇ 2.5°;
  • the propeller 100 is at a distance of 83.3% of the radius of the propeller 100 from the center of the hub 10, D8, and the angle of attack ⁇ 8 of the blade 20 is 11.68° ⁇ 2.5°;
  • the propeller 100 is at a distance of 91.7% of the radius of the propeller 100 from the center of the hub 10, D9, and the angle of attack ⁇ 9 of the blade 20 is 9.56 ° ⁇ 2.5 °;
  • the propeller 100 is at a distance D100 from the center of the hub 10 at 100% of the radius of the propeller 100, and the angle of attack ⁇ 10 of the blade 20 is 5.96 ° ⁇ 2.5 °;
  • the propeller 100 is at a distance D1 from the center of the hub 10, and the angle of attack ⁇ 1 of the blade 20 is 19.02°;
  • the propeller 100 is at a distance 40 mm from the center of the hub 10, and the angle of attack ⁇ 2 of the blade 20 is 18.40°;
  • the propeller 100 is at a distance of 50 mm from the center of the hub 10, and the angle of attack ⁇ 3 of the blade 20 is 17.57°;
  • the propeller 100 is at a distance of 60 mm from the center of the hub 10, and the angle of attack ⁇ 4 of the blade 20 is 16.65°;
  • the propeller 100 is at a distance of 70 mm from the center of the hub 10, and the angle of attack ⁇ 5 of the blade 20 is 15.62°;
  • the propeller 100 is at a distance of 80 mm from the center of the hub 10, and the angle of attack ⁇ 6 of the blade 20 is 14.48°;
  • the propeller 100 is at a distance of 90 mm from the center of the hub 10, and the angle of attack ⁇ 7 of the blade 20 is 13.21°;
  • the propeller 100 is at a distance of 100 mm from the center of the hub 10, and the angle of attack ⁇ 8 of the blade 20 is 11.68°;
  • the propeller 100 is 110 mm from the center of the hub 10, the angle of attack ⁇ 9 of the blade 20 is 9.56 °;
  • the propeller 100 is at a distance D10 from the center of the hub 10, and the angle of attack ⁇ 10 of the blade 20 is 5.96.
  • the propeller 100 is at a distance D1 from the center of the hub 10 at 25% of the radius of the propeller 100, and the angle of attack ⁇ 1 of the blade 20 is 19.02° ⁇ 2.5°; and, at the center of the hub 10, the propeller 100 At an angle of 33.3% of the radius D2, the angle of attack ⁇ 2 of the blade 20 is 18.40° ⁇ 2.5°; and, at the center of the hub 10, which is 83.3% of the radius of the propeller 100, the angle of attack ⁇ 8 of the blade 20 is 11.68.
  • the angle of attack ⁇ 9 of the blade 20 is 9.56° ⁇ 2.5°; and, at the center of the hub 10, the propeller 100% of the radius of 100, D10, the angle of attack ⁇ 10 of the blade 20 is 5.96 ° ⁇ 2.5 °; and, at a distance of 30 mm from the center of the hub 10, the angle of attack ⁇ 1 of the blade 20 is 19.02 °; From the center 40 mm of the hub 10, the angle of attack ⁇ 2 of the blade 20 is 18.40°; and, at a distance of 50 mm from the center of the hub 10, the angle of attack ⁇ 3 of the blade 20 is 17.57°; and, at a distance from the paddle
  • the center angle 60 of the hub 10 is D4, the angle of attack ⁇ 4 of the blade 20 is 16.65°; and, at a distance of 70 mm from the center of the hub 10, the angle of attack ⁇ 5 of the blade 20
  • the propeller 100 is at a distance D1 from the center of the hub 10 that is 41.7% of the radius of the propeller 100, and the chord length L3 of the blade 20 is 29.79 mm ⁇ 5 mm; and/or
  • chord length L4 of the blade 20 is 28.53 mm ⁇ 5 mm;
  • chord length L5 of the blade 20 is 27.26 mm ⁇ 5 mm;
  • chord length L6 of the blade 20 is 25.99 mm ⁇ 5 mm;
  • the chord length L7 of the blade 20 is 24.71 mm ⁇ 5 mm;
  • chord length L3 of the blade 20 is 29.79 mm;
  • chord length L4 of the blade 20 is 28.53 mm;
  • chord length L5 of the blade 20 is 27.26 mm;
  • chord length L6 of the blade 20 is 25.99 mm;
  • chord length L7 of the paddle 20 is 24.71 mm.
  • the propeller 100 is D3 at a distance of 41.7% of the radius of the propeller 100 from the center of the hub 10, and the chord length L3 of the blade 20 is 29.79 mm ⁇ 5 mm;
  • the propeller 100 is at a distance D50 from the center of the hub 10 that is 50% of the radius of the propeller 100, and the chord length L4 of the blade 20 is 28.53 mm ⁇ 5 mm;
  • the propeller 100 is at a distance of 58.3% of the radius of the propeller 100 from the center of the hub 10, D5, and the chord length L5 of the blade 20 is 27.26 mm ⁇ 5 mm;
  • the propeller 100 is at a distance of 66.7% of the radius of the propeller 100 from the center of the hub 10, D6, and the chord length L6 of the blade 20 is 25.99 mm ⁇ 5 mm;
  • the propeller 100 is at a distance of 75% from the center of the hub 10, which is 75% of the radius of the propeller 100, and the chord length L7 of the blade 20 is 24.71 mm ⁇ 5 mm;
  • the propeller 100 is at a distance of 50 mm from the center of the hub 10, and the chord length L3 of the blade 20 is 29.79 mm;
  • the propeller 100 is at a distance of 60 mm from the center of the hub 10, and the chord length L4 of the blade 20 is 28.53 mm;
  • the propeller 100 is at a distance of 70 mm from the center of the hub 10, and the chord length L5 of the blade 20 is 27.26 mm;
  • the propeller 100 is at a distance of 80 mm from the center of the hub 10, and the chord length L6 of the blade 20 is 25.99 mm;
  • the propeller 100 is at a distance of 90 mm from the center of the hub 10, and the chord length L7 of the blade 20 is 24.71 mm;
  • the propeller 100 is D3 at a distance of 41.7% of the radius of the propeller 100 from the center of the hub 10, and the chord length L3 of the blade 20 is 29.79 mm ⁇ 5 mm; and, at the center of the hub 10, the radius of the propeller 100 At 50% of D4, the chord length L4 of the blade 20 is 28.53 mm ⁇ 5 mm; and, at the center of the hub 10, which is 58.3% of the radius of the propeller 100, D5, the chord length L5 of the blade 20 is 27.26 mm ⁇ 5mm; and, at a distance of 66.7% of the radius of the propeller 100 from the center of the hub 10, D6, the chord length L6 of the blade 20 is 25.99 mm ⁇ 5 mm; and, at the center of the hub 10, the radius of the propeller 100 At 75%, D7, the chord length L7 of the blade 20 is 24.71 mm ⁇ 5 mm; and, at a distance of 50 mm from the center of the hub 10, the chord length L
  • the chord length L4 of the blade 20 is 28.53 mm; and, at a distance of 70 mm from the center of the hub 10, the chord length L5 of the blade 20 is 27.26 mm; and, at a distance of 80 mm from the center of the hub 10.
  • the chord length L6 of the paddle 20 is 25.99 mm; and, at a distance of 90 mm from the center of the hub 10, the chord length L7 of the paddle 20 is 24.71 mm.
  • the propeller 100 is at a distance D1 from the center of the hub 10 that is 25% of the radius of the propeller 100, and the chord length L1 of the blade 20 is 32.12 mm ⁇ 5 mm; and/or
  • the chord length L2 of the blade 20 is 31.05 mm ⁇ 5 mm;
  • the chord length L8 of the blade 20 is 21.33 mm ⁇ 5 mm;
  • the chord length L9 of the blade 20 is 14.83 mm ⁇ 5 mm;
  • the chord length L10 of the blade 20 is 3.83 mm ⁇ 2 mm;
  • chord length L1 of the blade 20 is 32.12 mm;
  • chord length L2 of the blade 20 is 31.05 mm;
  • chord length L8 of the blade 20 is 21.33 mm;
  • chord length L9 of the blade 20 is 14.83 mm;
  • chord length L10 of the paddle 20 is 3.83 mm.
  • the propeller 100 is at a distance of 25% of the radius of the propeller 100 from the center of the hub 10, and the chord length L1 of the blade 20 is 32.12 mm ⁇ 5 mm;
  • the propeller 100 is at a distance of 33.3% of the radius of the propeller 100 from the center of the hub 10, and the chord length L2 of the blade 20 is 31.05 mm ⁇ 5 mm;
  • the propeller 100 is at a distance of 83.3% of the radius of the propeller 100 from the center of the hub 10, D8, and the chord length L8 of the blade 20 is 21.33 mm ⁇ 5 mm;
  • the propeller 100 is at a distance of 91.7% of the radius of the propeller 100 from the center of the hub 10, D9, and the chord length L9 of the blade 20 is 14.83 mm ⁇ 5 mm;
  • the propeller 100 is at a distance D100 from the center of the hub 10 at a radius 100% of the propeller 100, and the chord length L10 of the blade 20 is 3.83 mm ⁇ 2 mm;
  • the propeller 100 is at a distance of 30 mm from the center of the hub 10, and the chord length L1 of the blade 20 is 32.12 mm;
  • the propeller 100 is at a distance of 40 mm from the center of the hub 10, and the chord length L2 of the blade 20 is 31.05 mm;
  • the propeller 100 is at a distance of 100 mm from the center of the hub 10, and the chord length L8 of the blade 20 is 21.33 mm;
  • the propeller 100 is at a distance D10 from the center of the hub 10, and the chord length L9 of the blade 20 is 14.83 mm;
  • the propeller 100 is at a distance D10 from the center of the hub 10, and the chord length L10 of the blade 20 is 3.83 mm;
  • the propeller 100 is at a distance D1 from the center of the hub 10 at 25% of the radius of the propeller 100, the chord length L1 of the blade 20 is 32.12 mm ⁇ 5 mm; and, at the center of the hub 10, the radius of the propeller 100 At 33.3%, D2, the chord length L2 of the blade 20 is 31.05 mm ⁇ 5 mm; and, at the center of the hub 10, 83.3% of the radius of the propeller 100, D8, the chord length L8 of the blade 20 is 21.33 mm ⁇ 5mm; and, at the center of the hub 10, 91.7% of the radius of the propeller 100, D9, the chord length L9 of the blade 20 is 14.83 mm ⁇ 5 mm; and, at the center of the hub 10, the radius of the propeller 100 At 100%, D10, the chord length L10 of the blade 20 is 3.83 mm ⁇ 2 mm; and, at a distance of 30 mm from the center of the hub 10, the chord length L1 of the blade 20 is 32.
  • the chord length L2 of the blade 20 is 31.05 mm; and, at a distance of 100 mm from the center of the hub 10, the chord length L8 of the blade 20 is 21.33 mm; and, at a distance of 110 mm from the center of the hub 10.
  • the chord length L9 of the paddle 20 is 14.83 mm; and, at a distance D10 from the center of the hub 10, the chord length L10 of the paddle 20 is 3.83 mm.
  • an embodiment of the present invention provides a power assembly 200 including a drive member 30 and a propeller 100 according to any embodiment of the present invention.
  • the propeller 100 is coupled to the drive member 30 via a hub 10.
  • Power assembly 200 includes at least two arms 40. At least two arms 40 are coupled to a central location of the propeller assembly 100.
  • the drive member 30 is disposed on the arm 40.
  • the specific structure of the propeller 100 is the same as that of the foregoing embodiment, and details are not described herein again. That is, the description of the propeller 100 in the above embodiments and embodiments is equally applicable to the power assembly 200 provided by the embodiment of the present invention.
  • the angle of attack ⁇ 3 of the blade 20 is 17.57 ° ⁇ 2.5 °; at the center of the hub 10 At 50% of the radius of the propeller 100, D4, the angle of attack ⁇ 4 of the blade 20 is 16.65° ⁇ 2.5°; at the center of the hub 10, which is 58.3% of the radius of the propeller 100, D5, the angle of attack ⁇ 5 of the blade 20 is 15.62 ° ⁇ 2.5 °; at the center of the hub 10 is 66.7% of the radius of the propeller 100 D6, the angle of attack ⁇ 6 of the blade 20 is 14.48 ° ⁇ 2.5 °; at the center of the hub 10 is the radius of the propeller 100 At 75% D7, the angle of attack ⁇ 7 of the blade 20 is 13.21° ⁇ 2.5°; therefore, the propeller 100 with the blade 20 airfoil gradation enables the propeller 100 to be
  • the driving member 30 is a motor, and the KV value of the motor is 790 to 845 rpm / (minute volt). Thereby, the dynamic performance of the power unit can be ensured.
  • an embodiment of the present invention provides an aircraft 1000 including a fuselage 50 and a power assembly 200 of any of the embodiments of the present invention.
  • the power assembly 200 is coupled to the fuselage 50.
  • a plurality of arms 40 of the power assembly 200 are coupled to the body 50 to mount the power assembly 200 on the body 50.
  • the specific structure of the power module 200 is similar to the foregoing embodiment, and details are not described herein again. That is, the description of the propeller 100 in the above embodiments and embodiments is equally applicable to the aircraft 1000 provided by the embodiment of the present invention.
  • the aircraft 1000 includes a plurality of power components 200, and the plurality of power components 200 have different rotation directions.
  • the aircraft 1000 is a multi-rotor aircraft, such as a quadrotor unmanned aerial vehicle.
  • the angle of attack ⁇ 3 of the blade 20 is 17.57° ⁇ 2.5°; at the center of the hub 10 is the radius of the propeller 100.
  • the angle of attack ⁇ 4 of the blade 20 is 16.65° ⁇ 2.5°; at the center of the hub 10, which is 58.3% of the radius of the propeller 100, the angle of attack ⁇ 5 of the blade 20 is 15.62° ⁇ 2.5.
  • the angle of attack ⁇ 6 of the blade 20 is 14.48° ⁇ 2.5°; at the center of the hub 10 is 75% of the radius of the propeller 100 D7, the angle of attack ⁇ 7 of the blade 20 is 13.21° ⁇ 2.5°; therefore, the propeller 100 with the blade 20 airfoil gradation enables the propeller 100 to be in the optimal working segment for each segment along the span of the blade 20.
  • the noise generated by the blade 20 during operation is also reduced, so that the aircraft 1000 is quieter when hovering. , improved user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种螺旋桨、动力组件及飞行器。其中,在距离桨毂(10)的中心为螺旋桨(100)的半径的41.7%处,桨叶(20)的攻角为17.57°±2.5°;在距离桨毂(10)的中心为螺旋桨(100)的半径的50%处,桨叶(20)的攻角为16.65°±2.5°;在距离桨毂(10)的中心为螺旋桨(100)的半径的58.3%处,桨叶(20)的攻角为15.62°±2.5°;在距离桨毂(10)的中心为螺旋桨(100)的半径的66.7%处,桨叶(20)的攻角为14.48°±2.5°;在距离桨毂(10)的中心为螺旋桨(100)的半径的75%处,桨叶(20)的攻角为13.21°±2.5°。采用桨叶翼型渐变的螺旋桨能使得螺旋桨在沿着桨叶的展向的每一段都处于最佳工作段,在减少空气阻力、提高拉力和效率、增加飞行器的继航距离以提高飞行性能的同时,还减少了桨叶在工作时产生的噪声,使得飞行器在悬停时更安静。

