WO2018181902A1 - ガスタービン - Google Patents

ガスタービン Download PDF

Info

Publication number
WO2018181902A1
WO2018181902A1 PCT/JP2018/013616 JP2018013616W WO2018181902A1 WO 2018181902 A1 WO2018181902 A1 WO 2018181902A1 JP 2018013616 W JP2018013616 W JP 2018013616W WO 2018181902 A1 WO2018181902 A1 WO 2018181902A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
diffuser
gas turbine
guide
flow
Prior art date
Application number
PCT/JP2018/013616
Other languages
English (en)
French (fr)
Inventor
良介 三戸
英貴 奥井
橋本 真也
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020197028187A priority Critical patent/KR102414858B1/ko
Priority to JP2019510248A priority patent/JP6785368B2/ja
Priority to US16/498,017 priority patent/US11408307B2/en
Priority to DE112018001747.8T priority patent/DE112018001747T5/de
Priority to CN201880021612.5A priority patent/CN110475948B/zh
Publication of WO2018181902A1 publication Critical patent/WO2018181902A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/545Ducts
    • F04D29/547Ducts having a special shape in order to influence fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/128Nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer

Definitions

  • the present invention relates to a gas turbine.
  • This application claims priority on March 30, 2017 based on Japanese Patent Application No. 2017-065598 filed in Japan, the contents of which are incorporated herein by reference.
  • the gas turbine includes a compressor, a combustor housed in a vehicle interior, a diffuser, and a turbine.
  • the compressor generates compressed air.
  • the generated compressed air is supplied to the space in the vehicle interior.
  • the combustor generates combustion gas using compressed air.
  • the turbine rotates the rotor with combustion gas.
  • the diffuser connects the outlet of the compressor and the entrance side of the passenger compartment. In the diffuser, a flow path is defined in which the cross-sectional area gradually increases from the compressor toward the passenger compartment.
  • the diffuser converts the dynamic pressure of the compressed air into a static pressure.
  • Compressed air dynamic pressure is preferably converted to static pressure as much as possible by a diffuser.
  • the boundary layer may peel off from the inner wall surface of the diffuser.
  • a flow velocity distribution (in other words, a pressure distribution) is formed in the radial direction of the rotating shaft of the gas turbine in the compressed air flowing into the flow path in the diffuser. For this reason, the separation of the compressed air is likely to occur on the inner surface side of the flow path in the diffuser. This may increase the pressure loss in the passenger compartment.
  • Patent Document 1 discloses that a compressed air is divided into two flows and supplied to a space in a vehicle interior by arranging a splitter portion in a flow path in a diffuser.
  • an object of the present invention is to provide a gas turbine capable of suppressing the pressure loss in the passenger compartment.
  • a gas turbine includes a compressor that generates compressed gas by compressing a gas, a vehicle interior in which a space is formed, and the space in the vehicle interior.
  • a combustor that generates combustion gas using the compressed gas, a turbine that is provided at a subsequent stage of the combustor and is driven by the combustion gas, an outlet of the compressor, and an inlet of the vehicle compartment
  • a diffuser that is connected and has a diameter that gradually increases from an outlet of the compressor toward an inlet of the passenger compartment, and that defines a flow path that guides the compressed gas to the space; and is formed in the passenger compartment.
  • a flow guide provided on the outlet side of the diffuser in the space, and a rotor arranged from the compressor to the turbine, and the flow guide provided on the rotor side A first guide surface that delays a change in the flow direction of the compressed gas that has passed through the diffuser, and a flow direction of the compressed gas that has been disposed outside the first guide surface and has passed through the diffuser.
  • a second guide surface A first guide surface that delays a change in the flow direction of the compressed gas that has passed through the diffuser, and a flow direction of the compressed gas that has been disposed outside the first guide surface and has passed through the diffuser.
  • the compressed gas whose flow velocity is reduced by the diffuser is provided.
  • the turning can be delayed, and the portion of the passenger compartment where the flow guide is provided can function as a diffuser. That is, the length of the portion functioning as the diffuser can be increased.
  • the flow rate of the compressed gas flowing into the space in the passenger compartment can be sufficiently reduced, and the pressure loss in the passenger compartment can be reduced.
  • the front edge of the flow guide may be disposed downstream of the outlet of the diffuser.
  • the entire flow guide can be arranged in a space formed in the vehicle interior.
  • the front edge of the flow guide may be disposed at a position that coincides with the outlet of the diffuser or at a position upstream of the outlet of the diffuser.
  • the front edge of the flow guide at a position that coincides with the outlet of the diffuser, or at a position upstream of the outlet of the diffuser, the flow direction of the compressed gas by the first guide surface inside the diffuser Can be delayed, and the flow direction of the compressed gas can be redirected by the second guide surface.
  • the first guide surface may be parallel to the axis of the rotor.
  • the turning of the compressed gas flowing along the first guide surface can be delayed.
  • the first guide surface may be inclined in a direction approaching the axis of the rotor from the front edge of the flow guide toward the rear edge.
  • the first guide surface is inclined in the direction approaching the rotor axis as it goes from the front edge to the rear edge of the flow guide, thereby making the first guide surface parallel to the rotor axis.
  • the turning of the compressed gas can be further delayed.
  • the second guide surface may be a curved surface that curves in a direction away from the axis of the rotor as it goes from the front edge to the rear edge of the flow guide. Good.
  • the compressed gas flowing along the second guide surface is used as the second guide surface by using a curved surface that curves in a direction away from the axis of the rotor as it goes from the front edge to the rear edge of the flow guide. Can be smoothly turned.
  • the diffuser is disposed outside the first cylindrical portion and the first cylindrical portion, and the gap is between the first cylindrical portion and the first cylindrical portion.
  • a second cylindrical part that divides the flow path, and the flow guide has an annular shape, and the first cylindrical part and the second cylindrical part are arranged in a radial direction of the rotor.
  • a plurality of struts connected to each other and arranged in the circumferential direction of the rotor and supporting the flow guide may be provided.
  • the flow guide is disposed at a predetermined position with respect to the flow path formed between the first cylindrical portion and the second cylindrical portion. Can do.
  • the shape of the plurality of struts may be a blade shape.
  • the compressed gas can be efficiently passed in the direction from the front edge to the rear edge of the plurality of struts by making the plurality of struts into a wing shape.
  • the plurality of struts are arranged so that a part thereof overlaps the combustor in the circumferential direction of the rotor, and the inner side of the front edge portion of the plurality of struts May be inclined to form an acute angle with respect to the axis of the rotor.
  • the first cylindrical portion includes an outer peripheral surface facing the second cylindrical portion, and the second cylindrical portion includes the first cylindrical portion.
  • a first angle formed by an axis of the rotor and the outer peripheral surface may be smaller than a second angle formed by the axis of the rotor and the inner peripheral surface.
  • the first angle formed by the rotor axis and the outer peripheral surface of the first cylindrical portion is made smaller than the second angle formed by the rotor axis and the inner peripheral surface of the second cylindrical member.