Description

螺旋桨、动力组件及飞行器 技术领域
本发明涉及飞行器领域,特别涉及螺旋桨、动力组件及飞行器。
背景技术
飞行器上的螺旋桨,作为飞行器的重要关键器件,其用于将电机或发动机中转轴的转动转化为推力或升力。现有技术中的螺旋桨在旋转中,桨叶各部分的湍流以及下洗气流冲击飞行器外壳结构会产生较大的噪音。其与电机噪声和结构震动噪声往往会叠加在一起,并放大某些频段噪声,导致飞行器总体噪声较大,使用体验差。
发明内容
本发明的实施方式提供了一种螺旋桨、动力组件及飞行器。
本发明实施方式的螺旋桨包括桨毂和桨叶,所述桨叶连接在所述桨毂上,其中:
在距离所述桨毂的中心为所述螺旋桨的半径的41.7%处,所述桨叶的攻角为17.57°±2.5°;
在距离所述桨毂的中心为所述螺旋桨的半径的50%处,所述桨叶的攻角为16.65°±2.5°;
在距离所述桨毂的中心为所述螺旋桨的半径的58.3%处,所述桨叶的攻角为15.62°±2.5°;
在距离所述桨毂的中心为所述螺旋桨的半径的66.7%处,所述桨叶的攻角为14.48°±2.5°;
在距离所述桨毂的中心为所述螺旋桨的半径的75%处,所述桨叶的攻角 为13.21°±2.5°。
在某些实施方式中,在距离所述桨毂的中心为所述螺旋桨的半径的25%处,所述桨叶的攻角为19.02°±2.5°;及/或
在距离所述桨毂的中心为所述螺旋桨的半径的33.3%处,所述桨叶的攻角为18.40°±2.5°;及/或
在距离所述桨毂的中心为所述螺旋桨的半径的83.3%处,所述桨叶的攻角为11.68°±2.5°;及/或
在距离所述桨毂的中心为所述螺旋桨的半径的91.7%处,所述桨叶的攻角为9.56°±2.5°;及/或
在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的攻角为5.96°±2.5°;及/或
在距离所述桨毂的中心30mm处,所述桨叶的攻角为19.02°;及/或
在距离所述桨毂的中心40mm处,所述桨叶的攻角为18.40°;及/或
在距离所述桨毂的中心50mm处,所述桨叶的攻角为17.57°;及/或
在距离所述桨毂的中心60mm处,所述桨叶的攻角为16.65°;及/或
在距离所述桨毂的中心70mm处,所述桨叶的攻角为15.62°;及/或
在距离所述桨毂的中心80mm处,所述桨叶的攻角为14.48°;及/或
在距离所述桨毂的中心90mm处,所述桨叶的攻角为13.21°;及/或
在距离所述桨毂的中心100mm处,所述桨叶的攻角为11.68°;及/或
在距离所述桨毂的中心110mm处,所述桨叶的攻角为9.56°;及/或
在距离所述桨毂的中心120mm处,所述桨叶的攻角为5.96°。
在某些实施方式中,在距离所述桨毂的中心为所述螺旋桨的半径的41.7%处,所述桨叶的弦长为29.79mm±5mm;及/或
在距离所述桨毂的中心为所述螺旋桨的半径的50%处,所述桨叶的弦长为28.53mm±5mm;及/或
在距离所述桨毂的中心为所述螺旋桨的半径的58.3%处,所述桨叶的弦长为27.26mm±5mm;及/或
在距离所述桨毂的中心为所述螺旋桨的半径的66.7%处,所述桨叶的弦长为25.99mm±5mm;及/或
在距离所述桨毂的中心为所述螺旋桨的半径的75%处,所述桨叶的弦长为24.71mm±5mm;及/或
在距离所述桨毂的中心50mm处,所述桨叶的弦长为29.79mm;及/或
在距离所述桨毂的中心60mm处,所述桨叶的弦长为28.53mm;及/或
在距离所述桨毂的中心70mm处,所述桨叶的弦长为27.26mm;及/或
在距离所述桨毂的中心80mm处,所述桨叶的弦长为25.99mm;及/或
在距离所述桨毂的中心90mm处,所述桨叶的弦长为24.71mm。
在某些实施方式中,在距离所述桨毂的中心为所述螺旋桨的半径的25%处,所述桨叶的弦长为32.12mm±5mm;及/或
在距离所述桨毂的中心为所述螺旋桨的半径的33.3%处,所述桨叶的弦长为31.05mm±5mm;及/或
在距离所述桨毂的中心为所述螺旋桨的半径的83.3%处,所述桨叶的弦长为21.33mm±5mm;及/或
在距离所述桨毂的中心为所述螺旋桨的半径的91.7%处,所述桨叶的弦长为14.83mm±5mm;及/或
在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的弦长为3.83mm±2mm;及/或
在距离所述桨毂的中心30mm处,所述桨叶的弦长为32.12mm;及/或
在距离所述桨毂的中心40mm处,所述桨叶的弦长为31.05mm;及/或
在距离所述桨毂的中心100mm处,所述桨叶的弦长为21.33mm;及/或
在距离所述桨毂的中心110mm处,所述桨叶的弦长为14.83mm;及/或
在距离所述桨毂的中心120mm处,所述桨叶的弦长为3.83mm。
在某些实施方式中,所述螺旋桨的直径为240mm±24mm;及/或
所述桨叶的螺距为5.467±0.5英寸。
在某些实施方式中,所述桨叶包括桨根、背离所述桨根的桨尖、相背的压力面及吸力面、连接于所述压力面及所述吸力面一侧边的前缘、连接于所述压力面及所述吸力面另一侧边的后缘、及形成于所述桨尖的后掠部,所述后掠部自所述前缘向所述后缘倾斜延伸;
所述桨尖沿所述桨叶的展向朝所述压力面所在的一侧倾斜延伸。
在某些实施方式中,所述桨叶在靠近所述桨尖的位置形成回弯处,所述前缘自所述回弯处开始沿所述桨叶的展向朝所述压力面所在的一侧倾斜延伸,所述后掠部自所述回弯处从所述前缘向所述后缘倾斜延伸,所述回弯处距离所述桨毂的中心为所述螺旋桨的半径的87.5%。
在某些实施方式中,所述后缘外凸形成有靠近所述桨根的呈曲面状的后缘拱起部;及/或
所述桨叶为至少两个,至少两个所述桨叶连接在所述桨毂上并关于所述桨毂的中心呈中心对称;及/或
所述桨叶具有穿过所述桨毂的中心的中轴线,所述前缘具有平行于所述中轴线的前缘切线,所述后缘具有平行于所述中轴线的后缘切线,所述后掠部位于所述前缘切线与所述后缘切线之间;及/或
所述吸力面和所述压力面均为曲面。
本发明实施方式的动力组件包括驱动件和上述任意一项实施方式所述的螺旋桨,所述螺旋桨通过所述桨毂与所述驱动件连接。
在某些实施方式中,所述驱动件为电机,所述电机的KV值为790至845转/(分钟·伏特)。
本发明实施方式的飞行器包括机身和上述任意一项实施方式所述的动力 组件,所述动力组件与所述机身连接。
在某些实施方式中,所述飞行器包括多个动力组件,所述多个动力组件的转动方向不同,所述飞行器为多旋翼飞行器。
本发明实施例提供的螺旋桨、动力组件及飞行器,由于在距离桨毂的中心为螺旋桨的半径的41.7%处,桨叶的攻角为17.57°±2.5°;在距离桨毂的中心为螺旋桨的半径的50%处,桨叶的攻角为16.65°±2.5°;在距离桨毂的中心为螺旋桨的半径的58.3%处,桨叶的攻角为15.62°±2.5°;在距离桨毂的中心为螺旋桨的半径的66.7%处,桨叶的攻角为14.48°±2.5°;在距离桨毂的中心为螺旋桨的半径的75%处,桨叶的攻角为13.21°±2.5°;因此,采用桨叶翼型渐变的螺旋桨能使得螺旋桨在沿着桨叶的展向的每一段都处于最佳工作段,在减少空气阻力,提高拉力和效率,增加飞行器的继航距离以提高飞行器的飞行性能的同时,还减少了桨叶在工作时产生的噪声,使得飞行器在悬停时更安静,提高了用户体验。
本发明的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实施方式的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:新增附图修改、说明书中的图示说明
图1是本发明实施例提供的一种螺旋桨的平面示意图。
图2是图1所示实施例的螺旋桨中距离桨毂的中心50mm处的C-C剖面的剖视图。
图3是图1所示实施例的螺旋桨中距离桨毂的中心60mm处的D-D剖面的剖视图。
图4是图1所示实施例的螺旋桨中距离桨毂的中心70mm处的E-E剖面 的剖视图。
图5是图1所示实施例的螺旋桨中距离桨毂的中心80mm处的F-F剖面的剖视图。
图6是图1所示实施例的螺旋桨中距离桨毂的中心90mm处的G-G剖面的剖视图。
图7是本发明的螺旋桨与现有的螺旋桨在相同的悬停工况声学性能测试条件下的频响曲线示意图。
图8是图1所示实施例的螺旋桨中距离桨毂中心30mm处的A-A剖面的剖视图。
图9是图1所示实施例的螺旋桨中距离桨毂的中心40mm处的B-B剖面的剖视图。
图10是图1所示实施例的螺旋桨中距离桨毂中心100mm处的H-H剖面的剖视图。
图11是图1所示实施例的螺旋桨中距离桨毂中心110mm处的I-I剖面的剖视图。
图12是图1所示实施例的螺旋桨中距离桨毂中心120mm处的J-J剖面的剖视图。
图13是本发明实施例提供的一种螺旋桨的立体图。
图14是本发明实施例提供的一种螺旋桨的平面示意图。
图15是本发明实施例提供的一种螺旋桨的平面示意图。
图16是图1所示实施例的螺旋桨中的桨尖的平面示意图。
图17是图16所示实施例的螺旋桨中距离自由端15mm处的M-M剖面的剖视图。
图18是图16所示实施例的螺旋桨中距离自由端12.5mm处的N-N剖面的剖视图。
图19是图16所示实施例的螺旋桨中距离自由端10mm处的O-O剖面的剖视图。
图20是图16所示实施例的螺旋桨中距离自由端7.5mm处的P-P剖面的剖视图。
图21是图16所示实施例的螺旋桨中距离自由端5mm处的Q-Q剖面的剖视图。
图22是图16所示实施例的螺旋桨中距离自由端2.5mm处的R-R剖面的剖视图。
图23是本发明实施例提供的一种飞行器的平面示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本发明使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本发明可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本发明范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所 使用的词语“如果”可以被解释成为“在......时”或“当......时”或“响应于确定”。
本实施例中出现的上、下等方位用语是以螺旋桨安装于飞行器以后所述螺旋桨以及所述飞行器的常规运行姿态为参考,而不应该认为具有限制性。
下面结合附图,对本发明的螺旋桨、动力组件及飞行器进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
请参见图1至图6,本发明实施例提供一种螺旋桨100,螺旋桨100包括桨毂10和桨叶20。
桨叶20连接在桨毂10上。当然,桨叶20可以与桨毂10一体成型,也可以分别加工再固定安装成一体。在距离桨毂10的中心为螺旋桨100的半径的41.7%处D3,桨叶20的攻角α3为17.57°±2.5°。在距离桨毂10的中心为螺旋桨100的半径的50%处D4,桨叶20的攻角α4为16.65°±2.5°。在距离桨毂10的中心为螺旋桨100的半径的58.3%处D5,桨叶20的攻角α5为15.62°±2.5°。在距离桨毂10的中心为螺旋桨100的半径的66.7%处D6,桨叶20的攻角α6为14.48°±2.5°。在距离桨毂10的中心为螺旋桨100的半径的75%处D7,桨叶20的攻角α7为13.21°±2.5°。
本实施例中,由于在距离桨毂10的中心为螺旋桨100的半径的41.7%处D3,桨叶20的攻角α3为17.57°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的50%处D4,桨叶20的攻角α4为16.65°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的58.3%处D5,桨叶20的攻角α5为15.62°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的66.7%处D6,桨叶20的攻角α6为14.48°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的75%处D7,桨叶20的攻角α7为13.21°±2.5°;因此,采用桨叶20翼型渐变的螺旋桨100能使得螺旋桨100在沿着桨叶20的展向的每一段都处于最佳工作段,在减少空气阻力,提高拉力和效率,增加飞行器1000(图18所示)的继航距离以提高飞行器1000的飞行性能的同时,还减少了桨叶20在工作 时产生的噪声,使得飞行器1000在悬停时更安静,提高了用户体验。