  • the turning angle of the compressed gas flowing along the first guide surface can be reduced.
  • the cross-sectional area of the flow path in the diffuser can be increased by making the second angle larger than the first angle, the function of the diffuser (specifically, the dynamic pressure of the compressed gas) Can be increased.
  • pressure loss in the passenger compartment can be reduced.
  • FIG. 3 is a cross-sectional view of the structure shown in FIG. 2 in the A1-A2 line direction. It is sectional drawing to which the exit side of the diffuser and the entrance side of the space formed in the vehicle interior were expanded among the structures shown in FIG. It is sectional drawing which shows the principal part of the gas turbine which concerns on the modification of the 1st Embodiment of this invention. It is sectional drawing which shows the principal part of the gas turbine which concerns on the 2nd Embodiment of this invention.
  • FIG. 1 A gas turbine 10 according to a first embodiment will be described with reference to FIGS. 1 to 3.
  • FIG. 1 a part of the upper half of the gas turbine 10 is shown in cross section.
  • O 1 indicates the axis of the rotor 11 (hereinafter referred to as “axis O 1 ”).
  • axis O 1 indicates the axis of the rotor 11 (hereinafter referred to as “axis O 1 ”).
  • axis O 1 in order to facilitate understanding of the shapes of the diffuser 14, the flow guide 17, and the plurality of struts 19, a cross section of the structure located on the opposite side of the structure illustrated in FIG. 2 is also illustrated. 1 to 3, the same components are denoted by the same reference numerals.
  • the gas turbine includes a rotor 11, a compressor 13, a diffuser 14, a vehicle compartment 15, a combustor 16, a flow guide 17, a plurality of struts 19, and a turbine 21.
  • a generator (not shown) is connected to the gas turbine 10 so that power can be generated.
  • the rotor 11 has a rotor body 25 and a plurality of rotor blades 27 and 28.
  • the rotor body 25 extends in one direction and penetrates the compressor 13, the diffuser 14, the vehicle interior 15, the combustor 16, and the turbine 21.
  • the plurality of rotor blades 27 are provided in a portion corresponding to the compressor 13 on the outer peripheral surface of the rotor body 25.
  • the plurality of rotor blades 27 are arranged in the circumferential direction of the rotor body 25 and in the direction of the axis O 1 of the rotor 11 (hereinafter referred to as “axial direction”).
  • the moving blades 27 arranged in the circumferential direction of the rotor body 25 constitute a moving blade group.
  • a part of the rotor body 25 and the plurality of moving blades 27 constitute a part of the compressor 13.
  • the plurality of rotor blades 28 are provided in a portion corresponding to the turbine 21 on the outer peripheral surface of the rotor body 25.
  • the plurality of rotor blades 28 are arranged in the circumferential direction of the rotor body 25 and in the axial direction of the rotor 11.
  • the moving blades 28 arranged in the circumferential direction of the rotor body 25 constitute a moving blade group. A part of the rotor body 25 and the plurality of rotor blades 28 constitute a part of the turbine.
  • the compressor 13 includes a part of the rotor body 25, a plurality of moving blades 27, a casing 31, a gas intake port 33, a compressor channel 34, an inlet guide blade 35, and a plurality of stationary blades 37. Have.
  • the casing 31 is provided outside the rotor body 25 corresponding to the formation area of the compressor 13.
  • the casing 31 defines a gas intake port 33 and a compressor flow path 34.
  • the gas inlet 33 takes in air, for example.
  • the compressor flow path 34 is a cylindrical space arranged downstream of the gas intake port 33, and extends in the same direction as the direction in which the axis O 1 extends (hereinafter referred to as “axis direction”).
  • the inlet guide vane 35 is provided on the inlet side of the compressor flow path 34.
  • the plurality of stationary blades 37 are provided on the inner surface of the outer wall of the casing 31.
  • the plurality of stationary blades 37 arranged in the circumferential direction of the rotor 11 constitutes a stationary blade group.
  • a plurality of stationary blade groups are arranged in the axial direction.
  • the moving blade group and the stationary blade group are alternately arranged with respect to the axial direction.
  • the compressor 13 configured as described above generates high-temperature and high-pressure compressed gas by compressing the gas passing through the compressor flow path 34.
  • the compressed gas is supplied to the inlet side of the diffuser 14.
  • the diffuser 14 is provided between the compressor 13 and the passenger compartment 15.
  • the diffuser 14 connects the outlet of the compressor 13 and the inlet of the passenger compartment 15.
  • the diffuser 14 includes a first tubular portion 41, a second tubular portion 42, and a flow path 44.
  • the first tubular portion 41 is a tubular member extending in the axial direction.
  • the first tubular portion 41 is disposed so as to surround the outer peripheral surface of the rotor body 25.
  • the central axis of the first cylindrical portion 41 coincides with the axis O 1 .
  • the first tubular portion 41 has an outer peripheral surface 41 a disposed on the opposite side of the inner peripheral surface facing the rotor 11.
  • the second tubular portion 42 is a tubular member extending in the axial direction.
  • the second tubular portion 42 is disposed so as to surround the first tubular portion 41 in a state of being spaced apart from the first tubular portion 41.
  • the central axis of the second cylindrical portion 42 coincides with the axis O 1 .
  • the second cylindrical portion 42 has an inner peripheral surface 42 a that faces the outer peripheral surface 41 a of the first cylindrical portion 41 in the radial direction of the rotor 11.
  • the flow path 44 is partitioned by the outer peripheral surface 41 a of the first cylindrical portion 41 and the inner peripheral surface 42 a of the second cylindrical portion 42.
  • the flow path 44 communicates with the space inside the compressor 13 and the space 15 ⁇ / b> A inside the passenger compartment 15.
  • the flow path 44 is a cylindrical flow path. The diameter of the flow path 44 is gradually increased from the outlet of the compressor 13 toward the inlet of the vehicle compartment 15.
  • the turning angle of the compressed gas flowing along the first guide surface 17 a of the flow guide 17 can be reduced.
  • the cross-sectional area of the flow path 44 in the diffuser 14 can be increased by making the second angle ⁇ 2 larger than the first angle ⁇ 1 , the function of the diffuser 14 (specifically, Can enhance the function of converting the dynamic pressure of the compressed gas into a static pressure.
  • the diffuser 14 configured as described above reduces the flow rate of the compressed gas by converting the dynamic pressure of the compressed gas introduced into the flow path 44 into a static pressure.
  • the vehicle compartment 15 is provided at the rear stage of the diffuser 14.
  • a space 15 ⁇ / b> A is formed in the passenger compartment 15.
  • a compressed gas whose flow velocity is reduced by passing through the diffuser 14 is introduced into the entrance of the space 15A.
  • the combustor 16 is disposed in the space 15 ⁇ / b> A in the passenger compartment 15 and is supported by the passenger compartment 15.
  • the combustor 16 includes an attenuation unit 16A such as an acoustic damper or a liner.
  • the outlet side of the combustor 16 is connected to the turbine 21.
  • a predetermined fuel is supplied to the compressed gas introduced into the space 15 ⁇ / b> A to be combusted to generate combustion gas. Combustion gas generated by the combustor 16 is introduced into the turbine 21.
  • the flow guide 17 will be described with reference to FIGS. 4, illustration of the strut 19 shown in FIG. 2 is omitted for convenience of explanation.
  • the flow guide 17 is provided on the exit side of the diffuser 14 in the space 15 ⁇ / b> A formed in the passenger compartment 15.
  • the flow guide 17 is an annular member.
  • the front edge 17A of the flow guide 17 is opposed to the front edge 17A in the axial direction.
  • the flow guide 17 includes a first guide surface 17a, a second guide surface 17b, a front edge 17A disposed on the diffuser 14 side, and a rear edge 17B disposed on the turbine 21 side.