请继续参见图1至图6,本发明实施例提供一种螺旋桨100,螺旋桨100包括桨毂10和桨叶20。
在距离桨毂10的中心为螺旋桨100的半径的41.7%处D3,桨叶20的攻角α3为17.57°±2.5°,桨叶20的弦长L3为29.79mm±5mm。在距离桨毂10的中心为螺旋桨100的半径的50%处D4,桨叶20的攻角α4为16.65°±2.5°,桨叶20的弦长L4为28.53mm±5mm。在距离桨毂10的中心为螺旋桨100的半径的58.3%处D5,桨叶20的攻角α5为15.62°±2.5°,桨叶20的弦长L5为27.26mm±5mm。在距离桨毂10的中心为螺旋桨100的半径的66.7%处D6,桨叶20的攻角α6为14.48°±2.5°,桨叶20的弦长L6为25.99mm±5mm。在距离桨毂10的中心为螺旋桨100的半径的75%处D7,桨叶20的攻角α7为13.21°±2.5°,桨叶20的弦长L7为24.71mm±5mm。
本实施例中,由于在距离桨毂10的中心为螺旋桨100的半径的41.7%处D3,桨叶20的攻角α3为17.57°±2.5°,桨叶20的弦长L3为29.79mm±5mm;在距离桨毂10的中心为螺旋桨100的半径的50%处D4,桨叶20的攻角α4为16.65°±2.5°,桨叶20的弦长L4为28.53mm±5mm;在距离桨毂10的中心为螺旋桨100的半径的58.3%处D5,桨叶20的攻角α5为15.62°±2.5°,桨叶20的弦长L5为27.26mm±5mm;在距离桨毂10的中心为螺旋桨100的半径的66.7%处D6,桨叶20的攻角α6为14.48°±2.5°,桨叶20的弦长L6为25.99mm±5mm;在距离桨毂10的中心为螺旋桨100的半径的75%处D7,桨叶20的攻角α7为13.21°±2.5°,桨叶20的弦长L7为24.71mm±5mm;因此,采用桨叶20翼型渐变的螺旋桨100能使得螺旋桨100在沿着桨叶20的展向的每一段都处于最佳工作段,在减少空气阻力,提高拉力和效率,增加飞行器1000的继航距离以提高飞行器1000的飞行性能的同时,还减少了桨叶20在工作时产生的噪声,使得飞行器1000在悬停时更安 静,提高了用户体验。
请参见表1,本实施例所提供的螺旋桨100与现有的螺旋桨的测试结果的比对,由表1中可看出,在相同的拉力下,本实施方式所提供螺旋桨100的功率更低,也即:在较小的功率条件下,具有更大的拉力,从而降低电量损耗,增加续航距离。由此,本实施方式提供的螺旋桨100在密度降低的高海拔区域或者低海拔地区起飞重量较大的极端情况下,其可以显著提高拉力,保证足够动力同时延长续航时间,提高飞行性能。
表1
Figure PCTCN2018108927-appb-000001
请参阅图7,本实施方式提供的螺旋桨100与现有的螺旋桨的测试结果的比对。对于同一种型号的螺旋桨,实线是指单独采用BLDC(Brushless Direct Current Motor,无刷直流电机)来进行测试,虚线是指单独采用FOC(Field-Oriented Control,磁场导向控制技术)来进行测试。其中,FOC电调控制的螺旋桨可以消去电机啸叫。由图7中的频响曲线(Frequency(Hz)-Loudness(dB-A))可看出,在相同的悬停工况声学性能测试条件下,本实施例所提供的螺旋桨100产生的噪音与现有的螺旋桨产生的噪 音相比,在大部分相同频率的条件下,本实施例所提供的螺旋桨100的噪音低于现有的螺旋桨的噪音。由此,本实施例所提供的螺旋桨100能有效减小噪音。特别是在相同的高频条件下,本实施例所提供的螺旋桨100的响度明显低于现有的螺旋桨的响度。由此,本实施例所提供的螺旋桨100能有效减小高频噪音,减轻了高频噪音引起人耳的不适感,提高了用户体验。除此之外,本实施例所提供的螺旋桨100能应用在对声音要求高的场景中,比如侦查、航拍(航拍时录入影像及音频)等。
在距离桨毂10的中心为螺旋桨100的半径的41.7%处D3,桨叶20的攻角α3可以为15.07°或17.57°或20.07°,或者是15.57°、16.07°、16.57°、17.07°、18.07°、18.57°、19.07°、19.57°等中的任意一个或上述任意二者之间的任一数值,桨叶20的弦长L3可以为24.79mm或29.79mm或34.79mm,或者是25.79mm、26.79mm、27.79mm、28.79mm、30.79mm、31.79mm、32.79mm、33.79mm等中的任意一个或上述任意二者之间的数值。在距离桨毂10的中心为螺旋桨100的半径的50%处D4,桨叶20的攻角α4可以为14.15°或16.65°或19.15°,或者是14.65°、15.15°、15.65°、16.15°、17.15°、17.65°、18.15°、18.65°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L4可以为23.53mm或28.53mm或33.53mm,或者是24.53mm、25.53mm、26.53mm、27.53mm、29.53mm、30.53mm、31.53mm、32.53mm等中的任意一个或上述任意二者之间的数值。在距离桨毂10的中心为螺旋桨100的半径的58.3%处D5,桨叶20的攻角α5可以为13.12°或15.62°或18.12°,或者是13.62°、14.12°、14.62°、15.12°、16.12°、16.62°、17.12°、17.62°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L5可以为22.26mm或27.26mm或32.26mm,或者是23.26mm、24.26mm、25.26mm、26.26mm、28.26mm、29.26mm、30.26mm、31.26mm等中的任意一个或上述任意二者之间的数值。在距离桨毂10的中心为螺旋桨100的半径的66.7%处 D6,桨叶20的攻角α6为可以为11.98°或14.48°或16.98°,或者是12.48°、12.98°、13.48°、13.98°、14.98°、15.48°、15.98°、16.48°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L6可以为20.99mm或25.99mm或30.99mm,或者是21.99mm、22.99mm、23.99mm、24.99mm、26.99mm、27.99mm、28.99mm、29.99mm等中的任意一个或上述任意二者之间的数值。在距离桨毂10的中心为螺旋桨100的半径的75%处D7,桨叶20的攻角α7可以为10.71°或13.21°或15.71°,或者是11.21°、11.71°、12.21°、12.71°、13.71°、14.21°、14.71°、15.21°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L7可以为19.71mm或24.71mm或29.71mm,或者是20.71mm、21.71mm、22.71mm、23.71mm、25.71mm、26.71mm、27.71mm、28.71mm等中的任意一个或上述任意二者之间的数值。
其中,桨毂10可以为圆筒状,或桨毂10的截面可以为椭圆形、菱形等形状。桨毂10中心设有连接孔,连接孔用于套设在电机的输出端上。桨叶20可以呈长条状,桨叶20与桨毂10连接,并沿桨毂10的径向延伸。
请参见图8,本实施例中,可选地,在距离桨毂10的中心为螺旋桨100的半径的25%处D1,桨叶20的攻角α1为19.02°±2.5°,桨叶20的弦长L1为32.12mm±5mm,以进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,桨叶20的攻角α1可以为16.52°或19.02°或21.52°,或者是17.02°、17.52°、18.02°、18.52°、19.52°、20.02°、20.52°、21.02°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L1可以为27.12mm或32.12mm或37.12mm,或者是28.12mm、29.12mm、30.12mm、31.12mm、33.12mm、34.12mm、35.12mm、36.12mm等中的任意一个或上述任意二者之间的数值。
请参见图9,本实施例中,可选地,在距离桨毂10的中心为螺旋桨100的半径的33.3%处D2,桨叶20的攻角α2为18.40°±2.5°,桨叶20的弦长 L2为31.05mm±5mm。以进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,桨叶20的攻角α2可以为15.90°或18.40°或20.90°,或者是16.90°、17.40°、17.90°、18.90°、19.40°、19.90°、20.40°、20.90°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L2可以为26.05mm或31.05mm或36.05mm,或者是27.05mm、28.05mm、29.05mm、30.05mm、32.05mm、33.05mm、34.05mm、35.05mm等中的任意一个或上述任意二者之间的数值。
请参见图10,本实施例中,可选地,在距离桨毂10的中心为螺旋桨100的半径的83.3%处D8,桨叶20的攻角α8为11.68°±2.5°,桨叶20的弦长L8为21.33mm±5mm,以进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,桨叶20的攻角α8可以为9.18°或11.68°或14.18°,或者是9.68°、10.18°、10.68°、11.18°、12.18°、12.68°、13.18°、13.68°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L8可以为16.33mm或21.33mm或26.33mm,或者是17.33mm、18.33mm、19.33mm、20.33mm、22.33mm、23.33mm、24.33mm、25.33mm等中的任意一个或上述任意二者之间的数值。
请参见图11,本实施例中,可选地,在距离桨毂10的中心为螺旋桨100的半径的91.7%处D9,桨叶20的攻角α9为9.56°±2.5°,桨叶20的弦长L9为14.83mm±5mm,以进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,桨叶20的攻角α9可以为7.06°或9.56°或12.06°,或者是7.56°、8.06°、8.56°、9.06°、10.06°、10.56°、11.06°、11.56°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L9可以为9.83mm或14.83mm或19.83mm,或者是10.83mm、11.83mm、12.83mm、13.83mm、15.83mm、16.83mm、17.83mm、18.83mm等中的任意一个或上述任意二者之间的数值。
请参见图12,本实施例中,可选地,在距离桨毂10的中心为螺旋桨100的半径的100%处D10,桨叶20的攻角α10为5.96°±2.5°,桨叶20的弦长L10为3.83mm±2mm。以进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,桨叶20的攻角α10可以为3.46°或5.96°或8.46°,或者是3.96°、4.46°、4.96°、5.46°、6.46°、6.96°、7.46°、7.96°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L10可以为1.83mm或3.83mm或5.83mm,或者是2.33mm、2.83mm、3.33mm、4.33mm、4.83mm、5.33mm等中的任意一个或上述任意二者之间的数值。
请再次参见图1至图6,本实施例中,可选地,螺旋桨100的直径为240mm±24mm。在距离桨毂10的中心50mm处D3,桨叶20的攻角α3为17.57°,桨叶20的弦长L3为29.79mm。在距离桨毂10的中心60mm处D4,桨叶20的攻角α4为16.65°,桨叶20的弦长L4为28.53mm。在距离桨毂10的中心70mm处D5,桨叶20的攻角α5为15.62°,桨叶20的弦长L5为27.26mm。在距离桨毂10的中心80mm处D6,桨叶20的攻角α6为14.48°,桨叶20的弦长L6为25.99mm。在距离桨毂10的中心90mm处D7,桨叶20的攻角α7为13.21°,桨叶20的弦长L7为24.71mm。由此,可进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,螺旋桨100的直径可以为216mm或240mm或264mm,或者是220mm、224mm、228mm、232mm、236mm、244mm、248mm、252mm、256mm、260mm等中的任意一个或上述任意二者之间的数值。
请再次参见图8,本实施例中,可选地,螺旋桨100的直径为240mm±24mm。在距离桨毂10的中心30mm处D1,桨叶20的攻角α1为19.02°,桨叶20的弦长L1为32.12mm。由此,可进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,螺旋桨100的直径可以为216mm或240mm或264mm,或者是220mm、224mm、228mm、232mm、236mm、244mm、 248mm、252mm、256mm、260mm等中的任意一个或上述任意二者之间的数值。
再次参见图9,本实施例中,可选地,螺旋桨100的直径为240mm±24mm。在距离桨毂10的中心40mm处D2,桨叶20的攻角α2为18.40°,桨叶20的弦长L2为31.05mm。由此,可进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,螺旋桨100的直径可以为216mm或240mm或264mm,或者是220mm、224mm、228mm、232mm、236mm、244mm、248mm、252mm、256mm、260mm等中的任意一个或上述任意二者之间的数值。
请再次参见图10,本实施例中,可选地,螺旋桨100的直径为240mm±24mm。在距离桨毂10的中心100mm处D8,桨叶20的攻角α8为11.68°,桨叶20的弦长L8为21.33mm。由此,可进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,螺旋桨100的直径可以为216mm或240mm或264mm,或者是220mm、224mm、228mm、232mm、236mm、244mm、248mm、252mm、256mm、260mm等中的任意一个或上述任意二者之间的数值。
再次参见图11,本实施例中,可选地,螺旋桨100的直径为240mm±24mm。在距离桨毂10的中心110mm处D9,桨叶20的攻角α9为9.56°,桨叶20的弦长L8为14.83mm。由此,可进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,螺旋桨100的直径可以为216mm或240mm或264mm,或者是220mm、224mm、228mm、232mm、236mm、244mm、248mm、252mm、256mm、260mm等中的任意一个或上述任意二者之间的数值。
再次参见图12,本实施例中,可选地,螺旋桨100的直径为240mm±24mm。在距离桨毂10的中心120mm处D10,桨叶20的攻角α10为5.96°,桨叶20的弦长L10为3.83mm。由此,可进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,螺旋桨100的直径可以为216mm或240mm 或264mm,或者是220mm、224mm、228mm、232mm、236mm、244mm、248mm、252mm、256mm、260mm等中的任意一个或上述任意二者之间的数值。
请参见图13至图15,本实施例中,可选地,桨叶20包括桨根21、背离桨根21的桨尖22、相背的压力面23及吸力面24。桨尖22沿桨叶20的展向朝压力面23所在的一侧倾斜延伸。如此,减少了桨叶20在工作时产生的噪声,使得飞行器1000在悬停时更安静,提高了用户体验。其中,压力面23为飞行器1000正常飞行时桨叶20的朝向地面的表面,吸力面24为飞行器1000正常飞行时桨叶20的朝向天空的表面。
本实施例中,可选地,吸力面24和压力面23均为曲面。吸力面24和压力面23为曲面的气动外形,能避免桨叶20各部分产生的湍流以及下洗气流直接冲击飞行器1000的机身50,从而减小飞行器1000整体的噪音。
本实施例中,可选地,桨叶20还包括连接于压力面23及吸力面24一侧边的前缘25、连接于压力面23及吸力面24另一侧边的后缘26、及形成于桨尖22的后掠部221,后掠部221自前缘25向后缘26倾斜延伸。如此,以起到进一步提高螺旋桨100的拉力及效率的效果。
本实施例中,可选地,桨叶20在桨尖22的位置形成回弯处27,前缘25自回弯处27开始沿桨叶20的展向朝压力面23所在的一侧倾斜延伸,后掠部221自回弯处27开始从前缘25向后缘26倾斜延伸。回弯处27的位置用MM表示。
本实施例中,可选地,回弯处27距离桨毂10的中心为螺旋桨100的半径的87.5%。回弯处27远离桨毂10的中心,提升桨叶20的美观,还减少螺旋桨100与飞行器1000的机臂40(如图23所示)之间的相互影响。
本实施例中,可选地,后缘26外凸形成有靠近桨根21的呈曲面状的后缘拱起部261。后缘拱起部231为曲面状起到进一步提高桨叶20的拉力的效果。
本实施例中,可选地,桨叶20为至少两个,至少两个桨叶20连接在桨毂10上并关于桨毂10的中心呈中心对称。由此,可提高螺旋桨100的平衡性。
本实施例中,可选地,桨叶20具有穿过桨毂10的中心的中轴线N-N(如图1),前缘25具有平行于中轴线N-N的前缘切线O-O,后缘26具有平行于中轴线N-N的后缘切线P-P,后掠部221位于前缘切线O-O与后缘切线P-P之间。由此,后掠部221能够减小桨叶20产生的湍流及下洗气流,从而减少打到飞行器1000的机身50上的湍流及下洗气流,在减小螺旋桨100的空气阻力,提高飞行器1000的可操纵性,使飞行器1000更加平稳的同时进一步减小飞行器1000整体的噪音。
请一并参阅图1、图13及表2,本实施方式中,桨尖22沿桨叶20的展向朝压力面23所在的一侧倾斜延伸,后掠部221自前缘25向后缘26倾斜延伸。具体地,请结合图13,在螺旋桨100上建立右手直角坐标系,坐标系的圆心位于桨毂10的中心处,桨叶20的X轴定义为:起始点为螺旋桨100的圆心,螺旋桨100沿桨叶20的展向为X轴的正方向;桨叶20的Y轴定义为:起始点为螺旋桨100的圆心,拇指指向X轴,食指所指的方向为Y轴的正方向;桨叶20的Z轴定义为:起始点为螺旋桨100的圆心,拇指指向X轴,中指所指方向为Z轴的正方向。另外,桨叶20的旋转中心定义为横轴(X轴)的最大值减去最小值除与3,然后加上最小值的坐标;纵轴(Y轴)的最大值减去最小值除与2,然后加上最小值的坐标。在表2中,Blade Radius(mm)列表示桨叶20的旋转中心在空间的X轴坐标位置,起始处为桨毂10的中心,此时桨叶20距离桨毂10的中心的距离为0mm,终点处为桨尖22的自由端222,自由端222距离桨毂10的中心的距离为120mm。Anhedral Length(mm)列表示桨叶20的旋转中心在空间的Y轴坐标位置,其中,Anhedral Length(mm)的正值表示桨叶20上反,负值表示桨叶20下反。Sweep Length(mm)列表示 桨叶20的旋转中心在空间的Z轴坐标位置,其中,Sweep Length(mm)的正值表示桨叶20后掠,负值表示桨叶20前掠。
表2
Figure PCTCN2018108927-appb-000002
Figure PCTCN2018108927-appb-000003
由表2可知,在桨叶20距离桨毂10的中心的距离为105mm时,即回弯处27为距离桨毂10的中心为螺旋桨100的半径的87.5%时,后掠部221开始自前缘25向后缘26倾斜延伸,也即是说,在桨叶20距离桨毂10的中心的距离为105mm时开始后掠。在多个桨叶20同时工作时,后掠部221有规律地自前缘25向后缘26倾斜延伸,能够减小由于多个桨叶20相互作用而产生的湍流及下洗气流,及并减少打到飞行器1000的机身50上的湍流及下洗气流,减小桨叶20受到的空气阻力,进一步提高了螺旋桨100的拉力及效率,提高了飞行器1000的可操纵性,使飞行器1000更加平稳,同时,进一步减小了由于湍流及下洗气流冲击飞行器1000的机身50产生的噪音。
由表2可知,在桨叶20距离桨毂10的中心的距离为105mm时,即回弯处27距离桨毂10的中心为螺旋桨100的半径的87.5%时,前缘25自回弯处27开始沿桨叶20的展向朝压力面23所在的一侧倾斜延伸,也即是说,在桨叶20距离桨毂10的中心的距离为105mm时开始下反。在多个桨叶20同时工作时,前缘25有规律地自回弯处27沿桨叶20沿展向朝吸力面24所在的一侧倾斜延伸,能够减小由于多个桨叶20相互作用而产生的湍流及下洗气流,并减少打到机臂40上及飞行器1000的机身50上的湍流及下洗气流,另外,还能够额定桨叶20的升力点,使飞行器1000能自动修正飞行姿态,增加了飞行器1000的惯性稳定性,使飞行器1000飞行时更加平稳,同时,进一步减小了由于湍流及下洗气流冲击飞行器1000的机身50产生的噪音。
请一并参阅图1及图16,本实施例中,后掠部221自回弯处27开始从前缘25向后缘26倾斜延伸,回弯处27距离桨毂10的中心为螺旋桨100的半径的87.5%。具体地,后掠部221的剖面形状及参数如下:
请参见图17,本实施例中,可选地,在桨叶20距离自由端222的距离为15mm,即在图16的D11处时,桨叶20的攻角α11为11.05°±2.5°,桨叶20的弦长L11为18.38mm±5mm,以进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,桨叶20的攻角α11可以为8.55°或11.05°或13.55°,或者是9.05°、9.55°、10.05°、10.55°、11.55°、12.05°、12.55°、13.05°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L11可以为13.38mm或18.38mm或23.38mm,或者是14.38mm、15.38mm、16.38mm、17.38mm、19.38mm、20.38mm、21.38mm、22.38mm等中的任意一个或上述任意二者之间的数值。
请参见图18,本实施例中,可选地,在桨叶20距离自由端222的距离为12.5mm,即在图16的D12处时,桨叶20的攻角α12为10.06°±2.5°,桨叶20的弦长L12为16.67mm±5mm。以进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,桨叶20的攻角α12可以为7.56°或10.06°或12.56°,或者是8.06°、8.56°、9.06°、9.56°、10.56°、11.06°、11.56°、12.06°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L12可以为11.67mm或16.67mm或21.67mm,或者是12.67mm、13.67mm、14.67mm、15.67mm、17.67mm、18.67mm、19.67mm、20.67mm等中的任意一个或上述任意二者之间的数值。