  • the first guide surface 17a is a surface disposed on the rotor 11 side.
  • the first guide surface 17a is led out from the outlet of the diffuser 14, and guides a part of the compressed gas flowing in the B direction to flow in the C direction.
  • the first guide surface 17a is a guide surface for delaying the turning in the flow direction of the compressed gas that has passed through the diffuser 14. In the case of FIG. 4, the turning here means changing the direction of the flow of the compressed gas to the upward direction on the paper.
  • the first guide surface 17 a may be configured to be parallel to the axis O 1 of the rotor 11. In this way, by collimating the first guide surface 17a with respect to the axis O 1 of the rotor 11, it is possible to delay the turning of the compressed gas flowing along the first guide surface 17a.
  • the first guide surface 17a may be inclined toward the axis O 1 of the rotor 11 toward the trailing edge 17B from the front edge 17A of the flow guide 17.
  • the turning direction of the compressed gas can be further delayed as compared with the case of being parallel to the axis O 1 .
  • the second guide surface 17b is disposed outside the first guide surface 17a, and turns the flow direction of the compressed gas that has passed through the diffuser 14 in a radial direction (D direction shown in FIG. 4) that is separated from the rotor 11.
  • the second guide surface 17b for example, a curved surface (a curved surface recessed to the rotor 11 side) which is curved in a direction away from the axis O 1 of the rotor 11 toward the trailing edge 17B from the front edge 17A of the flow guide 17 Can be used.
  • the front edge 17 ⁇ / b> A of the flow guide 17 is disposed on the downstream side of the outlet of the diffuser 14.
  • the entire flow guide 17 can be arranged in the space 15A formed in the vehicle compartment 15.
  • the front edge 17 ⁇ / b> A of the flow guide 17 is disposed on the downstream side of the front edge 19 ⁇ / b> A of the strut 19.
  • the plurality of struts 19 are provided on the outlet side of the diffuser 14 in the space 15A.
  • the plurality of struts 19 are arranged at intervals in the circumferential direction of the rotor 11.
  • the rotor 11 side (inner side) of the plurality of struts 19 is connected to the first cylindrical portion 41.
  • the outer sides of the plurality of struts 19 are connected to the second cylindrical portion 42. Accordingly, the plurality of struts 19 connect the first cylindrical portion 41 and the second cylindrical portion 42 in the radial direction of the rotor 11.
  • the plurality of struts 19 are arranged so as to overlap the flow guide 17 in the circumferential direction.
  • the plurality of struts 19 are connected to the flow guide 17 in the circumferential direction.
  • a flow guide is provided at a predetermined position with respect to the flow path 44 formed between the first tubular portion 41 and the second tubular portion 42. 17 can be arranged (opposed).
  • the front edges 19A of the plurality of struts 19 are curved surfaces that are recessed in the direction from the front edge 19A toward the rear edge 19B.
  • the shape of the plurality of struts 19 may be, for example, a wing shape.
  • the compressed gas can efficiently pass in the direction from the front edge 19A to the rear edge 19B of the plurality of struts 19.
  • the plurality of struts 19 may be integrated with the flow guide 17. That is, the plurality of struts 19 and the flow guide 17 may be integrally formed. Thus, the assembly process of the flow guide 17 with respect to the plurality of struts 19 can be omitted by integrally configuring the plurality of struts 19 and the flow guide 17.
  • the turbine 21 includes a part of the rotor body 25, a plurality of moving blades 28, a casing 51, a turbine flow path 52, and a plurality of stationary blades 54.
  • the casing 51 is provided outside the rotor body 25.
  • the casing 51 defines the turbine flow path 52.
  • the plurality of stationary blades 54 are provided on the inner surface of the outer wall of the casing 51.
  • the plurality of stationary blades 54 are disposed in the turbine flow path 52.
  • the plurality of stationary blades 54 arranged in the circumferential direction of the rotor 11 constitutes a stationary blade group.
  • a plurality of stationary blade groups are arranged in the axial direction. The moving blade group and the stationary blade group are alternately arranged with respect to the axial direction.
  • the flow guide 17 having the first and second guide surfaces 17a and 17b on the outlet side of the compressor 13 in the space 15A formed in the casing 15. It is possible to delay the turning of the compressed gas whose flow velocity has been reduced by the diffuser 14 and to allow the portion of the passenger compartment 15 where the flow guide 17 is provided to function as the diffuser 14. Become. That is, the length of the portion functioning as the diffuser can be increased. As a result, the flow rate of the compressed gas flowing into the space 15A in the passenger compartment 15 can be sufficiently reduced, so that the pressure loss in the passenger compartment can be reduced.
  • the arrangement positions, shapes, and sizes of the first and second guide surfaces 17a and 17b are, for example, the flow direction of the compressed gas guided by the first guide surface 17a and the second guide surface 17b. It is preferable that the flow direction of the compressed gas guided to the position of the combustor 16 avoids the damping part 16A.
  • the gas turbine 55 according to the modification of the first embodiment is the same as the gas turbine 10 of the first embodiment, except that the front edge 17A of the flow guide 17 is disposed upstream of the outlet 14A of the diffuser 14. It is constituted similarly.
  • the outlet 14A of the diffuser 14 can be separated. It is possible to further reduce the loss due to the separation and the like downstream of the.
  • the case where the front edge 17A of the flow guide 17 is arranged upstream of the outlet 14A of the diffuser 14 is illustrated as an example.
  • the position of the outlet 14A of the diffuser 14 is The position of the front edge 17A of the flow guide 17 may be matched. In this case, the same effect as the case where the front edge 17A of the flow guide 17 is disposed upstream of the outlet 14A of the diffuser 14 can be obtained.
  • FIG. 6 is an enlarged cross-sectional view of a portion corresponding to the outlet side of the diffuser 14, the flow guide 17, and the strut 62 in the upper half of the gas turbine 60.
  • the same components as those shown in FIGS. 1 to 4 are denoted by the same reference numerals.
  • the gas turbine 60 is configured in the same manner as the gas turbine 10 except that the gas turbine 60 includes a plurality of struts 62 instead of the plurality of struts 19 constituting the gas turbine 10 of the first embodiment.
  • the plurality of struts 62 are arranged so that a part thereof overlaps the combustor 16 in the circumferential direction of the rotor 11.
  • the inner sides of the front edge 62A portions of the plurality of struts 62 are inclined so as to form an acute angle with respect to the axis O 1 of the rotor 11.
  • the end surface 62a and the axis O 1 and the angle formed by the rotor 11 of the leading edge 62A of the plurality of struts 62 is an acute angle. This point is different from the strut 19 described in the first embodiment.
  • the shape of the plurality of struts 62 is preferably, for example, a shape with a smooth curvature. Specifically, as the shape of the plurality of struts 62, for example, a wing shape can be used. Further, the end faces 62a of the plurality of struts 62 may be recessed in the axial O 1 toward the downstream side.
  • the gas turbine 60 of the second embodiment at an acute angle relative to the axis O 1 of the rotor 11, by inclining the inner front edge 62A of the plurality of struts 62, the plurality of struts 62 It is possible to suppress a local pressure increase on the outlet side of the diffuser 14 due to the influence of the potential at the leading edge 62A. Thereby, the flow rate of the compressed gas flowing into the space 15A in the vehicle interior (inside the vehicle compartment 15 shown in FIG. 2) can be reduced, so that pressure loss in the vehicle interior 15 can be suppressed.
  • the front edge 17A of the flow guide 17 is a cavity. It is better to arrange it on the downstream side.
  • the present invention is applicable to a gas turbine.

Abstract

圧縮機及びガスタービンに配置されたロータ側に設けられ、ディフューザ(14)を通過した圧縮ガスの流れ方向の転向を遅らせる第1の案内面(17a)と、第1の案内面(17a)の外側に配置され、ディフューザ(14)を通過した圧縮ガスの流れ方向を転向させる第2の案内面(17b)と、を備えており、車室内に形成された空間(15A)のうち、ディフューザ(14)の出口側に設けられたフローガイド(17)を有する。

Description

ガスタービン
 本発明は、ガスタービンに関する。
 本願は、2017年3月30日に、日本に出願された特願2017-066598号に基づき優先権を主張し、その内容をここに援用する。
 ガスタービンは、圧縮機と、車室内に収容された燃焼器と、ディフューザと、タービンと、を有する。
 圧縮機は、圧縮空気を生成する。生成された圧縮空気は、車室内の空間に供給される。
 燃焼器は、圧縮空気を用いて燃焼ガスを生成する。タービンは、燃焼ガスによりロータを回転させる。
 ディフューザは、圧縮機の出口と車室の入口側とを接続している。ディフューザ内には、圧縮機から車室に向かうにつれて断面積が徐々に拡大する流路が区画されている。ディフューザは、圧縮空気の動圧を静圧に変換させる。
 圧縮空気の動圧は、ディフューザによって可能な限り静圧に変換されることが好ましい。しかしながら、圧縮空気の主流に対してディフューザの周壁の角度が大きくなりすぎると、ディフューザの内壁面に対して境界層が剥離する可能性がある。このような圧縮空気の剥離が発生すると、圧力損失が増大してガスタービン全体の効率が低下してしまう。
 また、ディフューザ内の流路に流入する圧縮空気には、ガスタービンの回転軸の径方向に流速分布(言い換えれば、圧力分布)が形成される。このため、ディフューザ内の流路内面側では、圧縮空気の剥離が発生しやすくなる。これにより、車室内での圧力損失が増大する可能性があった。
 特許文献1には、ディフューザ内の流路にスプリッタ部を配置することで、圧縮空気を2つの流れに分けて車室内の空間に供給することが開示されている。
特開2010-223223号公報
 ところで、特許文献1のように、ディフューザ内の流路内にスプリッタ部を配置させる場合、スプリッタ部が配置される部分のディフューザの流路を拡径させる必要がある。このように、ディフューザ内の流路(ディフューザ)を拡径させると、ディフューザの内壁面に対して境界層が剥離して、車室内での圧力損失が大きくなってしまう可能性があった。
 また、特許文献1のように、ディフューザ内の流路内にスプリッタ部を配置させる場合、圧縮ガスの流速を十分に減速させることが困難なため、車室内での圧力損失が大きくなってしまう可能性があった。
 そこで、本発明は、車室内での圧力損失を低減することの抑制可能なガスタービンを提供することを目的とする。
 上記課題を解決するため、本発明の一態様に係るガスタービンは、ガスを圧縮することで圧縮ガスを生成する圧縮機と、内部に空間が形成された車室と、前記車室の前記空間に配置され、前記圧縮ガスを用いて燃焼ガスを生成する燃焼器と、前記燃焼器の後段に設けられ、前記燃焼ガスにより駆動するタービンと、前記圧縮機の出口と前記車室の入口とを連結するとともに、前記圧縮機の出口から前記車室の入口に向かうにつれて次第に拡径されており、かつ前記圧縮ガスを前記空間へと導く流路を区画するディフューザと、前記車室内に形成された前記空間のうち、前記ディフューザの出口側に設けられたフローガイドと、前記圧縮機から前記タービンにわたって配置されたロータと、を備え、前記フローガイドは、前記ロータ側に設けられ、前記ディフューザを通過した前記圧縮ガスの流れ方向の転向を遅らせる第1の案内面と、前記第1の案内面の外側に配置され、前記ディフューザを通過した前記圧縮ガスの流れ方向を転向させる第2の案内面と、を含む。
 本発明によれば、車室内に形成された空間のうち、圧縮機の出口側に、第1及び第2の案内面を有するフローガイドを設けることで、ディフューザにより流速が減速された圧縮ガスの転向を遅らせることが可能になるとともに、車室のうち、フローガイドが設けられた部分をディフューザとして機能させることが可能となる。つまり、ディフューザとして機能する部分の長さを長くすることができる。
 これにより、車室内の空間に流入する圧縮ガスの流速を十分に減速させることが可能となるので、車室内での圧力損失を低減することができる。
 また、本発明の一態様に係るガスタービンにおいて、前記フローガイドの前縁は、前記ディフューザの出口よりも下流側に配置してもよい。
 このように、ディフューザの出口よりも下流側にフローガイドの前縁を配置することで、フローガイド全体を車室内に形成された空間に配置することができる。
 また、本発明の一態様に係るガスタービンにおいて、前記フローガイドの前縁は、前記ディフューザの出口と一致する位置、または前記ディフューザの出口よりも上流側の位置に配置されていてもよい。
 このように、ディフューザの出口と一致する位置、またはディフューザの出口よりも上流側の位置にフローガイドの前縁を配置させることで、ディフューザの内部において、第1の案内面により圧縮ガスの流れ方向の転向を遅らせることができるとともに、第2の案内面により圧縮ガスの流れ方向を転向させることができる。
 また、本発明の一態様に係るガスタービンにおいて、前記第1の案内面は、前記ロータの軸線に対して平行であってもよい。
 このように、第1の案内面をロータの軸線に対して平行にすることで、第1の案内面に沿って流れる圧縮ガスの転向を遅らせることができる。
 また、本発明の一態様に係るガスタービンにおいて、前記第1の案内面は、前記フローガイドの前縁から後縁に向かうにつれて前記ロータの軸線に近づく方向に傾斜させてもよい。
 このように、フローガイドの前縁から後縁に向かうにつれてロータの軸線に近づく方向に第1の案内面を傾斜させることで、第1の案内面をロータの軸線に対して平行にした場合よりも、圧縮ガスの転向をさらに遅らせることができる。
 また、本発明の一態様に係るガスタービンにおいて、前記第2の案内面は、前記フローガイドの前縁から後縁に向かうにつれて前記ロータの軸線から離間する方向に湾曲する湾曲面であってもよい。
 このように、第2の案内面として、フローガイドの前縁から後縁に向かうにつれてロータの軸線から離間する方向に湾曲する湾曲面を用いることで、第2の案内面に沿って流れる圧縮ガスの転向をスムーズに行うことができる。
 また、本発明の一態様に係るガスタービンにおいて、前記ディフューザは、第1の筒状部と、前記第1の筒状部の外側に配置され、前記第1の筒状部との間に前記流路を区画する第2の筒状部と、を含み、前記フローガイドは、環状とされており、前記ロータの径方向において前記第1の筒状部と前記第2の筒状部とを連結するとともに、前記ロータの周方向に配列され、かつ前記フローガイドを支持する複数のストラットを備えてもよい。
 このような構成とされた複数のストラットを有することで、第1の筒状部と第2の筒状部との間に形成される流路に対して所定の位置にフローガイドを配置させることができる。
 また、本発明の一態様に係るガスタービンにおいて、前記複数のストラットの形状は、翼形状であってもよい。
 このように、複数のストラットの形状を翼形状とすることで、複数のストラットの前縁から後縁に向かう方向に圧縮ガスを効率良く通過させることができる。
 また、本発明の一態様に係るガスタービンにおいて、前記複数のストラットは、前記ロータの周方向において一部が前記燃焼器と重なるように配置されており、前記複数のストラットの前縁部の内側は、前記ロータの軸線に対して鋭角を成すように傾斜させてもよい。
 このように、ロータの軸線に対して鋭角を成すように、複数のストラットの前縁部の内側を傾斜させることで、複数のストラットの前縁におけるポテンシャルの影響に起因するディフューザの出口側の局所的な圧力上昇を抑制することが可能となる。これにより、車室内の空間に流入する圧縮ガスの流速を減速させることが可能となるので、車室内における圧力損失を抑制することができる。
 また、本発明の一態様に係るガスタービンにおいて、前記第1の筒状部は、前記第2の筒状部と対向する外周面を含み、前記第2の筒状部は、前記第1の筒状部と対向する内周面を含み、前記ロータの軸線と前記外周面とがなす第1の角度を前記ロータの軸線と前記内周面とがなす第2の角度よりも小さくてもよい。
 このように、ロータの軸線と第1の筒状部の外周面とがなす第1の角度をロータの軸線と第2の筒状部材の内周面とがなす第2の角度よりも小さくすることで、第1の案内面に沿って流れる圧縮ガスの転向角度を小さくすることができる。