请参见图19,本实施例中,可选地,在桨叶20距离自由端222的距离为10mm,即桨叶20距离桨毂10的中心的距离为110mm,也即在图16的D13处时,D13与图1的D9处重合,即桨叶20的攻角α13=α9,α13为9.56°±2.5°,桨叶20的弦长L13=L9,L13为14.83mm±5mm,以进一步减少螺 旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,桨叶20的攻角α13可以为7.06°或9.56°或12.06°,或者是7.56°、8.06°、8.56°、9.06°、10.06°、10.56°、11.06°、11.56°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L13可以为9.83mm或14.83mm或19.83mm,或者是10.83mm、11.83mm、12.83mm、13.83mm、15.83mm、16.83mm、17.83mm、18.83mm等中的任意一个或上述任意二者之间的数值。
请参见图20,本实施例中,可选地,在桨叶20距离自由端222的距离为7.5mm,即在图16的D14处时,桨叶20的攻角α14为8.66°±2.5°,桨叶20的弦长L14为12.95mm±5mm,以进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,桨叶20的攻角α14可以为6.16°或8.66°或11.16°,或者是6.66°、7.16°、7.66°、8.16°、9.16°、9.66°、10.16°、10.66°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L14可以为7.95mm或12.95mm或17.95mm,或者是8.95mm、9.95mm、10.95mm、11.95mm、13.95mm、14.95mm、15.95mm、16.95mm等中的任意一个或上述任意二者之间的数值。
请参见图21,本实施例中,可选地,在桨叶20距离自由端222的距离为5mm,即在图16的D15处时,桨叶20的攻角α15为7.76°±2.5°,桨叶20的弦长L15为10.99mm±5mm。以进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,桨叶20的攻角α15可以为5.26°或7.76°或10.26°,或者是5.76°、6.26°、6.76°、7.26°、8.26°、8.76°、9.26°、9.76°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L15可以为5.99mm或10.99mm或15.99mm,或者是6.99mm、7.99mm、8.99mm、9.99mm、11.99mm、12.99mm、13.99mm、14.99mm等中的任意一个或上述任意二者之间的数值。
请参见图22,本实施例中,可选地,在桨叶20距离自由端222的距离为 2.5mm,即在图16的D16处时,桨叶20的攻角α16为6.90°±2.5°,桨叶20的弦长L16为8.97mm±5mm。以进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,桨叶20的攻角α16可以为4.40°或6.90°或9.40°,或者是4.90°、5.40°、5.90°、6.40°、7.40°、7.90°、8.40°、8.90°等中的任意一个或上述任意二者之间的数值,桨叶20的弦长L16可以为3.97mm或8.97mm或13.97mm,或者是4.97mm、5.97mm、6.97mm、7.97mm、9.97mm、10.97mm、11.97mm、12.97mm等中的任意一个或上述任意二者之间的数值。
请再次参见图17至图22,本实施例中,可选地,螺旋桨100的直径为240mm±24mm。在桨叶20距离自由端222的距离为15mm,桨叶20的攻角α11为11.05°±2.5°,桨叶20的弦长L11为18.38mm;在桨叶20距离自由端222的距离为12.5mm,桨叶20的攻角α12为10.06°,桨叶20的弦长L12为16.67mm;在桨叶20距离自由端222的距离为10mm,桨叶20的攻角α13为9.56°,桨叶20的弦长L13为14.83mm;在桨叶20距离自由端222的距离为7.5mm,桨叶20的攻角α14为8.66°,桨叶20的弦长L14为12.95mm;在桨叶20距离自由端222的距离为5mm,桨叶20的攻角α15为7.76°,桨叶20的弦长L15为10.99mm;在桨叶20距离自由端222的距离为2.5mm,桨叶20的攻角α16为6.90°,桨叶20的弦长L16为8.97mm。由此,可进一步减少螺旋桨100的空气阻力,提高拉力和效率,及降低噪音。其中,螺旋桨100的直径可以为216mm或240mm或264mm,或者是220mm、224mm、228mm、232mm、236mm、244mm、248mm、252mm、256mm、260mm等中的任意一个或上述任意二者之间的数值。
本实施例中,可选地,桨叶20的螺距为5.467±0.5英寸。本实施例中的螺距指螺旋桨100的半径的3/4处的螺距。由此,可减小空气的阻力,提高桨叶20的拉力。其中,桨叶20的螺距可以为4.967英寸或5.467英寸或5.967 英寸,或者是5.067英寸、5.167英寸、5.267英寸、5.367英寸、5.567英寸、5.667英寸、5.767英寸、5.867英寸等中的任意一个或上述任意二者之间的数值。
综上,采用本发明上述实施例的桨叶20翼型渐变的螺旋桨100在高原地区可以显著提高拉力,保证足够的动力冗余。同时,在一定程度上兼顾性能,增加继航距离,提高飞行器1000的飞行性能。和目前市面上已有的螺旋桨100相比,采用该桨叶的螺旋桨100在较小的功率条件下其具有更大的拉力,从而可降低电量损耗,增加续航距离。在密度降低的高海拔区域或者低海拔地区起飞重量较大的极端情况下,其可以显著提高拉力,保证足够动力同时延长续航时间,提高飞行性能。
另外,在大部分相同频率的条件下,采用本发明上述实施例的采用桨叶20翼型渐变的螺旋桨100的响度低于现有的螺旋桨。特别是在相同的高频条件下,本实施例所提供的螺旋桨100的响度明显低于现有的螺旋桨的响度。由此,本实施例所提供的螺旋桨100能有效减小高频噪音,减轻了高频噪音引起人耳的不适感,提高了用户体验。整体低于现有的螺旋桨。由此,本实施例所提供的螺旋桨100能有效减小噪音。
在某些实施方式中,螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的25%处D1,桨叶20的攻角α1为19.02°±2.5°;及/或
在距离桨毂10的中心为螺旋桨100的半径的33.3%处D2,桨叶20的攻角α2为18.40°±2.5°;及/或
在距离桨毂10的中心为螺旋桨100的半径的83.3%处D8,桨叶20的攻角α8为11.68°±2.5°;及/或
在距离桨毂10的中心为螺旋桨100的半径的91.7%处D9,桨叶20的攻角α9为9.56°±2.5°;及/或
在距离桨毂10的中心为螺旋桨100的半径的100%处D10,桨叶20的攻 角α10为5.96°±2.5°;及/或
在距离桨毂10的中心30mm处D1,桨叶20的攻角α1为19.02°;及/或
在距离桨毂10的中心40mm处D2,桨叶20的攻角α2为18.40°;及/或
在距离桨毂10的中心50mm处D3,桨叶20的攻角α3为17.57°;及/或
在距离桨毂10的中心60mm处D4,桨叶20的攻角α4为16.65°;及/或
在距离桨毂10的中心70mm处D5,桨叶20的攻角α5为15.62°;及/或
在距离桨毂10的中心80mm处D6,桨叶20的攻角α6为14.48°;及/或
在距离桨毂10的中心90mm处D7,桨叶20的攻角α7为13.21°;及/或
在距离桨毂10的中心100mm处D8,桨叶20的攻角α8为11.68°;及/或
在距离桨毂10的中心110mm处D9,桨叶20的攻角α9为9.56°;及/或
在距离桨毂10的中心120mm处D10,桨叶20的攻角α10为5.96°。
此处的讨论包括但不限于以下几种方式:
(1)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的25%处D1,桨叶20的攻角α1为19.02°±2.5°;
(2)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的33.3%处D2,桨叶20的攻角α2为18.40°±2.5°;
(3)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的83.3%处D8,桨叶20的攻角α8为11.68°±2.5°;
(4)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的91.7%处D9,桨叶20的攻角α9为9.56°±2.5°;
(5)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的100%处D10,桨叶20的攻角α10为5.96°±2.5°;
(6)螺旋桨100在距离桨毂10的中心30mm处D1,桨叶20的攻角α1 为19.02°;
(7)螺旋桨100在距离桨毂10的中心40mm处D2,桨叶20的攻角α2为18.40°;
(8)螺旋桨100在距离桨毂10的中心50mm处D3,桨叶20的攻角α3为17.57°;
(9)螺旋桨100在距离桨毂10的中心60mm处D4,桨叶20的攻角α4为16.65°;
(10)螺旋桨100在距离桨毂10的中心70mm处D5,桨叶20的攻角α5为15.62°;
(11)螺旋桨100在距离桨毂10的中心80mm处D6,桨叶20的攻角α6为14.48°;
(12)螺旋桨100在距离桨毂10的中心90mm处D7,桨叶20的攻角α7为13.21°;
(13)螺旋桨100在距离桨毂10的中心100mm处D8,桨叶20的攻角α8为11.68°;
(14)螺旋桨100在距离桨毂10的中心110mm处D9,桨叶20的攻角α9为9.56°;
(15)螺旋桨100在距离桨毂10的中心120mm处D10,桨叶20的攻角α10为5.96°。
(16)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的25%处D1,桨叶20的攻角α1为19.02°±2.5°;及,在距离桨毂10的中心为螺旋桨100的半径的33.3%处D2,桨叶20的攻角α2为18.40°±2.5°;及,在距离桨毂10的中心为螺旋桨100的半径的83.3%处D8,桨叶20的攻角α8为11.68°±2.5°;及,在距离桨毂10的中心为螺旋桨100的半径的91.7%处D9,桨叶20的攻角α9为9.56°±2.5°;及,在距离桨毂10的中心为螺 旋桨100的半径的100%处D10,桨叶20的攻角α10为5.96°±2.5°;及,在距离桨毂10的中心30mm处D1,桨叶20的攻角α1为19.02°;及,在距离桨毂10的中心40mm处D2,桨叶20的攻角α2为18.40°;及,在距离桨毂10的中心50mm处D3,桨叶20的攻角α3为17.57°;及,在距离桨毂10的中心60mm处D4,桨叶20的攻角α4为16.65°;及,在距离桨毂10的中心70mm处D5,桨叶20的攻角α5为15.62°;及,在距离桨毂10的中心80mm处D6,桨叶20的攻角α6为14.48°;及,在距离桨毂10的中心90mm处D7,桨叶20的攻角α7为13.21°;及,在距离桨毂10的中心100mm处D8,桨叶20的攻角α8为11.68°;及,在距离桨毂10的中心110mm处D9,桨叶20的攻角α9为9.56°;及,在距离桨毂10的中心120mm处D10,桨叶20的攻角α10为5.96°。