 また、第1の角度よりも第2の角度を大きくすることで、ディフューザ内の流路の断面積を大きくすることが可能となるので、ディフューザの機能(具体的には、圧縮ガスの動圧を静圧に変換する機能)を高めることができる。
 本発明によれば、車室内での圧力損失を低減することができる。
本発明の第1の実施形態に係るガスタービンの概略構成を示す図である。 図1に示すガスタービンのうち、ディフューザ、燃焼器、及び燃焼器を収容する車室に対応する部分を拡大した図である。 図2に示す構造体のA1-A2線方向の断面図である。 図2に示す構造体のうち、ディフューザの出口側及び車室内に形成された空間の入口側を拡大した断面図である。 本発明の第1の実施形態の変形例に係るガスタービンの主要部を示す断面図である。 本発明の第2の実施形態に係るガスタービンの主要部を示す断面図である。
 以下、図面を参照して本発明を適用した実施形態について詳細に説明する。
 (第1の実施形態)
 図1~図3を参照して、第1の実施形態に係るガスタービン10について説明する。図1では、ガスタービン10の上半分の一部を断面で図示する。図1では、図2及び図3に示すフローガイド17を図示することが困難なため、フローガイド17の図示を省略する。図1において、Oはロータ11の軸線(以下、「軸線O」という)を示している。
 図3では、ディフューザ14、フローガイド17、及び複数のストラット19の形状を理解しやすくするために、図2に示す構造体の反対側に位置する構造体の断面も合わせて図示する。図1~図3において、同一構成部分には同一符号を付す。
 ガスタービンは、ロータ11と、圧縮機13と、ディフューザ14と、車室15と、燃焼器16と、フローガイド17と、複数のストラット19と、タービン21と、を有する。ガスタービン10には、発電機(図示せず)が連結されており、発電可能な構成とされている。
 ロータ11は、ロータ本体25と、複数の動翼27,28と、を有する。ロータ本体25は、一方向に延在しており、圧縮機13、ディフューザ14、車室15、燃焼器16、及びタービン21を貫通している。
 複数の動翼27は、ロータ本体25の外周面のうち、圧縮機13に対応する部分に設けられている。複数の動翼27は、ロータ本体25の周方向、及びロータ11の軸線O方向(以下、「軸線方向」という)に配列されている。ロータ本体25の周方向に配列された動翼27は、動翼群を構成している。ロータ本体25の一部、及び複数の動翼27は、圧縮機13の一部を構成している。
 複数の動翼28は、ロータ本体25の外周面のうち、タービン21に対応する部分に設けられている。複数の動翼28は、ロータ本体25の周方向、及びロータ11の軸線方向に配列されている。ロータ本体25の周方向に配列された動翼28は、動翼群を構成している。ロータ本体25の一部、及び複数の動翼28は、タービンの一部を構成している。
 圧縮機13は、ロータ本体25の一部と、複数の動翼27と、ケーシング31と、ガス取込口33と、圧縮機流路34と、入口案内翼35と、複数の静翼37と、を有する。
 ケーシング31は、圧縮機13の形成領域に対応するロータ本体25の外側に設けられている。ケーシング31は、ガス取込口33及び圧縮機流路34を区画している。ガス取込口33は、例えば、空気を取り込む。
 圧縮機流路34は、ガス取込口33の後段配置された筒状空間であり、軸線Oが延在する方向(以下、「軸線方向」という)と同じ方向に延在している。入口案内翼35は、圧縮機流路34の入口側に設けられている。
 複数の静翼37は、ケーシング31の外壁の内面に設けられている。ロータ11の周方向に配置された複数の静翼37は、静翼群を構成している。静翼群は、軸線方向に対して、複数配置されている。動翼群及び静翼群は、軸線方向に対して交互に配置されている。
 上記構成とされた圧縮機13は、圧縮機流路34を通過するガスを圧縮することで、高温高圧の圧縮ガスを生成する。圧縮ガスは、ディフューザ14の入口側に供給される。
 ディフューザ14は、圧縮機13と車室15との間に設けられている。ディフューザ14は、圧縮機13の出口と車室15の入口とを連結している。
 ディフューザ14は、第1の筒状部41と、第2の筒状部42と、流路44と、を有する。第1の筒状部41は、軸線方向に延在する筒状の部材である。第1の筒状部41は、ロータ本体25の外周面を囲むように配置されている。第1の筒状部41の中心軸は、軸線Oと一致している。第1の筒状部41は、ロータ11と対向する内周面の反対側に配置された外周面41aを有する。
 第2の筒状部42は、軸線方向に延在する筒状の部材である。第2の筒状部42は、第1の筒状部41の外側に離間した状態で、第1の筒状部41を囲むように配置されている。第2の筒状部42の中心軸は、軸線Oと一致している。
 第2の筒状部42は、ロータ11の径方向において第1の筒状部41の外周面41aと対向する内周面42aを有する。
 流路44は、第1の筒状部41の外周面41aと第2の筒状部42の内周面42aとで区画されている。流路44は、圧縮機13内の空間と車室15内の空間15Aとに連通している。流路44は、筒状の流路である。流路44は、圧縮機13の出口から車室15の入口に向かうにつれて次第に拡径されている。
 軸線Oと第1の筒状部41の外周面41aとがなす第1の角度θをロータ11の軸線Oと第2の筒状部42の内周面42aとがなす第2の角度θよりも小さくてもよい。
 このように、軸線Oと第1の筒状部41の外周面41aとがなす第1の角度θを軸線Oと第2の筒状部42の内周面42aとがなす第2の角度θよりも小さくすることで、フローガイド17の第1の案内面17aに沿って流れる圧縮ガスの転向角度を小さくすることができる。
 また、第1の角度θよりも第2の角度θを大きくすることで、ディフューザ14内の流路44の断面積を大きくすることが可能となるので、ディフューザ14の機能(具体的には、圧縮ガスの動圧を静圧に変換する機能)を高めることができる。
 上記構成とされたディフューザ14は、流路44に導入された圧縮ガスの動圧を静圧に変換させることで、圧縮ガスの流速を減速させる。
 車室15は、ディフューザ14の後段に設けられている。車室15内には、空間15Aが形成されている。空間15Aの入口には、ディフューザ14を通過することで流速が減速された圧縮ガスが導入される。
 燃焼器16は、車室15内の空間15Aに配置されるとともに、車室15により支持されている。燃焼器16は、音響ダンパやライナ等の減衰部16Aを有する。燃焼器16の出口側は、タービン21と接続されている。燃焼器16では、空間15Aに導入された圧縮ガスに対して所定の燃料が供給することで燃焼させて、燃焼ガスを生成する。燃焼器16で生成された燃焼ガスは、タービン21内に導入される。
 図1~図4を参照して、フローガイド17について説明する。図4では、説明の便宜上、図2に示すストラット19の図示を省略する。
 フローガイド17は、車室15内に形成された空間15Aのうち、ディフューザ14の出口側に設けられている。フローガイド17は、環状とされた部材である。フローガイド17の前縁17Aは、軸線方向において前縁17Aと対向している。
 フローガイド17は、第1の案内面17aと、第2の案内面17bと、ディフューザ14側に配置された前縁17Aと、タービン21側に配置された後縁17Bと、を有する。
 第1の案内面17aは、ロータ11側に配置された面である。第1の案内面17aは、ディフューザ14の出口から導出され、B方向に流れる圧縮ガスの一部がC方向に流れるように案内する。
 第1の案内面17aは、ディフューザ14を通過した圧縮ガスの流れ方向の転向を遅らせるための案内面である。ここでの転向とは、図4の場合、圧縮ガスの流れ方向を紙面の上方向に向きを変えることをいう。
 第1の案内面17aは、ロータ11の軸線Oに対して平行となるように構成してもよい。このように、第1の案内面17aをロータ11の軸線Oに対して平行にすることで、第1の案内面17aに沿って流れる圧縮ガスの転向を遅らせることができる。
 また、第1の案内面17aは、フローガイド17の前縁17Aから後縁17Bに向かうにつれてロータ11の軸線Oに近づく方向に傾斜させてもよい。
 このように、フローガイド17の前縁17Aから後縁17Bに向かうにつれてロータ11の軸線Oに近づく方向に第1の案内面17aを傾斜させることで、第1の案内面17aをロータ11の軸線Oに対して平行にした場合よりも、圧縮ガスの転向をさらに遅らせることができる。
 第2の案内面17bは、第1の案内面17aの外側に配置され、ディフューザ14を通過した圧縮ガスの流れ方向をロータ11から離間する径方向(図4に示すD方向)に転向させる。
 第2の案内面17bとしては、例えば、フローガイド17の前縁17Aから後縁17Bに向かうにつれてロータ11の軸線Oから離間する方向に湾曲する湾曲面(ロータ11側に凹んだ湾曲面)を用いることが可能である。