在某些实施方式中,螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的41.7%处D3,桨叶20的弦长L3为29.79mm±5mm;及/或
在距离桨毂10的中心为螺旋桨100的半径的50%处D4,桨叶20的弦长L4为28.53mm±5mm;及/或
在距离桨毂10的中心为螺旋桨100的半径的58.3%处D5,桨叶20的弦长L5为27.26mm±5mm;及/或
在距离桨毂10的中心为螺旋桨100的半径的66.7%处D6,桨叶20的弦长L6为25.99mm±5mm;及/或
在距离桨毂10的中心为螺旋桨100的半径的75%处D7,桨叶20的弦长L7为24.71mm±5mm;及/或
在距离桨毂10的中心50mm处D3,桨叶20的弦长L3为29.79mm;及/或
在距离桨毂10的中心60mm处D4,桨叶20的弦长L4为28.53mm;及/或
在距离桨毂10的中心70mm处D5,桨叶20的弦长L5为27.26mm;及/或
在距离桨毂10的中心80mm处D6,桨叶20的弦长L6为25.99mm;及/或
在距离桨毂10的中心90mm处D7,桨叶20的弦长L7为24.71mm。
此处的讨论包括但不限于以下几种方式:
(1)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的41.7%处D3,桨叶20的弦长L3为29.79mm±5mm;
(2)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的50%处D4,桨叶20的弦长L4为28.53mm±5mm;
(3)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的58.3%处D5,桨叶20的弦长L5为27.26mm±5mm;
(4)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的66.7%处D6,桨叶20的弦长L6为25.99mm±5mm;
(5)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的75%处D7,桨叶20的弦长L7为24.71mm±5mm;
(6)螺旋桨100在距离桨毂10的中心50mm处D3,桨叶20的弦长L3为29.79mm;
(7)螺旋桨100在距离桨毂10的中心60mm处D4,桨叶20的弦长L4为28.53mm;
(8)螺旋桨100在距离桨毂10的中心70mm处D5,桨叶20的弦长L5为27.26mm;
(9)螺旋桨100在距离桨毂10的中心80mm处D6,桨叶20的弦长L6为25.99mm;
(10)螺旋桨100在距离桨毂10的中心90mm处D7,桨叶20的弦长L7 为24.71mm;
(11)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的41.7%处D3,桨叶20的弦长L3为29.79mm±5mm;及,在距离桨毂10的中心为螺旋桨100的半径的50%处D4,桨叶20的弦长L4为28.53mm±5mm;及,在距离桨毂10的中心为螺旋桨100的半径的58.3%处D5,桨叶20的弦长L5为27.26mm±5mm;及,在距离桨毂10的中心为螺旋桨100的半径的66.7%处D6,桨叶20的弦长L6为25.99mm±5mm;及,在距离桨毂10的中心为螺旋桨100的半径的75%处D7,桨叶20的弦长L7为24.71mm±5mm;及,在距离桨毂10的中心50mm处D3,桨叶20的弦长L3为29.79mm;及,在距离桨毂10的中心60mm处D4,桨叶20的弦长L4为28.53mm;及,在距离桨毂10的中心70mm处D5,桨叶20的弦长L5为27.26mm;及,在距离桨毂10的中心80mm处D6,桨叶20的弦长L6为25.99mm;及,在距离桨毂10的中心90mm处D7,桨叶20的弦长L7为24.71mm。
在某些实施方式中,螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的25%处D1,桨叶20的弦长L1为32.12mm±5mm;及/或
在距离桨毂10的中心为螺旋桨100的半径的33.3%处D2,桨叶20的弦长L2为31.05mm±5mm;及/或
在距离桨毂10的中心为螺旋桨100的半径的83.3%处D8,桨叶20的弦长L8为21.33mm±5mm;及/或
在距离桨毂10的中心为螺旋桨100的半径的91.7%处D9,桨叶20的弦长L9为14.83mm±5mm;及/或
在距离桨毂10的中心为螺旋桨100的半径的100%处D10,桨叶20的弦长L10为3.83mm±2mm;及/或
在距离桨毂10的中心30mm处D1,桨叶20的弦长L1为32.12mm;及/或
在距离桨毂10的中心40mm处D2,桨叶20的弦长L2为31.05mm;及/或
在距离桨毂10的中心100mm处D8,桨叶20的弦长L8为21.33mm;及/或
在距离桨毂10的中心110mm处D9,桨叶20的弦长L9为14.83mm;及/或
在距离桨毂10的中心120mm处D10,桨叶20的弦长L10为3.83mm。
此处的讨论包括但不限于以下几种方式:
(1)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的25%处D1,桨叶20的弦长L1为32.12mm±5mm;
(2)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的33.3%处D2,桨叶20的弦长L2为31.05mm±5mm;
(3)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的83.3%处D8,桨叶20的弦长L8为21.33mm±5mm;
(4)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的91.7%处D9,桨叶20的弦长L9为14.83mm±5mm;
(5)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的100%处D10,桨叶20的弦长L10为3.83mm±2mm;
(6)螺旋桨100在距离桨毂10的中心30mm处D1,桨叶20的弦长L1为32.12mm;
(7)螺旋桨100在距离桨毂10的中心40mm处D2,桨叶20的弦长L2为31.05mm;
(8)螺旋桨100在距离桨毂10的中心100mm处D8,桨叶20的弦长L8为21.33mm;
(9)螺旋桨100在距离桨毂10的中心110mm处D9,桨叶20的弦长L9 为14.83mm;
(10)螺旋桨100在距离桨毂10的中心120mm处D10,桨叶20的弦长L10为3.83mm;
(11)螺旋桨100在距离桨毂10的中心为螺旋桨100的半径的25%处D1,桨叶20的弦长L1为32.12mm±5mm;及,在距离桨毂10的中心为螺旋桨100的半径的33.3%处D2,桨叶20的弦长L2为31.05mm±5mm;及,在距离桨毂10的中心为螺旋桨100的半径的83.3%处D8,桨叶20的弦长L8为21.33mm±5mm;及,在距离桨毂10的中心为螺旋桨100的半径的91.7%处D9,桨叶20的弦长L9为14.83mm±5mm;及,在距离桨毂10的中心为螺旋桨100的半径的100%处D10,桨叶20的弦长L10为3.83mm±2mm;及,在距离桨毂10的中心30mm处D1,桨叶20的弦长L1为32.12mm;及,在距离桨毂10的中心40mm处D2,桨叶20的弦长L2为31.05mm;及,在距离桨毂10的中心100mm处D8,桨叶20的弦长L8为21.33mm;及,在距离桨毂10的中心110mm处D9,桨叶20的弦长L9为14.83mm;及,在距离桨毂10的中心120mm处D10,桨叶20的弦长L10为3.83mm。
请参见图23,本发明实施例提供一种动力组件200,包括驱动件30和本发明任意实施例的螺旋桨100,螺旋桨100通过桨毂10与驱动件30连接。动力组件200包括至少两个机臂40。至少两个机臂40连接在螺旋桨组件100的中心位置。驱动件30设置在机臂40上。其中,螺旋桨100的具体结构与前述实施例相同,此处不再赘述。即如上的实施例和实施方式中关于螺旋桨100的描述同样适用于本发明实施例提供的动力组件200。
在本发明的动力组件200中,由于在距离桨毂10的中心为螺旋桨100的半径的41.7%处D3,桨叶20的攻角α3为17.57°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的50%处D4,桨叶20的攻角α4为16.65°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的58.3%处D5,桨叶20的攻角α5 为15.62°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的66.7%处D6,桨叶20的攻角α6为14.48°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的75%处D7,桨叶20的攻角α7为13.21°±2.5°;因此,采用桨叶20翼型渐变的螺旋桨100能使得螺旋桨100在沿着桨叶20的展向的每一段都处于最佳工作段,在减少空气阻力,提高拉力和效率,增加飞行器1000的继航距离以提高飞行器1000的飞行性能的同时,还减少了桨叶20在工作时产生的噪声,使得飞行器1000在悬停时更安静,提高了用户体验。
本实施例中,可选地,驱动件30为电机,电机的KV值为790至845转/(分钟·伏特)。由此,能够保证动力组件的动力性能。
请再次参见图23,本发明实施例提供一种飞行器1000,包括机身50和本发明任意实施例的动力组件200,动力组件200与机身50连接。动力组件200的多个机臂40与机身50连接以将动力组件200安装在机身50上。其中动力组件200的具体结构与前述实施例类似,此处不再赘述。即如上的实施例和实施方式中关于螺旋桨100的描述同样适用于本发明实施例提供的飞行器1000。
本实施例中,可选地,飞行器1000包括多个动力组件200,多个动力组件200的转动方向不同。
本实施例中,可选地,飞行器1000为多旋翼飞行器,例如为四旋翼无人飞行器。
本实施例中,由于在距离桨毂10的中心为螺旋桨100的半径的41.7%处D3,桨叶20的攻角α3为17.57°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的50%处D4,桨叶20的攻角α4为16.65°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的58.3%处D5,桨叶20的攻角α5为15.62°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的66.7%处D6,桨叶20的攻角α6为14.48°±2.5°;在距离桨毂10的中心为螺旋桨100的半径的 75%处D7,桨叶20的攻角α7为13.21°±2.5°;因此,采用桨叶20翼型渐变的螺旋桨100能使得螺旋桨100在沿着桨叶20的展向的每一段都处于最佳工作段,在减少空气阻力,提高拉力和效率,增加飞行器1000的继航距离以提高飞行器1000的飞行性能的同时,还减少了桨叶20在工作时产生的噪声,使得飞行器1000在悬停时更安静,提高了用户体验。
以上仅是本发明的较佳实施例而已,并非对本发明做任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案的范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。