 このように、第2の案内面17bとして、フローガイド17の前縁17Aから後縁17Bに向かうにつれてロータ11の軸線Oから離間する方向に湾曲する凹んだ湾曲面を用いることで、第2の案内面17bに沿って流れる圧縮ガスの転向をスムーズに行うことができる。
 フローガイド17の前縁17Aは、ディフューザ14の出口よりも下流側に配置されている。このように、ディフューザ14の出口よりも下流側にフローガイド17の前縁17Aを配置することで、フローガイド17全体を車室15内に形成された空間15Aに配置することができる。
 また、フローガイド17の前縁17Aは、ストラット19の前縁19Aよりも下流側に配置されている。
 複数のストラット19は、空間15Aのうち、ディフューザ14の出口側に設けられている。複数のストラット19は、ロータ11の周方向に間隔を空けて配置されている。
 複数のストラット19のロータ11側(内側)は、第1の筒状部41と接続されている。複数のストラット19の外側は、第2の筒状部42と接続されている。これにより、複数のストラット19は、ロータ11の径方向において第1の筒状部41と第2の筒状部42とを連結している。
 複数のストラット19は、周方向においてフローガイド17と重なるように配置されている。また、複数のストラット19は、周方向においてフローガイド17と接続されている。
 このような構成とされた複数のストラット19を有することで、第1の筒状部41と第2の筒状部42との間に形成される流路44に対して所定の位置にフローガイド17を配置(対向)させることができる。
 複数のストラット19は、前縁19Aから後縁19Bに向かう方向に対してロータ11の径方向の厚さが薄くなるように、軸線Oに対して外面19aが傾斜している。複数のストラット19の前縁19Aは、前縁19Aから後縁19Bに向かう方向に凹んだ湾曲面とされている。
 複数のストラット19の形状は、例えば、翼形状としてもよい。このように、複数のストラット19の形状を翼形状とすることで、複数のストラット19の前縁19Aから後縁19Bに向かう方向に圧縮ガスを効率良く通過させることができる。
 なお、複数のストラット19は、フローガイド17と一体に構成してもよい。つまり、複数のストラット19及びフローガイド17は、一体形成してもよい。
 このように、複数のストラット19及びフローガイド17を一体に構成することで、複数のストラット19に対するフローガイド17の組み立て工程を省略することができる。
 タービン21は、ロータ本体25の一部と、複数の動翼28と、ケーシング51と、タービン流路52と、複数の静翼54と、を有する。
 ケーシング51は、ロータ本体25の外側に設けられている。ケーシング51は、タービン流路52を区画している。
 複数の静翼54は、ケーシング51の外壁の内面に設けられている。複数の静翼54は、タービン流路52に配置されている。ロータ11の周方向に配置された複数の静翼54は、静翼群を構成している。静翼群は、軸線方向に対して、複数配置されている。動翼群及び静翼群は、軸線方向に対して交互に配置されている。
 高温高圧の燃焼ガスがケーシング51内に配置された複数の動翼群及び静翼群を通過すると、ロータ11が回転する。これにより、ロータ11と接続された発電機(図示せず)が発電する。
 第1の実施形態のガスタービン10によれば、車室15内に形成された空間15Aのうち、圧縮機13の出口側に、第1及び第2の案内面17a,17bを有するフローガイド17を設けることで、ディフューザ14により流速が減速された圧縮ガスの転向を遅らせることが可能になるとともに、車室15のうち、フローガイド17が設けられた部分をディフューザ14として機能させることが可能となる。つまり、ディフューザとして機能する部分の長さを長くすることができる。
 これにより、車室15内の空間15Aに流入する圧縮ガスの流速を十分に減速させることが可能となるので、車室内での圧力損失を低減することができる。
 なお、第1及び第2の案内面17a,17bの配設位置、形状、及び大きさは、例えば、第1の案内面17aに案内された圧縮ガスの流れ方向、及び第2の案内面17bに案内された圧縮ガスの流れ方向が燃焼器16の減衰部16Aを避けるように構成するとよい。
 (第1の実施形態の変形例)
 図5を参照して、第1の実施形態の変形例に係るガスタービン55について説明する。図5において、図4に示す構造体と同一構成部分には、同一符号を付す。
 第1の実施形態の変形例に係るガスタービン55は、ディフューザ14の出口14Aよりも上流側にフローガイド17の前縁17Aを配置させたこと以外は、第1の実施形態のガスタービン10と同様に構成されている。
 第1の実施形態の変形例に係るガスタービン55によれば、ディフューザ14の出口14Aの上流側にフローガイド17の前縁17Aを配置することで、圧縮ガスがディフューザ14から流出する前に、圧縮ガスを第1の案内面17aによって流れ方向の転向を遅らせる圧縮ガスと、第2の案内面17bで流れ方向を転向させる圧縮ガスとに分離することが可能となるので、ディフューザ14の出口14Aの下流における剥離等による損失をより低減することができる。
 なお、図5では、一例として、ディフューザ14の出口14Aよりも上流側にフローガイド17の前縁17Aを配置させた場合を例に挙げて図示したが、例えば、ディフューザ14の出口14Aの位置とフローガイド17の前縁17Aの位置とを一致させてもよい。
 この場合、ディフューザ14の出口14Aよりも上流側にフローガイド17の前縁17Aを配置させた場合と同様な効果を得ることができる。
 (第2の実施形態)
 図6を参照して、第2の実施形態に係るガスタービン60について説明する。図6は、ガスタービン60の上半部のうち、ディフューザ14の出口側、フローガイド17、及びストラット62に対応する部分を拡大した断面図である。図6において、図1~図4に示す構造体と同一構成部分には同一符号を付す。
 ガスタービン60は、第1の実施形態のガスタービン10を構成する複数のストラット19に替えて、複数のストラット62を有すること以外は、ガスタービン10と同様に構成されている。
 複数のストラット62は、ロータ11の周方向において一部が燃焼器16と重なるように配置されている。複数のストラット62の前縁62A部の内側は、ロータ11の軸線Oに対して鋭角を成すように傾斜している。つまり、複数のストラット62の前縁62Aの端面62aとロータ11の軸線Oとが成す角度が鋭角とされている。この点が、第1の実施形態で説明したストラット19とは異なる。
 複数のストラット62の形状は、例えば、曲率が滑らかな形状であることが好ましい。
 具体的には、複数のストラット62の形状としては、例えば、翼形状を用いることが可能である。また、複数のストラット62の端面62aは、下流側に向かって軸線O方向に凹んでいてもよい。
 第2の実施形態のガスタービン60によれば、ロータ11の軸線Oに対して鋭角を成すように、複数のストラット62の前縁62A部の内側を傾斜させることで、複数のストラット62の前縁62Aにおけるポテンシャルの影響に起因するディフューザ14の出口側の局所的な圧力上昇を抑制することが可能となる。これにより、車室内(図2に示す車室15内)の空間15Aに流入する圧縮ガスの流速を減速させることが可能となるので、車室15内における圧力損失を抑制することができる。
 以上、本発明の好ましい実施形態について詳述したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 第1及び第2の実施形態において、例えば、ディフューザ14の出口よりも下流側に、ディフューザ14の内径側または外径側に突出するキャビティを設ける場合には、フローガイド17の前縁17Aをキャビティよりも下流側に配置させるとよい。
 本発明は、ガスタービンに適用可能である。
 10,55,60  ガスタービン
 11  ロータ
 13  圧縮機
 14  ディフューザ
 14A  出口
 15  車室
 16  燃焼器
 16A  減衰部
 17  フローガイド
 17a  第1の案内面
 17b  第2の案内面
 17A,19A,62A  前縁
 17B,19B  後縁
 19,62  ストラット
 19a  外面
 21  タービン
 25  ロータ本体
 27,28  動翼
 31,51  ケーシング
 33  ガス取込口
 34  圧縮機流路
 35  入口案内翼
 37,54  静翼
 41  第1の筒状部
 41a  外周面
 42  第2の筒状部
 42a  内周面
 44  流路
 52  タービン流路
 62a  端面
 B,C,D  方向
 O  軸線
 θ,θ  角度