Claims (27)

  1. 一种螺旋桨,包括:桨毂和桨叶,所述桨叶连接在所述桨毂上,其特征在于:
    在距离所述桨毂的中心为所述螺旋桨的半径的41.7%处,所述桨叶的攻角为17.57°±2.5°;
    在距离所述桨毂的中心为所述螺旋桨的半径的50%处,所述桨叶的攻角为16.65°±2.5°;
    在距离所述桨毂的中心为所述螺旋桨的半径的58.3%处,所述桨叶的攻角为15.62°±2.5°;
    在距离所述桨毂的中心为所述螺旋桨的半径的66.7%处,所述桨叶的攻角为14.48°±2.5°;
    在距离所述桨毂的中心为所述螺旋桨的半径的75%处,所述桨叶的攻角为13.21°±2.5°。
  2. 根据权利要求1所述的螺旋桨,其特征在于:
    在距离所述桨毂的中心为所述螺旋桨的半径的25%处,所述桨叶的攻角为19.02°±2.5°;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的33.3%处,所述桨叶的攻角为18.40°±2.5°;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的83.3%处,所述桨叶的攻角为11.68°±2.5°;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的91.7%处,所述桨叶的攻角为9.56°±2.5°;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的攻角为5.96°±2.5°;及/或
    在距离所述桨毂的中心30mm处,所述桨叶的攻角为19.02°;及/或
    在距离所述桨毂的中心40mm处,所述桨叶的攻角为18.40°;及/或
    在距离所述桨毂的中心50mm处,所述桨叶的攻角为17.57°;及/或
    在距离所述桨毂的中心60mm处,所述桨叶的攻角为16.65°;及/或
    在距离所述桨毂的中心70mm处,所述桨叶的攻角为15.62°;及/或
    在距离所述桨毂的中心80mm处,所述桨叶的攻角为14.48°;及/或
    在距离所述桨毂的中心90mm处,所述桨叶的攻角为13.21°;及/或
    在距离所述桨毂的中心100mm处,所述桨叶的攻角为11.68°;及/或
    在距离所述桨毂的中心110mm处,所述桨叶的攻角为9.56°;及/或
    在距离所述桨毂的中心120mm处,所述桨叶的攻角为5.96°。
  3. 根据权利要求1所述的螺旋桨,其特征在于:
    在距离所述桨毂的中心为所述螺旋桨的半径的41.7%处,所述桨叶的弦长为29.79mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的50%处,所述桨叶的弦长为28.53mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的58.3%处,所述桨叶的弦长为27.26mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的66.7%处,所述桨叶的弦长为25.99mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的75%处,所述桨叶的弦长为24.71mm±5mm;及/或
    在距离所述桨毂的中心50mm处,所述桨叶的弦长为29.79mm;及/或
    在距离所述桨毂的中心60mm处,所述桨叶的弦长为28.53mm;及/或
    在距离所述桨毂的中心70mm处,所述桨叶的弦长为27.26mm;及/或
    在距离所述桨毂的中心80mm处,所述桨叶的弦长为25.99mm;及/或
    在距离所述桨毂的中心90mm处,所述桨叶的弦长为24.71mm。
  4. 根据权利要求3所述的螺旋桨,其特征在于:
    在距离所述桨毂的中心为所述螺旋桨的半径的25%处,所述桨叶的弦长为32.12mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的33.3%处,所述桨叶的弦长为31.05mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的83.3%处,所述桨叶的弦长为21.33mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的91.7%处,所述桨叶的弦长为14.83mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的弦长为3.83mm±2mm;及/或
    在距离所述桨毂的中心30mm处,所述桨叶的弦长为32.12mm;及/或
    在距离所述桨毂的中心40mm处,所述桨叶的弦长为31.05mm;及/或
    在距离所述桨毂的中心100mm处,所述桨叶的弦长为21.33mm;及/或
    在距离所述桨毂的中心110mm处,所述桨叶的弦长为14.83mm;及/或
    在距离所述桨毂的中心120mm处,所述桨叶的弦长为3.83mm。
  5. 根据权利要求1所述的螺旋桨,其特征在于,所述螺旋桨的直径为240mm±24mm;及/或
    所述桨叶的螺距为5.467±0.5英寸。
  6. 根据权利要求1至5任意一项所述的螺旋桨,其特征在于:
    所述桨叶包括桨根、背离所述桨根的桨尖、相背的压力面及吸力面、连接于所述压力面及所述吸力面一侧边的前缘、连接于所述压力面及所述吸力面另一侧边的后缘、及形成于所述桨尖的后掠部,所述后掠部自所述前缘向所述后缘倾斜延伸;
    所述桨尖沿所述桨叶的展向朝所述压力面所在的一侧倾斜延伸。
  7. 根据权利要求6所述的螺旋桨,其特征在于,所述桨叶在靠近所述桨尖的位置形成回弯处,所述前缘自所述回弯处开始沿所述桨叶的展向朝所述压力面所在的一侧倾斜延伸,所述后掠部自所述回弯处从所述前缘向所述后缘倾斜延伸,所述回弯处距离所述桨毂的中心为所述螺旋桨的半径的87.5%。
  8. 根据权利要求6所述的螺旋桨,其特征在于,所述后缘外凸形成有靠近所述桨根的呈曲面状的后缘拱起部;及/或
    所述桨叶为至少两个,至少两个所述桨叶连接在所述桨毂上并关于所述桨毂的中心呈中心对称;及/或
    所述桨叶具有穿过所述桨毂的中心的中轴线,所述前缘具有平行于所述中轴线的前缘切线,所述后缘具有平行于所述中轴线的后缘切线,所述后掠部位于所述前缘切线与所述后缘切线之间;及/或
    所述吸力面和所述压力面均为曲面。
  9. 一种动力组件,包括驱动件和螺旋桨,所述螺旋桨包括:桨毂和桨叶,所述桨叶连接在所述桨毂上,其特征在于:
    在距离所述桨毂的中心为所述螺旋桨的半径的41.7%处,所述桨叶的攻角为17.57°±2.5°;
    在距离所述桨毂的中心为所述螺旋桨的半径的50%处,所述桨叶的攻角为16.65°±2.5°;
    在距离所述桨毂的中心为所述螺旋桨的半径的58.3%处,所述桨叶的攻角为15.62°±2.5°;
    在距离所述桨毂的中心为所述螺旋桨的半径的66.7%处,所述桨叶的攻角为14.48°±2.5°;
    在距离所述桨毂的中心为所述螺旋桨的半径的75%处,所述桨叶的攻角为13.21°±2.5°;
    其特征在于,所述螺旋桨通过所述桨毂与所述驱动件连接。
  10. 根据权利要求9所述的动力组件,其特征在于:
    在距离所述桨毂的中心为所述螺旋桨的半径的25%处,所述桨叶的攻角为19.02°±2.5°;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的33.3%处,所述桨叶的攻角为18.40°±2.5°;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的83.3%处,所述桨叶的攻角为11.68°±2.5°;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的91.7%处,所述桨叶的攻角为9.56°±2.5°;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的攻角为5.96°±2.5°;及/或
    在距离所述桨毂的中心30mm处,所述桨叶的攻角为19.02°;及/或
    在距离所述桨毂的中心40mm处,所述桨叶的攻角为18.40°;及/或
    在距离所述桨毂的中心50mm处,所述桨叶的攻角为17.57°;及/或
    在距离所述桨毂的中心60mm处,所述桨叶的攻角为16.65°;及/或
    在距离所述桨毂的中心70mm处,所述桨叶的攻角为15.62°;及/或
    在距离所述桨毂的中心80mm处,所述桨叶的攻角为14.48°;及/或
    在距离所述桨毂的中心90mm处,所述桨叶的攻角为13.21°;及/或
    在距离所述桨毂的中心100mm处,所述桨叶的攻角为11.68°;及/或
    在距离所述桨毂的中心110mm处,所述桨叶的攻角为9.56°;及/或
    在距离所述桨毂的中心120mm处,所述桨叶的攻角为5.96°。
  11. 根据权利要求9所述的动力组件,其特征在于:
    在距离所述桨毂的中心为所述螺旋桨的半径的41.7%处,所述桨叶的弦长为29.79mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的50%处,所述桨叶的弦长为28.53mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的58.3%处,所述桨叶的弦长为27.26mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的66.7%处,所述桨叶的弦长为25.99mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的75%处,所述桨叶的弦长为24.71mm±5mm;及/或
    在距离所述桨毂的中心50mm处,所述桨叶的弦长为29.79mm;及/或
    在距离所述桨毂的中心60mm处,所述桨叶的弦长为28.53mm;及/或
    在距离所述桨毂的中心70mm处,所述桨叶的弦长为27.26mm;及/或
    在距离所述桨毂的中心80mm处,所述桨叶的弦长为25.99mm;及/或
    在距离所述桨毂的中心90mm处,所述桨叶的弦长为24.71mm。
  12. 根据权利要求11所述的动力组件,其特征在于:
    在距离所述桨毂的中心为所述螺旋桨的半径的25%处,所述桨叶的弦长为32.12mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的33.3%处,所述桨叶的弦长为31.05mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的83.3%处,所述桨叶的弦长为21.33mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的91.7%处,所述桨叶的弦长为14.83mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的弦长为3.83mm±2mm;及/或
    在距离所述桨毂的中心30mm处,所述桨叶的弦长为32.12mm;及/或
    在距离所述桨毂的中心40mm处,所述桨叶的弦长为31.05mm;及/或
    在距离所述桨毂的中心100mm处,所述桨叶的弦长为21.33mm;及/或
    在距离所述桨毂的中心110mm处,所述桨叶的弦长为14.83mm;及/或
    在距离所述桨毂的中心120mm处,所述桨叶的弦长为3.83mm。
  13. 根据权利要求9所述的动力组件,其特征在于,所述螺旋桨的直径为240mm±24mm;及/或
    所述桨叶的螺距为5.467±0.5英寸。
  14. 根据权利要求9至13任意一项所述的动力组件,其特征在于:
    所述桨叶包括桨根、背离所述桨根的桨尖、相背的压力面及吸力面、连接于所述压力面及所述吸力面一侧边的前缘、连接于所述压力面及所述吸力面另一侧边的后缘、及形成于所述桨尖的后掠部,所述后掠部自所述前缘向所述后缘倾斜延伸;
    所述桨尖沿所述桨叶的展向朝所述压力面所在的一侧倾斜延伸。
  15. 根据权利要求14所述的动力组件,其特征在于,所述桨叶在靠近所述桨尖的位置形成回弯处,所述前缘自所述回弯处开始沿所述桨叶的展向朝所述压力面所在的一侧倾斜延伸,所述后掠部自所述回弯处从所述前缘向所述后缘倾斜延伸,所述回弯处距离所述桨毂的中心为所述螺旋桨的半径的87.5%。
  16. 根据权利要求14所述的动力组件,其特征在于,所述后缘外凸形成有靠近所述桨根的呈曲面状的后缘拱起部;及/或
    所述桨叶为至少两个,至少两个所述桨叶连接在所述桨毂上并关于所述桨毂的中心呈中心对称;及/或
    所述桨叶具有穿过所述桨毂的中心的中轴线,所述前缘具有平行于所述中轴线的前缘切线,所述后缘具有平行于所述中轴线的后缘切线,所述后掠部位于所述前缘切线与所述后缘切线之间;及/或
    所述吸力面和所述压力面均为曲面。
  17. 根据权利要求9至16任一项所述的动力组件,其特征在于,所述驱动件为电机,所述电机的KV值为790至845转/(分钟·伏特)。
  18. 一种飞行器,其特征在于,包括机身和动力组件,所述动力组件与所述机身连接;所述动力组件,包括驱动件和螺旋桨,所述螺旋桨包括:桨毂和桨叶,所述桨叶连接在所述桨毂上,其特征在于:
    在距离所述桨毂的中心为所述螺旋桨的半径的41.7%处,所述桨叶的攻角为17.57°±2.5°;
    在距离所述桨毂的中心为所述螺旋桨的半径的50%处,所述桨叶的攻角为16.65°±2.5°;
    在距离所述桨毂的中心为所述螺旋桨的半径的58.3%处,所述桨叶的攻角为15.62°±2.5°;
    在距离所述桨毂的中心为所述螺旋桨的半径的66.7%处,所述桨叶的攻角为14.48°±2.5°;
    在距离所述桨毂的中心为所述螺旋桨的半径的75%处,所述桨叶的攻角为13.21°±2.5°;
    其特征在于,所述螺旋桨通过所述桨毂与所述驱动件连接。
  19. 根据权利要求18所述的飞行器,其特征在于:
    在距离所述桨毂的中心为所述螺旋桨的半径的25%处,所述桨叶的攻角为19.02°±2.5°;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的33.3%处,所述桨叶的攻角为18.40°±2.5°;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的83.3%处,所述桨叶的攻角为11.68°±2.5°;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的91.7%处,所述桨叶的攻角 为9.56°±2.5°;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的攻角为5.96°±2.5°;及/或
    在距离所述桨毂的中心30mm处,所述桨叶的攻角为19.02°;及/或
    在距离所述桨毂的中心40mm处,所述桨叶的攻角为18.40°;及/或
    在距离所述桨毂的中心50mm处,所述桨叶的攻角为17.57°;及/或
    在距离所述桨毂的中心60mm处,所述桨叶的攻角为16.65°;及/或
    在距离所述桨毂的中心70mm处,所述桨叶的攻角为15.62°;及/或
    在距离所述桨毂的中心80mm处,所述桨叶的攻角为14.48°;及/或
    在距离所述桨毂的中心90mm处,所述桨叶的攻角为13.21°;及/或
    在距离所述桨毂的中心100mm处,所述桨叶的攻角为11.68°;及/或
    在距离所述桨毂的中心110mm处,所述桨叶的攻角为9.56°;及/或
    在距离所述桨毂的中心120mm处,所述桨叶的攻角为5.96°。
  20. 根据权利要求18所述的飞行器,其特征在于:
    在距离所述桨毂的中心为所述螺旋桨的半径的41.7%处,所述桨叶的弦长为29.79mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的50%处,所述桨叶的弦长为28.53mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的58.3%处,所述桨叶的弦长为27.26mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的66.7%处,所述桨叶的弦长为25.99mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的75%处,所述桨叶的弦长为24.71mm±5mm;及/或
    在距离所述桨毂的中心50mm处,所述桨叶的弦长为29.79mm;及/或
    在距离所述桨毂的中心60mm处,所述桨叶的弦长为28.53mm;及/或
    在距离所述桨毂的中心70mm处,所述桨叶的弦长为27.26mm;及/或
    在距离所述桨毂的中心80mm处,所述桨叶的弦长为25.99mm;及/或
    在距离所述桨毂的中心90mm处,所述桨叶的弦长为24.71mm。
  21. 根据权利要求20所述的飞行器,其特征在于:
    在距离所述桨毂的中心为所述螺旋桨的半径的25%处,所述桨叶的弦长为32.12mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的33.3%处,所述桨叶的弦长为31.05mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的83.3%处,所述桨叶的弦长为21.33mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的91.7%处,所述桨叶的弦长为14.83mm±5mm;及/或
    在距离所述桨毂的中心为所述螺旋桨的半径的100%处,所述桨叶的弦长为3.83mm±2mm;及/或
    在距离所述桨毂的中心30mm处,所述桨叶的弦长为32.12mm;及/或
    在距离所述桨毂的中心40mm处,所述桨叶的弦长为31.05mm;及/或
    在距离所述桨毂的中心100mm处,所述桨叶的弦长为21.33mm;及/或
    在距离所述桨毂的中心110mm处,所述桨叶的弦长为14.83mm;及/或
    在距离所述桨毂的中心120mm处,所述桨叶的弦长为3.83mm。
  22. 根据权利要求18所述的飞行器,其特征在于,所述螺旋桨的直径为240mm±24mm;及/或
    所述桨叶的螺距为5.467±0.5英寸。
  23. 根据权利要求18至22任意一项所述的飞行器,其特征在于:
    所述桨叶包括桨根、背离所述桨根的桨尖、相背的压力面及吸力面、连 接于所述压力面及所述吸力面一侧边的前缘、连接于所述压力面及所述吸力面另一侧边的后缘、及形成于所述桨尖的后掠部,所述后掠部自所述前缘向所述后缘倾斜延伸;
    所述桨尖沿所述桨叶的展向朝所述压力面所在的一侧倾斜延伸。
  24. 根据权利要求23所述的飞行器,其特征在于,所述桨叶在靠近所述桨尖的位置形成回弯处,所述前缘自所述回弯处开始沿所述桨叶的展向朝所述压力面所在的一侧倾斜延伸,所述后掠部自所述回弯处从所述前缘向所述后缘倾斜延伸,所述回弯处距离所述桨毂的中心为所述螺旋桨的半径的87.5%。
  25. 根据权利要求23所述的飞行器,其特征在于,所述后缘外凸形成有靠近所述桨根的呈曲面状的后缘拱起部;及/或
    所述桨叶为至少两个,至少两个所述桨叶连接在所述桨毂上并关于所述桨毂的中心呈中心对称;及/或
    所述桨叶具有穿过所述桨毂的中心的中轴线,所述前缘具有平行于所述中轴线的前缘切线,所述后缘具有平行于所述中轴线的后缘切线,所述后掠部位于所述前缘切线与所述后缘切线之间;及/或
    所述吸力面和所述压力面均为曲面。
  26. 根据权利要求18至25任一项所述的飞行器,其特征在于,所述驱动件为电机,所述电机的KV值为790至845转/(分钟·伏特)。
  27. 根据权利要求18至26任一项所述的飞行器,其特征在于,所述飞行器包括多个动力组件,所述多个动力组件的转动方向不同,所述飞行器为多旋翼飞行器。
PCT/CN2018/108927 2018-04-25 2018-09-30 螺旋桨、动力组件及飞行器 WO2019205497A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880014284.6A CN110896625A (zh) 2018-04-25 2018-09-30 螺旋桨、动力组件及飞行器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201820617536.1U CN208149614U (zh) 2018-04-25 2018-04-25 螺旋桨、动力组件及飞行器
CN201820617536.1 2018-04-25

Publications (1)

Publication Number Publication Date
WO2019205497A1 true WO2019205497A1 (zh) 2019-10-31

Family

ID=64376736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108927 WO2019205497A1 (zh) 2018-04-25 2018-09-30 螺旋桨、动力组件及飞行器

Country Status (2)

Country Link
CN (2) CN208149614U (zh)
WO (1) WO2019205497A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208149614U (zh) * 2018-04-25 2018-11-27 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器
CN109649653A (zh) * 2018-12-20 2019-04-19 深圳职业技术学院 一种高空垃圾清理装置
CN112918668B (zh) * 2019-12-06 2022-12-20 北京二郎神科技有限公司 旋翼飞行器的旋翼及旋翼飞行器
CN112918669B (zh) * 2019-12-06 2022-12-20 北京二郎神科技有限公司 旋翼飞行器的旋翼及旋翼飞行器
CN212738487U (zh) * 2020-04-17 2021-03-19 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器
CN213323651U (zh) * 2020-04-21 2021-06-01 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205524940U (zh) * 2016-02-29 2016-08-31 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器
CN106114821A (zh) * 2015-05-27 2016-11-16 深圳市高巨创新科技开发有限公司 一种低噪声飞行器螺旋桨的设计方法及螺旋桨构型
CN206141830U (zh) * 2016-10-28 2017-05-03 深圳市大疆创新科技有限公司 螺旋桨、动力套装及无人飞行器
CN206394871U (zh) * 2016-12-22 2017-08-11 重庆零度智控智能科技有限公司 螺旋桨、动力组件及飞行器
CN206914624U (zh) * 2017-06-02 2018-01-23 上海拓攻机器人有限公司 一种螺旋桨、动力组件及飞行器
CN206926806U (zh) * 2017-07-25 2018-01-26 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器
CN207072430U (zh) * 2017-07-28 2018-03-06 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7513750B2 (en) * 2006-03-08 2009-04-07 Sikorsky Aircraft Corporation Rotor blade tip planform
US8066219B2 (en) * 2008-04-25 2011-11-29 Karem Aircraft, Inc. Anhedral tip blades for tiltrotor aircraft
CN201632056U (zh) * 2010-02-09 2010-11-17 深圳市兴耀华实业有限公司 模型飞机螺旋桨
CN207045700U (zh) * 2017-07-28 2018-02-27 深圳市大疆创新科技有限公司 用于无人机的螺旋桨、动力组件及无人机
CN208149614U (zh) * 2018-04-25 2018-11-27 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106114821A (zh) * 2015-05-27 2016-11-16 深圳市高巨创新科技开发有限公司 一种低噪声飞行器螺旋桨的设计方法及螺旋桨构型
CN205524940U (zh) * 2016-02-29 2016-08-31 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器
WO2017148134A1 (zh) * 2016-02-29 2017-09-08 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器
CN206141830U (zh) * 2016-10-28 2017-05-03 深圳市大疆创新科技有限公司 螺旋桨、动力套装及无人飞行器
CN206394871U (zh) * 2016-12-22 2017-08-11 重庆零度智控智能科技有限公司 螺旋桨、动力组件及飞行器
CN206914624U (zh) * 2017-06-02 2018-01-23 上海拓攻机器人有限公司 一种螺旋桨、动力组件及飞行器
CN206926806U (zh) * 2017-07-25 2018-01-26 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器
CN207072430U (zh) * 2017-07-28 2018-03-06 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器

Also Published As

Publication number Publication date
CN110896625A (zh) 2020-03-20
CN208149614U (zh) 2018-11-27

Similar Documents

Publication Publication Date Title
WO2019205497A1 (zh) 螺旋桨、动力组件及飞行器
CN109071006B (zh) 螺旋桨、动力组件及飞行器
WO2017124781A1 (zh) 螺旋桨、动力套装及无人飞行器
WO2017128743A1 (zh) 螺旋桨、动力组件及飞行器
WO2019223193A1 (zh) 螺旋桨、动力组件及飞行器
US10315757B2 (en) Propeller blade beta twist
WO2019148879A1 (zh) 螺旋桨、动力组件及飞行器
WO2021212869A1 (zh) 螺旋桨、动力组件及飞行器
WO2018086204A1 (zh) 螺旋桨、动力组件及飞行器
WO2019019332A1 (zh) 螺旋桨、动力组件及飞行器
WO2019223205A1 (zh) 螺旋桨、动力组件及飞行器
WO2019019343A1 (zh) 螺旋桨、动力组件及飞行器
CN110015417B (zh) 一种小型螺旋桨
US20210078698A1 (en) Propeller assembly, power assembly, and aircraft
US6899525B2 (en) Blade and wing configuration
CN210235310U (zh) 螺旋桨、动力组件及飞行器
WO2021208464A1 (zh) 螺旋桨、动力组件及飞行器
WO2019148878A1 (zh) 螺旋桨、动力组件及飞行器
WO2019000547A1 (zh) 螺旋桨、动力装置及飞行器
CN214776549U (zh) 螺旋桨、动力组件及飞行器
CN207773438U (zh) 螺旋桨、动力组件及飞行器
WO2020000686A1 (zh) 螺旋桨、动力组件及飞行器
CN209479979U (zh) 螺旋桨、动力组件及飞行器
WO2019029026A1 (zh) 螺旋桨、动力组件及飞行器
CN214776520U (zh) 螺旋桨、动力组件及飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915926

Country of ref document: EP

Kind code of ref document: A1