Claims (10)

  1.  ガスを圧縮することで圧縮ガスを生成する圧縮機と、
     内部に空間が形成された車室と、
     前記車室の前記空間に配置され、前記圧縮ガスを用いて燃焼ガスを生成する燃焼器と、
     前記燃焼器の後段に設けられ、前記燃焼ガスにより駆動するタービンと、
     前記圧縮機の出口と前記車室の入口とを連結するとともに、前記圧縮機の出口から前記車室の入口に向かうにつれて次第に拡径されており、かつ前記圧縮ガスを前記空間へと導く流路を区画するディフューザと、
     前記車室内に形成された前記空間のうち、前記ディフューザの出口側に設けられたフローガイドと、
     前記圧縮機から前記タービンにわたって配置されたロータと、
     を備え、
     前記フローガイドは、前記ロータ側に設けられ、前記ディフューザを通過した前記圧縮ガスの流れ方向の転向を遅らせる第1の案内面と、
     前記第1の案内面の外側に配置され、前記ディフューザを通過した前記圧縮ガスの流れ方向を転向させる第2の案内面と、
     を含むガスタービン。
  2.  前記フローガイドの前縁は、前記ディフューザの出口よりも下流側に配置する請求項1に記載のガスタービン。
  3.  前記フローガイドの前縁は、前記ディフューザの出口と一致する位置、または前記ディフューザの出口よりも上流側の位置に配置されている請求項1に記載のガスタービン。
  4.  前記第1の案内面は、前記ロータの軸線に対して平行である請求項 1から3のうち、いずれか一項に記載のガスタービン。
  5.  前記第1の案内面は、前記フローガイドの前縁から後縁に向かうにつれて前記ロータの軸線に近づく方向に傾斜させる請求項1から3のうち、いずれか一項に記載のガスタービン。
  6.  前記第2の案内面は、前記フローガイドの前縁から後縁に向かうにつれて前記ロータの軸線から離間する方向に湾曲する湾曲面である請求項1から5のうち、いずれか一項に記載のガスタービン。
  7.  前記ディフューザは、第1の筒状部と、前記第1の筒状部の外側に配置され、前記第1の筒状部との間に前記流路を区画する第2の筒状部と、を含み、
     前記フローガイドは、環状とされており、
     前記ロータの径方向において前記第1の筒状部と前記第2の筒状部とを連結するとともに、前記ロータの周方向に配列され、かつ前記フローガイドを支持する複数のストラットを備える請求項1ないし6のいずれか一項に記載のガスタービン。
  8.  前記複数のストラットの形状は、翼形状である請求項7に記載のガスタービン。
  9.  前記複数のストラットは、前記ロータの周方向において一部が前記燃焼器と重なるように配置されており、
     前記複数のストラットの前縁部の内側は、前記ロータの軸線に対して鋭角を成すように傾斜させる請求項7または8に記載のガスタービン。
  10.  前記第1の筒状部は、前記第2の筒状部と対向する外周面を含み、
     前記第2の筒状部は、前記第1の筒状部と対向する内周面を含み、
     前記ロータの軸線と前記外周面とがなす第1の角度を前記ロータの軸線と前記内周面とがなす第2の角度よりも小さい請求項7から9のうち、いずれか一項に記載のガスタービン。
PCT/JP2018/013616 2017-03-30 2018-03-30 ガスタービン WO2018181902A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197028187A KR102414858B1 (ko) 2017-03-30 2018-03-30 가스 터빈
JP2019510248A JP6785368B2 (ja) 2017-03-30 2018-03-30 ガスタービン
US16/498,017 US11408307B2 (en) 2017-03-30 2018-03-30 Gas turbine
DE112018001747.8T DE112018001747T5 (de) 2017-03-30 2018-03-30 Gasturbine
CN201880021612.5A CN110475948B (zh) 2017-03-30 2018-03-30 燃气轮机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017066598 2017-03-30
JP2017-066598 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018181902A1 true WO2018181902A1 (ja) 2018-10-04

Family

ID=63676275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013616 WO2018181902A1 (ja) 2017-03-30 2018-03-30 ガスタービン

Country Status (6)

Country Link
US (1) US11408307B2 (ja)
JP (1) JP6785368B2 (ja)
KR (1) KR102414858B1 (ja)
CN (1) CN110475948B (ja)
DE (1) DE112018001747T5 (ja)
WO (1) WO2018181902A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115289499B (zh) * 2022-10-08 2023-01-10 成都中科翼能科技有限公司 一种燃气轮机燃烧室进气口的空心支板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592821A (en) * 1993-06-10 1997-01-14 Societe Nationale D'etude Et De Construction De Moteurs F'aviation S.N.E.C.M.A. Gas turbine engine having an integral guide vane and separator diffuser
JP2003042451A (ja) * 2001-06-18 2003-02-13 Siemens Ag 空気圧縮機を備えたガスタービン
JP2007146838A (ja) * 2005-11-29 2007-06-14 United Technol Corp <Utc> ガスタービンエンジンの圧縮機ディフューザおよびダートセパレータ、並びにガスタービンエンジンの圧縮機ディフューザに配設されるダートセパレータ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314397A (ja) 1999-04-30 2000-11-14 Toshiba Corp 軸流圧縮機
JP2003138987A (ja) * 2001-10-30 2003-05-14 Ishikawajima Harima Heavy Ind Co Ltd 曲がりダクト
US7600370B2 (en) * 2006-05-25 2009-10-13 Siemens Energy, Inc. Fluid flow distributor apparatus for gas turbine engine mid-frame section
US8133017B2 (en) * 2009-03-19 2012-03-13 General Electric Company Compressor diffuser
US20120027578A1 (en) 2010-07-30 2012-02-02 General Electric Company Systems and apparatus relating to diffusers in combustion turbine engines
JP6169007B2 (ja) 2014-01-23 2017-07-26 三菱重工業株式会社 動翼、及び軸流回転機械
JP6719877B2 (ja) 2015-09-28 2020-07-08 大和ハウス工業株式会社 プレキャストコンクリート基礎、接合部材および接合構造
JP6783054B2 (ja) * 2015-12-25 2020-11-11 川崎重工業株式会社 ガスタービンエンジン

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592821A (en) * 1993-06-10 1997-01-14 Societe Nationale D'etude Et De Construction De Moteurs F'aviation S.N.E.C.M.A. Gas turbine engine having an integral guide vane and separator diffuser
JP2003042451A (ja) * 2001-06-18 2003-02-13 Siemens Ag 空気圧縮機を備えたガスタービン
JP2007146838A (ja) * 2005-11-29 2007-06-14 United Technol Corp <Utc> ガスタービンエンジンの圧縮機ディフューザおよびダートセパレータ、並びにガスタービンエンジンの圧縮機ディフューザに配設されるダートセパレータ

Also Published As

Publication number Publication date
KR102414858B1 (ko) 2022-06-29
CN110475948B (zh) 2022-05-10
JPWO2018181902A1 (ja) 2020-02-13
US20200056508A1 (en) 2020-02-20
DE112018001747T5 (de) 2019-12-12
CN110475948A (zh) 2019-11-19
JP6785368B2 (ja) 2020-11-18
KR20190116516A (ko) 2019-10-14
US11408307B2 (en) 2022-08-09

Similar Documents

Publication Publication Date Title
US11187243B2 (en) Diffusor for a radial compressor, radial compressor and turbo engine with radial compressor
US9127554B2 (en) Gas turbine engine with radial diffuser and shortened mid section
EP3063373B1 (en) Gas turbine diffuser strut including coanda flow injection
JP6265353B2 (ja) 開閉弁装置、及び回転機械
US8850824B2 (en) Aircraft gas turbine with variable bypass nozzle by deforming element
US20160177728A1 (en) Vane structure for axial flow turbomachine and gas turbine engine
US11661860B2 (en) Compressor module for turbomachine
US20140060001A1 (en) Gas turbine engine with shortened mid section
US9957807B2 (en) Rotor assembly with scoop
JP6632510B2 (ja) 蒸気タービンの排気室、蒸気タービン排気室用のフローガイド、及び、蒸気タービン
WO2017110973A1 (ja) ガスタービンエンジン
WO2018181902A1 (ja) ガスタービン
JP2017115857A (ja) ターボファンエンジンで使用するファンケース及びターボファンエンジンを組み立てる方法
US10851676B2 (en) Exhaust diffuser
WO2021153556A1 (ja) タービン
US20170284415A1 (en) Fan housing and engine assembly with fan housing
JP2016094914A (ja) 軸流機械の翼
US20190003325A1 (en) Inter-turbine ducts with multiple splitter blades
WO2019111725A1 (ja) 遠心圧縮機及びターボチャージャ
US11867090B2 (en) Stator vane and aircraft gas turbine engine
JP6994976B2 (ja) タービンの排気室及びタービン
JP6978912B2 (ja) 燃焼器及びガスタービン
JP2019173750A (ja) 遠心圧縮機及びターボチャージャー
JP2020051311A (ja) 部分送入タービン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778172

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197028187

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019510248

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18778172

Country of ref document: EP

Kind code of ref document: A1